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Abstract

Although evidences showed an overall reduction in outdoor air pollution levels across the globe 

due to COVID-19-related lockdown, no comprehensive assessment was available for indoor air 

quality during the period of stay-at-home orders, despite that the residential indoor environment 

contributes most to personal exposures. We examined temporal and diurnal variations of indoor 

PM2.5 based on real-time measurements from 139 indoor–outdoor co-located low-cost PurpleAir 

sensor sets across California for pre-, during, and post-lockdown periods in 2020 and “business-

as-usual” periods in 2019. A two-step method was implemented to systematically control the 

quality of raw sensor data and calibrate the sensor data against co-located reference instruments. 

During the lockdown period, 17–24% higher indoor PM2.5 concentrations were observed in 

comparison to those in the 2019 business-as-usual period. In residential sites, a clear peak in 

PM2.5 concentrations in the afternoon and elevated evening levels toping at roughly 10 μg·m−3 was 

observed, which reflects enhanced human activity during lunch and dinner time (i.e., cooking) and 

possibly more cleaning and indoor movement that increase particle generation and resuspension 

in homes. The contribution of indoor-generated PM2.5 to total indoor concentrations increased as 

high as 80% during and post-lockdown periods compared to before lockdown.
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Graphical Abstract

1. INTRODUCTION

Temporary air pollution reduction during the COVID-19 lockdown was a unique natural 

experiment to learn and examine sudden changes in emission-related activity patterns and 

their impact on air quality and long-term climate change improvements.1–3 Although there 

is evidence that COVID-19 related closures have reduced ambient air pollution levels and 

may decrease associated long-term and short-term health impacts across the globe,4–6 there 

is a lack of comprehensive assessment of indoor air quality changes during the period of 

stay-at-home orders, despite that residential indoor environment contributes most to personal 

exposures because people spend the most time at home indoors. While a natural reduction 

in the emissions of particulate matter (PM) and co-pollutants including carbon monoxide, 

carbon dioxide, and nitrogen oxides from outdoor urban activities is important from a 

climatological and environmental health perspective, indoor emission sources attributable to 

household activities are more pronounced in terms of personal exposure to air pollution and 

associated detrimental health effects.7–11

World Health Organization (WHO) reports that each year, close to 4 million people die 

prematurely from illness attributable to household air pollution.7 Further, close to half of 

deaths due to pneumonia among children under 5 years of age are caused by PM compounds 

(e.g., soot) inhaled from household air pollution. During the lockdown period, people 

spend more time in the residential indoor environment, which makes indoor air quality 

more important than ever. Emissions of indoor pollutants may likely increase due to more 

cooking, cleaning, smoking, and other activities indoors from remote working/learning. 

Susceptible subpopulations, including children, the elderly, and individuals with preexisting 

conditions, may suffer even more from indoor pollution than the general population as they 

tend to stay at home more to avoid outdoor contact and minimize the risk of virus infection. 

Further, households of low socioeconomic status (SES) may share a disparate burden of 

indoor pollution exposure as they may live in small and crowded apartments with more 

indoor sources. The COVID-19 lockdown interventions are an opportunity to investigate 

indoor air quality and potential indoor sources, especially in low SES communities.

Mousavi and Wu Page 2

Environ Sci Technol. Author manuscript; available in PMC 2022 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The recent rise in deployment of low-cost sensors in urban and rural communities has 

enabled new approaches to monitor and investigate air quality in higher spatiotemporal 

resolutions that cannot be afforded by regulatory agency monitors.8 Usage of the PurpleAir 

low-cost sensor network in indoor and outdoor settings8 has also created a unique 

opportunity to fill the gap in comprehensive understanding of the impact of COVID 

lockdown on indoor air quality at a large scale. However, concerns exist regarding the 

uncertainty and malfunctions (i.e., wireless communications loss, power outages, or other 

measurement interferences) of the low-cost PurpleAir sensor data as well as potential biases 

due to environmental conditions, which requires a systematic post-process approach to 

ensure sensor data quality, especially in long-term studies.9–12 While most of the previous 

studies suggest calibration of the PurpleAir sensor data to the nearest reference monitor with 

a correction factor as a result of multivariate regression accounting for environmental (e.g., 

relative humidity and temperature) and operational factors (i.e., indoor vs outdoor and sensor 

uptime after deployment),12–15 a recent study in Los Angeles County16 has developed a 

systematic multistep quality control scheme using the readings from both of the sensor 

channels to minimize outliers and eliminate readings from malfunctioning sensors.

To understand the influence of stay-at-home orders on both indoor and outdoor air quality, 

we analyzed indoor and outdoor PM < 2.5 μm (PM2.5) concentrations from the co-located 

indoor and outdoor low-cost real-time PurpleAir sensor network across California. We 

compared PM2.5 concentrations pre-, during, and post-COVID-19 closures in 2020 and 2019 

(business as usual). Temporal and diurnal variation of indoor-generated PM2.5 were also 

examined based on location (northern vs southern California), type of buildings (residential 

vs office/school), and proximity to road emissions (remote background vs high traffic).

2. DATA COLLECTION AND ANALYSIS

2.1. Study Domain and Time Periods.

We have restricted our study domain to California, a state that has around 40 million 

population and covers roughly 164 000 mile2 area. We separated the study area into northern 

and southern California subregions with slightly different traffic density and ambient PM2.5 

levels13,14 (Figure 1). In each region, co-located indoor and outdoor sensors (i.e., deployed 

in the same residential/office/school unit) were identified. Although most of indoor–outdoor 

pairs only had one indoor sensor, one house located at Aromas, Monterey County, had 

multiple indoor sensors that allowed a closer investigation of PM2.5 distribution in different 

indoor locations (Section 3.5). The co-located sites were overlaid with Google maps, which 

provided land-use and type of building (e.g., residence, commercial building, office, and 

school) information that was furthered assigned to each individual site (Figure 1).

Remote-background and near-road sites were identified based on their proximity to major 

roads (freeway, highway, or main street) with annual average daily traffic (AADT) > 90 000 

vehicles per day15 or airport. “Near-road” sites were classified as those within 50 m of the 

edge of a major road. No co-located site was within 15 km downwind of an airport. Table 1 

shows the number of co-located sites by the subregion, type of building, and proximity to the 

road.
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We restricted our analysis to data from the first of January to the end of July in both 

2020 and 2019 (“business-as-usual” period as a reference). We compared daily PM2.5 

concentrations during the same period in 2020 vs 2019 and the concentrations before the 

stay-at-home order (January 1–March 16, 2020),17 during the lockdown period (March 17–

May 5, 2020),17 and during the first stage of state reopening (May 6–July 30, 2020).17 

The majority of the population worked and/or schooled from home since the statewide 

lockdown and stay-at-home order on March 15, 2000 till the first-stage state reopening 

order on May 5, 2020.17 Even after the reopening when the essential business went back to 

normal, guidelines were still in place that restricted gathering and a large percentage of the 

population continued working/schooling from home across the state.

2.2. PurpleAir Sensor Network.

PurpleAir is a low-cost sensor monitor and has started to be deployed in the U.S. 

and worldwide since 2017. The latest model (PA-II-SD) contains two PMS5003 sensors 

(Plantower, Beijing, China), which estimate particle mass concentrations by measuring the 

amount of light scattered at ~680 nm.10,16 Initial assessment of the PMS5003 sensors by 

South Coast Air Quality Management District (AQ-SPEC team)18 showed low intra-model 

variability; PM2.5 sensor data correlated very well with the corresponding reference monitor 

measurements (R2 = 0.86–0.93). We downloaded 10 min interval PM2.5 data between 

2019 and 2020 from the PurpleAir network using the ThingSpeak’s API provided by the 

PurpleAir company.18 Hourly average PM2.5 was computed by averaging the 10 min interval 

data. Although PurpleAir reports mass concentrations in PM1, PM2.5, and PM10, high 

correlations of PM concentration between different size ranges (correlation coefficient > 0.9) 

were detected. PM2.5 was selected as the target size range for this analysis, as PM2.5 is 

widely used as the PM standard by U.S. Environmental Protection Agency and has been 

associated with most of the diseases caused or exacerbated by air pollution indoors and 

outdoors.19,20

2.3. Post-Process of PurpleAir PM2.5 Data.

Given the importance of sensor data calibration and quality control, we used a two-step 

approach to post-process hourly PurpleAir PM2.5 data to minimize the impact of sensor 

malfunction, intrasensor bias, and environmental and operational parameter impact. This 

approach applied (1) systematic quality control and (2) calibration with reference monitors.

2.3.1. Systematic Quality Control.—A comprehensive description of the quality 

control method used in this study can be found in Lu et al.16 More details including various 

statistical indicators can be found in the Supporting Information. In summary, the systematic 

quality control consists of five steps below:

1. Remove malfunctioning sensor data based on a low frequency of change (i.e., 5 h 

moving standard deviation of zero) in their readings across time.

2. Discard apparent PM2.5 outliers with extreme hourly values greater than 500 

μg·m3 exceeding the sensor’s effective measurement range in both channels or 

readings higher than 3 times21 of calculated median absolute deviation by one 

channel within a calendar month.
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3. Identify periods of prolonged interruption or data loss due to power outages or 

data communication loss using a 75% completeness criterion (four or more 10 

min measures per hour and 18 h or more in a day).

4. Evaluate the degree of agreement from dual-channel readings for each sensor 

within a given month of operation based on calculated statistical anomality 

detection indicators as the coefficient of determination R2 > 0.8 and mean 

absolute error < 4. Given the reported low performance (saturate) of PurpleAir 

sensors at high particle concentrations (>50 μg·m−3), leading to higher 

measurement bias and uncertainty in the mean absolute error indicator, mean 

absolute percentage error > 0.3 was adopted as an additional criterion to handle 

the sensor’s measurement limit at high particle concentrations.

5. In case of sensor data reported only from one channel, a linear regression of 

hourly readings for each sensor with its neighboring sensors within 3 km was 

performed and data from sensors with R2 < 0.6 or having no neighboring sensors 

within 3 km was discarded from the analysis.

Following these steps, 1.9, 0.6, 11.2, 2.6, and 0.8% (17.2% in total) of the initial 2 796 035 

hourly averaged PM2.5 data from 139 paired indoor and outdoor sensors across California 

were discarded after the first, second, third, fourth, and fifth steps, respectively. Table S1 

also shows the percentage of discarded data based on each period and region. Overall, the 

regression of U.S. EPA’s air quality system (AQS) data against the original sensor data had 

an R2 of 0.65 and a slope of 0.75; more spikes were also detected in the original sensor data 

against AQS data with a high bias of 1.2 μg·m−3. The quality-controlled data (N = 2 320 

709) had a more robust dual-channel agreement with the AQS data (R2: 0.95; slope: 0.98). 

These results agree with Bi et al.’s work that showed stronger statistical agreement with 

AQS data based on the quality-controlled sensor data.

2.3.2. Indoor and Outdoor Sensor Calibration.—After the systematic quality 

control of the data for both indoor and outdoor sensors, we used a spatially varying 

calibration method developed by Bi et al. for outdoor sensor data calibration. Greater details 

on this calibration method can be found elsewhere.15 In short, using the data from paired 

outdoor PurpleAir low-cost sensors with AQS regulatory stations (54 of outdoor sensors 

with 26 co-located AQS within 500 m15 radius distance in California during January–July 

in both 2019 and 2020), geographically weighted regression (GWR) was used to calibrate 

the sensor PM2.5 data after the systematic quality control using temperature and relative 

humidity (RH) data from individual sensor recording as covariates.15 In addition, to account 

for the quality degradation over time,9,10,12,14,16 the total operating time of a sensor (the 

duration between the measurement time and the installation time) was used to adjust the 

effect of sensor aging.15 Finally, the sensor uptime (the time during which a sensor is in 

consecutive operation from the last boot time) was used to adjust the potential impact of 

sensor’s operational stability on data quality. A linear GWR regression was used to describe 

the relationship between the bias of PurpleAir measurements and four covariates15
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AQSPM2.5i = β0 ui, vi + β1 ui, vi .  PurpleAir PM2.5i
+ β2 ui, vi ⋅ T i + β3 ui, vi ⋅ RHi
+ β3 ui, vi .  optime i + β4 ui, vi .  uptime i
+ ϵi

(1)

where β(ui,vi) indicates the vector of the location-specific parameter estimates and (ui,vi) 

represents the geographic coordinates of location i. AQS PM2.5i and PurpleAir PM2.5i are 

the paired hourly PM2.5 measurements at location i. Ti, RHi, optimei, and uptimei represent 

temperature, relative humidity, operating time, and uptime of the PurpleAir sensor at 

location i, respectively. The GWR was fitted using the R package “GWmodel” version 2.0. 

Finally, we compared the mean absolute differences of hourly measurements between 54 

outdoor sensors and 26 AQS stations in both 2019 and 2020 based on PM2.5 measurement 

ranges after and before calibration.

While we were able to correct outdoor sensor data using the approach above, there was 

no single reference monitoring instrument (federal reference method (FRM) or federal 

equivalent method (FEM)) indoors to repeat such a process for indoor sensor calibration. 

A study in Korea by Kim et al. developed average correction factors for indoor PurpleAir 

sensor measurements using a side-by-side sensor and reference devices (two devices; 2 

weeks of sampling) and stepwise linear regression. While to some extent major indoor 

sources may differ in our study vs those in Korea, we used the average correction factor for 

indoor sensor data reported by Kim et al. because of the lack of such data in California. 

Further, four (two in northern California and two in southern California) of the paired 

outdoor-AQS monitors were collocated with indoor sensors,22 allowing us to, at least, 

determine the change in the indoor–outdoor correlation coefficient and slope on a rather 

small scale (i.e., four indoor–outdoor pairs of sensors) after applying the indoor sensor 

correction factor from Kim et al.

2.4. Data Analysis.

Daily average PM2.5 was computed by averaging hourly calibrated data based on the 

two-step post-process described in Section 2.3. The daily data were grouped into pre-, 

during, and post-lockdown periods for all subsequent analyses. Daily temporal variation of 

PM2.5 concentrations in 2020 was plotted and overlaid with concentrations in 2019 in two 

subregions. The average diurnal variation of indoor concentrations was investigated to help 

identify potential emission sources and the time periods with a high probability of indoor 

sources. Inside/outside PM2.5 concentration (I/O) ratios were calculated on a daily basis to 

examine the hypothesis of increased I/O ratios during the lockdown period.

The sources of the indoor particulate matter can be decomposed into two parts,21 one 

produced by indoor sources and the other from the infiltration of outdoor air into the indoor 

environment. To better understand the relationship between indoor and outdoor PM2.5 and 

potential indoor sources, we described indoor PM2.5 concentration as follows22

Ci = Cog + Cig = Co ⋅ FINF + Cig (2)
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where Ci is the daily average indoor PM2.5 concentration, Cig is the sum of indoor-generated 

PM2.5 (μg·m−3), Cog represents the outdoor-generated PM2.5 that has penetrated indoors 

and remains suspended (μg·m−3), and Cog is the product of the daily average outdoor 

concentration (Co, μg·m−3) and the infiltration factor (FINF, dimensionless). FINF is a 

dimensionless factor that is a function of housing and atmospheric characteristics. Since 

we did not take any systematic measurements of FINF during this study, we followed an 

established regression model method23 to derive the FINF and Cig in pre-, during, and 

post-shutdown periods. In brief, the indoor and outdoor particle infiltration coefficient was 

obtained by the linear regression model also known as the random component superposition 

model (RCS) between Ci and Co. The contribution of indoor-generated PM2.5 to overall 

indoor PM2.5 concentrations (Cig/Ci) was also calculated. Standard errors (SE) associated 

with daily Ci and Co were used to derive the uncertainty associated with the derived Cig.

Multisensor deployment inside a house could shed light on the spatiotemporal variation 

of pollutant concentrations and source emissions, as well as ventilation efficiency and 

pollutant dispersion and decay in different compartments of the house.24–27 To better 

understand PM2.5 variation and potential emission sources in different locations of a house, 

we examined the multiple indoor sensor data in a residential house located in a remote-

background area in Aromas, Monterey County (Figure S1). We calculated the fraction of 

indoor source-generated PM2.5 to the total indoor PM2.5 in different indoor locations and 

summarized the results by diurnal time periods, which may indicate certain activities that 

contribute to indoor sources (e.g., cooking).

3. RESULTS AND DISCUSSION

3.1. Spatially Varying Sensor Correction Factors for Outdoor PurpleAir PM2.5.

A linear regression of uncalibrated but quality-controlled PurpleAir measurements against 

AQS had an R2 of 0.82 and a slope of 0.74. Compared to measurements from 26 AQS 

monitors in this study, the PurpleAir data showed site-specific R2 ranging from 0.23 to 0.90 

and the site-specific slope from 0.34 to 0.94. The observed variations between the PurpleAir 

and AQS data were less pronounced than those reported by Bi et al.

The GWR slopes of PurpleAir (β1 in eq 1) averaged 0.53 with an interquartile range of 

0.03. The largest slope was 0.57. After calibration, the overall systematic bias of PurpleAir 

decreased from 1.2 to 0.1 μg·m−3. The overall PurpleAir residual error was also reduced, 

reflected in a decreased standard deviation of the AQS and PurpleAir differences from 

6.02 to 4.10 μg·m−3 (i.e., a 32% decrease). The calibration model had a 10-fold CV R2 of 

0.89 for the AQS and PurpleAir data, which is higher than the R2 of 0.83 for uncalibrated 

data, indicating the improvement of the overall precision of PurpleAir data. Since the 

environmental conditions were similar between our study and Bi et al.’s work, we relied on 

the results reported by Bi et al. for the generalized additive model-fitted relationships of the 

AQS and PurpleAir absolute differences and temperature, RH, operating time, and uptime.

In terms of indoor sensor calibration, after applying the correction factor developed by 

Kim et al., indoor–outdoor correlation coefficients and slopes and subsequent results on 
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indoor-generated PM2.5 did not change significantly, suggesting a minimal effect of indoor 

relative humidity and temperature on sensor readings.

3.2. Spatial and Temporal Variation of Calibrated Indoor and Outdoor PM2.5 Across 
California.

Figure 2 compares daily PM2.5 concentrations indoors and outdoors as well as I/O ratios for 

pre-, during, and post-lockdown periods. Overall, concentrations during the pre-lockdown 

period in 2020 were not significantly different from those in the same months in 2019 

(0–10% difference by the subregion and for both indoor and outdoor levels, p-value = 

0.1–0.2). This suggests that the main emission sources and atmospheric conditions were 

similar in 2020 and 2019 before social distancing measures were in place. Outdoor PM2.5 

concentrations are lower during the COVID-19 lockdown period compared to those of the 

pre-lockdown period in 2020. While outdoor PM2.5 levels were lower in northern California 

in comparison to southern California during the lockdown (4.1 μg·m−3 vs 5.8 μg·m−3), 

indoor levels were higher in northern California than southern California (5.1 μg·m−3 vs 

3.5 μg·m−3) during the same period. These might suggest that stricter measures for work-

from-home policies and stay-at-home orders in northern California28,29 may have increased 

indoor activities and related emissions. County-level google mobility data also confirms 

a sharper increase in residential mobility in Northern California Counties, especially San 

Francisco and Sacramento counties in comparison to Southern counties in California 

(Figures S1 and S2). The sharper increase in I/O ratios from pre-lockdown to lockdown 

period in Northern California (from 0.8 to 1.4) in comparison to Southern California (from 

0.5 to 0.7) also supports this hypothesis. On the other side, outdoor PM2.5 levels dropped 

drastically (by 20–40%) following the urban activity restriction, with a sharper decrease 

detected in Southern California than Northern California. This was expected given the more 

concentrated contribution of traffic-related PM in metropolitan areas in the southern part of 

the state, especially in Los Angeles county.13,14 Finally, post-lockdown I/O ratios increased 

23–35% in comparison to the same period in 2019 across California, suggesting consistently 

elevated indoor air pollution when some people continued to work/study remotely.

3.3. Diurnal Variation of Indoor PM2.5.

Figure 3 shows average indoor and outdoor hourly PM2.5 concentrations by different types 

of sites during and post-lockdown periods in 2020 and 2019. It should be noted that 

diurnal variation of indoor PM2.5 in the pre-lockdown period (January 1–March 16) was 

similar (p-value = 0.1) in 2020 and 2019 (Figure S4). Diurnal variation of indoor PM2.5 

concentrations in remote residential sites showed a clear peak during the noon–3 pm period 

and remained high in the afternoon/evening. This reflects enhanced human activity during 

lunchtime (i.e., cooking) and work-from-home activities that increase particle resuspension 

in homes. Household cleaning products are a particularly relevant source of indoor pollution 

at this juncture in the time given that many people may be cleaning more frequently and 

use stronger disinfectants to reduce viral infection.30 Also, the afternoon peak in 2020 was 

more pronounced, reaching a maximum of 10 μg·m−3 in comparison to the maximum of 

6 μg·m−3 in 2019. Moreover, the afternoon peak occurred slightly later in the residential 

sites close to major roads than in the remote residential sites away from traffic (1–5 pm 

vs 12–3 pm), which partially reflects the delayed impact of early afternoon traffic on the 
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sites close to traffic (Figure 3). All residential sites experienced an elevated afternoon 

peak toping at roughly 10 μg·m−3. An increasing trend was also observed in indoor PM2.5 

concentrations after traffic rush hours (i.e., 8 pm–midnight) on the residential sites close 

to traffic. While unknown indoor source emissions could play a role on late-night elevated 

indoor PM2.5, higher infiltration ratios due to more open window circulation after traffic 

hours near roadways might be another potential reason for such an increasing trend. In 

the case of office/school sites, no significant diurnal fluctuations were observed in 2020, 

mainly due to the lockdown and closed or inactive business. Unlike residential sites, the 

office/school site showed markedly higher PM2.5 concentrations during the baseline scenario 

in 2019 with a clear peak around early afternoon time.

3.4. Indoor-Generated PM2.5 in Pre-, During, and Post-Lockdown Periods.

Table 2 describes the relations of indoor and outdoor PM2.5 concentrations and the 

contribution of indoor emission sources to indoor PM2.5 by the types of sites. The Pearson 

correlation coefficient between indoor and outdoor concentrations ranged from 0.4 to 

0.7, with higher correlations in the pre-lockdown period in comparison to during and 

post-lockdown periods in residential units. The correlation coefficients for office/school 

sites almost remained at a moderate level and changed slightly before, during, and after 

the lockdown, probably because a reduction in both outdoor and indoor PM2.5 sources 

occurred during and after the lockdown. On average, the infiltration rates (FINF) were lowest 

in background residences (0.5), followed by near-road residences (0.6), and the highest in 

near-road office/school buildings (0.7). This is probably because offices and classrooms have 

more powerful ventilation systems deployed, and background residences identified in our 

study may be newer and more air-tight than those near-roadway ones, which agree with 

previous studies in a similar setup.22,23 Future work is needed to confirm these hypotheses 

with detailed building characteristics information. Slightly lower infiltration rates (less 

than 10%) were observed during the lockdown periods compared to the other periods in 

2020. This is possibly because people went outside less frequently (thus less door-opening 

activities) during the lockdown.

The percent contribution of indoor-generated PM2.5 to indoor concentration (Cig/Ci) was 

in the range of 23–35% in the pre-lockdown periods, with higher rates observed in 

residential-background sites. This baseline scenario is consistent with a similar observation 

of a previous study that shows 21–33% on average.23 However, the contribution of indoor 

sources drastically increased during and after lockdown in the residential sites, especially 

those located in the remote-background area (p-value = 0.04). For example, in residential-

background sites, on average, Cig/Ci increased from 34.2% in the pre-lockdown period to 

as high as 80% during the lockdown (almost a 3-fold increase) (p-value = 0.03) and then 

slightly decreased in the reopening stage to 67.4%. The absolute contribution of indoor 

sources suggests a consistent and statistically significant increase in indoor-generated PM2.5 

during the stay-at-home orders in the residential setting, with the highest average increase 

of 3.9 μg·m−3 during the lockdown for background residences. Cig/Ci dropped slightly 

in office/school sites during- and after lockdown compared to the pre-lockdown period, 

reflecting reduced indoor activities during these periods although the magnitude of reduced 

indoor emissions is smaller than expected. Little change was observed for the absolute 
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value of indoor-generated PM2.5 in near-road office/school sites (p-value = 0.21), probably 

because this contribution was small to start with (1.3 μg·m−3) in the pre-lockdown period 

and because of the uncertainty in deriving the contribution of indoor sources.

3.5. Case Study of a House with Multiple Indoor Sensors.

We explored indoor PM2.5 trends in different compartments of a residential unit located in 

a remote-background area (Figure S1). Two of the four indoor sensors were deployed in the 

dinning and kitchen area and the remaining two were in the living and bedrooms. We have 

grouped the sensors into “dining/kitchen” and “living/bedrooms” as no significant difference 

was detected within each group of sensors. The co-located outdoor sensor was located in 

the front porch of the house and was labeled as “Front porch (outdoor)”. Peaks in Cig/Ci 

in the dining/kitchen area were strongly associated with expected breakfast/lunch/dinner 

periods (i.e., 7–9 am, 12–2 pm, 5–8 pm) during the day (Figure 4). Further, living/bedrooms 

sensors showed relatively higher contribution from indoor sources during evening time (i.e., 

5–8 pm), likely due to after work/school cleaning activities that generate new particles, 

more people and movement that suspend particles, and more dispersion of PM from dining/

kitchen from people’s movement and behavior (e.g., open bedroom doors) that increases 

air exchange within the house. Daily temporal variation of PM2.5 levels from January 1 

to July 30, 2020 recorded by sensor sets can be found in Figure S5a,b. While outdoor 

levels were 30–44% higher than those in dining/kitchen areas in the pre-lockdown period, 

dining/kitchen levels were almost comparable with or higher than the outdoor levels during 

the lockdown, suggesting an extraordinary increase in cooking and dining activities during 

the lockdown. In all of the time periods (pre-, during, and post-lockdown), concentrations in 

living/bedrooms were lower than those in dining/kitchen.

The existing indoor–outdoor PurpleAir sensor network enabled us to detect and characterize 

increases in indoor-generated PM2.5 in residences due to the stay-at-home orders and 

telecommuting. We found higher absolute indoor PM2.5 concentrations and as high as 80% 

increase in the contribution of indoor-generated PM2.5 to total indoor concentrations during 

and post-lockdown periods. While the current study lacks detailed time activity information 

and co-pollutant measurements, it highlights elevated indoor emission sources and worsened 

indoor air quality during the COVID era due to increased indoor activities. This study points 

to potential public health implications as more people are expected to work/study from home 

in the future compared to the pre-COVID time.

3.6. Study Strength and Limitations.

Our current study is the first to investigate indoor–outdoor air quality in a large spatial 

scale using low-cost sensor networks with a diurnal variation of PM2.5 concentrations. The 

strengths of this study include large sample size across the entire State of California, use 

of spatial and temporal comprehensive sensor data with thorough calibration and correction, 

and investigation of both indoor and outdoor PM2.5 variations levels pre-, during, and 

post-COVID lockdown. Several limitations also exist. While our result can shed light on the 

indoor-generated PM2.5 pre-, during, and post-COVID-19 lockdown, there are uncertainties 

associated with the indoor sensor calibration given the lack of the co-located indoor sensor 

and reference device in any of the PurpleAir site across California. Our study also did not 
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provide any systematic analysis on the building types, ventilation systems, and their effect 

of infiltration ratios to calculate indoor-generated PM2.5 with lower associated uncertainties. 

Based on the data analysis, we suspect that the ventilation system in offices/schools may 

have been on during the lockdown period. Further, the increased infiltration rate during the 

post-lockdown period could likely be attributed to more human activities (e.g., open door 

and window) and warmer season that increases natural ventilation. Nevertheless, our study 

has strong public health implications as it highlights the increase in residential indoor air 

pollution levels due to more indoor emissions as more people are expected to work/study 

from home in the future compared to the pre-COVID time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Map of sites with operational co-located PurpleAir sensors and reference FEM stations in 

California during January 2019–July 2020.
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Figure 2. 
Temporal variation of indoor and outdoor PM2.5 (daily average) in southern and northern 

California in pre-, during-, and post- lockdown periods in 2020 and the same time periods 

in 2019. Average indoor (INavg) and outdoor (OUTavg) PM2.5 concentrations (μg·m−3) and 

indoor-to-outdoor ratios (I/O) for each time period are in the right panel tables. Percentages 

in the tables show the percent of change (increase in blue and decrease in red) in comparison 

to 2019 levels during the same period. All of the percent increase/decrease in bold in the 

table were statistically significant (p-value < 0.05). Values associated with ± are standard 

error (SE) of the daily sensor readings.
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Figure 3. 
Diurnal variation of indoor and outdoor PM2.5 (10 min average across multiple sites) in 

selected co-located sensor sets of different types of sites across California from March 16 to 

July 30 (lockdown and post-lockdown periods) in both 2020 and 2019 (business as usual).
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Figure 4. 
Percent contribution of indoor-generated PM2.5 to average total indoor concentration in a 

residential house with multiple indoor sensors during different time periods of the day.
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Table 1.

Summary of Co-Located Indoorand Outdoor Sites

type of sites southern California northern California

residential—remote background
a 34 (N = 577 655) 32 (N = 506 543)

residential—near road
b 24 (N = 394 100) 16 (N = 267 300)

office/school—near road 22 (N = 377 400) 11 (N = 193 711)

total 80 (N = 1 349 155) 59 (N = 967 543)

a
Remote-background sites are located more than 50 m from the edge of the major emissions sources.

b
Sites near a major freeway or main street are labeled as the near-road site impacted by traffic emissions.
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