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Abstract

Smooth Field Theories and Homotopy Field Theories

by

Alan Cameron Wilder

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Peter Teichner, Chair

In this thesis we assemble machinery to create a map from the field theories of Stolz and
Teichner (see [ST]), which we call smooth field theories, to the field theories of Lurie (see
[Lur1]), which we term homotopy field theories. Finally, we upgrade this map to work on
inner-homs. That is, we provide a map from the fibred category of smooth field theories
to the Segal space of homotopy field theories. In particular, along the way we present a
definition of symmetric monoidal Segal space, and use this notion to complete the sketch
of the defintion of homotopy bordism category employed in [Lur1] to prove the cobordism
hypothesis.
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Dan Evans, Nate Watson, José Alameida, Kevin Lin, Tommy Murphy, Chris Schommer-
Pries, and Arturo Prat-Waldron, just to name a few. They helped create a stimulating and
enjoyable academic environment that was crucial to my success. I would also like to thank
the many professors and post-docs who taught me so much interesting and exciting math-
ematics with great patience during my time at Berkeley, with special thanks in particular
to my advisor, Peter Teichner, who never failed to stoke my interest in whatever subject he
happened to be discussing.



1

Chapter 1

Introduction

Naively, a field theory is an expected value function on some set of fields. In this case,
the term field can refer to things such as a smooth function representing temperature on
a chunk of space-time (i.e. bordism), or a vector field or differential form representing an
electric or magnetic field. The field theory gives an expected value to each field, which
can be thought of as the probability that reality will manifest in the way described by the
field; for example temperature will evolve as predicted by the smooth function. Despite the
best attempts of mathematicians, it is not well understood yet how to fit field theories that
represent physical reality into the usual framework of expected value—namely integration
with respect to a probability measure. In the case of field theories this elusive integration
value is the so-called path integral. The issue—again naively—is that the spaces of fields are
usually ’too big’ to have a well-behaved probability measure.

One approach that mathematicians have taken in order to get a rigorously defined notion
of field theory is to abstract the properties that the path integral should satisfy, and thus
provide a ’top down’ definition of field theories. Taking as our fields smooth maps from
d-dimensional bordisms (that is, d-dimensional smooth manifolds with boundary) to a fixed
target X, a first approximation to such an abstraction results in the following.

Definition A field theory is a symmetric monoidal functor from the d-dimensional bordism
category to the category of vector spaces.

Here functorialty is a reflection of the fact that integrals are additive over gluing of intervals,
and the monoidal property comes from the Fubini theorem.

Broadly speaking, there are two reasons that the above definition is only a first approx-
imation. The first reason is that there is no locality in the definition. If a field theory is
meant to formalize something physical, then it must be local in the sense that the results
of an experiment can only depend on what what particles might have interacted with the
system describing the experiment. The accepted method for formalizing this idea is that
the bordism category should be extended all the way down to points. That is, boundaries
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of arbitrary codimension are allowed, resulting in some flavor of d-category, and then field
theories should the corresponding d-functors.

The second feature missing from the definition above is that it does not take into account
any continuity properties that we expect from a path integral. In particular, if we change a
temperature by a small amount, its expected value should not change very much either.

Research around the area of field theories defined in such top down categorical fashion
has formed a very rich subject in mathematics over the last quarter of a century at least. One
reason for this is the wide variety of approaches to expressing the above two properties of
field theories in categorical languange. In this dissertation, we study two approaches which
appear outwardly very different, and we produce a map which connects them.

The first type of field theories, which we will call ‘smooth field theories’ captures the
continuity expected from the path integral by fibering the functors of the above definition
over the category of manifolds. Smoothness, and therefore continuity, then follows, since
the field theory accepts smooth families of fields over a base manifold, and then outputs a
smooth family of results over the same base. In order to reflect the symmetric monoidal
property, these fibred categories must posess a point-wise symmetric monoidal structure as
well.These field theories are due to Stephan Stolz and Peter Teichner (see [ST], [STHK],
[STH]). Smooth field theories are difficult to classify in general, although there are some
partial results. In [STHK] it is shown that a smooth (topological) 0-dimensional field theory
over X is just a smooth function on X. In [STD] it is shown that a smooth 1-dimensional
field theory over X is a smooth vector bundle on X with a connection. Part of the difficulty is
that efforts are ongoing to give a suitable definition of the smooth bordism category extended
down to points.

One the other hand we have the ‘homotopy field theories’ of Jacob Lurie. Here continuity
of the field theories is expressed by ‘extending the bordism categories up’. Namely having
higher morphisms in the bordism categories corresponding to k paramter families of diffeo-
morphisms of the bordisms, and having the field theories act on those as well. Formally,
the bordism category here is a symmetric monoidal Segal space. In contrast to smooth field
theories, homotopy field theories are easy to classify all at once. In [Lur1], Jacob Lurie
establishes the so-called cobordism hypothesis for homotopy field theories, which essentially
says that a field theory is completely determing by where it sends points.

In this dissertation, the aim is to connect these two methods of capturing continuity of
field theories by producing a map from symmetric monoidally fibred categories to symmetric
monoidal Segal spaces. We begin this task by providing precise definitions of both notions,
given in Section 2.1 and Section 2.4. Chapter 1 is devoted to motivating the definition of
symmetric monoidal Segal space, and also developing the machinery to produce our map,
which is assembled in Section 3.4.

We make a point of staying as general as possible, and hence only introduce the smooth
and homotopy bordism categories in Chapter 2, where their full definitions are presented.
One benefit of this approach is that we can immediately apply the same machinery to get a
map from smooth Euclidean field theories, where the bordisms are equipped with Euclidean
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structure, to homotopy Euclidean field theories. Replacing ‘Euclidean’ with any other type
of geometry is also easily done.

Finally, we upgrade the map to be more ‘functorial’. That is, there is a notion of fibred
category of smooth field theories, and a notion of Segal space of homotopy field theories. We
show that the former can be mapped to the latter in a precise sense in Chapter 3.

We conclude the introduction by explaining some notational conventions we adopt for this
paper. For abstract categories, we use calligraphic font capital letters, such as C,D,S, · · · .
For specific categories such as the category of simplicial sets, we use boldface, sSet,Cat,Kan
etcetera. For abstract categories that are enriched, say over Cat or sSet, we use boldface
letters like C,D, · · · , and we also use boldface for fibred categories, such as E. Note that all
the categories named above have many enrichment structures. Finally, we use the name of
the category itself to denote homsets, like C(X, Y ) for the set of morphisms from X to Y .
Variations on this notation will be used for various similar notions, such as hom-objects. One
exception to this rule is that we use the notation Fun(C,D) to denote the category of functors
and natural transformations of such C → D. We will discuss 2-categories extensively, which
for us will be categories enriched in Cat. In particular, ◦ is a functor which on objects is
composition of 1-morphisms, and on morphisms is horizontal composition of 2-morphisms.
Vertical composition of 2-morphisms we denote by •. Diagramatically, 1-morphisms we
denote by single arrows→, and 2-morphisms we denote by double arrows⇒. As an example
of this, we will sometimes want to consider natural transformations as 1-morphisms in a
functor category, and sometimes as 2-morphisms in Cat; they will be labelled with single
and double arrows accordingly. Finally, we will use 1 to denote identity morphisms, except
when confusion with the number 1 might arise, in which case we use id.
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Chapter 2

Symmetric Monoidal (∞, 1)-Categories

The main goal of this chapter is to give a definition symmetric monoidal Segal spaces. In
the next chapter we will provide an important example, namely the homotopy bordism cat-
egory, which is the source of homotopy field theories. Our defintion of symmetric monoidal
Segal space requires substantial motivation, including a natural construction for the sym-
metric monoidal Segal space induced by an ordinary symmetric monoidal category. In order
to produce this machinery, and motivate our definition, we employ the Grothendieck con-
struction, which gives a correspondence between (op)fibred categories and pseudofunctors
with target Cat. Since we want to understand the Grothendieck construction in depth, we
present a more elaborate version of it in Section 2.1, namely, the analogue where there are
symmetric monoidal structures present. The rest of the chapter is spent in explaining the
aforementioned path from symmetric monoidal category to symmetric monoidal Segal space,
and uses only the ordinary Grothendieck construction. However, in the following chapter,
we will use the full strength of the constructions in Section 2.1.

2.1 Symmetric Monoidal Fibred Categories

The goal of this section is to explain the equivalence between fibred categories E → B
where the fibres have a symmetric monoidal structure, and pseudofunctors Bop → SMCat.
Furthermore, we will explain how the pseudofuctors and fibred categories can be strictified
in a natural way. We won’t need the symmetric monoidal version of this result until the
next chapter, but we will need the standard version of the equivalence between (op)fibred
categories and functors B(op) → Cat throughout this chapter, so we will present the more
complicated situation here.

Throughout this section we will be studying functors p : E→ B. We will be considering
the image of diagrams in E under p, and it will be convenient to draw both a diagram in E
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and its image at the same time, as in

e′
f //

_

��

e_

��
p(e′)

p(f) // p(e)

Here, we are using the 7→ arrows to indicate an image under p. To avoid clutter, we only
draw these arrows between objects, and it is implicit that the morphisms in E map to those
in p below them.

Definition 2.1.1. We say that a morphism φ : e′ → e in E is cartesian if given the solid
diagram below, the dotted arrow exists and is unique:

e′′

$$

f

%%

_

��

e′
φ //

_

��

e_

��

p(e′′)

## &&
p(e′) // p(e)

In words, any morphism whose image under p factors through p(φ) has a unique compatible
factorization through φ.

Clearly cartesian morphisms are closed under composition. They are meant to be a
categorical definition of fibre-wise isomorphism.

Remark 2.1.2. In the situation of Definition 2.1.1, if f is itself cartesian, we will call the
dotted arrow a cartesian factorization. Note that by uniqueness, cartesian factorizations are
isomorphisms. Also note that, given a composable sequence of cartesian morphisms, one
may either factor through each one in turn, or through the composition at once. The result
is the same.

Definition 2.1.3. The functor p is called a Grothendieck fibration or simply a fibration if
every solid diagram below can be filled in with the dotted data such that φ is cartesian.

e′
φ //

_

��

e_

��
b′

f // p(e)
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we typically only write e′ by abuse of notation, and call it a pullback of e along f . A choice
of pullback for every diagram

e_

��
b′

f // p(e)

is called a cleavage, and in the presence of a cleavage, the preferred pullbacks are denoted
by f ∗e.

In short p is a fibration when pullbacks exist. Note that cleavages of fibrations always
exist, provided one assumes the axiom of choice. We will always assume that our cleavages
are normalized in the sense that the chosen pullback over an identity is an identity.

Example 2.1.4. Let VectMan denote the category of smooth vector bundles over all base
manifolds. Let π : VectMan → Man be the functor that forgets the bundle and keeps the
base space. Then π is a fibration. The usual notion of pullback constitutes a cleavage.

It is clear that fibred categories should themselves be the objects in a category, so we
must define the morphisms. There is a general notion where the base category B is allowed
to vary, but we will not be concerned with this case here.

Definition 2.1.5. The category Fib(B) of categories fibred over B has objects fibrations
p : E→ B and given another such object p′ : E′ → B a morphism is a functor f such that

E′
f //

p′

  

E
p

��
B

commutes, and such that f preserves cartesian arrows. The category opFib(B) of categories
opfibred over B has objects fibrations p : Eop → Bop, in which case we will call pop an
opfibration, and say that E is opfibred over B. Also in this case we call the analogue of a
pullback a pushforward.

Now we need to formalize the notion of a fibre-wise symmetric monoidal structure. The
data and conditions will be in exact correspondence with that of a symmetric monoidal cat-
egory, except that everything is over B. We begin by recalling the definition of a symmetric
monoidal category.

Definition 2.1.6. A symmetric monoidal category is an ordinary category M with the
following additional data

� A functor ⊗ :M×M→M



CHAPTER 2. SYMMETRIC MONOIDAL (∞, 1)-CATEGORIES 7

� A functor 1 : 1 →M, where 1 is the terminal category. This functor, or by abuse of
notation the object in its image, is called the monoidal unit.

� A natural isomorphism
α : ⊗ ◦ (⊗× 1)⇒ ⊗ ◦ (1×⊗)

of functors M×M×M→M, called the associator.

� A natural isomorphism
λL : ⊗ ◦ (1× 1)⇒ 1

of functors M∼= 1×M→M, and a natural transformation

λR : ⊗ ◦ (1× 1)⇒ 1.

These are called the left and right unitors, respectively.

� A natural isomorphism
γ : ⊗ ⇒ ⊗ ◦ (π2, π1)

of functors M×M→M, called the braiding. Here πk is the projection of a product
onto the kth factor.

The data are required to obey the following axioms, where we use notation such as

(·2 ⊗ ·1)⊗ ·3 := ⊗ ◦ (⊗× 1) ◦ (π2, π1, π3)

to make things more readable.

� The pentagon axiom: The following diagram of functors
∏4

1M → M and natural
transformations of such commutes.

((·1 ⊗ ·2)⊗ ·3)⊗ ·4
α

nv

α⊗1

(0
(·1 ⊗ ·2)⊗ (·3 ⊗ ·4)

α
&.

(·1 ⊗ (·2 ⊗ ·3))⊗ ·4

α
px

·1 ⊗ (·2 ⊗ (·3 ⊗ ·4))
1⊗α

+3 ·1 ⊗ ((·2 ⊗ ·3)⊗ ·4)

� The following diagram of functors M×M → M and natural transformations com-
mutes.

(·1 ⊗ 1)⊗ ·2
α·1,1,·2 +3

λR⊗1 #+

·1 ⊗ (1⊗ ·2)

1⊗λLt|
·1 ⊗ ·2

We refer to this as the coherence of unitors and the associator.
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� The hexagon axioms: The following diagrams of functors and natural transformations
M×M×M→M commute

(·1 ⊗ ·2)⊗ ·3
γ +3

α

rz

·3 ⊗ (·1 ⊗ ·2)

·1 ⊗ (·2 ⊗ ·3)

1⊗γ $,

(·3 ⊗ ·1)⊗ ·2

α
dl

·1 ⊗ (·3 ⊗ ·2)
α−1
+3 (·1 ⊗ ·3)⊗ ·2

γ⊗1

2:

and
·1 ⊗ (·2 ⊗ ·3)

γ +3

α−1

rz

(·2 ⊗ ·3)⊗ ·1

(·1 ⊗ ·2)⊗ ·3

γ⊗1 $,

·2 ⊗ (·3 ⊗ ·1)

α−1
dl

(·2 ⊗ ·1)⊗ ·3 α
+3 ·2 ⊗ (·1 ⊗ ·3)

1⊗γ

2:

� The braiding is symmetric: The following diagram of functors and natural transforma-
tions M×M→M commutes

·1 ⊗ ·2
γ //

1 %%

·2 ⊗ ·1

γ
yy

·1 ⊗ ·1

As is usual in these situations, the extra data are typically suppressed in the notation,
and we refer to a symmetric monoidal category by one symbol M.

Definition 2.1.7. A symmetric monoidal fibred category consists of the data:

(a) A fibration p : E→ B

(b) A section 1 : B→ E of p (i.e. p ◦ 1 = 1). This section is required to preserve cartesian
arrows in the sense that 1(f) is cartesian for any f : b′ → b.

(c) A fibred functor ⊗ : E×B E→ E of categories fibred over B.

(d) A natural isomorphism γ of functors E ×B E → E over B with source ⊗ and target
⊗◦ (π2, π1) (the second functor is ’flip and then tensor’). Being over B means that γ of
an object over b is a morphism mapped to 1b by p.
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(e) A natural isomorphism λL of functors over B with source

1⊗ · = ⊗ ◦ (1× 1) ◦ (p, 1E) : E→ B×B E→ E×B E→ E

and target 1E, and a similar natural isomorphism λR from · ⊗ 1 to 1E.

(f) A natural isomorphism α, over B with source

⊗ ◦ (⊗, 1) : E×B E×B E→ E×B E→ E

and target ⊗ ◦ (1,⊗).

These data are required to satisfy coherence conditions exactly analagous to those of a
symmetric monoidal category. The diagrams are identical to those given in Definition 2.1.6,
remembering that all objects in the diagrams are over a single object in B.

The only differences to keep in mind between a symmetric monoidal category and a
symmetric monoidal fibred category is that what used to be the unit object 1 is now a
section of the fibration, and that all the structure functors and transformations are over B.
In other words, all of the symmetric monoidal structure takes place ’within the fibres’.

Example 2.1.8. Let VectMan be as in example 2.1.4. This is a symmetric monoidal fibred
category under the fibre-wise tensor product of vector spaces, with unit section 1 the trivial
line bundle.

We complete the definition by describing the 1-morphisms and 2-morphisms.

Definition 2.1.9. The category Fib⊗(B) of categories symmetric monoidally fibred over B
has morphisms given by the data

� A commutative diagram

E′
f //

p′

  

E
p

��
B

� A natural isomorphism f1 : 1E ⇒ f ◦ 1E′ over B

� A natural isomorphism f⊗ : ⊗E ◦ (f × f)⇒ f ◦ ⊗E′ over B

These data are required to satisfy coherence conditions with the symmetric monoidal data
from E′ and E. The conditions are identical to those of an ordinary symmetric monoidal
functor, with everything over B:
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�
f⊗ • (γE′ ◦ (f × f)) = (f ◦ γE) • f⊗.

Here • is used to denote the vertical composition of natural transformations of functors
E′ ×B E′ → E.

�
f⊗ • (1⊗ f⊗) •αE = αE′ • f⊗ • (f⊗ ⊗ 1)

�
λLE
• f⊗ • (1⊗ f1) = λLE′

and a similar identity involving the λR’s

Definition 2.1.10. Given two morphisms f, g : E′ → E in Fib⊗(B), a monoidally fibred
natural transformation θ : f ⇒ g is a natural transformation of functors over B, with the
extra conditions that

g⊗ • θ ⊗ θ = θ • f⊗
and

θ • f⊗ = g⊗.

Again, these conditions are identical to those of a monoidal natural transformation, with
everything over B.

Remark 2.1.11. We will also be working with ordinary symmetric monoidal functors, and in
this case, we will use the notation of the previous definitions for the corresponding structural
isomorphisms.

Returning to fibrations, note that given a fibration p : E→ B we almost get a functor

Bop → Cat,

by sending b to the fiber p−1(b) and sending f : b′ → b to a functor which sends an object in
p−1(b) to some chosen pullback.

The problem is that functoriality is not satisfied, because choosing a cleavage does not
guarantee that pullbacks compose (e.g. Example 2.1.4). A cleavage where the composition
of two pullbacks is a pullback is called a splitting. Hence, split fibrations have an associated
functor Bop → Cat.

Returning to the example of VectMan, note that while the pullback of a pullback is not
equal to a pullback, the two are isomorphic. In fact they are functorially isomorphic in
the sense that there is a natural transformation (f ◦ g)∗ ⇒ g∗f ∗. This weakening can be
incorporated into maps Bop → Cat resulting in the notion of pseudofunctors.

Definition 2.1.12. Let C and D be strict 2-categories. A pseudofunctor
F : C→ D is



CHAPTER 2. SYMMETRIC MONOIDAL (∞, 1)-CATEGORIES 11

� For each object x ∈ C an object Fx ∈ D

� For each hom-category C(x, y) of C a functor Fx,y : C(x, y)→ D(Fx, Fy).

� For each x ∈ C an invertible 2-morphism F1x : 1Fx ⇒ Fx,x(1x), called a unitor.

� For each pair of composable morphisms f : x → y, g : y → z ∈ C an isomorphism
Ff,g : Fy,z(g) ◦ Fx,y(f) ⇒ Fx,z(g ◦ f) which is natural in f and g. These are called
compositors.

Subject to the following diagrams commuting:

� In C(x, y), given f : x→ y,

Fx,y(f) ◦ 1Fx
1◦F1x+3

=

��

Fx,y(f) ◦ Fx,x(1x)
F1x,f

��
Fx,y(f) Fx,y(f ◦ 1x)

=ks

� In C(x, y) the analagous diagram with 1y’s on the left.

� In C(w, z), given f : w → x, g : x→ y, h : y → z,

(Fy,zh ◦ Fx,yg) ◦ Fw,xf = +3

Fg,h◦1Fw,xf
��

Fy,zh ◦ (Fx,yg ◦ Fw,xf)

1Fy,zh◦Ff,g
��

Fx,z(h ◦ g) ◦ Fw,xf
Ff,h◦g

��

Fy,zh ◦ Fw,y(g ◦ f)

Fg◦f,h
��

Fw,z(h ◦ (g ◦ f)) =
+3 Fw,z((h ◦ g) ◦ f)

A lax functor is the above definition where the 2-morphisms F1x and Ff,g are not required
to be invertible. For Theorem 2.3.1 below, it will be convenient to switch the direction of
these to

Ff,g : F (g ◦ f)⇒ F (g) ◦ F (f).

some sources call these oplax functors.

We will drop the subscripts on F as much as possible as long as no confusion is likely
to arise. We would like to note two things about this definition. First, the 2-morphisms in
the diagrams above which are equalities in strict 2-categories need to be filled in with ap-
propriate associators and unitors to define a pseudofunctor of bicategories. We will not need
that generality here. Secondly, we can safely ignore the data of the invertible 2-morphisms
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F1x : 1Fx → Fx,x(1x) by simply redefining F so that it always sends identities to identities,
and ”absorbing” these morphisms into the F1,f , Ff,1 2-isomorphisms. At any rate, the pseud-
ofunctors we are interested always send identities to identities. Note that this is equivalent
to cleavages being normalized, and we will therefore call a pseudofunctor with F1x being
identities a normalized pseudofunctor.

We should also mention the associated definition of pseudonatural transformation, and
of modification.

Definition 2.1.13. Let F,G : C→ D be pseudfunctors. Then a pseudonatural transforma-
tion α : F ⇒ G is

� For each object x ∈ C a 1-morphism αx : Fx→ Gx.

� For each 1-morphism f ∈ C(x, y), an invertible 2-morphism αf filling in the diagram

Fx
αx //

Ff
��

Gx

Gf
��

Fy
αy //

αf

9A

Gy

It is required that α is functorial on 1-morphisms in the sense that, given the f : x → y in
C and g : y → z in C, the 2-morphism filling the diagram

Fx αx //

Ff

��
F (g◦f)

  

Gx

Gf

��
G(g◦f)

~~

Fy αy
//

αf

8@

Ff,g
ks

Fg

��

Gy

Gg

��

Gf,g
+3

Fz αz
//

αg

8@

Gz

is equal to α(g ◦ f); and that for each x ∈ C, the 2-morphism filling the diagram

Fx

1Fx

''

F (1x)

��

αx // Gx

1Gx

ww

G(1x)

��

+3F1x ks G1x

Fx αx
//

α(1x)

9A

Gx



CHAPTER 2. SYMMETRIC MONOIDAL (∞, 1)-CATEGORIES 13

is equal to 1αx. Note that when F and G are normalized, so that the unitors are equalities,
this reduces to α1x = 1αx. Finally, α is required to be natural with respect to 2-morphisms,
in the sense that if φ : f ⇒ g is a 2-morphism between 1-morphisms f, g : x → y, we have
an equality

Fx

Fg

''

Ff

��

αx // Gx

Gf

��

Fx

Fg

��

αx // Gx

Gf

ww

Gg

��

+3Fφ
=

Gφ +3

Fy αy
//

αf

;C

Gx Fy αy
//

αg

;C

Gx

A pseudonatural isomorphism is a pseudonatural transformation where all the above
images under α are invertible. Also, a lax transformation is the above where we drop the
condition that the 2-morphisms α(f) are invertible.

Definition 2.1.14. Let F,G : C→ D be pseudofunctors, and α, β : F ⇒ G be pseudonatu-
ral transformations. A modification m from α to β is an assignment x ∈ C 7→ mx : αx⇒ βx
of objects to 2-morphisms, such that for any 1-morphism f : x → y in C, the following
diagram commutes

αy ◦ Ff my◦1 +3

αf

��

βy ◦ Ff
βf

��
Gf ◦ αx

1◦mx
+3 Gf ◦ βx

We can now speak of the 2-category of pseudofunctors Bop → SMCat, pseudonatural
transformations, and modifications of such.

Returning to the situation of fibred categories, one can actually construct a pseudofunctor
Ẽ : Bop → Cat given a fibred category p : E → B. This process is invertible in some
weak sense, and the inverse is typically called the Grothendieck construction (perhaps ’a
Grothendieck construction’ would be more appropriate, as Grothendieck constructed many
things). In [Jo] part B chapter 1 this is explained in detail. Here we would like to spell
out the case where there are symmetric monoidal structures present. As far as the author
knows, this is not present in the literature.

Definition 2.1.15. Let F : Bop → SMCat be a pseudofunctor. We define a category G(F ).
The objects are pairs (b, x), where a ∈ B and x ∈ F (b). Given another such object (b′, x′),
the morphisms from (b′, x′) to (b, x) are the set of pairs

{(f, g)|f : b′ → b, g : x′ → Ff(x)}.

The composition of (f, g) : (b′, x′) → (b, x) with (f ′, g′) : (b′′, x′′) → (b′, x′) is the pair f ◦ f ′
and

x′′
g′ // Ff ′(x′)

Ff ′(g) // (Ff ′ ◦ Ff)(x)
Ff ′,f (x)

// F (f ◦ f ′)(x)
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The coherence of the natural transformations F·,· with triples of morphisms guarantees that
this composition is associative.

It is not hard to see that G(F ) is fibred over B, and in fact comes with a canonical
cleavage. See part (a) of Theorem 2.1.16 below for a description of this cleavage, and we
observe that it constitutes a splitting precisely when the natural transformations Ff ′,f are
the identity, i.e. when F is strict. So far this is identical to the Grothendieck construction
in the ordinary fibred case. It is more difficult to check that this construction results in a
symmetric monoidally fibred category when the target is SMCat in place of Cat.

Theorem 2.1.16. The category G(F ) is symmetric monoidally fibred over B.

Proof. We will go through the data and conditions of Definition 2.1.7

(a) The projection functor p simply sends objects (b, x) to b and morphisms (f, g) to f .
Cartesian morphisms are of the form (f, φ), where φ is an isomorphism, and (f, 1Ffx)
for all f constitutes a cleavage. Hence, p : G(F )→ B is a fibration.

(b) The section 1 : B → G(F ) on objects is b 7→ (b, 1Fb) and on morphisms it is f 7→
(f, (Ff)1). This is clearly a section. To check functoriality, take f ′ : b′′ → b′ and
f : b′ → b. Then, under 1,

f ◦ f ′ 7→ (f ◦ f ′, F (f ◦ f ′)1).

And composing after applying 1, we obtain (f ◦ f ′, h), where h is the composite

1b′′
Ff ′

1 // Ff ′(1b′)
Ff ′(Ff1) // (Ff ′ ◦ Ff)(1b)

Ff ′,f (1b) // F (f ◦ f ′)(1b)

The composition of the first two is, by definition, (Ff ′ ◦ Ff)1, and the composition of
all three is F (f ◦ f ′)1, since Ff ′,f is a 2-morphism in SMCat, i.e. a symmetric monoidal
natural transformation, so in particular it preserves the monoidal unit morphism datum
of monoidal functors.

(c) The functor ⊗ : G(F ) ×B G(F ) → G(F ) on objects is simply (b, x, y) 7→ (b, x ⊗ y). On
morphisms, for (f, g, h) : (b′, x′, y′)→ (b, x, y) it is

(f, g, h) 7→ (f, (Ff)⊗(x, y) ◦ (g ⊗ h)) .

Here note g⊗ h : x′⊗ y′ → Ff(x)⊗Ff(y). To check functoriality, suppose we have the
data above together with (f ′, g′, h′) : (b′′, x′′, y′′) → (b′, x′, y′). Then ⊗ sends (f, g, h) ◦
(f ′, g′, h′) to

(f ◦ f ′, F (f ◦ f ′)⊗(x, y) ◦ ((Ff ′,fx ◦ Ffg ◦ g′)⊗ (Ff ′,fy ◦ Ffh ◦ h′))) ,
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which, after using the interchange

(Ff ′,fx ◦ Ffg ◦ g′)⊗ (Ff ′,fy ◦ Ffh ◦ h′) = (Ff ′,fx⊗ Ff ′,fy) ◦ (Ffg ⊗ Ffh) ◦ (g′ ⊗ h′),

which follows from functoriality of ⊗, is the top path followed by the rightmost vertical
morphism in the following commutative diagram

Ff ′Ffx⊗ Ff ′Ffy
Ff ′,fx⊗Ff ′,fy//

Ff ′⊗tt
(Ff ′Ff)⊗

��

F (f ◦ f ′)x⊗ F (f ◦ f ′)y

F (f◦f ′)⊗

��

Ff ′x′ ⊗ Ff ′y

Ff ′g⊗Ff ′h
22

Ff ′⊗
��

Ff ′(Ffx⊗ Ffy)
Ff ′(Ff⊗)

**
x′′ ⊗ y′′

g′⊗h′
77

Ff ′⊗◦(g′⊗h′)
// Ff ′(x′ ⊗ y′)

Ff ′(g⊗h)
55

Ff ′(Ff⊗◦(g⊗h))
// Ff ′Ff(x⊗ y)

Ff ′,f (x⊗y)
// F (f ◦ f ′)(x⊗ y)

Note: we have abused the notation of natural transformations such as Ff⊗ in this
diagram by not explicitly writing what object they have been applied to. The commu-
tativity of the rightmost square follows from the fact that Ff ′,f is a monoidal natural
transformation. The other parts of the diagram commute by the definition of how the
structure isomorphisms of a symmetric monoidal functor compose. The bottom path is
the result of applying ⊗ and then composing, so we obtain functoriality. Finally, this
functor preserves cartesian morphisms since the monoidal product of isomorphisms is an
isomorphism by functoriality of ⊗, and since we have assumed the structure morphisms
of the symmetric monoidal functors in SMCat, such as Ff⊗, are isomorphisms.

(d) The natural isomorphism γ sends an object (b, x, y) of E×B E to the morphism (1b, γFb),
where γFb(x, y) : x⊗ y → y ⊗ x is the braiding isomorphism of the symmetric monoidal
category Fb. To check naturality, suppose (f, g, h) : (b′, x′, y′)→ (b, x, y) is a morphism
of E×B E. Then γ maps (f, g, h) to the outer rectangle in the commutative diagram

x′ ⊗ y′
γFb′ (x

′,y′) //

(g⊗h)

��

y′ ⊗ x′

(h⊗g)
��

Ffx⊗ Ffy
Ff⊗(x,y)

��

γFb′ (Ffx,Ffy)// Ffy ⊗ Ffx
Ff⊗(Ffy,Ffx)
��

Ff(x⊗ y)
Ff(γFb(x,y)) // Ff(y ⊗ x)

The top square commutes because γFb′ is a natural transformation, and the bottom
commutes because Ff is a symmetric monoidal functor. It is clear that γ is over B by
definition.

(e) The natural isomorphism λL sends an object (b, x) to the morphism (1b, λLFb). It sends
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a morphism (f, g) : (b′, x′)→ (b, x) to the commutative diagram

1Fb′ ⊗ x′
λLFbx

′
//

1⊗g
��

x′

g

��
1Fb′ ⊗ Ffx

λLFbFfx // Ffx

which is commutative by naturality of λLFb . We define λR similarly.

(f) As with all the above data, α is defined on objects over b simply via the associator of
Fb ∈ SMCat. That is,

α(b, x, y, z) = (1b, αFb).

Given a morphism (f, g, h, i) : (b′, x′, y′, z′) → (b, x, y, z), we obtain the commutative
diagram

(x′ ⊗ y′)⊗ z′
αFb′ (x

′,y′,z′) //

(g⊗h)⊗i
��

x′ ⊗ (y′ ⊗ z′)
g⊗(h⊗i)
��

(Ffx⊗ Ffy)⊗ Ffz
αFb′ (Ffx,Ffy,Ffz) //

Ff⊗(x,y)⊗1
��

Ffx⊗ (Ffy ⊗ Ffz)

1⊗Ff⊗(y,z)
��

Ff(x⊗ y)⊗ Ffz
Ff⊗(x⊗y,z)

��

Ffx⊗ (Ffy ⊗ Ffz)

Ff⊗(x,y⊗z)
��

Ff((x⊗ y)⊗ z)
Ff(αFb(x,y,z)) // Ff(x⊗ (y ⊗ z))

The upper square commutes because αFb′ is natural, the lower rectangle commutes
because Ff is a monoidal functor, and the commutativity of the outer rectangle gives
naturality of α.

As stated in Definition 2.1.7, the data

1,γ,λL,λR,α

are required to satisfy coherence conditions identical to those for a symmetric monoidal
category. These conditions solely involve the natural transformations applied to objects,
which means that they corresponding diagrams are contained in a single symmetric monoidal
category Fb and furthermore that the monoidal functor data from the Ff ’s are not involved.
The upshot is that all the coherence conditions follow from the coherence conditions following
from the pointwise definitions of the data (e.g α acts on objects over b by αFb, which satisfies
the usual associator coherence conditions). This completes the proof.

Next we describe the construction that produces a pseudofunctor from a symmetric
monoidal fibred category, and show that these constructions are inverse in a higher cate-
gorical sense.
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Theorem 2.1.17. Let p : E→ B be a symmetric monoidal fibration with a chosen cleavage.
Then there is a pseudofunctor Ẽ : Bop → SMCat, and moreover G(Ẽ) is isomorphic in

Fib⊗(B) to E. Finally, for a pseudofunctor F , G̃(F ) is naturally isomorphic to F .

Proof. On objects, Ẽ(b) = p−1(b), objects over b and morphisms over 1b. The data making
E symmetric monoidal restricted over b gives this the structure of a symmetric monoidal
category. On morphisms f : b′ → b, Ẽ(f) sends objects x over b to f ∗x. Let g : x → y be
a morphism over 1b. Then by the factorization property of cartesian morphisms, there is a
unique morphism f ∗g making the diagram

f ∗x
f∗g

""

//
_

��

x

g

��
f ∗y //
_

��

y
_

��
b′

1b // b′
f // b

commute. Define Ẽ(f)g = f ∗g, and note that functoriality in g follows from uniqueness
of this factorization. For the symmetric monoidal structure of this functor, we have the
diagrams

1(b′)
1(f)

##��
f ∗1(b)

_

��

// 1(b)
_

��
b′ // b

with the dotted arrow defining Ẽ(f)1, and the diagram

f ∗x⊗ f ∗y

%%��
f ∗(x⊗ y)

_

��

// x⊗ y
_

��
b′ // b

defining Ẽ(f)⊗. The diagonal morphism above is the monoidal product

⊗ : E×B E→ E

applied to the cartesian morphisms f ∗x → x and f ∗y → y. Note that both morphisms
are over f , and both are cartesian; since ⊗ preserves (pairs of) cartesian morphisms, the
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diagonal morphism is cartesian. Hence the above factorizations were of cartesian morphisms,
and are therefore invertible, again by uniqueness of factorizations. Similarly, the coherence
conditions for these data to make Ẽ(f) a symmetric monoidal functor follow since all paths
in the coherence diagrams are factorizations through various cartesian morphisms, and so
must agree. Finally, given f ′ : b′′ → b′ and f as before, we can factor the composition
f ′∗f ∗x → f ∗x → x of cartesian morphisms through (f ◦ f ′)∗x → x to produce the natural
isomorphism

Ẽf ′,f : Ẽ(f ′) ◦ Ẽ(f)⇒ Ẽ(f ◦ f ′)

The pseudofunctor coherency conditions of Ẽ again follow from uniqueness of cartesian fac-
torizations, as does the property of Ẽf ′,f being a symmetric monoidal natural transformation
of symmetric monoidal functors.

Next, there is an isomorphism G(Ẽ) → E which sends an object (b, x) to x and a mor-
phism (f, g) to the composite

x′
g // Ẽ(f)x := f ∗x // x

The inverse sends x to (p(x), x) and g : x′ → x to (p(g), h), where
h : x′ → p(g)∗x is again a cartesian factorization.

Finally, there is a natural isomorphism G̃(F ) → F which is essentially an equality, pro-
vided that one uses the canonical cleavage (f, 1Ffx) for G(F ).

We recall a standard theorem from the the literature on 2-categories ([SP],[Jo])

Theorem 2.1.18 (Whitehead’s Theorem for 2-categories). A pseudofunctor F : C→ D is
an equivalence of bicategories if and only if the following conditions are satisfied.

(i) F is essentially surjective on objects in the sense that for any object d ∈ D, there is
an object c ∈ C such that F (c) ∼= d.

(ii) Fx,y : C(x, y)→ D(Fx, Fy) is essentially surjective for x, y ∈ C.

(iii) Fx,y : C(x, y)→ D(Fx, Fy) is fully-faithful for x, y ∈ C.

With this in mind, we see that we are most of the way toward proving the following
theorem.

Theorem 2.1.19. The (strict) 2-category of pseudofunctors Bop → SMCat, pseudonatural
transformations, and modifications, is equivalent to the 2-category Fib⊗(B), of symmetric
monoidally fibred categories, symmetric monoidally fibred functors, and monoidal natural
transformations over B.
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Proof. To complete this proof, we need to promote G to a pseudofunctor, and show that the
conditions of Whitehead’s Theorem for 2-categories are satisfied. To wit, given α : F ⇒ G, a
pseudonatural transformation of pseudofunctors F,G : Bop → SMCat, we define GF,G(α) :
G(F )⇒ G(G) on objects by

G(α)(b, x) := (b, αb(x))

and on morphisms (f, g) : (b′, x′)→ (b, x) by

G(α)(f, g) := (f, (αf(x)) ◦ (αb′(g))) .

Note that
(αf(x)) ◦ (αb′(g)) : αb′(x′)→ αb′(Ffx)→ Gf(αb(x)),

as required. Recalling that morphisms (f, g) are cartesian precisely when g is an isomor-
phism, we see that G(α) preserves cartesian morphisms. Indeed, αf is invertible by the
definition of pseudonatural transformation, and αb′(g) is invertible since αb′ is a functor,
and g is invertible. Functoriality of G(α) follows directly from pseudonaturality of α and
pseudofunctoriality of F,G. We will not give the details since they are identical to the
non-monoidal case.

Now we need to produce the extra data associated to a symmetric monoidally fibered
functor, namely G(α)1 and G(α)⊗. For b ∈ B, define

G(α)1(b) = (1b, αb1),

which is natural in b since the αf are monoidal natural transformations. Similarly, let
(b, x, y) ∈ G(F )×B G(F ) and define

G(α)⊗(b, x, y) = (1b, (αb)⊗).

By definition, it is clear that G(α)1 and G(α)⊗ are over B. To check naturality, let (f, g, h) :
(b′, x′, y′) → (b, x, y), and consider the following diagram in Gb′, where the left and right
vertical paths are the functors ⊗G(G) ◦ (G(α) × G(α)) and G(α) ◦ ⊗G(F ) applied to (f, g, h),
respectively.

αb′x′ ⊗ αb′y′
αb′⊗(x′,y′)

//

αb′(g)⊗αb′(h)

��

αb′(x′ ⊗ y′)
αb′(g⊗h)
��

αb′Ffx⊗ αb′Ffy
αb′⊗(Ffx,Ffy)

//

(αb′Ff)⊗(x,y) **
αf(Ffx)⊗αf(Ffy)

��

αb′(Ffx⊗ Ffy)

αb′(Ff⊗(x,y))
��

Gfαbx⊗Gfαby
(Gfαb)⊗(x,y)

**
Gf⊗(αbx,αby)

��

αb′Ff(x⊗ y)

af(Ff(x⊗y))

��
Gf(αbx⊗ αby)

Gf(αb⊗(x,y))
// Gfαb(x⊗ y)
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The top square commutes since αb′ is a monoidal functor. The triangles commute by the
definition of composition of monoidal functors. Finally, the parallelogram commutes because
αf is a monoidal natural transformation.

Now, we must check all the coherency diagrams involving the data of this symmetric
monoidally fibred natural transformation G(α) and the data making G(F ) and G(G) into
symmetrically monoidally fibred categories. However, these coherency diagrams only involve
evaluating these data, which are natural transformations, on objects. The definitions on
objects are all given by corresponding structures on things in SMCat, and therefore satisfy
all needed diagrams.

Lastly, we must define the action of G on modifications. So take a modification m between
α, β : F ⇒ G. Note that a modification here sends an object b ∈ B to a monoidal natural
transformation of functors mb : αb⇒ βb. Define G(m) by

G(m)(b, x) := (1b,mb(x)).

For a morphism (f, g) : (b′, x′)→ (b, x), we obtain the diagram

αb′x′ mb′x′ //

αb′g
��

βb′x′

βb′g
��

αb′(Ffx)
mb′(Ffx)//

αfx

��

βb′(Ffx)

βfx

��
Gfαbx

Gfmbx
// Gfβbx

The bottom square commutes because m is a modification, and the top square commutes
because mb′ is a natural transformation. As in previous cases, the condition required for
G(m) to be monoidal follows from mb being monoidal, since this condition only requires
checking pointwise.

Checking functoriality is identical here to the non-monoidal case, so we need only check
the conditions of Whitehead’s Theorem 2.1.18 to show that we have an equivalence. Essen-
tially surjective on objects was shown in theorem 2.1.17. For essentially full, suppose we
have a monoidally fibred functor Γ : G(F ) ⇒ G(G). Define a pseudonatural transformation
Γ̂ : F ⇒ G as follows. Given an object b ∈ B, Γ̂b = Γ|p−1(b), with p the canonical projection
functor. By this restriction, we mean ’ignore that Γ is the identity on the first entry of tuples
(b, x)’. This is clearly symmetric monoidal, since a Γ is fibrewise symmetric monoidal. For
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a morphism f : b′ → b, and for x ∈ Fb, we have the diagram

(b′,ΓFfx)
OO

��

Γ(f,1x)

&&
(b′, GfΓx)

_

��

(f,1Γx) // (b,Γx)
_

��
b′

f // b

Where the dotted arrow is a (unique) cartesian factorization, and therefore invertible (see
Remark 2.1.2). This morphism we define to be the image of Γ̂(f)(x). Now, if we consider
G(Γ̂), on objects this does the same thing as Γ. On morphisms, it does the same thing as well,
provided one uses the canonical cleavage on G(F ) and G(G) to produce the factorization.
Hence we produced an inverse to the map α 7→ G(α). Finally, to check fully-faithfulness, let
η be a monoidal natural transformation over B and define a modification via mb = η|p−1(b).
This is clearly the inverse of m 7→ G(m).

Next we turn our attention to strictifying the pseudofunctors Ẽ in a canonical way.
A fibration whose associated pseudofunctor factors through Set is called a discrete fibra-

tion. Note that any pseudofunctor factoring through Set must in fact be a functor, and so
any discrete fibration is split.

Remark 2.1.20. Given any object b ∈ B we can form a discrete fibration via the Yoneda
embedding. The fibre over b′ ∈ B is B(b′, b), and the pullback of an object over b, i.e. a
morphism g : b′ → b along a morphism f : b′′ → b′ is given by precomposition. The associated
functor Bop → Set in this case is the Yoneda embedding itself. We will use the notation
b to denote this category (discretely) fibred over B. Note that this is a split fibration, and
may just as well be considered as a functor Bop → Cat.

Definition 2.1.21. We will denote the hom categories of Fib(B) by FunB. The objects are
fibred functors and the morphisms are natural transformations over B. Given E ∈ Fib(B),
we can get a (strict) functor Bop → Cat defined by X 7→ FunB(X,E). If E was symmetric
monoidally fibred, we can similarly get a functor Bop → SMCat, denoted Fun⊗B(X,E) by
taking the monoidal product point-wise.

We can go further and define an inner-hom in Fib(B). Its fibres are given by

FunB(E′,E)b = FunB(E′ ×B b,E)

We finally promote this inner-hom to Fib⊗(B) by the formula

Fun⊗B(E′,E)b = Fun⊗B(E′,FunB(b,E)),

where as above the monoidal structure on FunB(b,E) is induced point-wise.
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Let us describe the relationship between these constructions and the Grothendieck con-
structions from above.

Theorem 2.1.22. The functor Fun⊗B(·,E) is pseudonaturally isomorphic to the pseudofunc-
tor Ẽ.

Proof. We define a pseudonatural transformation

α : Ẽ ⇒ Fun⊗B(·,E)

Given b ∈ B, we must give a symmetric monoidal functor from the fibre of E over b to
Fun⊗B(b,E). On objects x, we define it by x 7→ ((f : b′ → b) 7→ f ∗x). Send morphisms
g : x → y to the natural transformations (f : b′ → b) 7→ f ∗g which are functorial in g and
therefore natural. In short, we define

(αb)(f) := Ẽ(f)

These are therefore symmetric monoidal with the same structure maps as Ẽ(f). These
αb are invertible up to isomorphism, with inverse given by sending functors and natural
transformations φ ∈ Fun⊗B(b,E) to φ(1b). For f : b′ → b, we have the diagram

Ẽ(b) αb //

f∗

��

Fun⊗B(b,E)

��
Ẽ(b′) αb′ // Fun⊗B(b′,E)

The functor going along the top first sends x to the functor (f ′ : b′′ → b′) 7→ (f ◦ f ′)∗x.
Down and right results in (f ′ : b′′ → b′) 7→ f ′∗f ∗x. Hence we may define

(αf)(f ′) := Ẽf ′,f

Which is monoidal since Ẽf ′,f is a monoidal natural transformation. The coherence of Ẽ·,·
on triples is equivalent to the functoriality of α on morphisms, as can be seen in the diagram

Ẽ(b)

Ẽ(f◦f ′)

��

f∗

##

αb // Fun⊗B(b,E)

f◦
��

Ẽ(b′)

Ẽ·,f

5=

αb′//

f ′∗{{

Ẽf ′,f
ks Fun⊗B(b′,E)

f ′◦
��

Ẽ(b′′)
αb′′

//

Ẽ·,f ′

5=

Fun⊗B(b′′,E)

The fact that the composition of the two trapezoidal 2-cells is equal to the triangle 2-cell
with the 2-cell α(f ◦ f ′) := Ẽ·,f◦f ′ which fills the whole diagram is precisely the coherence of
Ẽ·,· with triples. Recall finally that these Ẽ·,· are isomorphisms, completing the proof.
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Therefore we have shown that pseudofunctors with target SMCat can be strictified in a
natural way. It is clear that pseudofunctors with target Cat can be strictified in the same
way, by the same proof without symmetric monoidal considerations.

Definition 2.1.23. In analogy with the notation b, for the discrete fibred category arising
from the Yoneda embedding, we define

E := Fun⊗B(·,E).

We conclude by extending this construction to fibred functors.

Definition 2.1.24. Let E′,E ∈ Fib⊗(B), and let F : E′ → E be a symmetric monoidally
fibred functor. Define F by postcomposition. Explicitly, given b ∈ B, and a fibred functor
G ∈ FunB(b,E), define F : E ′ → E by

F (b)(G) = (F ◦G),

and the definition on fibred natural transformations is given by ’whiskering’: F (b)(α) :=
(1F • α)(b).

Lemma 2.1.25. From the definition above, F is a monoidal (strictly) natural transforma-
tion. Indeed, given f : b′ → b, we obtain the diagram

Fun⊗B(b,E) //

��

Fun⊗B(b,E′)

��
Fun⊗B(b′,E) // Fun⊗B(b′,E′)

Again taking G ∈ FunB(b,E), and a morphism f ′ : b′′ → b′ both paths in the diagram result
in the functor

b′ 7→ (F ◦G)(f ◦ f ′)

2.2 Symmetric Monoidal Categories and Opfibrations

In this section, we describe an alternate model of the category SMCat. This will serve the
dual purpose of giving a motivation for the definition of symmetric monoidal (∞, 1)-catgeory
that we will propose and also provide a step in the map of field theories that is the main
goal of this work.

We begin with a characterization of symmetric monoidal categories as a full subcategory
of certain opfibrations. The ideas here come from [Lur] chapter 2. We remark that we
will repeatedly use the fact that in a symmetric monoidal category M, when taking the
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monoidal product of a tuple of objects ordered and associated in two different ways, the
various isomorphisms between these elements generated by the data

α, γ, λL, λR

are all equal. This is sometimes calle MacLane’s coherence theorem.

Definition 2.2.1. We define the category Γ as follows. The objects of Γ are pointed sets
{∗, 1, · · · , n}, denoted by 〈n〉, for n = 0, 1, 2, . . .. The morphisms of Γ are morphisms of
pointed sets, i.e. set maps α : 〈n〉 → 〈m〉 such that α(∗) = ∗.

Now, given a symmetric monoidal category M, we define a new category M⊗ which is
opfibred over Γ.

Definition 2.2.2. Let M be a symmetric monoidal category. The objects of M⊗ are
(possibly empty) ordered tuples of objects of M: (x1, · · · , xl). The morphisms of M⊗ are
pairs (α, fi) : (x′1, · · · , x′k) → (x1, · · · , xl), where α : 〈k〉 → 〈l〉 is a morphism in Γ, and fi,
for i = 1, · · · , l is a morphism in M:

fi :
⊗

j∈(α−1(i)\{∗})

x′j → xi.

In order to define the products over α−1(i) \ {∗} uniquely, we make the convention that the
empty product is the monoidal unit 1, that the ordering on the product is induced by the
ordering of α−1(i) as a subset of {∗, 1, · · · , k}, and finally that the products are grouped ’all
the way to the left’, as in

(· · · (((• ⊗ •)⊗ •)⊗ •) · · · ⊗ •).

The composition of (α, fi) with (β, gj) is the pair (β◦α, gj◦⊗fi◦θj), where θj is the canonical
isomorphism ⊗

n∈(β◦α)−1(j)\{∗})

x′′n →
⊗

m∈(β−1(n)\{∗})

 ⊗
n∈(α−1(j)\{∗})

x′′n


in M which permutes the ordering and grouping of the first product to that of the second.
The uniqueness of this isomorphism follows from the axioms of a symmetric monoidal cate-
gory, which imply that any combination of the structure maps inducing this reordering and
regrouping is equal to any other (Maclane’s coherence). Furthermore, associativity of this
composition follows by naturality of the structure isomorphism (to commute the θ’s with
the f ’s and g’s) combined again with coherence (to combine θ’s).

There is a forgetful functor p : M⊗ → Γ which sends an element (m1, · · · ,ml) to 〈l〉,
and sends a morphism (α, fi) to α.

Lemma 2.2.3. The functor p :M⊗ → Γ is an opfibration of categories.
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Proof. The co-cartesian morphisms are precisely those pairs (α, fi), where the fi are isomor-
phisms. A cleavage is then given by the assignment

((x1, · · · , xk), α) 7→ (α, 1⊗
j∈(α−1(i)\{∗}) xj

)

We will use the notation α! for the pushforward morphisms in this cleavage. Note that,
by the definition of composition in M⊗, this cleavage does not split.

For example, let t : 〈2〉 → 〈2〉 be the isomorphism that switches 1 and 2, and let
m : 〈2〉 → 〈1〉 be the morphism that sends 1 and 2 to 1. Note that m ◦ t = m. The
pushforward of (x1, x2) over t is (x2, x1), and the further pushforward over m is x2 ⊗ x1.
In the composition of these morphisms, (m ◦ t, f1), f1 is, by definition, an isomorphism
x1 ⊗ x2 → x2 ⊗ x1, i.e. the braiding of M. In particular, it is not the identity, and so the
cleavage is not a splitting.

Let us make some further observations on the category M⊗.

Remark 2.2.4. For numbers n, i, let πi〈n〉 : 〈n〉 → 〈1〉 be the morphism defined by

πi〈n〉(j) =

{
1 if j = i
∗ otherwise

Let M⊗
〈n〉 denote the fibre over 〈n〉. Then the functor

φn :=
(
(π1
〈n〉)!, · · · , (πn〈n〉)!

)
:M⊗

〈n〉 →
n∏
1

M⊗
〈1〉

is an isomorphism of categories. Furthermore, if σ : 〈n〉 → 〈n〉, is an isomorphism, then the
following diagram commutes

M⊗
〈n〉

φn //

σ!

��

∏n
1M

⊗
〈1〉

(πσ(1),··· ,πσ(n))
��

M⊗
〈n〉

φn //
∏n

1M
⊗
〈1〉

In other words, the φn is equivariant with respect to the obvious action of the symmetric
group Σn on source and target.

Noting that πi〈n〉 ◦ σ = π
σ(i)
〈n〉 , we can rephrase this by saying that pushforward commutes

with composition of πi〈n〉 maps and permutations. We make the following definition.

Definition 2.2.5. A morphism α : 〈n〉 → 〈m〉 in Γ is called static if, for each i = 1, · · · ,m,
α−1(i) contains at most one element.
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In words, a morphism is static if it is an injection away from ∗. A composition of static
morphisms is static, so we may define the subcategory Γs of Γ consisting of all objects and
only the static morphisms. The following follows directly from the definition of composition
in M⊗.

Lemma 2.2.6. In the pullback diagram

M⊗
s

ps

��

//M⊗

p

��
Γs
� � // Γ

The canonical cleavage on p :M⊗ → Γ is sent to a splitting of the opfibration ps :M⊗
s → Γs.

The point is that the canonical cleavage only fails to be a splitting when there is some
choice made in the ordering and grouping of the tensor products appearing in the definition
of morphisms (α, fi). Note that the condition of this lemma implies, among other things,
the Σn equivariance noted in remark 2.2.4. We now make a definition abstracting these
observations.

Definition 2.2.7. Define the category opFib(Γ)s to be the full subcategory of opFib(Γ)
with objects opfibrations D→ Γ with a cleavage such that

� The functors

φn :=
(
(π1
〈n〉)!, · · · , (πn〈n〉)!

)
: D〈n〉 →

n∏
1

D〈1〉

are isomorphisms of categories.

� In the pullback diagram
Ds

ps
��

//D

p

��
Γs
� � // Γ,

the cleavage induced on the opfibration Ds → Γs splits.

Next we show that these opfibrations have the structure to induce a symmetric monoidal
structure on D〈1〉.

Theorem 2.2.8. Let D ∈ opFib(Γ)s. Then D〈1〉 has the structure of a symmetric monoidal
category.



CHAPTER 2. SYMMETRIC MONOIDAL (∞, 1)-CATEGORIES 27

Proof. Throughtout the proof, we will use the notation α! for the pushforwards in a fixed
cleavage for D. Recall from the previous section that these pushforwards can be interpreted
as functors on the fibres. The monoidal product of D〈1〉 is the composition of functors

m! ◦ φ−1
2 : D〈1〉 ×D〈1〉 → D〈1〉

Note that φ0 gives an isomorphism of D〈0〉 with the empty product, i.e. the terminal category
of one object and its identity. Let ι : 〈0〉 → 〈1〉 be the unique morphism of Γ. Then the
monoidal unit of D is the image under ι! of the unique object of D〈0〉. Recall again from
the previous section that, given α′, α, two composable morphisms in Γ, there is a natural
isomorphism of functors

D̃α′,α : α! ◦ α′! ⇒ (α ◦ α′)!

Here we have used the notation D̃ for the pseudofunctor Γ → Cat associated to the op-
fibration D → Γ, in analogy to Theorem 2.1.17. Furthermore, given a third composable
morphism α′′, we have the commutative diagram

α! ◦ α′! ◦ α′′!
D̃α′,α◦1α′′

! +3

1α!
◦D̃α′′,α′

��

(α ◦ α′)! ◦ α′′!
D̃α′′,α◦α′
��

α! ◦ (α′ ◦ α′′)!
D̃α′◦α′′,α

+3 (α ◦ α′ ◦ α′′)!

arising from the pseudofunctoriality of D̃.
Consider the diagram

D〈1〉 ×D〈1〉
φ−1

2 //

(π2,π1)

��

D〈2〉
m!=(m◦t)! //

t! ""

KS

D̃t,m

D〈1〉

D〈1〉 ×D〈1〉
φ−1

2 //D〈2〉

m!

<<

The path along the top is the morphism the monoidal product. The path along the bottom
is a ’flip’ followed by the monoidal product. The trapezoid commutes, as a special case of
the equivariance explained in remark 2.2.4. The natural isomorphism filling in the diagram
is the braiding isomorphism γ. To see that this braiding is symmteric, consider the diagram

D〈1〉 ×D〈1〉
φ−1

2 //

(π2,π1)

��

D〈2〉
m! //

t!
��

D〈1〉

=

��
D〈1〉 ×D〈1〉

φ−1
2 //

(π2,π1)

��

D〈2〉

t!
��

D̃t,m

8@

m! //D〈1〉

=

��
D〈1〉 ×D〈1〉

φ−1
2 //D〈2〉

D̃t,m

8@

m! //D〈1〉
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The natural isomorphism filling the whole diagram is γ • (γ ◦ 1flip), which we need to show
is the identity transformation. To wit, applying the pseudofunctoriality of D̃ to the triple
t, t,m, we find that the natural transformation filling the right rectangle is equal to

D̃t◦t,m • (1m!
◦ D̃t,t).

However, t is static, so D̃t,t = 1, and t ◦ t = 1, so

D̃t◦t,m = D̃1,m = 1

since we assume the cleavage is normalized. Finally, the rectangle on the left commutes (i.e.
is filled with the identity transformation), so the braiding is symmetric.

For n ≥ 2 and 1 ≥ i ≤ n− 1, define µi〈n〉 : 〈n〉 → 〈n− 1〉, a morphism in Γ by

µi〈n〉(j) =


j if j ≤ i
j − 1 if j > i
∗ if j = ∗

Furthermore, for n ≥ 1, define m〈n〉 : 〈n〉 → 〈1〉 by the formula

m〈n〉(j) =

{
1 if j 6= ∗
∗ if j = ∗

For example, µ1
〈2〉 = m〈2〉 = m. Note also that

m ◦ µ1
〈3〉 = m〈3〉 = m ◦ µ2

〈3〉.

From the first equality, we obtain the rightmost natural transformation in the following
diagram, which lies over the obvious (strictly) commutative diagram in free products of
objects of Γ.

D〈1〉 ×D〈1〉 ×D〈1〉
φ−1

2 ×1
//D〈2〉 ×D〈1〉

m!×1

��

//D〈3〉

(µ1
〈3〉)!

��yy
(m3)!

ww

D〈1〉 ×D〈1〉
φ−1

2

//D〈2〉 +3

m!

��
D〈1〉

The square is the ’product’ of the squares

D〈3〉 //

(µ1
〈3〉)!

��

D〈2〉

(m!)

��
D〈2〉

π1
〈2〉

//D〈1〉
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and

D〈3〉
π1
〈3〉 //

(µ1
〈3〉)!

��

D〈1〉

1

��
D〈1〉 1

//D〈1〉

both of which are over commutative diagrams in Γ, and can therefore be filled in with natural
isomorphisms of functors (in fact the second square commutes in D as well). We use these
natural isomorphisms as the coordinates of a natural transformation filling the square in the
larger diagram.

In particular, there is a natural isomorphism of functors filling the diagram

D〈1〉 ×D〈1〉 ×D〈1〉
φ−1

2 ×1
//D〈2〉 ×D〈1〉

m!×1

��

//

!)

D〈3〉

(µ1
〈3〉)!

��
(m3)!

ww

D〈1〉 ×D〈1〉
φ−1

2

//D〈2〉 +3

m!

��
D〈1〉

The bottom path is by definition the functor which on objects is

(A,B,C) 7→ (A⊗B)⊗ C.

Noting that the the composition of the top two functors is equal to φ−1
3 , by the splitting of

our cleavage over static morphisms, we see that the top path is (m3)! ◦ φ−1
3 . This should

be considered as a ’triple monoidal product’, which we will denote ⊗3. We may produce a
similar diagram where the bottom path is the other association of monoidal product of three
objects:

(A,B,C) 7→ A⊗ (B ⊗ C).

Namely,

D〈1〉 ×D〈1〉 ×D〈1〉
1×φ−1

2

//

φ−1
3

++
D〈1〉 ×D〈2〉

1×m!

��

//

!)

D〈3〉

(µ2
〈3〉)!

��
(m3)!

ww

D〈1〉 ×D〈1〉
φ−1

2

//D〈2〉 +3

m!

��
D〈1〉

The associator for the monoidal product, α, is the composition of the first natural transfor-
mation with the inverse of the second.
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To show that the pentagon holds, note that there is a natural isomorphism from any
association of a quadruple monoidal product to the ’quadruple monoidal product’ (m4)!◦φ−1

4 .
For example, the functor

(A,B,C,D) 7→ ((A⊗B)⊗ C)⊗D

is the bottom path in the diagram

∏4
1 D〈1〉 //

φ−1
4

,,D〈2〉 ×D〈1〉 ×D〈1〉 //

(m)!×1×1

�� $,

D〈3〉 ×D〈1〉 //

(µ1
〈3〉)!×1

�� !)

D〈4〉

(µ1
〈4〉)!

��

(m4)!

yy

D〈1〉 ×D〈1〉 ×D〈1〉 //D〈2〉 ×D〈1〉

m!×1

��

//

!)

D〈3〉 +3

(µ1
〈3〉)!

��
D〈1〉 ×D〈1〉

φ−1
2

//D〈2〉

m!

��
D〈1〉

and we fill in the squares with natural isomorphisms in the same manner as the triple product
case. The natural isomorphism on the right is the (unique) natural isomorphism

m! ◦ (µ1
〈3〉)! ◦ (µ1

〈4〉)! ⇒ (m ◦ µ1
〈3〉 ◦ µ1

〈4〉)! = (m4)!

There is a natural isomorphism from the functor

(A,B,C,D) 7→ (A⊗ (B ⊗ C))⊗D

to the quadruple product functor which comes from the diagram

∏4
1 D〈1〉 //

φ−1
4

,,D〈1〉 ×D〈2〉 ×D〈1〉 //

1×(m)!×1

�� $,

D〈3〉 ×D〈1〉 //

(µ2
〈3〉)!×1

�� !)

D〈4〉

(µ2
〈4〉)!

��

(m4)!

yy

D〈1〉 ×D〈1〉 ×D〈1〉 //D〈2〉 ×D〈1〉

m!×1

��

//

!)

D〈3〉 +3

(µ1
〈3〉)!

��
D〈1〉 ×D〈1〉

φ−1
2

//D〈2〉

m!

��
D〈1〉
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We now have two natural isomorphisms

((A⊗B)⊗ C)⊗D ⇒ (A⊗ (B ⊗ C))⊗D

The first is αA,B,C × 1D, and the second is the natural isomorphism going to the quadruple
product and back. However, examining the above diagrams component-wise, we see that
all natural isomorphisms were produced by factorization of various co-cartesian morphisms
through other co-cartesian morphisms. Since these factorizations are unique by the definition
of an opfibration, the resulting natural isomorphisms must be equal. Let

⊗〈4〉 := (m4)! ◦ φ−1
4 : D〈4〉 → D〈1〉.

We can produce analogous diagrams an use the same argument to show that the following
diagram of natural transformations commutes

((·1 ⊗ ·2)⊗ ·3)⊗ ·4
α

nv ��

α⊗1

(0
(·1 ⊗ ·2)⊗ (·3 ⊗ ·4) +3

α
&.

⊗〈4〉 (·1 ⊗ (·2 ⊗ ·3))⊗ ·4ks

α
px

·1 ⊗ (·2 ⊗ (·3 ⊗ ·4))

08

1⊗α
+3 ·1 ⊗ ((·2 ⊗ ·3)⊗ ·4)

fn

The outer pentagon is the one from the pentagon axiom.
For the left unitor, consider the following diagram, which is over the obvious commutative

diagram in products of objects in Γ.

D〈1〉
(ι!,1)

yy ��
1

ww

D〈1〉 ×D〈1〉
φ−1

2 //

⊗ %%

D〈2〉

m!

��

+3

D〈1〉

The natural isomorphism is induced by a factorization of pushforwards, the upper triangle
commutes by the property of static morphisms, and the lower triangle commutes by defini-
tion. This natural isomorphism is the left unitor λL. The right unitor comes from the same
diagram with ι! and the identity switched in the upper diagonal functor. To see that the
left an right unitors are coherent with the associator, consider the diagram (over the obvious
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commutative diagram)

D〈1〉 ×D〈1〉
1×ι×1

uu ��

φ−1
2 //

!)

D〈2〉

��

m!

ww

D〈1〉 ×D〈1〉 ×D〈1〉
φ−1

2 ×1
//D〈2〉 ×D〈1〉 //

m!×1

�� !)

D〈3〉

(µ1
〈3〉)!

��

+3

(m3)!

zz

D〈1〉 ×D〈1〉
φ−1

2

//D〈2〉

m!

��

+3

D〈1〉

The path beginning with the upper-left D〈2〉 ×D〈2〉 and going down around the outside of
the diagram is the functor

(A,B) 7→ (A⊗ 1)⊗B

and so the diagram exhibits a natural isomorphism from this functor to m! ◦ φ−1
2 = ⊗. Re-

stricting to factors, the natural transformations are all induced by co-cartesian factorizations
through co-cartesian morphisms, as is the natural transformation λR×1. Therefore they are
equal by uniqueness.

Taking the natural isomorphism resulting from removing the right-most 2-cell, and com-
posing with the inverse of natural isomorphism filling the diagram

D〈1〉 ×D〈1〉
1×ι×1

uu ��

φ−1
2 //

!)

D〈2〉

��
D〈1〉 ×D〈1〉 ×D〈1〉

1×φ−1
2 //D〈1〉 ×D〈2〉 //

m!×1

�� !)

D〈3〉

(µ2
〈3〉)!

��
(m3)!

ww

D〈1〉 ×D〈1〉
φ−1

2

//D〈2〉

m!

��

+3

D〈1〉

we obtain, by definition, the natural transformation α·,1,·. Now composing this again with
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the natural isomorphism

D〈1〉 ×D〈1〉
1×ι×1

uu ��

φ−1
2 //

!)

D〈2〉

��

m!

zz

D〈1〉 ×D〈1〉 ×D〈1〉
1×φ−1

2 //D〈1〉 ×D〈2〉 //

m!×1

�� !)

D〈3〉

(µ2
〈3〉)!

��

+3

D〈1〉 ×D〈1〉
φ−1

2

//D〈2〉

m!

��
D〈1〉

which is, by the same argument as above, equal to 1×λL, we obtain a natural isomorphism,
equal to the composition

(1× λL) ◦ α·,1,·
which is created entirely by co-cartesian factorizations. Hence, it must also be equal to
λR × 1, which proves the coherence of unitors and the associator.

In order to prove the hexagon axioms hold, we use the same strategy as in proving the
pentagon axiom. For example, to obtain the first hexagon axiom. we produce a diagram

(·1 ⊗ ·2)⊗ ·3

!)

γ +3

α

rz

·3 ⊗ (·1 ⊗ ·2)

u}
·1 ⊗ (·2 ⊗ ·3) +3

1⊗γ $,

⊗3 (·3 ⊗ ·1)⊗ ·2ks

α
dl

·1 ⊗ (·3 ⊗ ·2)

5=

α−1
+3 (·1 ⊗ ·3)⊗ ·2

ai

γ⊗1

2:

which commutes since all natural isomorphisms were produced via co-cartesian factoriza-
tions. We remark also that the triangles with outer edge α commute by definition of α. The
other hexagon is similar.

Remark 2.2.9. In the proof of Theorem 2.2.8 we repeatedly used the fact that co-cartesian
factorizations are unique (see Remark 2.1.2). This should be considered as a reflection of
the fact that given two different choices of orderings and groupings of monoidal products of
the same objects in a symmetric monoidal category, say for example

((A⊗ C)⊗B)⊗ (E ⊗D)

and
((E ⊗B)⊗ (C ⊗D))⊗ A
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the space of isomorphisms between them generated by the data

γ, λL, λR, α

forms a contractible groupoid (Maclane coherence). In particular, there can be no simi-
lar characterizan of braided monoidal categories as opfibrations, because in the absence of
symmetry, one can form distinct isomorphisms from the data. The easiest example is of
course

γ · (γ ◦ 1flip) 6= 1.

Uniqueness of co-cartesian factorizations means that an opfibration cannot capture this.

Theorem 2.2.10. The category SMCat of symmetric monoidal categories and symmetric
monoidal functors is equivalent to the category opFib(Γ)s.

Proof. On objects, the functor SMCat→ opFib(Γ)s was defined above by M 7→M⊗. On
symmetric monoidal functors F :M′ →M we define F⊗ on tuples by

F⊗(x1, · · · , xk) = (Fx1, · · · , Fxk)

and on morphisms by
F (α, fi) = (α, Ffi ◦Ψi)

Where Ψi is the (unique) isomorphism

⊗j∈(α−1(i)\{∗})Fx
′
j → F ⊗j∈(α−1(i)\{∗}) x

′
j

induced by the datum F⊗ : ⊗ ◦ (F × F )⇒ F ◦ ⊗ making F monoidal, and which is unique
since F is symmetric monoidal. The functoriality of F⊗(·) is a consequence of the naturality
of the structure isomorphisms and coherence. The functoriality of F 7→ F⊗ on objects is
clear, and on morphisms again follows from naturality and coherence.

The functor going in the opposite direction opFib(Γ)s on objects is restriction to the fibre
D→ Γ 7→ D〈1〉, which has a symmetric monoidal structure as shown in Theorem 2.2.8.

Suppose now that C,D ∈ opFib(Γ)s, and let F : C → D be a fibred functor. We want
to show that the restriction F〈1〉 has the structure of a symmetric monoidal functor. Indeed,
let ∗C ∈ C〈0〉 denote the unique object, so that ι!(∗C) is the monoidal unit of C〈1〉. Similarly,
let ∗D ∈〈1〉 denote the unique object. Then (see Remark 2.1.2) there is a unique isomorphism

(F〈1〉)⊗ : Fι!(∗C)→ ι!(F∗C) = ι!(∗D)

induced as usual by cocartesian factorization. We have abused notation in the above slightly,
by giving pushforwards in C and D the same names, and note also we needed the fact that
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F sends cocartesian morphisms to cocartesian morphisms. Now, the following diagram of
functors is over the obvious commutative diagram of products of objects of Γ

C〈1〉 ×C〈1〉
φ−1

2 //

F〈1〉×F〈1〉
��

C〈2〉
m! //

F〈2〉
��

C〈1〉

F〈1〉
��

D〈1〉 ×D〈1〉
φ−1

2

//D〈2〉 m!

//D〈1〉

Therefore, it can be filled in with a natural isomorphism of functors

(F〈1〉)⊗ : F〈1〉 ◦m! ◦ φ−1
2 ⇒ m! ◦ φ−1

2 ◦ (F〈1〉 ×F〈1〉).

We have produced the data required for F〈1〉 to be symmetric monoidal, and as in the
proof of Theorem 2.2.8, the paths in the diagrams required are all various combinations of
co-cartesian factorizations, and therefore must all agree.

The composition
M 7→M⊗ 7→ (M⊗)〈1〉

is clearly the identity. Also, the isomorphisms φn given as part of the data of an object
D ∈ opFib(Γ)s give a fibred equivalence D⊗〈1〉 ⇒ D, and these equivalences assemble to form
a natural isomorphism to the identity functor. This completes the proof.

Corollary 2.2.11. Applying Theorem 2.1.19 in the non-symmetric monoidal case (and
switching to the opfibration case) to the result of the previous theorem we obtain an equiv-
alence of categories between SMCat and the full 2-subcategory of pseudofunctors, pseudo-
natural transformations, and modifications Γ→ Cat whose objects F have the properties

� For each n,

(Fπ1
〈n〉, · · · , Fπn〈n〉) : F (〈n〉)→

n∏
1

F (〈1〉)

is an isomorphism of categories.

� F |Γs is functorial.

Remark 2.2.12. In [Lur], it is claimed in the discussion beginning chapter 2, with a proof
sketched, that the second condition is unnecessary, and that isomorphism in the first condi-
tion can be weakened to equivalence. In the sequel we will therefore adopt these changes.

This brings us to the equivalence
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Theorem 2.2.13. There is an equivalence of 2-categories between SMCat and the full
category of pseudofunctors Γ → Cat, pseudonatural transformations, and modifications,
whose objects F have the property that

(Fπ1
〈n〉, · · · , Fπn〈n〉) : F (〈n〉)→

n∏
1

F (〈1〉)

is an equivalence of categories for each n.

2.3 Pseudofunctors and Enriched Functors

There is one remaining step, namely to replace the pseudofunctors with functors enriched in
categories, or in other words, strictify the pseudofunctors. An analogous construction to the
one below appears in [GJ]. As always, the notation [n] will refer to the linearly ordered set

0 < 1 < · · · < n.

In this section we will treat these as categories.
Also for this section we temporarily use the notation s, t : [0] → [1] for the inclusion of

the source and target object of the single nonidentity morphism in [1].
We next remark that the commutative diagram

[0] s //

t
��

[1]

��
[1] // [2]

is a pushout in Cat. The upshot is that giving a pair of composable morphisms in some
category C, i.e. a pair of functors f, g : [1] → C with g ◦ s = f ◦ t, is equivalent to giving
a functor [2] → C. Thus [2] should be thought of as a category modeling ‘2 composable
morphisms’, and similarly, [n] is ‘n composable morphisms’.

Given a category J , we construct a category CJ enriched in categories as follows. The
objects of CJ are the objects of J . Given j′, j ∈ J , the category

CJ (j′, j)

has as objects functors c : [n]→ J , with the property that c(0) = j′ and c(n) = j. In other
words, the objects are chains of composable morphisms whose composition is a morphism
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j′ → j. The morphisms of CJ (j′, j) consist of commutative diagrams

[n′]
c′

  
α

��

J

[n]

c

>>

where α : [n′] → [n] has the property that α(0) = 0 and α(n′) = n, that is, α is endpoint-
preserving. We will sometimes refer to such an α as a path homotopy.

Now, given two composable chains of composable morphisms,

c′ : [n′]→ J ∈ CJ (j′′, j′) and c : [n]→ J ∈ CJ (j′, j)

we define the composition functor

CJ (j′′, j′)×CJ (j′, j)→ CJ (j′′, j)

to be concatenation, that is, the functor defined on objects by

c′ ◦ c(k)

{
c′(k) if k ≤ n′

c(k − n′) if k ≥ n′

Note that c′(n′) = c(0) = j′ by hypothesis. We define composition on morphisms also to be
(horizontal) concatenation of the α’s. This composition functor has two-sided inverses given
by the ’object’ functors [0]→ J . In particular, observe that these are distinct from functors
[1]→ J that hit identities.

By definition of the morphisms of CJ (j′, j), there are no morphisms between chains
with distinct compositions. Let CJ (j′, j)f denote the subcategory of chains that compose
to f ∈ J (j′, j). Note that [1] is initial in the category with objects [n] and morphisms
endpoint preserving functors, so that CJ (j′, j)f has initial object the functor [1]→ J with
image f . We conclude that there is an equivalence of categories

CJ (j′, j)f ∼= {f, 1f}, and therefore C J (j′, j) ∼= J (j′, j)

the latter a set considered as a discrete category. To put this another way, it is clear how
to use this construction to make a functor C : Cat → CatCat, and we have shown that
(π0)∗ ◦C = 1Cat (see Remark A.1.3).

The point of this construction is the following theorem.

Theorem 2.3.1. Let C ∈ CatCat be a strict 2-category, and let J be a small category. The
following 2-categories are isomorphic.
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� Lax functors J → C, lax transformations, and modifications.

and

� Enriched functors CJ → C (i.e. strict 2-functors), lax transformations, and modifica-
tions.

Proof. Let F : J → C be a lax functor. We define a functor F̃ : CJ → C, which does the
same thing on objects as F . Given an object in some morphism category

c : [n]→ J ∈ CJ (j′, j),

we set
F̃ (c) = F (c(fn)) ◦ · · · ◦ F (c(f1)),

where fk is the unique morphism k− 1→ k in [n]. The composition on the right is taken to
be the identity if the chain is empty, i.e. if n = 0. This is required, since empty chains are
the identities, and F̃ is meant to be strict. Finally, we define the action of F̃ on morphisms
of chains by defining it on generators. It is well known that a functor α : [n′] → [n], i.e. a

morphism of ∆, can be decomposed into a sequence of cofaces d
[m]
i : [m− 1]→ [m] defined

by

di[m](k) =

{
k if k < i
k + 1 if k ≥ i

where 0 ≤ i ≤ m, and codegeneracies si[m] : [m+ 1]→ [m]:

si[m](k) =

{
k if k < i
k − 1 if k ≥ i

where 0 ≤ i ≤ m. It is not hard to see that the endpoint-preserving functors α are generated
by all codegeneracies and only the cofaces di[n] with 0 < i < n. So, given a commutative
diagram D:

[n− 1]
c′

""
di

[n]

��

J

[n]

c

<<

noting that commutativity here implies

c′(fi) = c(fi+1) ◦ c(fi)

we define
F̃ (D) = 1F (c(f1)) ◦ · · · ◦ Fc(fi),c(fi+1) ◦ · · · ◦ 1F (c(fn))
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Similarly, given a diagram D′

[n+ 1]
c′

""
sj
[n]

��

J

[n]

c

<<

define
F̃ (D′) = 1F (c(f1)) ◦ · · · ◦ F1c(i) ◦ · · · 1F (c(fn))

We need to check that the cosimplicial identities hold for this definition, in the sense that if a
diagram D like those above can be produced with the vertical morphism being decomposed
in two different ways into generators, the definitions of F̃ resulting from these decompositions
agree. We recall these cosimlpicial identities (see [JT], for example):

sk[n−1]d
k
[n] = 1 = sk[n−1]d

k+1
[n]

dk[n+1]d
i
[n] = di[n+1]d

k−1
[n] if i < k

sk[n]d
i
[n−1] = di[n]s

k−1
[n−1] if i < k

sk[n]d
i
[n−1] = di−1

[n] s
k
[n−1] if i > k + 1

sk[n]s
i
[n+1] = si[n+1]s

k+1
[n] if i ≤ k

The first pair of identities hold because of the compatibility of Ff,1y with F1y and the com-
patibility of F1x,f with F1x , respectively. The second identity holds for i = k − 1 by the
compatibility of F·,· with triples, and holds for other values of i by the interchange law of
horizontal and vertical composition of 2-morphisms. The other three identities all hold by
interchange as well. This establishes that F̃ is well-defined as a functor on the hom-categories
of CJ . It is clear that F̃ is compatible with concatenation of strings by definition, so it is
an enriched functor.

Since the construction F 7→ F̃ above used all of the data which established F as a
pseudofunctor, it is injective. Now, given an enriched functor G : CJ → C, we produce a
lax functor that does the same thing on objects, and sends a morphism to G applied to the
diagram [1]→ CJ representing that morphism. Diagrams

[1]
c′

��
d1

[2]

��

J

[2]

c

??
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give the action on pairs of composable morphisms, and diagrams

[1]
c′

��
s0
[0]

��

J

[0]

c

??

give the unitors. The identities
s1

[1]d
1
[2] = 1

s0
[1]d

1
[2] = 1

d2
[3]d

1
[2] = d1

[3]d
1
[2],

give the compatibility conditions of a lax functor (in the same order as presented in Definition
2.1.12). This is clearly the inverse of the construction F 7→ F̃ , so we have a bijection.

Now, if α : F ⇒ G is a lax transformation we define α̃ to act the same on objects. If

c : [n]→ J ∈ CJ (j′, j),

is a (nonempty) composable chain, we set

α̃(c) := α(c(fn)) •α(c(n−1)) · · · •α(c(n)) α(c(f1))

where the notations means we are vertically composing along 1-morphisms, as in the following
diagram for composable morphisms g′ : j′′ → j′ g : j′ → j.

F̃ (j′′)
α(j′′) //

F̃ (g′)

��

G̃(j′′)

G̃(g′)

��

F̃ (j′)
α(j′)

//

α(g′)

8@

F̃ (g)

��

G̃(j′)

G̃(g)

��

F̃ (j)
α(j)

//

α(g)

8@

G̃(j)

For an empty chain idj : [0] → J hitting an object j (recall these are the identities w.r.t.
concatenation), we set α̃(idj) = 1αj. Note that this is a requirement, since F̃ and G̃ are strict.
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The above assignments are clearly compatible with concatenation of chains, and F̃ and G̃
are strictly functorial, so α̃ is functorial on 1-morphisms automatically. Finally, naturality
of α̃ with respect to 2-morphisms is equivalent to functoriality of α on 1-morphisms.

Since we utilized all the data provided by α to construct α̃, this assignment is injective.
Furthermore, the only condition on α we ’did not’ need to produce α̃ is its naturality on
2-morphisms, but this condition is vacuous, since J has only trivial 2-morphisms. So this
assignment is surjective as well. A more explicit argument for surjectivity can be established
by constructing an inverse to α 7→ α̃.

Finally, if m : α→ β is some modification we make m̃ do the same thing to objects. On
chains of length zero, naturality is clear, and on chains of length one, naturality follows from
from that of m. Now, if

c : [n]→ J ∈ CJ (j′, j),

is a general chain, then

α̃(c(n)) ◦ F̃ (c) = α(c(n)) ◦ F (c(fn)) ◦ · · · ◦ F (c(f1)).

And from similar formulas, one sees that the outer rectangle of the diagram

α(c(n)) ◦ F (c(fn)) ◦ · · · ◦ F (c(f1))
m(c(n))◦1 +3

α(c(fn))◦1
��

β(c(n)) ◦ F (c(fn)) ◦ · · · ◦ F (c(f1))

β(c(fn))◦1
��

G(c(fn)) ◦ α(c(n− 1)) ◦ F (c(fn−1)) ◦ · · · ◦ F (c(f1))
1◦m(c(n−1))◦1

+3

1◦α(c(fn−1))◦1 ��

G(c(fn)) ◦ β(c(n− 1)) ◦ F (c(fn−1)) ◦ · · · ◦ F (c(f1))

1◦β(c(fn−1))◦1��
...

1◦α(c(f2))◦1
��

...

1◦β(c(f2))◦1
��

G(c(fn)) ◦ · · · ◦G(c(f2)) ◦ α(c(1)) ◦ F (c(f1))
1◦m(c(2))◦1 +3

1◦α(c(f1))
��

G(c(fn)) ◦ · · · ◦G(c(f2)) ◦ β(c(1)) ◦ F (c(f1))

1◦β(c(f1))
��

G(c(fn)) ◦ · · · ◦G(c(f1)) ◦ α(c(0))
1◦m(c(0))

+3 G(c(fn)) ◦ · · · ◦G(c(f1)) ◦ β(c(0))

is precisely the diagram

α̃(j) ◦ F̃ (c)
m̃(j)◦1 +3

α̃(c)
��

β̃(c) ◦ F̃ (c)

β̃(c)
��

G̃(c) ◦ α̃(j′)
1◦m̃(j′)

+3 G̃(c) ◦ β(j′)

whose commutativity verifies the naturality of m̃. Each square above commutes by repeated
application of the naturality of m. Again, we used all data and conditions in the construction
m 7→ m̃, so this is a bijection.

This completes the proof.

In words, the construction J 7→ CJ gives us a way to strictify lax functors, at least
when the domain is an ordinary category, and leave lax transformations and modifications
untouched.
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Remark 2.3.2. If one prefers to work with normalized lax functors (corresponding to the
normalized opfibrations over Γ representing symmetric monoidal categories), one can restrict
the morphisms in CJ to be only semi-simplicial α, i.e. strictly order preserving. In this
case the proof of Theorem 2.3.1 goes through unchanged, with the cosimplicial identities
involving the si[j] deleted. We will refer to this 2-category as CsJ .

When applied to the situation with symmetric monoidal categories, we have now shown
that there is an embedded subcategory of lax functors, lax transformations, and modifications
CΓ → Cat which is equivalent to SMCat. There is now the extra condition on objects
(lax functors) and 1-morphisms (lax transformations) that they happen to be pseudo—i.e.
the coherence 2-morphisms they hit are all invertible. We note that this can be enforced
by only considering the invertible symmetric monoidal natural transformations SMCat to
begin with.

2.4 Symmetric Monoidal Segal Spaces

In this section we arrive at the main goals of this chapter: a definition of symmetric monoidal
(∞, 1)-category, and the symmetric monoidal (∞, 1)-category induced by an ordinary sym-
metric monoidal category. The model of (∞, 1)-categories that these will be built on is that
of (complete) Segal spaces. See Appendix A.5.1. We will use the language of enriched cate-
gories extensively in this section. See Appendix A.1 for a review, and for explanation of our
notation.

Definition 2.4.1. We define an S-category A to be a simplicially enriched category which
is tensored and cotensored over sSet. We denote the hom-objects for A,B ∈ A by

AsSet(A,B),

and for S• ∈ sSet, the cotensor and tensor structure by

sSetA(S•, A), S• ⊗ A,

respectively. In other words, S-categories are the objects of a full subcategory of CatsSet.
We will call enriched functors between S-categories simplicial functors.

We will use SSp to denote the full subcategory of ssSet whose objects are simplicial
Segal spaces. Recall our notation N∗ for hom-wise nerve (Remark A.1.3).

Definition 2.4.2. A symmetric monoidal simplicial Segal space S⊗ is a simplicial functor

S⊗ : N∗(CΓ)→ SSp
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Such that (
S⊗π1

〈n〉, · · · ,S⊗πn〈n〉
)

: S⊗(〈n〉)→
n∏
1

S⊗(〈1〉)

is a Reedy weak equivalence. Here, by πk〈n〉, we mean the 0-simplex in

N (CΓ(〈n〉 , 〈1〉))

represented by the functor [1]→ Γ whose image is πk〈n〉.

Remark 2.4.3. In Theorem 2.3.1 we showed that enriched functors with source CJ corres-
dpond to lax functors with source J . What we really want to generalize is pseudofunctors.
However, as we show in Remark 2.4.10, SSp is locally Kan, and therefore the 2-morphisms
and higher are automatically invertible. In this case lax and pseudo amount to the same
thing.

As motivation for this definition, we explain how to make a symmetric monoidal simplicial
Segal space out of an ordinary symmetric monoidal category. To wit, let C ∈ SMCat. Using
the constructions in the previous sections we get an enriched functor

C̃⊗ : CΓ→ Cat

now we apply hom-wise-nerve N∗ and post-compose with NS from Appendix A.5.1 to obtain
a symmetric monoidal simplicial Segal space defined by the composite

N∗(CΓ)
N∗ C̃⊗ // N∗Cat

NS // SSp

From A.5.12, the equivalence condition satisfied by C̃⊗ translates into the Reedy equivalence
condition we are after. Actually, the result lands in complete simplicial Segal spaces, and so
should perhaps be called a symmetric monoidal complete simplicial Segal space.

We now approach the question of what morphisms should be allowed between symmetric
monoidal simplicial Segal spaces.

In Appendix A.3, we show that the standard formula expressing natural transformations
as ends can be upgraded to expressing lax transformations and modifications as a lax end:

Lax(F,G) ∼=
∮
c∈C

DCat(Fc,Gc).

Our next goal in this section is to define a simplicial analogue to lax end. That is, where
the categories in question are enriched in sSet in a way compatible with their categorical
structure. The notion we are after, called a simplicially coherent end, is introduced and
explored in detal in [CP].
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Let A be a small S-category. For A,B ∈ A, form the bisimiplicial set X(A,B) with nth

space

X(a, b)n :=
∏

A0,··· ,An∈A

AsSet(A,A0)×AsSet(A0, A1)× · · · ×AsSet(An, B).

Define the face maps
d

[n]
j : X(A,B)n → X(A,B)n−1

via composition

AsSet(Aj−1, Aj)×AsSet(Aj, Aj+1)→ AsSet(Aj−1, Aj+1),

and the degeneracy maps s
[n]
i via insertion of identity

1Ai : ∆(0)→ AsSet(Ai, Ai).

Now define Â(A,B) := diagX(A,B).

Example 2.4.4. Let A be a small category, and consider it as an S-category with discrete
simplicial hom-objects. Then Â(A,B) is the nerve of the category of objects under A and
over B.

Example 2.4.5. For simplicial categories of the form N∗(CJ ), X(j′, j)m,n is the set of n
composable chains of composable chains of morphisms (of arbitrary length) in J , each of
which have m path homotopies between them. After concatenating the path homotopies,
and the chains, we get a simplicial set map

N̂∗(CJ )(j′, j)→ N(CJ (j′, j)).

Note that there is a map

N(CJ (j′, j))→ N̂∗(CJ )(j′, j),

Which sends a composable chain of path homotopies of chains to the same thing in N̂∗(CJ )(j′, j)
with identities [0] → J hitting j concatenated to get the same number as there are path
homotopies. The comopsition

N(CJ (j′, j))→ N̂∗(CJ )(j′, j)→ N(CJ (j′, j))

is the identity. For the other direction, the map

N̂∗(CJ )(j′, j)→ N(CJ (j′, j))→ N̂∗(CJ )(j′, j)

sends a chain of composable chains with path homotopies to the same thing composed into
the first variable, with identities on the end. We construct a homotopy

N̂∗(CJ )(j′, j)×∆(1)→ N̂∗(CJ )(j′, j)
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which ’pushes a chain off the last factor’ by concatenating the first two chains and then
appending an identity chain. This specifies where to send the simplicies of the form (x, 0),
(x, 1), and we send simplicies of the form (x, f) (f the 1-simplex of ∆(1)) to to x with an
identity concatenated at the end. Since the face maps are composition (in the horizontal
direction and the path homotopy direction) the last face map composes an identity which
sends the simplex back to x, and the others compose in the middle resulting in a chain with
an identity on the end, as required. We then construct similar homotopies which push a
chain of each factor until it is only in the first factor. This establishes that there is a weak
equivalence

N̂∗(CJ )(j′, j) ' N(CJ (j′, j)).

In fact, it is a deformation retract onto the target.

Definition 2.4.6. Let A,C be S-categories, with A small. Let

F : Aop ×A→ C

be a simplicial functor. Define the simplicially coherent end of F to be the object∮
A∈A

F (A,A) :=

∫
(A′′,A′)∈Aop×A

sSetA(Â(A′′, A′), F (A′′, A′)),

of C, provided it exists. We will usually simply say coherent end.

Note that we are abusing notation here, in using the same notation for a coherent end as
a lax end. Motivation for this abuse is the following fact. In [CP], through detailed investi-
gation of the low-dimensional simplicies, they show (see discussion following Proposition 1.2
of [CP]):

Proposition 2.4.7. Let A,C ∈ CatCat, and let F : Aop ×A→ C be an enriched functor.
Then there is an isomorphism

N∗

∮
A∈A

F (A,A) ∼=
∮
A′∈N∗A

N∗ F (A′, A′),

of objects of N∗C. The left-hand side is a lax end, the right-hand side is a coherent end.

This, together with the formulas expressing natural and lax transformations as ends and
lax ends, suggests a definition of coherent transformation. Again, the following construction
is studied in detail in [CP].

Definition 2.4.8. Let A,C be S-categories, and let F,G : A → C be simplicial functors.
We define the simplicial set of coherent transformations from F to G to be

Coh(F,G) :=

∮
A∈A

CsSet(FA,GA).

As usual, the right hand side indicates the coherent end of the composition

CsSet ◦ (F op ×G).



CHAPTER 2. SYMMETRIC MONOIDAL (∞, 1)-CATEGORIES 46

Let us prove Proposition 2.4.7 in the special case where A = CJ , and where

H = Fun ◦ (F op ×G) : Aop ×A→ Cat,

so here C = Cat ∈ CatCat. Logically, this is the only case we need to motivate 2.4.9 below.

Proof. Here we need the fact that fundamental category π1 : sSet→ Cat, is left-adjoint to
nerve (see [JT]), so that (in what follows, we are using hom-sets, and Cat and N∗Cat have
the same hom-sets).

N∗Cat(X, sSetN∗Cat(S•, Y )) ∼=sSet(S•,N Cat(X, Y ))
∼= N∗Cat(π1S•,Cat(X, Y )).

Setting X = [0] gives the result

sSetN∗Cat(S•, Y ) = N∗Cat(π1S•, Y ).

So, in this case the universal wedge on the right hand side of the formula in 2.4.7 is of the
form (X ∈ Cat since the objects of Cat and N∗Cat are the same):

ω(j′, j) : X ⇒sSetN∗Cat(NCJ (j′, j),Cat(Fj′, Gj))
∼=Cat(π1 NCJ (j′, j),Cat(Fj′, Gj))
∼=Fun(Fj′ ×CJ (j′, j), Gj).

In the first step we have already used the result from Example 2.4.5, and in the last step
we used Lemma 4.3.4, which implies that the counit of the adjunction π1,N is the identity.
Formally, ω(j′, j) is a morphism in N∗Cat, but again, this is just a functor. We construct
from this a lax wedge ω̃ : X ⇒ H. For f : x′ → x in X, and g : j′ → j in J , define

ω̃(j)(x) = ω(j, j)(x× j)
ω̃(j)(f) = ω(j, j)(f × 1j)
ω̃(g)(x) = ω(j′, j)(1x × g).

Functoriality of ω̃(j) follows from functoriality of ω(j, j). Naturality of ω̃(g) follow from the
identity

(f × 1j) ◦ (1x × g) = (1y × g) ◦ (f × 1j′)

and combined with the coherence of ω(·, ·) with morphisms. Finally, condition 1 of Defi-
nition A.3.1 follows from functoriality of ω(j′, j) in the second variable (compatibility with
chains), and condition 2 follows similarly. Universality of this lax wedge follows directly from
universality of ω, so the proof is complete.

Definition 2.4.9. Let S⊗,T⊗ be symmetric monoidal Segal spaces. A symmetric monoidal
functor F : S⊗ → T⊗ is a 0-simplex of Coh(S⊗,T⊗).
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Remark 2.4.10. Note that coherent ends are a generalization of lax ends, for which we had
the formula (Theorem A.3.3)

Lax(F,G) ∼=
∮
c∈C

DCat(Fc,Gc).

In particular, the left hand side is lax transformations, and not pseudonatural transforma-
tions. So, it might seem that the Definition 2.4.9 is actually of lax symmetric monoidal
functors. However, by Remark A.4.17,

ssSetsSet(S•,T•)

is Kan, provided that S• is Reedy cofibrant (an empty condition) and T• is Reedy fibrant
(true of a simplicial Segal space T•). So, we have

Coh(S⊗,T⊗) ∼=
∫

(〈n′〉,〈n〉)
sSet

(
N (CΓ(〈n′〉 , 〈n〉)) , ssSetsSet

(
S⊗(〈n′〉),T⊗(〈n〉)

))
we see that the 1-simplicies of

N̂∗(CΓ)(〈n′〉 , 〈n〉) ∼= N (CΓ(〈n′〉 , 〈n〉)) ,

which correspond to the morphisms of Γ, are mapped into a Kan complex, and so hit
invertible morphisms. This is analagous to the situation of a lax end of a functor to a target
that happens to be enriched in groupoids—they are automatically iso-lax. Another way to
think of this is that since SSp is locally Kan, it is an (∞, 1)-category (see Appendix A.5.2).
In particular there are no non-invertible 2-morphisms to hit.

Remark 2.4.11. One defect of the above definition is that there is no canonical way to
compose symmetric monoidal functors. However, in [CP] §4, a choice of composition is
explained, which is associative up to homotopy. The discussion is reminiscent of quasi-
categories, and we make the conjecture that it is possible to construct a quasi-category of
symmetric monoidal simplicial Segal spaces. We will not need that construction here, since
we will be interested in field theories, which have a fixed target, and so will not need to be
composed.

Remark 2.4.12. As further motivation for our definition, note that in [Lur], Lurie gives a
definition of symmetric monoidal quasi-category that is analogous to the opfibration charac-
terization of a symmetric monoidal category, in Definition 2.0.0.7. In some sense, the entire
book is devoted to showing this definition is reasonable. Also, in [Lur2] (Theorem 3.2.0.1),
Lurie proves an ∞ analogue to the Grothendieck isomorphism discussed in Section 2.1. If
one applies this to the ∞-opfibration definition, it results in a defintion which looks very
much like ours, although with SSp replaced by the category of quasi-categories as a model
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for the “category of (∞, 1)-categories”. The difference is that the domain is CN Γ instead
of our N∗CΓ. To complete the association, one can show that N∗CsΓ is DK-equivalent to
a simplicial resolution to a certain comonad on Cat, and that this in turn is isomorphic to
CN Γ ([Rie], and see [Lur2] for an explanation of the notation C). We prefer our construc-
tion, since N∗CΓ is locally a quasi-category, and so behaves like a kind of (∞, 2)-category,
whereas CN Γ is not (again see [Rie]). We also remark that the full subcategory of sSet
whose objects are quasi-categories is not locally Kan. So in order to make an analogue of Def-
inition 2.4.9 using quasi-categories in place of Segal spaces, one must discard non-invertible
1-morphisms in the morphism spaces.

Next, note that there is an obvious candidate for the Segal space of symmetric monoidal
functors between two symmetric monoidal simplicial Segal spaces. Indeed, take S⊗,T⊗ to
be symmetric monoidal simplicial Segal spaces, and define

Fun⊗(S⊗,T⊗) :=

∮
〈n〉

ssSet(S⊗(〈n〉),T⊗(〈n〉)).

Now, for particular 〈n′〉 , 〈n〉, the integrand is

ssSet
(

disc ŝsSet(S⊗(〈n′〉),T⊗(〈n〉)), ssSet(S⊗(〈n′〉),T⊗(〈n〉))
)
.

Since the category of simplicial Segal spaces is cartesian closed (see [Rez]), this is pointwise
a Segal space, and therefore the Segal map is pointwise a weak equivalence. Note that the
kth space of the coherent end is given by

ssSet

(
disc ∆(k),

∮
〈n〉

ssSet(S⊗(〈n〉),T⊗(〈n〉))
)
.

In particular it is a right adjoint, and so commutes with coherent end, which is a particular
end. The fibred products appearing in the target of the Segal map also commute with coher-
ent ends. We may then invoke the fact that a coherent end of a pointwise weak equivalence
is a weak equivalence, which is Corollary 2.4 of [CP], to obtain that this definition actually
yields a simplicial Segal space of functors.

Finally, we note that it is easily to formulate the definitions of

� Symmetric monoidal complete simplicial Segal spaces.

� Symmetric monoidal Segal spaces.

� Symmetric monoidal complete Segal spaces.

by replacing SSp in Definition 2.4.2 with the appropriate target. Recall our notation Sp for
the category of Segal spaces (Appendix A.5.1). We also define symmetric monoidal functors
of such in the same way as Definition 2.4.9. First, we note that to consider segal Spaces as a
simplicial category, we use Lemma 4.1.2 to enrich them over Top, and then apply Sing∗ to
enrich them over sSet. Also note that the Segal space of monoidal functors can be defined
similarly as above.
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Chapter 3

Field Theories

The goal of this chapter is to give complete definitions of smooth and homotopy field
theories. A vital ingredient to each of these definitions is the corresponding bordism category.
We will also call these the smooth and homotopy bordism categories, respectively. After
defining the field theories, we devote two sections (4 and 5), to explaining the machinery
that produces a homotopy field theory from a smooth one in full. Finally, we analyze this
map in low dimensions, where both smooth and homotopy field theories have been classified.

3.1 The Smooth Bordism Category

The goal of this section is to present the definition of the Stolz-Teichner bordism category.
Here we choose the version presented in [STH], which is a symmetric monoidal fibred category
over the category Man of smooth manifolds and smooth maps. There is a slightly more
complicated version presented in [ST], which we will discuss in item 2 of Section 4.6.

We will call this the smooth bordism category because it is fibred over Man, the category
of smooth manifolds and functions, and also because functors fibred over Man should be
thought of as smooth functors in some sense.

We will begin by describing the bordism category where the fibred aspect is absent for
the sake of clarity. In other words, we begin with the description of the objects over the
point pt ∈ Man, and morphisms over 1pt. We will denote this category by d-Bpt. We
remark that the [STH] gives the definition of the Riemannian bordism category; other than
that difference, we will use the same notation so that the reader has less difficulty going
there for more details.

Definition 3.1.1. The objects of the category d-Bpt are quadruples (Y, Y c, Y ±), where Y
is a smooth d-manifold without boundary, although not necessarily compact, as in the figure
below, and Y c ⊂ Y is a compact codimension one submanifold, called the core of Y . The
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data Y ± are a decomposition of the complement of the core, i.e.

Y \ Y c = Y +
∐

Y −.

With Y ± ⊂ Y are open such that their closures contain Y c.

Figure 3.1: An object (Y, Y c, Y ±) of 2-B

An isomorphism in d-Bpt from (Y0, Y
c

0 , Y
±

0 ) to (Y1, Y
c

1 , Y
±

1 ) is the germ of a diffeomor-
phism φ : W0 → W1, where Wj ⊂ Yj are open neighborhoods of the cores Y c

j . The diffeomor-
phism is required to preserve the cores, i.e. φ(Y c

0 ) = Y c
1 and also preserve the decompositions

W±
j := Wj ∩ Y ±j of the complements of the cores in these restricted neighborhoods. When

we use the terminology germ, we mean that, as usual, two diffeomorphisms that agree on
a smaller open neighborhood of Y c

0 are identified. Under disjoint union, the above forms a
symmetric monoidal groupoid. We will sometimes refer to an object (Y, Y c, Y ±) simply by
Y .

Note that for the above definition to work, we are considering the empty set as a smooth
manifold of every dimension, and this is the monoidal unit under disjoint union. We next
introduce more general morphisms of d-Bpt.

Definition 3.1.2. A bordism from Y0 = (Y0, Y
c

0 , Y
±

0 ) to (Y1, Y
c

1 , Y
±

1 ) is a triple (Σ, i0, i1),
where Σ is a smooth d-manifold, and ij are smooth maps ij : Wj → Σ. As above, Wj ⊂ Yj
are open neighborhoods of the cores. Define W±

j := Wj ∩ Y ±j . The data are subject to the
following conditions.

1. The restrictions i+j of ij to W+
j are embeddings into Σ \ i1(W−

1 ∪ Y c
1 ),

2. The core Σc := Σ \
(
i0(W+

0 ) ∪ i1(W−
1 )
)

is compact.
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Figure 3.2: A bordisim (Σ, i0, i1) in 2-B

Now given a bordism (Σ, i0, i1) : Y0 → Y1 and a bordism (Σ′, i′1, i
′
2) : Y1 → Y2, the composition

is defined as follows. As part of the data for the two bordisms Σ,Σ′, we have the smooth
maps i1 : W1 → Σ and i′1 : W ′

1 → Σ′, where W1,W
′
1 ⊂ Y1 are open neighborhoods of the

core Y c
1 . Set W ′′

1 := W1 ∩W ′
1. The first condition above guarantees that i1 and i′1 restrict to

embeddings of (W ′′
1 )+ := W ′′

1 ∩ Y +
1 . Using these embeddings, we glue Σ and Σ′:

Σ′ ◦ Σ :=
(
Σ′ \ i′1((W ′

1)+ \ (W ′′
1 )+)

) ∐
(W ′′1 )+

(
Σ \ i1(W−

1 ∪ Y c
1 )
)
.

The maps i0 : W0 → Σ and i2 : W2 → Σ′ are restricted to smaller open neighborhoods, say
U0 and U2, to obtain smooth maps to Σ′ ◦ Σ. The embedding and compactness conditions
above are satisfied, and furthermore Σ′ ◦ Σ is a manifold by Remark 53 and Lemma 54 of
[STH].

An isomorphism between Riemannian bordisms Σ,Σ′ : Y0 → Y1 is a germ of a triple of
diffeomorphisms

F : X → X ′, f0 : V0 → V ′0 , and f1 : V1 → V ′1 ,

where X ⊂ Σ is an open neighborhood of Σc, Vj are open neighborhoods of Y c
j contained in

Wj ∩ i−1
j (X), and similarly for X ′, V ′0 , V

′
1 . The maps fj are required to induce isomorphisms

of d-Bpt as in Definition 3.1.1, and the following diagram is required to commute.

V1
i1 //

f1

��

X

F
��

V0
i0oo

f0

��
V ′1 i′1

// X ′ V ′0i′0

oo
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Again, germ means that two such triples (F, f0, f1) and (G, g0, g1) are identified if the maps
agree on smaller open domains that still contain the various cores.

Isomorphisms of the form (F, idV0 , idV1) are said to be isomorphisms rel boundary.

We remark that the isometries of objects described in Definition 3.1.1 are recovered
as a special case of the bordisms defined above: given objects Y0, Y1 and an isomorphism
represented by f : W0 → W1, we can define a bordism Σ = W1, i1 = idW1 , and i0 = f .

Definition 3.1.3. The category d-Bpt has objects as defined in Definition 3.1.1, and mor-
phisms rel boundary isomorphism classes of bordisms as in Definition 3.1.2.

We now turn our attention to the full definition of d-B as a category fibred over Man.

Definition 3.1.4. An object in d-B consists of the data (S, Y, p, Y c, Y ±), where S is a smooth
manifold (of any dimension), p : Y → S is a fibre bundle with fibres d-dimensional smooth
manifolds without boundary, and Y c is a sub-bundle of Y which is fibre-wise codimension
1. We also impose the condition that Y c → S is proper, so that, in particular, each fibre is
compact. As before, Y ± is a decomposition of Y \ Y c into two open subsets that contain Y c

in their closure. The projection functor π : d-B→Man sends an object (S, Y, p, Y c, Y ±) to
S.

Consider a smooth map f : S → S ′ of manifolds, and objects (S, Y ) and (S ′, Y ′), of d-B
as defined above. We can get another object over S by pulling back all of the data over S ′

associated to (S ′, Y ′), that is, the object (S, f ∗(Y ′)). We denote this object by (S, Y1). Then
a family of bordisms from (S, Y0) to (S ′, Y ′) consists of the quadruple (Σ, pΣ, i0, i1) where

� pΣ : Σ→ S is a smooth fibre bundle of d-dimensional manifolds.

� For j = 0, 1, ij : Wj → Σ are smooth maps over S, where Wj are open sub-bundles of
Yj which are fibrewise neighborhoods of the cores Y c.

We also impose two conditions, which are the bundle versions of those for bordisms over pt.

1. Let i±j be the restrictions of ij to W±
j := Wj ∩ Y ±j . Then i+j is a smooth embedding of

W+
j into Σ \ i1(W−

1 ∪ Y c
1 ).

and

2. The restriction of pΣ to the core Σc := Σ \
(
i0(W+

0 ) ∪ i1(W−
1 )
)

is proper.

We define isomorphisms of objects and morphisms (rel boundary) exactly as in Definitions
3.1.1 and 3.1.2 with the (germs of) diffeomorphisms being over S, and with the bordism
families lying over the same f : S → S ′. Finally, a morphism of d-B is an isomorphism class
rel boundary of families of bordisms as defined above. The action of the projection functor
π : d-B→Man is clearly built in to the definition of family of bordisms, as f : S → S ′ was
part of the data, and we specified that isomorphism families lie over the same base, so this
functor is well-defined.
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Generalizing the notation d-Bpt for the fibre over the point, we write d-BS for the fibre
over a fixed base S, in particular with morphisms over idS. The operation of fibre-wise
disjoint union of objects and bordism families induces the structure of a symmetric monoidal
fibred category on d-B → Man. The monoidal unit section is the empty bundle. We will
call d-B the smooth d-dimensional bordism category.

Remark 3.1.5. We note that in Definition 3.1.4, d-B has been defined explicitly as something
in the image of the Grothendieck construction of 2.1.15. Namely, the morphisms in d-B lying
over non-identity morphisms f of Man are pairs (f,Σ), where Σ is a morphism from the
source to the pullback along f of the target, so that Σ essentially lies over an identity.

Definition 3.1.6. For X ∈ Man, we define the smooth d-dimensional bordism category
over X, denoted d-B(X), in the same manner as in Definition 3.1.4, except that objects
(S, Y ) have the additional datum of a smooth map Y → X, bordism families (f,Σ) have the
datum Σ → X as well, and all data involving maps must all be over X. Note in particular
that in defining bordism families over nonidentity maps f , we pull back the map to X, and
furthermore we must define isomorphisms of bordism families rel boundary and over X to
define the morphisms of d-B(X).

Remark 3.1.7. The reason for including the data involving germs of collars in the defini-
tion of d-B is to provide something to glue along when composing bordisms. The astute
reader may point out that collars are not really necessary in d-B—when working up to dif-
feomorphism rel boundary, glueing smoothly along boundary components of manifolds is
well-defined. We choose to retain the extra complexity for two reasons. First, it is clear how
to define different smooth bordism categories where the bordisms are given extra structure
such as a Riemannian metric. In this case collars are necessary to obtain a well-defined glue-
ing, so the definition with collars is easier to generalize. Second, the eventual goal motivated
by the ideas in this work is to extend down to glue along arbitrary codimension. In this
case, collar-like constructions are needed as well. For the case of codimension 2, see [SP].

3.2 Smooth Field Theories

In the most general setting, a smooth field theory (over X) will be a symmetric monoidal
fibred functor d-B(X) → E, where E is an arbitrary symmetric monoidal fibred category
over Man. The reason for this flexibility is the cobordism hypothesis 3.6.1; we are comparing
these smooth field theories with the ’homotopy field theories’ of Lurie, which can be classified
easily for general target. When we turn to calculation in Section 3.6 however, we will want
use the standard target VectMan, which is a symmetric monoidal fibred category over Man
(see Remark 2.1.8). We will agree to fix this definition for our purposes here.
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Definition 3.2.1. A smooth field theory over X of dimension d is a symmetric monoidal
fibred functor F

d-B F //

##

VectMan

xx
Man

We note that field theories are the objects in a symmetric monoidal category, with the
morphisms given by symmetric monoidally fibred natural transformations, and the monoidal
structure given by pointwise monoidal product.

Remark 3.2.2. Eventually, a more elaborate definition of smooth field theory will be given,
which will ’extend down to points’ instead of stopping at codimension 1 submanifolds. The
definition above should then be called a nonextended field theory. We will briefly discuss that
situation in Remark 3, but unless explicitly mentioned otherwise, our smooth field theories
will only extend down to codimension 1.

As discussed at the end of Section 2.1, there is an inner-hom in Fib⊗(Man). Applying
this observation to the situation of smooth field theories, one obtains a symmetric monoidal
fibred category of smooth field theory. We conclude this brief section with notation for this
gadget.

Definition 3.2.3. The symmetric monoidal fibred category of d-dimensonal smooth field
theories over X is defined as follows.

d-TFT(X) := Fun⊗Man(d-B(X),VectMan)

Recall that a fibre over S ∈Man is given by

d-TFT(X)S = Fun⊗Man(d-B(X),FunMan(S,VectMan)),

where the monoidal structure on the target is defined pointwise. As an example, d-TFT(X)pt

is exactly the symmetric monoidal category discussed at the end of Definition 3.2.1.

To complete the unwinding of definitions, note that

FunMan(S,VectMan)T := FunMan(S × T ,VectMan).

This, by pulling back along the map to S×T , is equivalent to the category of vector bundles
over S×T . In this way we see that smooth field theories over some base S ’stick in’ an extra
factor of S on the output vector bundles.
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3.3 The Homotopy Bordism Category

The goal of this section is to present the (nonextended) version of the bordism category
utilized in [Lur2]. In the paper, it is treated as a Segal space, and in particular its symmetric
monoidal structure is not formalized. Following the premise of [Rez], that the category of
bisimplicial sets with the complete Segal space model structure (see Appendix A.5.1) is a
model for the ’homotopy theory of homotopy theory’, we will call the bordism category
presented in this section the homotopy bordism category.

Definition 3.3.1. Let V be a finite dimensional (real) vector space. Let n be a non-negative
integer. We define d-CobVn as a set to be the collection of pairs

(M, {t0 ≤ · · · ≤ tn})

where M is a d dimensional submanifold of V ×R (without boundary, possibly noncompact),
and tj ∈ R for j = 0, 1, · · · , n. Let πM be the restriction to M of the projection πR : V ×R→
R. These pairs are additionally subject to the following conditions.

� The map πM is proper.

� The critical values of πM are disjoint from the set {t0 ≤ · · · ≤ tn}.

This set can be given a topology induced by the topology of the space of embeddings M →
V × R. We refer the reader to [Lur2] and the appendix of [Gal] for more details on this
topology.

When thinking of the points of d-CobVn , the reader should imagine a sequence of n
composed bordisms. The second condition says that π−1

M {tj} are codimension 1 submanifolds
around which the projection πM is a trivial fibre bundle. The properness condition says
that in particular, inverse images π−1

M [tj, tj+1] are the usual classical compact bordisms with
boundary, such as the ubiquitous ‘pair of pants’. The vector space V serves only to induce
a topology on d-CobVn (and to keep the collection (M, {t0 ≤ · · · ≤ tn}) small enough to be
a set). We now remove dependence on V by taking a direct limit.

Definition 3.3.2. We define the space d-Cobn to be the direct limit of d-CobVn over all
finitie dimensional vector spaces. Note that d-Cob• is a simplicial space.

Remark 3.3.3. We recall the well-known fact that if M is a compact manifold, then the
direct limit of spaces of embeddings of M into finite vector spaces V taken over all V
serves as a model of EDiff(M). In particular, it has a free action of Diff(M) on it (apply
a diffeomorphism and then the embedding), and quotienting out by this action results in
a space BDiff(M) which classifies bundles with fibre M . One can alternatively remove the
action of Diff(M) by taking the spaces of embedded manifolds i.e. submanifolds. With this
in mind we see that d-Cobn is supposed to be a classifying space of fibre bundles of n ’glued’
bordisms.
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Remark 3.3.4. By pushing the nontrivial parts of the manifolds in d-Cobn that are outside
of [t0, tn] away to infinity, it is not hard to believe that the Segal condition is satisfied, so
that d-Cob• forms a Segal space (see Definition A.5.6). It is however, not complete (see
Warning 2.2.8 of [Lur2]). We note that we have departed somewhat from the notation of
[Lur2], in that the simplicial space we have called d-Cob is, in his language PreCob(d) or
sometimes PreCob(d)un to emphasize that the manifolds are unoriented. It is not explicilty
mentioned, but d-Cob would be, in Lurie’s notation the completion of this Segal space. We
choose to remove this subtlety, since we will always be mapping d-Cob into complete Segal
spaces, and the results are identical with or without completion.

As with d-B, more structure on the manifolds M can easily be incorporated into the
definition, such as geometry, orientations, or maps to some other fixed manifoldX. We briefly
discuss the two of the most common structures that [Lur2] uses and give them notation.

Definition 3.3.5. Let M ∈ Man, and let E → M be a k-dimensional vector bundle over
M . The frame bundle of E is the GLk(R)-principal bundle of frames, or ordered bases, of
the fibres. A framing of M is a section of the frame bundle of the tangent bundle of M , or
in other words a trivialization.

Definition 3.3.6. The Segal space d-Cobfr is defined in the same way as d-Cob, except
that the manifolds are all equipped with framings.

Definition 3.3.7. Let M ∈ Man, let X be a space, and let ζ → X be a n-dimensional
vector bundle on X. Assume that dimM = m ≤ n. An (X, ζ)-structure on M is the data of

� A continuous map f : M → X

� An isomorphism of vector bundles

TM ⊕ Rn−m ∼= f ∗ζ

over M . Here Rk denotes the trivial bundle of dimension k.

Definition 3.3.8. Let X be a space and let ζ be a vector bundle of dimention at least d
over X. The Segal space d-Cob(X, ζ) is defined in the same way as d-Cob, except that the
manifolds are equipped with (X, ζ) structures.

We now turn our attention to the construction of d-Cob⊗. Let V be an n-dimensional
framed vector space, and consider the space of framing preserving smooth embeddings

k∐
1

V → V.

Let us call this space EV
k . By contracting the images of the embedded copies of V along

framing preserving homotopies, one sees that this space has the homotopy type of Fk(V ;G),
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the space of k ordered points in V , each labelled with an element of the group of framing
preserving diffeomorphisms V → V . The group of diffeomorphisms V → V is homotopy
equivalent to Gl(n), via the map that sends an isomorphism to its derivative at 0. Under
this map, framing preserving diffeomorphisms are sent to diagonal matrices with positive
entries. As this space is contractible, we conclude that G is contractible, so that Fk(V ;G)
is homotopy equivalent to Fk(V ), the space of k ordered points in V .

Now, observe that there is a fibration Fk(V )→ Fk−1(V ) which is induced by ’forgetting
where the last point is’. The fibre is all possible places to put the last point, which is V with
k− 1 points removed. This is homotopy equivalent to a wedge of k− 1 spheres of dimension
n− 1 so we have the fibration ∨

k−1 S
n−1 // Fk(V )

��
Fk−1(V )

Now, F1(V ) ' V ' ∗, and for large n, Sn−1 is highly connected. Looking at the long
exact sequence of homotopy groups for a fibration, and inducting on k, we conclude that En

k

becomes highly connected as n → ∞. If V ⊆ V ′ is an inclusion of framed vector spaces,
there is an obvious inlcusion EV

k → EV ′

k , so it makes sense to take the direct limit over
all finite dimensional vector spaces to produce a contractible space E∞k . These spaces form
an operad via composition; in fact they are an infinite version of the little cubes operad of
Boardman and Vogt [BV]. The full structure of an operad will not be important for us, but
we note that E∞k , as an operad, comes with composition maps

E∞k ×
(
E∞j1 × · · · × E

∞
jk

)
→ E∞j1+···+jk

Since the spaces E∞k are contractible, we may extend solid diagrams

∂∆n //

��

E∞k

∆n

<<

to the diagonal dotted arrow. We use this repeatedly to produce the following data, in which
we use the notation (k) = [k] \ {0}.

1. A point pk in each space E∞k . We choose p1 to correspond to the identity.

2. The points pk, together with the composition maps of E∞k produce many more points
of E∞k . The first iteration can be indexed as follows. Let f : (k)→ (k′) be a surjective
set map. Then we have an induced operad composition map

E∞k′ ×
(
E∞|f−1(1)| × · · · × E∞|f−1(k′)|

)
→ E∞k .
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Plugging the points chosen in 1 into this map results in a point pf,k′ in E∞k . Similarly,
given a composable chain of surjective set maps

(k)
f1−→ (k1)

f2−→ · · · fn−→ (kn),

one obtains a point pf1,··· ,fn,kn in E∞k by feeding the original chosen points from 1
through n compositions of the operad E∞• . We will abuse notation, by denoting the
unique surjective set map (k) → (1) by k. In this way, we have, for each composable
chain of surjective set maps whose first source is (k) and whose ultimate target is (1),
a point p··· ∈ E∞k .

3. Consider a commutative diagram

[s′]

!!
α

��

Set

[s]

==

with α endpoint preserving, i.e. a path homotopy, and with the initial source and final
target of [s′] and [s] being (k) and (1), respectively. In other words, this is a morphism
in

CSet((k), (1)).

From 2, there are points in E∞k induced by the functors from [s] and [s′] to Set, which
we will denote by p[s] and p[s′]. For each α as above, we choose a path from p[s′] to p[s],
which we denote by ∆α. Now given a composable pair β ◦α with α, β path homotopies
as above, we have the map

∂∆2 → E∞k

induced by the paths ∆α,∆β, and ∆β◦α. We choose a 2-simplex ∆α,β filling in this
map. Continuing inductively, we choose n-simplicies ∆α1,··· ,αn in Sing(E∞k ) for each
composable chain of path homotopies.

Remark 3.3.9. Let V be a finite dimensional vector space, and let Emb(V ) denote the
space of smooth submanifolds M of V . Then Emb(V ) is an algebra over the operad EV

• via
composition. That is, there are continuous maps

k∏
1

Emb(V )× EV
k → Emb(V ).
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They are compatible with inclusions V → V ′ of framed vector spaces, and therefore pass to
the direct limit. In a similar manner Emb(V × R) is an algebra over EV

• where the action is
trivial on the R coordinate. Finally, we remark that this action induces continuous maps

k∏
1

d-CobVj × EV
k → d-CobVj ,

by forgetting the data of the points tj, applying the action on Emb(V × R), and then
remembering the points tj, whose R factor is fixed under the EV

k action, so that the points
have not been moved. Again, passing to direct limits, we have that d-Cobj is an algebra
over E∞• .

Definition 3.3.10. Using the data chosen above, we construct a symmetric monoidal Segal
space

N∗CΓ
d-Cob⊗−−−−→ Sp.

For S a finite set, define XS,j to be the space of pairs

(M, {t0, · · · , tj}),

where M is a manifold embedded in

S × R∞ × R,

and t0 ≤ · · · ≤ tj ∈ R are numbers disjoint from the set of critical values of the induced
projection M → R. So in partuclar, if S has one element, then

XS,j
∼= d-Cobj.

With this notation, on objects 〈n〉 ∈ Γ, we set

d-Cob⊗(〈n〉)j := X(n),j.

For 0-simplicies of the hom-simplicial sets of N∗CΓ of the form [1] → Γ, or in other
words morphisms a : 〈n′〉 → 〈n〉 of gamma, we must produce continuous maps

d-Cob⊗(〈n′〉)j → d-Cob⊗(〈n〉)j

which are compatible with the face and degeneracy maps in the j coordinate. To do this,
note that there are continuous maps

XS1∪S2,j → XS1,j
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induced by ’forgetting the piece of M embedded in the S2 part’. We can then form the
composite

d-Cob⊗(〈n′〉)j := X(n′),j →
n′∏
m=1

X{m},j

→
n∏
i=1

 ∏
m∈a−1(i)

X{m},j

× {p|a−1(i)|}


↪→

n∏
i=1

|a−1(i)|∏
m=1

d-Cobj

× E∞|a−1(i)|


→

n∏
1

d-Cobj ∼=
n∏
i=1

X{i},j

Here we used the points pk chosen above and the action map from Remark 3.3.9. Since this
action does not affect the R of the ambient space the above composition factors through the
map

d-Cob⊗(〈n〉)j := X{1,··· ,n},j →
n∏
`=1

X{`},j;

in words, the points in the product all have the same points t0 ≤ · · · ≤ tj marked on the R
factor. Again, since the R factor is untouched by the map d-Cob⊗(a)j as defined above, it
commutes with simplicial maps in the j coordinate and hance defines a map of Segal spaces.

For more general 0-simplicies of hom-simplicial sets of N∗CΓ, of the form c : [s]→ Γ, say
with final target 〈n〉 ∈ Γ, we are forced, by functoriality, to send these to Segal space map
which is induced, in a similar manner to that above, by a sequence of actions of the operad
E∞• on the algebra d-Cobj. Since algebra actions by an operad are associative, we get the
same result if we perform the appropriate compositions in the operad first and then use the
action. To make this precise, for i = 1, · · · , n, let as,i denote the restriction of c(f(s)) to
c(f(s))−1(i). Similarly, let as−1,i denote the restriction of c(f(s− 1)) to the inverse image of
as,i on its domain. Continuing in this manner, for each i, we obtain a chain of composable
surjective set maps

as,i ◦ · · · ◦ a1,i : f−1(i)→ {i} ∼= (1),

where f is the composition of all the morphisms in the image of c. Suppose that f : 〈n′〉 →
〈n〉.
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Then the map d-Cob⊗(c)j is the composite

d-Cob⊗(〈n′〉)j := X(n′),j →
n′∏
m=1

X{m},j

→
n∏
i=1

 ∏
m∈f−1(i)

X{m},j

× {pa1,i,··· ,as,i}


↪→

n∏
i=1

|f−1(i)|∏
m=1

d-Cobj

× E∞|f−1(i)|


→

n∏
1

d-Cobj ∼=
n∏
i=1

X{i},j

Where the p··· are the points chosen above in the spaces E∞• . Again this is compatible with
simplicial maps in j, because the R coordinate is left alone.

Finally, given some composable chain of path homotopies

αk ◦ · · · ◦ α1 : [s′]→ [s]

Suppose that the common initial source and final target of [s] and [s′] are 〈n′〉 and 〈n〉,
respectively. Then we must produce an m-simplex of maps

d-Cob⊗(〈n′〉)j ×∆k → d-Cob⊗(〈n〉)j

which is compatible with simplicial maps in the coordinate j. Let f denote the common
composition of all the chains c appearing as source and target of the α’s. We begin by
parsing each chain c : [s] → Γ as we did in the paragraph above, to produce n chains of
surjective set maps f−1(i) → {i} for each i = 1, · · · , n. Next we parse the α’s in the same
way, forming chains

αk,i ◦ · · ·αk,i
for i = 1, · · · , n, of path homotopies of chains of surjective set maps f−1(i) → {i}. These,
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when ‘stacked’ along i, are the original α’s away from ∗. We can now form the composite

d-Cob⊗(〈n′〉)j ×∆k →
n′∏
m=1

X{m},j ×∆k

→
n∏
i=1

 ∏
m∈f−1(i)

X{m},j

×∆α1,i,··· ,αk,i


→

n∏
i=1

|f−1(i)|∏
m=1

d-Cobj

× E∞|f−1(i)|


→

n∏
1

d-Cobj ∼=
n∏
i=1

X{i},j

where the second arrow is induced by the diagonal map ∆k →
∏n

1 ∆k. As always, this map
commutes with simplicial maps in the j coordinate. Moreover, it is functorial with respect
to composition, because the hom-simplicial sets of Sp are of the form∫

j

Sing(Top(Xj, Yj)) = Sing

(∫
j

Top(Xj, Yj)

)
and the composition map for Sing∗Top

Sing Top(X, Y )× Sing Top(Y, Z)→ Sing Top(X,Z)

is induced by the diagonal map ∆k → ∆k ×∆k, as well. Above we used the fact that Sing
commutes with ends, being a right adjoint (see Chapter 3).

Lastly, we must check the condition that the morphism

d-Cob⊗(〈n〉)→
n∏
1

d-Cob⊗(〈1〉)

induced by the morphisms πj〈n〉 of Γ is a weak equivalence of Segal spaces. Since we chose
the points p1 to correspond to the identity above, we see that the difference between the two
sides is that the points of d-Cob⊗(〈n〉)j correspond to points of d-Cob⊗(〈1〉)j which happen
to have the same marked t0 ≤ · · · ≤ tj. However, the embedded manifolds and points can be
pushed around continuously so that the points tj are at 0 < 1 < · · · < j for non-degenerate
bordisms, and with appropriate doubling for degenerate bordisms. This gives a homotopy
inverse to the map above, so it is a weak equivalence of Segal spaces, as required.

Remark 3.3.11. While Definition 3.3.10 is quite involved, the intuition is straightforward.
The bordisms in the homotopy bordism category are embedded in ambient space, and so to
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formalize the notion that ’disjoint union is the monoidal product’, we must choose how to
take the disjoint union of manifolds within the ambient space. To do this, we simply took
the disjoint union of ambient spaces themselves and embedded the whole result into another
copy of the ambient space. We chose a way to do this for any k-fold disjoint union (these
were the points pk). However, with this data, we have many possible ways to form disjoint
unions of triples etcetera (the points p···). The higher simplices ∆··· express the fact that
there are homotopies between the various ways, and all these homotopies form a ’homotopy
coherent’ system. Finally Definition 3.3.10 takes this coherent system of monoidal structure
on the ambient space, and uses it to induce the disjoint union monoidal structure on d-Cob,
resulting in a symmetric monoidal Segal space.

Definition 3.3.12. We define d-Cob⊗(X, ζ) in the same manner as d-Cob⊗ was defined in
Definition 3.3.10, except that the manifolds have (X, ζ) structures.

We conclude by defining the homotopy field theories.

Definition 3.3.13. Let C⊗ be a symmetric monoidal Segal space. A homotopy field theory
with target C⊗ and structure (X, ζ) is a 0-simplex in

Coh(d-Cob⊗(X, ζ),C⊗),

or in other words (see Definition 2.4.9), a symmetric monoidal functor.

3.4 The Machinery

The goal of this section is to explain how to obtain a symmetric monoidal Segal space from a
category symmetric monoidally fibred over Man. We will then apply this construction to the
smooth bordism category, and compare the result to a certain homotopy bordism category.
The construction will be similar to that presented at the end of chapter 1, where we described
the symmetric monoidal simplicial Segal space induced by an ordinary monoidal category.

Consider the 2-category Fib⊗(Man) described in Section 2.1. In Definitions 2.1.23 and
2.1.24 we constructed a functor from this 2-category to the 2-category with objects strict
functors

Manop → SMCat

and morphism categories consisting of strict natural transformations and modifications of
such, which was denoted by underline: E 7→ E.

Next, we demonstrated that the 2-category SMCat is equivalent to the 2-category with
objects pseudofunctors

F : Γ→ Cat

with the property that

(Fπ1
〈n〉, · · · , Fπn〈n〉) : F (〈n〉)→

n∏
1

F (〈1〉)
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is an equivalence of categories for each n.
Combining the above two constructions, we have a functor from the 2-category Fib⊗(Man)

to the 2-category with objects strict functors

Manop → (Γ→ Cat),

where the target consists of pseudofunctors, pseudonatural transformations, and modifica-
tions.

Remark 3.4.1. In Man, there is the subcategory with objects extended simplicies

∆k
ext =

{
(t0, · · · , tk) ∈ Rk+1|

∑
ti = 1

}
,

and morphisms generated by face maps ∆k → ∆k−1 :

(t0, · · · , ti, ti+1, · · · , tk) 7→ (t0, · · · , ti + ti+1, · · · , tk)

and degeneracy maps ∆k
ext → ∆k+1

ext :

(t0, · · · , ti, ti+1, · · · , tk) 7→ (t0, · · · , ti, 0, ti+1, · · · , tk).

This category is clearly isomorphic to ∆. So we have an embedding ∆→Man.

We restrict the domain Manop via this embedding to get to the 2-category with objects
strict functors

∆op → (Γ→ Cat).

Now, by currying, we get an equivalence of this 2-category to the 2-category

Γ→ (∆op → Cat).

We define the currying procedure explicitly on the objects. If F : ∆op → (Γ→ Cat), which
pseudo in the Γ coordinate, we define

F̂ : Γ→ (∆op → Cat),

F̂ (〈n〉)([m]) := F ([m])(〈n〉)
F̂ (a : 〈n′〉 → 〈n〉)([m]) := F ([m])(a)

F̂a,b([m]) := (F ([m]))a,b

· · ·

and so forth. The point is that being functorial or pseudofunctorial is a property in each
variable separately.
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In Section 2.3, we showed that pseudofunctors can be replaced by strict functors via the
C construction on the domain. Combining this with the above, we have a functor from the
2-category Fib⊗(Man) to the 2-category with objects strict functors

CΓ→ (∆op → Cat)

where the target 2-category is all strict (i.e. strict functors, natural transformations, and
modifications). We now apply the functor N∗ to this diagram, which sends the Cat-enriched
functors to simplicial functors, and the pseudonatural transformations of such to homotopy
coherent transformations, as explained in Section 2.4. Now, since nerve commutes with
products and inner-hom of cat (see Section 4.3) it can be regarded as a simplicial functor

N : N∗(Cat)→ sSet.

Applying this observation to the above we now end up with simplicial functors

N∗CΓ→ (∆op → sSet).

At this point we recall that the outer ∆op coordinate (the one separate from sSet) is the
restriction of the Manop coordinate coming from the original fibration, and the inner ∆op

factor (of sSet) is induced by the nerve functor. We switch these two ∆op factors. The
intuition behind this switch is that in a simplicial Segal space (see Appendix A.5.1), the
outer ∆op coordinate keeps track of how many composable morphisms there are, which
is exactly what the nerve coordinate counts, and the inner ∆op coordinate ‘feels out’ the
topology on the morphism spaces, which is what the smooth families of bordisms are doing.
Let us check how close the bisimplicial sets that are hit are to being simplicial Segal spaces.
Let Φ denote the map constructed so far; then taking E ∈ Fib⊗(Man), the kth simplicial
set Φ(E)(〈n〉)k is N(

∏n
1 E∆•ext

)k, where E∆•ext
denotes the restriction of E to the subcategory

of extended simplicies.
In [Rez] the following characterization of Reedy fibrant is given. For X• : ∆op → sSet,

consider the simplicial set maps

ssSetsSet(disc ∆(k),X•)→ ssSetsSet(disc ∂∆(k),X•)

induced by the inclusion ∂∆(k) ↪→ ∆(k). For an explanation of this notation, refer to the
beginning of Section 4.3. Then X• is Reedy fibrant if and only if these maps are fibrations.
We recall that being a (Kan) fibration (Definition A.5.2) means that given a solid diagram

Λ(n, j) //

��

ssSetsSet(disc ∆(k),X•)

��
∆(n)

55

// ssSetsSet(disc ∂∆(k),X•)
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the dotted arrow exists. Combining this with the above characterization of what bisimplicial
sets are hit, we see that Reedy fibrant amounts to various special cases of the statement:
given a diagram in E over a manifold S that commutes when pulled back to some submanifold
of codimension 1, then it also commutes over all of S. This does not seem to be true in
general, or in particular in the case E = d-B(X). However, in the special case where k = 0,
the statement is quite different. It becomes: the simplicial set of k simplicies is Kan. This
is the case, since an object over an inner horn can be pulled back to an object over the the
filled in simplex. We will use this fact in Section 4.4.

The Segal maps (see Appendix A.5.1)

Φ(E)(〈n〉)k → Φ(E)(〈n〉)1 ×Φ(E)(〈n〉)0 · · · ×Φ(E)(〈n〉)0 Φ(E)(〈n〉)1︸ ︷︷ ︸
k times

on the other hand, are isomorphisms, since k simplicies in nerves are precisely composable
chains of morphisms, which is the right hand side.

The last step in the map is to go from bisimplicial sets to simplicial spaces. This is
accomplished by postcomposing with geometric realization

∆op → sSet
|·|−→ Top.

We will denote the resulting functor G : ssSet → sTop; G is a simplicial functor, since
| · | commutes with finite limits, and in particular products (see [JT]). Let φ(X•)k denote
the kth Segal map of a bisimplicial set X•, and let φ̂(Y•)k denote the kth Segal map of a
simplicial space Y•. Then we have the following diagram.

|X1| ×|X0| · · · ×|X0| |X1|OO

∼=G(X•)k = |Xk|

φ̂(G(X•))k
44

|φ(X•)k| **
|X1 ×X0 · · · ×X0 X1|

The diagram commutes since it commutes on each factor |X1|. If it happened that the Segal
morphisms φ(X•)k were isomorphisms, |φ(X•)k| are isomorphisms, and therefore so are
φ̂(G(X•))k. Since the Segal morphisms for Φ(E)(〈n〉) were isomorphisms, we conclude that
G(Φ(E)(〈n〉)) satisfies the Segal condition as well. Hence sending a symmetric monoidally
fibred category over Man through the above machinery, we get a symmetric monoidal Segal
space. Note that the Reedy fibrant condition is dropped for Segal spaces.

We summarize the machinery developed in this section with the following notation. Given
E ∈ Fib⊗(Man), we denote the associated symmetric monoidal Segal space by M(E). This
symmetric monoidal Segal space was constructed by the following steps.
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1. Apply the ‘strictified Grothendieck construction’

E 7→ (E : Manop → SMCat).

2. Replace SMCat with the equivalent 2-category with objects pseudofunctors Γ→ Cat.

3. Restrict Manop to extended simplicies, a subcategory of Manop equivalent to ∆op.

4. Switch the Γ factor (which is pseudofunctorial) with the ∆op factor (which is strictly
functorial), to obtain pseudofunctors, pseudonatural transformations, and modifica-
tions

Γ→ (∆op → Cat).

5. Strictify the functors in the Γ factor via the ‘hammock construction’ Γ  CΓ. This
brings us to the category of Cat-enriched functors

CΓ→ (Γop → Cat),

and pseudonatural transformations and modifications of such.

6. Apply the nerve pushforward N∗ to get to simplicial (sSet-enriched) functors

N∗CΓ→ N∗(∆
op → Cat) ∼= (∆op → N∗Cat).

The pseudonatural transformations can be regarded as objects of a certain lax end (see
Appendix A.3).

7. Apply the nerve functor, regarded as a simplicial functor N : N∗(Cat)→ sSet, to get
to simplicial functors

N∗CΓ→ ssSet

The lax ends are sent to coherent ends, and in particular the pseudonatural transfor-
mations are sent to coherent transformations.

8. Switch the two ∆op factors of ssSet.

9. Apply geometric realization, considered as a simplicial functor G : ssSet → sTop to
obtain simplicial functors

N∗CΓ→ sTop

and coherent transformations. Since the Segal condition is satisfied, the simplicial
functors produced factor through Sp; in particular they are symmetric monoidal Segal
spaces.
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Given E′,E ∈ Fib⊗(Man), and a symmetric monoidally fibred functor F : E′ → E,
we denote the associated symmetric monoidal functor of symmetric monoidal Segal spaces
(Definition 2.4.9) by

M(F ) : M(E′)→M(E).

Again, note that the machinery above does produce such a symmetric monoidal functor,
since each step involved enriched functors of the appropriate type, or involved a change of
the enrichment. For example, when we applied N∗, what was a lax transformation (which
happened to be iso-lax), was sent to a coherent transformation (see Proposition 2.4.7).

3.5 The Map on Field Theories

The goal of this section is to construct a map from smooth field theories to homotopy field
theories. We construct this map by applying the machinery of Section 3.4 to the source of
smooth field theories, namely the smooth bordism category, and their target, vector bundles.
This results in a map from smooth field theores to coherent transformations

M(d-B(X))→M(VectMan),

which we will then precompose with a fixed morphism from a homotopy bordism category
to get a certain kind of homotopy field theories.

We first need to figure out which homotopy bordism category is appropriate. In other
words, we want to find which pair (Y, ζ), where Y is a space, and ζ is a vector bundle over
Y , is such that (Y, ζ) structures on a manifold M correspond to maps to X. Recall that
the maifolds of d-B(X) are equipped with smooth maps to X ∈ Man. We first treat the
case where X = pt. In this case there is no additional datum beyond the bordisms. This is
mirrored by the homotopy bordism category

d-Cob⊗(BO(d), γBO(d)),

with γBO(d) the canonical bundle over BO(d). The manifolds in this homotopy bordism
category are equipped with a map to BO(d) and an isomorphism of their tangent bundle
with the pullback of the canonical bundle. However, their tangent bundles, equipped with
some choice of Riemannian metric, being d-dimensional, are classified by such a map (well-
defined up to homotopy) and such an isomorphism. Hence, there are no additional data
(up to contractible space of choices). One could avoid the choice of Riemannian metric and
instead work with

d-Cob⊗(GL(d), γGL(d)),

but we choose to follow the convention of [Lur1], which consistently chooses metrics every-
where.

To add back in a map to X, we simply map into the product BO(d)×X, and take the
bundle over this space which over a point (p, x), is the subspace of R∞ defined by p, i.e. the
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canonical bundle extended trivially in the X direction, which we can write as a pullback
along the projection: π∗BO(d)γBO(d), with πBO(d) : BO(d)×X → BO(d). It is clear then from
the preceding discussion that the manifolds of the homotopy bordism category

d-Cob⊗(BO(d)×X, π∗BO(d)γBO(d))

have the data of a map to X.

Remark 3.5.1. The reason that we specifically chose to define homotopy bordism categories
of the form d-Cob⊗(Y, ζ) is Theorem 2.4.18 of [Lur1], which classifies (extended) field theories
out of such bordism categories. We will take advantage of this classification in the next
section, in the cases where extended and non-extended amount to the same thing, i.e. d =
0, 1.

Now we apply the machinery of Section 3.4 to d-B(X). There is one subtlety, which is
that M calls for taking nerves of categories of the form

n∏
1

d-B(X)
∆k

ext

∼=
n∏
1

d-B(X)
Rk

However, the categories
d-B(X)

Rk
:= FunMan(Rk, d-B(X))

are large. In particular, there is a distinct fibred functor Rk → d-B(X) for each assignment

(id : Rk → R
k) 7→ (Y → R

k),

with Y = (Y, Y c, Y ±) any bordism over Rk.
There are at least two solutions to this problem. The first, which seems to be the

option of choice when developing abstract theory (see [Rez],[Lur2]) is to use the formalism
of Grothendieck universes. Namely, posit that the sets underlying the manifolds such as Y
are elements of some universe U , and that all such manifolds do in fact form a set in some
larger universe U ′.

The other solution, which we will use here, is to replace the fibred categories d-B(X) with
equivalent fibre-wise small categories. This obviously does not work in general, for not every
category is equivalent to a small one. However, in our case it is possible, and the method
will serve the dual purpose of clarifying the relationship to homotopy bordism categories.

The fibre-wise small replacement of d-B(X) is simply the same definition of d-B(X)
except that all object and morphism data involving manifolds are submanifolds of R∞, in
the same direct limit sense of Section 3.3. We will denote this fibred category d-B(X)emb.

Remark 3.5.2. It is important to note that when we are at the stage of pseudofunctors

Γ→ (∆op → Cat)
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the monoidal structure is encoded in the Γ factor. Here, functors that are strict correspond
to strict symmetric monoidal categories, where the structure isomorphisms are all identities,
which one can think of as 0-coherent structure. For more general pseudofunctors, corre-
sponding to more general symmetric monoidal categories, Maclane coherence says that the
structure is 1-coherent. Unfortunately, d-B(X)emb is then not symmetric monoidally fibred.
This is the case because disjoint union cannot be realized as a 1-coherent structure when the
manifolds are embedded in some ambient space. The best one can do, as explained in Sec-
tion 3.3 is use disjoint union to induce a symmetric monoidal structure up to an∞-coherent
system of homotopies. We use the same procedure of Definition 3.3.10 to make at this stage,
a symmetric monoidal Segal space

N∗ C Γ→ sTop,

which we will denote by M(d-B(X)) (despite the fact that its construction contained the
additional step of passing to equivalent small categories), with

M(d-B(X))(〈n〉)k :=

∣∣∣∣∣
n∏
1

N
(
d-B(X)emb

∆•ext

)
k

∣∣∣∣∣ ,
and with the images of simplicies in the 〈n〉 coordinate induced by the same ambient space
disjoint union embeddings chosen in the discussion preceding Defintion 3.3.10.

With this construction, we have the following result.

Theorem 3.5.3. There is a natural transformation of simplicial functors

T : d-Cob⊗
(
BO(d)×X, π∗BO(d)γBO(d)

)
⇒M(d-B(X)),

which is pointwise a weak equivalence.

Proof. By definition
T(〈n〉)k

must be a continuous map from the space of manifolds embedded in

(n)× R∞ × R

with points t0 ≤ · · · ≤ tk ∈ R, such that the critical values of the projection of the manifolds
to R are disjoint from ti, to the geometric realization of

n∏
1

N
(
d-B(X)emb

∆•ext

)
k
.

Let us denote the former space by Y (〈n〉)k.
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Unfortunately, it is in general difficult to map into a geometric realization; for example
it is a left adjoint, not a right adjoint. We make the following construction. First, replace
the geometric realization with the extended geometric realization, which is the coend

|S•|ext :=

∫ [k]

∆k
ext × discSk.

By the same abstract nonsense as used for the usual geometric realization (i.e. Proposition
3.1.5 of [Hov]), one obtains that it is left adjoint to

(SingextX)k = Top(∆k
ext, X).

Since extended simplicies deformation retract onto the standard simplicies, it is easy to see
that |S•|ext and |S•| are homotopy equivalent. Now, we do have a simplicial map

Singext(Y (〈n〉)k)→
n∏
1

N
(
d-B(X)emb

∆•ext

)
k
.

Let us describe this map when n = 1. An m simplex on the left hand side is a map

∆m
ext → Y (〈n〉)k.

The points of the target are embedded manifolds with various extra data, and it is clear that
the target has a universal bundle of such fibres over it. Hence, by pulling back this bundle,
we get a bundle over ∆m

ext with fibres given by manifolds M embedded in R∞×R with points
t0 ≤ · · · ≤ tk ∈ R, such that the critical values of the projection of the manifolds to R are
disjoint from ti. Let πM denote the restriction of the projection of the total space of this
bundle to R fibrewise to M . Note that πM is proper.

We send this bundle to a the following k composable families bordisms on the right hand
side. The jth bordism is a morphism from the object

(Yj−1, Y
c
j−1, Y

+
j−1, Y

−
j−1) :=

(
π−1
M (R), π−1

M ({tj−1}), π−1
M (tj−1,∞), π−1

M (−∞, tj−1)
)
.

to the object Yj (defined in the same way). The bordism is the rel boundary isomorphism
class represented by the triple

(Σ, i0, i1) := (π−1
M (R), idπ−1

M (R), idπ−1
M (R)).

In particular, the core family is Σc = π−1
M [tj−1, tj]. The bordisms were already equipped

with maps to the product BO(d) × X, so we simply retain the map to X, and also forget
the vector bundle isomorphism data. All of the requirements for objects and bordisms are
clearly satisfied, and furthermore everything is embedded in R

∞, so we obtain an m simplex
on the right hand side. Since simplicial maps in the m coordinate are defined identically on
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both sides, these maps over varying m induce a map of bisimplicial sets. When n > 1, we do
the same procedure separately on each component embedded in {l}×R∞×R. Note that the
above maps are functorial in the k coordinate. Furthermore, up to homotopy, these maps
are the Segal maps of the bisimplicial set Singext(Y (〈n〉)•), which are weak equivalences since
Y (〈n〉) is a Segal space, and Singext is a right Quillen functor.

Now, applying extended geometric realization in the m coordinate, we obtain a map of
simplicial spaces

| Singext(Y (〈n〉)k)|ext →

∣∣∣∣∣
n∏
1

N
(
d-B(X)emb

∆•ext

)
k

∣∣∣∣∣
ext

−→M(d-B(X))(〈n〉)k.

The second arrow is induced by the inclusions ∆k ↪→ ∆k
ext, which are homotopy equivalences.

Note that the first map is also a weak equivalence, since geometric realization is a left Quillen
functor, and all simplicial sets are cofibrant (apply Ken Brown’s Lemma).

Next, we observe that the counit (or evaluation) map of the adjunction | · |ext a Singext

provides a map
| Singext(Y (〈n〉)k)|ext → (Y (〈n〉)k)

which is a weak equivalence.
Now, in [GMTW], the homotopy type of the cobordism category d-Cob is calculated, and

it is in particular homotopy equivalent to a CW complex. This counit map | Singext Z|ext → Z
can be inverted up to homotopy provided that Z is equivalent to a CW complex, so we obtain
maps

Y (〈n〉)k → | Singext(Y (〈n〉)k)|ext →M(d-B(X))(〈n〉)k.
It is clear that these can be arranged to be functorial in the k coordinate. Finally, since we
used the same coherence data for disjoint union on both sides, the construction is functorial
in 〈n〉 as well; we therefore conclude that there is a natural transformation of simplicial
functors

T : d-Cob⊗
(
BO(d)×X, π∗BO(d)γBO(d)

)
⇒M(d-B(X)).

The fact that it is a pointwise weak equivalence since it is a pointwise composition of weak
equivalences.

In order to complete our map on field theories, we need to explain how to use the natural
transformation from Theorem 3.5.3 to ‘precompose’ coherent transformations in the image
of M and obtain homotopy field theories. The following definition and result, taken from
[CP] shows how this is done.

Definition 3.5.4. Let A be an S-category, and B be a locally Kan complete S-category
(such as Sp). Let F : A → B and G : A → sSet be S functors. Define the coherent mean
cotensor of F and G by

BA(G,F ) :=

∮
A

BsSet(GA,FA).
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This induces a new functor F defined by

F (A) := BA(AsSet(A, •), F (•)).

The importance of F is that it ”absorbs coherence”. The following is Proposition 3.3.i
of [CP].

Proposition 3.5.5. Let A,B be S-categories, with B complete. For simplicial functors
F,G : A→ B, there is a natural isomorphism

Coh(F,G) ∼= Nat(F,G).

Armed with this result, we can now precompose coherent transformations with natural
ones, and so we get a simplicial map

Coh(M(d-B(X)),MVectMan)→ Coh
(
d-Cob⊗

(
BO(d)×X, π∗BO(d)γBO(d)

)
,MVectMan

)
.

The above map applied to 0-simplicies gives our desired map of field theories.

3.6 The Cases d = 0, 1

The goal of this section is to investigate the action of the map on field theories we have
described, in cases where both smooth and homotopy field theories can be calculated.

For smooth field theories, d = 0 is treated in the paper [STHK]. In fact much more
elaborate field theories of dimension 0 are classified in this paper, but along the way the
authors establish that the category of smooth field theories (see Definition 3.2.1) of dimension
0 over X is equivalent to the (discrete) category of smooth functions on X, i.e. Man(X,R).
In fact, this equivalence is a bijection on objects. There is only one object in 0-B(X), namely
the empty manifold. Bordisms over the point are finite collections of points with a map to
X. For any singleton point mapped into X, we get a linear map of the monoidal unit of
Vectpt, which is R, and a linear endomorphism of R can be identified with a number. In
this way we get a set map X → R, and the fibering over Man enforces that it be smooth.
On the other hand, any smooth field theory can be entirely reconstructed from this map to
R.

Also for smooth field theories, d = 1 is treated in the paper [STD]. In this case, it is
shown that there is a bijection between (unoriented) 1-dimensional smooth field theories over
X and smooth vector bundles over X with connection and fibre-wise pairing. This bijection
is seen as follows. Connected objects of 1-B(X)pt are collections of (collared) points with
maps to X, which get sent to vector spaces under a smooth field theory. These vector spaces
assemble to give a smooth vector bundle on X; again smoothness follows from things being
fibred over Man. Connected bordisms over a point are paths mapping into X, which get
sent to linear maps from the fibre over the start of the path to that of the end of the path.
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These data assemble to give a parallel transport of the bundle on X, which are the same
data as that of a connection. Again, it can be shown that an entire smooth field theory can
be reconstructed just from the vector bundle and the connection.

As for homotopy field theories, the extended case has been solved completely in [Lur1].
Since we will be interested in the (Y, ζ) structure variety here, we present the general result
for them, which is Theorem 2.4.18 in [Lur1].

Theorem 3.6.1. Let C be a symmetric monoidal (∞, d)-category with duals with d > 0, let
Y be a CW complex, let ζ be a d-dimensional vector bundle over X equipped with an inner
product, and let Ỹ → X be the associated principal O(d) bundle of frames of ζ. Then there
is an equivalence of (∞, 0)-categories

Fun⊗(Bord
(Y,ζ)
d ,C) ' Top

O(d)
(Ỹ ,C0).

We need to explain some of the notation above. First, ’with duals’ refers to a higher
categorical abstraction of the fact that finitie dimensional vector spaces have duals. In
particular, MVectMan has duals. Second, Bord

(Y,ζ)
d is the analogue of d-Cob(Y, ζ) extended

to points. In particular, in the cases d = 0, 1, they agree. Next, an equivalence of (∞, 0)
categories means a homotopy equivalence of spaces. In the notation of the right hand side

Top
O(d)

(Ỹ ,C0)

we are referring to O(d)-equivariant maps of spaces, and the right hand side, zeroth space of
C0 should be thought of as the (∞, 0)-category obtained from C by discarding non-invertible
morphisms. See Appendix A.5.1 for an explanation of this. Finally, an explanation of why
such a space obtained from a symmetric monoidal (∞, d)-category with duals, see Corollary
2.4.10 and Remark 2.4.11 in [Lur1]. For our purposes here, we only need to understand the
action for d = 0, 1. In the case d = 0, O(d) is trivial, so there is no data. In the case d = 1,
on objects the action of O(d) = Z/2Z is given by sending an object to its dual, and in the
case of vector spaces, on morphisms the action sends an invertible linear map to the inverse
of its adjoint (see Example 2.4.12 of [Lur1]).

We should also explain how the above equivelence arises. Given a point ỹ ∈ Ỹ , x̃ has an
obvious (Y, ζ) structure, and therefore can be plugged into a homotopy field theory, yielding
an object of C. Again, the entire field theory can be reconstructed from this datum.

In this case d = 0, it is important to remember that points actually correspond to 1-
morphisms. Indeed, in this case, the unique empty bordism must be sent to the space of
monoidal units of C, that is, the image of ι : 〈0〉 → 〈1〉 of Γ, which we will denote by C1.
Hence the right hand side should be replaced with

Top(X,ΩC1),

where we dropped the equivariance since O(0) is trivial. Here the Ω denotes the space of en-
domorphisms. The target is a loopspace of a contractible space, and is therefore contractible.
So up to homotopy, such homotopy field theories are trivial.
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Given a map f ∈ Man(X,R), we may construct a smooth field theory which sends a
point x ∈ X to the linear map defined by f(x), considered as a morphism in Vectpt. This
datum is essentially unchanged through the construction M; the point x ∈ X corresponds
to a point in

M(0-B(X))(〈1〉)1 =
∣∣Mor

(
0-B(X)∆•ext

)∣∣
which is over a point, and is to the point in

M (VectMan) (〈1〉)1 =
∣∣∣Mor

(
(VectMan)∆•ext

)∣∣∣
which is also over a point, corresponding to f(x). If we arrange that the homotopy inverse
used in Theorem 3.5.3 sends points of X to points of X, then we can identify the above data
with a (continuous) map from X to R, which is f , the one we started with. In this way, our
construction in the case d = 0 can be interpreted as ’forget that the map was smooth’.

Next we calculate the right hand side of the formula in Theorem 3.6.1 in the remaining
pertinent case. As explained in the previous section, if we start with X as the target for our
smooth bordisms, the analogous structure for the homotopy bordisms is the pair(

BO(d)×X, π∗BO(d)γBO(d)

)
Plugging in d = 1, and passing to the principal O(1) bundle induced by the line bundle, we
get

EO(1)×X p×idX−−−→ BO(1)×X.

A model of EO(1) is given by S∞, and in this case the O(1) = Z/2Z action is by the
antipodal map. Hence 1-dimensional field theories with structure given by the above pair
are equivalent to the space

Top
O(1)

(
S∞ ×X,

∣∣∣Obj
(

(VectMan)∆•ext

)∣∣∣) .
Now, the target is homotopy equivalent to

∐
k BO(k), by homotopy equivalence of the counit,

and the fact that this space is the classifying space for vector bundles of arbitrary dimension.
So we have

Top
O(1)

(S∞×X,
∐
k

BO(k)) = Top(X,Top
O(1)

(S∞,
∐
k

BO(k)) ' Top

X,(∐
k

BO(k)

)hZ/2Z
 ,

where the target denotes the space of homotopy fixed points of the action described above
(again, see 2.4.12 of [Lur1]). One model of the target is the space of subspaces of R∞ with a
chosen inner product, so that they are canonically self-dual (see Example 2.4.28 in [Lur1]).
Hence, the map on field theories in this case amounts to forgetting the bundle is smooth,
and forgetting the connection. Again, we can think of this as ’forgetting smoothness’.
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Chapter 4

Categories of Field Theories

The goal of this chapter is to upgrade the map from smooth field theories to homotopy
field theories, produced in chapters 1 and 2, to a map from the fibred category of smooth
field theories to the Segal space of homotopy field theories. This means in particular that
we need maps

MFun⊗Man(d-B(X),VectMan)→ Fun⊗(Md-B(X),MVectMan)

We proceed through the construction of this M, (from Section 3.4) and produce maps which
commute each step with the intermediate inner-hom as we go.

4.1 Functor Categories and Hom-Objects

The goal of this section is two technical Lemmas, the first of which we will use throughout
this chapter, and the second of which we need for Section 4.3.

We will use power notation to denote functor category in this section. We will also use
the notation c to denote a constant functor sending everything to a fixed object c. We avoid
using the usual ∆ for this ‘diagonal functor’ to avoid confusion with the simplicial stuff
ubiquitous in this work. For a discussion of ends, refer to Appendix A.2.

Remark 4.1.1. Let C be a cartesian closed category. Then inner-hom induces a functor

C : Cop × C → C.

This is a consequence of a pointwise-adjunction (inner-hom) inducing an adjuntion as ex-
plained in [Mac].

The next result shows that hom-objects in a functor category are a special case of ends.
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Lemma 4.1.2. Suppose that C is a cartesian closed category and that J is a small category.
Suppose also that C is small-complete indexed over J . Then CJ is enriched over C with the
cartesian monoidal structure, and the hom-objects satisfy the following adjunction property

C(c, CJC (F,G)) ∼= CJ (F × c,G).

Here, the notation CJC indicates the C hom-objects of CJ .

Proof. We need to define the hom-objects. As stated above, they are ends. Let F,G : J → C,
and form the functor

C ◦ (F op ×G) : J op × J → C
which has an end by completeness, denoted∫

j

C(F (j), G(j))

and these, for given F,G, are the hom-objects. The identity and composition properties fol-
low from those of the inner-hom and the ’Fubini theorem’ for ends. As for for the adjunction
property we have

C
(
c,

∫
j

C(F (j), G(j))

)
∼=
∫
j

C (c, C(F (j), G(j))) (4.1)

∼=
∫
j

C(c× F (j), G(j)) (4.2)

∼= CJ (c× F,G). (4.3)

In the first step, we used that an end is a limit, so commutes with hom. In the last step, we
used the fact that hom-sets in functor categories are natural transformations, and applied
Lemma A.2.4.

We note here that the adjunction property says that the hom-objects represent a certain
functor. In particular, they are automatically unique up to isomorphism, no matter how we
‘produce’ them.

Finally, we arrive at the result that will be the key to proving the main theorem of Section
4.3.

Lemma 4.1.3. Let C and D be cartesian closed, small-complete categories, and let J be a
small category. Suppose N : C → D is a right adjoint, and suppose also that N is compatible
with inner-hom, in the sense that

N C(X, Y ) ∼= D(NX,NY ),

naturally for X, Y ∈ C. Then for F,G ∈ CJ , we have

N CJC (F,G) = DJD (NF,NG).
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Proof. In 4.1.2, we showed that the hom-objects in functor categories are ends. We therefore
compute

N CJC (F,G) ∼= N

∫
j

C(F (j), G(j))

∼=
∫
j

N C(F (j), G(j))

∼=
∫
j

D(NF (j),NG(j))

∼= DJD (NF,NG),

where in the second step, we used that N is a right adjoint, and therefore preserves ends. In
the third step, we used that limits of naturally isomorphic diagrams are isomorphic.

4.2 Strictification and Restriction

The first step in our construction is to send categories symmetrically fibred over Man to
strict functors Manop → SMCat via the construction E 7→ E and send fibred functors to
strictly natural transformations via F 7→ F . These constructions were introduced at the end
of Section 2.1. Our goal is to show that this step commutes with inner-hom in the following
sense.

Theorem 4.2.1. Let E′,E ∈ Fib⊗(S), for some base category S. Then there is a natural
isomorphism of functors

Fun⊗S (E,F) ∼= SMCatS
op

(E′,E)

First, we explaine what the right hand side means.

Remark 4.2.2. There is an inner-hom in SMCatS
op

. Given two functors F ′,F : Sop →
SMCat, we have

SMCatS
op

(F ′,F)(S) = SMCatS
op

SMCat(F ′ × S,F).

Here the enrichment is given by Lemma 4.1.2, and S is the Yoneda construction of Remark
2.1.20.

Now, we are ready for the proof.

Proof. We calculate the value of each side at S ∈ S. The left hand side is

Fun⊗S (E,F)(S) = Fun⊗S (S,Fun⊗S (E′,E))

∼= Fun⊗S (E′ × S,E)
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The monoidal structures here are induced pointwise, as the domains S do not have a monoidal
structure. The right hand side, in view of the remark above, is

SMCatS
op

(E′,E) ∼=
∫
S′

Fun⊗(E′(S ′)× S(S ′),E(S ′))

=

∫
S′

Fun⊗
(
Fun⊗S (S ′,E′ × S),Fun⊗S (S ′,E)

)
.

Now there is an obvious wedge

Fun⊗S (E′ × S,E)⇒ Fun⊗
(
Fun⊗S (•,E′ × S),Fun⊗S (•,E)

)
given by post composition. The wedge condition follows since composition is associative. It
is clear that this wedge is initial, and finally, it is natural in S ′ also because composition is
associative. This completes the proof.

The next step in the construction of M was to replace the target SMCat with an
equivalent full subcategory of Γ → Cat. In this step, we already studied what happens to
the category of symmetric monoidal functors between two symmetric monoidal categories;
they correspond to pseudonatural transformations, which in turn correspond to lax ends (see
Appendix A.3). Hence, at the point in the construction where our objects are strict functors

Manop → (Γ→ Cat),

where the target 2-category consists of pseudofunctors, pseudonatural transformations, and
modifications, the version of inner-hom is

F ′,F 7→
∮
〈n〉

Fun (F ′(•)(〈n〉),F(•)(〈n〉)) ,

considered as a functor Manop → Cat.
Next, we restricted the domain from Manop to the embedded copy of ∆op defined by

the extended simplicies. It is easiest to demonstrate the commutator map for inner-hom
if we perform this restriction initially with the symmetrical monoidally fibred categories.
Changing the order to do the restriction first clearly does not change M.

Lemma 4.2.3. Let E′,E ∈ Fib⊗(Man), and let E∆ denote the restriction to ∆ ↪→ Man
given by the extended simplicies; which is the pullback along this embedding. Then there is
a fibred functor

Fun⊗Man(E′,E)∆ → Fun⊗∆(E′∆,E∆)

Proof. We have (
Fun⊗Man(E′,E)∆

)
[k]

= Fun⊗Man(E′ ×∆k
ext,E)



CHAPTER 4. CATEGORIES OF FIELD THEORIES 80

Now, in the above, ∆k
ext is considered as fibred over Man. In particular, its value at another

extended simplex consists of the set of all smooth maps with target ∆k
ext. We remind of this

fact with a superscript Man. We may forget what these fibred functors do over the fibres
that are not extended simplices, and continue with the following.

Fun⊗Man(E′ ×∆k
ext

Man
,E∆)→ Fun⊗∆(E′∆ ×∆k

ext

Man

∆
,E∆)

→ Fun⊗∆(E′∆ × [k],E∆)

= Fun⊗∆(E′∆,E∆)

The second map is induced by the inclusion of categories fibred over ∆

[k] ↪→ ∆k
ext

Man

∆

given by inclusion of the simplicial maps into all smooth maps.

The next step involves switching factors of the domain. We make the following remark.

Remark 4.2.4. Since inner-homs are defined to be the right adjoint of certain functors, it is
clear that they are compatible with equivalences of categories, in the sense that if φ : C → D
is an equivalence of cartesian closed categories, then

φC(X, Y ) ∼= D(φX, φY )

This remark also applies to the step which replaces pseudofunctors with domain Γ with
strict functors with domain CΓ.

The next step in the construction is to apply the hom-wise nerve functor N∗. Proposition
2.4.7 says exactly that this functor commutes with inner-hom.

Finally, we apply nerve to the inner-most target Cat, switch the two ∆op factors (an
equivalence, in fact an isomorphism) which commutes with inner-hom, and then take geomet-
ric realization along the inner ∆op coordinate. Finding the commutator maps of inner-hom
for the nerve and realization steps will take up the next few sections.

4.3 Simplicial Categories and Bisimplicial Sets

Let C and D be functors ∆op → Cat. We will call the category of such functors simplicial
categories, denoted sCat. Let N denote the nerve functor, and note that we can form a
simplicial-simplicial set by taking pointwise nerve:

(N C)[k] = N C([k]).

This is just a composition of functors.
The notation sCat is a special case of putting an s in front of the name of a category

to indicate functors from ∆op into it. So ssSet is the category of bisimplicial sets. It is
convenient in the following to think of ssSet as sSet∆op

. As usual, we will use bar to denote
the constant functor.
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Remark 4.3.1. Note that ssSet is properly tensored (see Appendix A.1) over sSet, with

ssSetsSet(X•,Y•)k := ssSet(X• ×∆(k),Y•)

Furthermore, ssSet is cartesian closed, with the inner-hom being defined in terms of the
sSet-homs.

ssSet(X•,Y•)k := ssSetsSet(X• × disc(∆(k)),Y•)

Here we are using the functor sSet→ ssSet that is constant in the other simplicial direction.
In other words discS• : ∆op → sSet sends [k] to the constant simplicial set Sk.

We note that we can enrich ssSet over sSet in either coordinate. We make the convention
that when talking about Segal spaces S•,T• (see Appendix A.5.1) we enrich in the coordinate
so that

ssSet(S•,T•)

is a Kan complex. Note that this is required for the Segal space model structure to be
simplicial.

Remark 4.3.2. sCat has a version of inner-hom. It is defined by

sCat(F ,G)[j] = sCat(F × [j],G),

where the right hand side is considered as a category. Also, by [j], we mean the simplicial
category with discrete fibers ∆([k], [j]).

We now have the machinery necessary to state the main theorem of the section.

Theorem 4.3.3. Let C,D ∈ sCat. Then there is an isomorphism of bisimplicial sets

N sCat(C,D) ∼= ssSet(N C,N D).

For the proof we need a couple of more intermediate results. First, a well-known fact,
whose proof we include for completeness:

Lemma 4.3.4. Let C and D be categories. Then there is an isomorphism of simplicial sets

N (Fun(C,D)) ∼= sSet(N C,ND)

Proof. We recall one definition of nerve:

N Ck := Fun([k], C),

where the ordinal [k] is considered as a category via its poset structure, and the right hand
side is the set of functors (as opposed to category).
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Now, we check that there is a bijection of sets:

N (Fun(C,D))0
∼= sSet(N C,ND)

The left hand side is the set of functors C → D. A functor clearly induces a simplicial map
on nerves, using the definition above. The right hand side is the simplicial maps N C → ND,
and the simplicial identities in dimensions 0,1,2 for a simplicial set map sSet(N C,ND) are
exactly the conditions a functor must satisfy.

Next, we have

N (Fun(C,D))k = Fun([k],Fun(C,D))
∼= Fun([k]× C,D)
∼= sSet(N[k]× N C,ND)
∼= sSet(∆(k)× N C,ND)
∼= sSet(N C,ND)k.

In the second-to-last step we used the observation that

N[k]j = Fun([j], [k]) ∼= ∆([j], [k]) =: ∆(k).

since a functor on ordinals considered as posets is precisely a nondecreasing map. The steps
are clearly natural in all variables, so we get the desired result.

Lemma 4.3.5. Let F be a simplicial category. Then,

NF × disc ∆(k) ' N
(
F × [k]

)
.

And the isormorphism is natural in F and k.

Proof. We compute

(NF × disc ∆(k))j = NF [j]×∆([j], [k])

∼= NF [j]× N ∆([j], [k])

= NF [j]× N [k]
j

∼= N
(
F × [k]

)
j

In its first appearance, ∆([j], [k]), was a constant simplicial set (i.e. the zero-simplicies are
the only non-degenerate ones). Next, we considered ∆([j], [k]) as a discrete category. We
also used that nerve has a left adjoint, and therefore preserves products. All the steps above
clearly commute with the face and degeneracy maps in the coordinate j.
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We are now ready for the proof of the main result of this section:

Proof of 4.3.3. We are showing

N sCat(F ,G) ∼= ssSet(NF ,NG),

where F ,G : ∆op → Cat. As usual, we look at each side’s value point-wise on ∆op.

N sCat(F ,G)[k] = N sCat(F × [k],G)

And similarly,

ssSet(NF ,NG)[k] ' ssSetsSet(NF × disc ∆(k),NG)

' ssSetsSet

(
N
(
F × [k]

)
,NG

)
,

where we used 4.3.5 in the second step. Since everything is natural, we have reduced the
problem to

N sCat(F ,G) ' ssSetsSet(NF ,NG),

as simplicial sets.
Now we can apply 4.1.3 with Cat and sSet in place of A and B, ∆ in place of J , and

finally nerve in place of N. Nerve preserves inner-hom by 4.3.4 and the fact that it has a left
adjoint, called fundamental category, is proved in [JT].

4.4 Bisimplicial Sets and Geometric Realization

For this section, we will use the notation Top for the category of compactly generated
Hausdorff spaces, and sTop for the functor category Top∆op

. Recall the geometric realization
functor

| · | : sSet→ Top

Which can be defined as the coend

|S•| :=
∫ n

Sn ×∆n,

with Sn given the discrete topology, and ∆n = {(t0, · · · , tn) ∈ Rn+1|
∑
ti = 1} the standard

n simplex (see [JT]). Also recall the singular simplices functor

Sing : Top→ sSet

defined by Sing(X)k = Top(∆k, X). It is well-known that Sing is right-adjoint to | · | ([JT]).
The goal of this section is to provide a map analogous to the isomorphism in Theorem

4.3.3 for the simplicial realization functor. In this case, we only get a map, which we
conjecture to be a weak equivalence on the full subcategory of simplicial Segal spaces.
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Theorem 4.4.1. Let S•,T• ∈ ssSet. Then there is a natural transformation

|ssSet(S•,T•)| → sTop(|S•|, |T•|)

that is, natural in S• and T•.

Lemma 4.4.2. Let F,G : sSetop×sSet→ Top denote the given by taking inner-hom, then
realizing, and realizing and then taking inner-hom, respectively. That is,

F (S•, T•) = |sSet(S•, T•)| ,

and
G(S•, T•) = Top(|S•|, |T•|).

Then there is a natural transformation φ : F ⇒ G.

Proof. We must construct morphisms

φ(S•, T•) ∈ Top
(
|sSet(S•, T•)| ,Top(|S•|, |T•|)

)
Natural in S• and T•. Note that

Top
(
|sSet(S•, T•)| ,Top(|S•|, |T•|)

) ∼= sSet
(
sSet(S•, T•), Sing Top(|S•|, |T•|)

)
And furthermore

Sing Top(|S•|, |T•|)[k] = Top
(
∆k,Top(|S•|, |T•|)

)
' Top

(
|S•| ×∆k, |T•|

)
Recall that |∆(k)| is the coend

|∆(k)| =
∫ n

∆(n, k)×∆n.

For all n, we have maps ∆(n, k)×∆n → ∆k, induced by the standard embedding ∆→ Top
followed by an evaluation map. These maps assemble to form a wedge

∆(·, k)×∆· ⇒ ∆k

and therefore by the universal property of coends, a map ∆k → |∆(k)|, which is natural in
k. Hence we obtain a map

Top
(
|S•| ×∆k, |T•|

)
← Top (|S•| × |∆(k)|, |T•|)
∼= Top (|S• ×∆(k)|, |T•|)
∼= sSet (S• ×∆(k), Sing |T•|) .
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where in the second step we used that simplicial realization commutes with finite limits (see
[JT]).

The resulting maps

sSet(S• ×∆(k), Sing |T•|)→ Sing Top(|S•|, |T•|)[k]

created by composing the above maps and equivalences are natural in S• and T• since the
adjunctions involved are, and natural in [k] as well, since evaluation is natural. Naturality
in [k] implies that they assemble to form a map of simplicial sets:

sSet(S•, Sing |T•|)→ Sing Top(|S•|, |T•|)

Note that the simplicial sets above induce the usual simplicial model category structure on
sSet and Top. Since |•| : sSet
 Top : Sing is an equivalence of cartesian model categories
([JT]), we have the weak equvalence

sSetsSet(S•, SingX) ∼= TopsSet(|S•|, X),

The map above is therefore a weak equivalence, being the special case where X = |T•|.
We also have a map of simplicial sets

sSet(S•, T•)→ sSet(S•, Sing |T•|)

induced by the unit of the adjunction | • | a Sing.
Composing the morphism sSet(S•, T•) → sSet(S•, Sing |T•|) and the weak equivalence

sSet(S•, Sing |T•|)→ Sing Top(|S•|, |T•|), we obtain

φ̂(S•, T•) : sSet(S•, T•)→ Sing Top(|S•|, |T•|)

The adjoint of these are the φ(S•, T•) we are after. Again, this construction consisted of
natural transformations at every step, so the resulting φ’s form a natural transformation of
functors φ : F ⇒ G.

The following example shows why we cannot expect 4.4.2 to produce an isomorphism or
even a weak equivalence in general.

Example 4.4.3. Let C be the category •−→→•. Then BC is homotopy equivalent to a circle.
Hence, Top(BC, BC) has the homotopy type of Z× S1. On the other hand, there are only
finitely many functors C → C (in fact there are exactly four). So BFun(C, C) only has finitely
many connected components, and therefore is not homotopy equivalent to Top(BC, BC).

The next lemma is key in showing that the morphism produced in 4.4.2 is a weak equiv-
alence provided that T• is a fibrant, i.e. Kan, simplicial set.
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Lemma 4.4.4. Let S• ∈ sSet. Then the functor F : sSet → sSet defined by F (T•) =
sSet(S•, T•) sends weak equivalences of fibrant objects to weak equivalences.

Proof. We use a standard fact from model category theory (see Appendix A.4) that a weak
equivalence of fibrant objects is actually a (left or right) homotopy equivalence. We also
need the fact that sSet(∆(1), X•) is a path object for any X•, with ’source’ and ’target’
projections induced by the inclusions of the zero simplices ∆(0) ↪→ ∆(1) (see [JT]). Let
f : T ′• → T• be a weak equivalence of fibrant objects, which therefore has a right homotopy
inverse g.

We claim that the induced morphisms F (f) : sSet(S•, T
′
•)→ sSet(S•, T•) and g∗ consti-

tute a (right) homotopy equivalence sSet(S•, T
′
•) ∼ sSet(S•, T•), and hence F (f) is a weak

equivalence
Let h : T• → sSet(∆(1), T•) be a right homotopy from fg to 1T• . Then h induces a

morphism
F (h) : sSet(S•, T•)→ sSet(S•, sSet(∆(1), T•))

And the target of this morphism is a path object for sSet(S•, T•), indicated by Yoneda’s
lemma applied to this bijection of hom-sets:

sSet(X•, sSet(S•, sSet(∆(1), T•))) ∼= sSet((X• × S•)×∆(1), T•)
∼= sSet((X• ×∆(1))× S•, T•)
∼= sSet(X•, sSet(∆(1), sSet(S•, T•)))

The steps above are natural in the ∆(1) entry, and F is natural, being a functor, so we have

F (h)|t=0 = F (h|t=0) = F (fg) = F (f) ◦ F (g)

and similarly F (h)|t=1 = F (1T•) = 1.

Note that one can alternatively use Ken Brown’s Lemma (A.4.8) directly.

Theorem 4.4.5. With F and G as defined in Lemma 4.4.2, and restricting their domains
to sSetop × Kan, there is a natural transformation F ⇒ G which is a point-wise weak
equivalence.

Proof. Looking back through the proof of 4.4.2 and applying 4.4.4 we can see that φ̂(S•, T•)
is a weak equivalence provided that T• is Kan. (Sing |T•| is Kan, since Sing lands in the
subcategory of Kan complexes.) Thus, φ(S•, T•) is a weak equivalence; the hom adjunction
takes weak equivalences to weak equivalences, being part of a Quillen equivalence.

Now, as in section 4.3, we need to add in the extra simplicial factor to ramp this up to
a natural transformation

|ssSet(S•,T•)| ' sTop(|S•|, |T•|).
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Here S•,T• are bisimplicial sets, where Sk is the kth simplicial set of S•. Note in particular
that we are only realizing along one of the simplicial coordinates.

We proceed in the same manner as in Section 4.3, moving from simplicial sets to the
sSet-homs of ssSet, and finally to inner-hom in ssSet. More care must be taken at certain
steps, since weak equivalences do not always enjoy the same properties as isomorphisms. For
example, the limit of a diagram of weak equivalences is not necessarily a weak equivalence.
Here again we are thinkin of ssSet as sSet∆op

, and this ‘outer’ simplicial coordinate will be
the only one tampered with.

Lemma 4.4.6. Let S•,T• ∈ ssSet be Segal spaces. Then there is a map

|ssSetsSet(S•,T•)| → sTopTop(|S•|, |T•|),

which is natural in S• and T•.

Proof. We look for such a map in the set

Top
(
|ssSetsSet(S•,T•)| , sTopTop(|S•|, |T•|)

)
,

or, equivalently one in

sSet
(
ssSetsSet(S•,T•), Sing sTopTop(|S•|, |T•|)

)
.

Recalling lemma 4.1.2, these hom-objects are ends, which commute with the right-adjoint
Sing. Hence we are looking in the set

sSet

(∫
sSet(Sk,Tk),

∫
Sing Top(|Sk|, |Tk|)

)
The morphism we are after is∫

φ̂(Sk,Tk) :

∫
sSet(Sk,Tk)→

∫
Sing Top(|Sk|, |Tk|)

with φ̂ from the proof of lemma 4.4.2. Since Tk was assumed to be Kan (a condition of T•
being a Segal space, this is an end of a point-wise weak equivalence with domain ∆×∆op.

Remark 4.4.7. We conjecture that the map produced in Lemma 4.4.6 is a weak equivalence.
This would follow from some statement of the form: ends are left-Quillen bifunctors.

As before, in the last step, we move from the hom-objects like ssSetsSet to the full-blown
inner-homs ssSet. Recall their relationship, given in remark 4.3.1:

ssSet(S•,T•)k = ssSetsSet(S• × disc(∆(k)),T•)

We also recall the following facts about simplicial Segal spaces, which are explained in section
2 of [Rez].
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Lemma 4.4.8. A bisimplicial set in the image of disc : ssSet → sSet is a simplicial Segal
space. Furthermore, simplicial Segal spaces are closed under products.

The lemma clearly implies that the domain S• × disc(∆(k)) is a simplicial Segal space,
provided that S• is.

We remark that the inner-hom in sTop is defined similarly in terms of its Top hom-
objects:

sTop(X, Y )k = sTopTop(X × disc(∆(k)), Y ),

where now by abuse of notation disc means discrete topological space. Lemma 4.4.8 remains
true with sSet replaced by Top. We remark that the only property of Segal spaces we need
is that they are point-wise Kan, in order to invoke Theorem thm:ssetwe.

We are now equipped to prove the desired result of the section

Proof of Theorem 4.4.1. We need to check point-wise, as stated in the theorem. We have

|ssSet(S•,T•)|k = |ssSetsSet(S• × disc(∆(k)),T•)|

by the comments following lemma 4.4.8, the domain here is a Segal space, so we can apply
4.4.6 to obtain a weak equivalence

|ssSetsSet(S• × disc(∆(k)),T•)| → sTopTop(|S• × disc(∆(k))|, |T•|)

We now use that geometric realization commutes with products, that the realization of a
discrete simplicial set is a discrete space up to weak equivalence, and finally that a weak
equivalence of cofibrant objects (i.e. any object) in the first coordinate of enriched-hom
induces a weak equivalence, to obtain a map

sTopTop(|S• × disc(∆(k))|, |T•|)→ sTopTop(|S•| × disc(∆(k)), |T•|),

which will be a weak equivalence, provided the conjecture of Remark 4.4.7 holds true. Finally,
note that the target above is the definition of the kth space of sTop(|S•|, |T•|).

So composing the two maps above, we have the desired map

|ssSet(S•,T•)| → sTop(|S•|, |T•|).

Remark 4.4.9. We make the conjecture that the map obtained in Theorem 4.4.1 is actually
a point-wise weak equivalence provided that S• and T• are simplicial Segal spaces. That is,
a weak equivalence in the Reedy model structure on sTop. As noted, this would follow from
the conjecture in Remark 4.4.7. It should hold, for example, if the categories of Segal spaces
and simplicial Segal spaces are Quillen equivalent via geometric realization.
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4.5 The Monoidal Coordinate

In this section, we ramp up the maps from the previous two one final time to add in the
monoidal coordinate Γ. We begin with the nerve step. According to Theorem 4.3.3, we have
an isomorphism of bisimplicial sets

N sCat(C,D) ∼= ssSet(N C,N D).

We need two lemmas to add in the simplicial coordinate.

Lemma 4.5.1. The cotensoring of sCat over sSet is described by the following formula

sSetsCat(S•,D) = sCat(π1S•,D),

where π1 is the left adjoint to nerve (fundamental category), and bar indicates constant in
the simplicial factor.

Proof. We calculate

sCat(C, sCat(π1S•,D)) ∼= sCat(π1S•, sCat(C,D))

∼= ssSet(S•,N sCat(C,D))
∼= sSet(S•,N sCatCat(C,D)) = sSet(S•, sCatsSet(C,D))

The final line is by definition, since the sSet enrichment of sCat is induced by nerve.
Since this is the adjunction formula that the cotensoring sSetsCat must satisfy, the proof is
complete.

Lemma 4.5.2. Let C,D ∈ sCat. Then

N π1ŝCat(C,D) ∼= ŝCat(C,D).

Proof. We prove the result first for ordinary categories. Let C,D ∈ Cat. Refer to Section
2.4 for the definitions of the following notations. We have

N π1ŝCat(C,D)j := Nπ1 diagX(C,D)j = Nπ1

∫ k

∆(k)×X(C,D)k,j

∼= N

∫ k

π1∆(k)×
∏

N Fun(C, C0)j × · · · × N Fun(Ck,D)j

∼= N

∫ k

π1 N([k]×
∏

Fun(C, C0)× · · · × Fun(Ck,D))j

∼= N

∫ k

[k]×
∏

Fun(C, C0)× · · · × Fun(Ck,D))
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Here we used that diag is a coend and therefore a colimit, and π1 is a left adjoint, and so
commutes with coends. Then we used that nerve commutes with products, and finally that
π1 N = idCat. It is not hard to produce cowedges to show that the above is isomorphic to

ŝCat(C,D),

as required. Finally, in ŝCat(C,D), the enrichment over sSet is given by

sCatsSet(C,D) =

∫
k

N Fun(Ck,Dk).

These extra ends commute with the nerves, making the above argument work in this case
as well.

We can use these lemma in combination with Theorem 4.3.3 to obtain the following
result.

Theorem 4.5.3. Let C⊗,D⊗ be functors N∗CΓ→ sCat. Then there is an isomorphism

N

∮
〈n〉

sCat(C(〈n〉),D(〈n〉)) ∼=
∮
〈n〉

ssSet(N C(〈n〉),D(〈n〉))

Proof. We calculate

N

∮
〈n〉

sCat(C 〈n〉 ,D 〈n〉)

:= N

∫
〈n′〉,〈n〉

sSetsCat
(
ŝCat(C 〈n′〉 ,D 〈n〉), sCat(C 〈n′〉 , 〈n〉)

)
∼= N

∫
〈n′〉,〈n〉

sCat
(
π1ŝCat(C 〈n′〉 ,D 〈n〉), sCat(C 〈n′〉 , 〈n〉)

)
∼=
∫
〈n′〉,〈n〉

N sCat
(
π1ŝCat(C 〈n′〉 ,D 〈n〉), sCat(C 〈n′〉 ,D 〈n〉)

)
∼=
∫
〈n′〉,〈n〉

ssSet
(

N π1ŝCat(C 〈n′〉 ,D 〈n〉),N sCat(C 〈n′〉 ,D 〈n〉)
)

∼=
∫
〈n′〉,〈n〉

ssSet
(
ŝCat(C 〈n′〉 ,D 〈n〉), ssSet(N C 〈n′〉 ,N D 〈n〉)

)
∼=
∫
〈n′〉,〈n〉

sSetssSet
(
ŝCat(C 〈n′〉 ,D 〈n〉), ssSet(N C 〈n′〉 ,N D 〈n〉)

)
=

∮
〈n〉

ssSet(N C(〈n〉),D(〈n〉))

In the second step, we used Lemma 4.5.1. In the fifth step, we used Lemma 4.5.2. We used
Theorem 4.3.3 in steps four and five.
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Next we approach the geometric realization step. In Theorem 4.4.1, we got a natural
transformation

φS•,T• : |ssSet(S•,T•)| → sTop(|S•|, |T•|).

Consider the adjoint

φ̂S•,T• : ssSet(S•,T•)→ Sing sTop(|S•|, |T•|).

For S⊗,T⊗ : N∗CΓ→ ssSet, we take the coherent end of φ̂ to obtain∮
〈n〉
φ̂ :

∮
〈n〉

ssSet(S⊗ 〈n〉 ,T⊗ 〈n〉)→
∮

Sing sTop(|S⊗ 〈n〉· |, |T
⊗ 〈n〉· |).

Since Sing is a right adjoint, it commutes with coherent ends, and then taking the adjoint
of this result, we get a map∣∣∣∣∮

〈n〉
ssSet(S⊗ 〈n〉· ,T

⊗ 〈n〉·)
∣∣∣∣→ sTop(|S⊗ 〈n〉· |, |T

⊗ 〈n〉· |),

which is the last map required to produce a morphism of Segal spaces

MFun⊗Man(E′,E)→ Fun⊗(ME′,ME),

for any E′,E ∈ Fib⊗(Man). Of course, we are most interested in the pair d-B(X),VectMan.
Finally, to get a map to homotopy field theories, we again refer to Proposition 3.5.5

to precompose this with the natural transformation of Theorem 3.5.3, and we obtain our
upgraded map of field theories

MFun⊗Man(d-B(X),VectMan)→ Fun⊗
(
d-Cob

(
BO(d)×X, π∗BO(d)γBO(d)

)
,MVectMan

)
4.6 Further Work

In this section we explain some possibilities for further work on the material presented in
this thesis.

1. We conjecture that the morphism of Segal spaces

MFun⊗Man(d-B(X),VectMan)

→ Fun⊗
(
d-Cob

(
BO(d)×X, π∗BO(d)γBO(d)

)
,MVectMan

)
we have constructed is a weak equivalence. Aside from technical considerations such
as the behavior of weak equivalences of Segal spaces under coherent ends, there are
two facts missing in obtaining this result. First, the restriction to ∆ ↪→ Man of
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Fib⊗(Man) should commute with inner-hom up to isomorphism; that is, the fibred
functor produced in Lemma 4.2.3 needs to be an isomorphism. There is no reason
to expect this to hold true in general, but perhaps it is true for symmetric monoidal
stacks. Both d-B(X) and VectMan are symmetric monoidal stacks (see the Appendix
of [SP] for a definition). Finally, the conjecture of Remark 4.4.9 must be established.

2. In the paper [ST], Stolz and Teichner use a more complicated version of smooth bor-
dism category than we have used here. Instead of being an object of Fib⊗(Man), it is
a category internal to Fib⊗(Man)∼ (the ∼ indicates groupoids). One could attempt to
upgrade our map from smooth field theories to homotopy field theories to smooth field
theories of this type which has been ’extended up’. The internal categories are certain
diagrams in Fib⊗(Man)∼, which we could map to diagrams of symmetric monoidal
Segal spaces via M. The missing ingredient would be a map from such ’internal’ sym-
metric monoidal Segal spaces to ordinary symmetric monoidal Segal spaces. Morally,
such a construction should be possible; a category internal to the 2-category Grpd
can be thought of as a type of (2, 1)-category, and Segal spaces are already ’extended
up’ infinitely.

3. In order to connect smooth field theories in a more coherent manner to homotopy field
theories, the smooth bordism category should be extended down to points. The work
of defining a fully extended smooth bordism category is quite technical; refer to [SP]
for an extension of 2-B to points.
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Appendix A

A.1 Enriched Categories

In this section, we give the definition of enriched categories and their enriched functors. Of
particular interest will be categories enriched in Cat, the category of small categories, and
also those enriched in sSet, the category of simplicial sets.

Definition A.1.1. A category C enriched over a monoidal category (M,⊗) is a collection
of objects with the following additional data.

1. (hom-objects) For each pair of objects X, Y ∈ C, there is an object CM(X, Y ) in M.

2. (identities) For each object X ∈ C there is a morphism 1M → CM(X,X), denoted 1X .

3. (composition) For each triple of objects X, Y, Z ∈ C, there is a morphism

CM (Y, Z)⊗CM (X, Y )→ CM (X,Z).

denoted ◦.

subject to

1. (associativity) For W,X, Y, Z ∈ C, the following diagram (in M) commutes.

(CM(Y, Z)⊗CM(X, Y ))⊗CM(W,X) //

◦⊗1
��

CM(Y, Z)⊗ (CM(X, Y )⊗CM(W,X))

1⊗◦
��

CM(X,Z)⊗CM(W,X)

◦
++

CM(Y, Z)⊗CM(W,Y )

◦
ss

CM(W,Z)

The top horizontal arrow is the associator for (M,⊗).
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2. (right-identity) For X, Y ∈ C, the following diagram commutes.

1⊗CM(X, Y )
1Y ⊗1 //

++

CM(Y, Y )⊗CM(X, Y )

◦
��

CM(X, Y )

The diagonal arrow is the left-identity property for the monoidal unit 1 of M.

3. (right-identity) Same as above, with the identity on the right.

Note that if M is symmetric monoidal, the last two conditions are redundant. Also note
that if M is symmetric monoidal, the composition morphisms can be written

CM (X, Y )⊗CM (Y, Z)→ CM (X,Z).

A category enriched over M will sometimes be called an M-category.

These M-categories can be arranged into a category CatM, whose morphisms we now
define.

Definition A.1.2. Let C,D be M-categories. An enriched functor F : C→ D consists of
the data

� For each object X ∈ C, an object FX ∈ D.

� For each hom-object CM(X, Y ) ∈M, a morphism in M:

FX,Y : CM(X, Y )→ DM(FX,FY )

subject to the conditions

1. For X, Y, Z ∈ C, the following diagram in M commutes.

CM(Y, Z)⊗CM(X, Y )
FY,Z⊗FX,Y //

◦C
��

DM(FY, FZ)⊗DM(FX,FY )

◦D
��

CM(X,Z)
FX,Z //DM(FX,FZ)

2. For X ∈ C, the following diagram in M commutes.

1
1X
//

1FX %%

CM(X,X)

FX,X
��

DM(FX,FX)



APPENDIX A. APPENDIX 95

We have an additional structure on CatM when M is allowed to vary, given by the
following ’push-forward’ construction.

Remark A.1.3. Let M′,M be monoidal categories, and let CatM′ and CatM denote the
categories of M-enriched, and M′-enriched categories and enriched functors, respectively.
Let F :M′ →M be a monoidal functor. Then there is a functor

F∗ : CatM′ → CatM

defined by applying F hom-object-wise.

Also note that there is an obvious ‘opposite’ construction on CatM just as with ordinary
categories, defined by

Cop
M(X, Y ) = CM(Y,X).

The following definition provides another common example of enrichment.

Definition A.1.4. A monoidal categoryM is called closed if for each object m ofM, there
is a chosen functor denoted

m′ 7→ M(m,m′)

which is right adjoint to the functor given by left-tensoring with m:

m′ 7→ m⊗m′.

Proposition A.1.5. Every closed monoidal category is enriched over itself.

Proof. Let M be a closed monoidal category. Define

MM(m′,m) :=M(m′,m),

and set 1m to be the image of the morphism

λL : m⊗ 1→ m

under the closure adjunction of M. The definition of composition, and the details of the
conditions are straightforward adjunction manipulations, and are spelled out for example in
[Kel].

Now we turn our attention to other ways in which an enriched category and its base
category can interact.

Definition A.1.6. Let C be anM-category, where (M,⊗) is a monoidal category which is
enriched over itself (for example M could be closed). If there is a functor M×C → C, also
denoted ⊗ which is associative, in the sense that

(m⊗ n)⊗X ∼= m⊗ (n⊗X),
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and natural in m,n ∈M and X ∈ C, and finally it satisfies the adjunction property

M(m, CM(X, Y )) ∼= CM(m⊗X, Y ),

naturally in m ∈M, and X, Y ∈ C, we say that C is tensored over M.

Note that the tensor structure induces a category structure on C via C(X, Y ) :=M(1,CM(X, Y ))
and furthermore, the adjunction property guarantees that the category structure we assume
in our definition agrees with this up to isomorphism of categories:

M(1,CM(X, Y )) ∼= C(1⊗X, Y ) ∼= C(X, Y ).

There is an obvious dual notion:

Definition A.1.7. An enriched category C ∈ CatM, with M enriched over itself is coten-
sored over M if, for m ∈ M and Y ∈ C, there is an object MC(m,Y ) ∈ C which satisfies
the adjunction formula

M(m,CM(X, Y )) ∼= CM(X,MC(m,Y ))

for any X ∈ C. Furthermore, the cotensoring is required to be associative, in the sense that
there is an isomorphism

MC(m′,MC(m,Y )) ∼=MC(m′ ⊗m,Y ),

natural in m′,m. Note that if C is also considered as a category via

M(1,CM(X, Y )) ∼= C(1⊗X, Y ) ∼= C(X, Y ),

we can rephrase the adjunction formula by saying that the functor

CM(·, Y ) : Cop →M

has a left adjoint, denoted
MC(m, ·) :M→ Cop.

We remark that the notions of tensoring and cotensoring can be extended to the case
whereM is not self-enriched by writing the same formulas above but dropping the underlines
on the M’s and the subscript M’s on the C’s. In other words use ordinary hom-sets. For
example, in the case of tensoring, a natural isomorphism of hom-sets

M(m, CM(X, Y )) ∼= C(m⊗X, Y ),
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enforces the natural isomorphism of M hom-objects of Definition A.1.6. To see this, map a
test m′ ∈M into both sides, use the usual adjunction manipulations, and apply the Yoneda
lemma to the result. Indeed, we have

M(m′,M(m, CM(X, Y )) ∼= M(m′ ⊗m, CM(X, Y ))
∼= C((m′ ⊗m)⊗X, Y )
∼= C(m′ ⊗ (m⊗X), Y )
∼=M(m′, CM(m⊗X, Y )),

where the third isomorphism is induced by the associator of M.
We return to tensoring, and note that it is natural to ask for more if the monoidal

structure on M is induced by product.

Proposition A.1.8. Consider the special case where the monoidal structure on M is in-
duced by product, and the tensor structure M×C → C is induced by a functor M→ C,
followed by the product. We will use the notation m 7→ m, so that m⊗X is written m×X.

In this situation, the only additional data needed for C to be tensored over M are the
hom-objects, and the only condition needed is the adjunction property of hom-objects.

Proof. Suppose we have hom-objects, and the tensor functor M ⊗ C → C satisfies the
property

M(m,CM(X, Y )) ∼= C(m⊗X, Y ),

First, we will produce the identity arrows. Note that the monoidal unit under cartesian
product is a terminal object. Yoneda’s Lemma says that natural transformations hom-
functors Hom(−, X) ⇒ Hom(−, Y ) are in bijection with arrows Hom(X, Y ). Studying the
diagram

M(m, 1) //

**

M(m×X,X)

��
M (m,CM(X,X))

We see that the upper-left hom-set is simply a point, and there is a canonical choice
for the horizontal map: send the point to the projection map. Composing these two maps
(which are natural in m), yields a natural transformation and by Yoneda we obtain 1X .

Next we can obtain the composition maps following this diagram counter-clockwise:
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M (m,CM(Y, Z)×CM(X, Y ))

∼
��

◦∗ //M (m,CM(X,Z))

M (m,CM(Y, Z))×M (m,CM(X, Y ))

∼
��

C (m× Y, Z)×C (m×X, Y )

��
C (m× Y, Z)×C (m×X,m× Y )

◦C // C (m×X,Z)

∼

OO

The point is that this situation creates a natural compatibility between the compositions
of C as an ordinary category and C as an enriched category.

Let us also check the left-identity requirement. Consider:

M (m, 1×CM(X, Y )) //

,,

M (m,CM(X, Y )×CM(X,X))

��
M(m,CM(X, Y ))

Using our various isomorphisms of hom-sets, we can obtain a diagram:

M(m, 1)×C(m×X, Y ) //

,,

C(m×X, Y )×C(m×X,X)

��
C(m×X, Y )

Where the arrows are defined by the above diagram, i.e. this diagram commutes if and only
if the above does.

The diagonal map does nothing. The horizontal arrow takes a map f ∈ C(m × X, Y )
to the pair (f, πX). The vertical map makes πX into a map to m × X by having it be
the projection on the m factor, then it composes f with the result. However, the map
C(m×X,m×X) identified with (πm, πX) is the identity, so the diagram commutes.

Right-identity follows, since cartesian product is a symmetric monoidal structure.
A similar argument where we map an arbitrary m ∈M into everything and use all hom-

set isomorphisms shows that the compositions is also associative, since composition in C is
associative.

Definition A.1.9. We will say in the situation of Proposition A.1.8 that C is properly
tensored over (M,×).

Examples A.1.10. 1. All ordinary categories C are enriched over Set, and those with
products and a ’free’ functor Set→ C are properly tensored over Set.
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2. A simplicial model category is tensored over sSet. In many examples, it is properly
tensored (Top, ssSet, etc.)

3. A closed monoidal category is tensored over itself. A cartesian closed category (closed
model category under the cartesian monoidal structure) is properly tensored over itself.

A.2 Ends

In this section we introduce ends and prove some useful properties of them. Ends and their
generalizations are used extensively throughout this paper.

Definition A.2.1. Let F : J op × J → C be a functor. A wedge from an object c ∈ C to F
is an map ω from objects in J to morphisms ω(j) : c→ F (j, j) in C such that the following
diagram commutes for all j, j′ ∈ J and f : j → j′:

c
ω(j) //

ω(j′)
��

F (j, j)

F (1,f)

��
F (j′, j′)

F (f,1)
// F (j, j′)

We will use the notation ω : c⇒ F

Definition A.2.2. Let F : J op × J → C be a functor. An end of F is an object e ∈ C and
a wedge ω : e ⇒ F that is universal in the sense that given any other wedge γ : d ⇒ F ,
there is a unique morphism g : d→ e such that ω(j)g = γ(j) for all j ∈ J . The object d is
clearly unique up to unique isomorphism. By abuse of notation, we usually only refer to the
object e, and write it as ∫

j

F (j, j),

or sometimes simply
∫
F if no confusion arises.

Note that cowedges can also be defined F ⇒ d by reversing all arrows, and the corre-
sponding universal cowedges are called coends.

The next few results on ends are taken from [Mac].

Remark A.2.3. The universal property of an end:

Wedge(e, F ) ∼= Hom(e,

∫
F ),

looks very much like that of a limit:

Cone(e, F ) ∼= Hom(e, limF ),
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which we recall can be rewritten as an adjunction. To do so, we note that a cone from e to
a functor F : J → C is simply a natural transformation from the constant functor hitting
the object e, which we will denote e : J → C, to F . Going further, a natural transformation
is a morphism in the functor category CJ . Hence we have

CJ (e, F ) ∼= C(e, limF ).

Here we are using the name of a category to denote its hom functor.
If there is a framework in which wedges become cones, then we will have shown that ends

are special cases of limits, and therefore right adjoints.
Such a framework is given by the subdivision category. The subdivision category J ′ of a

category J is a category with objects

{objects of J }
⋃
{morphisms of J }

and nonidentity morphisms s→ f ← t if f is an arrow and s and t are its source and target.
Note that there are no meaningful compositions in this category.

Now given a functor F : J op×J → C, there is an induced functor F ′ : J ′ → C, given by
F ′(j) = F (j, j), F ′(f : s→ t) = F (s, t), F ′(s→ f) = F (1s, f), and F ′(f ← t) = F (f, 1t).

Given a cone, i.e. a natural transformation ω′ : e⇒ F ′, we get the following diagram by
applying ω′ to the diagram s→ f ← t in J ′:

c
ω′(s)//

1c

��

F (s, s)

F (1,f)

��
c

ω′(f)
// F (s, t)

c
ω′(t)
//

1c

OO

F (t, t)

F (f,1)

OO

This is identical to the diagram for a wedge, where ω′(f) is the diagonal composition. A
similar observation shows that a wedge determines a cone.

We have converted wedges to cones, and so have shown that ends are limits, In particular
they enjoy the same properties as limits (e.g. they commute with right adjoints).

We now provide some examples of ends.

Lemma A.2.4. Suppose F,G : C → D are functors. Then

Nat(F,G) ∼=
∫
c

D(Fc,Gc)

where the right hand side is an end of the hom-functor composition

D ◦ (F op ×G) : Cop × C → Set.
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Proof. Suppose that S ∈ Set. If we have a wedge ω : S ⇒ D◦(F op×G), then for each c ∈ C
we get a set map ω(c) : S → D(Fc,Gc), or in other words, for each pair c, p ∈ Ob(C)× S, a
morphism ω(c, p) : Fc→ Gc. Looking at the wedge diagram, we see that it really says that

Fc
ω(c) //

Ff
��

Gc

Gf
��

Fc′
ω(c′) // Gc′

commutes. In other words, that ω(·, p) is a natural transformation. In particular, we have
the wedge c 7→ α(c) ∈ D(Fc,Gc) for α ∈ Nat(F,G). And the map that sends p ∈ S to the
natural transformation ω(·, p) witnesses the fact that this wedge is universal.

Remark A.2.5. The above proof goes through essentially unchanged if C and D are replaced
by strict 2-categories, and we have the hom-category functor: Suppose C,D ∈ CatCat are
categories enriched over Cat (i.e. strict 2-categories). Let F,G : C → D be enriched
functors (i.e. strict 2-functors). Then there is an isomorphism of categories

Nat(F,G) ∼=
∫
c

DCat(Fc,Gc)

Where the left hand side is the category of natural transformations and modifications, i.e.
DC(F,G). We will weaken ends suitably in the next section to produce pseudonatural
transformations.

Example A.2.6. The geometric realization functor sSet→ Top can be written as a coend
∆×∆op → Top:

|S•| =
∫ [k]

∆k × discSk,

where ∆k is the standard k simplex

{(t0, · · · , tk) ∈ Rk+1|
∑

ti = 1}.

Hence, we get that geometric realization is a left adjoint immediately.

Example A.2.7. The diagonal functor diag : ssSet→ sSet is the coend

(diagS)• =

∫ [k]

∆(k)× Sk,•
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A.3 Lax Ends

In this section we introduce lax ends, and prove analogues to some of the material in the
previous section. We will stick to strict functors and strict 2-categories, or in other words
enriched functors of Cat-enriched categories, but one may define lax ends in the more general
setting of bicategories and pseudofunctors. According to other sources, this material is
covered in [Boz], presumably in the more general case of bicategories (see e.g. [Boz1]).
Unfortunately, the author was was unable to locate a copy, but the definitions and proofs
below are fairly straightforward, so we will produce them from scratch.

Definition A.3.1. Let A,C ∈ CatCat, let F : Aop ×A → C be an enriched functor, and
let c ∈ C. We define a lax wedge ω : c ⇒ F to be an assignment of objects a ∈ A to
1-morphisms ω(a) : c → F (a, a), and an assigmnet from 1-morphisms f : a′ → a in A to
2-morphisms

c
ω(a) //

ω(a′)
��

F (a, a)

F (f,1)

��
F (a′, a′)

F (1,f)
//

ω(f)

5=

F (a′, a)

Subject to the following conditions:

1. For f ′ : a′′ → a, f : a′ → a, the 2-morphism filling the diagram

c
ω(a) //

ω(a′′)

��

ω(a′)

&&

F (a, a)

F (f,1)

��
F (a′, a′)

ω(f)

4<

F (f ′,1)
��

F (1,f)
// F (a′, a)

F (f ′,1)
��

F (a′′, a′′)

ω(f ′)

4<

F (1,f ′)
// F (a′′, a′)

F (1,f)
// F (a′′, a)

is equal to ω(f ◦ f ′).
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2. For a 2-morphism φ : g → f , f, g : a′ → a, the 2-morphism filling the diagram

c
ω(a) //

ω(a′)

��

F (a, a)

F (f,1)

��

F (g,1)

ww

F (φ,1) +3

F (a′, a′)
F (1,f) //

ω(f)

5=

F (1,g)

CCKS

F (1,φ)

F (a′, a)

is equal to ω(g).

If in addition we require the images ω(f) to be invertible 1-morphisms, we call ω an iso-lax
wedge.

Definition A.3.2. Let A,C ∈ CatCat, and let F : Aop ×A → C. We define a lax end of
F to be an object e ∈ C, together with a lax wedge ω : e ⇒ F which is final in the sense
that, given another wedge γ : d⇒ F , there is a 1-morphism g : d→ e, and unique invertible
2-morphisms

ω(a) ◦ g ⇒ ω(a)

such that, for f : a′ → a, the 2-morphism filling the diagram

d
g

##

γ(a)

##

γ(a′)

''

e
ω(a)

//

ω(a′)
��

KS

ks F (a, a)

F (f,1)
��

F (a′, a′)

ω(f)

5=

F (1,f)
// F (a′, a)

is equal to γ(f). The object e is unique up to equivalence, and we usually denote the lax
end by ∮

a∈A

F (a, a)

or by other obvious variations on a ∈ A. An iso-lax end will be the same definition with a
final iso-lax wedge.

Theorem A.3.3. Let C,D ∈ CatCat, and let F,G : C → D be enriched functors. Then
there is an equivalence of categories

Lax(F,G) ∼=
∮
c∈C

DCat(Fc,Gc),
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where the left hand side is the category of lax transformations and modifications.

Proof. We produce a lax wedge

ω : Lax(F,G)⇒ DCat ◦ (F op ×G),

and show that it is final among such lax wedges. Indeed, let f : c′ → c ∈ C, let α′, α : F ⇒ G
be a lax transformations, and let m : α′ → α be a modification. We make the following
definitions

ω(c)(α) := α(c)
ω(c)(m) := m(c)
ω(f)(α) := α(f).

The functoriality of ω(c) is clear, and the naturality of ω(f) on modifications follows from
the naturality condition for modifications. Condition 1 of Definition A.3.1 follows from
the functoriality of α on 1-morphisms. Condition 2 follows from the naturality of α on
1-morphisms. The universal property of this lax wedge follows from the observation that
the conditions for it to be a lax wedge were equivalent to the conditions satisfied by lax
transformations and modifications. We have therefore established the equivalence, since lax
ends are well-defined up to equivalence.

Remark A.3.4. The details in the proof above go through unchanged to give an equivalence

pNat(F,G) ∼=
∮ ∼
c∈C

DCat(Fc,Gc)

where the left hand side is now the category of pseudonatural transformations and modifi-
cations, and the right hand side is the iso-lax end.

A.4 Model Categories

In this appendix we give the definition of a model category, and also that of a simplicial
model category. These turn out to be an appropriate framework for forming various models
of (∞, 1) categories, which will be discussed in the next section. Good introductions on model
categories is given in [Hov], and [GJ], which also discusses simplicial model categories. They
were first introduced by Quillen, which explains the terminology ’Quillen equivalence’.

We begin with some preliminary terminology.

Definition A.4.1. 1. Let C be a category, and let f : A→ B, g : C → D be morphisms
of C. We say that f is a retract of g if there is a commutative diagram

A //

f
��

1

''
C

g
��

// A

f
��

B //

1

77D // B
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Note in particular the existence of the diagram implies that A is a retract of C and B
is a retract of B in the sense of objects.

2. A functorial factorization is an ordered pair of functors (α1, α2) from the category of
morphisms and commutative squares of C to itself with the property that

α2(f) ◦ α1(f) = f

for every morphism f of C. In particular, this composition is assumed to exist.

Definition A.4.2. Let C be a category. A model structure on C consists of the data

� Three collections of morphisms of C, called fibrations, cofibrations, and weak equiva-
lences.

� Two functorial factorizations of C: (α1, α2), and (β1, β2).

These data are subject to the following conditions.

1. (2-out-of-3). If f and g are composable morphisms of C such that two of the morphisms
f , g, and g ◦ f are weak equivalences, then so is the third.

2. (retract) The three collections of fibrations, cofibrations and weak equivalences are
closed under retracts.

3. (lifting) We say a morphism is a trivial fibration if it is both a fibration and a weak
equivalence, and similarly define a trivial cofibration. Given the solid commutative
diagram

A

i
��

// X

p
��

B //

>>

Y

the dotted arrow exists, making the diagram commute, provided that i is a trivial
cofibration and p is a fibration, or that i is a cofibration and p is a trivial fibration.
We describe this situation by saying that i has the left lifting property with respect to
p and that p has the right lifting property with respect to i.

4. (factorization) The factorization (α1, α2) factors morphisms into a cofibration followed
by a trivial fibration, and the factorization (β1, β2) factors morphisms into a trivial
cofibration followed by a fibration.

Definition A.4.3. A model category C is a category with all small limits and small colimits
together with a model structure.

We note the following characterization of cofibrations and fibrations, which (in the ’if’
direction) follows from the retract axiom (see 1.1.9-1.1.10 in [Hov]) .
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Lemma A.4.4. Let C be a model category. Then a morphism is a cofibration (resp. trivial
cofibration) if and only if it satisfies the left lifting property with respect to all trivial fibra-
tions (resp. fibrations). A morphism is a fibration (resp. trivial fibration) if it has the right
lifting property with respect to all trivial cofibrations (resp. cofibrations).

The ‘only if’ direction is satisfied by the lifting axiom. There is a nice corollary.

Corollary A.4.5. Cofibrations and trivial cofibrations are closed under pushout, in the
sense that if

A //

f
��

C

g
��

B // D

is a pushout square, then if f is a cofibration or trivial cofibration, so is g. Similarly, fibrations
and trivial fibrations are closed under pullback.

Proof. Pushout preserves the left lifting property, and pullback preserves the right lifting
property.

In most sources, the factorizations in the fourth axiom are merely assumed to exist,
rather than constitute a functorial factorization. However, they can always be made to be
functorial, and it makes various constructions using them natural, such as the following.

Definition A.4.6. 1. In a model category C, an object X is called fibrant if the canonical
morphism X → ∗, with ∗ the final object, is a fibration. We dually define cofibrant.
The fibrant replacement of an object X, is the object X̃ in the diagram

X

α1(1) ��

1 // X

X̃
α2(1)

??

arising from the factorization of 1X into a cofibration followed by a trivial fibration.
We similarly define cofibrant replacement via (β1, β2) applied to 1X .

2. Similarly to 1. we can factor the fold map X
∐
X → X into a cofibration X

∐
X →

CX followed by a trivial fibration CX → X; CX is called a cylinder object for X. We
similarly apply the other factorization to the diagonal map X → X × X to define a
path object PX with a trivial cofibration X → PX.

Cylinder and path objects are used to define the notion of homotopy in model categories.

Definition A.4.7. Let f, g : X → Y be two morphisms in a model category C.
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1. A left homotopy from f to g is a morphism h : CX → Y such that with the inclusions
i1, i2 : X → X

∐
X we have h ◦ i1 = f and h ◦ i2 = g.

2. A right homotopy from f to g is a morphism h : X → PY such that with the projections
π1, π2 : X ×X → X, we have π1 ◦ h = f and π2 ◦ h = g.

3. We say that f, g are homotopic if there is both a left and right homotopy from f to g.
We write this as f ∼ g.

4. We say that f is a homotopy equivalence if there is a morphism f ′ : Y → X such that
f ′ ◦ f ∼ 1X and f ◦ f ′ ∼ 1Y .

We next recall a very useful lemma, whose proof we include for completeness.

Lemma A.4.8 (Ken Brown’s Lemma). Suppose C is a model category and D is a category
with a subset of morphisms called weak equivalences satisfying the 2-out-of-3 rule. Suppose
F : C → D is a functor that takes trivial fibrations of fibrant objects to trivial fibrations.
Then F takes all weak equivalences of fibrant objects to weak equivalences.

Proof. Let f : X → Y be a weak equivalence of fibrant objects. Since X and Y are fibrant,
the right and bottom morphisms in the diagram

X × Y //

��

Y

��
X // ∗

are fibrations. Hence πX , πY are fibrations as well–fibrations are closed under pull-back.
Compositions of fibrations are fibrations (solve the lifting problem on the inner factor and
then the outer) and therefore X × Y is fibrant. Factor the map (1X , f) : X → X × Y
into a trivial cofibration i : X → C followed by a fibration p : C → X × Y . Again, since
compositions of fibrations are fibrant, C is fibrant. Note that πX ◦ p ◦ i = 1X , so πX ◦ p
is a weak equivalence (of fibrant objects) by 2-out-of-3. Similarly, πY ◦ p ◦ i = f is a weak
equivalence, so πY ◦ p is a weak equivalence. Both πX ◦ p and πY ◦ p are fibrations as well,
being compositions of such, and hence they are trivial fibrations (of fibrant objects). By
hypothesis, this means F (πX ◦ p) and F (πY ◦ p) are weak equivalences. By 2-out-of-3 (in
D), the former fact, and the observation F (πX ◦ p ◦ i) = F (1X) is a weak equivalence implies
that F (i) is a weak equivalence. Again by 2-out-of-3, F (πY ◦ p) ◦ F (i) = F (f) is a weak
equivalence, proving the result.

Remark A.4.9. There is a duality in the theory of model categories. Namely, if C is a model
category, then Cop has a canonical model structure with the fibrations of Cop corresponding to
the cofibrations of C, and vice-versa. When this duality is applied to Ken Brown’s Lemma,
for example, we have the statement: if F : C → D is a functor taking trivial cofibrations
of cofibrant objects to trivial cofibrations, then it takes all weak equivalences of cofibrant
objects to weak equivalences.
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By judicial application of Ken Brown’s lemma, together with the axioms of a model
category, one obtains the following important facts. For detailed proofs, see Chapter 1 of
[Hov].

Theorem A.4.10. Let X, Y be objects of a model category C that is both fibrant and
cofibrant.

1. The relation ∼ on C(X, Y ) is an equivalence relation which is compatible with compo-
sition. Furthermore this relation is identical to that of right homotopy and that of left
homotopy (alone).

2. The homotopy equivalences between X and Y correspond exactly to the weak equiva-
lences.

The homotopy category of a model category C, denoted h C is (informally) the category
obtained by formally inverting all of the weak equivalences of C. The above facts motivate
an equivalence between this category and the category with objects the fibrant, cofibrant
objects of C, and morphisms given by equivalence classes of homotopic morphisms.

We next define an appropriate notion of equivalence of model categories, which subsumes
the obvious candidate of an ’equivalence of categories preserving all relevant structure’.

Definition A.4.11. A Quillen adjunction between model categories C,D is an adjunction
F : C 
 D : G which satisfies the following two equivalent conditions.

1. F preseves cofibrations and trivial cofibrations.

2. G preserves fibrations and trivial fibrations.

That the two conditions are equivalent is Lemma 1.3.4 in [Hov].

Definition A.4.12. A Quillen adjunction F : C 
 D : G is called a Quillen equivalence if,
for X ∈ C cofibrant amd Y ∈ D fibrant, the bijection

C(X,GY )
∼→ D(FX, Y )

induced by the adjunction preserves weak equivalences.

The importance of Quillen equivalences is that they are precisely the Quillen adjunctions
which induce an equivalence on homotopy categories (see Proposition 1.3.13 in [Hov]).

Next we head toward the notion of a simplicial model category.

Definition A.4.13. The category of properly simplicially enriched categories has as objects
categories properly tensored and cotensored over sSet with the product monoidal structure,
and as morphisms enriched functors.
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We use this clunky term simply to leave the term ’simplicial category’ available. Enriched
categories and the notion of properly tensored are defined in A.1.

Remark A.4.14. The properness of the tensor structure of a properly simplicially enriched
category C implies, among other things, that

C(X, Y ) ∼= sSet(∗,CsSet(X, Y )) ∼= CsSet(X, Y )0

In other words, the morphisms of C are precisely the zero simplicies of the ’space of mor-
phisms’.

Definition A.4.15. The standard model structure on the category sSet of simplicial sets has
inclusions as cofibrations, Kan fibrations as fibrations (see A.5), and as weak equivalences
the morphisms that induce isomorphisms on homotopy groups.

For a detailed explanation of this model structure (and a proof of the model axioms), see
[Hov] or [GJ].

Definition A.4.16. A properly simplicially enriched category C with a model structure is
a simplicial model category if the following additional property holds. Suppose i : A→ B is
a cofibration and p : X → Y is a fibration. Then

CsSet(B,X)
(i∗,p∗)−→ CsSet(A,X)×CsSet(A,Y ) CsSet(B, Y )

is a fibration in the standard model structure of sSet, which is a weak equivalence if i or p
is.

The section II.3 in [GJ] contains the following useful remarks.

Remark A.4.17. There are three observations to be made about the above definition. The
first is that, by setting A to be the initial object in the above, we get the statement that if
B is cofibrant, and p : X → Y is a fibration, then

p∗ : CsSet(B,X)→ CsSet(B, Y )

is a fibration. In particular, simplicial set of maps into a fibrant object from a cofibrant
object is a Kan complex. Setting Y to be the final object yields a cofibration

i∗ : CsSet(B,X)→ CsSet(A,X)

provided X is fibrant. The third statement is that the extra axiom is much stronger than
the lifting axiom of a model category. Indeed, the solid diagram

A

i
��

// X

p
��

B //

>>

Y
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is precisely a zero simplex in

CsSet(A,X)×CsSet(A,Y ) CsSet(B, Y ).

Which is surjected on by CsSet(B,Y ), since trivial fibrations (of simplicial sets) are surjective.
The dotted arrow can be chosen to be any preimage of the zero simplex corresponding to
the diagram. Moreover, since trivial fibrations are closed under pullback, by pulling back
the trivial fibration

CsSet(B,X)
(i∗,p∗)−→ CsSet(A,X)×CsSet(A,Y ) CsSet(B, Y )

over the zero simplex specified by the solid diagram one sees that there is a contractible
space of solutions to the mapping problem.

The last observation in particular shows that a simplicial model category is something
more than just an enriched category with compatible model structure, which one might think
of as the first two observations.

A.5 (∞, 1) Categories

The goal of this section is to describe four models for the theory of (∞, 1) categories, which
will ultimately be combined with the previous section to provide the model for symmetric
monoidal (∞, 1) categories we choose to work with.

Recall the abstract notion of an (∞, 1) category: it is a gadget posessing objects, 1-
morphisms, and various higher morphisms. The morphisms above dimension 1 are required
to be invertible. Furthermore, the usual axioms of identity and associativity for 1-morphisms
in category theory are replaced by various coherence conditions. For example, composition
is associative only up to (invertible) 2-morphisms called the associator, and the usual pen-
tagon formed from associating four morphisms in the various ways is in turn filled with a
‘pentagonator’, which is in turn subject to higher coherence conditions.

One quickly sees the impossibility of specifying all this data individually; so various
models have been introduced to model these data all at once. We refer the reader to the
survey [Ber], and also to the first chapter of [Lur] for a discussion of the ideas behind these
models.

These models for (∞, 1) categories all share the property that they can be expressed as
the full subcategory of fibrant objects of some model category (whose underlying category
is fairly simple, but whose model structure can be quite complicated). In [Ber] references
are given to various works showing that all these model categories are Quillen equivalent, as
one might expect.

We conclude each discussion of a model for (∞, 1)-categories with a description of the
(∞, 1)-category induced by an ordinary category. Clearly any reasonable model of (∞, 1)-
category should admit such a construction.
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A.5.1 Complete Segal Spaces

The first two models of (∞, 1) categories we will discuss are built off of models of (∞, 0)
categories, i.e. ∞-groupoids. One natural example of something that behaves like an ∞
groupoid is a Kan complex. We recall their definition, which requires some preliminary
notation.

Definition A.5.1. Let sSet := Set∆op

denote the category of simplicial sets. Let [n] denote
the totally ordered set

0 < 1 < · · · < n,

i.e. a typical object of ∆. Define the standard n-simplex ∆(n) ∈ sSet by the formula

∆(n)k = ∆([k], [n]).

Finally define the kth horn of the standard n-simplex, denoted Λ(n, k) to be the largest
sub-simplicial set of ∆(n) obtained by removing the face opposite the kth vertex.

Note that ∆(n) represents the nth simplicies functor:

sSet(∆(n), S•) ∼= Sn

Definition A.5.2. A Kan fibration is a morphism of simplicial sets p : S• → T• such that
given the solid diagram, a simplex indicated by the dotted line exists

Λ(n, k) //

��

S•

��
∆(n)

;;

// T•

Here n is anything, 0 ≤ k ≤ n, and the vertical map is the obvious inclusion of the horn. A
simplicial set is Kan if the unique morphism S• → ∆(0) is a Kan fibration. In this case, we
can simply ignore the T in the mapping problem diagram above.

We will take the position that this is a definition. Namely that an ∞ groupoid is a Kan
complex. Note that Kan complexes are the fibrant objects in the usual model structure on
simplicial sets.

Now, given some (∞, 1) category X, we should be able to recover an ∞ groupoid (i.e.
Kan complex) by discarding all the non-invertible 1-morphisms. This can be thought of as
considering the terminal category [0] as an (∞, 1) category with only identities as higher
morphisms, taking the (∞, 1) category Fun([0], X) and then taking the largest Kan complex
inside. We denote this operation of discarding noninvertible morphisms by superscript ◦

We could just as well replace the test category [0], by the categories [n] for larger n. That
is, we can produce Kan complexes

Xn := Fun([n], X)◦.
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This is similar to the nerve construction, and since nerve induces a fully faithful embedding of
the category of small categories into sSet, we produce the category of Segal spaces, denoted
SSp as a full subcategory of the category of bisimplicial sets, ssSet, which are in particular
pointwise Kan. We need a bit more terminology to state the other condition.

Definition A.5.3. For each n, and i = 0, · · · , n − 1, Let ιi[n] : [1] → [n] be the functor

(i.e. morphism in ∆) determined by ιi[n](0) = i and ιi[n](1) = i + 1. Let ι
[n]
i denote the

corresponding morphism in ∆op.
Let X• : ∆op → sSet be a bisimplicial set. Note that the map

(ι
[n]
0 , · · · , ι[n]

n−1) : Xn →
n∏
1

X1

passes to the fibred product X1 ×X0 · · · ×X0 X1. We let ψn denote the resulting map,
sometimes called the Segal map.

We now have the following definition, due to Rezk ([Rez]).

Definition A.5.4. A simplicial Segal space is a bisimplicial set X• : ∆op → sSet which is
Reedy fibrant and such that the Segal maps

ψn : Xn →X1 ×bmX0 · · · ×X0 X1︸ ︷︷ ︸
n times

are weak equivalences of simplicial sets.

Note that the Reedy fibrant assumption implies that the above simplicial sets are Kan,
so that the Segal map is actually a homotopy equivalence (see appendix A.4). The above
definition seems standard in most of the literature on (∞, 1) categories. Unfortunately, in
[Lur1], uses the same term for something slightly different, which we will call a Segal space.
We will need some terminology before we give the definition.

Definition A.5.5. Let f : X → Z, and g : Y → Z be continuous maps in Top. Then the
homotopy fibre product X ×h

Z Y is the space

X ×Z Z [0,1] ×Z Y.

Given a commutative diagram
W //

��

X

��
Y // Z

in Top, we say that it is a homotopy pullback square if the induced map

W → X ×Z Y → X ×h
Z Y

is a weak equivalence.
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Definition A.5.6. A Segal space is a simplicial space X• : ∆op → Top such that, for each
pair of natural numbers n,m, the diagram

Xm+n
//

��

Xm

��
Xn

// X0

is a homotopy pullback square. We denote the full subcategory of sTop whose objects are
Segal spaces by Sp.

Remark A.5.7. Notice in particular in Definition A.5.6, the Reedy fibrancy condition has
been dropped. We remark that if this condition is retained, then the Segal map condition is
analogous to that of simplicial Segal spaces. That is, if X• is a Segal space X• : ∆op → Top
which is Reedy fibrant in the Reedy model structure on sTop, then the Segal maps

ψn : Xn → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
n times

are weak equivalences of (compactly generated, weakly Hausdorff) topological spaces (see
[Lur2] §2.1).

We can make sense of ’objects’ of a (simplicial) Segal space; namely the zero simplicies
of X0 (i.e. X0,0). We can also make sense of the mapping space between any two objects
x, y: it is the fiber of the obvious map X1 → X0 ×X0 over (x, y). We will say that two zero
simplicies in the mapping space between x and y (i.e. two maps) are homotopic if they lie
in the same path component. One can make sense of composition, by taking a homotopy
inverse to the Segal map ψ2, and the higher Segal maps ensure that this composition is
homotopy coherent, which motivates the following definition.

Definition A.5.8. Let X• be a (simplicial) Segal space. We define the homotopy category,
hX to have objects X0,0 and hom-sets given by the connected components of the mapping
spaces of X• (i.e. π0).

That the result is indeed a category in the case of simplicial Segal spaces is shown in §5
of [Rez].

This gives enough to make sense of the notion of homotopy equivalence, which obviously
subsumes ‘identity maps’ in the image of the degeneracy map s0 : X0 → X1. We arrive at
the following definition, again from [Rez].

Definition A.5.9. Let Xeq denote the space of homotopy equivalences of a Segal space
Xbullet. We say that X• is a complete simplicial Segal space if the diagonal map in

X0
s0 //

!!

X1

Xeq

?�

OO
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is a weak equivalence of simplicial sets.

We make an anlagous defintion for complete Segal space.
We next consider a particular type of morphism of simplicial Segal spaces, named for

Dwyer and Kan.

Definition A.5.10. Let X•,Y• ∈ ssSet, and f : X• → Y•. We say that f is a DK
equivalence if

� For any pair of objects in X0,0, the map induced by f on mapping spaces is a weak
equivalence of simplicial sets.

� The functor
h f : hX → hY

is an equivalence of categories.

We can summarize the results of [Rez], §7, with the following theorem

Theorem A.5.11. 1. There is a simplicial model structure on ssSet such that

� The fibrant objects are exactly the Segal spaces, and all objects are cofibrant.

� The trivial fibrations (i.e. weak equivalences of Segal spaces) are precisely the
Reedy weak equivalence.

2. There is a simplicial model structure on ssSet such that

� The fibrant objects are exactly the complete Segal spaces, and all objects are
cofibrant.

� The trivial fibrations are precisely the DK-equivalences.

3. The complete Segal space model structure is obtained from the Segal space model
structure by Bousfield localization at the DK equivalences.

The reason that we care about complete (simplicial) Segal spaces is that it is ssSet
with the complete simplicial Segal space model structure which is Quillen equivalent to
the other types of (∞, 1) categories below. Fortunately, although the examples of (∞, 1)
categories discussed in this paper (and which arise ’from nature’) are neither Reedy fibrant
nor complete in general, fibrant replacement gives a uniform way to rectify that. In general,
if the completeness condition is dropped, then there are many (simplicial) Segal spaces with
the same homotopy category. For example both N C and NS C have C as their homotopy
category, where NS is defined as follows.
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Let cSSp denote the full subcategory of ssSet consisting of complete Segal spaces. Let
I[m] denote the groupoid with m+1 objects and m composable isomorphisms between them.
Let C ∈ Cat be a small category. Define the Segal nerve of C to be the bisimplicial set

(NS C)n,m = Fun([n]× I[m], C)

This construction is obviously functorial, and Lemmas 3.6-3.9 in [Rez] give the following
result.

Theorem A.5.12. The functor Ns : Cat → ssSet is a full embedding of categories, and
ends up in the subcategory of complete Segal spaces. A functor F : C → D is an equivalence
if and only if NS F is a weak equivalence in the Reedy model structure, and finally we have
natural isomorphisms

NS(C × D) ∼= NS C × NS D and NS

(
DC
) ∼= ssSet(NS C,NS D).

Remark A.5.13. In view of the second isomorphism, it makes sense to view NS as an
enriched functor NS : N∗Cat→ ssSet, by setting

NS

(
N
(
DC
))

= ssSetsSet(NS C,NS D).

A.5.2 Locally Kan Categories

The second model is based on the idea, which bears out in the case of complete Segal spaces,
that one should replace a set of morphisms between any two objects, as in ordinary categories,
with a space of morphisms. Another way to view this is that a (strict) 2-category can be
thought of as a category enriched in small categories; therefore, an (∞, 1) category should
be enriched in ∞-groupoids. As discussed in the previous section, a reasonable model for
∞-groupoids is provided by the category of Kan complexes. So the idea is that categories
enriched over the category Kan of Kan complexes is a type of (∞, 1) category. As it turns
out, these are the fibrant objects of a certain model structure on the category of simplicially
enriched categories and enriched functors.

Definition A.5.14. A simplicially enriched category is a category enriched over sSet, con-
sidered as a monoidal category with the product monoidal structure. We use the notation
CatsSet to denote the category of such objects together with enriched functors, which in this
case we will call simplicial functors.

A locally Kan category is a simplicially enriched category C such that, for X, Y ∈ C, the
simplicial set

CsSet(X, Y )

is Kan.
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For enriched categories, recall that we have the following construction of Remark A.1.3.
As an example, we have the ’path component’ functor π0 : sSet→ Set which commutes

with products, and is therefore monoidal with respect to the product monoidal structures on
source and target. Given C ∈ CatsSet, (π0)∗C should be considered the ’homotopy category’
of C:it is a category enriched in Set, i.e. an ordinary category. We now describe the weak
equivalences of the model structure having locally Kan categories as the fibrant objects.
These are also called DK-equivalences.

Definition A.5.15. Let C,D ∈ CatsSet. A DK-equivalence F : C → D is a simplicial
functor such that

� For x, y ∈ C, the simplicial map

Fx,y : CsSet(x, y)→ DsSet(Fx, Fy)

is a weak equivalence of simplicial sets.

� The functor
(π0)∗F : (π0)∗C→ (π0)∗D

is an equivalence of categories.

We need one more piece of terminology to describe the model structure on CatsSet whose
fibrant objects are locally Kan categories.

Definition A.5.16. Let C ∈ CatsSet. We say that a ’morphism’

f ∈ CsSet(x, y)0

is a homotopy equivalence if the image of f in (π0)∗C is an isomorphism.

The main result of [Ber1] is the following.

Theorem A.5.17. There is a model category structure on CatsSet with the following weak
equivalences and fibrations.

1. The weak equivalences are the DK-equivalences.

2. The fibrations F : C→ D are the simplicial functors such that

� For x, y ∈ C, the simplicial map

Fx,y : CsSet(x, y)→ DsSet(Fx, Fy)

is a Kan fibration.
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� For objects x1 ∈ C and y ∈ D, and a homotopy equivalence f : Fx1 → y, there is
an object x2 ∈ C and a homotopy equivalence e : x1 → x2 in C such that Fe = f .

Furthermore the fibrant objects are precisely the locally Kan categories.

Note that we did not specify the cofibrations. This is not necessary by Lemma A.4.4: the
cofibrations can be defined to be the morphisms with the left lifting property with respect
to the trivial fibrations.

In this case, the locally Kan category induced by an ordinary category is clear: simply
consider an ordinary category as enriched over sSet with discrete simplicial hom-objects.

A.5.3 Quasi-categories

Quasi-categories were introduced by Boardman and Vogt in [BV], and their theory was
developed extensively by Joyal ([Joy]), and Lurie ([Lur2]). They are also sometimes called
weak Kan complexes, and ∞-categories (in [Lur2]).

The germ of the idea behind quasi-categories is the following standard exercise.

Lemma A.5.18. A simplicial set C• ∈ sSet is in the essential image of the nerve functor
N : Cat→ sSet if and only if the following condition holds: Given the solid diagram where
n ≥ 2 and 0 < k < n,

Λ(n, k) //
� _

��

C•

∆(n)

∃!

;;

The dotted arrow exists and is unique.

Indeed, such a lift is found in the case n = 2, k = 1 by the composition of morphisms. A
horn Λ(n, k) is called an inner horn when 0 < k < n, and so we have an alternative definition
of an ordinary (small) category: it is a simplicial set where every inner horn can be filled
uniquely.

This leads to the weakening:

Definition A.5.19. A simplicial set C• ∈ sSet is called a quasi-category if every inner horn
Λ(n, k)→ C• can be filled.

There is the following pleasant theorem of Joyal ([Joy]).

Theorem A.5.20. Let C• ∈ sSet. Then C• is a quasi-category if and only if the simplical
set map

sSet(∆(2), C•)→ sSet(Λ(2, 1), C•)

on inner-homs induced by the inclusion of the horn is a trivial Kan fibration.
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So, similarly to the simplicial model category case, the space of solutions to the mapping
problem

Λ(2, 1) //
� _

��

C•

∆(2)

∃!

<<

i.e., ’the space of compositions’, is contractible.
Let π1 : sSet → Cat denote the left adjoint to the nerve functor, i.e. ’fundamental

category’ (see [JT]). Now we can describe the model structure whose fibrant objects are the
quasi-categories.

Theorem A.5.21. There is a model structure on sSet, called the Joyal model structure
(compare the standard model structure), with

1. Weak equivalences are simplicial set maps f : S• → T• such for any quasi-category C•,
the functor

π1(f ∗) : π1sSet(T•, C•)→ π1sSet(S•, C•)

is an equivalence of categories.

2. The fibrations are simplicial set maps f : S• → T• that have the right lifting propert
with respect to inner horns: given a solid commutative diagram

Λ(n, k) //

��

S•

f

��
∆(n)

;;

// T•

with 0 < k < n, a simplex indicated by the dotted arrow exists.

3. Cofibrations are injections of simplicial sets.

Given a category C, taking the nerve N C produces a quasi-category. In this case the
horn-fillers are unique.
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