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ABSTRACT

“Big Data” computing increasingly utilizes the MapReduce

programming model for scalable processing of large data

collections. Many MapReduce jobs are I/O-bound, and

so minimizing the number of I/O operations is critical to

improving their performance. In this work, we present

ThemisMR, a MapReduce implementation that reads and

writes data records to disk exactly twice, which is the mini-

mum amount possible for data sets that cannot fit in memory.

In order to minimize I/O, ThemisMR makes fundamen-

tally different design decisions from previous MapReduce

implementations. ThemisMR performs a wide variety of

MapReduce jobs – including click log analysis, DNA read

sequence alignment, and PageRank – at nearly the speed of

TritonSort’s record-setting sort performance.

1. INTRODUCTION

Building efficient and scalable data processing sys-
tems is a challenging – and increasingly important
– problem. Scale-out software systems implementing
the MapReduce programming model, such as Google’s
MapReduce [10] and Apache Hadoop [41, 42], have
made great strides in providing efficient system archi-
tectures for these workloads. However, a significant gap
remains between the delivered performance of these sys-
tems and the potential performance available from the
underlying hardware [30, 5].

Our recent experience building TritonSort [30], a
large-scale sorting system, shows that an appropriately
balanced implementation can realize orders of magni-
tude improvement in throughput and efficiency. Trans-
lating these types of gains to more general-purpose data
processing systems will help close this efficiency gap, al-
lowing more work to be performed with the same hard-
ware, or the same amount of work to be performed with
less hardware. This improved efficiency will result in
substantially lowered system cost, energy usage, and
management complexity.

Given that many MapReduce jobs are I/O-bound, an
efficient MapReduce system must aim to minimize the
number of I/O operations it performs. Fundamentally,
every MapReduce system must perform at least two I/O

operations per record [4] when the amount of data ex-
ceeds the amount of memory in the cluster. We refer
to a system that meets this lower-bound as having the
“2-IO” property. Any data processing system that does
not have this property is doing more I/O than it needs
to. Existing MapReduce systems exceed the 2-IO limit
to provide fine-grained fault tolerance and to handle
variably-sized records.

In this paper, we present ThemisMR1, an implemen-
tation of MapReduce designed to have the 2-IO prop-
erty. ThemisMR accommodates the flexibility of the
MapReduce programming model while simultaneously
delivering high efficiency. It does this by considering
fundamentally different points in the design space than
existing MapReduce implementations.

The design decisions we make in ThemisMR include:
1. Eliminating task-level fault tolerance: At

the scale of tens of thousands of servers, failures are
common, and so MapReduce was designed with a strong
task-level fault tolerance model. However, more ag-
gressive fault tolerance gains finer-grained restart at
the expense of lower overall performance. Interest-
ingly, many Hadoop users report cluster sizes of under
100 nodes [17], much smaller than MapReduce early
adopters. In 2011, Cloudera’s VP of Customer Rela-
tions stated that the mean size of their clients’ Hadoop
clusters is 200 nodes, with the median size closer to
30 [3]. At this moderate scale, failures are much less
common, and aggressive fault tolerance is wasteful.
ThemisMR forgoes this fine-grained fault tolerance to
achieve the 2-IO property. When a job experiences a
failure, ThemisMR simply re-executes it. This opti-
mistic approach to fault tolerance enables ThemisMR
to aggressively pipeline records without materializing
intermediate results to disk. As we will show, for moder-
ate cluster sizes this approach has the counter-intuitive
effect of improving performance despite the occasional
job re-execution.

2. Dynamic, adaptive memory allocation: To
maintain the 2-IO property, ThemisMR must process a

1Themis is a Titan in Greek mythology who is tasked with
creating balance, order and harmony.
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record completely once it is read from disk. This pre-
vents ThemisMR from putting records back on disk in
response to memory pressure through swapping or writ-
ing spill files. ThemisMR implements a policy-based,
application-level memory manager that provides fine-
grained sharing of memory between operators process-
ing semi-structured, variably-sized records. This allows
ThemisMR to support datasets with as much as a fac-
tor of 107 skew between records while still maintaining
the 2-IO property.

3. Central management of shuffle and disk
I/O: ThemisMR uses a centralized, per-node disk
scheduler that ensures that records from multiple map

and reduce tasks are dispatched to disk in large batches
to reduce disk seeks. ThemisMR delivers nearly sequen-
tial disk I/O across a variety of MapReduce jobs, even
for workloads that far exceed the size of main memory.

To validate our design, we have written a number of
MapReduce programs on ThemisMR, including a web
user session tracking application, PageRank, n-gram
counting, and a DNA read alignment application. We
found that ThemisMR processes these jobs at nearly
the per-node performance of TritonSort’s record-setting
sort run and nearly the maximum sequential speed of
the underlying disks.

2. MOTIVATION

To enable ThemisMR to achieve the 2-IO property,
we make different design decisions than those made in
Google’s and Hadoop’s MapReduce implementations.
In this section, we discuss our motivations for making
these decisions.

2.1 Target Deployment Environments

A large number of “Big Data” clusters do not ap-
proach the size of warehouse-scale data centers like
those at Google and Microsoft because moderately-sized
clusters (10s of racks or fewer) are increasingly able to
support important real-world problem sizes. The stor-
age capacity and number of CPU cores in commodity
servers are rapidly increasing. In Cloudera’s reference
system design [1], in which each node has 16 or more
disks, a petabyte worth of 1TB drives fits into just over
three racks, or about 60 nodes. Coupled with the emer-
gence of affordable 10 Gbps Ethernet at the end host
and increasing bus speeds, data can be packed more
densely than ever before while keeping disk I/O as the
bottleneck resource. This implies that fewer servers are
required for processing large amounts of data for I/O-
bound workloads. We now consider the implications of
this density on fault tolerance.

2.2 Fault Tolerance for “Dense” Clusters

A key principle of ThemisMR’s design is that it per-

forms job-level, rather than task-level, fault tolerance.
It does this because task-level fault tolerance requires
materializing intermediate records, which imposes ad-
ditional I/Os in excess of the constraint imposed by the
2-IO property. We show that job-level fault tolerance
is feasible for moderately-sized clusters, and that there
are significant potential performance benefits for using
job-level fault tolerance in these environments.

Understanding the expectation of failures is criti-
cal to choosing the appropriate fault tolerance model.
MapReduce was designed for clusters of many thou-
sands of machines running inexpensive, failure-prone
commodity hardware [10]. For example, Table 1 shows
component-level mean-time to failure (MTTF) statis-
tics in one of Google’s data centers [15] Google’s failure
statistics are corroborated by similar studies of hard
drive [28, 35] and node [26, 34] failure rates. At mas-
sive scale, there is a high probability that some portion
of the cluster will fail during the course of a job. To un-
derstand this probability, we employ a simple model [6],
shown in Equation 1, to compute the likelihood that a
node in a cluster of a particular size will experience a
failure during a job:

P (N, t, MTTF ) = 1 − e(−N∗t)/MTTF (1)

The probability of a failure occurring in the next t
seconds is a function of (1) the number of nodes in the
cluster, N , (2) t, and (3) the mean time to failure of
each node, MTTF , taken from the node-level failure
rates in Table 1. This model assumes that nodes fail
with exponential (Pareto) probability, and we simplify
our analysis by considering node failures only. We do
this because disk failures can be made rare by using
node-level mechanisms (i.e., RAID), and correlated rack
failures are likely to cripple the performance of a clus-
ter with only a few racks. Based on the above model,
in a 100,000 node data center, there is a 93% chance
that a node will fail during any five-minute period. On
the other hand, in a moderately-sized cluster (e.g., 200
nodes, the average Hadoop cluster size as reported by
Cloudera), there is only a 0.53% chance of encountering
a node failure during a five-minute window, assuming
the MTTF rates in Table 1.

This leads to the question of whether smaller deploy-
ments benefit from job-level fault tolerance, where if
any node running a job fails the entire job restarts. In-
tuitively, this scheme will be more efficient overall when
failures are rare and/or jobs are short. In fact, we can
model the expected completion time of a job S(p, T ) as:

S(p, T ) = T

(

p

1 − p
+ 1

)

(2)

where p is the probability of a node in the cluster
failing, and T is the runtime of the job (a derivation
of this result is available at [39]). Note that this esti-
mate is pessimistic, in that it assumes that jobs fail just
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(a) 5-minute job
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(b) 1-hour job (see text below for expla-
nation of marked point)
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(c) 10-hour job

Figure 1: A lower-bound of the expected benefit of job-level fault tolerance for varying job durations
and cluster sizes. Given that an error-free execution of a job with task-level fault tolerance takes
five minutes (a), an hour (b), or ten hours (c) to complete, we explore the expected performance
improvement gained from job-level fault tolerance if an error-free run of the job executes 1, 2, 4, and
8x faster with job-level fault tolerance than it does with task-level fault tolerance.

Component Failure rates

Node 4.3 months
Disk 2-4% annualized
Rack 10.2 years

Table 1: Component-level failure rates observed
in a Google data center as reported in [15]

before the end of their execution. By combining equa-
tions 1 and 2, we can compute the expected benefit–or
penalty–that we get by moving to job-level fault tol-
erance. Modeling the expected runtime of a job with
task-level fault tolerance is non-trivial, and so we in-
stead compare to an error-free baseline in which the
system’s performance is not affected by node failure.
This comparison underestimates the benefit of job-level
fault tolerance.

Figure 1 shows the expected performance benefits of
job-level fault tolerance compared to the error-free base-
line. More formally, we measure performance benefit as
S(P (·), Tjob)/Ttask, where Tjob is the time a job on an
error-free cluster takes to execute with job-level fault
tolerance and Ttask is the time the same job takes to
execute with task-level fault tolerance.

The benefits of job-level fault tolerance increase as
the error-free performance improvement made possible
by moving to job-level fault tolerance (i.e. Ttask/Tjob)
increases. For example, if Ttask/Tjob is 4, Ttask is one
hour and we run on a cluster of 1,000 nodes, we can ex-
pect ThemisMR to complete the job 240% faster than
the task-level fault tolerant alternative on average; this
scenario is marked with a star in Figure 1(b). There
are also situations in which job-level fault tolerance
will significantly under-perform task-level fault toler-
ance. For example, if Ttask/Tjob is 2, ThemisMR will
under-perform a system with task-level fault tolerance
for clusters bigger than 500 nodes. From this, we make

two key observations: for job-level fault tolerance to be
advantageous, the cluster has to be moderately-sized,
and ThemisMR must significantly outperform the task-
level alternative.

ThemisMR outperforms task-level alternatives by en-
suring that it meets the 2-IO property. In the next sec-
tion, we describe key challenges in designing a system
that meets this property.

3. THE CHALLENGE OF SKEW

One of MapReduce’s attractive properties is its abil-
ity to handle semi-structured and variably-sized data.
This variability makes maintaining the 2-IO property a
challenge. In this section, we describe two sources of
variability and the resulting requirements they place on
our design.

An input dataset can exhibit several different kinds of
skew, which simply refers to variability in its structure
and content. These include:

Record Size Skew: In systems with semi-
structured or unstructured data, some records may be
much larger than others. This is called record size skew.
In extreme cases, a single record may be gigabytes in
size.

Partitioning Skew: Data that is not uniformly dis-
tributed across its keyspace exhibits partitioning skew.
This can cause some nodes to process much more
data than others if the data is naively partitioned
across nodes, creating stragglers [11]. Handling skew
in MapReduce is complicated by the fact that the dis-
tribution of keys in an input dataset is often not known
in advance. Existing MapReduce implementations han-
dle partitioning skew by spilling records to disk that
cannot fit into memory.

Computational Skew: Records in a dataset ex-
hibiting computational skew take much longer than av-
erage to process. Much of the work on mitigating com-
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putational skew in MapReduce involves exploiting the
nature of the particular problem and relying on a de-
gree of user guidance [19], aggregating and re-balancing
intermediate data dynamically [29], or proactively re-
partitioning the input data for a task [20]. As the focus
of our work is I/O-bound jobs, we do not consider com-
putational skew in this work.

Performance Heterogeneity: The performance
characteristics of a population of identical machines can
vary significantly; the reasons for this heterogeneity are
explored in [32]. In addition, clusters are rarely made
up of a homogeneous collection of machines due both
to machine failures and planned incremental upgrades.
While we believe that the techniques presented in this
work can be applied to heterogeneous clusters, we have
not evaluated ThemisMR in such a setting.

ThemisMR adopts a sampling-based skew mitigation
technique to minimize the effects of partitioning skew.
We discuss this mitigation technique in Section 6. To
handle record skew, ThemisMR dynamically controls its
memory usage, which we describe in Section 5.

4. SYSTEM ARCHITECTURE

In this section, we describe the design of ThemisMR.

4.1 The Themis Runtime

ThemisMR is built on top of Themis, which is the
same runtime used to build the TritonSort [30] sorting
system. Applications on Themis are written as a se-
quence of phases, each of which consists of a directed
dataflow graph of stages connected by FIFO queues.
Each stage consists of a number of workers, each run-
ning as a separate thread.

4.2 MapReduce Overview

Phase Description Required?

0 Skew Mitigation Optional
1 map() and shuffle Required
2 sort and reduce() Required

Table 2: ThemisMR three stage architecture

Unlike existing MapReduce systems, which exe-
cutes map and reduce tasks concurrently in waves,
ThemisMR implements the MapReduce programming
model in three phases of operation, summarized in Ta-
ble 2. Phase zero, described in Section 6, is responsible
for sampling input data to determine the distribution
of record sizes as well as the distribution of keys. These
distributions are used by subsequent phases to minimize
partitioning skew. Phase one, described in Section 4.3,
is responsible for applying the map function to each in-
put record, and routing that record to an appropriate
partition in the cluster. This is the equivalent of existing
systems’ map and shuffle phases. Phase two, described

in Section 4.4, is responsible for sorting and applying
the reduce function to each of the intermediate parti-
tions produced in phase one. At the end of phase two,
the MapReduce job is complete.

Phase one reads each input record and writes each
intermediate record exactly once. Phase two reads and
writes each intermediate partition of records exactly
once. Thus, ThemisMR has the 2-IO property.

4.3 Phase One: Map and Shuffle

Phase one is responsible for implementing both the
map operation as well as shuffling records to their ap-
propriate node. Each node in parallel implements the
stage graph pipeline shown in Figure 2.

The Reader stage reads records from an input disk
and sends them to the Mapper stage, which applies
the map function to each record. As the map func-
tion produces intermediate records, each record’s key is
hashed to determine the node to which it should be sent.
It is then placed in a per-destination buffer that is given
to the sender when it is full. The Sender sends data
to remote nodes using a round-robin loop of short, non-
blocking send() calls. We call the Reader to Sender
part of the pipeline the “producer-side” pipeline.

The Receiver stage receives records from remote
nodes over TCP using a round-robin loop of short, non-
blocking recv() calls. We implemented a version of this
stage that uses select() to avoid unnecessary polling,
but found that its performance was too unpredictable
to reliably receive all-to-all traffic at 10Gbps. The re-
ceiver places incoming records into a set of small per-
source buffers, and sends those buffers downstream to
the Demux stage when they become full.

The Demux stage is responsible for assigning
records to partitions. It hashes each record’s key to
determine the partition to which it should be writ-
ten, and appends the record to a small per-partition
buffer. When that buffer becomes full, it is emitted to
the Chainer stage, which links buffers for each par-
tition into separate chains. When chains exceed a pre-
configured length, which we set to 4.5 MB to avoid do-
ing small writes, it emits them to the Coalescer stage.
The Coalescer stage merges chains together into a sin-
gle large buffer, which it sends to the Writer stage,
which appends them to the appropriate partition file.
The combination of the Chainer and Coalescer stages
allow buffer memory in front of the Writer stage to be
allocated to partitions in a highly dynamic and fine-
grained way. We call the Receiver to Writer part of the
pipeline the “consumer-side” pipeline.

A key requirement of the consumer-side pipeline is
to perform large, contiguous writes to disk to minimize
seeks and provide high disk bandwidth. We now de-
scribe a node-wide, application-driven disk scheduler
that ThemisMR uses to ensure that writes are large.
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Figure 2: Stages of Phase One (Map/Shuffle) in ThemisMR

Each writer induces back-pressure on chainers, which
causes the per-partition chains to get longer. In this
way, data gets buffered within the chainer. This buffer-
ing can grow very large–to over 10GB on a machine
with 24GB of memory. The longer a chain becomes,
the longer the corresponding write will be. We limit
the size of a chain to 14MB, to prevent very large writes
from restricting pipelining. The large writes afforded by
this scheduler allow ThemisMR to write at nearly the
sequential speed of the disk. [30] provides a detailed
evaluation of the relationship between write sizes and
system throughput.

Signaling back-pressure between the chainer and the
writer stage is done by means of write tokens. The
presence of a write token for a writer indicates that
it can accept additional buffers. When the writer re-
ceives work, it removes its token, and when it finishes,
it returns the token. Tokens are also used to prevent
the queues between the chainer and writer stages from
growing without bound.

4.4 Phase Two: Sort and Reduce

Reader Sorter Reducer WriterIntermediate 

Disks

Output 

Disks

Figure 3: Stages of Phase Two (Sort/Reduce) in
ThemisMR

By the end of phase one, the map function has been
applied to each input record, and the records have been
grouped into partitions and stored on the appropriate
node so that all records with the same key are stored in
a single partition. In phase two, each partition must be
sorted by key, and the reduce function must be applied
to groups of records with the same key. The stages that
implement phase two are shown in Figure 3.

There is no network communication in phase two,
so nodes process their partitions independently. Entire
partitions are read into memory at once by the Reader
stage. A Sorter stage sorts these partitions by key,
keeping the result in memory. The Reducer stage ap-
plies the reduce function to all records sharing a key.
Reduced records are sent to the Writer , which writes
them to disk.

TritonSort ThemisMR
Subject to
deadlock?

Pool X X

Quota X X

Constraint X X

Figure 4: A comparison of ThemisMR memory
allocator implementations.

All records with a single key must be stored in the
same partition for the reduce function to produce cor-
rect output. As a result, partitioning skew can cause
some partitions to be significantly larger than others.
ThemisMR’s memory management system allows phase
two to process partitions that approach the size of main
memory, and its optional skew mitigation phase can re-
duce partitioning skew without user intervention. We
describe these systems in Sections 5 and 6, respectively.

A key feature of ThemisMR’s sorter stage is that
it can select which sort algorithm is used to sort a
buffer on a buffer-by-buffer basis. There is a plug-
gable sort strategy interface that lets developers use
different sorting algorithms; currently QuickSort and
Radix sort are implemented. Each sort strategy calcu-
lates the amount of scratch space it needs to sort the
given buffer, depending on the buffer’s contents and the
sort algorithm’s space complexity. For both QuickSort
and Radix sort, this computation is deterministic. In
ThemisMR, Radix sort is chosen if the keys are all the
same size and the required scratch space is under a con-
figurable threshold; otherwise, QuickSort is used.

5. MEMORY MANAGEMENT AND FLOW

CONTROL

ThemisMR relies on a dynamic and flexible memory
management system to partition memory between op-
erators. ThemisMR’s memory manager actually serves
two distinct purposes: (1) it enables resource sharing
between operators, and (2) it supports enforcing back-
pressure and flow control. In the first case, ThemisMR
requires flexible use of memory given our desire to sup-
port large amounts of record size skew while maintain-
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Free Space

Stage 1 Stage 2 Stage 3 Stage 4

Pool A Pool B Pool C

Figure 6: A diagrammatic overview of pool-
based memory management. Note that memory
in each pool is divided into fixed-size regions,
and that any memory not allocated to pools can-
not be utilized by stages.

ing the 2-IO property. In the second case, individual
stages in the ThemisMR pipeline naturally run at dif-
ferent speeds (e.g., the network is 10 Gbps, whereas
the disk subsystem only supports writing at approxi-
mately 5.5 Gbps), and so back-pressure and flow control
are needed to prevent faster stages from starving slower
stages for resources.

ThemisMR supports a single memory allocation in-
terface, with pluggable memory policies. We first de-
scribe the memory allocator’s interface, and then de-
scribe the three policies that we’ve implemented.

5.1 Memory allocation interface

Worker stages in ThemisMR allocate space for buffers
and other necessary scratch space using a unified and
simple memory allocator interface, shown in Figure 5.

Memory allocators can be assigned on a stage-by-
stage basis, but in the current implementation we as-
sume that memory regions are allocated and deallo-
cated by the same allocator. The allocate call blocks
until the underlying memory allocation policy satisfies
the allocation, which can be an unbounded amount of
time. As we will see, this simple mechanism, paired
with one of three memory policies, provides for both re-
source sharing as well as flow control. We now examine
each of these polices.

5.2 Policy 1: Pool-Based Management

The first policy we consider is a “pool” memory pol-
icy, which is inherited from TritonSort [30]. A memory
pool is a set of pre-allocated buffers that is filled during
startup. Buffers can be checked out from a pool, and
returned when they are finished being used. When a
worker tries to check out a buffer from an empty pool,
it blocks until another worker returns a buffer to that
pool. The pool memory policy has the advantage that
all memory allocation is done at startup, avoiding allo-
cation during runtime. Through efficient implementa-
tion, the overhead of checking out buffers can be very
small. This is especially useful for stages that require
obtaining buffers with very low latency, such as the Re-
ceiver stage, which obtains buffers to use in receiving

QuotaA

Stage 1 Stage 2 Stage 3 Stage 4

Free 
Space

Unmanaged 
Space

Figure 7: A diagrammatic overview of quota-
based memory management. In this figure,
QuotaA provides a memory quota between Stage
1 and Stage 4. Stages 2 and 3 use unmanaged
memory created with standard malloc and free

syscalls.

data from the network. The receiver receives uninter-
preted bytes from network sockets into small, fixed-size
byte buffers. These buffers are passed to a subsequent
stage, which converts them into buffers containing com-
plete records. For this reason, the receiver can use
pool-based management while still supporting record-
size skew.

Pools can be used to provide resource sharing between
workers by giving each of those workers a reference to a
single pool. However, pools have several disadvantages.
First, the buffers in a pools are all fixed-size, and so the
pool memory policy supports very limited amounts of
data skew. By carving memory up into fixed-size pools,
the maximum record size supported by this policy is
limited to the size of the smallest pool. Additionally,
buffer pools reserve a fixed amount of memory for a
particular pair of stages. One consequence of this is a
loss of flexibility; if one stage temporarily needs more
memory than usual (i.e., if it is handling a large record),
it cannot“borrow”that memory from another stage due
to the static partitioning of memory across pools.

The producer-consumer relationship between pairs of
stages provides a form of flow control; the upstream
stage checking out buffers can only produce work at the
rate at which the downstream stage can return them to
the pool.

5.3 Policy 2: Quota-Based Management

While the pool memory policy is simple, it is quite
inflexible, and does not handle skewed record sizes very
well. The quota-based memory policy is designed to
support more flexible memory allocation, while still pro-
viding flow control. At a high level, the quota pol-
icy ensures that stages producing records do not over-
whelm stages that eventually consume them. For exam-
ple, most of our evaluation is writer limited, and so we
want to ensure that the receiver stage, which produces
records received from the network, does not overwhelm
the writer stage, which is the bottleneck.

ThemisMR has three such producer-consumer pairs:
between the reader and the mapper (with the mapper
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Function Description

CallerID registerCaller(Worker worker) Register worker with the allocator

void* allocate(CallerID caller, uint64_t size) allocate a memory region of size bytes for caller

void deallocate(void* memory) deallocate memory that was allocated by this allocator

Figure 5: A summary of the ThemisMR memory allocator API

acting as the consumer), between the mapper and the
sender (with the mapper acting as the producer), and
between the receiver and the writer. The mapper acts
as both a consumer and a producer, since it is the only
stage in the phase one pipeline that creates records as
directed by the map function that were not read by the
reader.

Quotas are enforced by the queues between stages.
A quota can be viewed as the amount of memory that
the pipeline between a producer and a consumer can
use. When producers push a buffer into the pipeline,
the size of that buffer is debited from the quota. When
a consumer stage consumes that buffer, the buffer’s size
is added back to the quota. If a producer is about to
exceed the quota, then it blocks until the consumer has
consumed sufficient memory.

Quota-based memory management dramatically re-
duces the number of variables that need to be tuned
relative to the pool-based memory policy. One need
only adjust the quota allocations present between pairs
of stages, rather than the capacity of a much larger
number of buffer pools. Additionally, stages that are
not producers and consumers do not need to do any
form of coordination, which makes their memory allo-
cations very fast.

Quota-based management assumes that any scratch
space or additional memory needed by stages between
the producer and consumer is accounted for in the
quota. This is to prevent intermediate stages from ex-
ceeding the total amount of memory, since their mem-
ory accesses are not tracked. It also tacitly assumes
that the size of a buffer being produced cannot exceed
the size of the quota. This is much less restrictive than
a pool-based approach, as quotas are typically several
gigabytes.

5.4 Policy 3: Constraint-Based Management

In situations where the amount of memory used by
stages to process records cannot be determined in ad-
vance, quota-based systems are not ideal for providing
flow control. In these situations, ThemisMR uses a
more heavyweight, constraint-based memory manage-
ment policy.

In the constraint-based memory policy, the total
amount of memory in use by workers is tracked cen-
trally in the memory allocator. If a worker requests
memory, and enough memory is available, that request
is granted immediately. Otherwise, the worker’s request

Free 
Space

Globally 
Managed Space

Memory Manager

Stage 1 Stage 2 Stage 3 Stage 4

Figure 8: A diagrammatic overview of
constraint-based memory management. All
stages’ memory requests are satisfied by a cen-
tral memory manager that schedules these re-
quests according to the stage graph’s structure.

is added to a per-worker queue of outstanding requests
and the worker sleeps on a condition variable until the
request can be satisfied.

When multiple workers have outstanding unsatisfied
allocation requests, the memory allocator prioritizes
worker requests based on the workers’ distance in the
stage graph to a stage that consumes records. The
producer-side pipeline measures distance to the sender
stage, and the consumer-side pipeline measures distance
to the writer stage. The rationale behind this decision
is that records that are being processed should be com-
pletely processed before more work is admitted. This
decision is inspired by work on live-lock prevention in
routers [24]. In this way, the constraint-based allocator
implements flow control based on the structure of the
dataflow graph.

While this system places precise upper bounds on the
amount of memory present in the system, it requires a
great deal of coordination between workers, which re-
quires significant lock contention in our implementation.
In effect, the reliance on keeping the amount of avail-
able memory consistent requires that all allocation and
deallocation are executed serially. Hence, constraint-
based memory allocation is useful for situations where
the number of allocation requests being made is rela-
tively small, but the probability of exceeding available
memory in common-case operation is high. Phase two
in ThemisMR uses constraint-based memory manage-
ment for precisely these reasons.

In the constraint-based policy, it is possible that cer-
tain allocation interleavings can trigger deadlock. Pre-
dicting whether a general dataflow system will deadlock
is undecidable [25], and deadlock prevention requires
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knowledge of data dependencies between stages that we
deemed too heavyweight. To addressed the problem
of deadlocks, ThemisMR provides a deadlock detector.
The deadlock detector periodically probes workers to
see if they are waiting for a memory allocation request
to complete. If multiple probe cycles pass in which all
workers are waiting for an allocation or are idle, the
deadlock detector triggers and informs the memory al-
locator that a deadlock has occurred. We have not ex-
perienced deadlock in any of the MapReduce jobs we
have written applied to the datasets described in our
evaluation. Efficient ways of handling deadlock is the
subject of ongoing work.

In summary, ThemisMR provides a pluggable, policy-
driven memory allocation subsystem that provides for
flexible resource sharing between stages and workers to
support input skew, while also enabling flow control.

6. SKEW MITIGATION

To satisfy the 2-IO property, ThemisMR must ensure
that every partition can be sorted in memory, since an
out-of-core sort would induce additional I/Os. In ad-
dition, to support parallelism, partitions must be small
enough that several partitions can be processed in par-
allel. Phase zero is responsible for choosing the number
of partitions, and selecting a partitioning function to
keep each partition roughly the same size. This task
is complicated by the fact that the data to be parti-
tioned is generated by the map function. Thus, even if
the distribution of input data is known, the distribution
of intermediate data may not be known. This phase is
optional: if the user has knowledge of the intermediate
data’s distribution, they can specify a custom partition-
ing function, similar to techniques used in Hadoop.

Phase zero approximates the distribution of interme-
diate data by applying the map function to a subset
of the input. If the data is homoscedastic, then a small
prefix of the input is sufficient to approximate the inter-
mediate distribution. Otherwise, more input data will
need to be sampled, or phase two’s performance will de-
crease. [13] formalizes the number of samples needed to
achieve a given skew with high probability; typically we
sample 1 GB per node of input data for nodes support-
ing 8 TB of input. The correctness of phase two only
depends on partitions being smaller than main mem-
ory. Since our target partition size is less than 5% of
main memory, this means that a substantial sampling
error would have to occur to trigger job restart. So al-
though sampling does impose additional I/O over the
2-IO limit, we note that it is a small and constant over-
head.

Once each node is done sampling, it transmits its
sample information to a central coordinator. The co-
ordinator takes these samples, and generates a parti-
tion function, which is then re-distributed back to each

node.

6.1 Mechanism

On each node, ThemisMR applies the map operation
to a prefix of the records in each input file stored on
that node. As the map function produces records, the
node records information about the intermediate data,
such as how much larger or smaller it is than the in-
put and the number of records generated. It also stores
information about each intermediate key and the asso-
ciated record’s size. This information varies based on
the sampling policy. Once the node is done sampling,
it sends that intermediate metadata to the coordinator.

The coordinator merges the metadata from each of
the nodes to estimate the intermediate data size. It then
uses this size, and the desired partition size, to compute
the number of partitions. Then, it performs a streaming
merge-sort on the samples from each node. Once all
the sampled data is sorted, then partition boundaries
are calculated based on the desired partition sizes. The
result is a list of “boundary keys” that define the edges
of each partition. This list is broadcast back to each
node, and forms the basis of the partitioning function
used in phase one.

The choice of sampling policy depends on require-
ments from the user, and we now describe each policy.

6.2 Sampling Policies

ThemisMR supports the following sampling policies:
(1) Range partitioning: For MapReduce jobs in

which the ultimate output of all the reducers must be
totally ordered (e.g., sort), ThemisMR employs a range
partitioning sampling policy. In this policy, the entire
key for each sampled record is sent to the coordinator.
A downside of this policy is that very large keys can
limit the amount of data that you can sample, because
there is only a limited amount of space to buffer sampled
records.

(2) Hash partitioning: For situations in which
total ordering of reduce output is not required,
ThemisMR employs hash partitioning. In this scheme,
a hash of the key is sampled, instead of the keys them-
selves. This has the advantage of supporting very large
keys, and allowing ThemisMR to use Reservoir sam-
pling [40], which samples data in constant space in one
pass over its input. This enables more data to be sam-
pled with a fixed amount of buffer. This approach also
works well for input data that is already sorted, or al-
most already sorted, because adjacent keys are likely to
be placed in different partitions, which spreads the data
across the cluster.

7. EVALUATION

We evaluate ThemisMR through benchmarks of sev-

8



eral different MapReduce jobs on both synthetic and
real-world data sets. A summary of our results are as
follows:

• ThemisMR is highly performant on a wide variety
of MapReduce jobs, and outperforms Hadoop by
3x - 16x on a variety of common jobs.

• ThemisMR is able to achieve close to the sequen-
tial speed of the disks for I/O-bound jobs, which
is approximately the same rate as TritonSort’s
record-setting sort performance.

• ThemisMR’s memory subsystem is flexible, and is
able to handle large amounts of data skew while
ensuring efficient operation.

7.1 Workloads and evaluation overview

We evaluate ThemisMR on a cluster of HP DL380G6
servers, each with two Intel E5520 CPUs (2.27 GHz),
24 GB of memory, and 16 500GB 7200 RPM 2.5”SATA
drives. Each hard drive is configured with a single XFS
partition. Each XFS partition is configured with a sin-
gle allocation group to prevent file fragmentation across
allocation groups, and is mounted with the noatime

flag set. Each server has two HP P410 drive controllers
with 512MB on-board cache, as well as a Myricom 10
Gbps network interface. All nodes are connected to a
single Cisco Nexus 5596 datacenter switch. All servers
run Linux 2.6.32. Our implementation of ThemisMR is
written in C++ and is compiled with g++ 4.6.2.

To evaluate ThemisMR at scale, we often have to rely
on large synthetically-generated data sets, due to the
logistics of obtaining and storing freely-available, large
data sets. All synthetic data sets are evaluated on 20
cluster nodes. Non-synthetic data sets are small enough
to be evaluated on a single node.

We evaluate ThemisMR’s performance on several dif-
ferent MapReduce jobs. A summary of these jobs is
given in Table 3, and each job is described in more de-
tail below.

Sort: Large-scale sorting is a useful measurement of
the performance of MapReduce and of data processing
systems in general. During a sort job, all cluster nodes
are reading from disks, writing to disks, and doing an
all-to-all network transfer simultaneously. Sorting also
measures the performance of MapReduce independent
of the computational complexity of the map and re-
duce functions themselves, since both map and reduce
functions are effectively no-ops. We study the effects
of both increased data density and skew on the system
using sort due to the convenience with which input data
that meets desired specifications can be generated. We
generate skewed data with a Pareto distribution. The
maximum record size in generated datasets is limited
by a fixed maximum size, which is a parameter given to
the job.

WordCount: Word count is a canonical MapReduce
job. Given a collection of words, word count’s map
function emits <word, 1> records for each word. Word
count’s reduce function sums the occurrences of each
word and emits a single <word, N> record, where N is
the number of times the word occurred in the original
collection.

We evaluate WordCount on the 2012-05-05 version of
the Freebase Wikipedia Extraction (WEX) [2], a pro-
cessed dump of the English version of Wikipedia. The
complete WEX dump is approximately 62GB uncom-
pressed, and contains both XML and text versions of
each page. We run word count on the text portion of
the WEX data set, which is approximately 8.2GB un-
compressed.

n-Gram Count: An extension of word count, n-
gram count counts the number of times each group of
n words appear in a corpus of text. For example, given
“The quick brown fox jumped over the lazy dog”, 3-gram
count would count the number of occurrences of “The
quick brown”, “quick brown fox”, “brown fox jumped”,
etc. We also evaluate n-gram count on the text portion
of the WEX data set.

PageRank: PageRank is a graph algorithm that is
widely used by search engines to rank web pages. Each
node in the graph is given an initial rank. Rank propa-
gates through the graph by each vertex contributing a
fraction of its rank evenly to each of its neighbors.

PageRank’s map function is given a <vertex ID,

adjacency list of vertex IDs|initial rank>

pairs for each vertex in the graph. It emits <adjacent

vertex ID, rank contribution> pairs for each
adjacent vertex ID, and also re-emits the adjacency list
so that the graph can be reconstructed. PageRank’s
reduce function adds the rank contributions for each
vertex to compute that vertex’s rank, and emits the
vertex’s existing adjacency list and new rank.

We evaluate PageRank with three different kinds
of graphs. The first (PageRank-U) is a 25M vertex
synthetically-generated graph where each vertex has an
edge to every other vertex with a small, constant proba-
bility. Each vertex has an expected degree of 5,000. The
second (PageRank-PL) is a 250M vertex synthetically-
generated graph where vertex in-degree follows a power
law distribution with values between 100 and 10,000.
This simulates a more realistic page graph where a rel-
atively small number of pages are linked to frequently.
The third (PageRank-WEX) is a graph derived from
page links in the XML portion of the WEX data set;
it is approximately 1.5GB uncompressed and has 5.3M
vertices.

CloudBurst: CloudBurst [33] is a MapReduce im-
plementation of the RMAP [37] algorithm for short-
read gene alignment, which aligns a large collection
of small “query” DNA sequences called reads with a
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Data Size
Job Name Description Input Intermediate Output

Sort-100G Uniformly-random sort, 100GB per node 2.16TB 2.16TB 2.16TB
Sort-500G Uniformly-random sort, 500GB per node 10.8TB 10.8TB 10.8TB
Sort-1T Uniformly-random sort, 1TB per node 21.6TB 21.6TB 21.6TB

Sort-1.75T Uniformly-random sort, 1.75TB per node 37.8TB 37.8TB 37.8TB

Pareto-1M Sort with Pareto-distributed key/value sizes, α =
1.5, x0 = 100 (1MB max key/value size)

10TB 10TB 10TB

Pareto-100M Sort with Pareto-distributed key/value sizes, α =
1.5, x0 = 100 (100MB max key/value size)

10TB 10TB 10TB

Pareto-500M Sort with Pareto-distributed key/value sizes, α =
1.5, x0 = 100 (500MB max key/value size)

10TB 10TB 10TB

CloudBurst CloudBurst (two nodes, aligning lake-

wash_combined_v2.genes.nucleotide)
971.3MB 68.98GB 517.9MB

PageRank-U PageRank (synthetic uniform graph, 25M vertices,
50K random edges per vertex)

1TB 4TB 1TB

PageRank-PL PageRank (synthetic graph with power-law vertex in-
degree, 250M vertices)

934.7GB 3.715TB 934.7GB

PageRank-WEX PageRank on WEX page graph 1.585GB 5.824GB 2.349GB
WordCount Count word in text of WEX 8.22GB 27.74GB 812MB

n-Gram Count 5-grams in text of WEX 8.22GB 68.63GB 49.72GB

Click-Sessions Session extraction from 2TB of synthetic click logs 2TB 2TB 8.948GB

Table 3: A description and table of abbreviations for the MapReduce jobs evaluated in this section.
Data sizes take into account 8 bytes of metadata per record for key and value sizes

known “reference” genome. CloudBurst performs this
alignment using a standard technique called seed-and-
extend. Both query and reference sequences are passed
to the map function and emitted as a series of fixed-
size seeds. The map function emits seeds as sequence of
<seed, seed metadata> pairs, where the seed meta-
data contains information such as the seed’s location in
its parent sequence, whether that parent sequence was a
query or a reference, and the characters in the sequence
immediately before and after the seed.

CloudBurst’s reduce function examines pairs of query
and reference strings with the same seed. For each pair,
it computes a similarity score of the DNA characters
on either side of the seed using the Landau-Vishkin al-
gorithm for approximate string matching. The reduce
function emits all query/reference pairs with a similar-
ity score above a configured threshold.

We evaluate CloudBurst on the lake-
wash combined v2 data set from University of
Washington [18], which we pre-process using a slightly
modified version of the CloudBurst input loader used
in Hadoop.

Click Log Analysis: Another popular MapReduce
job is analysis of click logs. Abstractly, click logs can be
viewed as a collection of <user ID, timestamp|URL>

pairs indicating which page a user loaded at which time.
We chose to evaluate one particular type of log analysis
task, session tracking. In this task, we seek to iden-

tify disjoint ranges of timestamps at least some number
of seconds apart. For each such range of timestamps,
we output <user ID, start timestamp|end times-

tamp|start URL|end URL> pairs.
The map function is a pass-through; it simply groups

records by user ID. The reduce function does a linear
scan through records for a given user ID and recon-
structs sessions. For efficiency, it assumes that these
records are sorted in ascending order by timestamp. We
describe the implications of this assumption in the next
section.

7.2 Job Implementation Details

In this section, we briefly describe some of the imple-
mentation details necessary for running our collection
of example jobs at maximum efficiency.

Combiners A common technique for improving the
performance of MapReduce jobs is employing a com-
biner. For example, word count can emit a sin-
gle <word, k> pair instead of k <word, 1> pairs.
ThemisMR supports the use of combiner functions.
We opted to implement combiners within the map-
per stage on a job-by-job basis rather than adding an
additional stage. Despite what conventional wisdom
would suggest, we found that combiner functions actu-
ally decreased our performance in many cases because
the computational overhead of manipulating large data
structures was enough to make the mapper compute-
bound. In some cases, however, a small data structure
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that takes advantage of the semantics of the data pro-
vides a significant performance increase. For example,
our word count MapReduce job uses a combiner that
maintains a counter for the top 25 words in the En-
glish language. The combiner updates the appropri-
ate counter whenever it encounters one of these words
rather than creating an intermediate record for it. At
the end of phase one, intermediate records are created
for each of these popular words based on the counter
values.

Improving Performance for Small Records The
map functions in our first implementations of word
count and n-gram count emitted <word/n-gram, 1>

pairs. Our implementations of these map functions emit
<hash(word), 1|word> pairs instead because the re-
sulting intermediate partitions are easier to sort quickly
because the keys are all small and the same size.

Secondary Keys A naive implementation of the ses-
sion extraction job sorts records for a given user ID by
timestamp within the reduce function. We avoid per-
forming two sorts by allowing the Sorter stage to use
the first few bytes of the value, called a secondary key,
to break ties when sorting. In the session extraction
job, the secondary key is the record’s timestamp.

7.3 Performance

We evaluate the performance of ThemisMR in two
ways. First, we compare performance of the benchmark
applications to the cluster’s hardware limits. Second,
we compare the performance of ThemisMR to that of
Hadoop on two benchmark applications.

7.3.1 Performance Relative to Disk Speeds
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Figure 9: Performance of evaluated MapReduce
jobs. Maximum sequential disk throughput of
approximately 90 MB/s is shown as a dotted
line. Our TritonSort record from 2011 is shown
on the left for comparison.

The performance of ThemisMR on the benchmark
MapReduce jobs is shown in Figure 9. Performance is

Running Time
Application Hadoop ThemisMR Improvement

Sort-500G 28881s 1789s 16.14x
CloudBurst 2878s 944s 3.05x

Table 4: Performance comparison of Hadoop
and ThemisMR.

measured in terms of MB/s/disk in order to provide a
relative comparison to the hardware limitations of the
cluster. The 7200 RPM drives in the cluster are ca-
pable sequential write bandwidth of approximately 90
MB/s/disk, which is shown as a dotted line in the fig-
ure. A job running at 90 MB/s/disk is processing data
as fast as it can be written to the disks.

Most of the benchmark applications run at near max-
imum speed in both phases. CloudBurst’s poor perfor-
mance in phase two is due to the computationally inten-
sive nature of its reduce function. Despite our attempts
to optimize our C++ port of CloudBurst, its perfor-
mance remains fundamentally limited by the complexity
of the Landau Vishkin string matching algorithm. Be-
cause of its high computational complexity, the reduce

function is unable to process records fast enough to sat-
urate the disks. More CPU cores are needed to drive
computationally intensive applications such as Cloud-
Burst at maximum speed in both phases. Notice how-
ever that CloudBurst is still able to take advantage of
our architecture in phase one.

We have included TritonSort’s performance on the
Indy 100TB sort benchmark for reference. TritonSort’s
2011 Indy variant runs a much simpler code base than
ThemisMR. We highlight the fact that ThemisMR’s ad-
ditional complexity and flexibility does not impact its
ability to perform well on a variety of workloads. Our
improved performance in phase one relative to Triton-
Sort at scale is due to a variety of internal improve-
ments and optimizations made to the Themis codebase
in the intervening period, as well as the improved mem-
ory utilization provided by moving from buffer pools to
dynamic memory management. Performance degrada-
tion in phase two relative to TritonSort is mainly due
to additional CPU and memory pressure introduced by
the Reducer stage.

7.3.2 Comparison with Hadoop

We evaluate Hadoop version 1.0.3 on the Sort-500G
and CloudBurst applications. We note that we started
with a configuration based on the configuration used
by Yahoo! for their 2009 Hadoop sort record [38]. We
spent a good deal of time optimizing this configuration,
although we note that it is difficult to get Hadoop to run
many large parallel transfers without having our nodes
blacklisted for running out of memory.

The total running times for both Hadoop and

11



Allocation Policy Phase One Throughput

Constraint-Based 84.90 MBps/disk
Quota-Based 83.11 MBps/disk

Table 5: Performance of allocation policies

ThemisMR are given in Table 4. I/O-bound jobs such as
sort are able to take full advantage of our architecture,
which explains why ThemisMR is more than a factor
of 16 faster. As explained above, CloudBurst is funda-
mentally compute-bound, but the performance benefits
of the 2-IO property allow ThemisMR to outperform
the Hadoop implementation of CloudBurst by a factor
of 3.

7.4 Memory Management
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Figure 11: Memory quota usage of the Reader
Converter stage. The network was made artifi-
cially slow in the time period designated by the
dashed lines.

In this section, we evaluate the performance of our
different memory allocation policies. We also show that
our allocation system is robust in the face of transient
changes in individual stage throughputs.

7.4.1 Memory Allocator Performance

We examine both the individual allocation times of
our different memory allocation policies and their end-
to-end performance. We evaluate the performance on
phase one of a 200GB, 1-node sort job. Table 5 shows
that phase one’s throughput is essentially unaffected by
the choice of allocator policy in this particular instance.
These performance numbers can be explained by look-
ing at the mean allocation time for each worker in the
system. Figure 10 shows that while the constraint-based
allocator is more than twice as slow as the quota-based
allocator, the absolute allocation times are both mea-
sured in tens of microseconds, which is negligible com-
pared to time taken to actually do useful work.

However, the results above only hold in the case
where the constraint based allocator does not deadlock.
The exact same experiment conducted on a slightly
larger data set causes deadlock in phase one with the
constraint-based allocator.

The performance results in Figure 9 demonstrate
the constraint-based allocation policy performs well in
phase two. Because phase two handles entire interme-
diate partitions in memory, its allocations are orders of
magnitude larger than those in phase one. This dra-
matically increases the likelihood that a single memory
request is larger than one of the phase’s quotas.

7.4.2 Robustness of the Quota-Based Memory Allo-
cation Policy

We evaluate the robustness of the quota based mem-
ory allocators by artificially slowing down the network
for a period of time. We observe the effect on the to-
tal quota usage of a stage in the pipeline. Figure 11
shows that the Reader Converter’s quota usage spikes
up to its limit of 2GB in response to a slow network
and then returns back to a steady state of near 0. A
slow network means that stages upstream of the net-
work are producing data faster than the network can
transmit data. This imbalance in throughput leads to
data backing up in front of the network. In the absence
of the quota allocation policy, this data backlog grows
unbounded.

7.5 Skew Mitigation

Next, we evaluate ThemisMR’s ability to handle skew
by observing the sizes of the intermediate data par-
titions created in phase one. Figure 12 shows the
partition sizes produced by ThemisMR on the bench-
mark applications. The error bars denoting the 95%
confidence intervals are small, indicating that all par-
titions are nearly equal in size. This is unsurpris-
ing for applications with uniform data, such as sort.
However, ThemisMR also achieves even partitioning on
very skewed data sets, such as Pareto-distributed sort,
PageRank, and WordCount. PageRank-WEX has fairly
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Figure 12: Partition sizes for various ThemisMR
jobs. Error bars denoting the 95% confidence in-
tervals are hard to see due to even partitioning.
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Figure 13: Median write sizes for various
ThemisMR jobs

small partitions relative to the other jobs because its in-
termediate data size is not large enough for phase zero
to create an integer number of partitions with the de-
sired size.

7.6 Write Sizes

One of primary goals of phase one is to do large writes
to each partition to avoid unnecessary disk seeks. Fig-
ure 13 shows the median write sizes of the various jobs
we evaluated. For jobs like Sort and n-Gram where
the map function is extremely simple and mappers can
map data as fast as readers can read it, data buffers
up in the Chainer stage and all writes are large. As
the amount of intermediate data per node grows, the
size of a chain that can be buffered for a given parti-
tion decreases, which fundamentally limits the size of
a write. For example, Sort-1.75T writes data to 2832
partitions, which means that its average chain length is
not expected to be longer than about 5 MB given a re-
ceiver memory quota of 14GB; note, however, that the
mean write size is above this minimum value, indicating

that the writer is able to take advantage of temporary
burstiness in activity for certain partitions. If the stages
before the Writer stage cannot quite saturate it (such
as in WordCount, CloudBurst and PageRank), chains
remain fairly small. Here the minimum chain size of 4.5
MB ensures that writes are still reasonably large. In
the case of PageRank-WEX, the data size is simply too
small to cause the chains to ever become very large.

8. RELATED WORK

There is a large continuum of fault tolerance options
between task-level restart and job-level restart, includ-
ing distributed transactions [27], checkpointing and roll-
back [14], and process-pairs replication [36]. We are not
alone in designing a large-scale data processing system
with a job-level fault tolerance assumption. For exam-
ple, Zaharia et al. [43] make similar assumptions in de-
signing Resilient Distributed Datasets. In their work,
the entire dataset can fit into the memory of the cluster,
and so Spark can actually perform only one read and
write of each data item. When failures occur, prove-
nance is used to replay the computation necessary to
recover that lost data. Each fault tolerance approach
introduces its own overheads and complexities. With
ThemisMR, we choose to focus our efforts on creating a
MapReduce system model that is able to handle large
real-world data sets while utilizing the resources of an
existing cluster as much as possible.

Recovery-Oriented Computing (ROC) [31, 8] is a re-
search vision that focuses on efficient recovery from fail-
ure, rather than focusing exclusively on failure avoid-
ance. This is helpful in environments where failure is
inevitable, such as data centers. The design of task-
level fault tolerance in existing MapReduce shares sim-
ilar goals as the ROC project.

Several efforts aim to improving MapReduce ef-
ficiency and performance. Some focus on runtime
changes to better handle common patterns like job iter-
ation [7], while others have extended the programming
model to handle incremental updates [21, 27]. Work
on new MapReduce scheduling [44] disciplines have im-
proved cluster utilization at a map- or reduce-task gran-
ularity by minimizing the time when a node is wait-
ing for work. Tenzing [9], a SQL implementation built
atop the MapReduce framework at Google, relaxes or
removes the restriction that intermediate data be sorted
by key in certain situations to improve performance.

MPP databases often perform aggregation in memory
to eliminate unnecessary I/O if the output of that ag-
gregation does not need to be sorted. ThemisMR could
skip an entire read and write pass by pipelining inter-
mediate data through the reduce function directly if
the reduce function was known to be commutative and
associative. We chose not to do so to keep ThemisMR’s
operational model equivalent to the model presented in

13



the original MapReduce paper.
Characterizing input data in both centralized and dis-

tributed contexts has been studied extensively in the
database systems community [22, 23, 16], but many
of the algorithms studied in this context assume that
records have a fixed size and are hence hard to adapt to
variably-sized, skewed records. ThemisMR’s skew miti-
gation techniques bear strong resemblance to techniques
used in massively parallel processing (MPP) shared-
nothing database systems [12].

The original MapReduce paper [10] acknowledges the
role that imbalance can play on overall performance,
which can be affected by data skew. SkewReduce [19]
alleviates the computational skew problem by allow-
ing users to specify a customized cost function on in-
put records. Partitioning across nodes relies on this
cost function to optimize the distribution of data to
tasks. SkewTune [20] proposes a more general frame-
work to handle skew transparently, without requiring
hints from the users. SkewTune is activated when a
slot becomes idle in the cluster, and the task with
the greatest estimated remaining time is selected and
migrated to that slot. This reallocates the unpro-
cessed input data through range-partitioning, similar
to ThemisMR’s phase zero.

9. CONCLUSIONS

Many MapReduce jobs are IO-bound, and so mini-
mizing the number of I/O operations is critical to im-
proving their performance. In this work, we present
ThemisMR, a MapReduce implementation that meets
the 2-IO property, meaning that it issues the minimum
number of I/O operations for jobs large enough to ex-
ceed memory. It does this by forgoing task-level fault
tolerance, relying instead on job-level fault tolerance.
Since the 2-IO property prohibits it from spilling records
to disk, ThemisMR must manage memory dynamically
and adaptively. To ensure that writes to disk are large,
ThemisMR adopts a centralized, per-node disk sched-
uler that batches records produced by different map-
pers.

There exists a large and growing number of clus-
ters that can process petabyte-scale jobs, yet are small
enough to experience a qualitatively lower failure rate
than warehouse-scale clusters. We argue that these de-
ployments are ideal candidates to adapt more efficient
implementations of MapReduce, which result in higher
overall performance than more pessimistic implementa-
tions. In our experience, ThemisMR has been able to
implement a wide variety of MapReduce jobs at nearly
the sequential speed of the underlying storage layer, and
on par with TritonSort’s record sorting performance.
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