UC Santa Barbara

UC Santa Barbara Previously Published Works

Title

Zirconium isotopic composition of the upper continental crust through time

Permalink

https://escholarship.org/uc/item/8645n4r4

Authors

Tian, Shengyu Moynier, Frederic Inglis, Edward C <u>et al.</u>

Publication Date

2021-10-01

DOI

10.1016/j.epsl.2021.117086

Peer reviewed

1	Zirconium isotopic composition of the upper continental
2	crust through time
3	Shengyu Tian ^{a*} , Frederic Moynier ^a , Edward C. Inglis ^a , Roberta L. Rudnick ^b , Fang Huang ^c ,
4	Catherine Chauvel ^a , John B. Creech ^d , Richard M. Gaschnig ^e , Zaicong Wang ^f , Jing-Liang Guo ^f
5	^a Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris cedex 05, France
6	^b Department of Earth Science, University of California-Santa Barbara, Santa Barbara, California
7	93106, USA
8	^c CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space
9	Sciences, University of Science and Technology of China, Hefei 230026, China
10	^d Department of Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia
11	^e University of Massachusetts – Lowell, Department of Environmental, Earth, and Atmospheric
12	Science, Lowell, MA 01854, USA.
13	$^{ m f}$ State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences,
14	China University of Geosciences, Wuhan 430074, China
15	
16	Abstract
17	The stable isotopic composition of insoluble, refractory elements such as
18	titanium (Ti) or zirconium (Zr), which are modified by magmatic differentiation but,
19	a priori, are poorly affected by weathering or diagenesis, serve as powerful potential
20	proxies to reconstruct the compositional evolution of the continental crust. Here we
21	present the evolution of the Zr stable isotopic compositions ($\delta^{94/90}$ Zr _{IPGP-Zr} , per mille

22	deviation of ⁹⁴ Zr/ ⁹⁰ Zr from IPGP-Zr standard) of the continental crust trough time,
23	using 38 sedimentary samples from the upper continental crust (UCC), including 12
24	Holocene loess from the Chinese Loess Plateau and Xinjiang, three oceanic sediments
25	from the sea floor outboard of the Lesser Antilles island arc and 23 glacial diamictite
26	composites with depositional ages ranging from ~ 2.9 Ga to 0.3 Ga from South
27	Africa, South America, Canada, USA and China. The samples show limited Zr
28	isotopic variations with $\delta^{94/90}Zr_{IPGP-Zr}$ values of 0.043‰ - 0.109‰ for loess; 0.069‰ -
29	0.083‰ for oceanic sediments and 0.031‰ - 0.118‰ for glacial diamictites; their Zr-
30	weighted average values are, $0.081 \pm 0.044\%$ (2SD, n = 12), $0.073 \pm 0.015\%$ (2SD, n
31	= 3) and 0.078 \pm 0.047‰ (2SD, n = 23), respectively. The isotopic similarity among
32	loess, oceanic sediments and glacial diamictites, suggests that zircon enrichment
33	effects previously documented in some sedimentary samples have not biased the Zr
34	isotope compositions of these sedimentary rocks from their source rocks. Two groups
35	with or without Zr enrichment have similar average $\delta^{94/90}$ Zr _{IPGP-Zr} values (0.075 ±
36	0.040‰ and 0.080 \pm 0.046‰). There is no correlation between Zr isotope
37	compositions and any proxy of chemical weathering (e.g., Al ₂ O ₃ /SiO ₂ , Fe ₂ O ₃ /SiO ₂ ,
38	CIA, K ₂ O/Al ₂ O ₃ and δ^7 Li). The $\delta^{94/90}$ Zr _{IPGP-Zr} values are quite constant for these
39	sedimentary samples regardless of their depositional ages and locations. Therefore,
40	the UCC appears to have had a constant Zr isotopic composition between 3 Ga and
41	present, and is homogeneous at a large scale. Combining data for sedimentary
42	reference materials from the literature and the sedimentary rocks in this study, we

· 94- /90-

43	suggest a Zr-weighted $\delta^{94/90}$ Zr _{IPGP-Zr} value of 0.077 ± 0.058‰ (2SD, n = 44) for the
44	UCC, which is statistically distinct (t test, p value = 2.88×10^{-10}) and higher than that
45	of the mantle (0.040 \pm 0.044‰, n = 72). Combining the $\delta^{94/90}$ Zr _{IPGP-Zr} values of
46	different terrestrial reservoirs, the $\delta^{94/90}$ Zr _{IPGP-Zr} of the BSE and bulk Earth is
47	constrained to be 0.041 ± 0.041 %.
48	
49	Key words: zirconium isotopes, upper continental crust, BSE, glacial diamictites,
50	loess, oceanic sediments
51	Introduction
52	The Earth is the only terrestrial planet with plate tectonics, though the timing of its
53	initiation is still vigorously debated (Brown et al., 2020; Harrison, 2009; Korenaga,
54	2013). The production of the first felsic continental crust is usually taken as a proxy to
55	trace the initiation of subduction and, by extension, plate tectonics (Greber et al.,
56	2017; Tang et al., 2016). In particular, the concentrations of insoluble elements and
57	their ratios in terrigenous sedimentary rocks have been used to deduce the bulk
58	composition of the UCC over Earth history (Condie, 1993; Taylor and McLennan,
59	1985). Recently, based on the correlation between the stable Ti isotopic composition
60	of igneous rocks with their SiO ₂ content, Ti isotope ratios in Archean shales have been
61	interpreted to reflect the presence of intermediate to felsic crust as early as 3.5 Ga
62	(Greber et al., 2017). However, later work demonstrated that tholeiitic and calc-
63	alkaline differentiation series produce different degrees of Ti isotope fractionation,

64 which could be interpreted as either a changing or constant UCC composition,

65	depending on which types of igneous rocks dominated at a particular time (Deng et
66	al., 2019; Hoare et al., 2020). Although not fully conclusive, the study of Ti isotope
67	composition of sediments highlights the strong potential of using novel stable isotope
68	tracers to shed new light on crustal evolution.
69	Zirconium isotopes have the potential to further trace magmatic differentiation
70	and provide constraints on the formation and evolution of the continental crust (Guo
71	et al., 2020; Ibañez-Mejia and Tissot, 2019; Inglis et al., 2019). Zirconium, like Ti, is
72	a refractory (50% condensation temperature = 1741K; Lodders, 2003), incompatible,
73	and insoluble element. Ratios of similarly insoluble, incompatible, high field-strength
74	elements (HFSE) have been used to constrain mantle end members of intraplate
75	magmas, provide information on the genesis and eruptive environments of lavas, and
76	trace recycled crustal components in the mantle (Condie, 2005; Niu, 2004). Moreover,
77	zircon, the main host of Zr in most crustal rocks, is critical in studies of the temporal
78	evolution of both the crust and lithospheric mantle, due to its use for U-Th-Pb
79	geochronology, Lu-Hf, and O isotope measurements (Dhuime et al., 2012; Harrison et
80	al., 2005; Valley et al., 2005; Wilde et al., 2001).
81	Zirconium has five stable isotopes: ⁹⁰ Zr (51.45%), ⁹¹ Zr (11.22%), ⁹² Zr (17.15%),
82	94 Zr (17.38%) and 96 Zr (2.8%), and fractionation of these isotopes is recorded using
83	delta notation ($\delta^{94/90}$ Zr _{IPGP-Zr}). A strong covariation is observed between Zr contents
84	and Zr isotope compositions for lavas from the Hekla volcano, Iceland (Inglis et al.,

85	2019). For rocks with SiO ₂ contents > ~66.8 wt.%, $\delta^{94/90}$ Zr _{IPGP-Zr} increases
86	significantly, together with a sharp decrease of the Zr concentrations. This is likely
87	caused by zircon fractionation from the residual melt (Inglis et al., 2019), creating an
88	overall range of $\delta^{94/90}$ Zr _{IPGP-Zr} of 0.582‰. Moreover, <i>in situ</i> Zr isotopic studies within
89	internally zoned zircons from the Gangdese arc, Tibet showed lighter isotope
90	compositions in the cores and heavier values toward the rims, with an overall range of
91	1.27 ‰ (Guo et al., 2020). This study demonstrated that lighter Zr isotopes are
92	preferentially incorporated into zircons, causing the residual melt to have heavier Zr
93	isotope composition. On the other hand, zircon and baddeleyite crystals from the
94	anorthositic gabbro GC-1 from the Duluth Complex were found to be enriched in the
95	heavier Zr isotopes (Ibañez-Mejia and Tissot, 2019; Zhang et al., 2019), with an
96	overall range of ~5 ‰. Recent <i>ab-initio</i> calculations suggested that while $\delta^{94/90}$ Zr _{IPGP-}
97	$_{Zr}$ of zircon, in which Zr is in 8-fold coordination, should be lower than that of the
98	silicate melt, in which Zr is in 6-fold coordination, equilibrium fractionation is too
99	small to explain the fractionation observed in the Hekla, Duluth Complex, and
100	Gangdese igneous systems, and that part of the light isotope enrichment of zircons is
101	due to kinetic isotopic fractionation driven by diffusion (Chen et al., 2020; Méheut et
102	al., 2020). Whatever the mechanism driving these isotopic fractionations, the large Zr
103	isotopic variations due to magmatic differentiation suggest that Zr stable isotopes
104	could be used as a new proxy to constrain the chemical compositional evolution of

105 UCC. A first step in that direction is to evaluate the Zr isotope composition of UCC106 over time.

107	Studies of the average composition of the UCC traditionally follow one of two
108	approaches: establishing weighted averages of the compositions of outcrops at the
109	surface via large-scale sampling, or weighted averaging of fine-grained clastic
110	sedimentary rocks (e.g., shale, loess and glacial diamictites) (Condie, 1993; Rudnick
111	and Gao, 2014; Taylor and McLennan, 1985). The former approach is the primary
112	source of estimates of the average abundance of major elements and a number of
113	soluble trace elements in the UCC. The latter approach is used to derive the average
114	composition of insoluble elements in the UCC, assuming that sedimentation processes
115	provide a natural sampling of large areas of the exposed crust and elements with low
116	solubility are not impacted by weathering. Furthermore, this approach could also be
117	used to investigate the secular evolution of the UCC by utilizing sedimentary rocks of
118	various depositional ages. In addition to the two methods noted above, Plank and
119	Langmuir (1998) generated a global subducting sediment (GLOSS) composition and
120	flux based on average global oceanic sediments, in order to assess the influence of
121	subducting sediments on arc volcanism and crust-mantle recycling, and re-evaluate
122	the chemical composition of the continental crust. They found that the HFSE
123	abundances are closely related to the presence of detrital phases and GLOSS is
124	dominated by terrigenous materials (76 wt.%). (Plank and Langmuir, 1998).

125	Here we estimate the Zr isotopic composition of the UCC based on analyses of a
126	variety of sedimentary samples: twelve Holocene loess deposits, three oceanic
127	sediments and twenty-three glacial diamictite composites having depositional ages
128	spanning much of Earth history (~2.9 - 0.3 Ga). As Zr is an insoluble element, its
129	concentration and isotopic composition is not expected to be affected by chemical
130	weathering. Loess experiences limited chemical weathering during formation but may
131	have been affected by mineral sorting during transportation, such as zircon
132	enrichment (e.g., Taylor et al., 1983). The loess studied here are from Yimaguan,
133	Luochuan, and Nileke in China and have been previously well characterized (Gong et
134	al., 2017; Hao et al., 2012; Nan et al., 2018; Tsai et al., 2014). The oceanic sediments
135	have previously been characterized by Carpentier et al. (2008 and 2009). Their
136	composition is mainly controlled by detrital materials from the continental crust
137	(Carpentier et al., 2008). The glacial diamictite composites have been widely used to
138	study the chemical compositions of UCC (Chen et al., 2016; Gaschnig et al., 2014;
139	Gaschnig et al., 2016; Greaney et al., 2020; Johnson and Goldblatt, 2017; Li et al.,
140	2016; Mundl et al., 2018; Nan et al., 2018; Wang et al., 2019). By studying the Zr
141	isotope compositions of terrigenous sedimentary rocks we aim to constrain the Zr
142	isotope composition of the UCC, its secular evolution between 3 Ga and present, and
143	estimate whether mineralogical sorting and chemical weathering influences Zr isotope
144	compositions of terrigenous sediments.

145 Methods and Samples

Loess

147	Loess is fine, silt-sized aeolian sediment derived from glacial outwash plains or
148	from desert environments (Taylor et al., 1983). Pleistocene loess covers 10% of
149	Earth's surface (Taylor et al., 1983). Loess exhibits CIA values (CIA = molar
150	proportions $Al_2O_3 / (Al_2O_3 + K_2O + Na_2O + CaO^*)$, where CaO* is CaO amounts
151	contributed by silicate fraction of the whole sample) slightly above that of fresh
152	igneous rocks, and lower than typical CIA values of shales. The chemical weathering
153	signal in loess may also originate from glacially eroded bedrocks (Gallet et al., 1998).
154	Loess samples from around the world have similar rare earth element patterns, akin to
155	those seen in post-Archean shales (Taylor et al., 1983). As aeolian processing does
156	not seem to fractionate most incompatible and insoluble elements from lanthanum
157	except those affected by heavy mineral fractionation, loess is taken to provide a
158	robust estimate of the abundance of these elements in the UCC based on their ratios
159	with lanthanum (Taylor et al., 1983).
160	Eleven loess and one paleosol samples were collected from Yimaguan,
161	Luochuan, and Nileke, China (Table S1). The Yimaguan and Luochuan loess-paleosol
162	sections are representative of the Chinese Loess Plateau and was deposited over the
163	past 0.9 Ma. These samples comprise wind-rafted sediments from inland deserts in
164	northern and northwestern China and were previously used to determine the timing of
165	build-up of the northern hemisphere ice sheets (Hao et al., 2012) and to estimate the
166	Fe and Ba isotope compositions of the UCC (Gong et al., 2017; Nan et al., 2018).

167 Xinjiang is one of the most significant loess regions in China and Central Asia, and is situated between the East Europe loess region and the well-studied Chinese Loess 168 169 Plateau. Xingjiang loess is mainly derived from adjacent deserts, transported via 170 northwesterly winds (Tsai et al., 2014). The Xinjiang loess samples in this study have 171 also been used to constrain the Ba isotopic composition of the UCC (Nan et al., 172 2018). 173 **Oceanic sediments** 174 Oceanic sediments are primarily composed of products of erosion of the 175 continental crust, and biologically and chemically precipitated minerals (Carpentier et 176 al., 2009; Plank and Langmuir, 1998). The final composition of the sediments 177 depends on the distance to the detrital sources, biological productivity, carbonate 178 compensation depth and sedimentation rate (Carpentier et al., 2009). Plank and 179 Langmuir (1998) established the composition of global subducting sediment 180 (GLOSS) and found that GLOSS is dominated by terrigenous materials (76 wt.% terrigenous, 7 wt.% calcium carbonate, 10 wt.% opal, 7 wt.% mineral-bound H_2O^+). 181

182 Therefore, GLOSS is similar to the UCC in composition (Plank and Langmuir, 1998).

183 Three oceanic sediment samples, which were collected from DSDP 14 Site 144

184 (at 2960 m water depth) on the Demerara Rise, and DSDP 78A Site 543 (at 5630 m

185 water depth), located to the east of Dominica Island, were analyzed for their Zr

186 isotope composition. Site 144 is situated southeast of the Lesser Antilles island arc,

187 closer to the South American continent (340 km) compared to Site 543 (860 km)

188	(Carpentier et al., 2008; Carpentier et al., 2009). Some Site 144 sediments exhibit
189	remarkable Zr and Hf enrichments, which are attributed to enrichment of zircons in
190	coarse detrital fractions (Carpentier et al., 2009), including the two samples selected
191	for this study. By contrast, the sediments from site DSDP 543 are enriched in finer
192	clay-rich fractions devoid of zircon (Carpentier et al., 2009). These samples have been
193	well characterized for trace elements and Sr-Nd-Pb-Hf, Li and Mo isotope
194	compositions (Carpentier et al., 2008; Carpentier et al., 2009; Gaschnig et al., 2017;
195	Tang et al., 2014). Overall, the sediments from Site 144 and 543 are dominated by
196	input from old detrital continental materials that have different compositions. For the
197	samples studied here, the two from site 144 show the effects of detrital quartz and
198	zircon enrichment, while the one from site 543 is dominated by detrital clays. The
199	CIA values of the three samples vary from 61 to 66, which is slightly higher than
200	those of the loess samples in this study (from 57 to 64 with an average of 60).
201	Glacial diamictites
202	Goldschmidt (1933) first noted that glacial loam may provide a means of
203	determining the average composition of the UCC. Nevertheless, it took nearly 80
204	years for geoscientists to begin to explore these deposits for this purpose (Gaschnig et
205	al., 2014). Glaciers mechanically erode the soil and bedrock that they traverse,
206	producing comminuted sediments that approximate the average of the soils and rocks
207	underlying the glaciers. When the glaciers melt, their sedimentary load is deposited as
208	glacial till, which is later lithified. These deposits may occur on land or in the shallow

209	marine environment (Gaschnig et al., 2014). Minimal chemical weathering is
210	expected to have occurred during erosion, transport and deposition due to the low
211	temperatures and the rapid deposition of the diametites. Compared to loess and shales,
212	glacial diamictites are not reworked by wind or water (Gaschnig et al., 2014; Rudnick
213	and Gao, 2014; Taylor and McLennan, 1985). Twenty-three glacial diamictite
214	composites comprised of more than 100 individual samples with depositional ages
215	ranging from 2.9 Ga to 0.3 Ga from South Africa, South America, Canada, USA and
216	China, were analyzed for their Zr isotopic composition (Table S2). The glacial
217	diamictites have been previously well characterized for their chemical compositions
218	(Chen et al., 2016; Gaschnig et al., 2014; Gaschnig et al., 2016), and a wide range of
219	isotopic compositions (Li, N, O, Mo, Nd, Hf-W, Ba, and Ni; Gaschnig et al., 2016;
220	Greaney et al., 2020; Johnson and Goldblatt, 2017; Li et al., 2016; Mundl et al., 2018;
221	Nan et al., 2018; Wang et al., 2019). Most of the composites have elevated CIA
222	values relative to the values of fresh igneous rocks (Nesbitt and Young, 1982) and are
223	depleted in Sr, reflecting the influence of chemical weathering. Li et al. (2016) used
224	lithium isotopes and Pb isotopes, along with chemical, petrographic, and outcrop data
225	to evaluate the origin of this weathered signature. They concluded that the signatures
226	are mainly inherited from the UCC traversed by the glaciers rather than during syn- or
227	post- depositional weathering.

228 Other samples

isotopic data of sedimentary reference materials including shales, river, or lake
sediments to derive an estimate of the Zr isotope composition of the UCC and the
BSE. They are: stream sediments JSD-1and JSD-2, lake sediments JLK-1, and shales
SCo-1, SBC-1 and SGR-1 (Table S3).

In addition to the terrigenous sedimentary rocks described above, we evaluate Zr

234 Analytical methods

229

235 The loess and oceanic sediment samples (Carpentier et al., 2008) were hand 236 crushed to powders in an agate mortar. The preparation of the glacial diamictite 237 composites was described in detail in Gaschnig et al. (2016). The powders were 238 digested using 2 mL mixture of 27 M HF and 16 M HNO₃ at a 5:1 ratio within PTFE 239 vials. These vials were placed within spring-loaded screw-top steel vessels obtained 240 from Parr Instruments® (typically referred to as Parr bombs). After heating at 160 °C 241 for five days the sample solutions were evaporated to dryness and treated with 2 mL 6M HCl on a hot plate at 140 $^{\circ}$ C for two days for fluoride decomposition. 242 243 An aliquot containing $\sim 1 \mu g Zr$ obtained from each solution was dried down, brought back into solution in 2 mL of 4 M HF and spiked with a ⁹¹Zr-⁹⁶Zr double-244 spike (51.4% ⁹¹Zr and 48.6% ⁹⁶Zr) at an optimal spike to sample ratio of 43:57. 245 246 Before chemical separation, the spiked solutions were heated at 120 $^{\circ}$ C for at least 12 247 hours to equilibrate the samples and double spike. Zirconium separation was achieved 248 using a procedure described in Tian et al. (2020a), which is modified after the 249 approach reported in Inglis et al. (2018). Because 4 M HF could not re-dissolve the

250	samples completely, before loading on the first column, which is packed with 2 mL
251	anion exchange resin (Bio-Rad AG1-X8 200-400 mesh), the sample solutions with
252	precipitates were placed in an ultrasonic bath for 1 h, then centrifuged. The
253	supernatant was carefully taken up and loaded onto the column. Except for HFSE,
254	most matrix elements are removed with 32 mL (4 \times 8 mL) of 4 M HF. During the
255	second stage, matrices were eluted with 12 mL of 12 M HNO ₃ and 12 mL 3 M HNO ₃
256	on the column with DGA resin. Finally, Zr was collected in 10 mL 3 M $HNO_3 + 0.2$
257	M HF. Recovery yields for Zr were higher than 90%. After evaporating to dryness, 16
258	M HNO ₃ was added to the sample and then heated at 120 $^\circ\text{C}$ for 2 h to remove any
259	organic residues possibly coming from the resin. Then the samples were dried down
260	and dissolved in 0.5 M HNO $_3$ + 0.1 M HF in preparation for measurements on the
261	mass spectrometer.
262	Zirconium isotopic compositions were measured via the double spike method on
263	a Thermo Fisher Neptune Plus MC-ICP-MS at IPGP. Measurement details are
264	provided in Tian et al. (2020a, 2020b). Briefly, inert sample introduction kits,
265	including a Savillex [™] PFA cyclonic spray chamber (CSC) and a Savillex [™] sapphire
266	torch injector were used because the carrier acid has 0.1 M HF. 90 Zr ⁺ , 91 Zr ⁺ , 92 Zr ⁺ ,
267	94 Zr ⁺ , 95 Mo ⁺ and 96 Zr ⁺ were monitored simultaneously using Faraday cups with 10^{11}
268	Ω resistors. ${}^{91}Zr^+/{}^{90}Zr^+$, ${}^{94}Zr^+/{}^{90}Zr^+$ and ${}^{96}Zr^+/{}^{90}Zr^+$ were used for double spike data
269	processing, which was done by the IsoSpike add-on in the software package Iolite
270	(Creech and Paul, 2015). Before calculation, ⁹⁵ Mo ⁺ was used to correct interferences

271	from ⁹⁴ Mo ⁺ and ⁹⁶ Mo ⁺ on corresponding isobaric Zr ions. The data are reported
272	against the IPGP-Zr standard; a calibration against other standards (e.g., zircon G1,
273	NIST SRM 3169, 'NIST') can be found in Tian et al. (2020a). Total procedure blanks
274	were <1 ng for Zr.
275	Results
276	The $\delta^{94/90}Zr_{IPGP\text{-}Zr}$ values we determined for BHVO-2 and GA are 0.048 \pm
277	0.017% (2SD, n=4) and $0.13 \pm 0.013\%$ (2SD, n=7), respectively (Table S1), which
278	agree well with data from the literature (Inglis et al., 2018; Tian et al., 2020a),
279	confirming the accuracy of our data. Overall, the Zr isotope compositions of
280	sedimentary rocks in this study are quite homogenous, ranging from 0.031 to 0.118‰
281	with an average $\delta^{94/90}$ Zr _{IPGP-Zr} of 0.078 ± 0.044‰ (2SD, n= 38), with a Zr-weighted
282	average of 0.079 \pm 0.044‰ (2SD, n=38). The $\delta^{94/90}$ Zr _{IPGP-Zr} values of Yimaguan,
283	Luochuan, and Nileke loess range from 0.043 to 0.109‰, with an overall Zr-weighted
284	average of $0.081 \pm 0.044\%$ (2SD, n = 12) and with individual weighted averages of
285	$0.089 \pm 0.028\%$ (2SD, n = 6), 0.067 \pm 0.043% (2SD, n = 3) and 0.082 \pm 0.071%
286	(2SD, $n = 3$), respectively. The three oceanic sediments from the DSDP sites outboard
287	of the Lesser Antilles arc display a weighted average of $\delta^{94/90}$ Zr _{IPGP-Zr} of 0.073 ±
288	0.015% (2SD, n = 3). Glacial diamictites have similar Zr isotope compositions as
289	those of the loess and oceanic sediments (Table S2 and S1). The $\delta^{94/90}$ Zr _{IPGP-Zr} values
290	of 23 individual glacial diamictite composites vary from 0.031 to 0.118‰, with a Zr-
291	weighted average of $0.078 \pm 0.047\%$ (2SD, n = 23). The Zr-weighted average

292	$\delta^{94/90}$ Zr _{IPGP-Zr} values of Mesoarchean, Paleoproterozoic, Neoproterozoic and Paleozoic
293	diamictite composites are $0.084 \pm 0.033\%$ (2SD, n = 4), $0.070 \pm 0.052\%$ (2SD, n =
294	6), $0.077 \pm 0.055\%$ (2SD, n = 10) and $0.090 \pm 0.030\%$ (2SD, n = 3), respectively.
295	Discussion
296	The different types of sedimentary samples analyzed here have relatively
297	homogenous Zr isotope compositions, reflecting limited Zr isotope fractionation
298	during the diverse geological processes by which these samples formed. Nevertheless,
299	we first consider the possible effects of mineral sorting and chemical weathering on
300	the Zr isotope compositions of these sedimentary samples, and then use the data to
301	calculate the average Zr isotope compositions of the UCC, BSE and bulk Earth.
302	1. Zircon sorting has negligible effect on the Zr isotope compositions of
303	sedimentary samples
304	On average, coarse-grained sedimentary samples show higher Zr and Hf
305	concentrations compared to fine-grained samples, which is usually interpreted to be
306	due to an enrichment of heavy minerals such as zircon and rutile via hydrodynamic
307	mineral sorting (Carpentier et al., 2009; Taylor and McLennan, 1985). Early studies
308	suggested that loess was enriched in Zr and Hf relative to the estimated average
309	composition of the UCC, reflecting concentration of zircon by aeolian processes
310	(Gallet et al., 1998; Taylor et al., 1983). Chauvel et al. (2014) argued that periglacial
311	loess samples had a large excess of Zr and Hf owing to the enrichment of zircons, but

313	excess effect, as evidenced by their $\Delta \epsilon_{Hf}$ (Hf isotopic deviation from the terrestrial
314	array defined by Carpentier et al., 2009) and Nd/Hf ratio relationship, that is, low
315	Nd/Hf and negative $\Delta \epsilon_{Hf}$ (Chauvel et al., 2014), even though most of these loess
316	samples have higher Zr/Al_2O_3 (12.3 ~ 26.0, data from Chauvel et al., 2014) ratios
317	compared to the UCC (12.5, Rudnick and Gao, 2014). It is worth noting that the
318	Western European loess samples studied in Chauvel et al. (2014), which showed a
319	zircon excess effect have some of the highest Zr/Al ₂ O ₃ ratios: from 20.7 to 68.7.
320	Because zircons can have different Zr isotopic composition than their melts
321	(Chen et al., 2020; Guo et al., 2020; Inglis et al., 2019; Méheut et al., 2020; Tian et
322	al., 2020a; Zhang et al., 2019), zircon-enriched sedimentary samples may be
323	isotopically different. To quantify zircon enrichment, we first divided the oceanic
324	sediments and glacial diamictite composites into two groups according whether they
325	show higher Nd/Hf ratios relative to UCC . The samples whose Nd/Hf ratio is lower
326	than 5.1 are classified as having excess zircon. The Nd and Hf concentration of the
327	Chinese loess samples were not available, but considering that their Zr/Al ₂ O ₃ ratios
328	(from 16.6 to 24.8) are comparable to those of Chinese loess samples in Chauvel et al.
329	(2014), and that the Yimaguan and Luochuan loess samples belong to the same loess
330	deposit as the one reported by Chauvel et al. (2014), these samples probably do not
331	record a zircon excess. The Xinjiang loess samples derive from a desert region, not
332	periglacial, so they are similar to other Chinese loess from Chinese Loess Plateau and
333	are also considered to not show a zircon excess effect. The two groups of samples

334	with or without zircon enrichment display average $\delta^{94/90}$ Zr _{IPGP-Zr} values of 0.075 ±
335	0.040% (2SD, n = 9) and $0.080 \pm 0.046\%$ (2SD, n = 29), respectively, which are
336	statistically indistinguishable (t test, p value = 0.55). In addition, there is no
337	correlation between $\delta^{94/90}$ Zr _{IPGP-Zr} values and Nd/Hf ratios (Fig. 2a, R ² = 0.01), or
338	Zr/Al_2O_3 ratios (Fig. 2b, $R^2 = 9.6 \times 10^{-7}$). The similarity of the Zr isotope composition
339	between these two groups and the absence of correlation between $\delta^{94/90}$ Zr _{IPGP-Zr} Nd/Hf
340	and Zr/Al ₂ O ₃ illustrate that zircon addition or subtraction has not affected the Zr
341	isotope composition of the sedimentary samples to a measurable extent.
342	2. No measurable Zr isotope fractionation due to chemical weathering
343	There has not yet been a study of Zr isotope behavior during chemical
344	weathering. Nevertheless, the data for sedimentary samples reported here provide
345	some insights. Terrigenous sedimentary rocks are the product of chemical weathering
346	of preexisting rocks (Taylor and McLennan, 1985), and loess and most of the glacial
347	diamictites studied here carry a chemical weathering signature (Gaschnig et al., 2014;
348	Gaschnig et al., 2016; Sauzéat et al., 2015; Taylor et al., 1983).
349	As chemical weathering progresses, clay fractions increasingly dominate over
350	primary minerals, and this is accompanied by a progressive increase of Al_2O_3 and
351	$Fe_2O_{3(T)}$ but a decrease of SiO ₂ , Na ₂ O, K ₂ O, and CaO contents. Higher Al ₂ O ₃ /SiO ₂ ,
352	Fe_2O_3/SiO_2 , CIA values and lower K_2O/Al_2O_3 values are common indicators of the
353	degree of chemical weathering (Gallet et al., 1998; Gaschnig et al., 2014; Huang et
354	al., 2020).

355	The Zr isotopic values of sedimentary samples analyzed in this study do not
356	correlate with any of these weathering proxies (Fig. 3), suggesting that chemical
357	weathering does not produce measurable Zr isotope fractionation. Additionally, the
358	average $\delta^{94/90}$ Zr _{IPGP-Zr} values of glacial diamictite composites, loess and oceanic
359	sediments plot within analytical error of each other, even though the oceanic
360	sediments recorded more extensive chemical weathering, and fluid-rock exchange
361	during transport and deposition compared to loess. Finally, there is no correlation
362	between the δ^7 Li and $\delta^{94/90}$ Zr _{IPGP-Zr} values of the glacial diamictite composites and
363	oceanic sediments (Fig. 4), further indicating that chemical weathering has not
364	affected Zr isotope compositions of these samples.
265	2 No evidence for 7r isotone fractionation of the UCC through space and
365	5. No evidence for Zr isotope fractionation of the UCC through space and
365 366	time
365366367	time The glacial diamictites studied here record evidence for a secular change in the
365366367368	time The glacial diamictites studied here record evidence for a secular change in the composition of the UCC between the Archean and post-Archean, with Archean
365366367368369	time The glacial diamictites studied here record evidence for a secular change in the composition of the UCC between the Archean and post-Archean, with Archean samples systematically enriched in platinum group elements (Chen et al., 2016), Cr,
 365 366 367 368 369 370 	 S. No evidence for Zr isotope fractionation of the OCC infolgit space and time The glacial diamictites studied here record evidence for a secular change in the composition of the UCC between the Archean and post-Archean, with Archean samples systematically enriched in platinum group elements (Chen et al., 2016), Cr, Ni, Co, (Gaschnig et al., 2016) and other transition metals such as Cu (Chen et al., 2016)
 365 366 367 368 369 370 371 	 time The glacial diamictites studied here record evidence for a secular change in the composition of the UCC between the Archean and post-Archean, with Archean samples systematically enriched in platinum group elements (Chen et al., 2016), Cr, Ni, Co, (Gaschnig et al., 2016) and other transition metals such as Cu (Chen et al., 2019) relative to post-Archean diamictites.
 365 366 367 368 369 370 371 372 	 S. No evidence for ZF isotope fractionation of the OCC through space and time The glacial diamictites studied here record evidence for a secular change in the composition of the UCC between the Archean and post-Archean, with Archean samples systematically enriched in platinum group elements (Chen et al., 2016), Cr, Ni, Co, (Gaschnig et al., 2016) and other transition metals such as Cu (Chen et al., 2019) relative to post-Archean diamictites. These changes have been interpreted as reflecting a transition from a more mafic
 365 366 367 368 369 370 371 372 373 	 S. No evidence for ZF isotope fractionation of the OCC through space and time The glacial diamictites studied here record evidence for a secular change in the composition of the UCC between the Archean and post-Archean, with Archean samples systematically enriched in platinum group elements (Chen et al., 2016), Cr, Ni, Co, (Gaschnig et al., 2016) and other transition metals such as Cu (Chen et al., 2019) relative to post-Archean diamictites. These changes have been interpreted as reflecting a transition from a more mafic UCC to one similar to the present-day at the end of the Archean. A similar transition
 365 366 367 368 369 370 371 372 373 374 	 S. No evidence for 2.1 isotope fractionation of the OCC through space and time The glacial diamictites studied here record evidence for a secular change in the composition of the UCC between the Archean and post-Archean, with Archean samples systematically enriched in platinum group elements (Chen et al., 2016), Cr, Ni, Co, (Gaschnig et al., 2016) and other transition metals such as Cu (Chen et al., 2019) relative to post-Archean diamictites. These changes have been interpreted as reflecting a transition from a more mafic UCC to one similar to the present-day at the end of the Archean. A similar transition in UCC composition was earlier documented on the basis of the geochemistry of

376	mafic to felsic UCC has been disputed, and a mostly felsic Hadean or early Archean
377	crust has been proposed based on various geochemical lines of evidence, including
378	the reinterpretation of the chemical composition of the terrigenous sediments (Greber
379	and Dauphas, 2019; Ptáček et al., 2020), the Ti isotopic composition of shales (Greber
380	et al., 2017) and Hf-O isotope compositions of the Hadean zircons (Harrison, 2009).
381	Here, the Zr isotope composition of the diamictite composites show no secular trend
382	(Fig. 5a), suggesting that the Zr isotopic composition of UCC has been constant since
383	at least the Mesoarchean.
384	In addition, post-Archean diamictites, loess and oceanic sediments display
385	indistinguishable Zr isotope compositions regardless of their geographic settings (Fig.
386	5b). Thus, it appears that the UCC is spatially homogenous when it comes to Zr
387	isotopes.
388	4. Zr isotope composition of UCC and BSE
389	As demonstrated above, zircon enrichment or depletion, chemical weathering,
390	and fluid-rock exchange processes, bulk UCC composition and geographic setting do
391	not appear to have influenced the Zr isotopes of these sedimentary samples to any
392	measurable extent. These samples can therefore be used to estimate the Zr isotope
393	composition of the UCC.
394	Combining the data of sedimentary reference materials from the literature and Zr
395	isotopic values of sedimentary samples reported in this study, we obtain a Zr-
396	weighted UCC average $\delta^{94/90}$ Zr _{IPGP-Zr} of 0.077 ± 0.058‰ (2SD, n = 44) (Fig. 6a). This

397	value falls between the $\delta^{94/90}$ Zr _{IPGP-Zr} of the mantle (0.040 ± 0.044‰, n = 72), based
398	on oceanic basalts (Inglis et al., 2019) and komatiites (Tian et al. 2020b), and evolved
399	igneous rocks, which have higher $\delta^{94/90}$ Zr _{IPGP-Zr} , showing a wide range from 0.053 to
400	0.475‰ based on the $\delta^{94/90}$ Zr _{IPGP-Zr} of granitoid reference materials (Fig. 6a and 6b,
401	Table S3). The distinct and higher $\delta^{94/90}$ Zr _{IPGP-Zr} value of the UCC compared to the
402	mantle (t test with a p value 2.88×10^{-10} , Fig. 6a) likely reflects a large-scale mixing of
403	isotopically heavy felsic igneous rocks with isotopically light mantle-like mafic
404	igneous rocks within the UCC.
405	The mass fractions of the main terrestrial reservoirs and their Zr abundances are
406	presented in Table 1. Zirconium concentration is highest in the UCC (193ppm)
407	(Rudnick and Gao, 2014), which is about two times that of the deep (middle and
408	lower) crust (98 ppm) (Rudnick and Gao, 2014) and the oceanic sediments (82 ppm)
409	(Jenner and O'Neill, 2012), and twenty times that of the mantle (9.8 ppm)
410	(McDonough and Sun, 1995). However, the mantle still contains 92.38% of the Zr of
411	the Earth, while the Zr fractions contributed by the UCC, deep continental crust and
412	oceanic crust are only 3.34%, 3.02% and 1.26%, respectively. The Zr isotope
413	composition of the deep continental crust is unknown. Considering its more mafic
414	composition, it can be assumed that the lower continental crust has a similar Zr
415	isotope composition to that of the mantle, as is the case for the oceanic crust.
416	Therefore, the UCC is apparently the only isotopically fractionated reservoir within
417	the BSE. Accordingly, the updated estimate of the BSE $\delta^{94/90} Zr_{IPGP-Zr}$ value is 0.041 \pm

418	0.041‰ (Table 1). Given that the Earth's core does not likely contain any Zr (Li and
419	Fei, 2014), and that the Zr content of the hydrosphere is also negligible $(1.84 \times 10^{-7} \%)$,
420	we infer that the bulk Earth has a $\delta^{94/90}$ Zr _{IPGP-Zr} of 0.041 ± 0.041‰.
421	Conclusions
422	Terrigenous and oceanic sedimentary samples that represent the UCC, with
423	depositional ages ranging from the Archean to the present have been analyzed in
424	order to estimate the Zr isotope composition of the UCC. Glacial diamictite
425	composites, loess and oceanic sediments display a restricted range of $\delta^{94/90}$ Zr _{IPGP-Zr} ,
426	which is systematically higher than $\delta^{94/90}Zr_{IPGP-Zr}$ of the mantle. The $\delta^{94/90}Zr_{IPGP-Zr}$ of
427	the sedimentary samples are constant regardless of their depositional ages, enrichment
428	or depletion of zircon, degree of chemical weathering and geographical locations,
429	reflecting a conservative Zr isotope composition of the UCC globally through time.
430	Combined with the $\delta^{94/90}$ Zr _{IPGP-Zr} values of sedimentary reference materials reported
431	in the literature, we derive a $\delta^{94/90}$ Zr _{IPGP-Zr} of the UCC of 0.077± 0.058‰ (2SD, n =
432	44).
433	
434	

436 Acknowledgements

437 We thank the two anonymous reviewers for their thorough reviews that greatly 438 improved the quality of this paper and the Editor for the efficient handling of our 439 manuscript. 440 SYT greatly appreciates a fellowship from the China Scholarship Council. Pascale 441 Louvat, Barthélémy Julien and Pierre Burckel are thanked for technical support of the 442 (MC-)ICP-MS at IPGP. Nan Xiaoyuan and Gong Yingzeng are thanked for the 443 collection of major and trace element data for loess. This work was supported by the 444 ERC under the European Community's H2020 framework program/ERC grant 445 agreement No. 637503 (Pristine) awarded to FM. Additional support from the 446 UnivEarthS Labex program (numbers: ANR-10-LABX-0023 and ANR-11-IDEX-447 0005-02). Parts of this work were supported by IPGP multidisciplinary program 448 PARI, and by Region île-de-France SESAME Grant (no. 12015908). Collection and 449 investigations of the glacial diamictites was supported by NSF grant EAR-1321954 450 and a grant from the State Key Laboratory of Geological Processes and Mineral 451 Resources at China University of Geosciences in Wuhan. 452 453

454

455

456

457 Figures

471 Fig. 2. $\delta^{94/90}$ Zr_{IPGP-Zr} vs. (a) Nd/Hf for oceanic sediments and glacial diamictite 472 composites (b) Zr/Al₂O₃ for loess, oceanic sediments and glacial diamictite

473 composites, with symbols as in Fig. 1. There is no correlation between $\delta^{94/90}Zr_{IPGP-Zr}$

474 and Nd/Hf ($R^2=0.01$), or Zr/Al₂O₃ values ($R^2=9.6\times10^{-7}$). The Nd, Hf, Zr and Al₂O₃

475 data are from: Gaschnig et al. (2016) for glacial diamictite composites, Hao et al.

476 (2012) and Tsai et al. (2014) for loess, and Carpentier et al. (2008 and 2009) for

477 oceanic sediments. The loess samples are not included in (a) because their Nd and Hf

- 478 data are not available from the literature. The vertical lines represent UCC ratios, data
- 479 from Rudnick and Gao et al. (2014).

483 data sources are the same as listed in Fig. 2. The vertical lines represent UCC ratios,

484 data from Rudnick and Gao et al. (2014) and Sauzéat et al. (2015.

486 Fig. 4. $\delta^{94/90}$ Zr_{IPGP-Zr} vs δ^7 Li in glacial diamictite composites and oceanic 487 sediments, with symbols as in Fig. 1. The δ^7 Li data are from Li et al. (2016) and Tang 488 et al. (2014). The vertical line and grey band denote the δ^7 Li suggested by Sauzéat et 489 al. (2015) for average UCC.

491 Fig. 5. (a) Depositional age vs. $\delta^{94/90}$ Zr_{IPGP-Zr} for loess, oceanic sediments and 492 glacial diamictite composites (b) $\delta^{94/90}$ Zr_{IPGP-Zr} of loess, oceanic sediments and post-493 Archean glacial diamictite composites from different locations. The depositional ages 494 of oceanic sediments and glacial diamictite composites are from Carpentier et al. 495 (2008) and Greaney et al. (2020), respectively. The depositional ages of loess vary 496 from 0.56 kyr to 1.24 kyr (Hao et al., 2012), but the individual age for each loess 497 sample is unknown. In this figure, their ages are set at 0.001Ma.

501 Fig. 6. (a) Histogram of the distribution frequency of $\delta^{94/90}$ Zr_{IPGP-Zr} and (b) the 502 diagram of Zr isotope compositions of samples from this study and literature data for

503	clastic sedimentary rocks (Feng et al., 2020; Tian et al., 2020a), granitoid rocks (Feng					
504	et al., 2020; Inglis et al., 2018; Tian et al., 2020a), komatiites (Tian et al., 2020b) and					
505	oceanic basalts (Inglis et al., 2019). The black curve denotes the distribution of					
506	$\delta^{94/90}$ Zr _{IPGP-Zr} values of all the sedimentary samples.					
507						
508						
509						
510						
511						
512						
513						
514						
515						
516						
517						
518						
519						
520						
521						
522						
523						

524 Table

Reservoirs	Mass(10 ²¹ kg) ^a	Mass(%)	Zr(ppm) ^b	Zr(%)	δ ^{94/90} Zr _{IPGP-Zr} (‰)
Hydrosphere	2	0.05	3.90×10 ⁻⁵	1.82×10 ⁻⁷	? ^c
Upper continental crust	7.4	0.18	193	3.34	0.077 ± 0.058
Deep continental crust (LCC + MCC)	13.2	0.33	98	3.02	0.040 ± 0.044
Oceanic crust	6.6	0.16	82	1.26	0.040 ± 0.044
Mantle	4008	99.28	9.8	92.38	0.040 ± 0.044
Bulk Silicate Earth	4037.2	100	10.5	100	0.041 ± 0.041^{d}

525 Table 1. Mass balance model for Zr isotope compositions of BSE

^a The mass data of reservoirs are from Huang et al. (2020).

^bZirconium content of hydrosphere is from Gaillardet et al. (2003). Zirconium

528 concentration data of upper and deep continental crust, oceanic crust and Bull Silicate

529 Earth are from Rudnick and Gao (2014), Jenner and O'Neill (2012) and McDonough

530 and Sun (1995).

531 $^{c}\delta^{94/90}Zr_{IPGP-Zr}$ of hydrosphere has not been studied yet.

^d The error means 2SD, calculated via error propagation.

533 **References**

- 534 Brown, M., Johnson, T., Gardiner, N.J., 2020. Plate Tectonics and the Archean Earth.
- 535 Annu. Rev. Earth Planet. Sci. 48, 291-320.
- 536 Carpentier, M., Chauvel, C., Mattielli, N., 2008. Pb-Nd isotopic constraints on
- sedimentary input into the Lesser Antilles arc system. Earth Planet. Sci. Lett 272,199-211.
- 539 Carpentier, M., Chauvel, C., Maury, R.C., Mattielli, N., 2009. The "zircon effect" as
- 540 recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc
- 541 sediments. Earth Planet. Sci. Lett 287, 86-99.
- 542 Chauvel, C., Garçon, M., Bureau, S., Besnault, A., Jahn, B.-m., Ding, Z., 2014.
- 543 Constraints from loess on the Hf–Nd isotopic composition of the upper continental 544 crust. Earth Planet. Sci. Lett 388, 48-58.
- 545 Chen, K., Rudnick, R.L., Wang, Z., Tang, M., Gaschnig, R.M., Zou, Z., He, T., Hu,
- 546 Z., Liu, Y., 2019. How mafic was the Archean upper continental crust? Insights from
- 547 Cu and Ag in ancient glacial diamictites. Geochim. Cosmochim. Acta.
- 548 Chen, K., Walker, R.J., Rudnick, R.L., Gao, S., Gaschnig, R.M., Puchtel, I.S., Tang,
- 549 M., Hu, Z.C., 2016. Platinum-group element abundances and Re–Os isotopic
- 550 systematics of the upper continental crust through time: Evidence from glacial
- 551 diamictites. Geochim. Cosmochim. Acta 191, 1-16.
- 552 Chen, X., Wang, W., Zhang, Z., Nie, N.X., Dauphas, N., 2020. Evidence from Ab
- 553 Initio and Transport Modeling for Diffusion-Driven Zirconium Isotopic Fractionation
- in Igneous Rocks. ACS Earth Space Chem. 4, 1572-1595.
- 555 Condie, K.C., 1993. Chemical composition and evolution of the upper continental
- crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1-37.
- 557 Condie, K.C., 2005. High field strength element ratios in Archean basalts: a window 558 to evolving sources of mantle plumes? Lithos 79, 491-504.
- 559 Deng, Z., Chaussidon, M., Savage, P., Robert, F., Pik, R., Moynier, F., 2019.
- 560 Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks. Proc.
- 561 Natl. Acad. Sci. U.S.A. 116, 1132-1135.
- 562 Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., 2012. A change in the
- 563 geodynamics of continental growth 3 billion years ago. Science 335, 1334-1336.
- 564 Feng, L., Hu, W., Jiao, Y., Zhou, L., Zhang, W., Hu, Z., Liu, Y., 2020. High-precision
- stable zirconium isotope ratio measurements by double spike thermal ionization mass
- 566 spectrometry. J. Anal. At. Spectrom. 35, 736-745.
- 567 Gaillardet, J., Viers, J., Dupré, B., 2014. Trace elements in river waters, Treatise on
- 568 Geochemistry, 2nd ed. Elsevier, Hoboken, N. J., pp. 195–235.
- 569 Gallet, S., Jahn, B.-m.J., Van Vliet-Lanoë, B., Dia, A., Rossello, E., 1998. Loess
- 570 geochemistry and its application for particle origin and composition of the upper
- 571 continental crust. Earth Planet. Sci. Lett 156, 157-172.
- 572 Gaschnig, R.M., Reinhard, C.T., Planavsky, N.J., Wang, X., Asael, D., Chauvel, C.,
- 573 2017. The Molybdenum Isotope System as a Tracer of Slab Input in Subduction

- 574 Zones: An Example From Martinique, Lesser Antilles Arc. Geochemistry,
- 575 Geophysics, Geosystems 18, 4674-4689.
- 576 Gaschnig, R.M., Rudnick, R.L., McDonough, W.F., Kaufman, A.J., Hu, Z.C., Gao,
- 577 S., 2014. Onset of oxidative weathering of continents recorded in the geochemistry of 578 ancient glacial diamictites. Earth Planet. Sci. Lett 408, 87-99.
- 579 Gaschnig, R.M., Rudnick, R.L., McDonough, W.F., Kaufman, A.J., Valley, J.W., Hu,
- 580 Z., Gao, S., Beck, M.L., 2016. Compositional evolution of the upper continental crust
- through time, as constrained by ancient glacial diamictites. Geochim. Cosmochim.Acta 186, 316-343.
- 583 Goldschmidt, V., 1933. Grundlagen der quantitativen Geochemie. Fortschr. Mienral.
- 584 Kirst. Petrogr 17, 112.
- 585 Gong, Y.Z., Xia, Y., Huang, F., Yu, H.M., 2017. Average iron isotopic compositions
- of the upper continental crust: constrained by loess from the Chinese Loess Plateau.
- 587 Acta Geochimica 36, 125-131.
- 588 Greaney, A.T., Rudnick, R.L., Romaniello, S.J., Johnson, A.C., Gaschnig, R.M.,
- 589 Anbar, A.D., 2020. Molybdenum isotope fractionation in glacial diamictites tracks the
- 590 onset of oxidative weathering of the continental crust. Earth Planet. Sci. Lett 534.
- 591 Greber, N.D., Dauphas, N., 2019. The chemistry of fine-grained terrigenous
- sediments reveals a chemically evolved Paleoarchean emerged crust. Geochim.
- 593 Cosmochim. Acta 255, 247-264.
- 594 Greber, N.D., Dauphas, N., Bekker, A., Ptáček, M.P., Bindeman, I.N., Hofmann, A.,
- 595 2017. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years
- 596 ago. Science 357, 1271-1274.
- 597 Guo, J.L., Wang, Z., Zhang, W., Moynier, F., Cui, D., Hu, Z., Ducea, M.N., 2020.
- Significant Zr isotope variations in single zircon grains recording magma evolution
 history. Proc. Natl. Acad. Sci. U. S. A. 117, 21125-21131.
- Hao, Q.Z., Wang, L., Oldfield, F., Peng, S.Z., Qin, L., Song, Y., Xu, B., Qiao, Y.S.,
- 601 Bloemendal, J., Guo, Z.T., 2012. Delayed build-up of Arctic ice sheets during
- 602 400,000-year minima in insolation variability. Nature 490, 393.
- 603 Harrison, T.M., 2009. The Hadean Crust: Evidence from >4 Ga Zircons. Annu. Rev.
- 604 Earth Planet. Sci. 37, 479-505.
- 605 Harrison, T.M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P., Mojzsis, S.J.,
- 606 2005. Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5
- 607 Ga. Science 310, 1947-1950.
- Hoare, L., Klaver, M., Saji, N.S., Gillies, J., Parkinson, I.J., Lissenberg, C.J., Millet,
- 609 M.-A., 2020. Melt chemistry and redox conditions control titanium isotope
- 610 fractionation during magmatic differentiation. Geochim. Cosmochim. Acta 282, 38-
- 611 54.
- Huang, F., Xu, J., Zhang, J., 2016. U-series disequilibria in subduction zone lavas:
- 613 Inherited from subducted slabs or produced by mantle in-growth melting? Chem.
- 614 Geol. 440, 179-190.

- 615 Huang, T.Y., Teng, F.Z., Rudnick, R.L., Chen, X.Y., Hu, Y., Liu, Y.S., Wu, F.Y.,
- 616 2020. Heterogeneous potassium isotopic composition of the upper continental crust.
- 617 Geochim. Cosmochim. Acta 278, 122-136.
- 618 Ibañez-Mejia, M., Tissot, F.L., 2019. Extreme Zr stable isotope fractionation during
- 619 magmatic fractional crystallization. Sci. Adv. 5, eaax8648.
- 620 Inglis, E.C., Creech, J.B., Deng, Z.B., Moynier, F., 2018. High-precision zirconium
- stable isotope measurements of geological reference materials as measured by double-
- 622 spike MC-ICPMS. Chem. Geol. 493, 544-552.
- 623 Inglis, E.C., Moynier, F., Creech, J., Deng, Z.B., Day, J.M.D., Teng, F.-Z., Bizzarro,
- 624 M., Jackson, M., Savage, P., 2019. Isotopic fractionation of zirconium during
- magmatic differentiation and the stable isotope composition of the silicate Earth.Geochim. Cosmochim. Acta 250, 311-323.
- Jenner, F.E., O'Neill, H.S.C., 2012. Analysis of 60 elements in 616 ocean floor
- 628 basaltic glasses. Geochem. Geophys. Geosyst. 13, 1-11.
- 629 Johnson, B.W., Goldblatt, C., 2017. A secular increase in continental crust nitrogen
- 630 during the Precambrian. Geochem. Perspect. Lett. 4, 24-28.
- 631 Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and
- 632 Observations. Annu. Rev. Earth Planet. Sci. 41, 117-151.
- 633 Li, J., Fei, Y., 2014. Experimental Constraints on Core Composition, Treatise on
- 634 Geochemistry, 2nd ed. Elsevier, Hoboken, N. J., pp. 527–553.
- 635 Li, S., Gaschnig, R.M., Rudnick, R.L., 2016. Insights into chemical weathering of the
- 636 upper continental crust from the geochemistry of ancient glacial diamictites.
- 637 Geochim. Cosmochim. Acta 176, 96-117.
- 638 Lodders, K., 2003. Solar system abundances and condensation temperatures of the
- 639 elements. Astrophys. J. 591, 1220.
- McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chem. Geol. 120,223-253.
- 642 Méheut, M., Ibañez-Mejia, M., Tissot, F.L., 2020. Drivers of zirconium isotope
- 643 fractionation in Zr-bearing phases and melts: The roles of vibrational, nuclear field
- 644 shift and diffusive effects. Geochim. Cosmochim. Acta 292, 217-234.
- Mundl, A., Walker, R.J., Reimink, J.R., Rudnick, R.L., Gaschnig, R.M., 2018.
- 646 Tungsten-182 in the upper continental crust: Evidence from glacial diamictites.
- 647 Chem. Geol. 494, 144-152.
- 648 Nan, X.Y., Yu, H.M., Rudnick, R.L., Gaschnig, R.M., Xu, J., Li, W.Y., Zhang, Q.,
- Jin, Z.D., Li, X.H., Huang, F., 2018. Barium isotopic composition of the upper
- 650 continental crust. Geochim. Cosmochim. Acta 233, 33-49.
- Nesbitt, H., Young, G., 1982. Early Proterozoic climates and plate motions inferred
- from major element chemistry of lutites. nature 299, 715-717.
- Niu, Y.L., 2004. Bulk-rock Major and Trace Element Compositions of Abyssal
- 654 Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting
- 655 Processes Beneath Mid-Ocean Ridges. J Petrol 45, 2423-2458.

- 656 Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment
- and its consequences for the crust and mantle. Chem. Geol. 145, 325-394.
- 658 Ptáček, M.P., Dauphas, N., Greber, N.D., 2020. Chemical evolution of the continental
- 659 crust from a data-driven inversion of terrigenous sediment compositions. Earth Planet.
- 660 Sci. Lett 539, 116090.
- 661 Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust, Treatise on
- 662 Geochemistry, 2nd ed. Elsevier, Hoboken, N. J., pp. 1-51.
- 663 Sauzéat, L., Rudnick, R.L., Chauvel, C., Garçon, M., Tang, M., 2015. New
- 664 perspectives on the Li isotopic composition of the upper continental crust and its
- 665 weathering signature. Earth Planet. Sci. Lett 428, 181-192.
- Tang, M., Chen, K., Rudnick, R.L., 2016. Archean upper crust transition from mafic
- to felsic marks the onset of plate tectonics. Science 351, 372-375.
- Tang, M., Rudnick, R.L., Chauvel, C., 2014. Sedimentary input to the source of
- 669 Lesser Antilles lavas: A Li perspective. Geochim. Cosmochim. Acta 144, 43-58.
- 670 Taylor, S., McLennan, S., McCulloch, M., 1983. Geochemistry of loess, continental
- 671 crustal composition and crustal model ages. Geochim. Cosmochim. Acta 47, 1897-672 1905.
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its composition and
 evolution. Blackwell Scientific Publications.
- Tian, S.Y., Inglis, E.C., Creech, J.B., Zhang, W., Wang, Z.C., Hu, Z.C., Liu, Y.S.,
- 676 Moynier, F., 2020a. The zirconium stable isotope compositions of 22 geological
- reference materials, 4 zircons and 3 standard solutions. Chem. Geol. 555, 119791.
- Tian, S.Y., Moynier, F., Inglis, E.C., Creech, J., Bizzarro, M., Siebert, J., Day,
- 679 J.M.D., Puchtel, I.S., 2020b. Zirconium isotopic composition of the mantle through
- time. Geochem. Perspect. Lett. 15, 40-43.
- Tsai, P.H., You, C.F., Huang, K.F., Chung, C.H., Sun, Y.B., 2014. Lithium
- distribution and isotopic fractionation during chemical weathering and soil formationin a loess profile. J. Asian Earth Sci. 87, 1-10.
- 684 Valley, J., Lackey, J., Cavosie, A., Clechenko, C., Spicuzza, M., Basei, M.,
- Bindeman, I., Ferreira, V., Sial, A., King, E., 2005. 4.4 billion years of crustal
- 686 maturation: oxygen isotope ratios of magmatic zircon. Contrib. to Mineral. Petrol.
- 687 150, 561-580.
- Wang, S.J., Rudnick, R.L., Gaschnig, R.M., Wang, H., Wasylenki, L.E., 2019.
- 689 Methanogenesis sustained by sulfide weathering during the Great Oxidation Event.
- 690 Nat. Geosci. 12, 296-300.
- 691 Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital
- 692 zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago.
- 693 Nature 409, 175-178.
- 694 Zhang, W., Wang, Z., Moynier, F., Inglis, E., Tian, S., Li, M., Liu, Y., Hu, Z., 2019.
- 695 Determination of Zr isotopic ratios in zircons using laser-ablation multiple-collector
- 696 inductively coupled-plasma mass-spectrometry. J. Anal. At. Spectrom. 34, 1800-
- 697 1809.