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ABSTRACT OF THE DISSERTATION  

 

 

Discovery of novel functional sequences through the analysis of tiling CRISPR screens 

 

 

by 
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University of California San Diego, 2021 

 

 

Professor Graham McVicker, Chair 

Professor Bing Ren, Co-Chair 

 

 

 

 Precise regulation of gene expression is crucial for organismal development. 

However, knowledge of regulatory genomic sequences (functional sequences), their targets, and 

modes of activation remains limited.  



 xiv 

Recently, tiling CRISPR screens have been developed for the unbiased interrogation of the 

genome within its native context. These screens leverage the CRISPR-Cas9 system to perturb 

putative functional sequences and examine their effects on gene expression. This approach makes 

it possible to identify functional sequences as well as their target genes. In this dissertation I will 

highlight the aspects of tiling CRISPR screens that make them both attractive to use as well as 

difficult to analyze and present the different analytical approaches to date. Notably, I will describe 

our method RELICS, which models several key components of tiling CRISPR screens to 

accurately identify functional sequences. 

In the first chapter I describe a simulation tool, CRSsim, which I developed to 

systematically evaluate different analysis methods for CRISPR screens against one another. This 

chapter highlights the importance of simulations and shows how I statistically recreated the 

generative process of data from CRISPR screens to simulate realistic data sets for benchmarking. 

In the second chapter I present RELICS, a method developed specifically for identifying 

functional sequences from tiling CRISPR screens. I will describe how RELICS models the data 

and demonstrate that it outperforms all other methods which are currently used for analyzing tiling 

CRISPR screens. 

Finally, I will present the results of RELICS applied to different experimental datasets, 

including publicly available datasets as well as data from our in house GATA3 tiling deletion 

screen. Importantly, we discovered and validated novel functional sequences that were not 

detected by competing methods. Some of these sequences do not exhibit canonical epigenetic 

marks of regulatory elements, highlighting the importance of tiling CRISPR screens as an unbiased 

approach for detecting functional sequences and illuminating the regulatory landscape.  
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INTRODUCTION 

Although each cell in our body consists of the same genetic material, we have dozens of 

different cell types that serve different functions. This diversity in cellular phenotypes is due to the 

differential expression of genes encoded in the genome. Specifically, gene expression is regulated 

by functional sequences (FSs), which are non-coding regions in the genome that are involved in 

turning gene expression ‘on’ and ‘off’ at specific timepoints. Disruption of these functional 

sequences can have deleterious consequences such as developmental defects and cancer (Buecker 

& Wysocka, 2012; Dawson & Kouzarides, 2012; Mansour et al., 2014). Furthermore, it is known 

that a disproportionate number of genetic variants associated with human traits and diseases do 

not fall within protein-coding genomic regions (Grubert et al., 2015; Maurano et al., 2012). Thus, 

it is hypothesized that a substantial fraction of variants are located within these functional 

sequences. Identifying the connections between genetic variants, the functional sequences in which 

they are located, and the target genes that these functional sequences regulate will significantly 

advance our understanding of the fundamentals of gene regulation and elucidate potential 

therapeutic targets for a variety of genetic conditions and diseases. Unfortunately, knowledge of 

where functional sequences are located in the genome and what their targets are remains limited 

despite advancements in the field.   

This knowledge gap is due in part to the fact that identifying a functional sequence is not a 

straightforward task. DNA is wrapped around nucleosomes and depending on how tightly the 

nucleosomes are packed, specific regions of the genome can become more or less accessible to 

binding by proteins and other factors. It is generally believed that functional sequences reside in 

open chromatin regions in the genome, or euchromatin. Unlike heterochromatin, which is tightly 

packed, the open state of euchromatin allows the transcriptional machinery to access the DNA and 
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initiate gene expression. The transcription start site (TSS) is the region of the gene body where 

RNA polymerase II (RNA Pol II) initiates transcription, and the region around the TSS (+/- 50 

base pairs) is referred to as the core promoter. Binding of RNA Pol II to the promoter is typically 

sufficient to initiate transcription; however, in most cases the expression level is low (Haberle & 

Stark, 2018; Shlyueva et al., 2014). It is usually through the involvement of more distal elements 

that the full transcription rate is achieved. These distal elements are bound by transcription factors 

(TFs) which can in turn recruit co-activators. Elements involved in increasing gene expression are 

called enhancers and tend to contain nucleosomes whose histones have been modified by 

acetylation of lysine (K) 27 or monomethylation of lysine (K) 4 on histone 3 (H3K27ac and 

H3K4me1, respectively). These enhancers are brought in close proximity to the promoter of their 

target gene by chromatin looping (Amano et al., 2009), prompting the transcriptional machinery 

to assemble. In addition to being located in open chromatin regions, it is also believed that a subset 

of all functional sequences are evolutionarily conserved (Visel et al., 2009). Changes to a 

functional sequence perturb the expression of its target gene(s) and may have deleterious 

consequences. Thus, there is selective pressure to preserve these functional sequences. While open 

chromatin, histone modifications, chromatin looping, TF binding, and sequence conservation are 

associated with a majority of enhancers, they are not absolute indicators of functional sequences. 

Thus, identifying functional sequences in the genome is challenging because there is no finite and 

validated set of features that define them.  

Various efforts have aimed to identify and characterize functional sequences in the genome 

to address this knowledge gap. Some of the most common experimental approaches include 

massively parallel reporter assays (MPRAs) (Melnikov et al., 2012; Patwardhan et al., 2012) or 

self-transcribing active regulatory region sequencing (STARR-seq) (Arnold et al., 2013). In 
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MPRAs, thousands of candidate enhancer sequences are synthesized and placed upstream of a 

reporter gene to assess whether the inserted sequence has an effect on the gene’s expression. 

STARR-seq uses a similar approach but places the synthesized sequences downstream of the 

reporter gene to quantitatively assess the effects of the putative enhancer encoded by the sequence. 

Computational methods have also been developed to identify functional sequences from the results 

of experimental methods. Notable methods include ChromHMM (Ernst & Kellis, 2012) and 

Segway (Hoffman et al., 2012), which partition the genome into distinct categories based on 

epigenetic marks  and subsequentially assign function (e.g. enhancer or promoter) to these 

categories. 

All of the methods described above have advanced understanding of the genome and its 

functional sequences. However, they also have limitations. For example, MPRAs and STARR-seq 

do not evaluate sequences in their native context. This means that the sequence under examination 

is not subject to all the interactions that it might experience in vivo. Additionally, all of the methods 

above only address whether a sequence is functional or not and cannot identify which genes are 

under the influence of each functional sequence. With the exception of chromatin looping, none 

of the features mentioned above (H3K4me1, H3K27ac, open chromatin, sequence conservation) 

are informative about regulatory targets. Unfortunately, obtaining chromatin looping data is 

expensive, not readily available, and too low-resolution to confidently identify functional 

sequences. Furthermore, functional sequences for an individual gene can vary between cell types 

to achieve cell-type specific expression, increasing the complexity of mapping functional 

sequences and their targets. Finally, there is increasing evidence that not all functional sequences 

are delineated by canonical regulatory marks (e.g. H3K27ac, open chromatin, etc.) (Diao et al., 

2017; Rajagopal et al., 2016). Studying genomic regions associated with canonical epigenetic 
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features will certainly lead to the discovery of new functional sequences; however, limiting the 

search to these regions will yield an incomplete picture of the regulatory landscape. All these 

factors complicate the identification of functional sequences and their target genes.  

Recent technological advances in gene editing with CRISPR have made it possible to 

overcome the challenges described above with tiling CRISPR screens. Briefly, CRISPR stands for 

clustered regularly interspaced short palindromic repeats and is found in nature as part of the 

bacterial defense system against viruses (Jinek et al., 2012). The CRISPR locus in bacteria contains 

short viral sequences. The defense system loads these viral sequences into a protein with nuclease 

activity and looks for sequences matching the loaded viral RNA, or the guide RNA (gRNA). If a 

match is found it is assumed to be a foreign viral sequence. The nuclease will introduce a double-

stranded break (DSB) in the matched sequence, effectively neutralizing the hostile virus. This 

system has been adapted and optimized to effectively target most sequences in any genome 

(Doudna & Charpentier, 2014). The two main components of a CRISPR experiment are 1) a gRNA 

containing a ~20bp sequence matching its target site, and 2) the Cas9 enzyme, which is guided by 

the gRNA to the target site where it introduces a DSB. These DSBs are repaired via non-

homologous end joining (NHEJ) (Jinek et al., 2013), which is an error prone endogenous DNA 

repair mechanism that perturbs the target site by leaving the repaired region with either a small 

insertion or deletion (indel). These indels are effectively DNA mutations.  

The CRISPR-Cas9 system is now widely used in biological experiments. However, there 

are two important considerations regarding gRNAs that must be made to ensure the success of an 

experiment. The first is guide specificity. Because the genome contains 3 billion base pairs, it is 

possible that guides will match not only the target of interest but also another region in the genome. 

This would make it very difficult to determine if the observed effects are due to successful 
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perturbation of the intended target sequence or ‘off-target’ effects. Designing guides to uniquely 

match a specific region with high specificity or low off-target probability is crucial for the quality 

of a CRISPR experiment. The second point of consideration is guide efficiency, or the likelihood 

that a guide will introduce a DSB. Not all guides are equally likely to perturb their target and 

selecting only efficient guides will also improve the quality of the experiment. There have been 

different approaches taken to characterize the features that make guides efficient or specific 

(Doench et al., 2014, 2016; P. D. Hsu et al., 2013) and there are several computational tools which 

can select the highest quality guides from a set of candidate sequences (McKenna & Shendure, 

2018; Perez et al., 2017). Accounting for these properties of guides is very important for designing 

and analyzing a successful CRISPR experiment.  

Today, CRISPR-Cas9 can be used to discover genomic sequences that affect cellular 

phenotypes such as growth, survival or gene expression. The first CRISPR screens targeted 

protein-coding genes (T. Wang et al., 2014) and provided valuable insight into protein function. 

They were subsequently adapted to interrogate the regulatory landscape for identification of 

functional sequences. These functional screens tile guides across non-coding regions of the 

genome (Canver et al., 2015; Diao et al., 2016, 2017; Fulco et al., 2016; Gasperini et al., n.d.; 

Klann et al., 2017; Korkmaz et al., 2016; Rajagopal et al., 2016; Sanjana et al., 2016; Simeonov et 

al., 2017), allowing for the systematic discovery of novel functional sequences in their native 

genomic context. This unbiased approach to functional sequence discovery examines not only 

candidate regions containing canonical regulatory marks but also unmarked regions that would 

otherwise be overlooked based on such criteria and may yield novel insights into the properties of 

functional sequences. 
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In a tiling CRISPR screen, thousands of single-guide RNAs (sgRNAs) are designed to 

target sequences of interest in individual cells and induce genomic perturbations, which can 

include mutations, transcriptional repression (CRISPR interference, CRISPRi), or transcriptional 

activation (CRISPR activation, CRISPRa). To target sequences for mutation, sgRNAs are 

introduced into cells alongside Cas9 via lentiviral infection, inducing DSBs to introduce indels. In 

a CRISPRi experiment, targeted sites are silenced by a deactivated Cas9 (dCas9) fused to a 

repressive domain such as the Krüppel-associated box (dCas9:KRAB) (Gilbert et al., 2014; 

Thakore et al., 2015). Similarly, in a CRISPRa experiment, dCas9 is fused to an activation domain 

such as VP64 or p300 (Hilton et al., 2015; Konermann et al., 2015; Perez-Pinera et al., 2013) to 

activate transcription of the target region. 

Following genomic perturbation, cells are subsequently sorted into pools based on a 

cellular phenotype (e.g. high vs. low gene expression, survival, proliferation, etc.) and the 

distributions of sequenced sgRNAs are compared across pools to identify functional genomic 

sequences with an effect on the cellular phenotype used for sorting. For example, sgRNAs that 

disrupt activating regulatory sequences would reduce expression of the reporter gene and 

consequently be enriched in pools selected for low target gene expression. 

Despite the potential of these tiling CRISPR screens for improving functional sequence 

identification, they pose numerous challenges in the analysis of their results including (i) the need 

to combine information across multiple sequencing pools, (ii) the noisy and overdispersed nature 

of genomic count data (Love et al., 2014; van de Geijn et al., 2015), (iii) the spatial organization 

of sgRNA target sites and functional sequences, and (iv) the ‘area of effect’ (AoE) of genomic 

perturbations, which often extends well beyond the genomic location targeted by the sgRNA (e.g. 

in CRISPRa or CRISPRi screens activating or silencing epigenetic modifications can spread over 
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1kb or more from target sites (Thakore et al., 2015)). Currently, no existing methods address all 

of these challenges and moreover, almost all analysis methods for CRISPR screens were designed 

for screens that target protein coding genomic regions as opposed to tiling screens non-coding 

sequences where the identity of functional sequences are unknown. 

We have developed two methods to improve; (1) our understanding of the properties of 

this new data and the different sources of variation, and (2) our analysis results via design of a 

modeling approach that leverages several features inherent to tiling CRISPR screens.  

In chapter 1 I will discuss CRSsim, a simulation framework I developed for simulating 

tiling CRISPR screen data. CRSsim is capable of generating realistic simulations by modeling the 

generative process. Simulated datasets can help inform decisions about experimental design and 

assess method performance for comparing different analytical approaches. 

In chapter 2 I present RELICS (Regulatory Element Location Identification in CRISPR 

Screens), a new method for the analysis of CRISPR screens which accounts for many aspects of 

tiling CRISPR screens. RELICS uses a flexible Bayesian hierarchical model to jointly analyze 

sgRNA counts across multiple pools and accommodates overdispersion in the count distributions 

while also considering the collective effects of adjacent sgRNAs and the potential presence of 

multiple functional sequences nearby. RELICS also reports the total number of functional 

sequences that are supported by the data. Using data simulated with CRSsim, we demonstrate that 

RELICS outperforms existing analysis methods (MAGeCK (W. Li et al., 2014), CRISPR-SURF 

(J. Y. Hsu et al., 2018), and MAUDE (de Boer et al., 2020)) with better precision and recall across 

a variety of conditions.  

In chapter 3 I apply RELICS and other methods to experimental datasets. RELICS detects 

validated hits reported in previous studies and also discovers novel regulatory sequences missed 
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by other methods, which we experimentally validated. I will also present the results from our own 

in house screen for functional sequences targeting GATA3, where we identified regions bearing 

canonical regulatory marks as well as several unmarked regulatory elements, highlighting the 

importance of the unbiased nature of tiling CRISPR screens for de novo functional sequence 

discovery. 

This introduction is, in part, based on material from “Discovering functional sequences 

with RELICS, an analysis method for CRISPR screens” in PLOS Computational Biology, 2020 by 

Patrick C. Fiaux, Hsiuyi V. Chen, Poshen B. Chen, Aaron R. Chen and Graham McVicker. The 

dissertation author was the primary investigator and author of this paper. 
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Chapter 1: Simulations of tiling CRISPR screen data with CRSsim 

 

 

1.1 Abstract 

With the development of tiling CRISPR screens, researchers have created a new way to 

interrogate the genome to discover functional sequences and the genes they regulate. However, 

because of the recent emergence of this method there is currently no gold-standard experimental 

dataset to serve as ground truth. This means that the available experimental datasets cannot be 

relied on for an accurate comparison of the performance between different analysis methods. To 

enable the comprehensive benchmarking of different analytical approaches, we have developed 

CRSsim for the simulation of tiling CRISPR screen data. We used various statistical approaches 

to simulate the generative process and demonstrate the similarity of the simulated data to 

experimental data. CRSsim is a very flexible tool and can simulate all currently available CRISPR 

systems in both selection and flow-sorting screens as well as many other features of tiling CRISPR 

screens.  
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1.2 Introduction 

Tiling CRISPR screens allow for the unbiased perturbation of the genome to identify 

functional sequences (FSs) and the gene they regulate. Several important choices must be made 

when designing and executing a successful CRISPR experiment. We have categorized them into 

the following sections: (i) gene of interest, (ii) screen type, (iii) perturbation method, and (iv) 

perturbation coverage. 

(i) Gene of interest. It is important to consider not only the target gene, its function and 

role in the system, but also the locus around it. Specifically, it is essential to ensure that there is a 

sufficient number of high-quality single-guide RNAs (sgRNAs) targeting the region of interest. 

There are different scoring methods for measuring a guide’s efficiency and specificity (Doench et 

al., 2014, 2016; P. D. Hsu et al., 2013). Tools such as FlashFry (McKenna & Shendure, 2018) and 

GuideScan (Perez et al., 2017) take user-defined target regions and return all possible 

complementary guide sequences and their corresponding guide scores. These guides can then be 

filtered for high-quality guides which are more likely to perturb only their intended target. 

(ii) Screen type. There are generally two types of screens. The first type uses fluorescent 

activated cell sorting (FACS) to sort cells into pools of categorical gene expression intensities. The 

most common ways to measure gene expression intensity with FACS is by either tagging the 

protein of interest with an antibody (Simeonov et al., 2017) or by fusing GFP or another 

fluorophore to the end of the gene of interest (Diao et al., 2016, 2017). The cells are then sorted 

into pools of different expression levels based on the fluorescence intensity. The analysis of a 

FACS screen essentially involves detecting guides which are enriched in either the low expression 

pool, indicating that they reduce expression of the gene of interest, or the high expression pool, 

indicating that they increase expression of the gene of interest. The second type of screen is a 
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selection screen. This could be a proliferation screen, in which guides targeting regulatory 

sequences will lead to either decreased or increased cell growth (Fulco et al., 2016). Another option 

is to place the cells under selective pressure with a drug (Gasperini et al., n.d.; Sanjana et al., 2016). 

In both cases there is an initial pool at time point zero (‘before’) and a second pool at a final time 

point (‘after’). The analysis entails looking for guides that are either enriched or depleted in the 

‘after’ pool. 

(iii) Perturbation method. There are four different perturbation methods used in tiling 

CRISPR screens. These include (a) Cas9, (b) CRISPRi, (c) CRISPRa and (d) dual-guide CRISPR. 

Each of them has advantages and disadvantages, and they all have a different ‘area of effect’ 

(AoE). The AoE is the number of base pairs (bp) around the target site which will likely be affected 

by the perturbation. (a) Cas9 perturbations use CRISPR-Cas9 to introduce double-stranded breaks 

(DSBs) at the target site specified by the gRNA. The break is corrected via the error prone process 

of non-homologous end-joining (NHEJ), resulting in a small insertion or deletion (indel) of ~20bp 

(van Overbeek et al., 2016). The advantage of this approach is that the perturbation introduces a 

mutation in the sequence and alters the function of the target. However, because the indels are so 

short, it is difficult to tile a larger region while ensuring that each base pair is perturbed multiple 

times. (b) CRISPRi perturbations inactivate parts of the genome using a catalytically dead Cas9 

(dCas9) fused to a repressive domain such as a KRAB domain (dCas9:KRAB). Even though the 

nuclease activity is deactivated, dCas9:KRAB will still bind at the target site specified by the 

sgRNA. This leads to methylation of the surrounding area, effectively repressing it. The AoE can 

be over 1kb (Thakore et al., 2015), making this approach very desirable to tile larger regions as it 

will be easier to achieve a high perturbation coverage. However, because Cas9 is deactivated, 

perturbations by CRISPRi do not cleave the DNA and will not lead in any sequence changes. (c) 
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CRISPRa also uses a dCas9 but unlike CRISPRi, it is fused to an activating domain such as VP64 

or p300. This results in activation of the target by acetylating the region. Similar to CRISPRi, the 

AoE of CRISPRa can also reach 1kb. (d) Dual-guide CRISPR screens introduce two sgRNAs 

instead of one into a cell. The two guides introduce cuts in the DNA spaced 1-2kb apart and delete 

the entire region between them. This approach is challenging because both guides need to work 

correctly for the deletion to occur. Otherwise, each guide will simply introduce a small indel at its 

target site without removing the sequence between them. This also makes analysis of the results 

more challenging as no method so far models the possibility of an unsuccessful deletion of the 

region between the guide pairs. Despite these challenges, tiling deletion screens have great 

potential for enabling the interrogation of very large regions with a reasonable number of guides. 

Furthermore, this approach removes an entire region, thereby making it more likely that an effect 

will be observed if a functional sequence is successfully targeted. This is in contrast to the previous 

approaches where it is a possibility that the indel introduced by Cas9 may not be large enough to 

disrupt the sequence (a), or that the epigenetic alterations may not be effective enough (b,c).   

(iv) Perturbation coverage. When designing a tiling CRISPR screen, it is recommended 

that each base pair is perturbed multiple times by different sgRNAs. This increases the likelihood 

of identifying a true effect even if some of the guides were lost during the library preparation step, 

had low guide efficiency or strong off-target effects. Repeated perturbation of the same base pair 

by different guides can improve signal resolution, but also increases the cost of preparing the guide 

library because more guides must be used. Additionally, with more guides the sequencing depth 

must be increased to ensure adequate coverage of all the guides. The AoE mentioned in (iii) can 

help determine the per-bp perturbation coverage, which can be adjusted by the step size between 

the gRNA targets. For example, Diao et al., 2017 performed a dual-guide CRISPR deletion screen 
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covering a 2MB region with ~11,500 guide pairs and an average deletion size of 2kb such that 

each genomic position had on average 20 genomic deletions. Reaching this same deletion coverage 

would not even be possible for a Cas9 screen (a) and would require about 100,000 guides to simply 

target every base pair just once. 

All of the categories described above are important considerations for a tiling CRISPR 

screen design, as well as for developing a simulation tool to generate in silico data that resembles 

experimental data. It is equally important to use the correct tools to process and analyze the results 

of a tiling CRISPR screen. However, up to this point there has not been a systematic comparison 

of different methods to assess their performance. This makes it difficult to decide which analysis 

approach will yield the highest quality results.  

To address the above we have developed CRSsim. CRSsim can take a wide variety of user-

defined inputs describing experimental conditions such as number of guides, type of CRISPR 

system, type of CRISPR screen, etc. By taking into account parameters such as guide efficiency, 

enhancer strength and the AoE of the selected CRISPR system, CRSsim can generate realistic 

datasets. These simulations allow for the in silico evaluation of different experimental design 

choices. They also provide a ground truth for evaluating the performance of different analytical 

methods.   
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1.3 Material and Methods 

The simulations aim to reproduce the generative process of the data. This entails correctly 

understanding the different components that contribute to the observed data and the variation 

within it. Successfully simulating data also allows for the systematic evaluation of the 

performances of different methods. The goal of CRSsim is to integrate the different experimental 

components of tiling CRISPR screens and replicate them in-silico using different statistical 

models. We have taken the four main categories above (i-iv) and broken them down into different 

components of CRSsim; (I) Gene and locus size, (II) Screen type, (III) Perturbation method, (IV) 

Perturbation coverage, (V) Signal-to-noise ratio, (VI) Simulation-specific parameters. 

(I) Gene and locus size: Both gene and locus size are important in the simulations. The size 

of the gene and the number of exons it contains are important for methods which leverage positive 

controls (Fiaux et al., 2020; J. Y. Hsu et al., 2018). CRSsim also generates a set of negative controls 

which is required by some methods (de Boer et al., 2020). The size of the simulated region impacts 

the number functional sequences that can be simulated as well as the number of guides that can be 

placed. For instance, a larger region can hold more enhancers and more guides, but this will also 

coincide with longer analysis runtimes. 

(II) Screen type: CRSsim can simulate either a FACS screen with a specified number of 

pools or a selection screen. Both are modeled by a Dirichlet multinomial (see section (V) for 

details). 

(III) Perturbation method: These are identical to the four perturbation methods mentioned 

above; (III.a) Cas9, (III.b) CRISPRi, (III.c) CRISPRa and (III.d) dual-guide CRISPR. The AoE 

for each of them is modeled by a normal distribution where the perturbation will always happen at 

the target site but is less likely to occur as a position located further away from the target site. The 
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dual-guide CRISPR perturbations are modeled by two normal distributions at the two target sites 

and a uniform distribution in-between to model the probability of a full deletion instead of only 

two indels. 

(IV) Perturbation coverage: This is impacted by the total number of guides, the step-size 

between the guides, the size of the locus as specified in (I) and the perturbation method selected 

in (III). CRSsim accounts for all these parameters when generating a tiling CRISPR screen.    

(V) Signal-to-noise ratio: In CRSsim it is possible to change the signal-to-noise ratio of 

multiple components; Selection strength (V.a), dispersion modeling (V.b), guide efficiency (V.c), 

and functional sequence strength (V.d). Selection strength 𝑇 (V.a), refers to the difference in 

sorting probabilities for a FACS screen, or depletion for a selection screen, for guides that do/do 

not target functional sequences. Both cases are modeled by a Dirichlet multinomial distribution. 

The probabilities of sgRNAs that do not target functional sequences are given by a vector of 

Dirichlet parameters 𝛼, where the probability of being placed into pool 𝑗 is 
𝛼𝑗

∑ 𝛼𝑖
𝐽
𝑖=1

.  Dispersion 𝑑 

(V.b) is the variance in the placement probabilities 𝛼 and modeled as a variable dependent on the 

counts of the gRNA. Specifically, for 𝑐𝑛 cells containing guide 𝑛 the dispersion would be 𝑑𝑛 =

𝑑𝑖𝑠𝑝(𝑐𝑛) and 𝑑𝑖𝑠𝑝() can be either the default exponential function (−89.18 + 17.78 ∗ log(𝑐𝑛)) 

or specified by the user. The Dirichlet parameters for a given guide 𝑛 are therefore 𝛼𝑛 = 𝛼 ∗ (𝑑𝑛 ∗

∑ 𝛼𝑖
𝐽
𝑖=1 ). Guide efficiency 𝑓𝑛 (V.c) and functional sequence strength ℎ𝑘 (V.d) also contribute to 

the placement probabilities. Both are proportions between 0 and 1, modeled by a beta distribution. 

Guides targeting strong functional sequences, with a strength near ℎ𝑘 = 1, behave like positive 

control sgRNAs. Guides targeting non-functional sequences have ℎ𝑘 = 0. The simulation sets the 

efficiency of each sgRNA and the strength of each functional sequence by sampling from beta 

distributions with user-configurable shapes. The sgRNA efficiency, 𝑓𝑛, specifies the fraction of 
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cells where the sgRNA is ‘effective’ and perturbs the sorting probabilities. We also consider the 

distance of the guide target site to the functional sequence to be important. For example, if 𝑐𝑛 cells 

contain sgRNA 𝑛, then the number of cells that contain a effective sgRNAs is 𝑤𝑛 = 𝑐𝑛𝑓𝑛𝑝𝑛 where 

𝑝 = 𝑁(𝑟𝐸 , 𝑠𝑑𝐶𝑎𝑠) and 𝑟𝐸 is the range between the guide perturbation site and the functional 

sequence 𝐸. 𝑠𝑑𝐶𝑎𝑠 is the standard deviation such that for a Cas9 simulation only half the cells have 

a perturbation extending beyond 10bp from their target site and for a CRISPRi or CRISPRa 

simulation only half the cells have a perturbation extending beyond 200bp from the guide target 

site. The 𝑤𝑛 cells are sorted with probabilities specified by the Dirichlet vector 𝛼𝑛 + ℎ𝑘𝑇. The 

sorting vector for the 𝑐𝑛 −𝑤𝑛 cells with ‘ineffective’ sgRNAs, is simply 𝛼𝑛.  

 (VI) Simulation-specific parameters: These parameters consist of; (VI.a) Guide library 

distribution, (VI.b) Total number of input cells, and (VI.c) Sequencing depth. The guide library 

distribution (VI.a) is the initial distribution of gRNA counts. We assume the counts follow a zero-

inflated negative binomial distribution (ZINB), 𝑦~𝑍𝐼𝑁𝐵(𝜇, 𝑑, 휀), where 𝜇 is the mean, 𝑑 is the 

dispersion and 휀 is the proportion of the distribution that comes from the zero point mass. The 

parameters of the ZINB distribution can be specified or estimated by maximum likelihood from a 

provided table of gRNA counts. After the gRNA counts in the gRNA library are obtained by 

sampling from the ZINB distribution, an input pool of cells containing gRNAs is generated by 

performing multinomial sampling from the gRNA library to obtain the total number of input cells 

(VI.b). The input cells in combination with (V.a-d) generate the counts of either the FACS pools 

or the selected pool. CRSsim simulates the sequencing step (VI.c) by drawing from a multivariate 

hypergeometric distribution (sampling without replacement) or a multinomial distribution 

(sampling with replacement) to obtain the counts of gRNAs in the sorted pools. Sampling without 
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replacement is used to simulate the use of unique molecular identifiers that allow duplicate reads 

to be filtered.  
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1.4 Results 

We evaluated the similarity of data simulated by CRSsim to experimental data by 

comparing the distributions of the guide library counts, the measures of correlation in guide counts 

before and after selection, the rank changes in guide counts after selection, and the quantile-

quantile plots of guide counts in the simulated vs. experimental data both before and after selection. 

Based on these metrics, we found the output of the simulations to be highly similar to the 

experimental data (Fig. 1.1b-d). Thus, we believe that the simulations by CRSsim can successfully 

capture the effects of experimental and biological variables present in CRISPR screen experiments.  
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Figure 1.1. CRSsim simulation framework 
CRSsim’s CRISPR screen simulation framework. (a) Side-by-side comparison of the steps in a CRISPR 

screen experiment versus and the CRSsim generative process. sgRNAs are introduced into cells and only 

cells which receive sgRNAs are retained. The remaining cells are either sorted based on gene expression or 

placed under selective pressure (e.g. for survival or proliferation). In our simulations, we generate an initial 

sgRNA count distribution and mimic the experimental steps using several different sampling procedures. 

(b-d) Comparison between simulated and experimental data; sgRNA counts and guide ranks before and 

after selection are shown (b,c), as well as the quantile-quantile plots of simulated vs. experimental data both 

before and after selection (d).  

 

These simulated datasets can be useful for characterizing the consequences of different 

experimental choices. For instance, it would allow a user to determine the tradeoff between using 

more guides but more shallow sequencing and vice versa. CRSsim can also be used to benchmark 
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the performance of different analysis methods. These benchmarking analyses are described in 

Chapter 2. 
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1.5 Discussion 

There is currently no substantial gold-standard set of known functional sequences where 

the ground truth is known. This impedes the systematic evaluation of different analysis method. 

With CRSsim, we provide a simulation framework that can generate realistic data sets under 

different experimental conditions. This simulated data can be used to compare the performance of 

different tools and identify the strengths and weaknesses of different methods. Furthermore, 

CRSsim can be used to make informed decisions about the design of a CRISPR screen experiment.  

The features implemented in CRSsim make it a very flexible tool capable of generating 

many different scenarios. CRSsim is, to our knowledge, the only tool that simulates count data 

from tiling CRISPR screens, and we believe that it will be a useful resource for the community. 

 

1.6 Data Availability 

Code available from the Github repository: https://github.com/patfiaux/CRSsim 

 

 

1.7 Acknowledgements 

 This research was supported by NIH/NIAID grant 2R01AI107027-06; by NIH/NIDDK 

grant 1 R01 DK122607-01; by the National Cancer Institute funded Salk Institute Cancer 

Center (NIH/NCI CCSG: 2 P30 014195); by a gift from the Jacobs Foundation; by a fellowship 

from the H.A. and Mary K. Chapman Charitable Trust to P.C.F.; by a fellowship from the Jesse 

and Caryl Philips Foundation to P.C.F; by a Salk Alumni Fellowship to H.V.C; and by the 

Frederick B. Rentschler Developmental Chair to G.M.  

https://github.com/patfiaux/CRSsim


 
 

22 

We thank Yarui Diao, Rongxin Fang, Ye Zheng, Zhi Liu, and members of the McVicker 

lab for helpful discussions about analysis methods for CRISPR regulatory screens; and Jessica 

Zhou and Arya Massarat for testing CRSsim. 

 

1.8 Author information 

G.M. and P.C.F. conceived of the idea for CRSsim. G.M. supervised the research. G.M. 

and P.C.F. wrote the manuscript, with input and edits from H.V.C. P.C.F. implemented CRSsim 

with the help of K.G. H.V.C. participated in many helpful discussions about CRSsim, and CRISPR 

screens. 

Chapter 1, in part, is adapted from the material as it appears as “Discovering functional 

sequences with RELICS, an analysis method for CRISPR screens” in PLOS Computational 

Biology, 2020 by Patrick C. Fiaux, Hsiuyi V. Chen, Poshen B. Chen, Aaron R. Chen, Graham 

McVicker and, in part, adapted from the manuscript in preparation “Modeling of dispersion and 

perturbation effects in tiling CRISPR screens with RELICS+” by Patrick C. Fiaux, Karthik 

Guruvayurappan, Graham McVicker.  The dissertation author was one of the primary investigators 

and authors of this paper. 

 

 

  



 
 

23 

Chapter 2: RELICS (Regulatory Element Location Identification in 

CRISPR Screens) 

 

 

2.1 Abstract 

Here we describe RELICS (Regulatory Element Location Identification in CRISPR 

Screens), a new method for the analysis of CRISPR screens which specifically addresses the 

challenges described in chapter 1. RELICS uses a flexible Bayesian hierarchical model to jointly 

analyze sgRNA counts across multiple pools while explicitly modeling various tiling CRISPR 

screen processes. Using simulated data, we demonstrate that RELICS outperforms existing 

analysis methods with better precision and recall across a wide variety of conditions.  
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2.2 Introduction 

The analysis of tiling CRISPR screens poses numerous challenges including (i) the need to 

combine information across multiple sequencing pools, (ii) the noisy and overdispersed nature of 

genomic count data (Love et al., 2014; van de Geijn et al., 2015), (iii) the spatial organization of 

sgRNA target sites and functional sequences, and (iv) the area of effect (AoE) of genomic 

perturbations, which often extend well beyond the sgRNA target site (e.g. in CRISPRa or CRISPRi 

screens, activating or silencing epigenetic modifications can spread over 1kb or more from target 

site (Thakore et al., 2015)). Currently, no existing methods address all of these challenges and 

moreover, almost all analysis methods for CRISPR screens were designed for gene-based screens, 

which knock out known genes, as opposed to tiling non-coding screens which aim to identify 

unknown functional sequences. 

Our method RELICS is specifically designed to analyze tiling CRISPR screens and is, to 

the best of our knowledge, the first method which successfully models all of the above challenges 

(i-iv). We compare RELICS to three other methods; MAGeCK (W. Li et al., 2014), CRISPR-

SURF (J. Y. Hsu et al., 2018) and MAUDE (de Boer et al., 2020). Briefly, MAGeCK was designed 

for analyzing gene-based screens and is one of the most popular methods for analyzing CRISPR 

screens. It has also been used to analyze tiling CRISPR screens (Diao et al., 2017); however, 

MAGeCK cannot combine information across multiple pools and makes a simplifying assumption 

that there either is or is not a perturbation and therefore does not account for AoE. CRISPR-SURF 

is a method designed for analyzing tiling CRISPR screens but does not model either raw counts or 

dispersion, and is also not able to jointly analyze multiple pools. MAUDE was also developed for 

analyzing tiling CRISPR screens and like CRISPR-SURF, it does not model raw counts or 

dispersion. Similar to MAGeCK, MAUDE makes simplifying assumptions about the AoE. While 
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it does allow for the joint analysis of pools, it requires an even number of pools and the proportion 

of cells that were sorted into each pool. Unfortunately, the latter is unavailable for all but one of 

the publicly available data sets that we evaluated. Finally, none of the three methods are designed 

to model the AoE of dual guide screens. We demonstrate that the factors above (i-iv) are important 

to consider for the analysis of tiling CRISPR screens.  By taking into account all of these factors, 

our innovative approach RELICS outperforms MAGeCK, CRISPR-SURF and MAUDE on 

evaluations of simulated data.  
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2.3 Material and Methods 

2.3.1 RELICS 

RELICS is designed to discover functional sequences from tiling CRISPR screens 

including those based on cell survival, cell proliferation, and gene expression. RELICS aims to 

determine both the number and location of functional sequences in the screened genome sequence 

and includes several important features: (i) it increases power by jointly modeling data from 

multiple pools; (ii) it models sgRNA counts appropriately without requiring transformation of the 

data or assuming normality; (iii) it explicitly models the guide dispersion; (iv) it accounts for guide 

efficiency scores; (v) it considers the spatial organization of sgRNA target sites and functional 

sequences; (vi) it accounts for the ‘area of effect’ (AoE) of sgRNAs; and (vii) it provides the 

credible set (CS) of segments that most likely contains the genome location of each predicted 

functional sequence. 

One of RELICS’ features is its ability to jointly analyze sgRNA count data across multiple 

pools, while controlling for extra variability (overdispersion) in the data. Modeling genomic count 

data while accounting for overdispersion increases power and reduces false positives (Love et al., 

2014; Robinson et al., 2010a; van de Geijn et al., 2015). In RELICS, the counts are modeled using 

a Dirichlet multinomial distribution, which describes the probability that a cell containing an 

sgRNA will be observed in each pool. The dispersion for each guide is determined by a spline 

function which describes the relationship between the total counts of a guide and its dispersion 

(Fig 2.1a). RELICS estimates the spline from the data by sorting the guides according to total 

counts, binning them and estimating the dispersion with maximum likelihood estimation (MLE) 

for each bin. The mean of the guide counts for each bin and the estimated dispersions are used to 

fit a spline which in turn is then used to describe the dispersion for each guide.   
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Figure 2.1. RELICS features 
(a) Modeling guide count dispersion. Guides are sorted by total counts, binned and for each bin the 

dispersion is calculated via maximum likelihood estimation (MLE) using the guide counts. A spline is fit 

to the dispersion MLE estimates and the mean guide counts for each bin (black dots) to obtain per-guide 

dispersion estimates (red-line) (b) Modeling guide-efficiency scores. Each guide’s efficiency can be scored 

based on different metrics. These scores can be integrated into the RELICS analysis model to increase result 

accuracy. (c) Modeling the area of effect (AoE). Each CRISPR system has a different AoE. For SpCas9 the 

probability that a position 10bp away from the target site is perturbed is reduced to only half the cells. 

CRISPRi’s effect will extend past 200bp in half the cells and for a dual-guide deletion it’s the same as for 

SpCas9 for each target site and a uniform probability for the entire deletion. 

 

(iv) RELICS can also take into account guide efficiency scores. Over the last few years, it 

has become evident that guide efficiency plays an important role for the success of a perturbation 

(Doench et al., 2014, 2016; P. D. Hsu et al., 2013). Various metrics have been developed to filter 

for the best guides, scoring guides on efficiency, specificity and off-target effects (Fig. 2.1b). 

RELICS can use a provided set of scores to increase or decrease its certainty about the effect of a 

specific guide. 

It is also important to consider the genome locations of both functional sequences (v) and 

sgRNA target sites as well as the area of effect (AoE) for each sgRNA (vi). The AoE of CRISPR 

perturbations means that a single sgRNA can potentially affect multiple functional sequences in 

the vicinity of the target site. Similarly, a single functional sequence can be perturbed by multiple 

sgRNAs with nearby target sites. To model the spatial organization of functional sequences 
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RELICS divides the sequence targeted by the screen into small windows called genome segments. 

Each genome segment is then associated with all sgRNAs that are predicted to affect it, based on 

their overlap with the sgRNA’s AoE (Fig. 2.1c). Whether a segment is considered to be overlapped 

by a guide depends on the guide-AoE. For a sgRNA with Cas9 the AoE is considered to be around 

20bp while with a dCas9:KRAB it’s considered to be around 1kb. However, a perturbation is more 

likely to happen in close proximity to the target site and less likely the further away a region is 

located. RELICS models the AoE of sgRNAs using a normal distribution and the perturbation a 

dual-guide screen using sgRNA deletion probabilities at each target site and a uniform distribution 

to model the probability of a full deletion occurring instead of two indels.  

RELICS assumes that the counts of sgRNAs are affected when the genome segment they 

are associated with contains a functional sequence. sgRNAs that affect functional sequences are 

expected to have a different count distribution across pools, and RELICS uses different Dirichlet 

distributions for sgRNAs that do or do not overlap functional sequences (Fig. 2.2). The 

hyperparameters for both distributions are estimated empirically by maximum likelihood in a 

supervised manner. Known functional sequences (positive controls), such as genome segments 

overlapping the promoter or established enhancer of the target gene are used to start this process. 

We refer to these positive controls as functional sequence 0 (FS0).  

Using the hyperparameters and the observed sgRNA counts, RELICS calculates the 

posterior probability that a genome segment contains a functional sequence. We refer to the 

probability that a genome segment contains a functional sequence as the ‘functional sequence 

probability’ (FSP). The exact calculation of FSPs for every genome segment is impractical, 

however, because all combinations of functional sequence placements would have to be calculated. 

To overcome this problem, RELICS uses a novel Iterative Bayesian Stepwise Selection (IBSS) 
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algorithm (G. Wang et al., 2020) to calculate approximate FSPs. Using the FSPs, RELICS 

computes all possible credible sets (CS), 𝑐𝑠𝑖, by selecting a set of adjacent FSP, 𝐹𝑆𝑃𝑖−𝑗, and 

identifying the segments of 𝐹𝑆𝑃𝑖−𝑗 that contribute the most to the signal. Each functional sequence 

is identified as the CS with the highest cumulative functional sequence probability. 

 

Figure 2.2. RELICS workflow 
RELICS analysis workflow with example data. (a) Example input data with known functional sequence 

(FS), usually promoter or exons. Correctly identifying both the number and placement of functional 

sequences is non-trivial. Example data taken from a CRISPRa screen (Simeonov et al., 2017) discussed in 

chapter 3. (b) Main steps of RELICS for identifying FSs. After segmenting the tiled region and labeling 

FS0 (step 1, 2), the CS-PP of FS0 is placed (step 3). The sorting probability distribution is estimated by 

comparing guides overlapping FS0 and all other guides (background). This is done only once (step 4). 

Sorting probability distributions are used to iteratively identify the credible sets with the highest posterior 

probability of containing a functional sequence (step 5). This is done until k functional sequence are placed. 

 

 

RELICS aims to identify a total of 𝐾 functional sequences, where 𝐾  is defined by the user. 

A prior is used to re-weight the model log-likelihood improvements with each additional functional 

sequence and those below a specified threshold are not reported. An important feature of RELICS 
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is that it outputs separate credible sets for each functional sequence, providing discrete genome 

segments that can be used for follow-up validation experiments (Fig. 2.2b). We plot these 

functional sequence probabilities as separate tracks (Figs. 3.2a) or as a combined track with 

different colors (Figs. 3.2b, 3.3, 3.4, 3.5). In addition, the functional sequences output by RELICS 

are rank-ordered, with functional sequence 1 (FS1) having the strongest statistical support.  

 

2.3.2 Formal Model 

RELICS model setup and organization: A description of the variables for the RELICS 

model is provided in Table 2.1. RELICS divides the screened genome region into M small non-

overlapping genome segments indexed as 𝑚 = 1,2,… ,𝑀. In practice we have found a segment 

size of 100bp to work well, and we use this as the default. As input, RELICS takes a table of 

observed counts for 𝑁 sgRNAs (indexed as 𝑛 = 1,2, … ,𝑁) across 𝐽 pools. We represent these 

counts as an 𝑁 × 𝐽 matrix, 𝒚, and use 𝒚𝑛 to denote the vector of observed counts for sgRNA 𝑛 

across the 𝐽 pools. Let 𝑔(𝑛) be a function that maps sgRNAs to associated ‘overlapping’ genome 

segments.  I.e. 𝑔(𝑛) returns the set of genome segments that are overlapped by sgRNA 𝑛. RELICS 

does not use non-targeting sgRNAs. 
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Table 2.1. Variable description for RELICS model 

Variable Description 

𝐽 Number of pools in screen 

𝐾 Number of functional sequences 

𝐿 Maximum length of functional sequence in genome segments 

𝑀 Number of genome segments 

𝑁 Number of sgRNAs 

𝒚 Observed sgRNA counts (matrix of dimension 𝑁 × 𝐽) 
𝜹 Functional sequence configuration (matrix of dimension 𝐾 ×𝑀). Each row, 

𝜹𝒌 specifies the placement (length and position) of functional sequence 𝑘. A 

specific placement is denoted 𝛿𝑘[𝑚, 𝑙], where 𝑚 is the genome segment 

containing the start of the functional sequence and 𝑙 is the length of the 

functional sequence. 

𝝅 Probability a genome segment contains a specific functional sequence 

(matrix of dimension 𝐾 × 𝑀) 

𝜶 Hyperparameters for sorting probability distribution (vector of length 𝐽) 
𝒔 sgRNA sorting probabilities (vector of length 𝑁) 

𝒓 Number of genome segments that an sgRNA overlaps that contain a 

functional sequence (vector of length 𝑁) 

𝒑 Probability genome segments contains any functional sequence (vector of 

length 𝑀) 

𝑙 Length of a functional sequence 

𝑔(𝑛) Mapping of sgRNAs to genome segments 

𝑑 Dispersion of Dirichlet distribution 

𝑃𝑖 Piecewise polynomial for the range 𝑡𝑖 to 𝑡𝑖+1 

𝑒 Degrees of freedom 

𝑔𝑒 Guide efficiency 

𝐷𝑖𝑠𝑡(𝑠|𝜶, 𝐴𝑜𝐸) Magnitude by which a functional sequence affects guide counts based on 

AoE and distance betweeb guide target site and bin position 

𝑠 Bin 

𝐴𝑜𝐸 Area of effect of CRISPR system 
Description of variables in the RELICS model. 

 

RELICS count model: RELICS assumes there are 𝐾 functional genome sequences, indexed 

as 𝑘 = 1,2, … , 𝐾 and that each functional sequence affects the sorting probabilities of overlapping 

sgRNAs. Each functional sequence has a length, 𝑙𝑘, which is the number of genome segments that 

it spans. The maximum length of a functional sequence is set to 𝐿, so that 𝑙𝑘 ∈ {1,… , 𝐿}. By 

default, 𝐿 = 10. 
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We describe the observed counts for an sgRNA across pools with a Dirichlet multinomial 

distribution and refer to the Dirichlet portion of the distribution as the sorting probability 

distribution. The sgRNAs that overlap a functional genome sequence have one sorting probability 

distribution, and the sgRNAs that do not overlap a functional genome sequence have another. Each 

Dirichlet distribution has 𝐽 shape parameters, which define the dispersion and the expected 

proportion of counts in each pool. The vectors of shape parameters for the Dirichlet distributions 

are denoted 𝜶𝟏 and 𝜶𝟎 for sgRNAs that do and do not overlap a functional sequence. Then: 

𝒚𝒏|𝒔𝒏~Multinomial(𝒔𝒏) 

𝒔𝒏|𝑟𝑛 = 0~Dirichlet(𝜶𝟎, 𝑑𝑛,0) 

𝒔𝒏|𝑟𝑛 > 0~Dirichlet(𝜶𝟏, 𝑑𝑛,1) 

where 𝑟𝑛 is the total number of genome segments containing functional sequences that are 

overlapped by sgRNA 𝑛. The dispersion parameter 𝑑 for each guide𝑛, 𝑑𝑛, is modeled via a spline 

and determined by the guide’s total counts: 

𝑑𝑛 = 𝑆𝑝𝑙𝑖𝑛𝑒(𝒚𝒏) = 𝑃𝑖 (∑𝒚𝒏) , 𝑡𝑖 ≤∑𝒚𝒏 < 𝑡𝑖+1 

where 𝑃𝑖 is the piecewise polynomial for the range 𝑡𝑖 to 𝑡𝑖+1 and 𝑖 = 0, … , 𝑒 − 1 with 𝑒 

representing the degrees of freedom. To determine the value of 𝑒 the total guide counts are sorted 

and binned and for each bin the dispersion is estimated using maximum likelihood while keeping 

the hyperparameters fixed to 𝜶𝟎 across all bins. The optimal value for 𝑒 is then selected by the 

user. 

Guide efficiency is modeled with a logistic function that adjusts the sorting proportions 

between  𝜶𝟏 and 𝜶𝟎 such that 𝜶𝟏,𝒏 = 𝜶𝟎 − (𝜶𝟎 − 𝜶𝟏) ∗ 𝑔𝑒𝑛where 𝑔𝑒𝑛 is the guide efficiency 

score for guide 𝑛. RELICS can also adjust the weighting on 𝒈𝒆 such that 𝒈𝒆𝒘 =
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1

1+exp(−(𝛽0+𝛽1∗𝒈𝒆))
 where 𝛽0 and 𝛽1 are determined using maximum likelihood estimation. This 

format is very flexible and allows for the combination of different sets of guide scores 𝒈𝒆𝒘 =

1

1+exp(−(𝛽0+𝛽1∗𝒈𝒆𝟏+𝛽2∗𝒈𝒆𝟐…))
 where 𝒈𝒆𝟏 and 𝒈𝒆𝟐 are two different guide scores. 

 

RELICS functional sequence configurations: We define a configuration to be the positions 

and lengths of all of the functional sequences. We specify a configuration with a matrix, 𝜹, of 

dimension 𝐾 ×𝑀, where an element, 𝛿𝒌,𝒎, is 1 if genome segment 𝑚 contains functional sequence 

𝑘, and is 0 otherwise. We call a single row vector of the configuration matrix, 𝜹𝒌, the placement 

of a functional sequence. In other words, a configuration is a collection of functional sequence 

placements. 

We want to estimate the probability, 𝑝𝑚, that a given genome segment, 𝑚, contains a 

functional sequence. To compute 𝑝𝑚 we could sum the posterior probabilities of all configurations 

that have a functional sequence in genome segment 𝑚. However, exact calculation of 𝑝𝑚 is 

intractable because the likelihoods of all possible configurations must be computed. For example, 

even in a simple case where there are 𝑀 = 10,000 genome segments and 𝐾 = 5 regulatory 

sequences of length 𝐿 = 1, the number of possible 𝜹configurations is (10,000
5

) = 8.3 × 1017.  

To overcome this problem, we developed an approximate inference algorithm known as 

Iterative Bayesian Stepwise Selection (IBSS) (G. Wang et al., 2020). Our version of the IBSS 

algorithm includes extensions that are specific to RELICS including allowing for functional 

sequences of variable length and the use of non-normal count data with a Dirichlet multinomial 

error distribution. Our IBSS algorithm performs stepwise placement of a single functional 

sequence at a time, while accounting for the (uncertain) placements of all of the other functional 

sequences. 
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To implement the IBSS algorithm, and to account for uncertainty in functional sequence 

placements, we introduce a functional sequence probability matrix, 𝝅. This is like the 𝜹 matrix, 

but rather than binary values, it contains probabilities. Specifically, each element is the probability 

that a genome segment contains a specific functional sequence: 𝜋𝑘,𝑚 = Pr(𝛿𝑘,𝑚 = 1).  

To allow the positions of known functional sequences (positive controls) to be specified, 

we add an additional row to the functional sequence probability matrix, which we index as row 0 

and denote 𝝅𝟎. The probability that a genome segment contains any functional sequence is 

then:𝑝𝑚 = ∑ 𝜋𝑘,𝑚
𝐾
𝑘=0 . 

The number of genome segments that are overlapped by sgRNA 𝑛 and contain a functional 

sequence follows a Poisson binomial distribution. In other words, the Poisson binomial is used to 

calculate the probability that an sgRNA overlaps 𝑟𝑛 genome segments containing functional 

sequences: 

𝑟𝑛~PoissonBinomial(𝒑𝑔(𝑛)) 

where 𝒑𝑔(𝑛) is the vector of probabilities for all genome segments associated with sgRNA 𝑛. To 

incorporate the AoE when calculating the probability that sgRNA 𝑛 has 𝑟 overlapping functional 

sequences (computed using the Poisson binomial distribution); 

∑Pr(𝑟|𝒑𝒔)
PB

∗ 𝐷𝑖𝑠𝑡(𝑠|𝜶, 𝐴𝑜𝐸)

𝑠

 

where 𝐷𝑖𝑠𝑡(𝑠|𝜶, 𝐴𝑜𝐸) = {
𝑁(𝑏 − 𝑠𝑔𝑇, 𝜇 = 0, 𝜎𝐴𝑜𝐸), 𝑖𝑓𝜶 = 𝜶𝟏, 𝐴𝑜𝐸 = 𝑛𝑜𝑟𝑚𝑎𝑙

1 − 𝑁(𝑏 − 𝑠𝑔𝑇, 𝜇 = 0, 𝜎𝐴𝑜𝐸), 𝑖𝑓𝜶 = 𝜶𝟎, 𝐴𝑜𝐸 = 𝑛𝑜𝑟𝑚𝑎𝑙
 and 𝑠 is the 

bin, 𝑏 is the position of the bin, 𝑠𝑔𝑇 is the target position of the guide and 𝜎𝐴𝑜𝐸  is the standard 

deviation corresponding to the Cas9 model. In the case of regular Cas9 𝜎𝐴𝑜𝐸 = 8.5 and for both 

CRISPRi and CRISPRa 𝜎𝐴𝑜𝐸 = 170. If 𝐴𝑜𝐸 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚, corresponding to RELICS.1, then 

𝐷𝑖𝑠𝑡(𝑠|𝜶, 𝐴𝑜𝐸) = 1 for all 𝜶 = 𝜶𝟏 and 𝐷𝑖𝑠𝑡(𝑠|𝜶, 𝐴𝑜𝐸) = 0 for all 𝜶 = 𝜶𝟎. 
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RELICS IBSS algorithm: The following is a description of the IBSS algorithm that is used 

to estimate the functional sequence probability matrix 𝝅. 

Initialize: 

• Set 𝐾 to number of functional sequences.  

• Set known functional sequences (positive controls) to 1.0 in row 𝝅𝟎. 

• Set all other elements of 𝝅 to 0.0. 

• Estimate sgRNA sorting hyperparameters (𝛼0, 𝛼1) by maximum likelihood. 

 

# Estimate configuration probabilities 

• For 𝑘 in 1…𝐾: 

o Set elements of row 𝝅𝒌 to 0. 

o Compute 𝒑, the probability that each genome segment contains one of the 

other functional sequences 

o Set elements of 𝝅𝒌 by calculating posterior probability of every possible 

placement of functional sequence 𝑘, conditional on 𝒑. 

o Compute all possible 𝐶𝑆𝑘 and select the one with highest PP as final CS 
 

RELICS posterior probabilities of functional sequence placements: To compute the 

posterior probability of each functional sequence placement, we first compute the likelihood of all 

possible placements of functional sequence 𝑘, taking into account the placements of all of the other 

functional sequences. We set the elements of 𝝅𝒌 to 0 and also set all elements of 𝜹𝒌 to 0, except 

those corresponding to the functional sequence placement being considered, which are set to 1. 

We denote a specific placement as 𝜹𝒌
<𝑚,𝑙>

, where 𝑚 is the genome segment containing the start 

of the functional sequence, and 𝑙 is the length of the functional sequence. That is,  𝜹𝒌
<𝑚,𝑙>

, is a 

vector of 0s except for elements 𝑚. . (𝑚 + 𝑙 − 1), which are set to 1. We can compute the 

probability that a given genome segment contains a functional sequence as 𝑝𝑚 = 𝛿𝑘,𝑚 + (1 −

𝛿𝑘,𝑚)∑ 𝜋𝑘,𝑚
𝐾
𝑘=0 . The likelihood of a specific functional sequence placement is then: 
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ℒ(𝜹𝒌
<𝑚,𝑙>|𝒚, 𝜶𝟏, 𝜶𝟎, 𝝅)

=∏[∑ Pr
PB
(𝑟𝒏 > 0|𝒑𝒈(𝒏)) ∗ 𝐷𝑖𝑠𝑡(𝑠|𝜶1, 𝐴𝑜𝐸) Pr

DMN
(𝒚𝒏|𝜶𝟏)

𝑠
𝑛

+∑ Pr
PB
(𝑟𝑛 = 0|𝒑𝒈(𝒏)) ∗ 𝐷𝑖𝑠𝑡(𝑠|𝜶𝟎, 𝐴𝑜𝐸) Pr

𝐷𝑀𝑁
(𝒚𝒏|𝜶𝟎)

𝑠
] 

where the product is over all sgRNAs with observed counts, Pr
DMN

(𝒚|𝜶) is the probability of the 

observed counts (computed using the Dirichlet multinomial distribution). 

 

The posterior probability of a specific functional sequence placement is: 

𝑃𝑃
𝜹𝒌

<𝑚,𝑙> =
Pr(𝜹𝒌

<𝑚,𝑙>) ℒ(𝜹𝒌
<𝑚,𝑙>|𝒚, 𝜶𝟏, 𝜶𝟎, 𝝅)

∑ Pr(𝜹𝒌
<𝑖,𝑗>) ℒ(𝜹𝒌

<𝑖,𝑗>|𝒚, 𝜶𝟏, 𝜶𝟎, 𝝅)𝑖,𝑗

 

where the denominator is the sum over all possible placements of this functional sequence and 

Pr(𝜹𝒌
<𝑚,𝑙>) is the prior probability of a specific functional sequence placement. 

We can compute the posterior probability that a genome segment contains functional 

sequence 𝑘, by summing the probabilities from all of the possible placements overlapping the 

segment. We use these posteriors to set the elements of 𝝅𝒌: 

𝜋𝑘,𝑚 =∑ ∑ 𝑃𝑃
𝜹𝒌

<𝑖,𝑙>

𝑚

𝑖=𝑚−𝑙+1

𝐿

𝑙=1

 

 

RELICS prior probabilities on length of functional sequences: As prior probabilities for 

each functional sequence placement, we use a weighting that favors shorter functional sequences. 

Specifically, we use a geometric distribution, truncated at a maximum of 𝐿, to weight each possible 

length: 
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𝑤(𝑙) =
(1 − 𝜆)𝑙−1𝜆

∑ (1 − 𝜆)𝑖−1𝜆𝐿
𝑖=1

 

where 𝜆 is a constant between 0 and 1 that controls the weighting. We make the prior uniform for 

all placements with the same value of 𝑙. 

 

 RELICS calculation of Credible Sets. For each FS, RELICS uses the functional sequence 

specific functional sequence probability placements, 𝝅𝒌, to compute a 90% credible set for 10 

adjacent segments, for all possible CS. The segments of the CS with the highest cumulative 

posterior probability are then identified as part of the configuration matrix, 𝜹𝒌. 

 

RELICS empirical estimation of hyperparameters: The RELICS model has 

hyperparameters, 𝜶𝟎 and 𝜶𝟏, which control the sorting probabilities and dispersion of sgRNA 

counts across pools. RELICS performs MLE of these parameters each iteration of the IBSS 

algorithm. This estimation is performed using the full dataset of sgRNA counts, and keeping the 

functional sequence probabilities fixed to their current estimates, �̂�: 

𝛼0, 𝛼1 = argmax
𝛼0,𝛼1

ℒ(𝜶𝟏, 𝜶𝟎|𝒚, �̂�) 

We perform MLE by numerical optimization using the L-BFGS-B algorithm (Byrd et al., 1995). 

 

RELICS prior on number of functional sequences (𝐾): RELICS computes the iterative 

placement of 𝐾 functional sequences using the IBSS algorithm described above. The log-

likelihood contribution of each functional sequence to the model is weighted by a user-defined 

prior, 𝐹𝑆𝑒 , where 𝑝𝑟𝑖𝑜𝑟~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝐹𝑆𝑒).  RELICS will report all 𝐾 functional sequence that 
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are significant in a chi-square test with one degree of freedom. Based on current screens, RELICS 

sets 𝐹𝑆𝑒 =
𝑡𝑜𝑡𝑎𝑙𝑛𝑟.𝑏𝑝𝑐𝑜𝑣𝑒𝑟𝑒𝑑

50′000
 and 𝐾 = 𝐹𝑆𝑒 +max(3, 0.3 ∗ 𝐹𝑆𝑒) as default. 

 

RELICS Input Format. RELICS takes a text-based .csv file as input (for examples see 

https://github.com/patfiaux/RELICS). The file contains the sgRNA information as well as the 

observed sgRNA counts in different pools. We have made the public datasets we analyzed 

available in this format (https://figshare.com/projects/RELICS_2_data/74376, ). Alternatively, 

RELICS can also take in two .csv files, where one file contains the sgRNA information and the 

other file contains the observed sgRNA counts in different pools. 

 

2.3.3 Other tiling CRISPR screen methods 

We have compared the performance of RELICS against three other methods. The first one 

is MAGeCK (W. Li et al., 2014) which has been developed for analyzing gene knockout screens. 

MAGeCK (version 0.5.9.2) is designed to be run on sgRNAs that are grouped into functional units 

(i.e. genes). To run MAGeCK, we therefore grouped sgRNAs into non-overlapping genome 

windows containing 10 sgRNAs per window (note that the GeCKO v2 sgRNA library that 

MAGeCK is commonly applied to uses 6 sgRNAs per gene). To run MAGeCK we used the 

following command line: 

mageck test -k MAGeCK_Input.txt -t 0,1 -c 2,3 -n mageckOut 

where the MAGeCK_Input.txt file contains the observed counts for each sgRNA. 

 

 We next compared against CRISPR-SURF (J. Y. Hsu et al., 2018). CRISPR-SURF 

(downloaded 02/13/2019 from GitHub) was run using the procedure specified in the supplemental 

materials of Hsu et al. 2018. CRISPR-SURF analyzes count data in two steps. The first step filters 

https://figshare.com/projects/RELICS_2_data/74376
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out guides of low quality and computes log2 fold change (Command ‘SURF_count’). The second 

step performs the deconvolution (Command ‘SURF_ deconvolution) to identify functional 

sequences. During the first step, all guides which have a count less than 50 in any of the pools get 

removed. While this works with data sets that have been sequenced deeply, this can become an 

issue when the sequencing depth is not as high. For this reason, to run CRISPR-SURF on the 

simulated datasets, we set the guide count filter to 15 instead of 50. For the experimental datasets 

we used the default guide count filter of 50. CRISPR-SURF accepts positive control as input, 

which can improve the output. We provided CRISPR-SURF with the same positive controls that 

RELICS used for training. The SURF_count command was run as follows: 

docker run -v $Path_to_file/:$Path_to_file -w $Path_to_file 

pinellolab/crisprsurf SURF_count -f CRISPR_SURF_count.csv -nuclease cas9 

-pert crispri 

The SURF_deconvolution command was run as follows: 

docker run -v $Path_to_file/:$Path_to_file -w $Path_to_file 

pinellolab/crisprsurf SURF_deconvolution -f CRISPR_SURF_Input.csv -pert 

crispri 

 

Lastly, we also looked at the performance of MAUDE (de Boer et al., 2020) (downloaded 

11/16/2020 from GitHub). We ran MAUDE by following the steps from the CD69 tutorial and 

computing the combined Stouffer Z-score.   

 

Performance assessment in simulations. We compared the performance of analysis 

methods for CRISPR screens using average precision, which summarizes a precision-recall curve, 

using scores provided by each method. Specifically, as scores we used the CS functional sequence 

probability (CS-PP) for RELICS, the -log10(FDR) for MAGeCK, the -log10(p-value) for 

CRISPR-SURF, and the Z-scores for MAUDE.  
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2.4 Results 

Here we have used RELICS to analyze different simulated datasets generated with CRSsim 

(Fiaux et al., 2020) under eight different scenarios with 15 simulations for each. In total, we 

simulated four paired gRNA deletion screens and four CRISPRi screens with single gRNAs (Fig. 

2.3). For both types of screens, we varied both guide efficiency and enhancer strength between the 

low and high pools (Table 2.2).  

 

Figure 2.3. Simulated tiling CRISPR screen data 
Scenarios simulated with CRSsim. A total of eight scenarios were simulated. For very high selection 

strength, only high guide efficiency and high enhancer strength were used. For high selection strength, both 

high and low guide efficiency and enhancer strength were used (see Table 2.2 for details). 

 

Table 2.2. Simulation parameters 

Simulation name Screen Type Selection Strength Guide Efficiency Enhancer Strength 

Scenario 1 Dual-Guide Very high High High 

Scenario 2 Dual-Guide High High High 

Scenario 3 Dual-Guide High Low High 

Scenario 4 Dual-Guide High High Low 

Scenario 5 CRISPRi Very high High High 

Scenario 6 CRISPRi High High High 

Scenario 7 CRISPRi High Low High 

Scenario 8 CRISPRi High High Low 

Description of simulation parameters used for each scenario. 
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We quantified performance by summarizing the precision recall curve with the average 

precision (AP) for each method. Overall, RELICS demonstrated the best performance with the 

highest mean AP in all scenarios (Fig. 2.4-7).  

 

 

Figure 2.4. Average precision results for all simulated scenarios 
Scenarios 1-4 are dual-guide simulations; scenarios 5-8 are CRISPRi simulations (see Table 2.2 for details). 

Performance was compared between MAGeCK, MAUDE, CRISPR-SURF and RELICS. 
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Figure 2.5. Heatmap of method performance 
(a) Mean average precision rank. (b) Mean average precision scores. 

 

We also assessed how individual features of RELICS affected method performance by 

iteratively dropping each feature from the model (Fig. 2.6-7). The feature with the largest impact 

on performance was the modeling of the relationship between dispersion (D) and total gRNA 

count, which dramatically improved performance across all scenarios when included.  
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Figure 2.6. RELICS feature performance 
Scenarios 1-4 are dual-guide simulations; scenarios 5-8 are CRISPRi simulations (see Table 2.2 for details). 

Performance was compared between RELICS with all features included and with individual features 

dropped from the model. RELICS [-FH]: modeled without fixing hyperparameters and instead recomputing 

them after each functional sequence placement;  RELICS [-GE]: modeled without guide efficiency; 

RELICS [-D] : modeled without dispersion; RELICS [-AoE]: modeled without area of effect; RELICS 

[P=8]: modeled with priors set to 8 instead of 4. 

 

Modeling AoE was particularly important for RELICS performance in the paired guide 

screen with more challenging settings (scenarios 3 and 4), highlighting the importance of including 

this feature when analyzing dual-guide screens.  
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Figure 2.7. Heatmap of RELICS feature performance 
. (a) Mean average precision rank. (b) Mean average precision scores. 

 

We also examined the effects of changing the prior (P) on the number of functional 

sequences and found that setting the prior to the same number as the true number of functional 

sequence resulted in the same or slightly diminished performance due to the detection of false 

positive functional sequences. Therefore, we recommend setting the prior at or slightly below the 
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expected number of functional sequences. When modeling guide efficiency (GE), we found that 

although it only improved RELICS performance slightly, it was robust against noisy guide 

efficiency estimates (Fig. 2.8a), indicating that even scores which inaccurately capture guide 

efficiency (Fig. 2.8b) still provide useful information to the model. Therefore, we suggest 

including guide efficiency in the analysis wherever possible. 

 

Figure 2.8. RELICS guide efficiency modeling 
(a) Average precision of RELICS in different scenarios with different noise levels (NL). (b) Scatterplot of 

true guide efficiency against guide efficiency noise levels 1-3. 

 

Lastly, we looked at the effect of recomputing the hyperparameters after the placement of 

each functional sequence rather than keeping them fixed. Doing so resulted in either equal or 

slightly worse performance. This could be due to RELICS including false positive functional 
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sequences in the hyperparameter estimates. Additionally, keeping the hyperparameters fixed 

speeds up the runtime. Both aspects indicate that RELICS will work better with just the initial 

hyperparameter estimates from FS0. Overall, our simulations demonstrate that RELICS 

outperforms all other methods in our simulations.  
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2.5 Discussion 

We have developed RELICS, a Bayesian hierarchical model for the analysis of CRISPR 

screens. Unlike gene-based analysis methods, RELICS is specifically designed to analyze CRISPR 

screens where the locations of functional sequences are not known. The RELICS model provides 

numerous advantages. First, it considers the collective effects of multiple nearby sgRNA target 

sites and functional sequences. Second, it provides interpretable probabilistic outputs for each 

functional sequence that can be used to delineate small genomic regions that contain each 

functional sequence with confidence. Third, it models sgRNA counts appropriately without 

requiring transformation of the data or assuming normality. Fourth, it increases power for 

functional sequence discovery by jointly modeling data from multiple sgRNA pools. Fifth, it 

specifically models the relationship between gRNA counts and dispersion. Sixth, it considers the 

AoE of each CRISPR perturbation method in both single guide and dual guide scenarios. Seventh, 

it can use guide efficiency scores to improve the detection of functional sequences. While other 

methods include some of these features (e.g. CRISPR-SURF deconvolves the effects of multiple 

sgRNAs and MAGeCK models overdispersed count data with a negative binomial distribution), 

only RELICS combines all of them into a single model.  

RELICS leverages known functional sequences, labeled positive controls, as well as 

unlabeled sequences to learn model hyperparameters. CRISPR-SURF similarly makes use of 

known positive control sequences while MAUDE requires negative control sequences. A strength 

of the RELICS approach is that it learns the behavior of sgRNAs across different pools from the 

data. A limitation is that it may be difficult to apply RELICS to datasets that do not contain a 

known positive control region or have a low number of sgRNAs overlapping positive control 

regions, although it is generally advisable to include positive controls in all screen designs. In 
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addition, positive controls may not adequately represent all types of functional sequences, such as 

repressive or weak regulatory elements. As an alternative approach, the hyperparameters can be 

specified by the user. It may also be possible to develop an unsupervised learning approach where 

positive control labels are not provided and instead sequences with sgRNAs are identified by 

clustering on similar behavior. Ideally, the categories identified by such an approach would 

represent different types of sequences (e.g. strong regulatory elements, weak regulatory elements, 

silencers, non-regulatory elements). Future versions of RELICS that can account for this spectrum 

of functional sequence behavior will likely achieve even better results. 

In summary, RELICS is able to outperform all other methods used for analyzing tiling 

CRISPR screens by modeling numerous biologically and technically relevant features. Thus, we 

believe that RELICS is an extremely useful tool for the discovery of functional sequences from 

CRISPR screens. 

 

2.6 Data Availability 

 RELICS is available on GitHub at https://github.com/patfiaux/RELICS. The simulated 

data sets can be found at https://figshare.com/projects/RELICS_data/98219. 
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Chapter 3: Analysis of tiling CRISPR screens 

 

 

3.1 Abstract 

Tiling CRISPR screens provide an unbiased approach to interrogate the genome and 

discover gene-specific functional sequences to give insight into the mechanisms that govern the 

regulation of gene expression. However, the analysis of these screens is challenging and previous 

methods may have missed some relevant functional sequences, yielding an incomplete picture of 

the regulatory landscape. Here we have performed a systematic analysis of seven publicly 

available CRISPR screen data sets with RELICS, comparing the results to what has previously 

been reported and what other analysis methods detected in the same datasets. We also report the 

results from the analysis of our own unpublished tiling deletion screen for GATA3. Altogether, we 

demonstrate that RELICS has an improved performance over previous methods and can 

successfully analyze both single-guide and dual-guide screens to identify novel functional 

sequences corroborated by experimental validation. 
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3.2 Introduction 

Tiling CRISPR screens have the potential to interrogate the region surrounding a gene of 

interest in an unbiased fashion, allowing for the discovery of not only canonical functional 

sequences but also novel sequences which might not display characteristic epigenetic marks such 

as H3K27ac. However, these screens have only recently been developed and the analysis of the 

data they generate poses numerous challenges. Additionally, every study that has performed tiling 

CRISPR screens thus far has used a different analysis method. This is in part due to fact that robust 

tiling CRISPR screen analysis methods have only recently been developed (de Boer et al., 2020; 

Fiaux et al., 2020; J. Y. Hsu et al., 2018). Additionally, there has not been a systematic comparison 

between existing methods, making the choice of analysis more complicated. However, using 

simulations from CRSsim I have shown in the previous chapter that RELICS outperforms all other 

methods. This leads to the intriguing question of whether RELICS can discover additional 

previously unreported reported functional sequences when reanalyzing public data sets. Here I will 

focus on the analysis of six genes from previous CRISPR screen studies (Diao et al., 2017; Fulco 

et al., 2016; Gasperini et al., n.d.; Simeonov et al., 2017) and demonstrate that RELICS finds not 

only previously reported sequences but also additional putative functional sequences which we 

experimentally validate. We also show that previous methods (J. Y. Hsu et al., 2018; W. Li et al., 

2014) have difficulties analyzing dual-guide screen while RELICS can successfully recover 

validated sequences and finds additional putative functional sequences supported by sequence 

conservation and H3K27ac.  

Lastly, I will also present the results from an unpublished tiling deletion screen for GATA3 

from the McVicker lab. In addition to canonical functional sequences, RELICS also identifies 

unmarked functional sequences which we confirm through validations, highlighting the 
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importance of using an unbiased approach when searching for gene-specific functional sequences. 

One of these unmarked functional sequences is overlapped by potentially causal variants for 

allergic diseases and asthma, allowing us to better understand immune disorders associated with 

the disruption of specific GATA3 functional sequences. 
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3.3 Material and Methods 

3.3.1 CRISPRa screens by Simeonov et al. 

Here we use two datasets from CRISPRa screens for functional sequences that affect the 

expression of CD69 and IL2RA in Jurkat T cells (Simeonov et al., 2017). For both genes, cells 

were flow sorted into four pools based on expression (negative, low, medium, high) and putative 

functional sequences were identified by computing log fold change of target gene expression 

between pairs of pools. We downloaded the sgRNA counts from the supplemental data of the study 

and converted them to the RELICS input format. The promoter regions of the target genes were 

used as positive control regions for RELICS and CRISPR-SURF and were defined as the region 

+/−1kb around the transcription start site (TSS). RELICS was used to jointly analyze all pools 

for the analysis. For MAGeCK and CRISPR-SURF, the input pool (all the cells in the experiment 

prior to sorting) was used as the control pool and the high-expression pool was used as the 

treatment pool. RELICS and CRISPR-SURF used the same sgRNAs for positive controls. For 

RELICS, we used priors of 5 and 15 for evaluating CD69 and IL2RA respectively, based on results 

from our previous analysis (Fiaux et al., 2020). For the validation experiments we used FlashFry 

(McKenna & Shendure, 2018) to design two sgRNAs per target site. FlashFry calculates guide 

efficiency and off-target effects for each guide by reporting the Doench 2014 (Doench et al., 2014), 

Doench 2016 (Doench et al., 2016), and Hsu 2013 scores (P. D. Hsu et al., 2013). For each of the 

target sites, we selected guides with low estimated off-target effects and high estimated efficiency 

relative to the other possible guides in the region (Table 3.1). The synthesized sgRNAs were cloned 

into pCRISPRiaV2 plasmids (Addgene #84832). Lentiviruses carrying the sgRNAs were 

generated and transduced into Jurkat cells expressing dCas9-VP64 (Simeonov et al., 2017), 

obtained from the Berkeley Cell Culture Facility. 7-10 days after transduction, cells from different 
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treatments (i.e. transduced with sgRNAs for distinct target sites) were stained with PE anti-human 

CD69 antibody (Biolegend #310906) and the expression of CD69 was measured by flow 

cytometry using a BD FACSCanto II system. 

 

Table 3.1. CD69 validation guides 

Target gene region gRNA hg19 coordinate (chr12) 

CD69_tss_sg1 TSS CAATGTATAGTGTGTTGTTG 9913617-9913636 

CD69_tss_sg2 TSS TCAAGCAAGTAGGCGGCAA

G 

9913557 -9913576 

CD69_FS1_sg2 FS1 AGGTAACCATGAGTAAACG

G 

9917833-9917852 

CD69_TNC_sg1 ‘Neg. 

Target’ 

CCATTTCCCTCCACAAGCCC 9919830-9919849 

CD69_FS4_sg1 FS4 GCATAGAATTGATATCACCA 9925936-9925955  

CD69_FS4_sg2 FS4 GGATTCGTCTTCTGAGTTAC 9925975-9925994  

CD69_FS3_sg1 FS3 TATTCCTGCTGTATAACAGA 9950460-9950479  

CD69_FS3_sg2 FS3 GTTAAATAATAGAGGGCACA  9950613-9950632 

NTC 
 

CTGAAAAAGGAAGGAGTTGA 

CD69 CRISPRa validation sgRNAs. TSS sgRNAs target the transcription start site of CD69. FSs, and ‘Neg. 

Target’ sgRNAs correspond to labels in Fig. 4d. NTC is a non-targeting control sgRNA. 

 

 

3.3.2 CRISPRi screens by Fulco et al. 

Fulco et al., 2016 performed a CRISPRi proliferation screen surrounding both the MYC 

and the GATA1 loci in K562 cells. We downloaded the sgRNA counts from the paper supplement 

and converted them to RELICS input format. For detecting MYC regulatory elements, all sgRNAs 

labelled as ‘MYC Tiling’ sgRNAs as well as ‘Protein Coding Gene Promoters’ sgRNAs were used. 

For detecting GATA1 regulatory elements, all sgRNAs labelled as ‘GATA1 Tiling’ sgRNAs as well 

as ‘Protein Coding Gene Promoters’ sgRNAs were used. For MAGeCK and CRISPR-SURF, the 

pool at T0 (before) was used as the treatment pool and the pool at T14 (after) was used as the 

control pool in order to look for enrichment instead of depletion. RELICS and CRISPR-SURF 
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used the same positive control sgRNAs. RELICS priors were set to 15 for MYC and 5 for GATA1 

based on results from our previous analysis (Fiaux et al., 2020). For the validations K562 cells 

were transduced with dCas9-KRAB-GFP lentivirus (Addgene #71237) carrying different sgRNAs 

(Table 3.2). The percentage of GFP positive cells was recorded by FACS 3 days after transduction 

(D0) and again after an additional 6 (D6) and 14 (D14) days of culture. Two biological replicates 

(from separate cultures) were performed at each time point. 

 

Table 3.2. MYC CRISPRi validation sgRNAs 
gRNA target  sgRNA d0_r1 d0_r2 d6_r

1 
d6_r2 d14_r

1 
d14_r
2 

FS12 GATAAGAAAACGGAGCCATC 54.2 56.22 48.79 50.16 48.21 47.51 

FS12 GACGTGATCAGCAGCCATAG 25.64 25.31 18.46 19.28 18.23 18.81 

e2 (MYC) CCTGGAAAGACAACAGCTTG 50.86 49.65 39.14 40.48 34.17 33.44 

Neg. control GACAAGCTGCAAGGTGTAAA
T 

47.25 46.63 46.03 45.27 41.01 41.71 

dCas9:KRAB 
only 

 
26.72 27.79 27.95 27.15 25.44 26.14 

K562 
wildtype 

 
0.14 0.14 0.13 0.13 0.38 0.38 

Guide sequences are given for each target. The positive control targets a known functional sequence (e2) 

identified by Fulco et al. As negative controls a dCas9:KRAB only or an sgRNA targeting a non-functional 

safe harbor region on chromosome 8 were used. 

 

3.3.3 Tiling screens by Gasperini et al.  

Gasperini et al. performed 2 screens on the HPRT1 locus in HAP-1 cells. In addition to a 

dual-guide screen they also performed a sgRNA screen, tiling single guides along the same locus. 

Both screens were selection screens with two replicates, each resulting in a pool before and after 

selection. We removed guides according to their filtering criteria and subsequently used 

GuideScan (Perez et al., 2017) to remove additional guide (see below). For RELICS’ FS0 and 

CRISPR-SURF positive control all HPRT1 exon overlapping guides were used. Additionally, for 

RELICS we used a prior of 2 for both data sets as no functional sequence were discovered in the 

original study. 
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We filtered all guides from both the CRISPRi and CRISPRa as well as the Gasperini 

experimental screens using GuideScan. All possible guides for the regions targeted in each screen 

were obtained from the online version of the GuideScan tool (http://www.guidescan.com/, used 

05/08/2020). GuideScan eliminates all guides with either a perfect match or a 1bp mismatch at any 

other site in the genome. All remaining guides receive a specificity score. We used the specificity 

score cutoff of 0.2 recommended by Tycko et al. (Tycko et al., 2019). All remaining guide 

sequences were then matched to the guide sequences from the studies described above. Filtering 

sgRNAs with GuideScan reduced the total number of guides in each study substantially (Table 

3.3). For the HPRT1 dual-guide screen we removed guide pairs where at least one of the guides 

had a specificity score below 0.2.   

Table 3.3. GuideScan filtering 

Data set Initial nr. Guides Final nr. Guides 

CD69 10650 3025 

IL2RA 19751 7869 

GATA1 6034 988 

MYC 73241 10718 

HPRT1 single-guide 26324 6438 

HPRT1 dual-guide 11365 5969 

Number of sgRNAs present in each data set before and after filtering with GuideScan. 

 

3.3.4 Tiling deletion screen by Diao et al. 

Diao et al. 2017 performed a tiling deletion screen on the OCT4 locus in H1-hESC. They 

flow-sorted cells from input pools (Ctrl1, Ctrl2) into pools of high and low (Cis1-5) expression. 

The published putative functional sequences were identified by using a modified version of 

MAGeCK. We have downloaded their data from their supplementary section and used the set of 

guides which passed their filtering criteria. For RELICS’ FS0 and CRISPR-SURF positive control 

all OCT4 overlapping guide-pairs were used. We used the same pools they did for their study 

http://www.guidescan.com/
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(Cis1-5, Ctrl1-2). However, because it was not clear which pools were from the same replicate we 

analyzed them all together with RELICS and specified a prior with 45 expected functional 

sequence (they found 45 in their study). For MAGeCK we used the 5 low pools and the 2 input 

pools and for CRISPR-SURF we used both input pools and Cis2 and Cis3. 

 

All screens above were analyzed with MAGeCK and CRISPR-SURF as described in 

chapter 2. All default settings were used for RELICS with the addition of also using guide 

specificity information as provided by GuideScan for MYC, GATA1, CD69, IL2RA and HPRT1. 

Because MAUDE also requires the proportion of cells sorted into each pool it was not possible to 

run it for any of the data sets except for the CD69 data for which they reported estimates of the 

CD69 sorting proportions.  

 

3.3.5 Tiling deletion screen for GATA3 

We performed a tiling deletion screen to identify functional sequences regulating GATA3 

expression. The guides were selected for a Hsu score above 75 and were obtained with an in house 

script. Guides were paired such that the average deletion size was ~1k and the step size at ~65 bp. 

As was described previously (Gioia et al., 2018), Jurkat cells contain various chromosomal 

rearrangements. We removed guide-pairs that were located in regions containing homozygous 

deletions, translocation, inversions, long deletions, long insertions, short deletions and short 

insertions. This resulted in 13,253 guides, targeting a 2MB region around GATA3 with a median 

step size of ~100bp (Fig. 3.1). Following the experimental procedure from Diao et al. 2017 we 

generated a total of 4 replicates out of which two were flow-sorted into high, medium and low 



 
 

58 

GATA3 expression pools (replicates 1 and 2) and the other two into high-high, high, high-low, 

medium-high, medium, medium-low and low GATA3 expression pools (replicates 3 and 4).  

 

 

 

Figure 3.1. GATA3 tiling deletion experimental design 
A 2 MB region around the GATA3 locus was tiled with 13,253 guides, deleting ~1kb per pair with a step 

size of ~100 bp. A lentiviral library was used to transduce the guides at a multiplicity of infection (MOI) of 

0.3 into Jurkat cells. The input pool was flow-sorted into different pools of based on GATA3 expression. 

 

For RELICS’ FS0 we used all guide-pairs overlapping GATA3 exons and set the prior to 

45 as we expected a similar number of functional sequences as was reported by Diao et al. since 

we were also targeting a 2MB region. 

We also obtained summary statistics from an allergic diseases and asthma cross-trait meta-

analysis (Z. Zhu et al., 2018), obtained at 

(http://lianglab.rc.fas.harvard.edu/AsthmaAllergyHeritability/). Fine mapping to identify putative 

causal variants was done with SuSiE (G. Wang et al., 2020). 

Hi-C data was obtained from (Lucic et al., 2019). 

 

3.3.6 Epigenetic data 

Jurkat data. Jurkat H3K27ac data from Mansour et al. (Mansour et al., 2014) was 

downloaded from GEO (GSM1296384). The reads were aligned with BWA-MEM (H. Li, 2013) 

http://lianglab.rc.fas.harvard.edu/AsthmaAllergyHeritability/
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using default parameters and filtered for duplicates and low mapping quality (MAPQ < 30) using 

samtools (H. Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, & Durbin, 2009). 

The reads were then converted to reads per kilobase per million in 200bp bins using deepTools2 

(Ramírez et al., 2016). ENCODE H3K27ac ChIP-seq data for the K562 cell line was downloaded 

in bedgraph format from the UCSC genome browser. H3K27ac peaks were called with macs2 

using the ‘bdgpekcall’ function: macs2 bdgpeakcall -i input.bedGraph -c 2 -l 245 -g 100 

-o output_peaks.bed. H3K4me3 peaks were downloaded from ENCODE (ENCFF400IIQ). 

DNase hypersensitive sites were also downloaded from ENCODE (NCFF688ZSR and 

ENCFF304GVP). We used bedtools to intersect the overlapping peaks: bedtools intersect -a 

dhs.el1 – b dhs.repl2 -wa 

K562 data. We downloaded peak calls for H3K27ac (ENCFF044JNJ), H3K4me1 

(ENCFF183UQD) and H3K4me3 (ENCFF737AMS) from ENCODE (Sloan et al., 2016) 

(https://www.encodeproject.org/).  

HAP-1 data. We downloaded peak calls for H3K27ac (ENCFF646CAB), H3K4me1 

(ENCFF049JIN) and H3K4me3 (ENCFF962XKU) from ENCODE. 

H1-ESC data. We downloaded peak calls for H3K27ac (ENCFF045CUG), H3K4me1 

(ENCFF429INQ) and H3K4me3 (ENCFF277AOQ) from ENCODE. 

Sequence conservation. The sequence conservation was obtained from 46-way phastCons 

tracks from the UCSC genome browser 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons46way/vertebrate/). The files were 

converted to bedgraph format for analysis purposes. 

OCT4 and GATA3 permutation tests. To perform the permutation tests we binned the 

interrogated region into 100bp bins. For each permutation we moved the last 100 bins to the front 
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to preserve the feature structure of the genome. For the observed enrichment of in conserved 

sequences we computed the median conservation score of all base pairs per bin. For promoter, 

H3K27ac, H3K4me1 and H3K4me3 we computed whether there was an overlap. 
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3.4 Results 

We ran RELICS, CRISPR-SURF, MAGeCK and MAUDE on the data from the screen for 

CD69. RELICS identified 𝐾 = 11 functional sequences for CD69 (Fig. 3.2). In contrast, 

MAGeCK predicted a large number (𝐾 = 23) of significant regions (FDR = 5%) while CRISPR-

SURF predicted multiple large functional sequences at and downstream of the CD69 promoter. 

MAUDE identified similar regions to RELICS with the addition of several regions between FS11 

and FS2 which was not reported by any of the other methods (Fig. 3.2b). 
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Figure 3.2. CD69 screen analysis 
Analysis of a published CRISPR activation (CRISPRa) screen for CD69 expression in Jurkat T cells. (a) 

RELICS detects 11 functional sequences (FS) of which we show the first 5, labeled FS1-FS5. FS0 is a 

known positive control sequence (the CD69 promoter) provided as input to RELICS and CRISPR-SURF. 

(b) Analysis of the CD69 screen by RELICS, CRISPR-SURF, MAGeCK, MAUDE and log2 fold change 

of CD69 expression. The RELICS credible set posterior probabilities for each functional sequence are 

collapsed into a single track (RELICS (CS-PP)). An H3K27ac ChIP-seq track for Jurkat cells is included 

(H3K27ac (RPKM)). (c) Zoom in of a 20kb region (indicated by dashed box in (a) and (b)). Experimentally 

validated regions are indicated by colored bars. (d) Experimental validation results. Lentiviruses carrying 

sgRNAs targeting different sites were transduced into Jurkat cells expressing dCas9:VP64 and CD69 

expression was measured by flow cytometry using PE-conjugated anti-human CD69 antibody. The results 

from each experiment are overlaid atop those from a non-targeting negative control sgRNA (blue). sgRNAs 

were chosen for their high specificity and high predicted efficiency (relative to all possible sgRNAs in the 

target site region) and in some cases are adjacent to the predicted functional sequence rather than within 

the FS. 

 

To test a subset of the CD69 functional sequence predictions, we designed sgRNAs to 

target the putative functional sequences, cloned the sgRNAs into lentiviral vectors, and transduced 

them into Jurkat T cells expressing dCas9:VP64. We used a non-targeting sgRNA as a negative 

control and a sgRNA targeting a site near the CD69 TSS as a positive control (Fig. 3.2c,d). The 

region including FS1 was previously reported to activate CD69 expression ;we confirmed that 
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targeting this region with CRISPRa increased the number of CD69 expressing cells. Similarly, we 

validated that FS3 also increases CD69 expression. All computational methods applied to this 

dataset detected a signal at FS2; however, we were unable to confirm that targeting this region 

affects CD69 expression.  

 

Figure 3.3. CD69 screen analysis 
Analysis of a published CRISPRa screen for CD69 expression in Jurkat T cells. (a) Analysis of the CD69 

screen by RELICS, CRISPR-SURF, MAGeCK, MAUDE and log2 fold change. An H3K27ac ChIP-seq 

track for Jurkat cells is included (H3K27ac (RPKM)). (b) Experimental validation results. Lentiviruses 

carrying sgRNAs targeting different sites were transduced into Jurkat cells expressing dCas9:VP64, and 

CD69 expression was measured by flow cytometry using PE-conjugated anti-human CD69 antibody. The 

results from each experiment are overlaid atop those from a non-targeting negative control sgRNA (blue). 

sgRNAs were chosen for their high specificity and high predicted efficiency (relative to all possible 

sgRNAs in the target site region) and in some cases are adjacent to the predicted functional sequence rather 

than within the FS. 
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Finally, targeting a “negative sequence” that was not predicted by RELICS but is located 

on the edge of a large significant putative functional sequence reported by CRISPR-SURF had no 

effect on CD69 expression. These results confirm that the predictions made by RELICS are 

accurate. Notably, the output from RELICS is easier to interpret compared to the output of other 

methods because RELICS provides ranked, cleanly-delineated predictions for each functional 

sequence (Fig. 3.3a). 

Table 3.4. CD69 CRISPRa validation sgRNAs 

Target gene region gRNA hg19 coordinate 

(chr12) 

CD69_tss_sg1 TSS CAATGTATAGTGTGTTGTTG 9913617-9913636 

CD69_tss_sg2 TSS TCAAGCAAGTAGGCGGCAAG 9913557 -9913576 

CD69_FS1_sg2 FS1 AGGTAACCATGAGTAAACGG 9917833-9917852 

CD69_TNC_sg1 ‘Neg. Target’ CCATTTCCCTCCACAAGCCC 9919830-9919849 

CD69_FS3_sg1 FS3 GCATAGAATTGATATCACCA 9925936-9925955  

CD69_FS3_sg2 FS3 GGATTCGTCTTCTGAGTTAC 9925975-9925994  

CD69_FS2_sg1 FS2 TATTCCTGCTGTATAACAGA 9950460-9950479  

CD69_FS2_sg2 FS2 GTTAAATAATAGAGGGCACA  9950613-9950632 

NTC 
 

CTGAAAAAGGAAGGAGTTGA 

TSS sgRNAs target the transcription start sites of CD69. functional sequence and ‘Neg. Target’ sgRNAs 

correspond to labels in Fig. 4d. NTC is a non-targeting control sgRNA. 

 

 

RELICS identified 17 functional sequences for IL2RA, of which all are located within or 

very close to the six regions identified in the original study (Fig 3.4). Since RELICS predictions 

are higher resolution than other methods, the multiple smaller regions predicted by RELICS may 

reflect the true presence of multiple functional sequences. Alternatively, some large functional 

sequences may be mistakenly split into smaller sequences by RELICS, particularly if some of the 

sgRNAs targeting the middle of the sequence have very low efficiency. 
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Figure 3.4. IL2RA screen analysis 
Analysis of a CRISPRa screen for IL2RA expression by Simeonov et al. 2017. Output of RELICS and other 

analysis methods. Each functional sequence predicted by RELICS is assigned a different color and the 

labels are ordered by genomic position.  

 

 

Next, we applied RELICS to a CRISPRi proliferation screen surrounding the MYC locus 

in K562 cells (Fulco et al., 2016) (Fig. 3.5) and discovered 16 functional sequences. RELICS 

detected all of the previously reported signals but, as with IL2RA, split some of them into smaller 

putative functional sequences. Interestingly, RELICS also identified three regions that have not 

been previously reported and were undetected by both CRISPR-SURF and MAGeCK (FS7, FS11, 

FS13). To test whether these sequences are functional, we targeted FS13 with CRISPRi for 

validation. As a positive control we targeted a previously-detected functional sequence reported 

by Fulco et al. (referred to as e2). For negative controls, we used dCas9:KRAB alone or 

dCas9:KRAB with an sgRNA targeting a safe harbor sequence on chromosome 8 with no known 

function. Of the two guides we used to target FS13, one showed a substantial decrease in 

proliferation (specificity of 0.94) while the other one showed only a small decrease in proliferation 

(specificity of 0.21), suggesting that the latter guide might not have worked properly (Fig. 3.5b). 
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While additional validations are needed for the other functional sequences discovered by CRISPR, 

these results do confirm that RELICS has discovered novel functional sequences missed by other 

methods. 
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Figure 3.5. MYC and GATA1 screen analysis 
Analysis of a MYC CRISPRi cellular proliferation screen by Fulco et al. 2016. (a) Output of RELICS and 

other analysis methods. Each functional sequence predicted by RELICS is assigned a different color and 

the labels are ordered by genomic position. (b) Experimental validations. Each validation experiment is a 

cellular proliferation assay in which the percent of GFP-positive cells (i.e. cells that received the sgRNA) 

are measured at day 0, day 6 and day 14. As negative controls we used dCas9:KRAB alone (no sgRNA) as 

well as sgRNAs targeting a ‘safe harbor’ non-functional region on chromosome 8. As positive controls we 

used sgRNAs targeting a known regulatory region (e2, identified by Fulco et al., corresponding to FS2 and 

FS3). Each functional sequence was targeted with either one, two, or three different sgRNAs with two 

replicates each. sgRNAs that resulted in a significant reduction in % GFP compared to negative controls 

(dCas9 only, Neg. Ctrl.) at day 14 are denoted with an asterisk (Student’s one-sided t-test, p < 0.05). (c) 

Results from RELICS and other analysis methods. RELICS detects five functional sequences (FS1-5). FS1 

and FS2 have previously been validated; FS3, FS4 and FS5 fall within GATA1. (d) Results from validation 

experiments (2 replicates) using sgRNAs targeting sites indicated in panel (c). Each validation experiment 

is a cellular proliferation assay in which the percent of GFP-positive cells are measured at day 0, day 6 and 

day 14. While targeting the GATA1 promoter greatly reduces proliferation, targeting the GLOD5 region 

does not change proliferation compared to a negative control sgRNA, which targets a non-functional ‘safe 

harbor’ region on chromosome 8. 
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The same study (Fulco et al., 2016) included a CRISPRi proliferation screen interrogating 

the region around GATA1. We applied RELICS to this dataset which predicted five functional 

sequences, two of which (FS1 and FS2) have been previously validated, and three of which fall  

within GATA1 (FS3, FS4, FS5) (Fig. 3.5c). The original study also predicted a functional region 

near GLOD5. However, neither RELICS nor the other two analysis methods identified a functional 

sequence at this location. This suggests that the region near GLOD5 may have been a false positive 

detected in the original study. To test this hypothesis, we used CRISPRi to target the GLOD5 

region, the GATA1 promoter (positive control), and a sequence on chromosome 8 (negative 

control). While the sgRNAs targeting the GATA1 promoter decreased cellular proliferation as 

expected, targeting of the GLOD5 region did not affect proliferation relative to the negative control 

(Fig. 3.5d). Thus, this region is unlikely to be a functional sequence and it is appropriately not 

reported by RELICS.  
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Table 3.5. GATA1 CRISPRi validation sgRNAs 
% of GFP 

cells 

D0 D0 D6 D6 D14 D14 

NS 21.98 24.21 20.32 20.21 17.26 16.93 

GATA1-tss 55.08 54.74 12.78 12.91 3.02 2.8 

Glod5-1 20.88 19.06 18.18 19.19 15.86 14.76 

Glod5-2 31.41 31.87 34.71 35.03 32.88 33.03  

hg38 chr start end gRNA sequence 

GATA1_TSS chrX 48786605 48786625 GGTTCGGCCGCCTTGGGGATG 

Glod5-1 chrX 48761964 48761983 GCTTGTCTCTGAAAGAGAAA 

Glod5-2 chrX 48762201 48762220 GCTTTAGGAGAGGAATTCAG 

NS chr8 128176215 128176234 GACAAGCTGCAAGGTGTAAAT  

hg19 chr start end gRNA sequence 

GATA1_TSS chrX 48645013 48645033 GGTTCGGCCGCCTTGGGGATG 

Glod5-1 chrX 48620368 48620387 GCTTGTCTCTGAAAGAGAAA 

Glod5-2 chrX 48620605 48620624 GCTTTAGGAGAGGAATTCAG 

NS chr8 129188461 129188480 GACAAGCTGCAAGGTGTAAAT 

Coordinates are given in both hg38 and hg19 genome assemblies. NS is a negative control sgRNA targeting 

a safe harbor region on chromosome 8. GATA1_TSS sgRNA targets the transcription start site of GATA1. 

The Glod5-1 / Glod5-2 sgRNAs target the putative functional sequence near GLOD5 identified by Fulco et 

al. 2016. 

 

We proceeded to analyze the two currently publicly available dual guide screens. The first 

screen by Gasperini et al. aimed to identify functional sequences around the HPRT1 locus using a 

selection screen with two replicates. In addition to a dual-guide screen, they also performed a 

sgRNA screen tiling single guides along the same locus. In their study they observed that all 

HPRT1 exons contributed to survival, but no functional sequences were found. We analyzed the 

same data and similarly observed that the majority of the signal was around the exons (Fig. 3.6, 

3.7). However, RELICS did identify three functional sequence in the dual-guide screen that were 

located in the intron between exon 1 and exon, suggesting that this region is important for HPRT1 

expression. Because the intronic signal was only observed in the dual-guide screen, it implies that 

the function of this region can only be repressed by larger deletions and is robust against smaller 

indels. However, further studies are necessary to determine the role of the region detected. 
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Figure 3.6. HPRT1 single-guide screen analysis 
Analysis of a single guide screen for HPRT1 in HAP-1 cells by RELICS, CRISPR-SURF, MAGeCK and 

log2 fold change. All methods only identified the exons and areas immediately adjacent to the exons. 

 

 

Figure 3.7. HPRT1 dual-guide screen analysis 
Analysis of a tiling deletion screen for HPRT1 in HAP-1 cells by RELICS, CRISPR-SURF, MAGeCK and 

log2 fold change. Shown below are the ENCODE narrow peaks for H3K27ac, H3K4me1 and H3K4me3 as 

well as the 46-way phastCons conservation track. RELICS identifies 3 functional sequence all between 

exon 1 and exon 2. 

 

The second dual-guide screen we analyzed used flow sorting to bin cells into pools of high 

and low expression to identify OCT4-specific functional sequences (Diao et al., 2017). The initial 

study included 45 reported putative elements (RPEs) (one overlapping with FS0). Diao et al. 2017 



 
 

72 

validated six of these, as well as a negative target. When analyzing their data with RELICS we 

discovered 51 FS, including five of the six previously validated sequences (Fig. 3.8a). The sixth 

validated sequence was located in a non-coding region next to FS36 which overlapped HSPA1B, 

and it is possible that that they are actually the same regulatory element. RELICS also did not label 

the negative-control region as significant. CRISPR-SURF only detected one region as significant, 

which overlaps both FS1 and an RPE. MAGeCK did not identify any regions passing a threshold 

of FDR < 0.05 apart from OCT4. Almost all of the 51 functional sequence detected overlapped a 

promoter region or an ENCODE peak for either H3K27ac, H3K4me1 or H3K4me3 (Fig. 3.8b). 

Using permutation testing, we confirmed that the 51 functional sequence identified by RELICS 

were enriched for overlapping promoters, all three epigenetic marks and high sequence 

conservation scores (Fig. 3.8c). Interestingly, we observed that the 18 RELICS-specific functional 

sequence were especially enriched for high sequence conservation as well as H3K27ac and 

H3K4me3, while this is not the case for RPE (Fig. 3.8d). Given the importance of these marks in 

the regulatory landscape, it is very likely that RELICS managed to detect additional functional 

sequences for OCT4. 
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Figure 3.8. OCT4 dual-guide screen analysis 
Analysis of a dual guide screen for OCT4 in H1-ESC by RELICS, CRISPR-SURF, MAGeCK and log2 

fold change. (a) Results for each method. Highlighted in yellow are the 6 validated sequences. Negative 

targets are highlighted in grey (b) Heatmap of overlaps between functional sequences (FSs) identified by 

RELICS, the 45 RPEs reported by Diao et al. 2017, promoters of other genes, H3K27ac, H3K4me1 and 

H3K4me3. (c) Permutations for determining enrichment of the 51 functional sequence identified by 

RELICS. 100 permutation were made for each category. Conservation scores for each functional sequence 

were calculated from the average of the median 46-way phastCons. For all other features we report the 

percent of overlapping FSs. Vertical red lines indicate observed values. (d) Log2 enrichment of each subset 

of putative elements. For each subset, 100 permutations were performed to calculate the log2 enrichment 

relative to the observed value.  

 

Lastly, we analyzed our in-house tiling deletion screen for GATA3 using all pools of cells 

available. Log2 fold change between the high and low expression pools showed a slight enrichment 

of guides overlapping GATA3 exons compared to background (Fig. 3.9a), indicating that using 
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GATA3 exons for FS0 is appropriate. Bootstrap sampling the data for FS0 confirmed that the 

RELICS estimates where withing the expected range. We compared RELICS hyperparameter 

estimates (black dots, Fig. 3.9b) against estimates from the bootstrap samples and observed that 

both the low and the medium-low pools were enriched for guides reducing GATA3 expression. 

This suggests that increasing the number of pools provides additional information which can be 

leveraged by RELICS to produce higher resolution findings.  
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Figure 3.9. GATA3 data quality 
(a) Log2 fold change of the number of guides overlapping the GATA3 exons and all other guides 

(background) between the of low and high expression pools. (b) Log2 ratio of RELICS hyperparameter 

estimates for functional sequence vs. background. Ratio for guides overlapping GATA3 exons are shown 

with black dots; 95% bootstrap confidence interval from 100 bootstrap iterations shown with bars.  

 

RELICS discovered 48 FS, most of which were downstream of GATA3 with a majority of 

them landing within the topological associated domain (TAD) of GATA3 (Fig. 3.10).  
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Figure 3.10. GATA3 dual-guide screen analysis 
(a) GATA3 locus targeted by tiling deletion screen. Sliding window average of the log2 fold change across 

replicates gives an overview of the data. RELICS functional sequence locations are plotted over the log-

likelihood ratio of functional sequence vs. background (i.e. likelihood that sequence is functional). The 

canonical enhancer mark H3K27ac is shown above the Hi-C map, which shows genome interactions. 

Lighter colors indicate a higher number of interactions. (b) Targeting the GATA3 locus for validation 

decreases GATA3 expression. Similar effects are seen when targeting FS28, which resembles a canonical 

enhancer. Surprisingly, targeting both unmarked regions FS10 and FS24 for validations also resulted in 

decreased GATA3 expression. 
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While some functional sequence resembled canonical enhancers with high H3K27ac 

signal, others landed in regions completely devoid of signals characteristic of enhancers and 

outside of the GATA3 TAD. Performing a permutation analysis did not show any enrichment in 

high phastCons conservation scores, open chromatin or H3K27ac (Fig. 3.11).  

 

Figure 3.11. GATA3 functional sequence enrichment 
Log2 enrichment of functional sequences in high phastCons scores (Conservation), open chromatin 

delineated by DNase hypersensitive peaks, and H3K27ac peaks. For each category, 100 permutations were 

performed to calculate the log2 enrichment relative to the observed value. 

 

We followed up on several regions identified by RELICS, including one resembling 

canonical enhancers (FS28) and two that were unmarked and located outside of the GATA3 TAD 

(FS10, FS24). In all three cases, we confirmed that they have a significantly reduce GATA3 

expression, thereby confirming the RELICS findings. 

Furthermore, we discovered that FS10 also contained two out of three putative causal SNPs 

from a genome wide association study (GWAS) for allergic diseases and asthma (Z. Zhu et al., 

2018) (Fig. 3.12), which informed our hypothesis that FS10 regulates GATA3 and disruption of 

the sequence can lead to immune disorders via reduced GATA3 expression. 
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Figure 3.12. GATA3 FS10 overlaps putative causal variants for allergic diseases 
(a) Allergic diseases GWAS by Zhu et al. The GATA3 locus is highlighted in yellow. (b) Tiled deletion 

screen for GATA3 contains two risk regions. (c) Fine mapping the 200kb risk loci with SuSiE reveals 20 

potentially causal variants for risk region 1 and 3 potentially causal variants for risk region 2 (cyan circles) 

(PIP = Posterior Inclusion Probability computed by SuSiE). (d) Two putative causal variants from risk 

region 1 overlap FS10.  
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3.5 Discussion 

In chapter 2 I demonstrated that  RELICS outperformed all other comparable method when 

used to analyze simulated CRISPR screen data. Here I have shown that RELICS also outperforms 

other methods in the analysis of experimental data. Across the publicly available data sets, 

RELICS identified all functional sequences reported in the original studies with the exception of 

one RPE for OCT4 reported by Diao et al. 2017. However, for this case it is likely that RELICS 

picked up the same signal but at a different location. Furthermore, RELICS correctly did not report 

two experimentally validated negative sequences as well as a negative region tested in the OCT4 

screen. RELICS also discovered additional putative functional sequences that we confirmed with 

experimental validations but which were not detected by any of the other methods. Lastly, RELICS 

identified 18 new functional sequences in the OCT4 screen which were enriched for high sequence 

conservation scores and H3K27ac, indicating that these sequences may be regulators of OCT4. 

When analyzing our in house tiling deletion screen for GATA3, we detected many functional 

sequences that did not resemble canonical functional sequences. However, our validations 

demonstrate that both marked and unmarked regions affect GATA3 expression. Interestingly, we 

found that FS10 overlapped 2 out of 3 SNPs credible risk SNPs for asthma and allergic diseases.  

This suggests that variants in FS10 repress GATA3 expression and increase the risk for immune-

related diseases. None of the functional sequences identified by RELICS for a second region in 

the GATA3 locus overlapped any putative causal variants. This could be due to false negatives 

which our tiling deletion screen did not detect. However, it is also possible that the variants in this 

region do not act on allergic diseases via the expression of GATA3. This would be consistent with 

studies reporting that functional sequences do not always regulate the closest gene (Visel et al., 

2009). 
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In summary, RELICS, discovers both previously reported functional sequences as well as 

novel ones. Thus, RELICS is an extremely useful tool for mapping the regulatory landscape using 

CRISPR screens. 

 

3.6 Data Availability 

 All results above can be found at https://figshare.com/projects/RELICS_2_data/74376 

and https://figshare.com/projects/RELICS_data/98219. 
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