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Targeting nuclear hormone 
receptors for the prevention of 
breast cancer
Cassandra L. Moyer 1 and Powel H. Brown 1,2*
1 Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 
Houston, TX, United States, 2 Department of Molecular and Cellular Biology, Baylor College of Medicine, 
Houston, TX, United States

Advancements in research have led to the steady decline of breast cancer mortality 
over the past thirty years. However, breast cancer incidence has continued to 
rise, resulting in an undue burden on healthcare costs and highlighting a great 
need for more effective breast cancer prevention strategies, including targeted 
chemo preventative agents. Efforts to understand the etiology of breast cancer 
have uncovered important roles for nuclear receptors in the development and 
progression of breast cancer. Targeted therapies to inhibit estrogen receptor (ER) 
and progesterone receptor (PR) signaling (selective ER modulators, aromatase 
inhibitors and selective PR modulators) have shown great promise for the 
treatment and prevention of hormone receptor (HR)-positive breast cancer. 
However, these drugs do not prevent HR-negative disease. Therefore, recent 
efforts have focused on novel targeted therapies with the potential to prevent 
both HR-positive and HR-negative breast cancer. Among these include drugs 
that target other nuclear receptors, such as retinoic acid receptor (RAR), retinoid 
X receptor (RXR) and vitamin D receptor (VDR). In this review we  provide an 
overview of recent preclinical and clinical trials targeting members of the nuclear 
receptor superfamily for the prevention of breast cancer.
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Introduction

In the last 10 years, the incidence of breast cancer in the United States has steadily increased, 
with more than 280,000 women expected to be diagnosed in 2023. Despite efficacious early 
detection measures and significant advances in treatment, breast cancer remains the most 
common cancer diagnosis and second leading cause of cancer death in women, with over 40,000 
patients succumbing to the disease each year (1). Breast cancer is highly heterogenous with 
varied molecular features and can be classified into subtypes based on the expression of common 
biomarkers that are known to drive disease progression. These include nuclear estrogen receptor 
(ER), progesterone receptor (PR) and surface membrane bound human epidermal growth factor 
receptor 2 (HER2), with 85–90% of breast cancer overexpressing one or more of these receptors 
(1, 2). It is well established that inhibition of these receptors can halt the progression of BC, 
leading to the approval of several highly effective breast cancer targeted therapies against ER 
and HER2.

Endocrine therapies, targeting ER directly or the production of excess estrogen, are 
commonly used in the adjuvant setting for ER-positive early-stage breast cancer and for the 
treatment of advanced or metastatic disease in combination with other targeted therapies (3). 
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Due to the development of ER-targeted therapies, women with 
hormone receptor positive cancer continue to have the best overall 
survival, even when diagnosed at later stages (4). Similarly, anti-HER2 
monoclonal antibodies, tyrosine kinase inhibitors and the recently 
developed anti-HER2 antibody drug conjugates have shown 
tremendous success in the treatment of HER2-amplified primary and 
metastatic breast cancer (5–10). Considering their success, these 
targeted therapies have also been explored for the prevention of 
primary breast cancer and recurrence, initially with ER targeted drugs 
and then aromatase inhibitors. Even more recently, the development 
of HER2 targeted vaccines have shown promise in preclinical studies 
to reduce the recurrence of HER2-amplified breast cancer (11, 12).

However, 10–15% of breast cancer patients have tumors that lack 
ER, PR and HER2 expression, and do not respond to endocrine or anti-
HER2 therapies. These triple negative breast cancers (TNBC) appear 
more frequently in young women (<40 years of age), non-Hispanic 
black women and women carrying mutations in BRCA1/2 (1, 2). TNBC 
is more aggressive than hormone receptor positive cancer, and without 
the same effective targeted therapies available, TNBC patients have poor 
overall survival (4). Until recently, the standard of care for TNBC has 
been restricted to chemotherapy, despite the limited benefit particularly 
in the metastatic setting. However, recent discoveries in breast cancer 
biology have identified therapeutic molecular targets within TNBC 
subtypes, including PARP inhibitors for the treatment of women with 
BRCA mutant breast cancers and immune checkpoint inhibitors for 
PD-L1-positive advanced disease (13–20). These targeted therapies are 
currently being tested for the prevention of breast cancer in BRCA 
mutant and ER-negative preclinical models. However, few patients have 
BRCA mutant or PD-L1-positive tumors so there maintains an urgent 
need for novel treatments and preventative agents for high-risk women.

At present, the most effective primary prevention strategy for 
breast cancer is prophylactic surgery, consisting of both bilateral 
mastectomy and oophorectomy, which can reduce the risk of breast 
cancer by 90% (21–23). However, the highly invasive and irreversible 
nature of these procedures are undesirable, and their use has been 
limited to only women with hereditary breast cancer syndromes or 
other high-risk factors. For this reason, preventative agents targeting 
essential pathways for breast cancer carcinogenesis have been 
extensively explored. The term chemoprevention was first coined by 
Michael Sporn, specifically in the context of targeting nuclear receptors 
with vitamin A or synthetic analogs of vitamin A (retinoids) to prevent 
chemically induced carcinogenesis (24). He defined chemoprevention 
more broadly as the ability to inhibit cancer formation using natural 
or synthetic pharmacological agents, but the idea of targeting nuclear 
receptors for cancer prevention continues to be greatly considered.

The human nuclear receptor superfamily includes 48 
evolutionarily conserved transcription factors that recognize and 
respond to changes in physiological stimuli, such as steroid hormones, 
cholesterol metabolites and lipophilic vitamins (25). These receptors 
can be grouped into hormone receptors (both steroid and non-steroid), 
with known endogenous ligands, and orphan receptors, without 
known endogenous ligands, usually requiring heterodimerization with 
another receptor for transcriptional activation. In the context of breast 
cancer, several groups have shown that the expression patterns of 
nuclear receptors can discriminate subtypes, histological grade and 
even predict treatment response (26, 27). In this review, we will discuss 
the recent pre-clinical and clinical trials targeting nuclear hormone 
receptors for the prevention of breast cancer.

Steroid hormone receptors

Steroid hormone receptors play a critical role in normal breast 
development as well as the initiation and progression of breast cancer. 
These receptors include the estrogen receptor (ER), progesterone 
receptor (PR), glucocorticoid receptor (GR), androgen receptor (AR), 
and mineralocorticoid receptor (MR) which primarily act as 
homodimers for transcription regulation. In the classical mode of 
genomic action, these receptors are inactive in the cytoplasm without 
ligand, bound to heat shock proteins for stability. Upon exposure to a 
ligand, the receptors dimerize and translocate to the nucleus where 
they interact with co-activators and co-repressors (often determined 
by the type of ligand) and bind specific responsive elements on DNA 
to activate or repress target gene transcription (28). However, it is also 
worth noting that hormone receptor signaling can also be activated in 
a non-classical, ligand-independent manner, such as post-translational 
phosphorylation by erroneously hyperactive kinases like mitogen-
activated protein kinase (MAPK) (29).

During breast cancer carcinogenesis, steroid hormone receptors 
often become over or under expressed, resulting in the dysregulation 
of gene expression that can drive tumorigenesis (26, 30). It has long 
been accepted that the expression of ER and PR are clinically 
significant as predictors of breast cancer outcome and useful for 
determining therapeutic strategies (31). Despite the known ligand-
independent actions of nuclear receptors, endocrine therapy targeting 
ligand-dependent ER oncogenic signaling remains the most widely 
used targeted therapy in breast cancer treatment. More so, many 
pre-clinical studies and clinical trials have shown that anti-estrogens 
and anti-progestins can delay or inhibit the formation of breast cancer 
when used as a preventative therapy.

Estrogen receptor

More than a century ago, it was first noted that advanced, inoperable 
breast tumors can shrink after the removal of the ovaries, becoming the 
first reported use of endocrine therapy (32). The mechanism of action 
was later revealed that estrogen produced by the ovaries can stimulate 
tumor growth through the overexpression of nuclear ER in breast 
cancer (33). We now know that an estimated 70–80% of breast cancer 
is driven by ER signaling (1, 2). When bound to the endogenous ligand 
estrogen, ER drives tumor proliferation through the activation of direct 
target genes and upregulation of signaling pathways. It is also known 
that ER plays a pro-tumorigenic role in the migration and invasion of 
breast cancer, by stimulating signaling pathways that enhance actin 
cytoskeleton remodeling and filopodia structure formation (34). 
Therefore, targeting ER to suppress the hyper-active estrogen signaling 
pathway has been a highly effective treatment and prevention strategy 
for ER-positive breast cancer (Figure 1).

Selective estrogen receptor modulators

Several generations of selective estrogen receptor modulators 
(SERMs) have been developed as breast specific ER antagonists with 
varying effects in other tissues, most notably as ER agonists in the 
bone and uterus (35). Tamoxifen, a first-generation SERM, has been 
successfully used for several decades for the treatment of ER-positive 
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breast cancer at all stages, in both premenopausal and postmenopausal 
women. Early clinical trials for the treatment of breast cancer with 
tamoxifen found a reduction in contralateral breast cancer (36–38), 
leading to the development of clinical trials with SERMs for the 
prevention of breast cancer. In a decisive meta-analysis of 20 different 
clinical trials with 15-years of follow-up, it was found that adjuvant 
tamoxifen use in women with early-stage breast cancer reduced the 
risk of ER-positive contralateral breast cancer and recurrence by 
nearly 50% but had no effect on ER-negative breast cancer 
recurrence (39).

Ductal carcinoma in situ (DCIS) is considered a non-invasive 
breast cancer that has been shown to increase the risk for invasive 
breast cancer (40). DCIS accounts for 20% of all newly diagnosed 
breast cancers and breast conserving surgery to remove the 
non-invasive lesions is often the treatment of choice. Due to its 
common diagnosis among women and higher risk for invasive breast 
cancer, several clinical trials have explored the ability of tamoxifen to 
prevent invasive breast cancer in women with DCIS. Initial results and 
long term follow up of the UK/ANZ DCIS and NASBP B-24 trials 
both demonstrated that tamoxifen treatment after local excision could 
reduce the incidence of new breast events and contralateral tumors 
(41–44). These trials are summarized in Table 1.

Four landmark phase III prevention trials, with extensive 
follow-up of data, have demonstrated that tamoxifen also reduces the 
incidence of primary ER-positive breast cancer in normal and high-
risk women by 35–70% (49–56). These trials have been discussed at 

length in previous reviews (57, 58) and have been summarized in 
Table  2. Based on the initial results of the NSABP Breast Cancer 
Prevention Trial (49) and the other tamoxifen prevention trials (50–
52), tamoxifen was FDA-approved for breast cancer risk reduction in 
pre- and post-menopausal women at increased risk of breast cancer 
and remains the only preventative agent approved for breast cancer 
prevention in premenopausal women. Despite the promising success 
of tamoxifen for the prevention of ER-positive BC, these long-term 
follow-up studies have documented rare adverse events that warrant 
caution for use. Most notably, all studies reported that tamoxifen use 
had common side effects of intensified vasomotor symptoms with 
increased risk for rare but serious adverse events like thrombosis, 
pulmonary embolism, cataracts and uterine cancer. Due to concerns 
about these side effects, many women at high risk of breast cancer 
often decline to use tamoxifen for breast cancer prevention.

To minimize the adverse events associated with endocrine 
therapy, second and third generation SERMs have been developed. In 
several phase III prevention trials for osteoporotic women (MORE, 
CORE and RUTH trials), the second generation SERM raloxifene was 
found to reduce the risk of ER-positive breast cancer by 55–84%, 
without increasing the incidence of endometrial cancer (60–63). 
However, just as with tamoxifen, these studies reported a significant 
increased incidence of thrombosis with raloxifene. A subsequent 
Phase III breast cancer prevention trial, the STAR trial, directly 
compared the efficacy of tamoxifen and raloxifene for preventing 
breast cancer in postmenopausal women considered high-risk by the 

FIGURE 1

Endocrine therapies used for the prevention of ER-positive BC. Selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs) and 
selective progesterone receptor modulators (SPRMs) have demonstrated preclinical and clinical efficacy for the prevention of primary and recurrent 
breast cancer. SPRMs compete with estrogen to bind ER and block the estrogen signaling that drives breast cancer formation. AIs block estrogen 
signaling by inhibiting the enzyme aromatase from converting androgen to excess estrogen. SPRMs compete with progestins to bind PR and modulate 
progesterone signaling. Created with BioRender.com.
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Gail Model for breast cancer risk assessment. This trial initially 
demonstrated that raloxifene was equally effective as tamoxifen in 
preventing breast cancer and that it had fewer side effects [fewer hot 
flushes, thromboses, and no increase in uterine cancer (64, 69)]. These 
results led raloxifene to also be FDA-approved for breast cancer risk 
reduction in post-menopausal women. On longer follow-up, 
raloxifene was found to be slightly less effective than tamoxifen at 
preventing breast cancer [85% as effective as tamoxifen (65, 70)].

Several phase III prevention trials have explored the use of third 
generation SERMs for osteoporosis risk reduction in postmenopausal 
women. In the PEARL trial, lasofoxifene was shown to reduce 
ER-positive breast cancer by 83% with even fewer reported toxicities 
than tamoxifen or raloxifene (66). However, this study was limited by 
low breast cancer incidence and short-term follow-up, lacking 
sufficient data on long-term benefits or safety, and thus, FDA-approval 
for breast cancer prevention has not been sought. Similarly, the 
Generations trial investigating the effects of arzoxifene demonstrated 
a 70% reduction in ER-positive breast cancer with an increased 
incidence of thromboembolism and vasomotor symptoms (71). 
Neither lasofoxifene nor arzoxifene have been FDA approved for the 
prevention of BC.

More recently, the third generation SERM bazedoxifene in 
combination with conjugated estrogen (in the drug Duavee) has 
shown potential for breast cancer prevention. In a pilot study 
including 28 women at high-risk for breast cancer (non-BRCA1/2 
mutation carriers with breast cancer risk of at least twice the average 
for age group by models of assessment), 6-months of treatment with 
Duavee significantly reduced mammographic density, proliferation (as 
assessed by staining for the Ki-67 proliferation marker) and additional 
breast cancer risk biomarkers while improving menopause-associated 

symptoms (72). These results supported the development of an 
ongoing phase IIB trial that will be completed in 2026 (NCT04821141). 
Another ongoing trial, the PROMISE Study trial is investigating the 
effects of Duavee on breast cell proliferation in women with 
ER-positive DCIS, with results expected in 2024 (NCT02694809).

The success of tamoxifen for the prevention of ER-positive breast 
cancer has prompted additional studies to minimize adverse effects 
and increase use among high-risk women. A randomized trial in 
women with ER-positive breast cancer found that low dose tamoxifen 
(1 or 5 mg) can decrease tumor proliferation, as measured by Ki-67 
expression, comparable to that of high dose tamoxifen (20 mg) (59). 
This finding sparked several clinical trials for the use of low-dose 
tamoxifen in breast cancer prevention. The HOT study trial in 
postmenopausal women using HRT first showed a 68% reduction in 
ER-positive breast cancer incidence among women taking low-dose 
tamoxifen, with minimal side effects compared to placebo group (45). 
With 5-years of follow-up, a multicenter phase III trial (TAM-01) in 
women with previous hormone sensitive breast intraepithelial 
neoplasia (DCIS, ADH, or ALH), demonstrated that low dose 
tamoxifen (5 mg) administered for 3-years reduced recurrence and 
contralateral breast cancer by 50%, without significant differences in 
thrombosis or uterine cancer compared to placebo (73). This study 
also revealed that the efficacy of low-dose tamoxifen may be greater 
in postmenopausal women with lower estradiol levels, and those who 
never (74). Long-term follow-up of this trial is on-going and will 
be completed in 2028 (NCT01357772). The KARISMA phase II dose-
determination study, including healthy women with higher 
mammographic density randomized into 0, 1, 2.5, 5, 10 or 20 mg of 
tamoxifen treatment, revealed that low-dose tamoxifen (2.5 mg) can 
reduce breast density similarly to the 20 mg high dose with 

TABLE 1 Clinical trials targeting ER for DCIS recurrence and invasive breast cancer (BC) prevention.

Trial Interventions Patient characteristics Results

Selective estrogen receptor modulator (SERM)

Tamoxifen*

NSABP B-24 (40, 43)
Tamoxifen 20 mg vs. placebo (with all patients 

receiving initial lumpectomy and radiation therapy)
1804 women with DCIS

Reduced all BC incidence by 37% 

(contralateral BC by 52%)

UK/ANZ DCIS (41, 42)
Tamoxifen alone 20 mg vs. radiotherapy alone vs. 

combination vs. placebo (after initial lumpectomy)
1694 women with DCIS

Tamoxifen alone compared to placebo 

reduced all BC incidence by 17% 

(contralateral BC by 34%)

TAM-01 (45) Tamoxifen 5 mg vs. Placebo
500 Women with previous ADH, LCIS or 

DCIS

Reduced BC or DCIS recurrence by 

50%

Aromatase inhibitor (AI)

Anastrozole

NSABP, B-35 trial (46) Anastrozole 1 mg vs. Tamoxifen 20 mg
3,104 Postmenopausal women with ER-

Positive DCIS

Significant reduction in BC incidence 

with anastrozole treatment, 

specifically in women <60

IBIS-II (DCIS) trial (47) Anastrozole 1 mg vs. Tamoxifen 20 mg
2,980 Postmenopausal women with ER-

positive DCIS

No statistical differences in overall 

recurrence between treatments

RAR/RXR agonist

Milan subgroup (48) fenretinide 200 mg vs. placebo 1739 women with DCIS or stage I BC

Reduced second primary BC 

incidence by 38% in premenopausal 

women

*FDA approved for breast cancer prevention.
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substantially reduced vasomotor symptoms (75). Collectively these 
studies demonstrate the cancer preventive activity of low dose 
tamoxifen and suggest that studies of the long-term effects of low-dose 
tamoxifen are warranted.

Localized treatment of tamoxifen via topical application is also 
being considered to overcome the adverse effects of systemic 
tamoxifen therapy. A randomized Phase II trial of 4-hydroxytamoxifen 
gel (Afimoxifen) versus oral tamoxifen, administered pre-surgery to 
women with DCIS, demonstrated that the antiproliferative effect of 

topical tamoxifen is similar to oral tamoxifen, but without the systemic 
endocrine effects, supporting the rationale for 4-hydroxytamoxifen gel 
in breast cancer prevention (76). A phase II randomized trial of 
4-hydroxytamoxifen gel in healthy women with high breast density 
was recently completed but results have yet to be  published 
(NCT03199963). Similarly, the phase II Karma CREME-1 trial 
explored the effects of topical endoxifen, a tamoxifen metabolite, 
versus placebo on mammographic density of healthy postmenopausal 
women (NCT04616430). A significant decrease in breast density was 

TABLE 2 Phase III clinical trials targeting ER for breast cancer prevention.

Trial Interventions Patient Characteristics Results

Selective estrogen receptor modulators (SERMs)

Tamoxifen*

Royal Marsden trial (49, 52) Tamoxifen 20 mg vs. Placebo 2,471 High-risk women
Reduced ER-positive BC by 

39%

NSABP, P-1 trial (44, 53) Tamoxifen 20 mg vs. Placebo 13,388 High-risk women
Reduced ER-positive BC by 

62%

Italian trial (50, 54) Tamoxifen 20 mg vs. Placebo 5,408 Normal-risk women with hysterectomy
Reduced ER-positive BC by 

69%

IBIS-I trial (51, 55) Tamoxifen 20 mg vs. Placebo 7,154 High-risk women
Reduced ER-positive BC by 

34%

HOT study trial (59) Tamoxifen 5 mg vs. Placebo
1884 Postmenopausal women on hormone 

replacement therapy

Reduced ER-positive BC by 

68%

Raloxifene*

MORE trial (58, 60) Raloxifene (60 or 120 mg) vs. Placebo
7,705 Postmenopausal normal-risk women with 

osteoporosis

Reduced ER-positive BC by 

84%

CORE trial (61) Raloxifene 60 mg vs. Placebo 5,213 Women from MORE trial
Reduced ER-positive BC by 

76%

RUTH trial (62) Raloxifene 60 mg vs. Placebo
10,101 Postmenopausal women with coronary heart 

disease

Reduced ER-positive BC by 

55%

STAR, P-2 trial (63, 64) Raloxifene 60 mg vs. Tamoxifen 20 mg 19,747 Postmenopausal High-risk women

No statistical differences in BC 

incidence between treatments 

(but fewer non-invasive BC 

with tamoxifen)

Lasofoxifene

PEARL trial (65) Lasofoxifene (0.25 or 0.5 mg) vs. Placebo 8,556 Postmenopausal women with osteoporosis
Reduced ER-positive BC by 

83% with 0.5 mg dose

Arzoxifene

Generations trial (66) Arzoxifene 20 mg vs. placebo 9,354 Postmenopausal women with osteoporosis
Reduced ER-positive BC by 

70%

Aromatase Inhibitors (AIs)

Exemestane

MAP.3 trial (67) Exemestane 25 mg vs. Placebo 4,560 Postmenopausal high-risk women
Reduced ER-positive BC by 

74%

Anastrozole

IBIS-II trial (68) Anastrozole 1 mg vs. Placebo 3,864 Postmenopausal high-risk women
Reduced ER-positive BC by 

54%

Letrozole

LIBER trial (NCT00673335) Letrozole 2.5 mg vs. Placebo
170 Postmenopausal BRCA1/2 carriers with or 

without previous BC diagnosis
Results expected 2023

*FDA approved for breast cancer prevention.
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observed after 3 months of 20 mg of endoxifen treatment but the 
development of severe skin rashes led to a high discontinuation rate 
among participants (77). Although long-term clinical trials in healthy, 
high-risk women are still needed before topical therapies can be used 
clinically, these studies support the concept of topical endocrine 
therapy to prevent the development of ER-positive breast cancer with 
minimal systemic effects.

To date, clinical trials with SERMs have shown clear efficacy for 
the prevention of primary and recurrent ER-positive breast cancer, 
leading to the FDA approval of tamoxifen and raloxifene for high risk 
women. However, the uptake of SERMs for prevention has been low 
among high risk women, likely due to concerns about side effects. The 
field urgently needs a way to effectively prevent ER-positive breast 
cancer while minimizing adverse events to improve treatment uptake. 
Ongoing efforts to explore alternative dosing regimens and to develop 
newer SERMs with reduced toxicity may address these issues but it 
remains to be seen if patient acceptance will improve. Finally, although 
SERMs have shown great promise for the prevention of ER-positive 
breast cancer, they do not prevent ER-negative disease.

Aromatase inhibitors

An alternative strategy to reduce estrogen signaling in ER-positive 
breast cancer is through the inhibition of aromatase, an enzyme 
typically expressed in fat, stromal and muscle tissue but also breast 
cancer, responsible for converting androgens into estrogen (78). Since 
their development, aromatase inhibitors (AIs) have been highly 
effective in reducing circulating estrogen levels, subsequently blocking 
estrogen signaling in breast tumors. Early clinical trials demonstrated 
that AIs are more effective than tamoxifen for the treatment of 
ER-positive BC, without the associated increased risk for thrombosis 
and uterine cancers (79–84). Additionally, 10-year follow-up of a large 
clinical trial investigating the efficacy of anastrozole (a third generation 
AI) versus tamoxifen alone or in combination for the treatment of 
early-stage breast cancer in postmenopausal women, revealed that 
treatment with the AI also had a greater reduction in contralateral 
breast incidence, prompting the exploration of their use in breast 
cancer prevention [ATAC trial (46)].

As with SERMs, several clinical trials have tested the ability of AIs 
to reduce invasive breast cancer incidence in women with DCIS 
(summarized in Table 1). The phase III NSABP B-35 and IBIS-II 
(DCIS) trials both compared the incidence of invasive breast cancer 
and toxicities in women with ER-positive DCIS treated with 
anastrozole or tamoxifen for 5-years. The NSABP B-35 trial found a 
significant decrease in breast cancer incidence for patients treated with 
anastrozole compared to tamoxifen at 5-years, but with a similar 
number of adverse events reported (47). In contrast, the IBIS-II 
(DCIS) trial found no clear differences in breast cancer prevention 
efficacy between anastrozole and tamoxifen treatment, concluding 
that chemoprevention with AI is not superior to SERMs (68). 
However, the recently published long-term follow-up of the IBIS-II 
trial in high-risk postmenopausal women (relative risk of breast 
cancer at least twice that of the general population), comparing 
anastrozole to placebo, demonstrated a significant reduction in 
ER-positive breast cancer incidence (54%) without a significant 
difference in adverse events observed during the 5-year treatment 
period or 12-years of follow-up (67). These findings indicate that 

anastrozole is a suitable option for the prevention of ER-positive breast 
cancer in postmenopausal women, but it has yet to be FDA approved 
for this purpose.

A true phase III breast cancer prevention trial to explore the 
efficacy of AIs in high-risk women has also been completed 
(summarized in Table 2). The MAP.3 trial, comparing the incidence 
of invasive breast cancer with third generation AI exemestane versus 
placebo in a cohort of high-risk postmenopausal women (Gail risk 
score greater than 1.66% or previously diagnosed with atypical ductal 
hyperplasia, LCIS or DCIS), showed an impressive 74% reduction in 
ER-positive breast cancer during a short-term follow-up (85). 
However, significant age-related bone loss, despite calcium and 
vitamin D supplementation, contributed to significant discontinuation 
(86, 87). The long-term follow-up of this trial has yet to be published. 
To alleviate the unwanted side effects, low-dose exemestane trials are 
currently in progress. A recent phase IIb trial in postmenopausal 
women with early stage breast cancer demonstrated that exemestane 
given three days a week is not inferior to daily dosing [NCT02598557 
(88)]. Future comparison studies of low-dose exemestane and 
low-dose tamoxifen in the prevention setting are needed.

The AI letrozole has been effective as a first-line treatment for 
advanced stage ER-positive breast cancer in postmenopausal women 
and can also provide benefit as an adjuvant therapy for early-stage 
hormone responsive breast cancer (81, 89). Early clinical trials for 
breast cancer prevention demonstrated that 6 months of letrozole 
treatment in postmenopausal women taking hormone replacement 
therapies could reduce Ki-67 proliferation markers, prompting further 
studies (90). Recently, the phase III NRG Oncology/NSABP B-42 trial 
explored the effects of letrozole versus placebo on disease free survival 
in postmenopausal women with previously treated ER-positive breast 
cancer (91). Study investigators found no significant reduction in 
breast cancer recurrence with 5 years of letrozole therapy but did note 
a reduction in distant recurrence among letrozole users. Importantly, 
there were no significant differences in adverse events between 
treatment groups providing evidence for letrozole as a well-tolerated 
preventative therapy. An ongoing phase III trial in postmenopausal 
women carrying BRCA1/2 mutations is underway to investigate breast 
cancer incidence and recurrence with letrozole therapy (LIBER trial; 
NCT00673335). The results from this trial are expected in 2023.

Like SERMs, the major problems with the use of AIs for breast 
cancer prevention are the associated treatment toxicities (namely hot 
flushes, osteoporosis, bone pain and bone fractures) and the inability 
to prevent ER-negative breast cancer. Despite the promise of AIs for 
ER-positive breast cancer prevention, their use is largely restricted 
to postmenopausal women whom lack estrogen-producing ovaries. 
This unfortunately excludes premenopausal women from the 
benefits of AIs, specifically those at high-risk for breast cancer who 
are already in desperate need for effective preventative agents. To 
date, no AIs have been approved by the FDA for breast cancer 
prevention, however, they are often considered for breast cancer 
prevention in high-risk postmenopausal women as “off label” 
treatments.

Progesterone receptor

PR and its endogenous ligand progesterone (P4) are essential to 
normal and pregnancy associated mammary gland development. PR 
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mainly exists as two functionally active isoforms; the full-length 
receptor PR-B preferentially binds with co-activators of gene 
transcription while the truncated receptor PR-A shows a greater 
binding affinity for co-repressors (92–94). In a knockout mouse 
model, the complete loss of PR-B, resulted in reduced pregnancy 
associated side branching and lobuloalveolar development (95, 96). 
Although PR-A was not essential for normal mammary development, 
there is evidence that PR-A may suppress the function of PR-B (97). 
As with ER, the expression of PR is tightly regulated under normal 
conditions and becomes dysregulated in breast cancer. The ratio of 
PR-A:PR-B is strongly associated with breast cancer progression and 
endocrine therapy response, with PR-A rich tumors associated to poor 
disease-free survival (98–101). PGR (NR3C3), the gene encoding the 
many known isoforms of PR, is a direct target gene of ER and therefore 
depends on ER expression. For this reason, PR expression by IHC is 
also prognostic for breast cancer overall and disease-free survival. 
ER-positive/PR-negative tumors are less responsive to SERMS likely 
because the loss of PR indicates tumors with nonfunctional ER 
signaling (102, 103).

Although it is recognized that ER drives PR expression, it is also 
known that PR-A can inhibit ER transcriptional activity and plays an 
important role in the formation of breast cancer (104, 105). Recently 
it was found that postmenopausal women with higher levels of 
circulating P4 are at increased risk for breast cancer (106). While the 
exact role of P4-PR in breast cancer development and progression is 
still unknown, it has been shown that PR activation can contribute to 
the proliferation and invasion of breast cancer cells via activated EGF 
signaling and induction of VEGF (107–109). It is also known that 
P4-PR induces receptor activator of the nuclear factor kappa-B ligand 
(RANKL) paracrine signaling from luminal cells to promote 
mammary epithelial proliferation and carcinogenesis (110, 111) 
suggesting PR as an ideal target for breast cancer prevention. It is 
worth noting that RANKL targeted therapies are also being explored 
for the prevention of BC, although a recent phase III trial has 
demonstrated no significant decrease in contralateral breast cancer 
incidence among postmenopausal women treated with the RANKL 
monoclonal antibody, denosumab (112, 113).

Because of the known pro-tumorigenic mechanisms of PR 
activation, the use of antagonistic selective progesterone receptor 
modulators (SPRMs) are being investigated for the treatment and 
prevention of PR-positive breast cancer (Figure  1). These 
modulators often compete with agonists (like endogenous P4) for 
higher affinity binding to PR but depend on the ratio of PR-A:PR-B 
in the tissue, making them highly tissue specific with minimal side 
effects (114).

Selective progesterone receptor 
modulators

Several SPRMs have been investigated for the treatment of 
PR-positive breast cancer. Mifepristone, ulipristal acetate, and 
telapristone acetate have been shown to decrease cell proliferation, 
inhibit cell cycle progression, and increase apoptosis of breast cancer 
cell lines (115, 116). Additionally, preclinical studies have also revealed 
that mifepristone and telapristone acetate can inhibit angiogenesis and 
migration of breast cancer cells in vivo (117, 118). Recently, the phase 
I MIPRA trial exploring the effects of mifepristone in women with 

breast cancer pre-selected for high PR-A:PR-B ratios in the tumor 
demonstrated a significant decrease in Ki-67 proliferation marker with 
an increase in Cleaved caspase 3 compared to baseline expression after 
two weeks of treatment (119). Similarly, a phase II trial investigating 
the effects of telapristone acetate for 2–10 weeks before surgery of 
early-stage breast cancer patients showed a significant decrease in 
tumor proliferation in a subset of patients (120).

Using a preclinical prevention model of Brca1 mutant breast 
cancer, it has been demonstrated that mifepristone, ulipristal acetate 
and telapristone acetate can reduce proliferation and inhibit the 
formation of tumors (121–123), highlighting the potential for SPRMs 
in the prevention of breast cancer for women with BRCA1/2 
mutations. In a recent phase II clinical trial investigating the effects of 
mifepristone (50 mg) on BRCA1/2 carriers, healthy premenopausal 
women with and without BRCA mutations were treated for 12 weeks 
and assessed for breast epithelial proliferation and side effects 
(NCT01898312). Recently published results show that mifepristone, 
but not the vitamin treatment placebo, reduced both the mitotic age 
and proportion of luminal progenitor cells in the normal breast tissue 
of healthy women and BRCA1/2 mutation carriers (124), suggesting 
mifepristone may be suitable for breast cancer prevention. The same 
group completed a similar phase II trial investigating the effects of 
anti-progestin ulipristal acetate (5 mg daily) on surrogate markers of 
breast cancer risk in high-risk premenopausal women (BRCA1/2 
mutation carriers or high lifetime risk by assessment models; 
NCT02408770). In congruence with the mifepristone results, ulipristal 
acetate also reduced the normal breast tissue mitotic age (124). 
Similarly, a phase I trial in very young, healthy women (<40 years), 
comparing the effects of ulipristal acetate to combined oral 
contraceptive pill on the proliferation of breast cells (NCT02922127), 
demonstrated that ulipristal acetate drastically decreases Ki-67 
proliferation and reduces the background parenchymal enhancement 
of normal breast tissue (125).

Of the SPRMs with activity in breast tissue, telapristione acetate 
has been found to exert the greatest anti-tumorigenic effect in several 
in vitro breast cancer models (118), warranting consideration for 
breast cancer prevention. In a pre-clinical model of Sprague–Dawley 
rats, telapristone acetate was shown to prevent spontaneous mammary 
hyperplasia and pre-malignant lesions and suppress tumor formation 
in the N-methyl-N-nitrosourea (MNU) induced mammary 
carcinogenesis model (126). To explore the feasibility of telapristone 
acetate in breast cancer prevention, Lee et al studied the bioavailability 
of telapristone acetate as a topical gel or implant in an athymic nude 
rat model. Like afimoxifene and endoxifen gel, the investigators found 
that effective telapristone acetate levels could be  achieved in the 
mammary tissue (127). A recently published phase II trial comparing 
oral to transdermal delivery of telapristone acetate in women 
undergoing mastectomies confirmed that local drug distribution 
patterns were similar between treatment groups, establishing the 
feasibility of topical telapristone acetate for breast cancer prevention 
in high-risk women (128). A summary of these trials can be found in 
Table 3.

Like SERMs, a challenge for SPRMs in breast cancer prevention is 
toxicity and tolerability in the patient population. For the most part, 
SPRMs are well-tolerated but adverse events have been associated with 
treatment, including hot flushes, nausea and vomiting (129, 130). In 
addition, a few clinical trials with ulipristal acetate and telapristone 
acetate for the treatment of uterine fibroids were suspended due to 
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liver toxicity concerns (114), bringing into question the potential for 
long-term use. Of course, SPRMs are known for their utility as 
emergency contraceptives and must be used with caution in women 
of child-bearing age. This consideration could limit the use of SPRMs 
among premenopausal women for breast cancer prevention. Despite 
these restrictions, preclinical findings and recent phase I/II clinical 
trials have demonstrated that SPRMs should be tested in Phase III 
breast cancer prevention trials. Long-term studies on breast cancer 
incidence and treatment toxicity are needed to assess the safety of 
these treatments.

Non-steroid hormone receptors

Non-steroid hormone receptors typically function as 
heterodimeric transcription factors with retinoid X receptor (RXR) 
and are retained in the nucleus even in the inactive state, bound to 
DNA response elements with transcriptional co-repressors. Upon 
binding of a specific ligand, these nuclear receptors will dissociate 
with inhibitory factors and recruit co-regulators to modulate target 
gene transcription. There are many nuclear receptors known to 
dimerize with RXR for transcriptional regulation, including RXR 
itself as a homodimer (Figure 2). Nuclear receptors with known 
endogenous ligands can regulate gene transcription through 
heterodimeric binding with RXR in the absence of RXR ligand 
(known as permissive heterodimers). These partner receptors 
include retinoic acid receptor (RAR), vitamin D receptor (VDR), 
peroxisomal proliferator-activated receptor (PPAR), liver X receptor 
(LXR), thyroid receptor (TR), RAR-related orphan receptor (ROR), 
pregnane X receptor (PXR), and farnesoid X receptor (FXR). 
However, RXR can also bind nuclear receptors without known 
endogenous ligands, referred to as orphan receptors. These nuclear 
receptors include the chicken ovalbumin upstream promoter 
transcription factors (COUP-TF1/2), nerve growth factor-induced 
protein IB (NGF IB/Nur77), nuclear receptor related 1 (Nurr1), 
neuron-derived orphan receptor 1 (NOR1), and V-erbA-related 
protein 2 (EAR2). Here we will discuss the known mechanisms of 
non-steroid hormone receptors RAR, RXR and VDR in breast 
cancer carcinogenesis as well as recent efforts to target these nuclear 
receptors for breast cancer prevention (Figure 3).

Retinoic acid receptor

The retinoic acid receptor (RAR) subfamily consists of three 
members: RARα, RARβ and RARγ. These nuclear receptors are 
activated by the major bioactive metabolite of vitamin A, retinoic acid 
(RA), and heterodimerize with the retinoid X receptor (RXR) to 
regulate the transcription of target genes involved in cell growth, 
differentiation and death. The first chemo-prevention trial with 
retinoids was in patients with head and neck cancers at high risk for 
recurrent and second primary tumors. This study demonstrated that 
treatment with 13-cis-RA (isotretinoin) could significantly reduce the 
formation of second primary tumors (131) and showed great promise 
for the use of retinoids in cancer prevention. Since then, retinoids have 
been explored for the prevention of retinoblastoma, lung cancer, skin 
cancer and breast cancer.

For years, it has been known that treatment with RA can inhibit 
the growth and induce apoptosis of breast cancer cell lines in vitro and 
in vivo, similar to the effect of tamoxifen (132–134). In preclinical 
trials, treatment with 9-cis-RA has been shown to suppress the 
formation of ER-positive mammary tumors in rats exposed to MNU 
(135) and 9-cis-RA can suppress mammary tumorigenesis in C3(1)-
SV40 transgenic mice (136). However, even when given at therapeutic 
concentrations, RA is associated with adverse effects, such as 
teratogenicity and skin irritation, that limit its clinical utility. This is 
in part due to non-genomic, RAR-independent effects of RA on 
several cell signaling pathways. For this reason, synthetic RAR 
agonists (retinoids) with fewer toxicities have been developed.

The synthetic retinoid fenretinide was developed in the late 1960s 
and shown to preferentially accumulate in mammary tissue and 
inhibit the formation of tumors in a chemically induced rat model of 
mammary carcinoma (137). Since then, fenretinide has been 
extensively studied for the prevention of many cancer types, including 
prostate and oral cancer, due to its favorable toxicity (48, 138). A 
15-year follow-up of a phase III clinical trial in women with previous 
DCIS or stage I  breast cancer demonstrated that five years of 
fenretinide treatment in premenopausal women can significantly 
reduce the incidence of second primary breast cancer regardless of the 
initial hormone status (139), suggesting retinoids can prevent both 
ER-positive and ER-negative breast cancer (summarized in Table 1). 
The trial also reported a reduced incidence of ovarian carcinoma 

TABLE 3 Phase I-II clinical trials investigating SPRMs for breast cancer prevention.

Trial Interventions Patient characteristics Results

Mifepristone

NCT01898312 (123) mifepristone 50 mg vs. placebo 45 healthy BRCA1/2 carriers
Reduced mitotic age and proportion of luminal progenitor 

cells in normal breast tissue

Ulipristal acetate

BC-APPS1 trial (123) ulipristal acetate 5 mg 30 high-risk women
Reduced mitotic age and proportion of luminal progenitor 

cells in normal breast tissue

NCT02922127 (124)
ulipristal acetate 10 mg vs. 

combined oral contraceptive
25 young normal-risk women

decreased ki-67 proliferation and reduced background 

parenchymal enhancement of normal breast tissue

Telapristone acetate

NCT02314156 (127)
Oral vs. topical telapristone 

acetate 12 mg

60 women undergoing 

mastectomies

local drug distribution patterns are similar between oral 

and topical telapristone acetate
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during the intervention phase, although the protective effects did not 
last upon discontinuation of fenretinide treatment (140). These 
findings prompted a phase III prevention trial to investigate the effects 

of fenretinide on breast cancer incidence in premenopausal high-risk 
individuals with familial or genetic risk for breast cancer 
(NCT01479192). Unfortunately, the trial was terminated due to low 

FIGURE 2

Retinoid X Receptor (RXR)dimeric partners and known ligands. RXR can homodimerize to modulate gene transcription upon binding of ligands like 
13-cis-retinoic acid (RA). RXR can also heterodimerize with non-steroid hormone receptors and several orphan receptors to regulate the gene 
transcription of other nuclear receptors. These partner receptors include retinoic acid receptor (RAR), vitamin D receptor (VDR), peroxisomal 
proliferator-activated receptor (PPAR), liver X receptor (LXR), thyroid receptor (TR), RAR-related orphan receptor (ROR), pregnane X receptor (PXR), 
farnesoid X receptor (FXR), chicken ovalbumin upstream promoter transcription factors (COUP-TF1/2), nerve growth factor-induced protein IB (NGF 
IB/Nur77), nuclear receptor related 1 (Nurr1), neuron-derived orphan receptor 1 (NOR1), and V-erbA-related protein 2 (EAR2). RA, retinoic acid; FA, fatty 
acids; OxSt, oxysterols; ATRA, all-trans retinoic acid; DIM, 3,3`-diindolylmethane. Created with BioRender.com.

FIGURE 3

Non-steroid hormone nuclear receptors targeted for the prevention of BC. Retinoids, rexinoids and VDR agonists have been identified, developed and 
tested to target RAR, RXR and VDR gene transcription for the prevention of primary and recurrent breast cancer. Upon ligand binding, dimeric 
receptors can modulate the transcription of genes involved in proliferation, apoptosis, lipid metabolism, and cell homeostasis to inhibit carcinogenesis 
(*denotes treatments that have been tested in clinical trials. Those in red have been tested in breast cancer prevention trials). Created with BioRender.
com.
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patient accrual. Recently, a non-aqueous microemulsion for the 
prolonged release of fenretinide in the mammary tissue was developed 
for the intended use in breast cancer prevention. In a preclinical study 
of chemically induced mammary tumors, it was demonstrated that 
local injection of fenretinide microemulsion significantly reduced the 
incidence of mammary tumors in Sprague–Dawley rats, without 
systemic side effects (141). The same group is currently exploring 
topical administration of fenretinide which may prove more favorable 
for prevention trials (142).

Retinoid X receptor

Like RAR, the retinoid X receptor subfamily is made up of three 
members: RXRα, RXRβ and RXRγ. In contrast to RAR, RXR can 
homodimerize or heterodimerize with a variety of other nuclear 
receptor partners to modulate the signaling of additional gene targets. 
For some of these heterodimers, a single partner ligand alone can 
activate gene transcription (permissive heterodimer) while for others, 
the heterodimer partner ligand must be  present for transcription 
modulation (non-permissive heterodimer). RXR can also form 
heterodimers with orphan nuclear receptors, lacking known 
endogenous ligands. Many synthetic agonists with high specificity for 
RXR (rexinoids), have been developed to mimic the growth inhibitory 
effects of RAR agonists while avoiding the toxicity associated with 
natural retinoids.

The third-generation retinoid bexarotene (LGD1069) has been 
widely studied in the prevention of many cancers. In preclinical 

models of ER-negative BC, our lab has shown that 9-cis-RA and 
bexarotene can suppress mammary tumorigenesis and prevent the 
development of premalignant lesions (143–145). This suppression is 
mediated in part by a decrease in cyclin D1 and COX2 expression 
(146, 147) as well as an induction of cellular senescence (148). 
Together, these preclinical findings supported a clinical trial 
investigating the effects of bexarotene on breast cell proliferation in 
women with known or suspected BRCA1/2 mutations 
(NCT00055991). Pre- and post-menopausal women were treated with 
bexarotene or placebo for 4 weeks and proliferation associated 
biomarkers were compared between core needle biopsies at pre and 
post treatment timepoints. Results from this trial revealed no 
differences in Ki-67 or cyclin D1 expression between bexarotene and 
placebo treated groups. Though, in a subgroup analysis of 
postmenopausal women only, the decrease in cyclin D1 expression 
was significantly reduced by 65% compared to placebo (149), 
suggesting a potential benefit for postmenopausal high-risk women 
(summarized in Table  4). However, this study also found that 
bexarotene treatment was associated with toxicities including 
hypertriglyceridemia, subclinical hypothyroidism and skin reactions, 
likely due to weak RAR-binding. To limit the systemic toxicities, a 
topical bexarotene gel has been developed. A recent phase I dose 
escalation study has shown that topical bexarotene can penetrate the 
breast tissue at 10 mg per every other day but still results in unwanted 
skin reactions that may limit compliance (156).

To avoid the unwanted toxicity associated with weak RAR-binding, 
even more specific RXR agonists have been developed. Our group has 
previously shown that the rexinoid LG100268 is more effective for 

TABLE 4 Clinical trials targeting non-steroid hormone nuclear receptors for breast cancer prevention.

Trial Interventions Cohort characteristics Results/Primary endpoints

RAR/RXR agonists

NCT01479192 Fenretinide 100 mg versus placebo
Premenopausal women with 

BRCA1/2 mutations
Terminated due to low patient accrual

NCT00055991 (148) Bexarotene 200 mg versus placebo 87 High-risk women

No statistical difference between treatment 

groups but reduced breast cell proliferation in 

postmenopausal women subgroup analysis

NCT02876640 9cUAB30 240 mg 39 Early stage BC patients

Primary endpoint: cell proliferation; secondary 

endpoints: apoptosis, gene expression changes, 

maximum concentration, immune cell 

recruitment, toxicity (results expected 2023)

VDR agonists

Women’s Health Initiative (150)
Vitamin D 400 IU with calcium 1,000 mg 

versus placebo
36,282 Postmenopausal women

No difference in BC incidence between 

treatment groups

NCT00352170 (151)
Vitamin D 1100 IU with calcium 1,400 mg 

versus placebo

1,179 Healthy postmenopausal 

women

Reduced all-cancer incidence at 4 years of 

supplementation

CAPS trial (152)
Vitamin D 2000 IU with calcium 1,500 mg 

versus placebo

2,303 Healthy postmenopausal 

women

No difference in all-cancer incidence at 4 years of 

supplementation

EVIDENSE trial (153)
Vitamin D (1,000, 2000 or 3,000 IU) 

versus placebo

405 Premenopausal women with 

high breast density

No difference in reduction of breast density 

between treatment groups

CALGB 70806 (Alliance) trial (154) Vitamin D 2000 IU versus placebo
300 Premenopausal women with 

high breast density

No difference in reduction of breast density 

between treatment groups

SWOG S0812 (155) Vitamin D 20,000 IU/week vs. placebo
208 High-risk premenopausal 

women

No difference in reduction of breast density 

between treatment groups
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mammary tumor prevention with reduced toxicity compared to 
bexarotene in preclinical models of ER-negative breast cancer (157). 
Karen Liby and colleagues further demonstrated that this inhibition 
may not only be due to a direct effect on breast cell proliferation but 
also due to the stimulation of immune cells (158). Similarly, the fourth 
generation rexinoid IRX4204 was shown to prevent mammary 
carcinogenesis in the ER-negative MMTV-neu mouse model with 
demonstrated effects on the activity of RAW264.7 macrophage-like 
cells (159). Neither LG100268 or IRX4204 have been explored in 
clinical trials for breast cancer treatment or prevention but IRX4204 
has been tested for the treatment of taxane-resistant, castration-
resistant metastatic prostate cancer with no reported serious adverse 
events (160).

The highly specific rexinoid, 9cUAB30, has also been evaluated for 
chemoprevention in preclinical models of BC. Using the MNU 
induced mammary cancer model in female Sprague–Dawley rats, it 
was demonstrated that 9cUAB30 can delay the formation of tumors 
without signs of treatment toxicity (161). Based on these findings, a 
phase I, placebo-controlled, dose escalation trial was conducted in 
healthy volunteers to evaluate the safety and pharmacokinetics of 
9cUAB30. Results of this study demonstrated that 9cUAB30 is well 
tolerated, with no dose limiting toxicities and no evidence of elevated 
triglycerides or cholesterol, a concerning side effect that has been 
observed with other rexinoids (162). A phase Ib trial to study the 
biologic effects of 9cUAB30 on presurgical treatment of early stage 
breast cancer is ongoing and is expected to be completed in 2023 
(NCT02876640).

Vitamin D receptor

In the inactive state, vitamin D receptor (VDR) exists as a 
monomer in solution or homodimer bound to VDR response elements 
on DNA. When activated by its endogenous ligand, 
1,25-dihydroxyvitamin D3 (cholecalciferol), VDR preferentially 
heterodimerizes with RXR to regulate the transcription of VDR target 
genes (163–165). In normal breast tissue, VDR is essential for the 
negative growth regulation of the mammary gland during puberty and 
is known to regulate casein expression during pregnancy as well as post 
lactation involution (166, 167). As with other nuclear receptors, 
expression of VDR is often dysregulated in breast cancer. Among 
human breast tumors, higher VDR expression is associated with 
decreased Ki-67 staining and better outcomes, with the lowest VDR 
expression often found in TNBC samples (168). In addition, 
polymorphisms in the VDR gene have been associated with increased 
risk for breast cancer (169, 170) and a meta-analysis of 11 studies on 
circulating vitamin D levels and breast cancer risk demonstrated a 45% 
reduction in breast cancer risk among women with the highest levels 
of 25-hydroxyvitamin D (25(OH)D), the major circulating form of 
vitamin D (171). Similarly, a pooled analysis of 11 case–control studies 
on circulating D3 and breast cancer risk found that serum 25(OH)D 
levels of 47 ng/mL or greater was associated with a 50% lower risk of 
breast cancer (172). In addition, an analysis of data from two 
independent cohorts (Lappe clinical trial cohort and GrassrootsHealth 
prospective cohort) found that women with 25(OH)D concentrations 
above 40 ng/mL had a 67% reduced risk of all invasive cancers (173). 
Together, these findings suggest vitamin D levels and VDR expression 
play an important role in breast cancer carcinogenesis.

Previous studies demonstrated that in vitro treatment with 
vitamin D inhibits the growth of breast cancer cell lines (174, 175). 
More recently, in a preclinical model of obesity induced BC, 
investigators found that treatment with dietary vitamin D could delay 
tumor appearance and inhibit the growth of mammary tumors 
through repressed estrogen signaling and decreased leptin signaling, 
associated with a decrease in insulin resistance (176). Although 
vitamin D supplementation is generally well tolerated, the use in 
cancer prevention has been hindered due to hypercalcemic toxicity. 
To overcome this problem, several non-hypercalcemic vitamin D 
analogues were created and tested for anti-tumor effects. Analogues 
EM1 and UVB1 have been shown to inhibit the growth of human 
breast cancer cell lines in vitro and in vivo, without inducing 
hypercalcemia (177). More recently, it was demonstrated that EM1 
and UVB1 can also reduce the viability of HER2-overexpressed and 
TNBC patient derived xenografts and even inhibit the formation and 
growth of anti-HER2 resistant organoids (178). Not only do these 
studies highlight the potential for VDR modulation without side 
effects, but they also demonstrate that targeting VDR can prevent both 
ER-positive and ER-negative BC.

Because VDR expression is known to be inversely correlated with 
breast cancer aggressiveness, several recent preclinical studies have 
also investigated role of VDR in metastasis prevention. Knockdown 
of VDR in the TNBC MDA-MD-231 cell line has been shown to 
significantly increase metastases to the bone of female Balb/c nu/nu 
mice (179). In the aggressive MMTV-PyMT mouse mammary tumor 
model, it was demonstrated that a low vitamin D diet accelerates 
carcinogenesis and lung metastases. When vitamin D was replenished 
to mice via perfusion, primary tumor formation was delayed and 
spontaneous lung metastasis was reduced (180). This metastatic 
prevention with vitamin D supplementation was found to be mediated, 
in part, through the modulation of cancer associated chemokine 
interaction of C-X-C Motif Chemokine Ligand 12 (CXCL12) with 
C-X-C Motif Chemokine Receptor 4 (CXCR4), which is 
inappropriately elevated with vitamin D deficiency (181).

Due to the plethora of preclinical findings that demonstrate a role 
for VDR in breast cancer formation and growth, several clinical trials 
have investigated the preventative effect of vitamin D supplementation 
on breast cancer risk. In the Women’s Health Study with over 10,000 
premenopausal women and 10 years of follow-up, investigators found 
that higher intake of vitamin D is associated with a 35% reduction in 
breast cancer risk (150). However, there was no significant reduction 
of invasive breast cancer incidence among more than 36,000 
postmenopausal women from the Women’s Health Initiative whom 
were randomized to calcium with vitamin D supplementation 
compared to placebo for 7 years (151), suggesting postmenopausal 
women may not benefit from the breast cancer preventative effects of 
vitamin D. In contrast, a randomized trial investigating vitamin D and 
calcium supplementation (alone or in combination) versus placebo in 
healthy postmenopausal women of rural Nebraska, Lappe and 
colleagues found that increasing serum calcium and vitamin D 
reduced all-cancer risk (152). However, in an expanded randomized 
trial with healthy postmenopausal women in the same rural Nebraska 
communities, it was found that supplementation with calcium and 
vitamin D did not result in a significantly lower risk for all cancer 
types after 4 years of treatment (153). To date, combined clinical trial 
results on the effects of vitamin D supplementation and breast cancer 
risk have been inconclusive.
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Because increased breast density is associated with increased risk 
for BC, and chemo preventative agents such as SERMs have been 
shown to effectively decrease mammographic density, several recent 
clinical trials have addressed the consequence of vitamin D 
supplementation on breast density in premenopausal women. A 
summary of these trials can be found in Table 4. In the EVIDENSE 
trial (NCT01747720) investigating the effects of 1,000, 2000 or 
3,000 IU vitamin D supplementation on mammographic density of 
healthy, premenopausal women, it was demonstrated that one year of 
D3 supplementation did not reduce breast density more than placebo 
(154). Similarly, the CALGB 70806 (Alliance) trial in healthy, 
premenopausal women randomized to 2000 IU vitamin D or placebo 
daily for one year, examined the effect of vitamin D supplementation 
on breast density (NCT01224678). Although there was a trend 
towards decreased mammographic density among women with the 
highest baseline density, there was no significant difference between 
vitamin D treatment and placebo (155). In the SWOG S0812 
(NCT01097278) trial investigating the effects of vitamin D 
supplementation in high-risk, premenopausal women (Gail score 
greater than 1.66%, mammographic density greater than 50%, known 
BRCA1/2 mutation or diagnosed with ADH, LCIS or DCIS), there was 
no statistically significant difference in mammographic density 
between 20,000 IU per week and placebo treatment (182). Despite the 
fact all three trials reported few side effects and high tolerance, the null 
findings on mammographic density do not support the use of vitamin 
D supplementation for breast cancer risk reduction.

There are several reasons that may explain the discrepancy 
between recent clinical trial results and preclinical model findings. 
Serum levels of 25(OH)D, used in clinical trials to assess vitamin D 
uptake, may not reflect local concentrations of active metabolite in the 
breast tissue. It is also possible that the concentration of other nuclear 
receptor ligands can inhibit the activity of VDR. For example, RXR 
ligands are known to destabilize the VDR-RXR heterodimer (164) and 
could explain the discrepancies in response to vitamin D 
supplementation. It is also known that estrogen, phytoestrogens and 
retinoids can modulate VDR expression, further highlighting the 
complexity of targeting single nuclear receptors for prevention (183, 
184). Non-hypercalcemic analogues have shown promise in preclinical 
studies and may provide more specificity for VDR activity, but these 
have yet to be tested in clinical trials. In addition, very little is known 
about VDR post-translational modifications and the role of VDR 
monomers in BC. It was recently found that cytoplasmic VDR can 
potentiate the growth of breast cancer cell lines in the absence of 
ligand altogether (185), suggesting a ligand-independent function for 
VDR that has yet to be fully understood in the context of breast cancer 
formation and treatment resistance. In summary, more research is 
needed to elucidate the complexity of vitamin D signaling in both the 
normal mammary and tumor state to better understand the role of 
VDR in breast cancer prevention.

Combination strategies

Since endocrine targeted therapies can effectively prevent 
hormone receptor positive breast cancer and other nuclear receptor 
targets have been shown to prevent hormone receptor negative BC, it 
is reasonable that combination treatments for the prevention of breast 
cancer should be explored. Several pre-clinical trials have already 

investigated the effects of RXR agonists with ER modulators for the 
prevention of BC. Combination treatment of the rexinoid 9cUAB30 
with the SERM tamoxifen was shown to inhibit the formation of 
mammary tumors in the MNU induced rat model more than single 
agent treatment (161). In the MMTV-neu ER-negative mammary 
tumor model, it was demonstrated that the rexinoid LG100268 in 
combination with the SERMs arzoxifene or acolbifene can synergize 
to prevent the formation of mammary tumors (186). Similarly, using 
a p53-null preclinical model, our group has shown that LG100268 
with the SERM tamoxifen can reduce Ki-67 and cyclin D1 expression 
in normal mammary tissue and prevent both ER-positive and 
ER-negative mammary tumors (187). These studies provide the 
rationale for exploring the use of rexinoids with SERMs for the 
prevention of breast cancer in high-risk women.

More recently, it has been demonstrated that retinoids can block 
PR binding at shared DNA response element regions and inhibit P4 
stimulated growth of ER-positive breast cancer xenografts, suggesting 
a cross-talk between PR and RAR in regulating a subset of hormone 
responsive breast cancer (188). It has also been shown that the 
addition of vitamin D analogs could potentiate the antitumor effect of 
the AI anastrozole in MCF7 tumor bearing mice via regulation of both 
VDR and ER signaling (189). In addition, VDR activation, with 
vitamin D or the synthetic analogue EB1089, could re-sensitize an 
antiestrogen resistant MCF7 breast cancer cell line to tamoxifen 
treatment and reduce the incidence of ER-positive mammary tumors 
in a preclinical model (190). These findings suggest that targeting 
multiple nuclear receptors may be more efficacious for breast cancer 
prevention than single agent therapies.

Despite promising preclinical results, very few combinations have 
been explored in clinical trials, likely due to toxicity concerns. In a 
randomized double-blind phase II trial of low-dose tamoxifen and the 
retinoid fenretinide alone or in combination in high-risk 
premenopausal women (Gail risk score greater than 1.3% or diagnosed 
with LCIS, DCIS or stage I ER-positive breast cancer), most with 
intraepithelial neoplasia, it was found that both tamoxifen and 
fenretinide alone could reduce breast density and neoplastic events 
compared to placebo. However, the combination of low-dose 
tamoxifen with fenretinide did not show synergistic interaction, 
despite being well-tolerated by patients (191, 192).

Conclusion

Targeting nuclear receptors for breast cancer prevention has been 
shown to be possible in multiple phase III trials. At present, only the 
anti-estrogen SERMs tamoxifen and raloxifene are FDA approved for 
breast cancer prevention. However, several other drugs have been 
found to reduce breast cancer risk in women without breast cancer 
including other SERMs (lasofoxifene) and aromatase inhibitors 
(anastrozole and exemestane). These drugs are FDA-approved for the 
treatment of breast cancer, so they can be  used off-label, but are 
generally not used often. The most commonly used off-label drugs for 
breast cancer prevention are the aromatase inhibitors, anastrozole or 
exemestane, which can be  considered for women who have 
contraindications for SERM use (such as having a prior deep 
venous thrombosis).

There is no “predictive biomarker” in the normal breast tissue to 
predict a response to a preventive drug. Thus, breast cancer prevention 
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drugs are chosen based on their overall efficacy and tolerability to 
individual women. Mild common toxicities (hot flushes) and rare 
more serious toxicities (blood clots and uterine cancer) have limited 
the use of SERMs for prevention among eligible high-risk women. AIs 
are more effective in treating and preventing breast cancer but are 
associated with a different spectrum of side effects that also limit the 
use of these agents for breast cancer prevention. Lower doses, 
modified treatment schedules, and local administration routes are 
currently being explored to determine if these efficacious drugs can 
be  given more safely. Advancements in  localized treatments are 
expected to overcome toxicity concerns and improve tolerability 
among high-risk women. But despite the success and specificity of 
SERMs and AIs for prevention, these endocrine therapies are only 
effective for the prevention of ER-positive breast cancer and have no 
effect on ER-negative disease.

Another concern for the use of anti-estrogen therapy is the 
intrinsic resistance that can occur among a small subset of patients. 
In the treatment setting, to overcome de novo and acquired 
resistance of ER-positive breast cancers to anti-estrogen therapy, it 
is common practice to add CDK4/6 inhibitors (such as palbociclib, 
ribociclib, and abemaciclib) to anti-estrogen therapy for the 
treatment of early and late stage breast cancers. In addition, anti-
estrogen selective estrogen degraders (SERDS), such as fulvestrant, 
are also used to treat metastatic ER-positive breast cancers that have 
arisen after prior anti-estrogen therapy. These strategies have not 
yet been used in the prevention setting. However, for ER-positive 
breast cancers that arise after anti-estrogen preventive therapy, the 
combination of a different anti-estrogen drug plus a CDK4/6 
inhibitor is often used for treatment.

The most common form of intrinsic resistance to anti-estrogen 
therapy in the prevention setting is the development of an ER-negative 
breast cancer, not prevented by anti-estrogen therapy. ER-negative 
breast cancers that arise after anti-estrogen preventive therapy are 
currently treated with standard chemotherapy. A major focus of the 
field has been to develop targeted preventive strategies (drug therapy 
or vaccines) to prevent these ER-negative breast cancers. While several 
agents reviewed here have shown promise in preclinical models for 
the prevention of ER-negative breast cancers, none have yet been 
approved for human use.

Recent efforts to target AR have shown promising results in 
decreasing the growth of both HR-positive and HR-negative breast 
cancer. A preclinical treatment study using the antiandrogen 
enzalutamide demonstrated growth inhibition of AR-positive breast 
cancer including in a TNBC model (193). In addition, a phase II 
clinical trial in AR-positive/ER-negative advanced breast cancer 
patients with the AR antagonist bicalutamide demonstrated a clinical 
benefit rate of 19% at six months with an improved progression free 
survival of 12 weeks (194). However, as with other endocrine therapies, 
associated toxicities with first and second-generation AR antagonists 
has limited their therapeutic potential. To date, AR targeted therapies 
have not been explored for breast cancer prevention. Additional 
studies are needed to improve our understanding of AR and its role in 
breast cancer development and prevention.

Targeted therapies for non-steroid hormone receptors, like RXR 
and VDR, are proving to be  less toxic with the desired ability to 
prevent both ER-negative and ER-positive disease in preclinical 
studies. However, results from clinical trials have yet to demonstrate 

effective breast cancer prevention in women. The development of 
novel agonists and analogs with greater specificity may prove to 
be more efficacious in clinical trials. More recently, several groups 
have shown that GR, LXR and PPAR may play distinct yet important 
roles in the development and progression of BRCA mutant breast 
cancer (195–197), suggesting that other nuclear receptors could 
be targeted for the prevention of breast cancer. Efforts to combine 
nuclear receptor targeted therapies may demonstrate greater 
preventative effects and should be investigated.

The prevention of TNBC remains a major unsolved problem. Just 
as with treatment options for these aggressive cancers, novel effective 
preventative therapies need to be developed for high-risk women, 
especially those with BRCA1/2 mutations. Studies using PARP 
inhibitors and other signaling transduction inhibitors for prevention 
in preclinical models are currently ongoing and several groups are 
exploring the utility of vaccines against breast cancer neoantigens. If 
these strategies prove to demonstrate moderate efficacy for breast 
cancer prevention, combination treatments with effective nuclear 
receptor targeted therapies should also be  explored. However, to 
develop acceptable and effective prevention therapies, it will 
be  necessary to first overcome concerns about the toxicity of 
these interventions.
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