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Abstract

Inferring species distributions from semi-structured biodiversity observations

by

Benjamin R Goldstein

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Professor Perry de Valpine, Chair

Estimating the spatiotemporal distributions of species and understanding how variation in
those distributions is explained by the environment are central goals in ecology. Observa-
tions of animals generated by participatory science (or “citizen science”) are an increasingly
important resource for ecologists interested in estimating species distributions because they
are high-volume and high-resolution. However, statistical inference with these data is more
challenging than inference with data collected under standardized sampling, because par-
ticipatory science observations contain substantial unmeasured variation in sampling effort
and observer behavior. Ecologists need tools and methodological guidance that support
the estimation of computationally efficient, flexible statistical models useful for robust in-
ference with participatory science data. In this dissertation, I advance the field of species
distribution modeling with participatory science data via contributions across three chap-
ters. First, I present a new software tool, nimbleEcology, that supports the efficient and
flexible estimation of hierarchical ecological models, alongside a brief review of the use of
such models in ecology and three worked examples of model estimation. Second, I under-
take a comparison of two modeling approaches useful for estimating relative abundance from
participatory science data, making practical recommendations for model selection. Finally, I
apply these methodological developments to data obtained from an important participatory
science dataset, eBird, to investigate how common birds respond to drought in California’s
Central Valley ecoregion. This project demonstrates the application of modeling principles
to an important ecological case study and produces new evidence to characterize critical
dimensions of birds’ drought responses.
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Chapter 1

Introduction

Estimating how wildlife species are distributed in space and time and explaining those dis-
tributions with environmental features are central goals of ecology [57, 42]. To achieve these
goals, ecologists use quantitative models to analyze observational data, linking spatiotem-
porally tagged detections or counts of species with covariate data. As sampling and com-
putational technology improve, the profile of the typical observational dataset is changing,
complicating the task of species distribution modeling [12]. Rather than intensive in-person
trapping or observational surveys, ecologists often use observations made by camera traps
[119], passive acoustic monitors [48], and citizen science programs (“citizen science data” or
“participatory science data”) [65, 127]. These new approaches to field sampling generate data
at higher volume and lower cost compared to classical observational or trapping surveys.

Participatory science data in particular have seen rapid growth in both data volume
and scientific interest in recent years. Citizen science data are extremely high-volume and
generate observations of species with unprecedented spatiotemporal resolution and coverage.
However, citizen science data contain extra variation due to differences in observer skill and
preference, non-standardized opportunistic sampling methodology, and false positive and
false negative detection observations [69]. Participatory science data most useful for scientific
analysis are “semi-structured,” meaning that the data generating process does not follow a
fixed sampling protocol but that some information on the sampling process is collected. For
analyzing these data, ecologists need robust but highly flexible models that can accommodate
variation in semi-structured data generation.

Recent advances in hierarchical modeling, and in software for model estimation, have
set the stage for robust statistical inference of species distributions based on participatory
science data. Broadly, ecologists have adopted hierarchical models as their main tool for
accounting for multiple sources of heterogeneity in data while inferring properties of natural
systems. One core statistical challenge—that of accounting for varying imperfect detection
in the observation process—is of interest in many species distribution modeling contexts, not
just in dealing with participatory science. There exist well-studied modeling frameworks to
address this issue [114, 87]. Ecologists can accommodate the extra variation that arises from
opportunistic sampling common to participatory science data with careful data filtering and



CHAPTER 1. INTRODUCTION 2

appropriate statistical models [70]. Statisticians have also demonstrated the importance of
accounting for observer-to-observer variation, which can be accomplished in several ways.
Accounting for various sources of nonindependence and overdispersion in participatory sci-
ence data is necessary to avoid the misattribution of variation when modeling these data [70].
Analyzing participatory science data often requires a bespoke approach where modeling pri-
orities, assumptions, and interpretations are evaluated on a case-by-case basis, so maximally
flexible modeling software that supports the estimation of arbitrary models is crucial for the
uptake of citizen science data in ecology.

The primary goal of this dissertation is to advance the field of species distribution mod-
eling with semi-structured data. I aim to address the need in ecology for clearer modeling
guidance and more effective software for modeling species distributions with semi-structured
data. This set of contributions will help ecologists do species distribution modeling with
participatory science data.

Throughout the dissertation, I consider the eBird dataset as a particularly interesting case
study for species distribution modeling with semi-structured data. Hosted by the Cornell
Lab of Ornithology, eBird is an online platform that collects observations of birds made by
the public [124, 125]. eBird observations are opportunistic, meaning that observers collect
data whenever and wherever they choose, but they are reported with a number of useful
metadata, including the time and location of each survey and several indices of sampling
effort. Additionally, nearly 90% of eBird sampling events are “complete checklists,” during
which the observer reports every species they identify. This means that any unreported
species on a checklist is implicitly associated with a zero count, which is critical for many
species distribution modeling approaches. The eBird dataset is also enormous, comprising
more than 1 billion observations of birds [5]. eBird data are often considered an exemplar
of participatory science data, and scientific interest in eBird data for use in distribution
modeling and monitoring of birds has grown in parallel with the size of the dataset (Figure
1.1). Due to the outstanding scientific need for robust quantitative tools for dealing with
these data, analysis of the eBird dataset is a core theme of this dissertation.

In Chapter 2, I present nimbleEcology, an R package meant to support the imple-
mentation of hierarchical ecological models in the NIMBLE hierarchical modeling software
system (R package nimble, [133]). nimbleEcology provides six major ecological model
constructions—hidden Markov and dynamic hidden Markov models, occupancy and dynamic
occupancy models, N-mixture models, and Cormack-Jolly-Seber mark-recapture models—as
marginalized probability distributions. The nimbleEcology package benefits ecologists es-
timating models by simplifying model specification, making possible maximum likelihood
estimation of a wider set of ecological models, and in some cases improving model estima-
tion efficiency. This chapter contains an introduction to hierarchical ecological models, an
explication of the concept of marginalization, a detailed report on nimbleEcology’s functions
and use, and three comprehensive worked examples using nimbleEcology to simulate and
analyze ecological data.

In Chapter 3, I focus on the task of relative abundance estimation from participatory
science data. Considering eBird data as an interesting case study, I investigate the relative
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Figure 1.1: Top panel: number of species observations submitted to eBird each year [5].
Bottom panel: number of peer-reviewed publications using eBird data each year [105].

utility of two major hierarchical model families—generalized linear mixed models (GLMMs)
[12] and N-mixture models [114]—for relative abundance estimation. Both N-mixture models
and GLMMs have the potential to estimate patterns in relative abundance, but each has
advantages and drawbacks. I give a conceptual comparison of these two models, unifying
them under a single perspective to better highlight their differences. Then, I compare their
relative performance across regional single-species subsets of the eBird dataset. I show that
N-mixture models tended to outperform GLMMs for relative abundance estimation, but that
the pattern in comparative performance is variable enough to recommend that ecologists
weigh both modeling approaches in many applications.

In Chapter 4, I build on methodological findings from previous chapters to analyze eBird
data and answer an outstanding ecological question. I ask whether eBird counts were system-
atically different between periods of severe drought and periods of non-drought, and whether
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species exhibit habitat-specific drought responses, taking advantage of eBird’s unmatched
volume and resolution to distinguish between drought responses across habitat types and
environmental mechanisms. To answer these questions, I develop a novel multi-model frame-
work that uses Bayesian counterfactual methodology to predict birds’ drought responses. I
show that changes in habitat associations, more than changes in overall abundance, defined
birds’ drought responses, with species shifting from natural to human-modified habitats dur-
ing drought. I also show that temperature and precipitation variables best explained birds’
drought responses. This chapter demonstrates the utility of eBird for answering important
ecological questions and produces new evidence to characterize critical dimensions of birds’
drought responses.

I conclude the dissertation with a brief reflection on outstanding challenges in species
distribution modeling with participatory science data.
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Chapter 2

Marginalizing hierarchical ecological
models in NIMBLE

2.1 Introduction
Many basic goals in ecological research, such as estimating population dynamics, modeling
distributions of wildlife populations in space, and characterizing the behavior of individual
organisms, share an underlying goal: to understand patterns in natural systems and pro-
cesses. To address each of these fundamental goals, ecologists have developed field methods
to collect data on a dimension of the ecological process of interest. For example, population
dynamics may be partially revealed using mark-recapture data of individual animals over
time; distributions may be inferred from presence-absence data generated by surveys of a
target organism across a landscape; and patterns in behavior can be inferred from location
data as an organism moves about its environment [84, 42, 94]. In each case, ecologists aim
to attribute variation in their data to a natural process of interest.

In practice, ecological data on natural systems contain variation arising from processes
other than the processes of interest. One reason is that ecological systems are by nature
difficult to observe. Organisms camouflage, avoid humans, and move around [76, 94]. Many
ecosystems are difficult to access, so sampling is often uneven. Ecological field surveys
require substantial person-hours or expensive equipment, so data sample sizes are often
bounded by cost, and data are often hierarchically grouped rather than fully independent [13].
Processes of interest are often impossible to observe directly even under ideal circumstances;
for example, complete censuses of populations are rarely feasible, so the true total abundance
of many populations is not directly observable. For these reasons, ecological data nearly
always contain multiple sources of variation.

To analyze data containing multiple sources of variation, ecologists often use hierarchical
statistical models. In a hierarchical model, variation in data arises from multiple probability
distributions that are conditionally linked [79, 42, 30]. Many hierarchical models in ecology
include discrete latent states, such as the true abundance of a species at a site or the unob-
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served behavioral state of an animal. Hierarchical models in ecology are often designed to
correspond to a data generating process, where latent states represent “true” discrete system
states arising from an ecological process of interest, and data are linked to latent states via
a probability distribution representing an imperfect observation process. This thinking is
helpful for understanding hierarchical ecological models, but models can be useful even if
their assumptions do not perfectly match the data-generating process.

Hierarchical models are useful for accommodating multiple sources of variation in data
but are challenging to estimate. Most ecologists using hierarchical models depend on dedi-
cated software. There are two main types of software that ecologists use to estimate their
models: (1) software written to estimate a predefined set of models, and (2) software that
gives the user tools to define and estimate arbitrary models.

The first type of statistical software for hierarchical model estimation provides the ecol-
ogist with a predefined set of models that can be fit to input data. Programs of this type
include the standalone PRESENCE and MARK software, as well as R packages such as
unmarked, momentuHMM, spOccupancy, and ubms [64, 82, 46, 93, 40, 77]. While a com-
prehensive overview of these programs is beyond the scope of this report, they together cover
a wide range of model constructions, including many variants of the occupancy model, hid-
den Markov models, mark-recapture models, and N-mixture abundance models. Software
programs that estimate predefined models are hugely popular in ecology. Because they cover
a finite set of model constructions, implementations in these software tend to be computa-
tionally tuned for efficiency. They are also easy to use, replicate, and teach to new users
because they require minimal understanding of model structure, code, and estimation meth-
ods. The main drawback of the predefined model paradigm in statistical software is that
the set of models supported by a given software package is fundamentally limited. While
most ecologists will never want to develop novel hierarchical models, a statistical software
program using predefined model-fitting methods may prohibit even small deviations from the
constructions provided, such as an alternative link function or the inclusion of an additive
random effect.

The second type of statistical software encompasses a suite of software tools useful for
estimating nearly arbitrary hierarchical models. These tools share a common workflow: first,
the user uses a special coding language to specify a model; then, the user is able to apply
one or more model estimation algorithms, such as Markov chain Monte Carlo (MCMC), to
the specified model to obtain parameter estimates. Popular software of this type include
the BUGS-family software (named for “Bayesian inference Using Gibbs Sampling,” the first
software project in this family), including WinBUGS, JAGS, and NIMBLE, which share
a design philosophy and model specification language but differ greatly in functionality
[133, 101]. Another general-model statistical software program is Stan [126]. This type
of software provides the user with a substantial amount of flexibility and control over model
specification. In the case of NIMBLE, the user has even greater control and can make
choices about details of the model estimation algorithm. However, because predefined models
are unavailable, these tools are more difficult to use and require a much greater level of
expertise and knowledge about the workings of a statistical model. Additionally, because
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they accommodate models of arbitrary complexity, these software tools tend to support
estimation methods that are more general but less computationally efficient.

Most statistical software in ecology uses one of two techniques to estimate hierarchical
models: maximum likelihood estimation (MLE) or Bayesian Markov chain Monte Carlo
(MCMC) estimation [102, 13, 79]. MLE refers to a class of algorithms for finding the point in
parameter space that maximizes the likelihood of the parameters given the observed data and
the model. MLE tends to be relatively efficient for simple models, and maximum likelihood
estimates of model parameters are easy to handle using basic frequentist statistics. However,
MLE requires calculating or approximating the likelihood, which is not always possible and
can be hard to generalize. For this reason, most statistical software that supports estimation
of predefined models uses MLE (with notable exceptions like ubms), while most flexible
software programs do not. MCMC estimation refers to a set of algorithms for drawing
samples approximating the joint posterior probability distribution of the parameters [16].
MCMC methods tend to be slower than MLE but accommodate a much greater range of
models without special implementation [141].

In this chapter, I present nimbleEcology, an R package designed to make it easier to
define and estimate common ecological models in the flexible statistical software NIMBLE.
The nimbleEcology package extends NIMBLE’s model specification language by providing a
suite of custom distributions representing six common hierarchical ecological models. These
distributions can be used in the NIMBLE environment to easily define models incorporating
hierarchical structure. nimbleEcology’s distributions are marginalized, meaning they elim-
inate the need to explicitly define or sample a latent state (see Section 2 for a discussion
of marginalization). This package is useful for ecologists for several reasons. First, nim-
bleEcology custom distributions are reliable and error-tested, which makes the model devel-
oper’s job simpler, bridging the gap between the predefined and highly customized modeling
paradigms. Second, marginalized distributions sometimes, though not always, lead to more
efficient model estimation in MCMC [103]. Third, by implementing marginalized distribu-
tions that eliminate the need for discrete latent states, these custom distributions enable
maximum likelihood estimation for NIMBLE models.

The goal of this chapter is to present the main features of the nimbleEcology package
and demonstrate its use. The chapter is organized as follows. First, I present the motivating
concept of “marginalization” in hierarchical models and discuss its use in nimbleEcology’s
implementation. I briefly discuss NIMBLE, highlighting how NIMBLE’s extensibility creates
a niche for helper software that bridges the gap between arbitrary and pre-written models. I
then discuss the structure and use of the nimbleEcology package and give a brief overview of
each of the six ecological model families represented in nimbleEcology. Finally, I present three
worked examples using nimbleEcology distributions in NIMBLE models to demonstrate (1)
maximum likelihood estimation with NIMBLE, (2) data simulation and MCMC estimation,
and (3) evaluating MCMC estimation efficiency.
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2.2 Marginalized probability distributions in NIMBLE
In this section, we present a brief conceptual overview of marginalization, discuss the poten-
tial benefits and drawbacks of marginalization in Bayesian model estimation, and describe
how nimbleEcology takes advantage of NIMBLE infrastructure to implement marginalized
distributions.

What is marginalization?

Consider a hierarchical ecological model with discrete latent states. The model can be written
generically as

X ∼ Px(x|z,θ)

Z ∼ Pz(z|θ)

(Θ ∼ Pθ(θ))

The probability density of a set of observations, x, is a function Px(·|z,θ) of a vector of
parameters, θ, and a set of latent states, z. The probability that the discrete latent states z
take a particular value is itself a function of that set of parameters, Pz(·|θ). In a Bayesian
framework, the vector θ also has a prior distribution Pθ(·).

To marginalize the model, the likelihood of the parameters given a set of observations
depending on shared latent states needs to be analytically calculated or approximated, sum-
ming or integrating over the latent state space [141, 130]. The likelihood is given by summing
over the product of the data and latent state probability densities for each possible value of
the set of latent states, as

L(θ|x) =
∑
z∈Z

{
Px(x|z, θ)Pz(z|θ)

}
where Z is the set of discrete values that z can have. This gives the likelihood of the
parameters solely determined by the data x. In MCMC estimation, marginalization is an
alternative to sampling the posterior distributions of the latent states.

We can illustrate marginalization more concretely using the single-species site occupancy
model (hereafter “occupancy model”). In the occupancy model, a series of visits to each
of several sites produces “detection histories,” vectors of detection and nondetection data
indicating whether a species of interest was observed on each visit. The site is assumed
to have a true occupancy status (either occupied or not) represented by a latent state in
the hierarchical formulation. Then, a detection of the species indicates that the site was
occupied, while a nondetection arises due to the site being unoccupied or as a result of
imperfect detection. The model for observations made at one site is given by

z|ψ ∼ Bernoulli(ψ)



CHAPTER 2. MARGINALIZING HIERARCHICAL ECOLOGICAL MODELS IN
NIMBLE 9

xj|z, p ∼ Bernoulli(zp) for j = 1...J

where xj = 1 if the species was observed on the jth replicate survey and xj = 0 if it was not;
ψ is the probability that the site is occupied; p is the probability that the species is detected
given that it is occupied; and z is a latent state describing whether or not the species is in
fact present.

For estimating the model with MCMC, one might typically define nodes representing the
latent occupancy state z to be sampled along with other parameters. This model could be
specified in NIMBLE code as

nimbleCode({
z ~ dbern(psi)
for (j in 1:J) {

x[j] ~ dbern(z * p)
}

# Priors
psi ~ dunif(0, 1)
p ~ dunif(0, 1)

})

where z is a latent state whose value (1 or 0) would be sampled.
To apply marginalization to this model, consider that for observation vector x, with

parameters θ = {ψ, p} and latent state z, the model likelihood for one site is given by

L(ψ, p|x) =
∑
z=Z

{
Px(x|z, p)× Pz(z|ψ)

}
Since z only takes values 0 and 1, we can analytically derive the likelihood of the occupancy
model by summing across the possible values of z, giving

L(ψ, p|x) = (1− ψ)
∏
j

{
10(xj)

}
+ ψ

∏
j

{
pxj(1− p)1−xj

}
where 10(x) = 1 if x = 0 and 10(x) = 0 otherwise. In plain language, the site is either
occupied and the data came from observations made at an occupied site (meaning any
nondetection arises from a failure to observe the species despite it being present), or the
data came from observations made at an unoccupied site (meaning all nondetections are
guaranteed and detections are impossible). By summing these two conditions, the latent state
z has been marginalized over and is no longer represented. This marginalized construction
can be written out explicitly in NIMBLE model code or more simply using a NIMBLE
custom distribution (see “NIMBLE custom functions”).
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Benefits and drawbacks of marginalization in model estimation

The most decisive benefit of a marginalized implementation of a hierarchical ecological model
is the possibility for maximum likelihood estimation. Finding the maximum likelihood re-
quires that the likelihood is calculated or approximated numerically, marginalized across all
latent states. The maximum likelihood estimate of a hierarchical model does not pertain
to specific values of latent states (which are not model parameters), but rather corresponds
to the most likely values of parameters considering the full distribution of possible latent
state values. Indeed, all domain-specific MLE software, such as unmarked, PRESENCE,
and momentuHMM, depend on marginalized implementations of model likelihoods [46, 64,
93].

For ecologists estimating Bayesian models, marginalization is not strictly necessary for
model estimation, but it can in some situations improve estimation efficiency. Bayesian
models tend to be relatively slow to estimate by MCMC [141], and improvements to mixing
efficiency are important for the feasibility of Bayesian model estimation. In MCMC estima-
tion, the general strategy is to iteratively draw samples that approximate the joint posterior
distribution of the parameters and latent states given the data. Estimation efficiency is
determined by two factors: the computational time per sample and the quality of mixing.
The former is defined as the amount of real time needed to draw a number of joint posterior
samples. The second factor, quality of mixing, describes the degree of independence between
sequential samples of the posterior. A good metric for determining quality of mixing is the
effective sample size (ESS), an estimate of the number of independent draws that would con-
tain the same amount of information as the (non-independent) MCMC samples [103]. Better
mixing produces more independent samples, so the effective sample size of a given number of
real samples increases as mixing quality improves. In a study of MCMC efficiency, Ponisio
et al. compared marginalized implementations to latent state formulations of a number of
realistic ecological models [103]. The authors found that marginalization had a strong effect
on sampling efficiency, but that the direction of its effect depended both on model type and
on the degree of hierarchy in the model.

A final benefit of marginalization is that marginalized BUGS code is simpler to write.
Predefined, marginalized probability distributions are easier to use than custom models with
explicitly coded latent states and leave less room for user error. Therefore the model specifi-
cation and debugging process becomes more efficient when using marginalized distributions
such as those provided by nimbleEcology.

Marginalizing over latent states in a Bayesian model has an important drawback: by
marginalizing latent states out of the model, ecologists lose the ability to monitor the pos-
terior distributions of the latent states. While latent states are not, strictly speaking, the
subject of model estimation, ecologists are sometimes interested in examining properties of
the posterior distributions of latent states or derived products of those latent states. For
example, in the hierarchical occupancy model, one might be interested not only in the aver-
age occupancy probability ψ, but in the fraction of sites that are truly occupied as predicted
by the model, so the posterior distribution of

∑
i zi might be of interest. It is possible to
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recover posterior distributions of latent states when using marginalization [141], but this
functionality is not yet supported by nimbleEcology without manual implementation.

NIMBLE custom functions

nimbleEcology provides custom distributions specifically for use with NIMBLE models. Fun-
damentally, nimbleEcology’s distributions are probability mass functions for marginalized
hierarchical models. They can be used in the same way as basic probability density func-
tions like dnorm to declare that data follow one of a number of common hierarchical model
constructions.

NIMBLE, which stands for “Numerical Inference for statistical Models using Bayesian and
Likelihood Estimation”, is a system for writing hierarchical statistical models and algorithms
in the R interface [133]. NIMBLE belongs to the family of software tools built to specify
and estimate arbitrary hierarchical models. NIMBLE uses a declarative BUGS-like language
along with a compiler to specify and build graphical models, and provides a variety of
additional tools for model estimation and evaluation, including but not limited to a set of
functions for an MCMC model estimation workflow.

NIMBLE is extensible, meaning that users can write customized arbitrary functions, such
as probability distributions, to be used in the BUGS model specification language. Custom
NIMBLE functions are defined using the function nimbleFunction in the NIMBLE pack-
age. There are several ways to set up a NIMBLE custom function, but for the purposes of a
custom probability distribution, functions are defined using the following syntax. nimble-
Function takes the argument run, which is a function following R syntax (see the NIMBLE
User Manual for an overview of supported functionality in compilable nimbleFunctions). The
following is an example of a custom density distribution for the Bernoulli distribution:

dbernCustom <- nimbleFunction(
run = function(x = double(0),

p = double(0),
log = integer(0, default = 0)) {

returnType(double(0))

prob <- x * p + (1-x) * (1-p)

if (log) return(log(prob))
return(prob)

}
)
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An R function is provided to the run argument of nimbleFunction. The arguments to
that R function have default values that define the typing of each parameter. NIMBLE uses
static typing, which means that the types and dimensions of all arguments must be specified
in advance in this way. The first argument to a density function is always x, which takes the
datum or data for which the probability will be returned; in this case, x can take values of 1
or 0. Then, an arbitrary number of named parameters can be provided. Finally, an integer
argument log, which takes values of 0 or 1 representing “false” or “true”, indicates whether
the likelihood (log=0, the default) or log-likelihood (log=1) should be returned. Note the
reference to returnType(), which tells the compiler the type that will be returned by the
function.

Alongside each density function (prefixed with “d”), we can define a random generator
function (prefixed with “r”). This is required for MCMC estimation in certain cases. While
the density function takes observed values and parameters and returns a likelihood or log-
likelihood of those parameters, the random generation function takes parameter values as
arguments and probabilistically returns a random observation or observation history. The
following defines an “r” Bernoulli function to accompany dbernCustom:

rbernCustom <- nimbleFunction(
run = function(n = double(0),

p = double(0)) {
returnType(double(0))
if (runif(1, 0, 1) < p) {

return(1)
} else {

return(0)
}

})

The first argument n is required by NIMBLE but usually ignored, after which all pa-
rameters are specified to match the density function. Arguments x and log are omitted.
Once both distributions are defined, they can be registered for use with NIMBLE models
using the function registerDistributions. Once registered, NIMBLE will recognize
these functions automatically when called in model code. NIMBLE will also automatically
attempt to register any unregistered distributions when the model is built. Custom distribu-
tions can also be called from the R environment, where they will be executed in uncompiled
form, or they can be compiled directly.

By implementing the marginalized distribution in a NIMBLE custom distribution, it can
be used in NIMBLE code equivalently to any other distribution like dnorm. Consider the
marginalized occupancy model given above. We can define a NIMBLE custom distribution,
dOcc, representing this distribution. In this case, we could write the following:
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dOcc <- nimbleFunction(
run = function(x = double(1),

probOcc = double(0),
probDetect = double(0),
len = integer(0, default = 0),
log = logical(0, default = 0)) {

returnType(double(0))
logProb_x_given_occupied <-

sum(dbinom(x, prob = probDetect,
size = 1, log = TRUE))

prob_x_given_unoccupied <- sum(x) == 0
prob_x <- exp(logProb_x_given_occupied) * probOcc +

prob_x_given_unoccupied * (1 - probOcc)
if (log) return(log(prob_x))
return(prob_x)

}
)

Because the nimbleFunction dOcc is a valid and compilable probability distribution, it
can be used directly in a model to define the probability of data arising from an occupancy
distribution given parameters p (function argument “probDetect”) and ψ (function ar-
gument “probOcc”), thus eliminating the need for a node representing the latent state z
in the graphical model. The NIMBLE code in section 2.1 could be rewritten to use this
marginalized distribution as

nimbleCode({
x[1:J] ~ dOcc(psi, p, J)

# Priors
psi ~ dunif(0, 1)
p ~ dunif(0, 1)

})
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2.3 The nimbleEcology R package

Installing and using nimbleEcology

nimbleEcology is available as an R package on CRAN at https://cran.r-project.
org/web/packages/nimbleEcology/index.html [54]. When loaded, the package
initializes and registers custom distributions for six model families. The six model families
provided are: the hidden Markov model, dynamic hidden Markov model, occupancy model,
dynamic occupancy model, Cormack-Jolly-Seber capture-recapture model, and N-mixture
model. Once the package is loaded, all custom distributions representing available param-
eterizations and variants of these six model families become usable in the R environment
and in NIMBLE code. Documentation is provided for each distribution and can be accessed
using R’s “help()” or “?” syntax preceding either the name of the model family or specific
distribution (so, ?dDynOcc and ?dDynOcc_ssv both bring up the documentation for the
dynamic occupancy model family).

Source code for nimbleEcology is available at https://github.com/nimble-dev/
nimbleEcology, which may be useful to users wishing to develop new custom distributions
or modify those provided.

nimbleEcology parameterizations and syntax

Each marginal distribution family represented in nimbleEcology contains a set of functions
implementing different parameterizations of that distribution. To handle compilation of
arbitrary functions, NIMBLE requires that argument types are fixed at the time of model
specification. This includes whether a node or an argument in a custom function is a scalar
(length = 1) or vector (length > 1). This is different from base R, which lets the user provide
a scalar or a vector equivalently for many cases. Since the usefulness of one parameterization
over another is context-dependent, nimbleEcology provides multiple implementations of each
distribution, many of which vary only in whether certain parameters are vector or scalar, in
an attempt to cover all the parameterizations users may want.

Different parameterizations of a nimbleEcology custom distribution are indicated with
suffixes appended to function names. Suffixes refer to whether each parameter with multiple
possible types is provided as a scalar (s), vector (v), or matrix (m). For example, the
function dOcc_s takes a scalar (s for scalar; visit-invariant) detection probability, while the
function dOcc_v takes a vector (v for vector; visit-specific) detection probability. The order
of suffixes corresponds to the order in which the relevant parameters are provided to the
function. In this chapter, I will often replace prefixes with asterisks, as in dOcc_*, to refer
to all variants of a model family. Multiple asterisks are used to replace multiply suffixed
functions, such as dDynOcc_***. When referring to a certain subset of these functions I
may only replace certain suffixes with asterisks, as in dDynOcc_**v, which would refer to
the four dynamic occupancy distribution functions that take vector detection probabilities.

https://cran.r-project.org/web/packages/nimbleEcology/index.html
https://cran.r-project.org/web/packages/nimbleEcology/index.html
https://github.com/nimble-dev/nimbleEcology
https://github.com/nimble-dev/nimbleEcology
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2.4 Distributions provided by nimbleEcology
In this section, I present the six families of custom distributions provided by nimbleEcol-
ogy. I provide a brief definition of each model family, discuss some of its applications, and
then present the relevant nimbleEcology function and its usage. The six model families
are the hidden Markov model, dynamic hidden Markov model, occupancy model, dynamic
occupancy model, Cormack-Jolly-Seber model, and N-mixture model.

Hidden Markov model

Model definition

The hidden Markov model (HMM) is a statistical model for sequential data [94, 52] used to
estimate transition probabilities between discrete true states of a system when those states
are observed imperfectly. It can represent a wide variety of ecological systems dynamics,
from estimating behavioral states of individuals to population dynamics at large scales [47,
132]. Other common ecological models, including the capture-recapture survival model and
dynamic occupancy model, are special cases of the HMM [94].

The HMM gives the probability of a vector of data, x, where xt is the observed state of
an individual at time step t = 1...T . The latent state st represents the “true” unobserved
state of the individual at time t = 1...T . Then, in the latent state formulation,

P (s1 = k|π) = πk

P (st = k|R, st−1) = rst−1,k for t = 2...T

P (xt = l|O, st) = ost,l for t = 1...T

where R is a (S × S) transition probability matrix where element ri,j gives the probability
of transitioning from state i to state j, O is a (S×N) observation probability matrix where
element oi,j gives the probability of observing state j given that the individual is in state i,
π is a vector of initial probabilities where element πi gives the probability of the individual
being in state i at time t = 1, S is the total number of states the individual can take and N
is the total number of observable states.

Estimating hidden Markov models is possible via MCMC sampling of latent states in
any flexible model specification environment such as JAGS or NIMBLE [101, 133]. The
R package momentuHMM also supports estimating HMMs via MLE [93]. nimbleEcology
provides a marginalized implementation of the HMM likelihood.

A marginalized likelihood function for a single HMM detection history can be calculated
by considering the probability of data arising from transitions and observation probabilities
sequentially in time. A full description of the process of marginalizing the HMM is given by
Turek et al. and reproduced briefly here [130]. The likelihood is calculated by iteratively
computing the following quantities over the detection history:
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p1 = π

pt = Rtqt−1 for t = 2...T

qt = o′
xt,1:N ∗ pt/Lt for t = 1...T

Lt = oxt,1:Npt for t = 1...T

where Rt is the transition probability matrix as above; oi,1:N gives the ith row in the ob-
servation matrix O as a vector; and ∗ and / denote element-wise multiplication and scalar
division, respectively. pt and qt are column vectors used for intermediate calculation. The
likelihood of the parameters given a single detection history is given by

L(R,O, π|x) =
∏
t

Lt

Four of the six distribution families provided by nimbleEcology related to or specific cases
of the hidden Markov model: the hidden Markov model itself, the dynamic hidden Markov
model, the dynamic occupancy model, and the Cormack-Jolly-Seber model. Implementations
of these four distribution families use this approach for marginalization.

nimbleEcology distributions: dHMM and dHMMo

nimbleEcology provides two custom distribution parameterizations for the marginalized hid-
den Markov model: dHMM and dHMMo. When used in a NIMBLE model, the distribution
dHMM takes the following arguments: init, the initial probability vector (π); probObs,
an observation probability matrix (O); and probTrans, a transition probability matrix
(R). dHMM also has an optional argument checkRowSums which takes a Boolean value.
If checkRowSums = 1 (the default), the likelihood function internally checks that rows in
each matrix sum to 1 and are therefore valid sets of probabilities. Setting checkRowSums
to 0 will skip this check for efficiency if the user is confident that both matrices are defined
such that rows sum to 1.

A second variation of the hidden Markov model, dHMMo, is provided, which accommo-
dates temporally variable observation probabilities. dHMMo is identical to dHMM, except
that the observation matrix probObs is parameterized as a 3-dimensional array with an
additional dimension of length T , where element oi,j,t gives the probability of observing an
individual in state i at time t in observation state j. Thus the third equation in the preceding
formula is replaced with

P (xt = l|O, st) = ost,l,t for t = 1...T

Example code

The following code chunk defines a NIMBLE model where observed data follow a hidden
Markov model.
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codeHMMo <- nimbleCode({
for (i in 1:numHists) {

observedStates[i, 1:Tt] ~ dHMMo(
init = initStates[1:S],
probObs = observationProbs[1:S, 1:N, 1:Tt],
probTrans = transitionProbs[1:S, 1:S],
len = Tt, checkRowSums = 1)

}
})

Dynamic hidden Markov model

Model definition

The dynamic hidden Markov model (DHMM) is an extension of the hidden Markov model,
with the important difference that transition probabilities are allowed to vary with time.
Rather than a (S×S) matrix, the transition probabilities R are provided in a (S×S×(T−1))
three-dimensional array, and the second equation in the HMM definition is replaced in the
DHMM with

P (st = k|R) = rst−1,k,t−1 for t = 2...T

DHMMs may be used in ecology in similar contexts to HMMs, when the probability of
transitioning from one state to the next may vary with time.

Marginalization in the DHMM nimbleEcology functions is achieved following the method
used for HMMs.

nimbleEcology distributions: dDHMM and dDHMMo

Two distributions of dDHMM are provided, dDHMM and dDHMMo. The former is parameterized
with time-invariant observation probabilties and the latter is parameterized with time-variant
observation probabilities, exactly as in the dHMM* family (see above for more details).

Example code

The following code chunk defines a NIMBLE model where observed data follow a dynamic
hidden Markov model.

codeDHMMo <- nimbleCode({
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for (i in 1:numHists) {
observedStates[i, 1:Tt] ~ dDHMMo(

init = initStates[1:S],
probObs = observationProbs[1:S, 1:N, 1:Tt],
probTrans = transitionProbs[1:S, 1:S, 1:(Tt-1)],
len = Tt, checkRowSums = 1)

}
})

Occupancy model

Model definition

The hierarchical occupancy model, sometimes called the site-occupancy model, is a common
ecological model used to estimate the occurrence probability of a species at a number of sites
from replicate detection-nondetection surveys at each site [87, 88, 79]. For a single site, the
occupancy model is defined as

z|ψ ∼ Bernoulli(ψ)

xj|ψ, p ∼ Bernoulli(zp) for j = 1...J

where xj is 1 if the species was detected on the jth sampling occasion and 0 otherwise, ψ
is probability that the species truly occupies the site, p is the probability of detecting the
species at the site given that it is present, and z is a latent state taking 1 or 0 representing
whether or not the species occupies the site.

Occupancy models are used in a variety of ecological contexts to infer a species’ patterns
of presence and absence from data sampled with imperfect detection [88]. The single-site
definition given above can be embedded in a variety of occupancy model extensions of varying
complexity, for example a multispecies hierarchical occupancy model [67, 37].

Marginalization for the occupancy model is presented in section 2.2. To briefly recap,
the occupancy model’s marginalized implementation is achieved by summing together the
probability of the data given that the site is occupied times the occupancy probability with
the probability of the data given that it is not times one minus the occupancy probability.

nimbleEcology distributions: dOcc_v and dOcc_s

Two parameterizations of the occupancy distribution are provided: dOcc_v and dOcc_s.
The suffixes distinguish between whether the detection probability p is a visit-invariant scalar
(dOcc_s) or a potentially visit-variant vector (dOcc_v).
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Example code

The following code defines a nimbleModel where a series of replicate observations at each of
N sites follow an occupancy distribution.

codeOccV <- nimbleCode({
for (i in 1:N) {

obs[i, 1:J] ~ dOcc_v(
probOcc = psi[i],
probDetect = p[i, 1:J],
len = J

)
}

})

Dynamic occupancy model

Model definition

The dynamic occupancy model represents a series of replicate surveys at a site in consecu-
tive seasons, where the species of interest can undergo dynamics of local colonization and
extinction, and where detection is imperfect [89, 88]. Dynamic occupancy models are used
in multi-season studies of species occupancy where rates of colonization and persistence at
sites between seasons are of interest. The model is defined as

xj,t ∼ Bernoulli(ztp)

z1 ∼ Bernoulli(ψ1)

zt ∼ Bernoulli(πzt−1 + γ(1− zt−1)) for t = 2...T

where xj,t is a datum indicating whether the species was detected during the jth survey in
season (discrete time period) t, zt is the latent occupancy state at time t, ψ1 is the probability
that the site is occupied in time t = 1, π is the persistence probability (the probability that
the site is occupied in time t > 1 given that it was occupied in time t − 1), and γ is the
colonization probability (the probability that the site is occupied in time t > 1 given that it
was not occupied in time t− 1).

The dynamic occupancy model is a special case of the hidden Markov model with replicate
observations of a given unit in one time period necessary for identifiability. The model has two
observed states (detected and not detected) and two true states (unoccupied and occupied).
Colonization and extinction probabilities contribute to a 2 × 2 transition matrix and the
detection probability p contributes to a 2× 2 observation matrix. As such, marginalization
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in the dynamic occupancy model follows the method used in the generic hidden Markov
model described above.

nimbleEcology distributions: dDynOcc_***

Twelve parameterizations of the dynamic occupancy model are provided to accomodate all
combinations of three parameters that each can be time-variant. The probabilities of persis-
tence, π, and colonization, γ, can be temporally constant (scalar) or vary between seasons
(vector). The probability of detection, p can be time-invariant (scalar), vary across seasons
(vector), or vary across seasons and between visits within a season (matrix). Parameteriza-
tions are differentiated by suffixes s, v, and m in the order that parameters are called, such
that dDynOcc_svm requires a scalar persistence probability, a vector colonization probabil-
ity, and a matrix detection probability.

Because there are only T−1 transitions between seasons, the persistence and colonization
probabilities are provided as vectors of length T − 1 when time-variant.

Example code

The following code defines a nimbleModel where observations follow a dynamic occupancy
model at each of N sites over Tt seasons.

codeDynOccVVM <- nimbleCode({
for (i in 1:N) {

obs[i, 1:J, 1:Tt] ~ dDynOcc_vvm(
init = init[i],
probPersist = pi[i, 1:(Tt-1)],
probColonize = gamma[i, 1:(Tt-1)],
p = detProb[i, 1:J, 1:Tt],
start = start_vec[1:Tt],
end = end_vec[1:Tt]

)
}

})

Cormack-Jolly-Seber capture-recapture model

Model definition

The Cormack-Jolly-Seber model is used to estimate survival probabilities for individuals
that are marked at some initial time and then either recaptured or not at each of several
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subsequent sampling points [84, 25, 72, 116]. The probability that an individual is observed
on replicate surveys is defined as

x1 = 1

z1 = 1

xt|zt, pt ∼ Bernoulli(ztpt) for t = 2...T

zt|ϕ, zt−1 ∼ Bernoulli(ϕt−1zt−1) for t = 2...T

where xt is a datum taking 1 if the individual was recaptured at time t and 0 otherwise, pt
is the probability that the species is recaptured during a resampling event at time t given
that it is alive at that time, ϕt is the probability that the species survives from time t to
time t+1, and zt is a latent variable representing whether the individual is alive (zt = 1) or
dead (zt = 2) at time t. Time t = 1 corresponds to the first capture of the individual. Since
individuals always begin in the alive state with a successful capture, the datum x1 does not
contribute to the likelihood of the parameters.

The Cormack-Jolly-Seber model is a special case of the hidden Markov model with two
observed states, “captured” or “not captured,” two hidden states, “alive” or “dead,” and with
the probability of transitioning from the “dead” to “alive” state fixed at 0. Marginalization
is achieved following the method used for hidden Markov models (see above for details).

nimbleEcology distributions: dCJS_**

nimbleEcology provides four parameterizations of the Cormack-Jolly-Seber model. The sur-
vival and detection probabilities can each be time-invariant (scalar) or time-variant (vector);
combining these possibilities gives four combinations, dCJS_ss, dCJS_sv, dCJS_vs, and
dCJS_vv.

nimbleEcology expects the initial capture to be included in the data, so x[1] should
always equal 1. In the time-variant parameterizations, the length of the detection vector
probDetection should be the same as the length of x, although its first value is ignored.
The length of the survival probability vector probSurvive should be one less than the
length of x, with probSurvive[t] giving the probability of surviving from time t to t+1.

Example code

The following code chunk defines a NIMBLE model where a detection history for an indi-
vidual is associated with the Cormack-Jolly-Seber model.

codeCJS <- nimbleCode({
for (i in 1:N) {

obs[i, 1:Tt] ~ dCJS_vv(
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probSurvive = phi[1:(Tt-1)],
probCapture = p[1:Tt],
len = Tt)

}
})

N-mixture model

Model definition

The N-mixture model is a hierarchical model for estimating the abundance of a species from
count data when detection is imperfect [114]. Under this model, a site has a true fixed
number of individuals, represented by a latent state N drawn from a Poisson distribution
whose mean represents the mean expected abundance at the site. Then, on each of J replicate
visits to the site, an observed count is drawn from a binomial distribution with size N and
a detection probability representing the chance that each individual is detected. We write
this as

xj|N, pj ∼ Binom(N, pj) for j = 1...J

N |λ ∼ Poisson(λ)

N-mixture models are commonly used in ecology for to estimate the abundance or relative
abundance of a species from counts produced by repeated site visits [53, 14, 43].

Unlike for preceding distributions, estimating a marginalized probability for an N-mixture
model is nontrivial. Because the latent space of N is infinite, marginalizing over its possible
values requires approximating an infinite sum. nimbleEcology follows the standard approach
to approximating this infinite sum used in other marginalized implementations of the N-
mixture model, such as those used in MLE packages like unmarked [46]. The user is
required to specify a parameter Nmax (called K in other packages), the upper bound at
which the sum is truncated, such that only values of N from 0...Nmax contribute to the
likelihood. The tradeoff in this case is between accuracy of the estimate and computational
efficiency; as Nmax increases, the calculated likelihood more closely approximates the full
infinite sum, but computational time increases. Typically, one aims to choose a value of
Nmax large enough such that the contribution of values of N greater than Nmax to the
infinite sum are a negligible fraction of the total sum. This can be difficult to identify in
advance, and users are advised to pay careful attention to this choice, especially in light of
a known tendency for the N-mixture model to estimate near-infinite abundance [78, 53].

nimbleEcology uses a fast algorithm for calculating the truncated infinite sum developed
by Meehan et al. which takes advantage of recursive properties of the Poisson and binomial
likelihoods [96]. The Meehan algorithm, covering the standard Poisson-binomial case, was
extend to the beta-binomial and negative binomial cases by Goldstein and de Valpine (see
Chapter 3) [53]. This fast algorithm dramatically improves computation time especially as
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Nmax becomes large in the beta-binomial, as it requires only a single call to the underlying
beta function that can be slow to calculate rather than Nmax calls.

nimbleEcology distributions: dNmixture_**

nimbleEcology provides eight versions of N-mixture distribution functions. These are best
thought of as four model variants of the N-mixture distribution, each of which has two
parameterizations. Unlike preceding model families, the four N-mixture variants differ in
their underlying definitions.

In the standard N-mixture model defined above, the latent state is drawn from a Poisson
distribution and the observed data are drawn from a binomial distribution. The Poisson and
binomial may be substituted for a negative binomial and beta-binomial distribution, respec-
tively, to accommodate overdispersed data [114, 92]. In each case, an extra parameter (s or
θ) is added that determines the variance of the distribution. nimbleEcology offers all com-
binations of these distributions, yielding four forms of N-mixture model: dNmixture_*,
the standard binonmial-Poisson; dNmixture_BNB_*, the binomial-negative binomial; dN-
mixture_BBP, the beta-binomial-Poisson; and dNmixture_BBNB_*, the beta-binomial-
negative binomial.

Each of these four variants may be suffixed with either _v or _s to indicate whether
detection probability p is provided as a vector (potentially different for each replicate) or
scalar (constant), respectively, giving eight total distribution functions.

For the two Poisson variants of the N-mixture model, nimbleEcology’s distribution offers
the option to dynamically select a value of Nmax, the upper bound of the truncated infi-
nite sum, by setting the parameters Nmin and Nmax to -1. Note that this option should
only be used during MCMC model estimation and not during MLE estimation, as dynamic
calculations interfere with optimization.

Example code

The following code chunk defines a NIMBLE model using an N-mixture distribution.

codeNmixBBNBV <- nimbleCode({
for (i in 1:N) {

obs[i, 1:J] ~ dNmixture_BBNB_v(
lambda = lambda[i],
prob = p[i, 1:J],
theta = theta,
s = s,
Nmin = 0,
Nmax = 1000,
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len = J
)

}
})

2.5 Worked example: estimating a dynamic occupancy
model with maximum likelihood

In this section, I provide an example estimating a dynamic occupancy model with MLE
using simulated data.

Data context

In this example, the goal of modeling is to estimate rates of colonization and persistence
in the occupancy of a bird species at various sites [89]. We also want to understand how
colonization and persistence vary with two environmental covariates of interest, forest cover
and water availability, and we want to take into account variation in detection driven by
wind conditions. Examples of dynamic occupancy models applied to observations of birds
to understand their site-level colonization and extinction dynamics include Yackulic et al.
[142] and Donaldson et al. [39].

I simulated data collected at 100 sites throughout a study region. At each site, four
replicate detection-nondetection observations of the species are made in each of six consec-
utive years, giving a total of 24 detection or nondetection data at each site. During each
field survey, we measured wind speed, which we suspect impacts bird detectability as high
winds make it harder to identify bird calls. We also measured percent forest cover and water
availability at each site, which we think influences colonization and persistence probabilities.

We wish to estimate the model

xi,j,t ∼ Bernoulli(zi,tpi,j,t)

zi,1 ∼ Bernoulli(ψ)

zi,t ∼ Bernoulli(πizi,t−1 + γi(1− zi,t−1)) for t = 2...T

logit(πi) = logit(π0) + βπ1foresti + βπ2wateri
logit(γi) = logit(γ0) + βγ1foresti + βγ2wateri

logit(pi,j,t) = logit(p0) + βp1windi,j,t

which has nine parameters: the initial occupancy probability at a site (ψ), persistence inter-
cept and covariate coefficients (π0, βπ1, βπ2), colonization intercept and covariate coefficients
(γ0, βγ1, βγ2), and detection intercept and covariate coefficients (p0, βp1). For more detail on
the structure of the dynamic occupancy model, see section 4.4.
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Defining, building, and compiling the NIMBLE model

First, nimbleEcology must be installed and loaded.

install.packages("nimbleEcology")
library(nimbleEcology)

Once we’ve loaded the nimbleEcology package, the first step in the process of estimating
any model is to define the model in NIMBLE code. For the sake of simplicity, basic familiarity
with BUGS-like syntax is assumed; for more information on this, see the NIMBLE User
Manual at https://r-nimble.org/manuals/NimbleUserManual.pdf.

In our model, colonization and extinction probabilities are constant at a site across all
seasons (since forest cover and water availability don’t change between seasons), while de-
tection probability varies from visit to visit based on wind speed. In this case, we will
use the nimbleEcology custom distribution dDynOcc_ssm, where the suffix _ssm indicates
that persistence and colonization probabilities are time-invariant scalars, while the detection
probability varies across seasons and surveys.

Using the marginalized distribution dDynOcc_ssm, we avoid the need to define a latent
state z in model code. This is a necessary step for MLE. Note that since we intend to
estimate the model via maximum likelihood, we do not include priors in the model code.

The full model code can be written as:

# NIMBLE models are defined using the function nimbleCode
dynocc_model_code <- nimbleCode({

# Loop over sites
for (i in 1:nsite) {

# Calculate logit-linked persistence and
# colonization by site
logit(pers[i]) <- logit(per.int) +

per.beta.forest * forest[i] +
per.beta.water * water[i]

logit(coln[i]) <- logit(col.int) +
col.beta.forest * forest[i] +
col.beta.water * water[i]

# Rather than defining a latent state node,
# we use dDynOcc_ssm to directly

https://r-nimble.org/manuals/NimbleUserManual.pdf
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# link observed data to model parameters
y[i, 1:nyear, 1:nrep] ~ dDynOcc_ssm(

init = init,
probPersist = pers[i],
probColonize = coln[i],
p = det[i, 1:nyear, 1:nrep],
start = start[1:6],
end = end[1:6]

)

# Loop over year and visit,
# calculate logit-linked deteciton prob.
for (j in 1:nyear) {

for (k in 1:nrep) {
logit(det[i,j,k]) <- logit(det.int) +

det.beta.wind * wind[i,j,k]
}

}
}

})

Having defined the model, we use the functions nimbleModel and compileNimble
to build and compile the model. Though not necessary in this case, it is good practice to
provide a list of initial values for all parameters when the model is built to confirm that the
model likelihood can be calculated without error.

init_list <- list(
det.int = 0.5,
det.beta.wind = 0,
col.int = 0.5,
col.beta.water = 0,
col.beta.forest = 0,
per.int = 0.5,
per.beta.water = 0,
per.beta.forest = 0,
init = 0.5

)

dynocc_model <- nimbleModel(dynocc_model_code,
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constants = list(
nyear = nyear, nsite = nsite, nrep = nrep,
wind = wind_data, forest = site_data$forest,
water = site_data$water,
start = rep(1, 6), end = rep(4, 6)

),
data = list(

y = dnd_data
),
inits = init_list)

Cdynocc <- compileNimble(dynocc_model)

We now have a compiled model object whose likelihood can be calculated with the
Cdynocc$calculate() method.

Maximum likelihood estimation

The principle behind MLE with NIMBLE models is to treat the model object log likelihood
calculation as an objective function for use with an optimizer. In this case, the objective
function takes a vector of model parameter values, assigns them to the relevant nodes in the
model object, and calculates and returns the model’s log likelihood. An optimizer like R’s
optim() can use a variety of algorithms to identify the maximum log likelihood value over
the parameter space.

We can use a NIMBLE custom function to create the necessary objective function. Since
this function will set parameter values and calculate a log likelihood, I name it setAnd-
Calculate. We define this as a custom nimbleFunction using a slightly different syntax
than that used to define custom distributions. The setAndCalculate function will have
a “setup” as well as a “run” function. The “setup” function will take as arguments the set
of node names corresponding to the parameters over which we will optimize and the model
object itself. It will return a “set-and-calculate” object with a “run” function that sets the val-
ues of the specified model nodes, then calculates and returns the log-likelihood of the model
with those values. This object can itself be compiled. Note that this setAndCalculate
function can be used as written for an arbitrary NIMBLE model.

setAndCalculate <- nimbleFunction(
name = ’setAndCalculate’,
setup = function(model, targetNodes) {

targetNodesAsScalar <-
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model$expandNodeNames(targetNodes,
returnScalarComponents = TRUE)

calcNodes <- model$getDependencies(targetNodes)
},
run = function(targetValues = double(1)) {

values(model, targetNodesAsScalar) <<- targetValues
lp <- calculate(model, calcNodes)

returnType(double())
return(lp)

}
)

target_nodes <- c("det.int", "det.beta.wind",
"col.int", "col.beta.water", "col.beta.forest",
"per.int", "per.beta.water", "per.beta.forest",
"init")

set_and_calc_obj <- setAndCalculate(dynocc_model,
target_nodes)

Csco <- compileNimble(set_and_calc_obj)

Now that the setAndCalculate function has been defined, instantiated, and compiled,
the likelihood maximum can be identified using R’s optim. We provide a vector of initial
values, the objective function (the runmethod of our compiled setAndCalculate object),
and other control arguments. Since the log likelihood function is to be maximized but optim
finds a minimum by default, the control argument fnscale=-1 must be included, which
multiplies the objective function by -1 before optimizing and therefore finds the maximum
of the original function.

optim_result <- optim(par = unlist(init_list),
fn = Csco$run,
method = "BFGS",
control = list(fnscale = -1,

maxit = 10000),
hessian = TRUE)

Following maximum likelihood theory, we estimate the variances of the parameter es-
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timates as the diagonal of the inverse of the Hessian matrix evaluated at the likelihood
maximum. Since we multiplied the function by -1 for optim, we need to undo the operation
before taking the inverse of the Hessian matrix.

This procedure yields an estimated value for each parameter with an accompanied stan-
dard error. We can visualize these estimates and compare them to the true values used during
simulation (Figure 2.1). In this case, the parameters used for simulation fall within the 95%
confidence intervals of each estimated parameter (approximated as the point estimate ±1.96
times the estimated standard error).

optim_SE <- sqrt(diag(solve(-optim_result$hessian)))

parameter_estimates <- data.frame(
param = target_nodes,
est = optim_result$par,
se = optim_SE,
type = "MLE"

)
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Figure 2.1: Comparing maximum likelihood estimates of dynamic occupancy model pa-
rameters to true parameters used in simulation. Blue points show point estimates with
approximate 95% confidence intervals (point estimate ±1.96 times the estimated standard
error). Purple triangles show the values used for simulation. In this case, all true values fell
within their corresponding estimated 95% confidence intervals.

2.6 Worked example: estimating a dynamic hidden
Markov model with MCMC

In this example, I show how a nimbleModel with a nimbleEcology custom distribution can
be used to simulate such data and illustrate the process of estimating a model with MCMC.
As a case example, I focus on the dynamic hidden Markov model (DHMM). The DHMM
is sometimes used in wildlife studies to associate movement data with behavioral states.
Recent published applications of HMMs to characterize behavioral states from movement
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data include estimating the impacts of sound disturbance on blue whale feeding behavior
[36], classifying albatross flight types from accelerometer data [24], and identifying patterns
of foraging in macaroni penguins [60]. In this example, we will consider a simplified version
of the data used in these studies to illustrate the use of nimbleEcology distributions for data
simulation and MCMC estimation.

Specifying the model

Rather than starting with a simulated dataset and writing code to suit it, in this example we
will first define and construct a nimbleModel, then use it to simulate data. We will specify
the model in BUGS code, set values for parameters, and simulate observed data following
that model. We will then be able to use the same model object to estimate the parameters
based on the simulated data.

Consider a study using accelerometers to monitor species behavior. We collect obser-
vation data for 20 individuals of a species. Every hour for three days, we categorize each
individual’s movement pattern into one of three observable states: (O1) not moving, (O2)
moving slowly, or (O3) moving quickly. These observable states are meant to correspond to
three true behavioral states: (S1) sleeping, (S2) foraging, or (S3) traveling. However, there is
a possibility of misclassification, so the true state is unobserved. We have 192 observations
per individual, representing one observed behavioral state in each hour over an eight-day
period.

For a given true state, an observation probability matrix will give the probability that
the species is detected in each category. We think that when the species is sleeping, we will
always correctly categorize it as not moving, so the first row in the observation matrix is
(1, 0, 0) representing that perfect correspondence. We think that foraging individuals may
be miscategorized as sleeping, and moving individuals may be miscategorized as foraging,
so those rows in the observation matrix will have multiple nonzero elements. Specifically,
the second row will have (1 − pf , pf , 0) and the third row will have (0, 1 − pm, pm), where
pm and pf give the probabilities of accurately categorizing a moving and foraging individual,
respectively.

For a given true state, an array of transition probabilities gives the probability of tran-
sitioning from each state into each state between time steps. For the sake of simplicity in
this example, we think an individual will only transition from the sleeping state to the for-
aging state, from the foraging state to the moving state, and from the moving state to the
sleeping state. The probability of each of these transitions will vary with time of day. We
parameterize these as logit-linked quadratic relationships with hour of day, plus a random
effect of individual. We will add additive random effects of individual to these probabilities
representing behavioral variation between individuals. (See Figure 2.4 for the true transition
probabilities by time of day.)

Our model will ultimately have 17 parameters to estimate: a length-three vector of initial
probabilities (constrained to sum to one, these are really two parameters, although from an
MCMC estimation perspective three nodes will be sampled); the probability of correctly
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observing a foraging animal as foraging; the probability of correctly observing a moving
animal as moving; nine parameters linking transition probabilities to quadratic functions
with time of day; and the standard deviations of three normally distributed random effects
of individual on transition probability.

To begin, we specify the model in NIMBLE code. We manually specify elements of the
observation matrix in terms of parameters, and define the relationships between transition
parameters and the transition matrix. For the sake of monitoring mean transition proba-
bilities across species, we separately define nodes for those means on the logit scale (such
as logit_pwake) and for individual transition probabilities (with random effects added;
ind_pwake).

dDHMM_movement_model_code <- nimbleCode({

# Observation probability matrix
probObs[1,1] <- 1
probObs[1,2] <- 0
probObs[1,3] <- 0
probObs[2,1] <- 1 - obs22
probObs[2,2] <- obs22
probObs[2,3] <- 0
probObs[3,1] <- 0
probObs[3,2] <- 1 - obs33
probObs[3,3] <- obs33

for (t in 1:ntime) {
logit_pwake[t] <- pw.int + pw.b1 * time[t] +

pw.b2 * time[t]^2
logit_pmove[t] <- pm.int + pm.b1 * time[t] +

pm.b2 * time[t]^2
logit_psleep[t] <- ps.int + ps.b1 * time[t] +

ps.b2 * time[t]^2
}

# Time-variant transition probabilities
for (k in 1:n_individuals) {

# Define random effects as normally distributed
ranef_wake[k] ~ dnorm(0, sd = sd_wake)
ranef_move[k] ~ dnorm(0, sd = sd_move)
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ranef_sleep[k] ~ dnorm(0, sd = sd_sleep)

for (t in 1:(ntime-1)) {
logit(ind_pwake[t,k]) <- logit_pwake[t] + ranef_wake[k]
logit(ind_pmove[t,k]) <- logit_pmove[t] + ranef_move[k]
logit(ind_psleep[t,k]) <- logit_psleep[t] +

ranef_sleep[k]

probTrans[1,1,t,k] <- 1 - ind_pwake[t,k]
probTrans[1,2,t,k] <- ind_pwake[t,k]
probTrans[1,3,t,k] <- 0

probTrans[2,1,t,k] <- 0
probTrans[2,2,t,k] <- 1 - ind_pmove[t,k]
probTrans[2,3,t,k] <- ind_pmove[t,k]

probTrans[3,1,t,k] <- ind_psleep[t,k]
probTrans[3,2,t,k] <- 0
probTrans[3,3,t,k] <- 1 - ind_psleep[t,k]

}

### dDHMM likelihood
y[k, 1:ntime] ~ dDHMM(

probObs = probObs[1:3, 1:3],
probTrans = probTrans[1:3, 1:3, 1:(ntime-1), k],
init = inits[1:3],
len = ntime,
checkRowSums = 0

)
}

#### Priors
inits[1:3] ~ ddirch(alpha = init_alphas[1:3])

# Detection probs.
obs22 ~ dunif(0, 1)
obs33 ~ dunif(0, 1)

# Transition parameters
pw.int ~ dnorm(0, sd = 50)
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pm.int ~ dnorm(0, sd = 50)
ps.int ~ dnorm(0, sd = 50)
pw.b1 ~ dnorm(0, sd = 50)
pm.b1 ~ dnorm(0, sd = 50)
ps.b1 ~ dnorm(0, sd = 50)
pw.b2 ~ dnorm(0, sd = 50)
pm.b2 ~ dnorm(0, sd = 50)
ps.b2 ~ dnorm(0, sd = 50)

# Random effect standard deviations
sd_wake ~ dunif(0, 10)
sd_move ~ dunif(0, 10)
sd_sleep ~ dunif(0, 10)

})

When simulating data, we need to specify constants when the nimbleModel is built.
Constants are values that define data dimensions and structure; they are “baked in” to the
model graph and cannot be changed once the model is built. We will provide our covariate
vector, time, as a constant as well. We must set initial values for our parameters that we
want to simulate from. We do not provide individual detection histories, since we want to
simulate them. This step instantiates an NIMBLE model object that has initial values and
constants and a full graph but NA values for all observations.

DHMM_model <- nimbleModel(
code = dDHMM_movement_model_code,
constants = list(

time = rep(0:23, 8),
ntime = length(rep(0:23, 8)),
n_individuals = 20,
init_alphas = c(1,1,1)

),
inits = list(

inits = c(0.8, 0.19, 0.01),
obs22 = 0.8,
obs33 = 0.7,
pw.int = -15.5,
pw.b1 = 2.05,
pw.b2 = -.06,
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pm.int = 0,
pm.b1 = -0.3,
pm.b2 = 0.015,
ps.int = -3,
ps.b1 = 3,
ps.b2 = -0.3,
sd_wake = 0.1,
sd_sleep = 0.2,
sd_move = 0.1

),
calculate = FALSE

)

Note that attempting to calculate the model likelihood (a default behavior of nimble-
Model) without data in this case prints an error message, which is expected behavior. By
setting calculate = FALSE when building the model we avoid errors related to the fact
that data are not yet valid.

Simulating data

Now that we have a model object without data, we can use it to simulate data. First, we
need to populate the observation and transition arrays. Since some of these elements don’t
depend on any parameters (i.e. those that are set to 1 and 0) they will be NA until model
calculation occurs. We can do this by using the calculate function and providing nodes
to calculate.

nodes_to_calc <- c("probObs", "probTrans")
DHMM_model$calculate(nodes_to_calc)

To make sure to simulate all nodes downstream from our model parameters, including
random effects as well as observations, we start by listing the parameter nodes in the model,
then ask the model to identify every node that depends on those. We then pass that list
of nodes to the model to simulate. Deterministic nodes downstream of parameters, such as
elements of the probability arrays, will be calculated, while stochastic data nodes will be
simulated.

target_params <- c("inits", "obs22", "obs33",
"pw.int", "pw.b1", "pw.b2",
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"pm.int", "pm.b1", "pm.b2",
"ps.int", "ps.b1", "ps.b2",
"sd_move", "sd_wake", "sd_sleep")

nodes_to_sim <- DHMM_model$getDependencies(
target_params, self = F, downstream = T

)

DHMM_model$simulate(nodes_to_sim)

For each individual, we’ve simulated response data from the model as specified with the
initial parameter values. Note that since we used the marginalized distribution dDHMM, we
did not simulate true latent states.

We can visualize the individuals’ simulated observation histories as timeseries (Figure
2.2).

Before MCMC estimation, it is important to indicate to the model via the setData()
method that the observations we simulated are now “data” in the sense that we do not want
the y nodes to be sampled.

DHMM_model$setData("y")
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Figure 2.2: Simulated observations over eight days from a dynamic hidden Markov model.
Transitions between three true states are functions of time of day with individual-level ran-
dom variation, and states are observed imperfectly.

Estimating model parameters with MCMC

Now we are ready to estimate model parameters using MCMC.
First, we need to build an MCMC object. NIMBLE will automatically identify the

stochastic nodes in the model, including parameters and random effects, and assign default
samplers. In this case, I want to use custom samplers. For efficient mixing, it makes sense
for each set of three parameters describing how transition probabilities vary over time to be
sampled together. One appropriate choice is the adaptive factor slice sampler (AFSS). To set
these samplers, we create an MCMC configuration object using configureMCMC(), call
removeSampler() to drop the default random walk samplers for those nodes, then use
the addSampler with argument type = "AF_slice" for each set of three parameters.
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DHMM_MCMC_conf <- configureMCMC(DHMM_model)

# Remove default RW samplers for transition prob. parameters
DHMM_MCMC_conf$removeSampler(c("pm.b1", "pm.b2", "pm.int",

"pw.b1", "pw.b2", "pw.int",
"ps.b1", "ps.b2", "ps.int"))

# Add AF slice samplers for each group of 3 parameters
DHMM_MCMC_conf$addSampler(

target = c("pm.b1", "pm.b2", "pm.int"), type = "AF_slice")
DHMM_MCMC_conf$addSampler(

target = c("pw.b1", "pw.b2", "pw.int"), type = "AF_slice")
DHMM_MCMC_conf$addSampler(

target = c("ps.b1", "ps.b2", "ps.int"), type = "AF_slice")

DHMM_MCMC_conf

Since we are interested in how transition probabilities change over time, we also add
monitors on the vectors pwake, psleep, and pmove before we finally build the MCMC
object. Adding these monitors will store the value of these derived quantities at each MCMC
iteration, yielding a posterior distribution of each value. We can examine posterior predictive
distributions of these nodes.

DHMM_MCMC_conf$addMonitors("logit_pwake",
"logit_psleep", "logit_pmove")

DHMM_MCMC <- buildMCMC(DHMM_MCMC_conf)

Having built a model and an MCMC object, we can compile them. If we provide both to
compileNimble() in a single call, the function will return a named list whose elements
are the compiled components.

compiled_objs <- compileNimble(DHMM_model, DHMM_MCMC)
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Now we use runMCMC() to execute the MCMC algorithm. I use two chains of 5000
iterations each, with a burn-in period of 1000 samples. I also specify new initial values in
order not to begin sampling at the true values used for simulation.

samples <- runMCMC(compiled_objs$DHMM_MCMC, ni = 5000, nc = 2,
nburnin = 1000,
samplesAsCodaMCMC = TRUE, inits = list(

inits = c(0.33, 0.34, 0.33),
obs22 = 0.5, obs33 = 0.5,
pw.int = 0, pw.b1 = 0, pw.b2 = 0,
pm.int = 0, pm.b1 = 0, pm.b2 = 0,
ps.int = 0, ps.b1 = 0, ps.b2 = 0,
sd_wake = 0.2, sd_move = 0.2,
sd_sleep = 0.2

))

We examine trace plots of some parameters (Figure 2.3). The mixing for these parameters
looks good.
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Figure 2.3: Trace plots for three estimated parameters. “Grassy” behavior and similar means
and variances between chains indicates good mixing.

We can then visualize the estimated relationships between time and each transition prob-
ability using posterior predictions for each transition probability vector. With some manip-
ulation, we can use the summaries of these parameters to visualize how we predict transition
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probabilities to vary through time, and compare these to the true values used in simulation
(Figure 2.4).

Figure 2.4: Comparing 95% credible regions of three transition probabilities (shaded regions;
lines indicate median estimates) to the true values used in simulation (points). True values
mostly fall within 95% credible intervals.

2.7 Worked example: choosing between a marginalized
and a latent state formulation for a
Cormack-Jolly-Seber model

When there is no a priori reason to prefer marginalization over sampling latent states,
modelers using MCMC may choose between these two methods based on their efficiency.
Improvements in MCMC estimation efficiency due to marginalization are highly context-
dependent and may depend on data dimensions and the presence of additional hierarchical
structure as well as on the type of model under consideration [103]. For this reason, it is
recommended that the modeler evaluate the efficiency gains of marginalization on a case-by-
case basis.
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The goal of this worked example is to demonstrate how to compare the estimation ef-
ficiency of a marginalized model to that of a latent state formulation of the same model.
The workflow we will use is simple and generic. First, we will create two separate model
definitions in nimbleCode specifying the same model using marginalized and latent state
formulations. We will be careful to make sure that the two models are statistically identical.
We will build each model and generate MCMC samples. Then we will compare the effective
sample size and computational time for both models to determine which is more efficient.

Data context

In this example, I consider a simple mark-recapture model based on Stewart et al. [120]. The
authors collected marked and re-sighted Yaqui catfish (Ictalurus pricei) in San Bernardino
National Wildlife Refuge, Arizona, USA. They fit a Cormack-Jolly-Seber mark-recapture
model to these data with the goal of estimating survival rates and capture probabilities of
the species. The authors included season-specific intercepts for capture probabilities and
survival probabilities, such that the model has 32 parameters to be estimated (16 season-
specific capture probability intercepts and 16 season-specific survival probability intercepts).
The latent state formulation of the model to be estimated is given by

yi,j|zi,j, pj ∼ Bernoulli(zi,jpj)

zi,j|zi,j−1 ∼ Bernoulli(zi,j−1Sj)

where the length-16 parameter vectors S and p will be estimated. We put a uniform prior
from 0 to 1 on each of these parameters.

I simulated data approximating the data dimensions and parameters estimated by Stew-
art et al. In this example, capture-recapture data are collected for each of 350 individuals
over a 16-year period. In the first year, 50 fish are captured for the first time, with an
additional 50 new fish being added in each of the following 6 years. We begin the exercise
with capture histories of each fish in each season (Figure 2.5).
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Figure 2.5: (Left) Simulated capture histories for 350 Yaqui catfish. 50 individuals are added
each season. (Right) Season-specific probabilities of survival and capture used to generate
capture histories.

Defining the marginalized and latent state model formulations

To begin, we write NIMBLE code for each model. Each version of the model code has two
components. First I define parameter vectors for survival probability and capture probability,
which I call pcap and psurv, as following uniform priors. This component is the same in
both models. Then, I relate these probabilities to the data. In the marginalized version, I
loop over individuals and simply link each individual’s detection history to the CJS model
using the nimbleEcology function dCJS_vv, which gives the probability distribution for
time-variant survival and capture probabilities. In the latent state formulation, I loop over
individuals and seasons, linking the data to parameters via two Bernoulli distributions and
a latent state, z, representing whether each individual is alive at each time step.

marginalized_CJS <- nimbleCode({
#### Set priors for parameters (same in both models) ####
# Uniform prior on season-specific survival prob. and
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# mean capture prob.
for (j in 1:(nseason - 1)) {

psurv[j] ~ dunif(0, 1)
pcap[j + 1] ~ dunif(0, 1)

}
pcap[1] <- 1 # Capture at t=1 is ignored,

# so we don’t need to sample it

#### Relate data to parameters ####
# Loop over individuals and associate each capture history
# with the CJS model using a single line of code
for (i in 1:nind) {

y[i, start[i]:nseason] ~ dCJS_vv(
probSurvive = psurv[start[i]:(nseason - 1)],
probCapture = pcap[start[i]:nseason],
len = nseason - start[i] + 1

)
}

})

latentstate_CJS <- nimbleCode({
#### Set priors for parameters (same in both models) ####
# Uniform prior on season-specific survival prob.
# and mean capture prob.
for (j in 1:(nseason-1)) {

psurv[j] ~ dunif(0, 1)
pcap[j + 1] ~ dunif(0, 1)

}
pcap[1] <- 1 # Capture at t=1 is ignored,

# so we don’t need to sample it

#### Relate data to parameters ####
# Loop over individuals and define the relationship between
# data (y), latent states (is_alive), and
# probabilities of survival and capture (psurv and pcap)
for (i in 1:nind) {

is_alive[i, start[i]] <- 1

for (j in (start[i] + 1):nseason) {
is_alive[i, j] ~ dbern(psurv[j - 1] *
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is_alive[i, j - 1])

y[i, j] ~ dbern(pcap[j] * is_alive[i, j])
}

}

})

Comparing model efficiency

Having specified both models in NIMBLE code, we need to build and generate MCMC
samples for both. We start by creating model objects and providing initial values for all
model parameters.

latentstateMod <- nimbleModel(
code = latentstate_CJS,
constants = list(

nind = nind,
nseason = nseason,
start = start_vec),

data = list(y = y),
inits = list(

psurv = rep(0.5, nseason - 1),
pcap = rep(0.5, nseason),
is_alive = matrix(1, nrow(y), ncol(y))

)
)

marginalizedMod <- nimbleModel(
code = marginalized_CJS,
constants = list(

nind = nind,
nseason = nseason,
start = start_vec

),
data = list(y = y),
inits = list(

psurv = rep(0.5, nseason - 1),
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pcap = rep(0.5, nseason)
)

)

marginalizedMod$calculate()
latentstateMod$calculate()

Note that, at model build time, NIMBLE provides two warnings relating to the fact that
the capture histories contain NA elements (for seasons before an individual was observed)
and due to the fact that survival probability and capture probability vectors are different
lengths. These warnings are defensive and can be safely ignored in this case.

We use the standard NIMBLE workflow to build MCMC objects for both models and
compile the models and MCMC objects.

# Build MCMC for both models, then compile everything
latentMCMC <- buildMCMC(latentstateMod)
marginalMCMC <- buildMCMC(marginalizedMod)

Clatent <- compileNimble(latentstateMod, latentMCMC)
Cmarginal <- compileNimble(marginalizedMod, marginalMCMC)

We now execute MCMC estimation of each model. To evaluate efficiency, it is not
necessary that our MCMC chains are of sufficient length for final results. We only need to
run enough samples to reliably estimate the effective sample size of the posterior and thus
get a clear sense of the rate at which the model is generating effectively independent samples.
While in this example, the MCMCs run quickly, for models that are quite slow to estimate
it is useful to evaluate estimation efficiency without a full run.

I run each model for 2 chains of 1000 iterations each, with a burn-in period of 0 samples.
I use the command system.time() to monitor runtime for each model.
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latent_time <- system.time(
samples_latent <- runMCMC(Clatent$latentMCMC,

niter = 1000,
nchains = 2, nburnin = 0,
samplesAsCodaMCMC = TRUE)

)

marginal_time <- system.time(
samples_marginal <- runMCMC(Cmarginal$marginalMCMC,

niter = 1000,
nchains = 2, nburnin = 0,
samplesAsCodaMCMC = TRUE)

)

latent_summary <- MCMCvis::MCMCsummary(samples_latent)
marginal_summary <- MCMCvis::MCMCsummary(samples_marginal)

In this example, we want to compare two features of sampling: time taken per MCMC
iteration and effective sample size [103]. For the latter, we’re specifically interested in the
minimum ESS across all sampled nodes. We can query these features with the following
commands.

marginal_time[3]
latent_time[3]

min(marginal_summary$n.eff[rownames(marginal_summary) !=
"pcap[1]"])

min(latent_summary$n.eff[rownames(marginal_summary) !=
"pcap[1]"])

We can define MCMC efficiency as the number of effectively independent samples gen-
erated per unit time [103]. We can calculate the number of independent samples generated
per second by dividing minimum ESS by time taken for each model.
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# Marginalized model efficiency
min(marginal_summary$n.eff[rownames(marginal_summary) !=

"pcap[1]"]) / marginal_time[3]

min(latent_summary$n.eff[rownames(marginal_summary) !=
"pcap[1]"]) / latent_time[3]

In this case, the marginalized model generated a minimum of 11.7 independent samples
per second, while the latent state formulation generated 3.1 independent samples per second.
We can conclude that estimation via the marginalized implementation of this model is more
efficient.

2.8 Conclusion
nimbleEcology was created to make implementing many common ecological models in NIM-
BLE easier. Predefined custom distributions for ecological models grant flexibility in model
implementation while reducing the incidence of coding error and saving time, giving users
a middle ground between specifying a model completely from scratch and giving up con-
trol over model specification. Moreover, marginalized distributions open the door for more
efficient model estimation and maximum likelihood estimation of hierarchical models.

The nimbleEcology R package is always growing and actively considering additional model
distributions and package functionality. We welcome ideas for additional distributions, and
especially appreciate the submission of code defining distributions for inclusion in the pack-
age.

For a comprehensive user guide to the NIMBLE modeling tool, see the NIMBLE user
manual at https://r-nimble.org/documentation-2. For further information on
nimbleEcology, see the package’s official documentation on CRAN along with the pack-
age vignette at https://cran.r-project.org/web/packages/nimbleEcology/
index.html. For additional context on the models described in this chapter, we recom-
mend the two-volume textbook Applied Hierarchical Modeling in Ecology by Kéry and Royle
[79].

https://r-nimble.org/documentation-2
https://cran.r-project.org/web/packages/nimbleEcology/index.html
https://cran.r-project.org/web/packages/nimbleEcology/index.html
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Chapter 3

Comparing N-mixture models and
GLMMs for relative abundance
estimation with a citizen science dataset

This chapter was previously published as Goldstein and de Valpine, 2022 [53] and is
included here with permission from the co-author.

In Chapter 2, I implemented a number of common ecological models using marginal-
ization, enabling the use of maximum likelihood estimation. In this chapter, I apply these
software advances to conduct a methodological comparison of two ecological models for rel-
ative abundance estimation in a maximum likelihood framework, specifically via the use of
information criteria based in maximum likelihood theory. My findings, which may guide
ecologists in choosing ecological models for their applications, depend on the maximum like-
lihood framework made possible in the previous chapter.

3.1 Background
Understanding how species’ abundances are associated with covariates of interest is a primary
goal of species distribution modeling [42]. Often the best one can hope to estimate are
patterns of relative abundance, sometimes referred to as an index of abundance. Relative
abundance values are equal to absolute abundance – the number of individuals in a known
area – multiplied by an unknown constant such as a detection rate and/or effective area
sampled. When the unknown constant can be assumed to be the same between two areas,
the ratio of relative abundances is the same as the ratio of absolute abundances, allowing
comparison of sites relative to each other. Relative abundance can sometimes be estimated
from data when absolute abundance cannot, but doing so can be challenging when data
are collected with heterogeneous sampling protocols because variation in the data collection
process can obscure or confound those patterns. Large, heterogeneous datasets are becoming
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more prominent in ecology, such as those produced by citizen science [21, 118], autonomous
recorders [48, 74], and camera traps [119]. Analyzing these data requires statistical models
that fit the data well, account for details of study design and sampling if possible, and can
be estimated efficiently.

Two existing model types can satisfy this requirement: generalized linear mixed models
(GLMMs) and N-mixture models. The GLMM is a linear model extension that models
relationships between non-Gaussian (e.g. count) response data while allowing hierarchical
structure via random effects. To estimate relative abundance, count data are modeled as
Poisson-distributed with an expected value defined by a log-linked linear combination of
important covariate data, and a link-scale random effect is added to account for relatedness
between replicate observations at a site [12]. The GLMM is a heuristic model developed to
explain patterns but does not correspond to a data generating process for repeated counts
of unknown, finite numbers of individuals.

In contrast to the GLMM, the N-mixture model’s development was motivated by process-
based thinking, and its architecture corresponds to an idealized data generating process
[114]. In the N-mixture model, a latent state N represents the absolute abundance of a
species at a sampling site. N varies between sites according to a Poisson distribution with
expected value log-linked to linear covariates and is assumed to be constant across replicate
observations at a site (the “closure” assumption). The observed data are binomial distributed
with size N and probability p, representing the detection process, such that variation in
counts within a site is due only to observer error [114, 115, 79]. While all within-site variation
is considered observation error and all between-site variation stems from the underlying
abundance process, in practice heterogeneous observation error and movement of animals
can lead to detection-driven variation between sites and abundance-driven variation within
sites.

Though mathematically distinct, both GLMMs and N-mixture models partition variation
into between- and within-site components using hierarchical relationships. Between sites, the
N-mixture has a Poisson random latent abundance at each site, while the GLMM has a log-
scale normal random effect at each site. Within sites, the N-mixture model uses binomial
counts, while the GLMM uses Poisson counts. Each model has variants that accommodate
overdispersion in counts: in the GLMM, a negative binomial distribution may replace the
Poisson, while in the N-mixture model both the Poisson and binomial may be replaced with
a negative binomial or beta-binomial distribution, respectively, to account for overdispersion
in the within- and/or between-site submodel [92, 114]. However, in the N-mixture model, the
latter variants can be highly computationally demanding, so one contribution here is a set
of more efficient ways to calculate likelihoods for these variants. More detailed descriptions
of both models are presented in the “Model implementation” section of the Methods.

These models exist within a shared heuristic framework in that both models have param-
eters that predict “number of individuals observed” at a standardized location and primarily
differ in their assumptions of between- and within-site variation in observed counts. It is
important to distinguish between estimation of parameters and estimation of latent states,
such as the latent state N in the N-mixture model. Parameter estimation and model se-
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lection arise from making a model do as well as possible as a probability distribution for
observed data, not latent states. In other words, both models predict “how many individuals
will I see.” Users of N-mixture models are often interested in the follow-on question of “how
many individuals are there, adjusted for imperfect detection,” but that is an interpretation of
parameters and latent states outside of fitting criteria. Hence, the models can be compared
based on their fit to observed data. Although “all models are wrong,” knowing which model
fits the data best is useful for characterizing patterns.

Within this heuristic framework, both the GLMM and N-mixture model come with ad-
vantages and disadvantages. The main advantage in using a GLMM is that it is robust to
unmodeled heterogeneity in data generation due to its relatively simple structure. Robust-
ness to unmodeled variation is a useful quality when analyzing count data with unobserved
heterogeneity in sampling protocol or skill, unknown and heterogeneous sampling areas, or
complicated non-independence between observations. The primary drawback to using the
GLMM is that this model does not explicitly account for the detection process. In fact,
GLMMs only estimate relative abundance under the assumption that the pattern of interest
is not confounded with detection after accounting for other modeled variables [34]. When
this assumption is unreasonable, the GLMM may not be useful for understanding biological
patterns, even when it fits the data best.

The N-mixture model, in contrast, explicitly separates abundance from imperfect detec-
tion, but at the cost of strong sensitivity to violations in model assumptions, especially those
assumptions related to an absence of unmodeled heterogeneity. In recent years, simulation
studies have characterized the degree to which N-mixture models produce biased or nonsen-
sical estimates of abundance in the presence of unmodeled heterogeneity [6, 41, 80, 92, 85,
97]. Additionally, Kéry (2018) identified estimation instability, likely attributable to a like-
lihood maximum in the limit of zero detection [35], but recommended the use of N-mixture
models when estimation instability does not occur [78]. Several studies have found that the
N-mixture model produces estimates of absolute abundance that agree with more rigorous
sampling methods [14, 26, 43, 22] though this finding is not universal [27]. Still, estab-
lished sensitivities and computational pathologies are grounds for caution in recommending
N-mixture models when data do not strictly conform to modeling assumptions.

In this chapter, we provide guidance for choosing between the GLMM and N-mixture
model for relative abundance estimation in an empirical context. We ask which of a set
of GLMM and N-mixture model variants best fits single-species subsets of eBird point-
count data on a small spatial scale. eBird, the largest and most systematic citizen science
data repository of its kind, is increasingly used to estimate bird species’ spatiotemporal
distributions [124, 125]. Because eBird data inherently contain unobserved heterogeneity,
they present an interesting challenge for both GLMMs and N-mixture models.

eBird citizen scientists report their observations in the form of “checklists", lists of de-
tected species associated with sampling metadata. Almost 90% of eBird checklists are “com-
plete checklists”, which imply zero counts for all unreported species. While much statistical
modeling of eBird data has addressed estimation over large spatial extents [45, 65, 71], a sim-
pler yet still challenging goal is to estimate local abundance patterns using data from regions
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with concentrated replicate observations. We select 396 species-subregion (SSR) subsets of
eBird across gradients of space, checklist density, and species abundance. Within each SSR,
we use only eBird checklists from stationary sampling locations (i.e. checklists obtained from
a single spatial point) to have the highest chance of satisfying N-mixture model assumptions.

We consider four variants of the N-mixture model and two of the GLMM. Each N-mixture
variant is defined by the two distributions in the within- and between-site submodels, and we
consider four variants: the classic binomial-Poisson (B-P), binomial-negative binomial (B-
NB), beta-binomial-Poisson (BB-P) and beta-binomial-negative binomial (BB-NB). In the
GLMM, we consider the traditional Poisson distribution for counts alongside the negative bi-
nomial to allow for overdispersion. We fit each model variant to each dataset with step-wise
variable selection. To characterize relative fit across models, we use the Akaike information
criterion (AIC) because it is derived to select the model with lowest out-of-sample predic-
tion error [18]. We explore patterns in selection across levels of abundance and sampling
intensity and apply a suite of goodness-of-fit and estimation checks to characterize known
issues with both the N-mixture and GLMM. We investigate the special issue of estimation
instability with a reparameterization of the N-mixture abundance and detection intercepts.
We also implement new, fast algorithms for calculating N-mixture likelihoods for variants
accommodating overdispersion.

3.2 Methods

eBird and covariate data

eBird data are structured as follows. Birders submit observations as species checklists with
counts of each species they identify. They report associated metadata, such as location, date
and time, duration of the observation period, number of observers, and sampling protocol
[124, 125, 122]. The birder indicates whether their checklist is “complete”; complete checklists
yield inferred zeroes for all species not reported on a checklist.

We retrieved the eBird Basic Dataset containing all eBird observations and sampling
metadata. We extracted all complete checklists that occurred within the U.S. state of Cali-
fornia between April 1 and June 30, 2019. Four survey-level covariates were retrieved from
eBird checklist metadata as detection covariates: number of observers, checklist duration,
date of year, and time of day; any checklist that failed to report one or more of these vari-
ables was dropped. Corresponding to best practices for use of eBird data, we filtered the
data for quality according to the following criteria: we discarded checklists other than those
following the "Stationary" survey protocol (observations made at a single spatial location)
with duration shorter than 4 hours and at most 10 observers in the group [70, 122].

We selected twenty circular regions of high sampling intensity with 10 km radii across
California. These spanned the state’s many habitats including coastal, agricultural, wetland,
and mountain areas, and contained active birding areas such as parks and human population
centers. In each subregion, we selected 10 species with the highest reporting rate (proportion
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of checklists including that species) and 10 representing an intermediate reporting rate. An
additional 10 species were selected that were detected in many regions to enable cross-
region comparisons, yielding 407 species-subregion (SSR) datasets. Across 20 subregions,
we accepted 6,094 eBird checklists for analysis, each with an associated count (potentially
zero) for each species. Observations were aggregated to sampling sites defined by a 50 m
spatial grid. The 50 m grid was chosen to conservatively identify related surveys and was
not motivated by biological processes, nor does it represent the sampling area of each survey.
In this context, the concept of “closure” in the latent state is already suspect due to the fact
that eBird checklist sampling areas are inconsistent. Data were processed in R using the
‘auk’ package [106, 121].

An elevation surface for the state of California was retrieved from WorldClim at 8.3x10−3

decimal degrees resolution using the R package raster [44, 63]. This commonly used covariate
was included as a baseline spatial covariate to enable comparison of estimation properties
across sites, but its biological relevance to abundance is not crucial to our analysis [122].
Land cover data were retrieved from the LandFire GIS database’s Existing Vegetation Type
layer [83]. For each unique survey location, a 500 m buffer was calculated around the
reported location, and the percent of the buffer which was water, tree cover, agriculture or
other vegetation (shrub or grassland) was calculated. We used the following five site-level
covariates: elevation, and percent of the landscape within a 500 m buffer of the site that was
water, trees, agricultural land, or other vegetation. We included six checklist-level covariates:
duration, number of observers, time of day, time of day squared, Julian date, and Julian date
squared. Covariates were dropped in datasets where only a single unique value was observed
for that covariate.

Model implementation and selection

We considered four variants of the N-mixture model and two variants of the GLMM compris-
ing a total of 6 distinct models, defined by the distributions used in the model or sub-model.

The GLMM for count data that we considered is defined as

yij ∼ D(µij, [θ])

log(µij) = β0 + xT
ijβ + αi

αi ∼ N (0, σα)

where yij is th jth observation at site i, D is a probability distribution (which may contain
an extra parameter θ to account for overdispersion), µij represents the mean expected count
and is a logit-linear combination of observed site- and observation-level covariates xij, β are
coefficients representing the effect of those covariates, β0 is a log-scale intercept corresponding
to the expected log count at the mean site (i.e. with all centered covariates set to 0), and
αi is the random effect of site i following a normal distribution. Due to the right skew of
exp(yij), by log-normal distribution theory the log of the expected count at the mean site
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is β0 + 0.5σ2
α. We considered two forms of this model, where D was either a Poisson or a

negative binomial distribution, in the latter case with the extra parameter θ.
The N-mixture model is defined as

yij ∼ Dw(Ni, pij, [θw])

Ni ∼ Db(λi, [θb])

logit(pij) = logit(p0) + xij(w)βw

log(λi) = log(λ0) + xi(b)βb

p0 = e
ϕ1+ϕ2

2

λ0 = e
ϕ1−ϕ2

2

where Db and Dw are probability distributions representing between- and within-site vari-
ation, respectively; Ni is a site-level latent variable normally representing the “true" abun-
dance at site i; pij is the detection probability of each individual on the jth observation
event at site i; λi is the mean abundance at site i; and x(w) and x(b) are covariate vectors
for detection and abundance, respectively, with corresponding coefficients βw and βb. For
reasons described more below, we reparameterize the intercept parameters of the N-mixture
submodels, log(λ0) and logit(p0), in terms of two orthogonal parameters ϕ1 = log(λ0p0) and
ϕ2 = log(p0/λ0). Now ϕ1 and ϕ2 represent the expected log count and the contrast between
detection and abundance, respectively, at the mean site. This parameterization allows us to
investigate stability of parameter estimation. The log-scale expected count of the N-mixture
model is ϕ1 = log(λ0p0), analogous to β0+0.5σ2

α in the GLMM. Each submodel distribution
D could include or not include an overdispersion parameter (θw and θb), yielding four possi-
ble N-mixture model variants: binomial-Poisson (B-P), binomial-negative binomial (B-NB),
beta-binomial-Poisson (BB-P), and beta-binomial-negative binomial (BB-NB) [92, 114].

We chose to fit models with maximum likelihood estimation (MLE) for computational
feasibility and because key diagnostic tools, such as AIC and methods for checking goodness
of fit and autocorrelation, were best suited to MLE estimation [80]. We fit N-mixture models
with the nimble and nimbleEcology R packages starting with a conservatively large choice of
K, the truncation value of the infinite sum in the N-mixture likelihood calculation [133, 54].
We fit GLMMs with the R package glmmTMB [15]. We applied forward AIC selection to
choose the best covariates for each model with each dataset (illustrated in Figure S1). One
spatial covariate (elevation) and two checklist metadata covariates (duration and number
of observers) were treated as a priori important and were included in all models. In the
N-mixture model, checklist-specific sampling metadata were only allowed in the detection
submodel, while land cover covariates and the interactions between them were allowed in
both the detection and abundance submodels. Interactions were dropped in datasets when
interaction values showed a correlation of >0.8 with one of their first-order terms. In N-
mixture models, additions to both submodels were considered simultaneously during forward
AIC selection.
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For comparisons between models, we selected a heuristic threshold of ∆AIC > 2 to say
that one model is supported over another [18].

Fit, estimation, and computation

Goodness-of-fit

We used the Kolmogorov-Smirnov (KS) test, a p-value based metric, to evaluate goodness-
of-fit on each selected model. For GLMMs, residuals were obtained using the DHARMa R
package’s ‘simulateResiduals’ and the KS test was applied using the ‘testUniformity’ func-
tion [61]. For N-mixture models, we considered the site-sum randomized quantile (SSRQ)
residuals described by Knape et al. [80], computing these for each N-mixture model and
running a KS test against the normal CDF. We assumed that covariate effects did not vary
by space within subregions and chose not to use spatially explicit models [70, 122]. To test
this assumption, we applied Moran’s I test to the SSRQ or DHARMa-generated residuals
for each site or observation.

Parameter estimation

We compared two abundance parameters of interest across models: coefficients for elevation
and log expected count at a standard site (in the GLMM, β0 + 0.5σ2

α; in the N-mixture
model, log(λ0p0)). We examined absolute differences in point estimates and the log-scale
ratios between their standard errors.

Stability of estimated parameters

Attempting to decompose the expected value of observed data into within- and between-site
components can lead to ridged likelihood surfaces with difficult-to-estimate optima. Kéry
found that instability of model estimates with increasing K occurred when there was a
likelihood tradeoff between detection and abundance, resulting in a tendency in abundance
toward positive infinity restrained only by K [79]. Dennis et al. showed that N-mixture
models could in fact yield estimates of absolute abundance at infinity [35]. We interpreted
this as a case of a boundary parameter estimate rather than non-identifiability and explored
it by reparametrizing as follows. We estimated the intercepts for detection and abundance
with two orthogonal parameters (rotated in log space) ϕ1 = log(λ0p0) and ϕ2 = log(p0/λ0),
where λ0 and p0 are real-scale abundance and detection probability at the mean site. We
hypothesized that in unstable cases, ϕ1, log expected count, is well-informed by the data,
but ϕ2, the contrast between abundance and detection, is not well-informed, corresponding
to a likelihood ridge as ϕ2 → −∞ due to detection probability approaching 0 and abundance
approaching infinity. This reparameterization isolates the likelihood ridge to one parameter
direction, similar to a boundary estimate as exp(ϕ2) → 0. Boundary estimates occur in many
models and are distinct from non-identifiability in that they result from particular datasets.
Confidence regions extending from a boundary estimate may include reasonable parameters,
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reflecting that there is information in the data. We defined a practical lower bound for ϕ2.
When ϕ2 was estimated very near that bound, we conditioned on that boundary for ϕ2 when
estimating confidence regions for other parameters.

In the N-mixture case, diagnosing a boundary estimate for ϕ2 is made more difficult by
the need to increase K for large negative ϕ2 to calculate the likelihood accurately. We used an
approach like that of Dennis et al. (2015) to numerically diagnose unstable cases. For each
N-mixture variant in each SSR, the final model was refitted twice, using values of K 2000
and 4000 greater than the initial choice. Estimates were considered unstable if the absolute
value of the difference in AIC between these two large-K refits was above a tolerance of 0.1.
We monitored whether MLE estimates of ϕ1 and ϕ2 also varied with increasing K.

Evaluating the fast N-mixture calculation

We extended previous work by Meehan et al. to drastically improve the efficiency of N-
mixture models using negative binomial or beta-binomial distributions in submodels [96].

We ran benchmarks of this likelihood calculation for a single site against the traditional
algorithm, which involves iterating over values of N to compute a truncated infinite sum.
We calculated the N-mixture likelihood at 5,000 sites and compared the computation time
between the two methods for all four N-mixture model variations. We ran benchmarks along
gradients of length(yi) (number of replicate observations at the simulated site) and K (the
upper bound of the truncated infinite sum) for each variant.

All figures were produced using the R package ggplot2 v3.3.5 [137].

3.3 Results

Species-subregion (SSR) datasets

Our procedure for aggregating "subregions" yielded 20 circular subregions of 10 km radii
containing the highest density of eBird activity in California during the 2019 breeding season.
Subregions corresponded to human population centers with access to natural habitat such as
large parks or coastal areas. Subregions contained between 140-1000 high quality checklists
distributed across 12 to 140 unique locations. In each subregion, we selected 10 species with
high detection rates and 10 species with intermediate detection rates. We further selected 10
species overall with sufficient data in the most total subregions to compare model selection
for individual species across space. In all, we compared models of interest across 396 species-
subregion (SSR) subsets of eBird.

Model selection

We fit each of six N-mixture and GLMM variations to each SSR dataset. Across SSRs, the
six models we considered were chosen by AIC at the following rates: Poisson GLMMs were
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selected in 88 datasets (22%), negative binomial GLMMs in 61 datasets (15%), BB-NB N-
mixture models in 79 datasets (20%), BB-P N-mixture models in 74 datasets (19%), B-NB
N-mixtures in 46 datasets (12%) and B-P N-mixtures in 48 datasets (12%) (Figure 3.1). AIC
clearly selected (∆AIC > 2) the best GLMM over the best N-mixture model in 102 (26%)
datasets, while the best N-mixture model was selected in 199 (50%). AIC rankings indicated
overall support for models incorporating overdispersion.

Negative binomial GLMMs outperformed Poisson GLMMs in 308 of 396 datasets. How-
ever, they were largely superseded in those cases by N-mixture models, especially those that
included a beta-binomial-distributed detection submodel (BB-P and BB-NB N-mixtures).
Among N-mixture variants, the best N-mixture model by AIC used a beta-binomial distribu-
tion in 223 datasets (56%), and these cases largely corresponded to cases where GLMMs also
outperformed binomial-submodel N-mixture models (B-P and B-NB). When beta-binomial
N-mixtures were excluded from the analysis, GLMMs were dominant, being selected clearly
by AIC (∆AIC > 2) in 237 (60%) datasets.

Subregions with more checklists were associated with higher rates of selection of the most
complicated model (by number of overdispersion parameters), the BB-NB N-mixture model
(Figure 3.2). We attribute this to the phenomenon that more data contains more information
to be explained by additional model structure.

We did not detect patterns in model selection related to whether a species was overall
highly detected or detected at intermediate rates (Figure 3.1). We did not identify patterns
in model selection varying by species identity among widespread species.

Eleven SSR datasets were removed from the analysis after modeling due to computational
issues with GLMM estimation.

Fit, estimation, and computation

Goodness-of-fit

We tested goodness-of-fit (GOF) from residuals for each model and assessed systematic
patterns of fit by examining the distributions of GOF p-values for each model type. Among
N-mixture models, distributions of goodness-of-fit p-values did not deviate from the uniform,
meaning that most N-mixture models selected by AIC fit well for this metric. Both sets of
selected GLMMs showed deviation from a uniform distribution of p-values, indicating that
these models’ residuals deviated meaningfully from modeling assumptions for some datasets
(Figure 3.3). GLMMs were selected for several datasets where GOF checks for GLMMs failed,
despite those same datasets passing goodness-of-fit checks for N-mixture models, indicating
that AIC model selection did not correspond exactly to goodness-of-fit metrics.

None of the models considered incorporated spatial autocorrelation. We tested that as-
sumption using Moran’s I tests on residuals for all models. Nine percent of model-dataset
combinations had p-values less than 0.05 from Moran’s I test, indicating more cases of non-
random spatial structure in residuals than expected by chance. This suggested the presence
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Figure 3.1: (a) Model rankings by species reporting rate category (1 = best). (b) Magnitude
of AIC difference between the best N-mixture model and the best GLMM for each dataset.
Each stripe-point pair represents one SSR dataset. Bar color indicates AIC model choice;
point position on the y-axis indicates the difference in AIC (∆AIC) between the best N-
mixture model and the best GLMM.
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Figure 3.2: For each subregion, we plot the proportion of each model group selected for each
of three model flexibility categories against the number of checklists in that subregion. Solid
lines show best fit lines for each category. As the number of checklists in a subregion is
increased, the most flexible BB-NB N-mixture model is supported at an increasing rate.

of spatial autocorrelation in some datasets, but at a low rate we considered acceptable for
this study’s conclusions.

Parameter estimation

Point estimates of the log expected count at the mean site (i.e. with all centered covariates
set to 0), adjusted for the log-normal random effects of the GLMM, were similar for GLMMs
and N-mixture models (Figure 3.4). Within model type, N-mixture models agreed closely
with one another, as did GLMMs. Differences in a point estimate of a coefficient, site
elevation, were centered around zero for all model combinations, indicating no systematic
differences between or within model types.

Estimated standard errors of covariates were systematically different between models
(Figure 3.5). Both GLMMs estimated standard errors systematically larger than all N-
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Figure 3.3: Goodness-of-fit p-values for N-mixture models selected by AIC had near-uniform
distributions, while a subset of selected GLMMs showed goodness-of-fit failures.

mixture models, while more complex N-mixture models estimated larger standard errors (as
expected within a model family).

Stability of parameter estimates

We investigated rates of instability in N-mixture estimation by monitoring whether estimated
AIC and two intercept parameters changed as the upper bound of the truncated infinite sum,
K, was increased [78]. Across 396 species-region datasets, 6% of B-P N-mixture models,
7% of BB-P models, 37% of B-NB models, and 11% of BB-NB models were found to be
unstable in AIC for a tolerance of ∆AIC = 0.1. While the B-NB showed by far the highest
rate of instability, agreeing with previous findings by Kéry (2018), some instability was
detected across all N-mixture models. To illustrate that instability could be attributed
to indeterminate tradeoff between detection and abundance, we reparameterized the two
intercepts with one parameter for (intercept of) log observed count (abundance × detection)
and another for (intercept of) log ratio between detection and abundance (abundance /
detection). The log observed count intercept was stable in 93-98% of datasets in each of the
four N-mixture models. The log ratio intercept, representing tradeoff between detection and
abundance, was unstable in patterns mirroring those of AIC. This suggested that instability
with increasing K was due to ridged likelihoods in a single parameter direction that was a
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Figure 3.4: Distributions of the absolute differences between models in (a) log expected count
and (b) log-scale effect of elevation. Model pairs are ordered by median difference. Outliers
are excluded for legibility. Log expected count is the log-scale intercept plus 0.5 times the
random effects variance for the GLMMs and simply the log-scale expected count intercept
for N-mixture models. The latter is defined in our parameterization as a combination of
abundance and detection intercepts.
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Figure 3.5: Comparing standard errors of estimates of the data intercept (defined as expected
log count at a standard site) and a target relative abundance driver, elevation. Outliers are
excluded for legibility.

combination of the original parameters.

Performance of the fast N-mixture calculation

We extended previous work by Meehan et al. (2020) to implement an algorithm for fast
N-mixture likelihood calculations. Fast N-mixture calculations led to 20- to 125-fold im-
provements in computation time compared to the naive method for calculating the trun-
cated infinite sum for 100 ≤ K ≤ 2000 and 5 ≤ length(yi) ≤ 20, where yi was the vector
of detection-nondetection observations at a site. These gains increased with length(yi), such
that the contribution of the fast algorithm was important when more replicate visits were
made to a simulated site. In eBird, sites are clustered such that a small number of locations
contain many replicate observations, making this improvement per replicate particularly rel-
evant. Improvements in computation time were largest for the beta-binomial and negative
binomial N-mixture variants, which take orders of magnitude longer than the traditional
B-P N-mixture due to their higher computational costs.
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Discussion
When estimating relative abundance from count data, ecologists can consider both N-mixture
models and GLMMs alongside one another in a model selection context. Both N-mixture
models and GLMMs act as predictors of counts that vary between and within sites and
can be compared via standard model comparison tools. By adopting a heuristic perspective
towards models based on predictive fit, we let the data speak about which model is better
rather than guessing a priori based on assumptions about the data-generating process. Put
another way, we accept that all models under consideration are “wrong" in that assumptions
are bound not to be perfectly satisfied. By selecting among the candidate models with AIC,
we learn which model approximately minimizes out-of-sample prediction error.

Across 396 species-subregion data subsets of eBird, we found that it was usually possible
to distinguish between N-mixture and GLMM fit and that N-mixture models outperformed
GLMMs somewhat more often than the reverse. This pattern was contingent on the inclusion
of beta-binomial N-mixtures, which greatly outperformed binomial N-mixture variants. All
four N-mixture model variants also more consistently passed goodness-of-fit checks. Consid-
eration of only one model type across all these data would produce worse overall fit than
dataset-by-dataset selection.

We identified no patterns in model selection across species characteristics or site identity,
indicating that relative fit was highly context-dependent. We observed one pattern in model
selection: datasets containing more checklists (and therefore more information) were more
likely to select more complex models. This trend does not suggest that more complex models
like the BB-NB N-mixture model were “true" for our data, and that it was therefore wrong
to use a simpler model for low-information datasets, since in fact simpler models minimize
out-of-sample prediction error in lower-information contexts. The overall lack of patterning
suggests that ecologists should not assume that a particular model will fit better for a given
dataset.

Point estimates of a parameter of interest, effect of elevation, agreed between N-mixture
models and GLMMs, but GLMMs estimated systematically larger standard errors than N-
mixture models. In general, lower standard errors are not reason for recommending a model,
because lower standard errors can result from either correctly characterized improvements
in precision, or overconfidence (and increased Type I error); without access to true data
generating parameters these are indistinguishable without additional fit metrics. If both
models fit reasonably well, then agreement between parameters may indicate support for
the assumption that elevation was not confounded with detection. While most selected
N-mixture models passed goodness-of-fit checks, a substantial portion of GLMMs chosen
by AIC failed them, indicating that GLMMs fit the data somewhat more poorly overall.
A simulation study targeting goodness-of-fit and model selection patterns across known
data-generating conditions could clarify whether this relatively poorer fit is due to actual
better correspondence between N-mixture models and the eBird data generating process,
or whether N-mixture models are more flexible when data are heterogeneous in general.
Comparing intercepts between the models (expected log count at a “typical” site) is more
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complicated due to their different structures. Specifically, the expected count from the
GLMM’s log-normal intercept distribution needs adjustment by the random effects variance
to be comparable to the corresponding N-mixture parameter. After this adjustment, we saw
that log expected counts are not systematically higher or lower for one kind of model.

Estimation instabilities in N-mixture models were largely attributable to a single di-
mension representing the decomposition between abundance and detection, while parameter
estimates of relative abundance drivers were estimated stably. These instabilities correspond
to a boundary estimate of detection probability being nearly zero. Although this is implau-
sible in the mechanistic motivation of N-mixture models, from a statistical perspective a
boundary estimate is not necessarily a pathological estimation outcome, so these unstable
cases can still be compared alongside other models. We found a high rate of instability in
the B-NB N-mixture model in agreement with Kéry (2018), but found that this high rate
did not extend to the BB-NB and BB-P N-mixture model variants, which showed rates of
instability comparable to the traditional B-P N-mixture. Still, instability was present at low
rates in all four N-mixture variants. Future theoretical work may clarify how to interpret
this phenomenon when it occurs.

We analyzed datasets from a single important database (eBird), during a single year,
and at modest spatial scales, so the particular patterns we observed in model selection are
limited. We also chose an aggressive data filtering approach that brought the data closer
into alignment with N-mixture modeling assumptions. It is possible that N-mixture models
would be less successful on less aggressively filtered data. For feasibility, we chose to only
consider two model families of interest. One relevant linear model extension, the generalized
additive mixed model (GAMM), was excluded from this analysis. GAMMs can be used to
introduce flexibility into parameters which are allowed to vary over space and/or time [122,
23]. Because of the potential for estimating spatially variable covariate effects, ecologists
working at larger spatial scales may want to consider GAMMs alongside N-mixture models
and GLMMs where appropriate. In this application, we expected that this flexibility would
not be relevant at the spatial scale considered. Neither GLMMs nor N-mixture models
overwhelmingly outperformed one another by AIC, but it is conceivable that new models
could be developed to extend or bridge these approaches.

When choosing between GLMMs and N-mixture models for relative abundance estima-
tion, practitioners may weigh trade-offs beyond the models’ different abilities to explain
the data (as characterized by an information criterion and goodness-of-fit checks). When
an abundance covariate of interest is confounded with detection, using an N-mixture model
may disentangle these two components, while using a GLMM will not. If estimating absolute
abundance is of interest, the GLMM will similarly not satisfy this need, while the N-mixture
model could if effective area sampled is known. Practitioners interested in either of these
two approaches should collect their data in line with N-mixture modeling assumptions and
should consider modeling assumptions during study design. On the other hand, the GLMM
may be preferred when computational efficiency is important, such as when the number of
observations is very large. The marginalized likelihoods for N-mixture variants presented
in this chapter reduce the computational costs of N-mixture model fitting. Fast implemen-
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tations of the N-mixture likelihood calculation reduced computation times 20- to 90-fold.
These implementations are available in the R package nimbleEcology [54].

We found that observed instability with increasing K [78, 41] was not prohibitive for
interpreting relative abundance estimates. We used a parameterization that suggests such
instability arises from a parameter estimate on the boundary of the parameter space, which
is a manageable and not uncommon problem in other kinds of models. Relative abundance
point estimates agreed between N-mixture models and equivalently constructed GLMMs.
This suggests that practitioners not reject the N-mixture model in the presence of this
form of estimation instability, and can consider both N-mixture models and GLMMs when
estimating relative abundance with count data. Without access to known truth, we could not
investigate whether the estimates produced reflect true relationships between covariates and
species abundance, so we cannot say whether either N-mixture models or GLMMs estimated
parameters accurately in that sense. We suggest that practitioners interested in modeling
relative abundance from count data consider the assumptions of both models, including
known features of N-mixture model robustness in practice and theory [41, 79, 35, 6, 92, 85,
97, 14, 26, 43, 22], along with other practical trade-offs. If both GLMMs and N-mixture
models are potentially appropriate, we recommend the model selection and goodness-of-fit
checking procedure outlined in this chapter for choosing the most parsimonious model with
adequate fit.

3.4 Discussion
To estimate species’ relative abundance patterns from increasingly common heterogeneous
datasets, ecologists will find both N-mixture models and GLMMs useful on a context-
dependent basis. Despite their distinct origins in heuristic and process-based thinking, these
two models are structurally analogous tools for predicting counts that vary both across and
within sampling units. We have presented results to indicate that selecting between these
models for a particular dataset is possible on a context-dependent basis. We encourage ecol-
ogists to adopt a holistic approach to model selection, considering different models alongside
one another and bearing in mind that statistical models, whether or not they are process-
motivated by design, are ultimately tools for fitting data.
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Chapter 4

Drought influences habitat associations
and abundances of birds in California’s
Central Valley

In Chapters 2 and 3, I investigated the methodology behind relative abundance estimation
with participatory science data. I illustrated a marginalized approach to implementing N-
mixture models and gave an interpretive framework for understanding abundance patterns
with these models. In an investigation into eBird data, I showed that N-mixture models and
GLMMs performed comparably for estimating relative abundance, but that models with the
ability to accommodate more overdispersion fit the data better as the size of the dataset
grew. In this chapter, I apply these methodological findings to answer a pressing ecological
question: how does severe drought influence the abundance and distribution of birds?

4.1 Introduction
The frequency of hot, dry periods constituting ecological drought is increasing in many parts
of the globe [135, 29, 28, 38, 32]. Conservation management during drought requires careful
ecological study, as ecological impacts are multifaceted and species- and habitat-specific.
Reduced precipitation during drought can impact wildlife directly through water stress-
induced mortality or indirectly by altering the availability of food resources [20]. When high
temperatures and dry periods occur simultaneously, synergistic impacts occur, especially
increased cooling costs in the form of higher water or food requirements [20, 75, 110, 109,
91]. Ultimately, a species’ vulnerability to drought is a combination of its level of exposure
(the degree to which regional climatic change is experienced by individuals of the species)
and its sensitivity (the degree to which a species’ abundance changes per unit change in
exposure to drought) [140].

Previous studies have established that extreme drought can have a major impact on
bird abundance [86, 104, 99, 11, 117, 2, 3]. A variety of mechanisms explaining which
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species decline, and where, have been investigated in isolation and in tandem. Certain
(especially natural) habitats promote species resilience via increased availability of food or
microhabitat [109, 99, 11, 51, 68]. Birds’ cooling costs correlate with body mass, so larger-
bodied birds may be more sensitive to water deficits [110]; on the other hand, smaller-bodied
birds experience greater relative evaporative water loss, so extreme heat might more strongly
impact smaller species [4]. Trophic niche may also determine sensitivity to the indirect
effects of drought, as the availability of food in response to drought changes differently in
different habitats for herbivores and carnivores [104]. Resource pressure may lead to density-
dependent relationships between drought and bird abundance [104, 19]. Behavioral plasticity
and mobility may play a role in structuring sensitivity; for example, migratory species may
have greater spatial flexibility in choosing breeding sites but may be more phenologically
restricted [95, 49]. Species with more suitable habitat may also be better equipped to seek
out new territory during drought.

Habitat composition and structure both affect the extent to which birds are impacted
by regional climatic extremes. Diversity in habitat structure can allow animals to moderate
exposure to extreme heat by using microclimates. The availability of resources, especially
water, also varies differently during drought in different habitats within a region. The role
of human-modified habitat in moderating species’ exposure to drought is especially difficult
to predict. Human modification and temperature increases are likely to interact in their
impacts on species, as evidenced by the fact that human-modified habitat tends to support
species that are further from their thermal limits [138]. Agricultural lands support smaller
populations than natural lands, especially during hot periods, and especially for less drought-
tolerant species [62, 138, 139]. Species more sensitive to drought may also be more vulnerable
to habitat degradation as the availability of natural lands decreases [129]. On the other
hand, human activity may buffer smaller-scale climate impacts on heavily used lands as
water is artificially redirected for agricultural and domestic use. Understanding how species
respond to drought in heavily modified landscapes requires a holistic modeling framework
that considers interacting effects of habitat type and drought.

In this paper, we investigate the impact of dry periods on birds’ abundances and their rela-
tive use of different habitats in the Central Valley ecoregion in California, USA. The Central
Valley comprises several large metropolitan areas and is an important agricultural region
dominated by fruit, vegetable, and nut production as well as working pasture. The area
also includes substantial remnant natural habitat including riparian zones around perennial
streams and grasslands, though many of the region’s grasslands are working pasture. Like
much of western North America, this region has experienced a number of severe droughts in
recent decades [38]. This region has seen an increase in bird conservation efforts in recent
years as its importance as a migratory corridor and breeding habitat for birds is recognized
[33, 55, 107]. Conservation planning in this region must contend with the expectation that
extreme droughts will continue to occur frequently, so understanding how species respond in
these conditions is of fundamental importance.

We modeled counts of birds submitted to the participatory science platform eBird. We
characterized changes in reported counts of 66 common Central Valley birds from 2010-
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2019 in this region, taking advantage of the density of eBird activity to achieve a high
degree of spatiotemporal resolution. We applied stacked single-species N-mixture models
with overdispersion and random effects structures for conservative estimation of parameters
driving variation in counts. We asked three questions to better understand how counts of
birds change during drought. First, we asked whether each of 66 species’ overall abundance
changed with drought severity, and whether those overall changes were related to species
traits. Second, we asked whether the effect of drought on each species varied meaningfully
between habitat types. Finally, we asked which individual climate or environmental variables
were responsible for overall species abundance changes during drought. Since drought is a
multivariate environmental process, it may or may not be possible to attribute a drought-
abundance association to solely one dimension, such as change in temperature.

4.2 Methodology

Study region

Comprising the Sacramento Valley in the north and the San Joaquin valley in the south, the
Central Valley is a predominantly developed and agricultural system with remnant riparian
and natural grassland habitat. Despite the relative lack of unmodified habitat, the Valley
serves as an important breeding habitat for many birds and a migratory habitat for more [33].
Climate change is expected to increase the frequency of extreme droughts in California as
the probability of co-occurring dry and warm periods increases [38], so understanding birds’
responses to drought in this area is crucial for their conservation. This region has a high
density of eBird sampling activity spread across a variety of habitats and climatic conditions.
It has experienced multiple periods of severe drought and non-drought in recent years (4.1).
This combination of features makes the ecoregion an ideal study area for resolving the effect
of drought on species in different habitats and via different mechanisms. To delineate the
study area we used the “Central California Valley” ecoregion as defined by the USGS [56].
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Figure 4.1: (A) Locations of eBird checklists (black points) in the Central Valley ecoregion
(red polygon) of California. Checklists were densest near developed areas but distributed
throughout the region, with some gaps in the southern Central Valley. (B) Due to increases in
eBird activity over time, more recent years were better represented in the dataset. Bar colors
indicate annual average drought as defined by the standard precipitation-evapotranspiration
index (SPEI); our study period comprised two relatively wet and two relatively dry periods.
(C) Land cover proportions of the entire study region (left bar) compared to the areas
sampled in the data (right bar). The developed/other category was overrepresented in the
data, comprising 16% of the Central Valley region but 43% of sampled area.

Bird count and trait data

eBird is a participatory science birding data repository where volunteer observers report
checklists comprising counts of bird species detected on discrete sampling occasions [124,
125, 122]. Reported counts from eBird have been used in the past in the Central Valley
to inform conservation planning [107, 55] and assess species status [113]. eBird data are
semi-structured, meaning that most checklists are associated with sampling metadata de-
scribing effort. Checklists may also be tagged as “complete” (meaning all detected birds were
reported, and any non-reported bird was not observed). These two features make it possible
to model eBird counts while partially controlling for sampling variation. However, eBird data
also contain heterogeneity, especially heterogeneity in area sampled, that precludes inferring
absolute abundance from these data [53]. We therefore focus our interpretations on relative
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abundance while accounting for variation in detection, rather than the absolute abundance
of birds.

We analyzed eBird checklists documenting point count surveys within the Central Valley
region in California, USA (Figure 4.1A). We extracted all eBird complete checklist data for
observations that took place in California’s Central Valley in the years 2010-2019 during the
months of April, May, and June, selected as a rough approximation of the breeding season
in this region. From each checklist, we retrieved the following metadata: date of year, time
of day, duration of sampling event, and number of observers in the observation group. Any
checklist missing one or more of these metadata was excluded. We also excluded checklists
other than those that followed the “stationary sampling” protocol, which specifies that all
birds were detected from a single point in space, and excluded any checklists with a recorded
duration of more than 3 hours or more than 8 observers to minimize unmodeled heterogeneity
and spatial error in the data [70]. Of 73,853 eBird checklists conducted in the Central Valley
during the study period, 15,522 eBird checklists met all quality criteria and were admitted
to analysis. Because each checklist included was “complete,” each was associated with either
a count or a nondetection (count of 0) for all species, meaning that all single-species models
were fit to observations from all checklists. We chose to model 66 species that were detected
on at least 500 (or 3%) of admitted eBird checklists.

One aim of this study was to identify whether species functional traits were associated
with drought responses. For each of 66 modeled species, we retrieved the species’ trophic
niche and whether or not the species is migratory [128]. We also retrieved each species’
taxonomic order and grouped species into two groups for comparison (Passerines and non-
Passerines).

Landscape covariate data

Observations were assigned to spatiotemporal cell-year units according to a grid of 1 km
× 1 km × 1 year covering the Central Valley ecoregion over the period 2010-2019. A
spatial resolution of 1 km was chosen to maximize resolution while allowing eBird checklists
conducted very nearby one another to be associated. In the N-mixture model, observations
in a cell-year were modeled as sharing a latent abundance state. Checklists were distributed
across a total of 4,821 cell-years each containing between 1 and 190 checklists (mean = 3.2
checklists; median = 1 checklist; 90th quantile = 5 checklists; 95th quantile = 10 checklists.).

For each cell, habitat covariates were produced representing the proportion of each cell
covered by each habitat type, as defined by land cover and crop type data. Crop types were
retrieved from the California Statewide Crop Mapping dataset for 2018. At the time this work
was initiated, only cropping data for 2016 and 2018 were available, so we opted to use the
2018 dataset only under the expectation that aggregated land use categories at the 1km scale
were constant during the study period [136]. Gaps in the Statewide Crop Mapping dataset,
which covers only agricultural land, were filled in with land cover data from the Functional
Vegetation LANDFIRE dataset [83]. Land cover classes were aggregated into 6 categories:
row and field crops, perennial crops, grassland and pasture, natural riparian habitat, other
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natural and semi-natural habitat, and developed/other. The “developed/other” category
comprised 91.4% urban habitat.

We retrieved four environmental variables of interest in each grid cell: temperature,
precipitation, the normalized differential water index (NDWI), and the enhanced vegetation
index (EVI). We retrieved daily precipitation and temperature data from the PRISM climate
group [59]. We computed the average maximum daily temperature in the sampling period
April-June in each cell-year and calculated the amount of precipitation in the preceding year
(July of the previous year through June of the current year, including the April-June sam-
pling period). We also included two remotely sensed variables: EVI, an index of vegetative
productivity [73, 134], and NDWI, a measure of the amount of standing water in an area
[131]. We retrieved EVI data at 500 m daily resolution and NDWI data at 30 m bi-weekly
resolution. For both EVI and NDWI, we computed averages within each cell-year during the
months April-June.

We used the standardized precipitation evapotranspiration index (SPEI) as a continuous
measure of drought severity. SPEI incorporates information from several climate measures
such as water availability and temperature. SPEI has been used in previous studies of birds
to quantify drought [66, 19]. SPEI is informed by lagged impacts of climate, building in
some potential to explain lagged climate effects. However, it does not account for potential
biological delays in bird responses to drought, such as the possibility that ecological drought
leads to worse breeding outcomes and reduced populations several years later. Some evi-
dence exists from related systems that short-term water availability is most important in
determining bird responses [104], although there is also evidence that the timing of rain
events in relation to the breeding season is important, which would suggest that abundance
declines would appear on a time lag [111]. We investigate lagged effects of drought with a
separate model (see below).

We obtained monthly measures of SPEI from the global SPEI database at 1◦ resolution
[7]. For each cell-year, we extracted SPEI April 1, the beginning of the sampling period for
that year. Because SPEI data were available at a resolution of 1◦ (roughly 85 km in central
California or 111 km at the equator), they are interpreted as a regional measure of drought.

For comparisons of drought vs non-drought conditions using estimated models, we se-
lected two levels of SPEI to represent a typical wet year and a typical extremely dry year
in this system based on the lowest and highest median annual SPEI (in 2014 and 2017,
respectively). SPEI is parameterized such that lower SPEI indicates drier conditions, so a
positive effect of SPEI on occupancy means a negative effect of drought on occupancy.

Abundance models and counterfactual approach

Overview of multi-model framework

Our primary objective was to understand how the abundance of 66 Central Valley bird species
changed between non-drought and drought conditions, which we accomplished with a novel
multi-model framework (Figure 4.2). We fit single-species N-mixture models to estimate how
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eBird counts varied with a set of covariates including drought-related environmental variables
[34]. We also accounted for variation in detection, nonindependence between checklists,
and overdispersion. To differentiate between the roles of collinear environmental variables
representing different aspects of drought while still estimating an overall drought effect, we
use a second model to predict how environmental variables changed with drought. Together,
the two models allow us to use posterior predictive methodology to estimate (a) sets of
environmental variables representing drought conditions and (b) distributions of predicted
abundance based on those environmental variables.

Details on the model and on the specific posterior predictive methods used to answer
each main research question are presented below.



CHAPTER 4. DROUGHT INFLUENCES HABITAT ASSOCIATIONS AND
ABUNDANCES OF BIRDS IN CALIFORNIA’S CENTRAL VALLEY 73

Figure 4.2: A conceptual diagram illustrating relationships between variables in the model.
Linear mixed models (LMMs), delineated by the dotted gray box, were used to explore
how four environmental variables (NDWI, EVI, maximum temperature, annual precipita-
tion) changed with change in a drought index (SPEI) differently in different habitat types.
Posterior predictions of the four environmental variables under drought and non-drought
conditions were generated with linear mixed models. N-mixture models were used to esti-
mate the effect of covariates on eBird counts, and included two random effects and two layers
of possible overdispersion. Posterior predictions of environmental variables from LMMs were
then used as input data to predict posterior distributions of bird counts under drought and
non-drought conditions.

N-mixture models for bird counts

We analyzed eBird reported counts using single-species N-mixture models[114]. Since N-
mixture models are somewhat sensitive to unmodeled variation in counts [85], and since eBird
data are sampled heterogeneously, we parameterized our models with maximal flexibility,
accounting for two layers of potential overdispersion with a beta-binomial detection submodel
and a negative binomial abundance submodel. We also include two types of random effects.
We fit single-species rather than community N-mixture models because we did not want to
rely on the assumption that covariate effects are normally distributed. Single-species models
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allow us to base our conclusions only on species with enough data to be informative. The
single-species N-mixture models we estimated were defined as

yijt|Nit ∼ BetaBinomial(Nit, pijt, θ1)

Nit ∼ NegativeBinomial(λit, θ2)

logit(pijt) = xijtβ + αo(ijt)

log(λit) = witγ + αi

αo(ijt) ∼ N (0, σαo)

αi ∼ N (0, σαi
)

The datum yijt is the observed count of the species for the jth checklist submitted in grid
cell i and year t. These counts follow a beta-binomial distribution with size Nit, a cell-year-
level latent variable representing the expected count under perfect detection; probability pijt,
the detection probability of each individual on the jth observation event at grid cell i, year
t; and overdispersion parameter θ1 to account for extra-binomial variation in counts within a
cell-year due to unobserved heterogeneity. Nit follows a negative binomial distribution with
expected value λit representing the mean abundance in grid cell i in year t and overdispersion
parameter θ2 representing extra-Poisson variation in underlying counts across cell-years.
The values λit and pijt are log- and logit-linear functions of checklist-level and cell-year-
level covariates xijt and wit, respectively, with corresponding coefficient vectors β and
γ. We include a random effect of grid cell, αi, on abundance to account for potential
nonindependence between counts in each grid cell in different years. A random effect of
observer (grouping checklists submitted by the same eBird user), αo(ijt), on detection is also
included, where o(ijt) gives the observer ID for the jth checklist submitted in grid cell i and
year t. This helps accommodate potential differences in skill between users, which if ignored
could lead to biased abundance estimates as the observer pool turns over [69]. Each of the
random effects is normally distributed with standard deviation parameters σαi

and σαo .
Estimating the absolute abundance of species with these data was impossible for two rea-

sons. First, effective area sampled varies by eBird checklist depending on microsite charac-
teristics and observer choices. Second, in aggregating observations to a spatiotemporal grid,
we expect to have violated the N-mixture closure assumption. Instead we restrict our inter-
pretation to the effect of covariates on eBird counts, rather than underlying abundance. We
do not interpret the N-mixture model as a one-to-one representation of the data-generating
process but rather a heuristic model with the flexibility to partition variation in reported
counts into within- and between-site components [53].

The following checklist-level covariates were included in the detection submodel (as xijt)
to account for variation in effort and detectability: sampling duration, time of day, time of
day squared, day of year, day of year squared, and number of observers in group. Maximum
daily temperature as retrieved from PRISM was also included as a detection covariate to
account for the fact that birds vocalize differently depending on temperature [95].
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Ten cell-year-level covariates were included in the abundance submodel (as wit): latitude;
categorical effect of year (nine levels); habitat type percentages (0-1 values for each of peren-
nial agriculture, row and field agriculture, grassland, riparian, and other natural habitat);
and four continuous environmental variables (EVI, NDWI, average daily temperature, and
annual precipitation). We also included twenty pairwise interactions between each habitat
variable and each climate variable and an interaction between wetness (NDWI) and average
daily maximum temperature. Interactions allowed us to test whether the effect of drought on
observed counts varied by habitat type through any or all of the four environmental variables.
Because habitat types summed to 1 for all cells, the “developed/other” habitat type was ex-
cluded from the model (i.e. when all land cover classes are 0 on the real scale, that cell is
100% “developed/other”). All covariates in both submodels were centered and scaled. There
was substantial collinearity between EVI and NDWI (correlation of 0.74) and between some
EVI and NDWI interaction terms (3 of 5 pairs EVI and NDWI interaction terms showed
correlation > 0.7). Rather than discarding these terms from the analysis, we proceeded with
modeling. Collinearity may make it difficult to disentangle the effects of these two variables,
diminishing our power to answer our third question; however, in the context of the Bayesian
posterior predictive method used throughout, we judged that collinearity between variables
would not be an issue in predicting changes in abundance (see section on “Counterfactual
drought prediction and linear mixed models”).

We expected that drought impacts on abundance would coincide with the drought events
themselves. Since it is possible that ecological drought leads to worse breeding outcomes
and reduced populations after the drought event has concluded, the impact of drought on
abundance may occur on a delay. To test whether predicted changes in abundance were
robust to the choice to use year-of environmental variables, we replicated the N-mixture
modeling and posterior predictive steps for all species with one year lags for the drought
index and four drought-related environmental variables.

We implemented single-species N-mixture models in NIMBLE v0.12.2 [133]. We chose all
priors to be minimally informative on their relevant scales [100]. For the detection intercept
β0, we used a logistic prior. For all other coefficients in β and γ, we used normal priors
with mean 0 and standard deviation 2.25. For both random effect standard deviation priors,
we used uniform distributions from 0.001 to 10. For priors on beta-binomial and negative
binomial overdisperion parameters, we used uniform distributions from 0.0001 to 25. Models
were estimated with MCMC using custom sampler assignments for improved mixing. For
each species, we ran three chains of 15,000 iterations with 5,000 iterations of burn-in and a
thinning interval of 10. We checked whether each model had a minimum effective sample
size of 100 for all stochastic parameters, and ran additional chains for each species until this
condition was met.

We opted not to use multispecies abundance models for two reasons. First, as we were
primarily interested in species-level abundance estimates and in identifying potential differ-
ences in drought response between species, we thought that single-species estimation was
more appropriate than a model that assumed that drought responses across species followed
a shared normal distribution. Second, model estimation was computationally prohibited
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when using multispecies models with random effects for each species. Since these random
effects and overdispersion terms were critical to robust inference with eBird data, we chose
to prioritize model flexibility over multispecies inference.

Linear mixed models of environmental covariates

SPEI, an index of drought level, is derived from remotely sensed climate data. In this
application, we invert this logic and use SPEI to predict observed environmental variables.
This enables us to generate posterior predictions of environmental variables for a given
location in the study area under a reference level of SPEI representing a typical dry or wet
year.

We used explanatory linear mixed models (LMMs) to estimate how each of the four
climate covariates varied with SPEI. For a given climate variable C, we fit LMMs defined by
the equations

Cit ∼ N (µit, σϵ)

µit = β0 + xitβc + αi

αi ∼ N (0, σα)

where the value of the climate variable at cell i in year t, Cit, was normally distributed
with mean µit and residual variation σϵ. The mean climate variable at each cell-year µit

was a linear combination of covariates xit with coefficients βc. Covariates included were
SPEI, five habitat types (as in N-mixture models), and interactions between SPEI and each
habitat type. We included a normally distributed additive random effect of grid cell, αi. All
covariates were centered and scaled. Data for the years 2010-2019 for all 2,566 grid cells
containing eBird data were included.

Linear mixed models were estimated with the R package “brms” [17]. We used normal
priors with mean 0 and standard deviation 5 for all β covariates, and half-Cauchy priors with
scale parameter 2 for the prior on σα. We ran three chains of 15,000 iterations with 5,000
iterations of burn-in. We then obtained posterior predictions of each climate variable at each
cell-year in the study area using actual habitat values and the two reference levels of SPEI,
representing a distribution of potential climate conditions under drought and non-drought
scenarios.

Question 1: do species’ overall counts change with drought?

We combined the N-mixture models and LMMs in a joint posterior predictive framework to
estimate changes in bird counts during drought (Figure 4.2). Because we modeled the effect
of environmental variables on birds’ counts, we needed posterior predictions generated by
LMMs to predict how those environmental variable change between drought and non-drought
conditions. Using predicted levels of those variables from LMMs and posterior samples
of abundance coefficients from single-species N-mixture models, we computed an expected
abundance λi for each species at each cell-year in each MCMC iteration. We drew random
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negative binomial counts using these expected abundances and draws of the overdispersion
parameter, θ2, ultimately yielding posterior predictive distributions of underlying counts of
each species in both drought and non-drought conditions.

To evaluate whether each species declined or increased during drought, we took the
difference in count summed across cell-years between drought and non-drought conditions
of SPEI at each iteration for each species. If the 95% credible interval of this distribution
did not overlap zero, we interpreted this as evidence that the species had either a positive
or negative association between drought and reported counts. We used chi-squared tests to
ask whether changes in species counts were associated with trophic niche, whether or not a
species is migratory, and taxonomic group (comparing Passerines and non-Passerines). We
corrected p-values obtained from chi-squared tests across both Question 1 and Question 2
by controlling the false discovery rate [10].

Question 2: do species’ habitat associations change during drought?

Whether species’ habitat associations—their predicted relative abundance on each habitat
type—varied between drought and non-drought conditions was a major question of this
study. In a linear modeling context, the question "does the effect of covariate 1 on the
response variable change with the level of covariate 2?" can be represented by including an
interaction term and testing whether that term is different from zero. In the multi-model
framework presented above, we estimate an interaction effect of drought and habitat on the
four climate variables and an interaction effect of those climate variables with habitat on
bird counts. This structure creates multiple “pathways” through the model by which both
habitat and drought can influence abundance and multiple opportunities for interaction
effects to occur (Figure 4.2). This means that a simple interaction term is not estimated.
However, we can use partial derivatives to analytically derive the quantity the interaction
term represents—the rate of change of the effect of covariate 1 on the response variable with
respect to covariate 2—in our multi-model framework.

We estimate an interaction between drought and each habitat type term for each species,
dY

dDdh
, representing the degree to which each species’ abundance in each habitat varied differ-

ently with drought. To test whether interactions were statistically meaningful, we computed
posterior predictive distributions of the derived interaction terms for each species-habitat
type combination. If the 95% CI of the posterior distribution of the interaction term be-
tween drought and one or more habitat variable did not overlap zero, we interpreted that as
evidence that the species shifted its overall use of habitat types during drought. We used
one-dimensional credible intervals of each interaction rather than a credible region on all
interactions for a species because the latter is difficult to characterize in higher dimensions.

To characterize the magnitude of habitat shifts on a biologically relevant scale, we derived
posterior distributions of the abundance of each species in each of 6 habitat types during
drought and non-drought conditions. We used the posterior predictive approach in Question
1 to draw abundances for each grid cell for each species, then allowed each grid cell to
contribute to the species’ abundance on each habitat in proportion to the habitat makeup
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of that grid cell. We then derived the fraction of the species in each habitat type and each
drought condition, which we use to visualize and interpret habitat shifts. Among species
whose overall distributions were found to shift, we used chi-squared tests to ask whether
species were more likely to decrease or increase their use of each habitat type.

We also used chi-squared tests to ask whether habitat shifts were associated with trophic
niche, whether or not the species is migratory, and taxonomic order (Passerines vs. non-
Passerines).

Question 3: are species’ changes with drought attributable to changes in
environmental variables?

To estimate the effect of each climate variable’s change during drought on the count of each
species, we adapted the counterfactual count generation workflow. In generating counts
for Question 1 we produced two sets of counts, one using values of all four environmental
variables drawn from predictions of drought conditions and the other with all four environ-
mental variables predicted in non-drought conditions. To understand the impact of each
climate variable in isolation, we instead predicted counterfactual counts with only one cli-
mate variable drawn from predictions in drought conditions, while the others were predicted
in non-drought conditions. By comparing these new count distributions with counts under
non-drought conditions, we were able to identify the amount of change in each species’ abun-
dance attributable to change in each climate variable. We refer to these tests as “one-variable
counterfactual scenarios.”

If the 95% credible interval of the difference in predicted count between each one-variable
counterfactual scenario and the non-drought baseline scenario did not overlap zero, we inter-
preted this as evidence of that variable’s importance in driving the species’ overall abundance
during drought.

Figures 4.1, 4.3, and 4.4 were created using the R packages ggplot2 v3.3.6, ggtern, and
urbnmapr [137, 58, 123]. MCMC samples were processed using the package MCMCvis [143].

4.3 Results

Summary of eBird coverage

More recent years are represented by more checklists in the data than years further into the
past, mirroring trends in eBird usage overall [125] (Figure 4.1). This weakens our ability
to identify trends in time relative to early (low-information) years, but recent years contain
both wet and dry conditions, so inference on drought effects should be robust to this pattern.
Coverage of habitat types was comparable to the distribution of habitat types across the
landscape, with the major exception that developed habitats were strongly overrepresented.
This oversampling should have no bearing on the interpretation of the results, except that
the effect of developed habitat types on species abundance may be better informed than that
of other habitat types.
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Linear mixed model results

In all six habitat groups (row and field agriculture, perennial agriculture, grassland and
pasture, riparian, other natural habitat, and developed/other) temperature was positively
associated with drought. Riparian habitat was associated with the highest magnitude of
temperature increase (95% CI 0.88-1.19 degree C increase per 1 unit decrease in SPEI) and
other natural habitat was associated with the lowest magnitude of increase (95% CI 0.67-0.99
degree C increase per 1 unit decrease in SPEI).

Similarly, in all six habitat groups precipitation was negatively associated with drought.
Riparian habitat was associated with the highest magnitude of precipitation decrease (95%
CI 106.22-133.25 mm decrease per 1 unit decrease in SPEI) and other natural habitat was
associated with the lowest magnitude of decrease (95% CI 68.81-97.17 mm decrease per 1
unit decrease in SPEI).

While change in NDWI and EVI, the remotely sensed measures of landscape wetness and
greenness, were credibly associated with drought in some habitats, the magnitudes of these
relationships were so low as to not be biologically relevant. NDWI decreased with drought
in other natural habitat at a very low magnitude (95% CI 0.01-0.02 unit decrease per 1
unit decrease in SPEI). We estimated that NDWI actually increased with SPEI in three
habitats (other/developed, grassland, and row and field agriculture), though at similarly low
magnitudes (the highest change was in grassland, 95% CI 0.00-0.02 unit decrease per 1 unit
decrease in SPEI). For comparison, the estimated standard error of the random effect of grid
cell was 0.06, and the estimated residual standard error was 0.06. Similarly, EVI changed
little with drought severity. EVI increased with drought in four habitats (both agriculture
groups, other/developed, and riparian) and decreased in one habitat (grassland) though at
very small magnitudes; in no habitat did the magnitude of the relationship exceed a 0.01
unit change in EVI per unit change in SPEI. For comparison, the estimated standard error
of the random effect of cell was 0.05. Altogether these model results indicate that variation
EVI and NDWI in this system are mostly not attributable to drought.

Do species’ overall counts vary during drought?

We estimated posterior distributions of the change in overall abundance of each of 66 bird
species between drought and non-drought conditions. Of these, 21 species had 95% credible
intervals of change in abundance that did not overlap zero. We infer that counts of 5 species
increased during drought, while counts of 16 species decreased (Figure 4.3).

Chi-squared tests indicated that there was no evidence of associations between species
traits or taxonomic group (Passerines vs. non-Passerines) and whether the species’ overall
abundance changed during drought.
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Figure 4.3: Summary of shifts in overall abundance by species. (a) Counts indicating the
rate at which species decreased, increased, or showed no relationship between overall abun-
dance and drought. 16 species declined in abundance with drought, 5 increased, and the
remaining 45 species showed no relationship between overall abundance and drought. (b)
Percent change in abundance with 95% credible intervals for 21 species with credibly nonzero
relationships between overall abundance and drought.

To test whether year-of drought effects were appropriate, we replicated the models in-
cluding drought variables on a one-year lag. Results of these models were nearly identical to
results produced by the main year-of models. Under these models, fifteen species decreased
and four increased their overall abundance, with all but 3 species effects being the same
direction as in the primary models. This suggested that the choice to use year-of models did
not obfuscate a lagged effect of drought. We proceed with interpreting year-of model results.

Do species’ habitat associations change during drought?

We estimated posterior distributions of interaction terms representing how abundance
changed differently for each species in each of 5 habitats during drought. Across 66 species,
27 species had one or more credibly nonzero interaction terms. We infer that associations
between counts of those species and habitat type changed with drought level, suggesting
that species used habitat types in different proportion during drought. We did not identify
patterns in habitat shifts with taxonomy or any functional traits.

To characterize multispecies patterns in habitat-drought relationships, we visualize how
the proportion of each species in each habitat shifts between drought and non-drought condi-
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tions (Figure 4.4). Across the 27 species with habitat shifts, chi-squared tests indicated that
birds were more likely to increase than decline in developed habitat (25/27 species increased
use; adjusted p-value < 0.001) and in perennial agricultural habitat (21/27 species increased
use; adjusted p-value < 0.05). Relative increases in use of perennial agriculture and devel-
oped habitats were offset by decreases in the other four habitat types. More species declined
than increased use of riparian habitat (19/27 decreased) and other natural habitat (17/27
decreased), though chi-squared tests did not indicate that these patterns were statistically
different from an even pattern of increases and decreases after controlling for false detection.

Chi-squared tests indicated that there was no evidence of associations between species
traits or taxonomic group (Passerines vs. non-Passerines) and whether the species changed
its relative use of habitat types during drought.
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Figure 4.4: Visualizing how 27 species shifted their habitat associations during drought. The
39 species that did not change their relative use of habitat with drought are excluded. (a)
A ternary plot shows how species shift in three-dimensional habitat space. Each point pair
represents one species for which a habitat shift was estimated. Habitats have been aggregated
into three categories: agriculture (combining perennial and row/field agriculture), natural
(riparian, grassland, and other natural) and developed. Species overall show shifts away
from natural habitat and toward developed and agricultural habitat during drought (moving
from filled to empty circles, species largely shift up and to the right). (b-g) The shift in
use of each species in each habitat. Colors indicate whether each species’ median posterior
predicted proportional use increased or declined in the drought condition. We identify a
pattern of increase agriculture and developed habitat, while species declined at the greatest
rate in riparian and other natural habitats. Note that both plots visualize median posterior
predicted proportional habitat use and that credible intervals have been omitted for legibility.

Are species’ changes with drought attributable to changes in
environmental variables?

Among 16 species with overall decline, 7 declined in a temperature-only one-variable coun-
terfactual scenario, and 2 species declined in a precipitation-only counterfactual scenario.
Among 5 species with overall increase, 3 species increased in a temperature-only and 3
species increased in a precipitation-only drought counterfactual; one species with an overall
increase declined in the precipitation-only scenario. Additionally, we find very low rates of
marginal counterfactual difference among species with no overall change (4 species of 45). No
species declined in EVI-only or NDWI-only counterfactual scenarios, which is explained by
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the finding in the LMM phase that EVI and NDWI did not vary with drought to a relevant
degree.

We chose a posteriori to predict abundance changes under an additional counterfactual
scenario where precipitation and temperature were both allowed to vary with drought, but
EVI and NDWI were not. Under this scenario, 15 species declined in abundance and 5
increased, indicating that the combination of change in temperature and precipitation were
jointly responsible for nearly all abundance changes predicted by the model.

4.4 Discussion
Birds’ responses to drought depend on habitat type. Using a novel multi-model framework
to analyze eBird data, we provide the strongest evidence to date that changes in the relative
importance of habitats may be a more common and immediate consequence of drought
than changes in overall abundance. Nearly half of a set of common Central Valley species,
including many species whose overall abundances did not change during drought, changed
their use of habitat types depending on drought level. We also found that the region-wide
abundance of a moderate number of species declined meaningfully during severe drought, a
pattern comparable to that identified in previous research [86, 99, 117, 104]. However, the
rate of abundance declines was lower across species than the rate of habitat shifts.

In California’s Central Valley, birds used human-modified habitat more during periods
of extreme drought compared to non-drought periods. This pattern contrasts with research
in other systems indicating that natural habitat supports greater biodiversity and promotes
resilience during drought [99]. This discrepancy might be explained by the intensity and
character of human activity in the region. The Central Valley is dominated by irrigated
agricultural land, and the distribution of water between “environmental” applications (in-
cluding river flow, wildlife habitat maintenance, and scenic waterways) is highly regulated
and varies dramatically between drought and non-drought periods. As an illustration, in
one characteristic dry year, 2014, the allocation of water for environmental use was cut to
a quarter of its allocation compared to a characteristic wet year, 2006, while the allocation
for agriculture actually increased slightly to offset precipitation deficits [98]. In addition to
driving short-term changes in relative abundance, changes in water availability were a major
driver of avian community composition change in the Central Valley over the last 100 years,
supporting the idea that water is major factor determining species distributions [90]. How-
ever, the effect of water availability on bird abundance may be dwarfed by effects of climate
change and land use change over long timescales [9]. Agricultural and developed habitats,
which may be less preferable for species in normal climate conditions, experience less change
in water availability due to human intervention compared with natural landscapes, which
may dry entirely as intermittent streams stop flowing.

Of the 16 species whose overall abundance declined during drought, the yellow-billed
magpie experienced the greatest declines. The yellow-billed magpie is a species of conser-
vation concern whose range is restricted almost entirely to the Central Valley. This finding
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implicates frequent extreme drought as a compounding factor driving this species’ recent
observed population declines [31].

While we identified greater rates of drought-related abundance decline among long-
distance migrants, this pattern was not statistically significant. Migratory species may be
phenologically restricted and thus less able to adapt to short-term changes in temperature
during the breeding season, but further study is needed to test this hypothesis in the Central
Valley [3, 2, 95].

Predicted abundance declines during drought were similar when considering effects of
drought on a one-year lag, suggesting that the year-of model was appropriate. Drought re-
sponses were observed during drought events, rather than after them. The rapid response by
birds is more consistent with the hypothesis that observed habitat shifts are driven by indi-
viduals moving across the landscape as opposed to by habitat-dependent mortality gradients,
which would be more evident over longer timescales. However, our model ultimately cannot
differentiate between animal movement and mortality gradients. Monitoring and conserving
birds during droughts will require considering that birds’ use of habitat is climate-dependent,
and that shifting relative use of habitat and drought-driven movement across the landscape
may influence bird demographics, persistence, and exposure to other threats, especially along
a gradient of human modification.

We found that nearly half of overall drought-related species declines in this system would
occur under only the influence of extremely high temperatures such as those that occur dur-
ing drought years, while all changes were attributable to a combination of high temperature
and low precipitation. Birds’ sensitivity to drought is in large part driven by heat stress [110,
109], and we predicted few species declines when temperatures were normal. The impor-
tance of temperature is consistent with the fact that species increased their use of perennial
agriculture—fruits, nuts, and vineyards that provide year-round microhabitats in the form
of vegetative structure—but not row and field crops during drought. As temperatures in
California are expected to continue to increase [38], water availability may be insufficient to
promote resilience. Conservation must take into account the necessity of shifts in range and
habitat use by species to buffer exposure to warming by seeking out habitats with available
microrefugia.

Conserving birds in the Central Valley requires balancing the needs of wildlife with the
reality of extensive human modification of the landscape. As extremely high temperatures
synergize with water deficits to produce abundance declines among birds, habitats with
stable sources of water and sufficient microrefugia may support the persistence of sensitive
species. Our results, which show that species’ relative use of developed and perennial agri-
cultural habitat is greater during periods of drought, indicate that birds are likely already
buffering some effects of anthropogenic climate change by tracking human-induced gradients
in water availability across suitable habitats. Conservation managers can work with this
trend by placing a stronger emphasis on conservation on working landscapes during drought
[81]. Agricultural and developmental practices that promote biodiversity in the context of
human modification, such as crop diversity and remnant natural habitat, could have a greater
proportional effect on birds during drought when modified habitats are of greater relative
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importance [108, 8, 50]. However, a conservation paradigm that ties the persistence of birds
during extremely hot, dry periods to agricultural and developed land poses potential prob-
lems. Increasing human-wildlife interaction can expose birds to additional stressors such as
disturbance, noise, and pollution, which could constitute an ecological trap in which species
prefer human-modified habitat despite having worse demographic outcomes there [112]. Neg-
ative impacts on human systems must also be considered, such as increased consumption of
crops by birds, although birds may also predate pests and provide other ecosystem services.
A conservation plan that emphasizes working lands in this system should focus on mitigating
the impacts of human disturbance on birds and promoting biodiversity on human-dominated
habitat during drought.

While this study represents a major step toward a comprehensive picture of drought im-
pacts on birds, tailored conservation decision-making will require careful observational study
of individual systems of interest to clarify the extent to which demographic processes and
species movement separately contribute to changes in relative habitat use during drought.
We suggest that ecologists emphasize interactions between habitat type and drought in fu-
ture studies and experimental interventions. eBird data likely contain observer variation,
cell variation, and overdispersion, all of which we accounted for in the model but which po-
tentially limited our power to detect changes in abundance. Higher statistical power may be
achieved via more targeted sampling in future studies. Because this study was restricted to
the 66 most commonly detected birds in the Central Valley, our ability to identify impacts on
rare species was limited. eBird data may be insufficient for understanding how rare species
respond to drought, so ecologists may wish to prioritize targeted monitoring of rare species.
We note also that while the N-mixture approach is an effective way to account for between-
and within-site variation such as that generated by detection heterogeneity [114], it is pos-
sible that additional unmeasured variation in the detection process beyond that accounted
for with covariates and random effects can introduce bias in parameter estimates or lead to
misattribution of variation. For instance, if eBird observer behavior differed systematically
during periods of extreme temperature beyond what was accounted for by effort covariates
and observer-level random effects, we may infer biological relationships from detection-driven
variation.

Our ability to identify changes in bird abundance during drought, and isolate those
changes to particular environmental variables and habitat types, depended on the new multi-
model framework presented in this manuscript. By hierarchically structuring the impacts of
drought and habitat on abundance, we were able to estimate parameters across a complex
set of ecological relationships for a large number of species. We propose that joint posterior
predictive methodology will be a valuable tool for ecologists and environmental scientists
seeking to leverage high-volume datasets to understand such systems.

Shifting habitat associations, more than abundance declines, define birds’ responses to
drought. Patterns in ten years of eBird data suggest that species respond rapidly to severe
drought, and that individuals are likely able to track gradients of habitat suitability to meet
temperature and water needs. This pattern is part of a global trend of increased human-
wildlife interaction driven by climate change [1]. When human-induced resource gradients
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lead species onto agricultural and developed land, conservation managers must be prepared
to follow. Conservation planning for such species should adopt a working lands approach that
considers species’ habitat associations not as fixed properties but as dynamic and climate-
dependent [81].
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Chapter 5

Conclusion

Participatory science data are a powerful resource for ecological inference. As the volume
and spatiotemporal coverage of these data grow, ecologists will find increasing value in their
use for wildlife monitoring. This trend creates a pressing need for methodological guidance.
Ecologists must be equipped with clear, robust, and accessible modeling tools to use these
data effectively.

In this dissertation, I presented methodological and applied work illustrating the use of
participatory science data in gaining insight into the distribution of wildlife. Over the course
of three chapters, several key insights emerged. First, statistical models that accommodate
overdispersion and variation in the sampling process are essential when using these data. I
found in a methodological comparison that, as the size of the participatory dataset increases,
more flexible models fit the data better more often. I also showed that inference was de-
pendent on being able to reasonably claim that a model’s estimated relationship between
observed counts and a potential abundance driver was not confounded with variation in the
detection process. When dealing with participatory science data, models are only useful
when a reasonable attempt has been made to model extra variation in detection, such that
that variation is not incorrectly attributed to the variables of interest. Careful thought must
always be given to the data context before the ecologist can assert that unmodeled variation
in detection has not been misattributed to the process of interest.

I further found that participatory data were in practice useful for revealing novel aspects
of ecological systems. In an applied investigation into drought impacts in the Central Valley,
I attempted to decompose the effects of a complex set of correlated environmental processes
on each of a number of species. The size and coverage of the eBird data I used were critical in
allowing me to develop and estimate a sufficiently complex model. While this analysis posed
significant computational and statistical challenges, they were not insurmountable. Rather,
these observations constituted a unique resource for understanding the study system in
question. I anticipate that this dynamic will continue to play out across the field of wildlife
ecology. As computational and statistical advances make it easier for ecologists to estimate
more complex models with larger datasets, the use of participatory data in ecological research
will become increasingly mainstream. In concert with targeted and standardized surveys,
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participatory data will play a key role in the future of wildlife science and monitoring.
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