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Comparative RNA-Sequencing 
Analysis Benefits a Pediatric Patient 
With Relapsed Cancer

Clinical detection of sequence and structural 
variants in known cancer genes points to viable 
treatment options for a minority of children with 
cancer.1 To increase the number of children who 
benefit from genomic profiling, gene expression 
information must be considered alongside muta-
tions.2,3 Although high expression has been used 
to nominate drug targets for pediatric cancers,4,5 
its utility has not been evaluated in a systematic 
way.6 We describe a child with a rare sarcoma 
that was profiled with whole-genome and RNA 
sequencing (RNA-Seq) techniques. Although 
the tumor did not harbor DNA mutations tar-
getable by available therapies, incorporation 
of gene expression information derived from 
RNA-Seq analysis led to a therapy that produced 
a significant clinical response. We use this case 
to describe a framework for inclusion of gene 
expression into the clinical genomic evaluation 
of pediatric tumors.

CASE SUMMARY

Patient 1 was diagnosed at 8 years of age with a 
left tentorial-based CNS sarcoma after a 2-week 
history of nausea, lethargy, and diplopia. Clinical 
workup confirmed that the tumor was primary 
to the brain (Figs 1A and 1B). Histology revealed 
a mitotically active, epithelioid-to-spindled cell 
tumor in patternless sheets, interrupted by thick 
fibrous bands and foci of necrosis (Figs 1C to 
1D). Immunohistochemistry revealed diffuse 
positivity for vimentin, desmin, neuron-specific  
enolase, epithelial membrane antigen, and CD99 
(Figs 1E to 1H). Focal immunohistochemical  
positivity was observed for pan-cytokeratin  
(AE1/AE3) and synaptophysin. The tumor 
was negative for glial fibrillary acidic protein 
(GFAP), Wilms tumor 1 (WT1), myo-D1, 
myogenin, smooth muscle actin, nonphosphor-
ylated and phosphorylated neurofilament pro-
tein, CD34, CD31, HMB-45, S-100, leukocyte 
common antigen, and BAF47/INI-1 (retained 

nuclear positivity). The Ki67 proliferative index 
was 9%. A diagnosis of desmoplastic small round 
cell tumor (DSRCT) was favored initially.7 
Because EWSR1 breakapart fluorescence in situ  
hybridization confirmed an EWSR rearrangement 
but concomitant WT1 breakapart fluorescence in 
situ hybridization was negative, the molecular cri-
terion for DSRCT was not met, and a final diagno-
sis of poorly differentiated sarcoma, not otherwise 
specified, was rendered. The patient received six 
cycles of induction chemotherapy—ifosfamide, 
carboplatin, and etoposide—followed by autolo-
gous stem-cell transplantation with a high-dose 
preparative regimen of carboplatin, thiotepa, and 
etoposide as well as 54 Gy of focal radiation to 
the location of the original tumor. After a 2-year 
remission, the tumor recurred with numerous 
pulmonary lesions in all lobes. The histologic 
characteristics of the metastasis were identical 
to the primary tumor. The patient enrolled in 
the Personalized OncoGenomics (POG)3 study, 
which offers whole-genome sequencing (WGS) 
and transcriptome sequencing and analysis to 
identify drivers and potential therapeutic options 
of relapsed solid tumors for children and adults in 
British Columbia.

Biopsy material from a lung metastasis was 
characterized with WGS and RNA-Seq, and 
peripheral blood was characterized with WGS.3 
The analysis of the sequencing data revealed an 
EWSR1-ATF1 gene fusion (Appendix Fig A1, 
online only); although this finding is most sug-
gestive of a clear cell sarcoma, no immunohis-
tochemical support for this diagnosis could be 
established.8,9 The POG team identified three 
somatic variants of unclear therapeutic signif-
icance: PDGFRA p.V299F, PRKCB p.D341N 
and SVIL p.L1374R. No germline single- 
nucleotide variants with established cancer rele-
vance were detected.10 Although no therapy was 
available to target the EWSR1-ATF1 fusion pro-
tein directly, the POG RNA-Seq–derived gene 
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expression analysis identified high expression of 
downstream genes IL6 and JAK1. The finding 
of the JAK1 overexpression was corroborated by 
comparative RNA-Seq analysis at the University 
of California Santa Cruz.

COMPARATIVE RNA-SEQ ANALYSIS

In accordance with the US Food and Drug 
Administration guidelines,6 we focused on rel-
ative rather than absolute gene expression lev-
els and sought to develop a framework for the 
analysis of RNA-Seq data from patients. We 
compared the RNA-Seq–derived tumor gene 
expression profile of patient 1 with similarly 
derived profiles of 10,668 samples that repre-
sented 38 pediatric and adult tumor types stud-
ied by the The Cancer Genome Atlas (TCGA) 
and Therapeutically Actionable Research to 
Generate Effective Treatments (TARGET).11,12 
RNA-Seq reads from different laboratories were 
reanalyzed with a single computational pipe-
line to reduce batch effects.13 We searched for 
tumors in this homogeneously processed com-
pendium in which expression profiles were sim-
ilar to those of patient 1 by using TumorMap.14 
The tumor gene expression profile for patient 1 
resembled lung cancers (Fig 2A), the site of the 
metastasis. The metastatic sample contained 
76% tumor cells, estimated by a POG pathol-
ogist, which suggested that most of the gene 
expression information came from the tumor 
cells. Lung adenocarcinoma (LUAD) samples 
formed four groups in the TumorMap (Fig 2B) 
and the sarcoma of patient 1 clustered with the 
354 LUAD tumors of the terminal respiratory 
unit and proximal-inflammatory molecular sub-
type (Fig 2C), associated with the activation of 
receptor tyrosine kinases (RTK).15 To define the 
transcriptional programs that drove placement 
of the patient’s tumor with the lung cancers, 
we conducted Gene Set Enrichment Analysis16 
with genes differentially expressed between the  
LUAD cluster that contained the tumor of 
patient 1 (n = 354) and the remaining sam-
ples in the compendium (n = 10,314); we also 
repeated this analysis and compared the cluster 
for patient 1 with the remaining LUAD samples 
(n = 529). Both analyses revealed the overexpres-
sion of members of the IL6/JAK/STAT3 signal-
ing pathway (Appendix Fig A2), which suggests 
that the activation of shared signaling programs 

likely contributed to the tumor transcriptional 
phenotype of patient 1 in addition to the site 
of the metastatic sample. We next searched for 
genes that were significantly overexpressed in 
the patient’s tumor compared with the whole 
compendium and compared with only the sar-
comas by using outlier statistics3,17 (Data Sup-
plement). To explicitly subtract the effect of the 
lung cell expression, we also searched for outlier 
genes compared with 529 LUAD tumors; 787 
genes, including druggable targets JAK1, ALK, 
NTRK1, and CCND1, emerged as overexpres-
sion outliers in all analyses (Data Supplement).

MOLECULAR RATIONALE FOR 
CLINICAL DECISION MAKING

We speculated that the activation of RTKs con-
tributed to JAK over-expression in patient 1’s 
tumor.18,19 Increased expression of ATF1 and its 
transcriptional targets, TOP2A, CALCA, and 
IL6, was observed, presumably as a result of con-
stitutive transcriptional activation by EWSR1-
ATF1 (Fig 3A; Appendix Fig A3). ATF1 can 
activate the transcription of JAK1,8 providing 
another potential mechanism for the observed 
high expression of the IL6/JAK/STAT3 path-
way. Consolidating the fusion-based and the 
RTK-based mechanisms of IL6/JAK/STAT3 
activation, we reconstructed a candidate path-
way driving patient 1’s cancer (Fig 3, Appendix 
Fig A4). The POG molecular tumor board sug-
gested targeting either JAK (with ruxolitinib) 
or ALK (with crizotinib). A decision was made 
to use ruxolitinib given (1) the over-expression 
of ATF1 target genes, (2) the over-expression 
of JAK1, and (3) the available pediatric dos-
ing information.20 In addition, ruxolitinib was 
favored over crizotinib because it targets down-
stream of both EWSR1-ATF1 and the over- 
expressed RTKs, whereas crizotinib only targets 
the RTKs. We recognize that a combination 
therapy targeting both ALK and JAK may have 
been appropriate on the basis of the molecular 
findings. However, we were unable to use drug 
combinations that have not been through phase 
1 testing, highlighting the need for more pediat-
ric combination therapy trials.

CLINICAL RESPONSE

At the initiation of therapy with single-agent 
ruxolitinib, patient 1 had severe nausea and 
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lethargy, was mostly bed-ridden, and had a 
Lansky play-performance score21 of 60 (Fig 
4). Within a week of ruxolitinib initiation, his 
mother reported a dramatic improvement in 
his energy level and complete resolution of his 
nausea. The patient tolerated this therapy with-
out significant toxicity and had stabilization of 

the previously rapidly growing lung nodules by 
RECIST,22 and his Lansky score improved to 90 
to 100 for 5 months. The patient then exhibited a 
sudden enlargement in one lung lesion, detected 
during routine imaging, although most of the 
other lesions remained stable. Ruxolitinib was 
discontinued, and focal palliative radiation was 
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Fig 1. Case clinical in-
formation. (A) Preoperative 
magnetic resonance imaging 
(MRI). T2-weighted 
coronal sequence revealed 
a large, primarily hyperin-
tense tumor that arises from 
the ventral aspect of the 
left tentorium, invaginating 
into the superior aspect of 
the cerebellum and causing 
diffuse edema therein. 
(B) Preoperative MRI. 
T1-weighted axial sequence 
with gadolinium revealed 
strong enhancement.  
(C) Routine tumor histology. 
Hematoxylin and eosin 
(H&E)–stained represen-
tative section revealed a 
combination of epithelioid 
and spindled tumor cells 
among thick fibrous bands 
(× 200 magnification).  
(D) Routine tumor histology. 
Higher magnification 
depicts epithelioid tumor 
cells (eg, long arrow) and a 
mitotic figure (short arrow); 
many of the tumor cells 
exhibit somewhat vacuolat-
ed cytoplasm (H&E; × 400 
magnification). (E-H) Tumor 
immunohistochemistry. 
Strong diffuse cytoplasmic 
immunostaining is exhibited 
for (E) desmin and (F)  
neuron-specific enolase 
(NSE). Diffuse membranous 
immunostaining is appre-
ciated for (G) epithelial 
membrane antigen (EMA), 
and (H) CD99 (all photo-
micrographs taken at × 200 
magnification).
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administered to the one lesion in the left lower 
lobe for pain control. Within 2 months of rux-
olitinib discontinuation, the symptoms of nau-
sea, extreme fatigue, and weight loss returned, 
and the lung lesions progressed. The family 
requested that ruxolitinib be restarted for qual-
ity of life, and the patient again showed dramatic 
improvement in clinical status and an unex-
pected prolonged period of stable disease until 

dose reduction because of myelosuppression was 
required. After the dose reduction, rapid pro-
gression of the pulmonary lesions resulted in 
death 23 months after the original relapse.

DISCUSSION

To our knowledge, this is the first report of a 
pediatric patient with cancer who benefited 
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Patient 1's tumor RNA-Seq profile in the context of 38 tumor types

A

Patient 1

B

Lung
adenocarcinoma

C
Lung adenocarcinoma
molecular subtypes:

Patient 1

Proximal proliferative
Proximal-inflammatory
Terminal respiratory unit

Patient 1 clusterLung adenocarcinoma
Lung squamous cell
carcinoma

Acute lymphoblastic leukemia Acute myeloid leukemia Adrenocortical cancer
Bladder urothelial carcinoma Brain lower grade glioma Breast invasive carcinoma

Cholangiocarcinoma Cervical & endocervical cancer Colon adenocarcinoma
Diffuse large B-cell lymphoma Esophageal carcinoma Pathology test data, multiple tumor types

Glioblastoma multiforme Head & neck squamous cell carcinoma Kidney chromophobe
Kindney clear cell carcinoma Kidney papillary cell carcinoma Liver hepatocellular carcinoma

Lung adenocarcinoma Lung squamous cell carcinoma Mesothelioma Neuroblastoma
Ovarian serous cystadenocarcinoma Pancreatic adenocarcinoma

Pheochromocytoma & paraganglioma Prostate adenocarcinoma Rhabdoid tumor
Rectum adenocarcinoma Sarcoma Skin cutaneous melanoma Stomach adenocarcinoma

Testicular germ cell tumor Thymoma Thyroid carcinoma Uterine carcinosarcoma
Uterine corpus endometrioid carcinoma Uveal melanoma Wilms tumor

Fig 2. RNA-Seq–based gene expression profile for patient 1 visualized in the context of the reference cohort of 38 adult and pediatric tumor 
types. (A) A projection of the entire tumor cohort in two dimensions according to the TumorMap method. Individual tumors are represented by 
hexagons, and colored tumors by the tumor type, as indicated in the graphic. The tumor in patient 1 is shown in green within the lung tumors. 
(B) Lung adenocarcinoma (LUAD) tumors are found in four main regions of the TumorMap visualization. LUAD tumors are depicted in orange, 
whereas all other tumor types are in gray. (C) A zoomed-in view of the cluster for patient 1 and the surrounding area that contains LUAD tumors, 
now colored according to LUAD molecular subtypes (proximal proliferative, blue; proximal inflammatory, green; terminal repiratory unit, red). 
Unclassified samples are colored in gray. 
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from cross-tumor gene expression compari-
sons. Cross-tumor analyses have been used in  
the TCGA11 and POG studies3,23,24; however, 
a computational framework is necessary for 
their clinical implementation. This case is 
also, to our knowledge, the first report of use 
of a JAK inhibitor to treat a sarcoma. Previ-
ous functional studies implicated STAT3 as  
an oncogene in sarcomas25; the current case 
report builds on this work and prompts inves-
tigation into the potential clinical utility of tar-
geting this pathway. Of note was the patient’s 
marked and rapid clinical response to treat-
ment, which suggests that response may have 

been related to the modulation of cytokine 
expression by the medication. Although the 
clinical benefit of ruxolitinib was apparent, it 
was challenging to quantify. Ultimately, a ran-
domized clinical trial is necessary to assess the 
benefit of molecular approaches compared with 
the standard of care.

The case also highlights tumor heterogeneity: 
although the majority of the metastases remained 
stable, one lesion rapidly became resistant. 
Despite documented progressive disease, this 
case benefited from resumption of the medica-
tion: the patient’s clinical status and many met-
astatic lesions were responsive to retreatment.  
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Fig 3. Molecular rationale for using ruxolitinib to treat the sarcoma in patient 1. (A) Candidate pathway that drove tumorigenesis in patient 1 
was reconstructed on the basis of outlier analysis, differential expression analysis compared with normal tissues, copy number information, and  
literature mining (Appendix Methods). Both EWSR1-ATF1 and receptor tyrosine kinases NTRK1 and ALK can contribute to the activation  
of IL6/JAK/STAT3 signaling. All gene expression outliers depicted in the figure (gene names written in red font) were significant in all three  
comparisons: patient 1 versus all cancers, patient 1 versus lung adenocarcinomas, and patient 1 versus sarcomas. JAK1, the molecular target of  
ruxolitinib, is indicated with a yellow lightning bolt. (B) The tumor in patient 1 expresses JAK1 at a strikingly higher level than those seen in  
all 10,668 tumors, which are represented by 38 tumor types studied by the TCGA11 and TARGET (denoted PANCAN),12 including lung  
adenocarcinomas (LUADs) and sarcomas (SARCs). (C) JAK1 is an attractive molecular target for patient 1’s tumor because it is downstream  
of the EWSR1-ATF1 fusion and the activate receptor tyrosine kinases (RTKs). It was also identified as over expressed by gene expression  
outlier analysis.
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A serial molecular analysis of the heteroge-
neous lesions could inform the mechanisms  
of resistance; however, it was not pursued 
because of the family’s wishes. To characterize 
the intratumor heterogeneity of therapeutic 
response, we consider follow-up biopsies, and 

those decisions are weighed against the risks to 
the patient.
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Online Methods

Reference compendium

We obtained The Cancer Genome Atlas (TCGA)11 and Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET)12 RNA sequencing fragments per kilobase of transcript per million mapped reads (FPKM12; Trapnell C, 
et al: Natl Biotechnol 28:511-515, 2010) gene expression data from the public data hub in the University of California Santa 
Cruz Xena Browser (Vivian J, et al: Nat Biotechnol 35:314-316, 2017; Goldman M, et al: Nucleic Acids Res 43:D812-D817, 
2015). The TCGA and TARGET data sets were processed with the same RNA-Seq pipeline (STAR2 [Dobin A, et al: 
Bioinformatics 29:15-21, 2013] and RSEM [Li B, et al: BMC Bioinformatics 12:323, 2011]) by the University of California 
Santa Cruz Genomics Institute.13 We extracted tumor samples from these data sets and combined them into a single cohort 
that contained multiple adult and pediatric tumor types (N = 10,668). The expression of 18,357 protein-coding genes was 
measured (Data Supplement).

Gene expression outlier analysis

Gene-level reads per kilobase of transcript per million mapped reads (RPKM) expression measurements for patient 1's tumor 
were generated according to the previously published method.3 We used these data to compute FPKMs by dividing each value 
by two. We proceeded to quantile normalize the expression values, using theoretical exponential distribution (rate parameter 
= 1) as a background distribution (Bolstad BM, et al: Bioinformatics 19:185-193, 2003). During this procedure, we normalized 
expression quantiles within each tumor sample to match quantiles of an exponential distribution (rate parameter = 1). We then 
performed gene expression outlier analysis3,17 to identify transcripts significantly enriched in the patient's tumor compared 
with 10,668 cancer samples in the reference compendium (pan-cancer outlier analysis). We also performed the same analysis 
using only the 529 lung adenocarcinoma (LUAD) tumors as a reference (LUAD-only outlier analysis) and using 262 sarcoma 
tumors as a reference (sarcoma-only outlier analysis). Gene expression outliers were identified as described,17 with the 
exception of the use of a more stringent interquartile range of 2.0. We analyzed the outlier genes for enrichment of specific 
pathways and signaling networks that could be targeted by available therapies using MSigDB (Liberzon A et al: Bioinformat-
ics 27:1739-1740, 2011).

The pan-cancer outlier analysis of the tumor in patient 1 compared with the reference compendium (n = 10,668) revealed 906 
genes significantly overexpressed in the patient’s tumor. The LUAD-only outlier analysis3,17 (n = 529) revealed 1,176 up-outlier 
genes, and the same analysis against sarcomas (n = 262) revealed 1,196 genes. Seven hundred eighty-seven genes were identified 
as up-outliers by all three analyses. We focused our analysis on the up-outlier genes, because abnormally activated genes 
represent the most tractable therapeutic targets. We used the Drug Gene Interaction Database (DGIdb; Wagner AH, et al: 
Nucleic Acids Res 44:D1036-D1044, 2016) to identify genes whose protein products could be targeted by clinically available 
inhibitors. The outlier analysis results are listed in the Data Supplement.

TumorMap Analysis

TumorMap14 (https://tumormap.ucsc.edu/) is a genomic portal browser that allows visualization and navigation of a high- 
dimensional genomic space in a two-dimensional Euclidean projection, in a manner similar to geospatial two-dimensional 
maps. In this projected space, samples are laid out on the basis of similarities of their RNA-Seq–based gene expression  
profiles. Samples that cluster together exhibit similar gene expression profiles.

We first computed pairwise Spearman correlations (Brown GW: Arch Pediatr Adolesc Med 146:682, 1992) between RNA-
Seq–derived gene expression profiles of all tumor pairs in our reference cohort (n = 10,668), including the tumor in patient 1 
(N = 10,669). This produced a square correlation matrix with 10,669 columns and 10,669 rows.

The TumorMap method seeks to project high-dimensional genomic observations onto a two-dimensional plane while pre-
serving original sample-to-sample distances. Tumors cluster together according to the similarity of their RNA-Seq–derived 
gene expression profiles. We used the quasi-physics–based layout engine OpenOrd (formerly known as DrL; Martin et al: 
Proc SPIE. 786806, 2011), implemented in the igraph R package (Gabor C, et al: InterJournal Complex Systems 1695, 2006), 
to derive an initial set of (x, y) positions for the samples on the basis of the correlation matrix (Wylie BN et al: Visualization 
of Information Spaces with VxInsight, Sandia National Labs SAND2000-3100, 2000). The similarity space is represented as a 
graph and is used as an input into OpenOrd. OpenOrd treats the similarities as spring constants and searches for a configura-
tion among the samples that produces an arrangement to minimize the spring tension of the system as much as possible. We 
use hexagonal packing for space conservation in the projected two-dimensional plane. For each sample in the full correlation 
matrix, we extracted samples with top six correlation values to compose a sparse matrix of the top six nearest neighbors. We 
used this sparse matrix to construct a sparse similarity graph for the samples in the cohort and applied the OpenOrd method 
to derive the initial (x, y) positions in the map.

Appendix
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Furthermore, to avoid overlapping and crowding samples in the dense graph components, OpenOrd (x, y) coordinates are 
snapped to their nearest hexagon to arrange all of the samples on a tiling of regular hexagons. With OpenOrd (x, y) coordi-
nates, each sample is placed in a grid cell. If the predetermined cell is occupied, the sample is snapped to an empty grid cell 
within a minimal distance from the original cell. Multiple samples that compete for a location will thus spiral around a central 
hexagon in the neighbors around the central location. Therefore, dense clumps are separated so that they can be viewed on 
approximately the same scale as the distances that separate them. Hexagons were selected as the shape for the grid cell to 
illustrate that there are no inherently preferred axis-aligned directions in the OpenOrd output.

Google Maps Application Programming Interface (API; https://developers.google.com/maps/documentation/javascript/reference) 
is used to load and visualize the resulting layout in a browsing environment. The API provides the ability to interactively 
navigate, zoom, and explore various annotations of locations on the map, analogous to Google Maps and Google Earth 
applications.

We applied the TumorMap method to the reference cohort of 10,668 tumors together with the tumor of patient 1 by using 
transcriptional profiles of 18,357 genes (Data Supplement). Of note, the reference compendium contained 262 heterogeneous 
sarcomas from the TCGA11 cohort.

Statistical Robustness of TumorMap Placement

The TumorMap method belongs to the family of nearest neighbor classification methods. It projects the similarity space of 
the high-dimensional genomic profiles into Euclidean space by using only top neighbors of every sample in the cohort. We 
refer to these top neighbors as the local neighborhood of a given sample. Therefore, it is important to evaluate how robust 
these local neighborhoods are under small perturbations. Specifically, we wanted to assess whether the local neighborhood of 
patient 1 remains stable when only subsets of genes are used to compute pairwise similarities between samples.

We subsampled, without replacement, gene expression features at 80% of the original gene features. We repeated this proce-
dure 1,000 times and computed the patient’s local neighborhood across all N = 1,000 subsampled spaces. We then compared 
each of these local neighborhoods computed under perturbation to the true local neighborhood computed with the complete 
data set. We computed a local neighborhood specificity (LNspecificity) score as follows: 

 LNspecificity  =     1 __ N   *  ∑ i=1  
N=1000       S   true  ∩    S   i  _______ 

 |    S   i  |  
     , 

where S is a set of nearest neighbors for either true or subsampled computation and   |S|  is the nearest neighbor set cardinality.

This score represents average overlap, as a fraction, of the true local neighborhood and the perturbed local neighborhoods 
across all subsampling iterations. The higher this score is, the more overlap we see across all the iterations and the more 
similarities we see among local neighborhoods under perturbations. The SP score of patient 1 was 0.885, which indicated that 
88.5% of the top neighbors were consistently the same across 1,000 perturbations to the gene expression profiles, from which 
the TumorMap visualization was computed.

Identification of Genes Associated With the Patient 1 Cluster in TumorMap

We identified genes differentially expressed between the LUAD cluster containing patient 1 and the 10,668 tumor samples in 
the compendium by using the Linear Model for Microarray Analysis method (Ritchie ME, et al: Mucleic Acids Res 43:e47, 
2015). The gene set enrichment analysis (GSEA)16 of the resulting list of genes revealed that IL6/JAK/STAT3 signaling 
pathway annotation was significantly enriched among these genes (false discovery rate q value, 1.787e−4 with 39 genes in the 
leading edge).

We also identified differentially expressed genes between the LUAD cluster containing patient 1 and the remaining LUAD 
tumors in the compendium (Data Supplement). The GSEA analysis16 of this gene list revealed that members of the IL6/JAK/
STAT3 signaling pathway were still driving the creation of the LUAD cluster containing patient 1's tumor (false discovery 
rate q value, 0 with 36 genes in the leading edge).

Identification of Druggable Targets

We used the DGIdb (Liberzon A et al: Bioinformatics 27:1739-1740, 2011; Wagner AH, et al: Nucleic Acids Res 
44:D1036-D1044, 2016) resource to search for drug targets among the genes that were upregulated in patient 1 by gene 
expression outlier analysis. We chose four databases—MyCancerGenome, MyCancerGenome Clinical Trial, CIVIC, and 
Cancer Commons—to focus on drug targets with known cancer relevance. We chose the following six interaction types: 
antagonist, antibody, blocker, inhibitor, inhibitory allosteric modulator, and suppressor.
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Gene Expression Percentile Analysis

For the druggable targets in the reconstructed candidate driver pathway , we computed the ranked percentiles of the gene 
expression levels in patient 1's tumor compared with the TCGA LUAD (n = 529) and TCGA SARC (n = 264) cohorts. For 
each sample in the cohort as well as for patient 1, we ranked genes relative to the expression of all genes within that sample 
(ie, the highest expressed gene was ranked as 1). The percentiles are displayed in Figure 3 for 12 genes that can be targeted by 
known cancer drugs, according to DGIdb analysis (Liberzon A et al: Bioinformatics 27:1739-1740, 2011; Wagner AH, et al: 
Nucleic Acids Res 44:D1036-D1044, 2016).

Differential Expression Analysis Relative to Normal Tissues

For all of the genes in the reconstructed candidate driver pathway that are targetable by cancer drugs (Fig 3) we computed the 
fold change between the expression in patient 1's tumor and in normal cells. We obtained normal tissue expression data for 
16 different tissues from the Illumina Human Body Map 2.0 database (GEO Accession No. GSE30611). For each gene, we 
mean-aggregated normal expression into a single value and computed log change of the expression of that gene in patient 1 
compared with the aggregated normal value.

Histologic Techniques and Immunohistochemistry

The tumor tissue was routinely fixed in 10% buffered formalin and then was processed in an automated fashion. Processed 
tissue was then embedded in paraffin wax, and the resultant blocks were sectioned at 4 µm for both hematoxylin and eosin 
staining and immunohistochemistry. All microscopic slides were prepared via standard automated techniques. Immunohis-
tochemical slides were stained on the Ventana BenchMark XT Autostainer (Ventana Medical Systems, Tucson, AZ) with the 
Ventana iVIEW universal DAB detection kit. Primary antibodies used for immunohistochemistry are noted in Table A1 and 
the Data Supplement. All primary antibodies were either diluted or received as a ready to use prediluted solution from the 
relevant vendor.

Fluorescence In Situ Hybridization

Fluorescence in situ hybridization analysis was performed on formalin-fixed paraffin-embedded tumor tissue. Overall, 200 nuclei 
were quantified with the EWSR1 (22q12) dual-color breakapart probe (Vysis; Downers Grove, IL). Likewise, 200 nuclei were 
quantified with the WT1 (11p13) dual-color breakapart probe (prepared at the BC Cancer Agency). Standard, internally derived 
thresholds were followed to determine definitive presence of a translocation that involved the EWSR1 and WT1 loci.

Additional Information

The Personalized OncoGenomics study was approved by the University of British Columbia Research Ethics Committee 
(No. H12-00137), and written informed consent was obtained from the family of patient 1 before genomic profiling occurred. 
The Treehouse Childhood Cancer Initiative was approved by the institutional review board at the University of California 
Santa Cruz (No. HS2648). Patient identity was anonymized within the research teams, and an identification code was assigned 
to the case to communicate clinically relevant information to physicians. The family consented to potential publication of 
findings. Raw sequence data and downstream analytics were maintained within a secure computing environment.

Treehouse Childhood Cancer Initiative (https://treehousegenomics.soe.ucsc.edu), a partnership between the University of 
California Santa Cruz Genomics Institute and pediatric oncology centers, is designed to systematize RNA-Seq comparisons. 
We note that these comparisons become more effective when molecular and clinical information is shared, which ensures that 
each new case is informed by all relevant previous cases. We hope that Treehouse will streamline data sharing and comparative 
RNA-Seq analysis so that they can occur in real time.
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Table A1. Antibodies and Vendors

Primary Antibody Vendor and Dilution

Glial fibrillary acidic protein Cell Marque; RTU

Ki67 Ventana; RTU

Vimentin Ventana; RTU

Epithelial membrane antigen Ventana; RTU

Pan-cytokeratin (AE1/AE3) Thermo – Laboratory Vision; RTU

Neuron specific enolase Ventana; RTU

Desmin Ventana; RTU

Synaptophysin Ventana; RTU

CD99 Ventana; RTU

WT1 ESBE – Cell Marque; RTU

Myo-D1 Ventana; RTU

Myogenin Ventana; RTU

Smooth muscle actin Thermo – Laboratory Vision; RTU

Nonphosphorylated neurofilament protein Cedarlane – Covance; 1:500

Phosphorylated neurofilament protein Cedarlane – Covance; 1:5000

S-100 Ventana; RTU

CD34 Ventana; RTU

CD31 Ventana; RTU

HMB-45 Ventana; RTU

Leukocyte common antigen Ventana; RTU

BAF-47/INI-1 BD Bioscience; 1:100

Abbreviation: RTU, ready to use. 
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Fig A1. Schematic rep-
resentation of the EWSR1-
ATF1 fusion. Two forms of 
the fusion were identified; 
the EWSR1-ATF1 form 
had higher expression than 
the reciprocal ATF1-
EWSR1 form. BZIP, basic 
leucine zipper domain, 
which mediates sequence 
specific DNA binding 
properties and the leucine 
zipper that is required to 
hold together (dimerize) 
two DNA binding regions; 
pKID, phosphorylated 
kinase-inducible-domain; 
RRM, RNA recognition 
motif; ZF, Zn-finger in Ran 
binding protein and others. 
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Fig A2. Relative 
expression levels of 
EWSR1, ATF1, and JAK1, 
compared to different 
cohorts of adult (TCGA) 
and pediatric (TARGET) 
tumours. Patient 1 tumor 
gene expression levels are 
indicated by the red vertical 
line. The two cohorts used 
for the outlier analysis are 
highlighted in gold. Ped, 
pediatric tumor types; 
TARGET, Therapeutically 
Actionable Research to 
Generate Effective Treat-
ments; TGCA, The Cancer 
Genome Atlas.
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Fig A3. Gene Set En-
richment Analysis (GSEA) 
of the gene scores obtained 
through differential gene 
expression analysis compar-
ing patient 1’s TumorMap 
cluster to the whole refer-
ence compendium (left) and 
to the remaining TCGA 
LUAD samples (right) 
identifies IL6/JAK/STAT3 
pathway as one of the most 
significantly enriched path-
ways in genes differentially 
overexpressed in patient 1’s 
TumorMap cluster.
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Fig A4. Full candidate pathway that represents molecular drivers of tumorigenesis in the sarcoma of patient 1. We reconstructed this pathway 
on the basis of the outlier analysis, differential gene expression analysis, copy number information and literature mining (Appendix Methods).  
A simplified version of this pathway is presented in Figure 3A. Both EWSR1-ATF1 and receptor tyrosine kinases PDGFRB, NTRK1, ALK, and 
FGFR1 can contribute to the activation of IL6/JAK/STAT3 signaling. All gene expression outliers depicted in this figure were significant in all 
three comparisons: patient 1 versus all cancers, patient 1 versus lung adenocarcinomas, and patient 1 versus sarcomas. JAK1, the molecular target 
of ruxolitinib, is indicated with a yellow lightning bolt. TCGA, The Cancer Genome Atlas.
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