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Abstract

Defining the constituent regulatory molecules in tendon is critical to understanding the process of
tendon repair and instructive to the development of novel treatment modalities. The purpose of
this study is to define the structural, expressional, and mechanical changes in the tendon injury
response, and elucidate the roles of two class | small leucine-rich proteoglycans (SLRPs). We
utilized biglycan-null, decorin-null and wild type mice with an established patellar tendon injury
model. Mechanical testing demonstrated functional changes associated with injury and the
incomplete recapitulation of mechanical properties after six weeks. In addition, SLRP deficiency
influenced the mechanical properties with a marked lack of improvement between three and six
weeks in decorin-null tendons. Morphological analyses of the injury response and role of SLRPs
demonstrated alterations in cell density and shape as well as collagen alignment and fibril
structure resulting from injury. SLRP gene expression was studied using RT-qPCR with
alterations in expression associated with the injured tendons. Our results show that in the absence
of biglycan initial healing may be impaired while in the absence of decorin later healing is clearly
diminished. This suggests that biglycan and decorin may have sequential roles in the tendon
response to injury.

Key Terms
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Introduction

As the conduits of force transfer from muscle to bone, tendons are susceptible to injury in a
myriad of activities. Although an injured tendon can mount a significant reparative response,
incomplete recapitulation of pre-injury functionality is well documented. In healthy tendon,
collagen fibrils, the primary structural components of tendon, are organized in uniaxially
arranged bundles called fibers. After healing from an injury, new tissue is structurally and
mechanically inferior to uninjured tissue.1® Multiple factors, including small leucine rich
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proteoglycans (SLRPSs) and their associated glycosaminoglycan (GAG) chains, influence
the organization of collagen in tendon.?:10.12.14.29 Gaining insight into these regulators is
instructive to the development of novel treatment modalities for tendon injury and
pathology.

Decorin and biglycan are the principal small leucine rich proteoglycans (SLRPS) in tendon,
and contain one or two chondroitin sulfate GAG chains, respectively.1’ Researchers have
examined the influence of these molecules on development3:25:30. mechanics!2 and aging.14
SLRPs’ roles as mediators of collagen fibril assembly and growth in multiple tissues have
been supported by numerous investigations.1:8:25.26.27.28 The tendons of SLRP deficient
animals have been shown to be mechanically inferior 12.13.27 |n tendons, biglycan
expression is upregulated after injury*21 and decorin expression is initially downregulated.*
However, although we know that SLRP expression changes with injury, the temporal,
structural and mechanical influences of decorin and biglycan in tendon healing are not yet
understood.

The objective of this study was to investigate the roles of decorin and biglycan in tendon
healing using wild type (WT), biglycan-null (Bgn~~) and decorin-null (Dcn™~) mouse
models. Using an established patellar tendon injury model, we examined structural,
expressional, and mechanical changes induced by the deficiency of specific SLRPs. We
compared two post-injury times points—three weeks and six weeks to uninjured tendons
across the three genotypes. We hypothesized that decorin-null and biglycan-null tendons
would exhibit an inferior repair response compared to wild type.

Materials and Methods

A total of 136 female wild-type (WT), biglycan transgenic null (Bgn™"), and decorin
transgenic null (Den™~) mice were used in this study with approval from The University of
Pennsylvania and University of South Florida’s Institutional Animal Care and Use
Committees. All mice were on a C57BL6 background. At approximately 120 days of age,
two thirds of the animals in each genotype underwent bilateral surgery under aseptic
conditions as previously described.20 Briefly, a single incision was made in the skin near the
knee, and longitudinal incisions were made adjacent to and on either side of the patellar
tendon. A rubber-coated backing was placed under the tendon and a full thickness, partial
width (~60%) region of the tendon was transected with a 0.75mm biopsy punch. Skin was
sutured and the animals were allowed to return to cage activity. They were then sacrificed at
three or six weeks post-injury. Additional animals were sacrificed at 150 days (equal to 120
days plus 4.5 weeks, splitting the difference between injury groups and thus minimizing
unnecessary animal sacrifice) to serve as uninjured controls.

Immediately after sacrifice, one hind limb of each animal was wrapped in gauze, soaked in
phosphate buffered saline (PBS), and frozen for later mechanical testing. From the
contralateral limb, the tendon was longitudinally bisected through the injury and randomly
assigned to two of three additional assays to further analyze the injury site: RT-qPCR,
transmission electron microscopy (TEM), and histology.

Mechanical Testing

In preparation for mechanical testing, frozen hind limbs were thawed and all surrounding
musculature and soft tissue was removed to isolate the tibia-patellar tendon-patella complex.
The tendon was stamped into “dog-bone” shape [S-Figure 3], effectively isolating the repair
tissue from the uninjured struts. A custom laser device was used to take 5 measurements of
cross sectional area across the midsection of the stamped region and these were averaged.16
The tibia was then potted in acrylic, speckle coated with Verheoff’s stain for optical
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tracking, and loaded into an Instron 5848 (Instron, Natick, MA) universal testing system
with custom fixtures. Throughout preparation, the tendon was kept hydrated with PBS and
was tested submerged in a PBS bath maintained at 37°C.

The mechanical testing procedure consisted of a modified version of an established
protocol12.14.22 consisting of 1) preconditioning 2) stress-relaxation and frequency sweep
(0.01, 0.1, 1, 5, 10 Hz) at each 4%, 6%, and 8% strains and 3) return to gauge length and a
0.1%/s ramp-to-failure. Data was collected for 10 cycles per frequency and averaged. A 10
minute hold at each strain allowed the tendon to relax prior to dynamic oscillations. The
ramp-to-failure was imaged at 2 frames per second.

The Instron controlled displacement and recorded both displacement and load. By dividing
these parameters by gauge length and cross-sectional area, respectively, stress and strain
sinusoids from cyclic loading were obtained. The dynamic modulus |E*| (defined by the
ratio of the amplitudes of the stress and strain sinusoids and reported in MPa) was calculated
for each strain-frequency combination. Likewise, the phase angle 8, the peak-to-peak
distance (in degrees) between curves (resulting from the time lag between stress and strain)
was obtained. The tangent of this value, tan 6, was calculated and is equal to the ratio of
dissipated to stored energy. Additionally, the ramp to failure was analyzed with optical
tracking software to obtain quasi-static properties including toe modulus, linear modulus,
transition strain and transition stress.

Our dynamic testing protocol utilized 3 strains, 5 frequencies, 3 genotypes, and 3 injury
states to examine two mechanical parameters. Although this comprehensive study design
could, in concept, be analyzed by a four-way ANOVA with some factors as repeated
measures and some as not, our specific hypotheses were best tested in a focused manner
utilizing t-tests as previously described.14 Specifically, t-tests are calculated for each
frequency and strain level, across injury states within each genotype [Table 1] and then
across genotypes within each injury state [Table 2]. In each analysis, each group was
compared to two other groups, so to correct for multiple comparisons, significance was set
at and p<0.05/2 and 0.05/2<p<0.1/2 was considered a trend. Inferences were made based
upon consistent results.

Real-time quantitative polymerase chain reaction assay (RT-gPCR) was used to quantify
expression levels for biglycan, decorin, lumican, and fibromodulin as previously
described.14 Briefly, individual tissue samples were mechanically homogenized with a
Tissue-Tearor (Model 398, 467 Biospec Products, Inc., Bartlesville, OK) in QlIAzol reagent
(Qiagen, Valencia, CA). Total RNA was isolated by applying the QlAzol:chloroform
supernatant to the RNeasy Micro Kit (Qiagen) using the manufacturer’s protocol. Given the
yields of total RNA from small amounts of tissue, to analyze expression from each
individual sample, MRNA was amplified by Single Primer Isothermal Amplification (SPI1A),
a method shown to produce expression data that is highly correlative to non-amplified
transcript data.1! The mRNA of 25 ng of total RNA was reverse transcribed into cDNA and
amplified using the WT-Ovation RNA Amplification System (NuGEN, San Carlos, CA).
The resulting SPIA product was purified with a QlAquick PCR Purification Kit (Qiagen)
and the amplified cDNA was eluted with 30 pl RNase-free water. For gPCR analysis, 1 pul of
amplified cDNA template was added to a reaction volume of 20 .l per well in an ABI
StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA) with a Fast
SYBR Green Master Mix (Applied Biosystems). Mouse specific primers for $-actin (Actb: F
— AGATGACCCAGATCATGTTTGAGA; R— CACAGCCTGGATGGCTACGT),
decorin (Dcn: F— GCTGCGGAAATCCGACTTC; R— TTGCCGCCCAGTTCTATGAC),
biglycan (Bgn: F— CCTTCCGCTGCGTTACTGA; R—
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GCAACCACTGCCTCTACTTCTTATAA), fibromodulin (Fmod: F—
GAAGGGTTGTTACGCAAATGG; R— AGATCACCCCCTAGTCTGGGTTA) and
lumican (Lum: F— TCCACTTCCAAAGTCCCTGCAAGA; R—
AAGCCGAGACAGCATCCTCTTTGA) were used. The amplified cDNA for each
individual uninjured or injured patellar tendon sample was analyzed in triplicate with a
single negative RT control (0.83 ng total RNA per well) for each sample and each gene.
Gene specific efficiencies were calculated using LinRegPCR v7.5 software for each qPCR
plate and the relative quantity of mRNA for each gene of interest was computed using the
relative gene expression ratios formula, or GED (Gene Expression’s CT Difference) [S-
Table 1].23:26 Qutliers were removed if their measured expression was greater than two
standard deviations from the mean. To test for differences in gene expression, Mann-
Whitney tests were used and significance was set at and p<0.05/2 and 0.05/2<p=<0.1/2 was
considered a trend.

Transmission Electron Microscopy

Tendon bisections were prepared for transmission electron microscopy as previously
described.14 In brief, tendons were fixed with 2.5% glutaraldehyde/4% formaldehyde
fixative, post-fixed with osmium tetroxide, dehydrated with ethanol, embedded in Epon
812and polymerized at 600C. Ultra-thin cross-sections were imaged on JEOL 1400
transmission electron microscope (JEOL Ltd., Tokyo, Japan) equipped with a Gatan Orius
widefield side mount CC Digital camera (Gatan Inc., Pleasanton, CA).

Tendon fibril diameter analysis was done as previously described.1* Briefly, an analysis of
tendon diameter in uninjured tissue was done using pooled data from uninjured mice, one
tendon from each of five mice of the same genotype and age. Analyses of injured tendons
were done using pooled data from 4 to 6 mice of the same genotype and injury state. Five or
six digital images from each tendon were taken at 60,000x. Images were analyzed using an
RM Biometrics-Biogquant Image Analysis System (Nashville, TN). A region of interest
(ROI) of appropriate size was determined within the image so that a minimum of 80 fibrils
were measured from each image. Fibril diameters were measured along the minor axis of the
fibril cross-section. Tendon diameter measurements were pooled into groups by age and
genotype.

Histology and Polarized Light Microscopy

Samples were fixed in formalin, decalcified with Immunocal (Decal Chemical Corporation,
Tallman, NY), embedded in paraffin, sectioned into 7 pm slices, stained with Hematoxylin
and Eosin, and imaged at 200x with both traditional and polarized light microscopes.

Traditional light images were analyzed with BioQuant software to determine cell density
(cells per pm) and cell shape (aspect ratio; 0—1 with 1 being a perfect circle). Polarized light
images were analyzed with custom software to quantify collagen fiber alignment, outputted
as circular standard deviation. The greater the degrees of circular standard deviation, the less
well aligned are the collagen fibers.

For cell-density and cell-shape comparisons, t-tests were used. For circular standard
deviation, a parameter which is not normally distributed, Mann-Whitney tests were used. To
correct for multiple comparisons, significance was set at and p<0.05/2 and 0.05/2<p<0.1/2
was considered a trend.
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Results

Biomechanical Properties

The dynamic modulus |E*| decreased between the uninjured and 3 weeks post-injury for all
genotypes across all strains and frequencies [Fig. 1a, 2a, S-Fig. 1; Table 1]. Tand, a measure
of tendon viscosity, increased 3 weeks post-injury compared to uninjured controls [Fig. 1b,
2b, S-Fig. 1; Table 1]. In WT tendons, no improvement was observed between 3 and 6
weeks post-injury at 4% strain [Fig 1a]. However, an increasing trend was evident for
dynamic modulus at 8% strain [Fig. 2a; Table 1]. Tand significantly decreased between 3
and 6 weeks at 8% strain [Fig. 2b, Table 1], but not at 4% strain [Fig. 1b, Table 1]. For both
|[E*| and tang, results were intermediate at 6% (Data shown in S-Fig. 1, Table 1).

In Bgn~/~ tendons, the changes in |E*| and tan8 between 3 and 6 weeks were similar to those
observed in the wild type mice [Fig. 2a,b; Table 1]. However, compared to WT, these
mechanical improvements were greater in magnitude and were more consistently
statistically significant. Again, changes were not observed at 4% strains [Fig. 1a,b], but there
was significant improvement in properties (increasing |E*| and decreasing tand) between 3
and 6 weeks at both 6% and 8% strains [Fig. 2a,b; Table 1]. Dcn™/~ tendons did not exhibit
improved mechanical properties between 3 and 6 weeks post-injury [Fig. 1a,b, 2a,b, S-Fig.
1]. At no strain or frequency was any significant improvement detected for either the
dynamic modulus or tand [Table 1].

When comparing across genotypes, the uninjured tendons of both knockout genotypes were
significantly different from wild type tendons [Fig. 1a,b, 2a,b; Table 2]. At 3 weeks after
injury, the biglycan-null tendons had significantly lower dynamic moduli [Fig. 2a] and
higher tand [Fig. 1b] at 8% strain than the other genotypes. At 6 weeks, this was no longer
the case. A summary of dynamic moduli and tand values for each genotype is presented in
supplemental data S-Fig. 1.

In the analysis of the ramp to failure, the toe and linear moduli appeared to follow the same
patterns as the dynamic modulus, but improvement between 3 and 6 weeks post-injury did
not reach statistical significance [S-Fig. 2]. Our previous work has demonstrated that the
dynamic mechanical parameters |E*| and tand are more sensitive measures than static
properties to changes resulting from both aging and injury.13.14.18

SLRP Expression

For injured wild type tendons, the expression of biglycan was significantly lower than in
uninjured tendons [Fig. 3a,b]. Uninjured Dcn™~ expression of biglycan was significantly
lower (4.64-fold) than uninjured WT and did not increase at the later time points. Decorin
expression was conserved after injury in both wild type and biglycan-null tendons.
Uninjured Dcn~/~expression of fibromodulin trended higher than uninjured WT (2.7-fold)
and injured Den™ tendons (2.7-fold and 2.3-fold, respectively, at 3 and 6 weeks post-
injury) [Fig. 3c]. At 3 weeks, lumican expression was higher in Bgn™~ than in WT and at 6
weeks, it was higher in Bgn™~ than in Den™~ [Fig. 3d].

Fibril Structure

Collagen fibril diameter distributions were analyzed in uninjured and injured wild type,
Bgn~'~ and Dcn™/~ tendons. using transmission electron microscopy and morphometric
analyses [Fig. 4]. The uninjured tendons had similar bimodal distributions across genotypes.
However, subtle differences were observed with the wild type tendon have greater overlap
of the smaller and larger diameter subpopulation. Both deficient genotypes demonstrated
more obvious separation of the smaller diameter (30—60nm) fibril subpopulation. In

Ann Biomed Eng. Author manuscript; available in PMC 2015 March 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Dunkman et al.

Page 6

addition, in the Bgn™'~ and Dcn™/~ tendons the mature, larger diameter subpopulations were
shifted to larger and small diameters, respectively. In all injured tendons, a distinct increase
in immature, small diameter fibrils (30-60 nm range) was obvious at both 3 and 6 weeks
post-injury. This subpopulation is consistent with newly assembled fibrils. Injured wild type
tendons demonstrated a broadening and increased number of fibrils in the large diameter
subpopulation from 3 to 6 weeks post-injury, consistent with fibril maturation. Injured
Dcn™/~ tendons demonstrated similar changes from 3 to 6 weeks, however, the larger
diameter fibril subpopulation was more distinct and shifted to smaller diameters compared
to the injured wild type tendons. At 3 an 6 weeks, Bgn™/~tendons demonstrated decreased
numbers of the largest diameter fibrils (>170 nm).

Tenocytes and Fiber Alignment

After injury, cell density is expected to increase, however the apparent changes in Fig 5a
only reached statistical significance for Bgn™~, with WT and Den™ considered a trend
[Table 4]. The apparent decrease between 3 and 6 weeks did not reach statistical
significance for any genotype. Cell shape appeared to be influenced by injury only in Den™/~
tendons [Fig. 5b], becoming more round after injury. Collagen alignment exhibited a
decreasing trend after injury in both WT and Den™~ tendons [Fig. 5¢]. Interestingly, Den™~
tendons appears to have improved substantially in this parameter in later healing—no longer
different than uninjured by 6 weeks—suggesting that the failure to recapitulate mechanical
properties is not caused by a failure to realign.

Discussion

This study investigated the structural, expressional, and mechanical properties of healing
tendons deficient in biglycan and decorin. As hypothesized, the ability to recover from
injury appears to be moderately impaired in the biglycan- and decorin-null tendons.
However, this finding was clearer in the case of the decorin-null tendons than in the
biglycan-null. Unlike biglycan-null tendons, there was no mechanical improvement in
decorin-null tendons between 3 and 6 weeks post-injury.

Interestingly, while the injured mechanical properties of wild type and decorin-null tendons
at 3 weeks post-injury were equivalent, biglycan-null tendons exhibited a significantly lower
dynamic modulus and higher tand when measured at 8% strain. These data indicate that the
absence of biglycan resulted in a deficiency in early stage healing, and therefore a role for
biglycan during this period.

In the developing tendon, the temporal shift in gene expression from early dominant
biglycan expression which rapidly decreases to sustained decorin expression marks an
important transition in the developing tendon.29 We speculate that a similar shift takes place
during the phases of tendon healing. Biglycan expression is known to initially increase after
injury21 (measured earlier than in our study). Our data shows that the absence of biglycan
adversely affects recently (3 week) injured tendons, and that the absence of decorin
adversely affects healing between 3 and 6 weeks post-injury. This evidence suggests that
biglycan may play a more prominent role during early healing while decorin may become
more prominent in later stages.

In the absence of decorin expression, early healing was not radically altered. It is
conceivable that given the reduced mechanics of uninjured decorin null tendons, early
healing was actually enhanced, and then plateaued between 3 and 6 weeks. This would be
consistent with the broad distribution of mature large diameter fibrils seen at 3 weeks post
injury in the decorin null tendon. However, while WT and biglycan-null tendons exhibited
some improvement of properties between 3 and 6 weeks after injury, the tendons of decorin-
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null mice did not. Given the known role of decorin as a meditator of lateral fibril fusion
leading to mature, large diameter tendon collagen fibrils,>6:24 it seems reasonable to
speculate that decorin’s influence during the healing process occurs predominately during
the later phases of healing. Interestingly, we have also recently reported that decorin is
implicated in the age related structural alterations and mechanical deterioration seen in aging
tendons!* and we speculate that these mechanisms may be related. In the case of the healing
tendon between 3 and 6 weeks post-injury, the absence of decorin appears to hinder the
mechanical improvement of the tendon. Our data does not suggest that this is directly the
result of failure to realign or to regulate collagen fibril synthesis or fusion. It is somewhat
surprising that we did not observe substantial differences in fibril distributions across
genotypes. Other factors must be responsible for the observed differences in mechanical
properties. Additionally, although decorin appears important to latter stage healing, injury
did not result in a marked change in decorin expression. Since baseline decorin expression is
high, important, but comparatively small changes in decorin expression after injury may be
difficult to measure. The cells in Dcn™/~ tendons 3 weeks after injury were particularly
rounded, likely indicative of more synthetic or proliferative activity.

Interestingly, the expression studies revealed that in the absence of biglycan or decorin,
expression of SLRPs fibromodulin and lumican are changed. While ablation of decorin
reduced biglycan expression, fiboromodulin expression was enhanced in uninjured mice.
Additionally, expression of lumican was increased at 3 weeks post-injury in the absence of
biglycan, only to decrease to wild type levels by 6 weeks. Previously, regulatory roles for
fibromodulin and lumican in tendon fibrillogenesis were described.1® In addition, synergistic
and compensatory mechanisms were suggested for Bgn and Fmod in tendons.?” These
expression studies provide evidence for compensation by other SLRPs. Further
investigations of these relationships are necessary to determine the implications of these
potential compensatory mechanisms.

A secondary result of this study was that the differences between the 3 and 6 weeks post-
injury states were consistently more pronounced at higher strains. Thus, the structural
changes of healing appear to be more influential to mechanics at higher strains.
Interestingly, while differences related to injury state are more pronounced at higher strains,
we have also observed that differences resulting from age are more pronounced at lower
strains.13.14 This may suggest novel differences in the biology of damage resulting from
either aging processes or the repair response to injury.” For example, it is possible that
higher strains pose a greater risk to healing tendons while prolonged repetitive stress poses a
greater risk to the aging tendon.

This study is not without limitations. Our statistical analysis allows us to addresses our
specific hypotheses and all p-values are conservatively corrected and provided for the reader
to interpret. However, we acknowledge that although subject to other limitations and
assumptions, a 4-way ANOVA or mixed effects regression model could offer different
benefits. The use of knockout mice does not allow us to fully isolate developmental from
current alterations in tendon properties. Additionally, our study design did not allow us to
evaluate gene expression immediately after injury, or to see the long term outcome of healed
tendon. Moreover, expressional analyses described transcriptional levels. Future
investigations will include analyses of protein content and localization. We are currently
developing a study featuring conditional knock-out mice to further investigate these
mechanisms.

This study offers new insight into the specific regulatory functions of two important
molecular constituents of tendon. Results indicate that during healing there is likely a
temporal shift in the relative influence of biglycan to decorin. Future work will examine the
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influence of advanced aging on the healing process and how the functions of these SLRPs
may change throughout an organism’s life. As we continue to explore the mechanisms of
tendon healing, we move closer to next-generation treatments such as temporally specific
biologic factor release, improving medical interventions and surgical outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Dynamic moduli and tand at 4% (a) Dynamic modulus decreases after injury in all
genotypes. Improvement is not evident between 3 weeks and 6 weeks at this strain.
Differences between genotypes in the injured states are not detectable at this strain. (b) Tand
increases after injury for all genotypes but improvement between 3 and 6 weeks is not
detectable at this strain. Tans is higher for Dcn™~ than WT at 6 weeks. Mean+SD.
Significance bars denote p<0.05/2; dashed bars denote “trend” p<0.1/2.
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Figure 2.

Dynamic Moduli and Tand at 8%. (a) Dynamic modulus decreases after injury in all
genotypes. Improvement is evident between 3 and 6 weeks for WT and Bgn™/~ but not for
Den™~. Bgn™~ has a significantly lower dynamic modulus at 3 weeks. (b) Tans increases
after injury for all genotypes and decreases between 3 and 6 weeks for WT and Bgn™~ but
not Den™/~. Tan§ is higher for Bgn™~ than WT at 3 weeks; higher for Den™/~ than WT at 6
weeks. Mean+SD. Significance bars denote p<0.05/2; dashed bars denote “trend” p<0.1/2.
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Figure 3.

RT-gPCR for SLRP gene expression. Biglycan (a) and decorin (b) are effectively at
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background in respective knockouts (significance bars not shown). Uninjured Dcn™~ trend

towards higher levels of fibromodulin expression (c) and Bgn™~ mice may upregulate

Lumican relative to WT at 3 weeks post-injury (d). Interquartile range boxes with min-max

whiskers.
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Figure 4.
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Fibril Structure. An increase in smaller diameter fibrils is observed after injury, indicating
newly assembled fibrils.
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Figure 5.

Tenocytes and Fiber Alignment. (a) Cell density increased after injury but was not

Page 14

significantly decreased between 3 weeks and 6 weeks. (b) Cell shape was apparently only
affected by injury in decorin-null tendons. (c) Collagen alignment decreased with injury for
WT and Dcn—/-. Mean+SD. Bars denote p<0.05/2; dashed bars denote “trend” p<0.1/2.
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Histology p-values from t-tests (density and cell shape) and Mann Whitney (circ st. dev.).

p<0.1/2
Density

Cell Shape
Circ. St. Dev.

Density
Cell Shape
Circ. St. Dev.

Density
Cell Shape
Circ. St. Dev.

Density
Cell Shape
Circ. St. Dev.

Density
Cell Shape
Circ. St. Dev.

Density
Cell Shape
Circ. St. Dev.

Table 4

uninj vs 3 wks

0.082
0.032

uninj vs 3 wks

0.337
0.196

uninj vs 3 wks
0.041

0.036

WT vs Bgn-/-
0.223
0.110
0.151

WT vs Bgn—/-
0.839
0.833
0.857

WT vs Bgn-/-
0.387
0.651
0.114

Wild Type

uninj vs 6 wks

0.088
0.032

Bgn-/-
uninj vs 6 wks
0.063
0.167
0.095

Dcn-/-
uninj vs 6 wks
0.047

0.278
Uninjured
WT vs Den—/-
0.183
0.899
0.690

3 Weeks
WT vs Den—/-
0.546
0.080
0.629

6 weeks
WT vs Den—/-
0.120
0.554
0.486

3 wks vs 6wks
0.127
0.467
0.343

3 wks vs 6wks
0.204
0.099
0.057

3 wks vs 6wks

0.133
0.057

Bgn-/- vs Dcn—/-
0.656

0.310

Bgn-/- vs Den—/-
0.351
0.036
0.400

Bgn-/- vs Dcn-/-
0.587

0.886 |

Ann Biomed Eng. Author manuscript; available in PMC 2015 March 01.

Page 20





