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Abstract

Lumbar spinal stenosis (LSS) is a condition associated with the degeneration of spinal disks in the 

lower back. A significant majority of the elderly population experiences LSS, and the number is 

expected to grow. The primary objective of medical treatment for LSS patients has focused on 

improving functional outcomes (e.g., walking ability) and thus, an accurate, objective, and 

inexpensive method to evaluate patients’ functional levels is in great need. This paper aims to 

quantify the functional level of LSS patients by analyzing their clinical information and their 

walking ability from a 10 meter self-paced walking test using a pair of sensorized shoes. Machine 

learning algorithms were used to estimate the Oswestry Disability Index, a clinically well-

established functional outcome, from a total of 29 LSS patients. The estimated ODI scores showed 

a significant correlation to the reported ODI scores with a Pearson correlation coefficient (r) of 

0.81 and p < 3.5 × 10−11. It was further shown that the data extracted from the sensorized shoes 

contribute most to the reported estimation results, and that the contribution of the clinical 
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information was minimal. This study enables new research and clinical opportunities for 

monitoring the functional level of LSS patients in hospital and ambulatory settings.

Keywords

Lumbar spinal stenosis; spinal cord disorder; self-paced walking test; pressure mapping; smart 
shoes; functional level; walking ability

1. Introduction

Lumbar spinal stenosis (LSS) is a condition closely related with age-associated degeneration 

of the lumbar (i.e., lower back) spinal disks [1]. It is known as the most common diagnosis 

leading to spinal surgery in elderly patients of age greater than 65 years [2], and 

approximately 40% of general adult populations are known to carry moderate conditions of 

LSS [3]. As a consequence of the worldwide trend of aging societies in developed and 

developing countries, a significant majority of the elderly population is expected experience 

LSS [4].

LSS is characterized by a narrowing of the spinal canal and compression of nerve roots in 

the lower back [1], which lead to various clinical symptoms including leg pain, numbness, 

and weakness [5]. Thus, patients with LSS have considerable walking limitation [6, 3, 1, 7], 

which is the leading cause of spinal surgery in Medicare recipients [3, 8]. The primary 

objective of medical treatment has been focused on improving functional outcomes, e.g., the 

walking ability [3]. Consequently, researchers and clinicians have focused their attention on 

the development of objective, inexpensive, and accurate assessment tools to quantify the 

level of functional capacity, which can be used to track the longitudinal progress of patient 

conditions.

Instrumented examination of walking ability has the potential to support such a need 

compared to traditional clinical tools such as radiographic testing (e.g., X-ray, Magnetic 

Resonance Imaging (MRI), and Computed Tomography (CT) images [1]) and self-reported 

functional outcomes (e.g., Oswestry Disability Index (ODI) [9], Swiss Spinal Stenosis 

Questionnaire, and Oxford Claudication Score [10]). Several observational studies recently 

validated the clinical efficacy of gait parameters recorded from self-paced walking tests 

(SPWT) or motorized treadmill tests (MTT) [6, 7, 11, 3]. In these works, patients were asked 

to walk on a flat surface (SPWT) and/or a treadmill (MTT) at preferred speeds until they 

voluntarily stopped due to symptoms of LSS or until they reached the predefined maximum 

time duration (e.g.,30 minutes). Two parameters related to walking capacity (i.e. time and 

distance traveled) were tested for their correlations to the perceived functional level obtained 

by using patient-reported outcomes. The work in [6] concluded that the traveled distance of 

SPWT had a statistically significant correlation with ODI scores. The work in [3] performed 

both SPWT and MTT, and concluded that gait parameters extracted from MTT has better 

correlation to the functional outcomes than SPWT. The work in [11] examined the changes 

in the value of ODI and the changes in the traveled distance of SPWT, and found a 

significant correlation between the two. The work in [6] also monitored levels of physical 

activity (i.e. activity count and maximum time of continuous activity) of LSS patients using 
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a waist-worn accelerometer over several days, but their correlations to the patient-reported 

outcomes were not as significant as the gait parameters from walking tests.

The aforementioned works demonstrated the clinical effectiveness of gait parameters for 

their use as objective measures. However, SPWT and MTT are not fully automated and 

require presence of a clinical professional who needs to manually record the gait parameters. 

Moreover, these tests may require patients to walk for up to 30 minutes.>These may serve as 

barriers to use the SPWT and MTT in clinical and ambulatory settings, considering the 

patients’ adherence (or preference) to the testings for frequent and longitudinal tracking of 

functional level. Furthermore, all the aforementioned analyses investigate correlation 

between a single-dimensional gait parameter and the clinical score, rather than incorporating 

multi-dimensional gait parameters. This may restrict the quantification of motor function to 

be relatively simple and prohibit integrating multiple walking characteristics in the measure.

This paper introduces a fully automated system and its method that quantify the functional 

level of LSS patients by analyzing their walking ability using a pair of sensorized shoes 

equipped with pressure sensors. The method employed a self-paced walking test on a 10 

meter flat trail, which took approximately six minutes to complete. A total of 76 spatio-

temporal features that were extracted from the smart shoes and 12 clinical variables that 

were previously found to be relevant to the functional level were used to estimate the clinical 

scores obtained by using the ODI [12], a clinically well-established outcome measure in 

lower back pain patients [13]. This paper discusses two machine learning algorithms 

designed to estimate clinical scores collected during the preoperative and postoperative 

visits, respectively. The clinical efficacy of the system was investigated through a pilot 

involving 29 LSS patients.

2. Materials

2.1. Participants

A total of 29 patients (11 males and 18 female) with LSS were recruited from the UCLA 

Spine Center. The ages of the participants ranged from 28 to 78, with an average and 

standard deviation of 57.4 ± 15.9 at the time of surgery. All patients were diagnosed with 

LSS as a result of lumbar disk herniation, lumbar spondylolisthesis, or adjacent segment 

disease. All patients had radiculopathy or axial pain in the lower limbs, which affected their 

walking ability. Patients who had comorbidities that may affect their lower motor function 

and gait performance were excluded from the study. All patients received lumbar 

decompression and/or lumbar fusion surgery performed by a single neurosurgeon (DCL). 

The experimental procedure was approved by the UCLA institutional review board, and all 

patients provided consent to participate in the study.

2.2. Sensory Platform

A pair of shoes equipped with an array of five pressure sensors was developed as shown in 

Fig. 1. The pressure sensors on the insole were positioned to detect heel-strike (P1), mid-

lateral plantar pressure (P3), toe pressure (P5) and other spatio-temporal information (P2 and 

P4). An embedded system on each shoe collects sensory data at a sampling rate of 80 Hz 
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and transmits the data in real-time to the base station (i.e. a laptop) via the IEEE 802.15.4 

standard (i.e. ZigBee protocol) [14]. Each shoe establishes a wireless connection to the base 

station independently. A total of five shoes with different sizes were made for both males 

and females. The pressure sensors on the insole were positioned linearly proportional to the 

size of the shoe.

2.3. Experimental Protocol

Fig. 2 illustrates the experimental protocol. A straight 10 meter long trail was marked on a 

level floor as was suggested in [15] for a stride analysis. Patients were asked to wear the 

sensorized shoes and walk on the trail at a self-paced speed, turn around, and walk back to 

the original position. Patients were asked to pause for five seconds before walking, before 

the turn, before walking back, and after reaching the final destination (Fig. 2); these five 

second defaults were used as annotations to segment the collected data. No further 

instruction was given to the patients regarding their gait performance and behavior. Patients 

repeated this procedure twice, which resulted in a maximum of four 10 meter walks per 

clinical visit (or per test).

All 29 patients performed the walking test approximately one hour before their surgical 

operation. In this work, the sensor and clinical data collected preoperatively are denoted as 

preoperative data. 15 of these patients had follow-up visits at least three months after the 

surgery, and performed the test again. A three-month period is known to be a clinically 

meaningful time for recovery in patients with lumbar spinal cord disorder [16]. The data 

collected during their follow-up visits are denoted as postoperative data.

2.4. Clinical Variables

Twelve clinical variables that were previously found to have close correlation to the 

functional level of LSS patients were collected. These variables included age, gender, 

presence of scoliosis [17], presence of acute injury, number of spinal vertebrae that were 

affected, number of previous spinal surgeries [18], duration of symptoms [19], height, 

weight, Body Mass Index (BMI) [17], and smoking status (smoker or nonsmoker) [20].

2.5. Patient Reported Outcome Measure

The ODI was collected from the participants after the walking test at each clinical visit (i.e. 

one ODI per clinical visit) in order to represent their functional level. The ODI is one of the 

very commonly used self-reported clinical outcome measures in patients with lower back 

pain [13]. The ODI, which was originally developed by Fairbank et al. [12], contains ten 

questions (or items) assessing the level of pain in the affected areas and the degree of 

interference in performing various daily activities such as personal care, lifting, walking, 

sitting, standing, sleeping, sex life, social life, and traveling. Each item has five or six answer 

choices describing different functional level. The overall score is computed by summing the 

scores of the answered items and linearly scaling the summed score from 0 (completely 

disabled condition) to 1 (completely healthy condition).
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3. Methods

Two algorithms were independently designed to estimate the preoperative and postoperative 

clinical scores (i.e. ODI scores), respectively, due to different clinical information available 

at the two time points. Both algorithms employed the same data segmentation and feature 

extraction mechanisms to extract spatio-temporal features from the pressure sensors, which 

were used to train their machine learning models.

3.1. Data Segmentation

The data collected from a 10 meter walk was considered as a single data instance). For each 

instance, the first and the last gait cycles were discarded from further analyses due to 

possible abnormal gait patterns from the initiation and termination of walking. Fig. 3 

illustrates a sample time series of pressure sensor data obtained from one of the participants. 

Since patients performed four 10 meter walks per clinical visit, the four data instances were 

labeled (assigned) with the same ODI score. Note that not all patients produced four data 

instances due to either mistakes during the data collection process or malfunction of the 

system. All patients, however, produced at least one instance per clinical visit. Consequently, 

a total of 137 data instances were obtained from 29 patients.

3.2. Spatio-Temporal Gait Features

A total of 76 spatio-temporal features were extracted from the pressure sensors. The gait 

cycle time, which represents the time it takes to complete one gait cycle, was computed by 

calculating the time between the peaks of the time series from pressure sensor P1 (Fig. 3). 

The mean and the standard deviation of the gait cycle time were computed to characterize 

the average duration and consistency of the gait cycles, respectively. The mean and the 

standard deviation of the gait cycle times, which were normalized to the height of the 

patients, were also computed in order to remove height-dependent variability. Stance time 

was calculated by measuring the time difference between the heel strike (local minima 

preceding the peaks of P1’s time series) and the toe-off (local minima followed by the peak 

of P5’s time series). The mean and the standard deviation of the stance time were included. 

The stance-to-stride ratio was computed by taking the ratio of the stance time to the gait 

cycle time. The mean and the standard deviation of the stance-to-stride ratio were included. 

The mean and the standard deviation of the time differences between the peaks of P1 & P2, 

P2 & P3, P3 & P4, and P4 & P5 were computed to investigate how fast and consistently 

patients distribute their weight on their foot. Similarly, the mean and the standard deviation 

of the peak amplitude of all pressure sensors were computed. Accumulated pressure 

amplitudes of all pressure sensors throughout the 10 meter walk were computed to 

investigate any abnormal distribution of the body weight while walking. The maximum cross 

correlation coefficient between the first half and the second half of each pressure time series 

was computed to investigate the consistency of weight distribution patterns. Furthermore, the 

cross correlations between all possible pairs of the pressure sensors were computed. The 

aforementioned features were extracted from both of the shoes. In order to investigate the 

bilateral symmetry between the two lower limbs, the symmetry index of gait, as introduced 

in [21], was computed. The symmetry index was computed by taking the ratio between the 

difference and the average of the mean gait cycle time of the left and the right feet. 
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Furthermore, the maximum cross correlations between the pressure sensors located at the 

same position between the left and the right shoes were computed, e.g., correlation between 

left P1 and right P1.

3.3. Estimating Preoperative Clinical Scores

Fig. 4 shows the schematic representation of the algorithm used to estimate preoperative 

clinical scores. The independent variables of this estimation problem included the spatio-

temporal features and the clinical variables that were introduced in Section 2.4. The 

dependent variable was the ODI score. All analyses presented in this paper were performed 

using a leave-one-subject-out cross validation (LOSOCV) technique. A LOSOCV technique 

leaves out data belonging to a subject when training the classification/regression model, and 

evaluates the trained model using the the left-out data. This process was iterated through all 

subjects.

The algorithm employed a hierarchical (two-level) model composed of a classifier followed 

by a regression algorithm. The hypothesis behind this design was that the (regression) 

relationship between the input features and value range of ODI. Thus, the higher level 

classifier used a Support Vector Machine (SVM) with a highly flexible kernel function 

(Pearson VII function (PUK) [22, 23]) in order to provide a coarse estimate of the clinical 

score, i.e. determining if ODI was less than (or greater than or equal to) the median ODI 

score of the training set. This higher level classifier was discussed in detail in Section 3.3.1. 

Then, a Support Vector Regression (SVR) with a simpler kernel function (3rd order 

polynomial kernel [24]) followed to provide more detailed estimation while minimizing the 

chances of over-fitting on the smaller training instances (Section 3.3.2).

3.3.1. HigherLevel Classification—The raw training and testing sensor data were 

processed to extract the spatio-temporal features. Then, the discretized labels (i.e. two 

clusters) of the training data were generated based on their ODI scores. These clusters were 

defined based on the empirical distribution of the training ODI scores to ensure the equal 

number of data points; the first cluster contained data points with ODI scores less than the 

median value and the second cluster contains those with ODI scores greater than or equal to 

the median. A feature selection algorithm was employed to reduce the feature 

dimensionality using the ReliefF algorithm [25] and the Davies-Bouldin (DB) index [26]. 

The ReliefF algorithm ranked the features based on their classification ability. This 

algorithm iteratively assigned weights of the features by sampling an instance and 

examining its K neighbors of the same and different classes. Then, the ranked features were 

progressively added and computed for the DB index, which evaluated the intra- and inter-

cluster separability. The cardinality of the feature subset that produced the minimum DB 

index was selected. This feature subset, which was selected based on the analysis of the 

training dataset, was also applied to the testing dataset in order to reduce the dimensionality. 

The SVM with PUK followed to categorize the testing dataset into one of the two clusters. 

This work used the WEKA implementations of ReliefF and SVM [27], and the MATLAB 

implementation of the DB index [28].
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3.3.2. Lower Level Regression—A subset of the training data belonging to the 

classified cluster was then used to construct a regression model for more refined estimation. 

A feature selection algorithm, which selected a feature subset that had a high correlation to 

the dependent variable (i.e. ODI scores) with low redundancy among the selected features 

[29], was employed to reduce the dimensionality. The SVR with polynomial kernel was 

trained based on the dimension-reduced training dataset, and was used to estimate the 

clinical scores of the testing dataset. Since more than one data instance was created per 

clinical visit per subject, the estimated scores of the instances belonging to the same clinical 

visit were averaged to provide a single estimated clinical score. This work employed the 

WEKA implementation of the feature selection algorithm [27] and the LibSVM 

implementation of the SVR [30].

3.4. Estimating Postoperative Clinical Scores

The postoperative dataset had access to additional information, other than the postoperative 

sensor data, that may significantly contribute in estimating the clinical score: its preoperative 

ODI scores. The algorithm was designed based on a hypothesis that the postoperative ODI 

score changes with respect to its preoperative value and thus, the postoperative score can be 

more accurately estimated by estimating the change in the ODI score rather than directly 

estimating the score using the sensor data. The schematic summary of the algorithm is 

provided in Fig. 5, which was again performed in a LOSOCV manner.

The preoperative and postoperative sensor data of patients, who had a follow-up visit, were 

processed to extract the spatio-temporal features. Then the feature values of the instances 

belonging to the same clinical visit were averaged to produce the centroid of the instances 

within the feature space. Then the differences between the values of preoperative and 

postoperative dependent variables to the postoperative estimation problem included these 

differences in feature values, the clinical variables introduced in Section 2.4, and the 

preoperative ODI scores. The difference between the preoperative and postoperative ODI 

scores of the training dataset were computed in order to serve as the target (dependent) 

variable. The correlation-based feature selection algorithm (i.e. [29]) was again employed to 

reduce the feature dimensionality. Then, SVR with 3rd order polynomial kernel followed to 

construct a regression model based on the training dataset, and to estimate the change in the 

ODI score of the testing dataset. The SVR with polynomial kernel was used in order to avoid 

over-fitting of the regression model, considering relatively small number of patients with 

postoperative data (i.e. 15 patients). The estimated change in the ODI score was then added 

to the estimated preoperative value, i.e. the estimation of the preoperative ODI score of the 

testing subject that was produced by using the algorithm introduced previously in Section 

3.3.

4. Results

4.1. Estimation Results of Preoperative Clinical Scores

Fig. 6 (a) shows the scatter plot between the actual clinical scores reported preoperatively 

and the estimated scores produced by the proposed hierarchical algorithm. Fig. 6 (b) shows 

the estimation results of the benchmarking algorithm, which is based on a single-level 
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regression algorithm (SVR with polynomial kernel); note that SVR with polynomial kernel 

yielded the best estimation results compared to other kernels and other regression algorithms 

such as random forest regression or multivariate linear regression. As discussed earlier, all 

results reported in this work were generated using the LOSOCV technique, which ensures 

the generalization of the model towards independent datasets and avoids the problem of 

over-fitting. The root mean square error (RMSE) between the actual scores and the estimated 

scores of the proposed algorithm was 0.13, and the RMSE of the benchmarking algorithm 

was 0.17. The coefficient of determination (R2), the Pearson correlation coefficient (r), and 

the p-value of the proposed algorithm were R2 = 0.62, r = 0.78 and p < 4.9 × 10 −7, 

respectively. The benchmaking algorithm produced R2 = 0.42, r = 0.18, and p < 0.024.

4.2. Estimation Results of Postoperative Clinical Scores

The postoperative ODI scores have shown statistically significant difference compared to the 

associated preoperative scores (paired t-test produced p < 0.0040), which supports the 

necessity of a method for estimating postoperative ODI scores. The RMSE between the 

preoperative and postoperative ODI scores were 0.29, the R2 was 0.25, the r was 0.50, and 

the p-value was 0.058. These can serve as the baseline of estimation results for postoperative 

clinical scores since the direct comparison between the preoperative and postoperative 

clinical scores is identical to having no estimation algorithm.

Fig. 7 (a) shows the estimation results of the postoperative clinical scores using the proposed 

algorithm, which estimates the change in the postoperative ODI score respect to its 

preoperative value. Fig. 7 (b) shows the results based on a benchmarking algorithm that 

directly estimates the post-operative clinical score using SVR with polynomial kernel. The 

proposed method produced postoperative estimations with RMSE = 0.12, R2 = 0.64, r = 

0.80, and p < 3.1 × 10−4. The benchmarking method had RMSE = 0.17, R2 = 0.34, r = 0.58, 

and p < 0.022.

4.3. Combined Estimation Results

Fig. 8 (a) shows the scatter plot that combines the preoperative and postoperative estimation 

results of the proposed algorithms, and Fig. 8 (b) shows its Bland-Altman plot. The overall 

RMSE was 0.13, R2 was 0.65, r was 0.81, and the p-value was 3.5×10−11. The bias (mean of 

the difference) and the limit of agreement of the Bland-Altman plot were 0.044 ± 0.12.

4.4. Contribution of the Spatio-Temporal Features in Estimation

To investigate the level of contribution of the spatio-temporal features and the clinical 

variables in estimating the clinical scores, the estimation results of using (1) the spatio-

temporal features and the clinical information were compared to (2) using only spatio-

temporal features as the input to the analytic methods and (3) using only the clinical 

information as the input to the analytic method. Table 1 summarizes the estimation results, 

which indicate that the spatio-temporal features extracted from the sensorized shoes 

contribute the most in estimating the ODI score.
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5. Disscussion

This pilot study investigated the use of sensorized smart shoes to quantify the walking 

ability in LSS patients by estimating the ODI scores. The reported results demonstrate that 

the system has great potential to be used as a tool for screening the patients’ preoperative 

conditions as well as tracking their postoperative conditions. The system is non-invasive, 

easy-to-use, in-expensive, and takes approximately six minutes to complete, which supports 

the system’s potential as a tool for monitoring patients not only in clinical settings but also 

in remote (e.g., home and community) settings.

Fig. 6 illustrates that the proposed hierarchical estimation method out-performs the 

conventional regression approach in terms of the estimation accuracy. This may be due to 

the fact that the regression relationship between the clinical scores and the input features is 

highly complex and varies non-linearly depending on the value range of the ODI. To 

compensate for this, the proposed method employed a binary classifier that determined the 

coarse estimate of the testing instance (i.e. greater or less than the median ODI score) 

followed by a regression algorithm that provide more detailed estimation. This work 

considered only two subgroups in the higher level classifier due to the relatively small size 

of the study data. Investigating the optimal number of subgroups in our on-going clinical 

trial with a large-scale dataset remains as future work.

Fig. 7 shows that the proposed algorithm for postoperative estimation, which estimated the 

change in the ODI score, produce superior results compared to the algorithm that directly 

estimates the postoperative ODI scores. This may be due to the following. The estimations 

in Fig. 7 (b) were made by classification/regression models that used the combined set of 

preoperative and postoperative data as their training set. The relationship between the spatio-

temporal features and the ODI scores may have changed after receiving surgical operation. 

For instance, ODI is known to have response shift following surgery for patients with lumbar 

spinal cord disorder [16], which may influence the results shown in Fig. 7 (b). On the other 

hand, the proposed method partially incorporated the presence of the response shift since the 

algorithm estimated the deviation of the postoperative ODI score from its preoperative value.

Fig. 8 shows the combined results of the preoperative and postoperative data. The estimation 

results (i.e. RMSE = 0.13, R2 = 0.65, and r = 0.81) were comparable to other related works. 

Authors in [6] reported that the overall ODI score and the traveled distance of the SPWT 

showed correlation coefficient of r = −0.60. In [3], authors reported that the time length of 

MTT and the score of the walking item of the ODI showed a significant correlation with r = 

−0.63; the authors also reported, however, that the overall score did not show any significant 

correlations to the results of the walking tests. These are not surprising since both MTT and 

SPWT investigate the walking capacity, which is defined as the distance a person with LSS 

can walk before being forced to stop due to symptoms of LSS [31]. On the other hand, the 

presented work of this paper investigated the quality of walking in LSS patients by analyzing 

the gait parameters, balance, weight distribution, and symmetry of the limbs. This resulted in 

a higher correlation to the overall ODI score as the ODI assesses the level of pain and its 

interference in performing various daily activities. Furthermore, Fig. 8 (b) validates that 

there is no significant underestimation or overestimation; the value of the bias (mean) was 
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0.044. The magnitude of the limit of agreement was equal to 0.12, which shows the expected 

error range for the 95% (1.96 times the standard deviation) of estimation results.

The work presented in this paper estimated the overall ODI score that averaged the scores of 

ten items, which examined various dimensions of functional level of patients with lower 

back pain. Each individual item score was also estimated using the spatio-temporal features. 

Since items had only five or six answer choices whose value gradually changed according to 

the severity of the examining condition, a regression algorithm (without hierarchical design) 

was employed to estimate each item score. The estimated scores of items that investigate (1) 

pain intensity at the affected area, (2) ability to walk for a long distance, and the degree of 

interference of pain on (3) social life and (4) traveling showed statistical significance to the 

reported scores with p-values of 0.0031, 0.0057, 9.6 × 10−4, and 0.0093, respectively. The 

items that did not show significance included the degree of interference of pain on self-

caring, lifting heavy weights, sitting for a long time, standing for a long time, sleeping, and 

sex life. It is interesting that the items that showed statistical significance involved some 

degree of walking ability; the definition of social life was not clearly stated in the 

questionnaire but one of the answer choice stated “pain has restricted social life to my 

home,” which may lead patients to consider their walking ability to travel outside of the 

home while answering.

Table 1 summarized the contributions of the spatio-temporal and clinical features in 

estimating the ODI scores. The estimation result produced by considering both the spatio-

temporal and clinical variables as the input was comparable to when only the spatio-

temporal variables were considered, and the contribution of the clinical variables was 

minimal. The most likely reason for this result is that the ODI quantifies the functional level 

based on many items that involve some degree of walking ability. Thus, the functional level, 

obtained by using the ODI can be more accurately estimated by analyzing the spatio-

temporal data rather than the clinical information (e.g.,the number of previous spinal 

surgeries, symptom duration, presence of acute injury, or BMI). This further supports the 

need for a frequent, objective method to assess functional level in LSS population, which 

can be made possible using the proposed system.

6. Conclusion

This paper introduced a pair of pressure sensor equipped shoes and the associated algorithms 

that together can quantify the functional level in LSS patients by analyzing their walking 

ability and clinical information. The sensor data obtained from a pilot cohort of 29 LSS 

patients were used to estimate the Oswestry Disability Index, a clinically validated outcome 

measure. The estimation results based on the leave-one-out cross validation technique 

showed an RMSE of 0.13, an R2 of 0.65, a r of 0.81, and a p-value of 3.5 × 10−11. This pilot 

study enables new research and clinical opportunities for accurate quantification of 

functional capacity in LSS patients to track the level of disease severity before and after 

surgical operations. The quantification of walking ability can also be applied to stratifying 

patients for more personalized treatment and care. Furthermore, the pervasive nature of the 

proposed sensory platform can be used to ubiquitously monitor patients, which can 

potentially provide early alarming of any walking disorders.
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Highlights

• The functional level of LSS patients is quantified using a pair of sensorized 

shoes

• Machine learning algorithms were used to estimate the Oswestry Disability 

Index

• The functional level can be accurately quantified by analyzing walking ability
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Figure 1: 
A picture of the sensorized shoes containing an array of five pressure sensors and a wireless 

data transceiver. Pressure sensors on the insole were positioned to detect heel-strike (P1), 

mid-lateral plantar pressure (P3), toe pressure (P5) and other spatio-temporal information 

(P2 and P4).
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Figure 2: 
A graphical summary of the experimental procedure. Patients were asked to walk on a 10 

meter trail at a self-paced speed, turn around, and walk back to the original position with 

five seconds of defaults between each transition in action.
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Figure 3: 
Sample time series of pressure sensors that belong to one of the participated patients. This 

10 meter walk was considered as a single data instance.
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Figure 4: 
A schematic representation of the algorithm used to estimate preoperative clinical scores.
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Figure 5: 
A schematic representation of the algorithm used to estimate postoperative clinical scores. 

This algorithm estimates the changes in the ODI score after surgical operation rather than 

directly estimating the ODI score from the postoperative sensor data.
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Figure 6: 
The estimation results of the preoperative ODI scores based on (a) the proposed hierarchical 

method and (b) the benchmakring single-level regression. The x-axis represents the actual 

ODI scores reported by the patients and the y-axis represents the estimated ODI scores.
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Figure 7: 
The estimation results of the postoperative ODI scores based on (a) the proposed algorithm 

that estimates the changes in ODI score respect to the preoperative value, and (b) the 

benchmarking algorithm that directly estimates the postoperative ODI score from the sensor 

data using SVR with polynomial kernel.
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Figure 8: 
(a) The scatter plot of both preoperative and postoperative estimation results produced by the 

proposed algorithm, which shows RMSE = 0.13, R2 = 0.65, r = 0.81, and p < 3.5 × 10−11. 

(b) Its Bland-Altman plot with the bias of 0.044 and the magnitude of the limit of agreement 

of 0.12.
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Table 1:

A summary of the estimation results when (left) both spatio-temporal and clinical variables were considered as 

the input features, (center) only the spatio-temporal variables were considered, and (right) only the clinical 

variables were considered.

Spatio-temporal &
Clinical variables

Spatio-temporal
only

Clinical variables
only

RMSE 0.13 0.13 0.21

R2 0.65 0.65 0.36

r 0.81 0.80 0.13

p-value 3.5 × 10−11 5.1 × 10−7 0.15
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