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Abstract

Maximum Entropy for Resource Allocation: a quantitative theory of species coexistence
and population demographics

by

Yu Zhang

Doctor of Philosophy in Environmental Science, Policy and Management

University of California, Berkeley

Professor John Harte, Chair

In the past few decades, ecology has gone through exciting breakthroughs in developing
and applying quantitative methods to more accurately describe and predict patterns and
dynamics. However, a theoretical framework under which models could be built and results
interpreted in one language is still missing, impeding the communication and collaboration
among subfields of ecology. To serve the ultimate goal of developing such a framework, in
this dissertation, a theory is developed to make unified predictions of several facets of ecology
that have so far been addressed mostly in independent ways: starting from a simple scenario
of resource allocation, the theory simultaneously predicts species coexistence, community-
level energy distribution, population demographic growth function, evolutionary tradeoffs
and life history strategies. The approach of maximizing information entropy (MaxEnt) is
used to make sure that the theory makes the most objective predictions from the fewest
ad hoc assumptions. Previous applications of MaxEnt in ecology are reviewed in Chapter
1. In Chapter 2, the fundamental framework and a first model of the theory is introduced.
Based on the same framework, several different approaches to expand model predictions
are explored in Chapters 3 and 4. As is discussed in Chapters 2-4, the assumptions and
parameters of the theory can be related to many important concepts in ecology (e.g. fitness
equality, stabilizing effect, niche and neutrality), and the predictions reveal many previously
unidentified links between patterns and processes at the population and community level
to metabolism and functional traits. Combining all above, the work in this dissertation is
potentially a first step towards a unified theoretical framework of ecology.
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Chapter 1

Applications of the principle of
maximum entropy in ecological
models: challenges and opportunities

Abstract

In this chapter I review models using the Maximum Entropy principle (MaxEnt) to
predict patterns in ecology. Models will be categorized based on their purpose, i.e. the
metric to be predicted, with challenges identified for each category. Based on the review,
connections among information entropy, stochasticity and neutrality will be discussed and
new directions for model developing and theoretical integration identified.

1.1 Introduction

The principle of Maximum Entropy, also known as MaxEnt, is a method that makes the
most objective inference for a probability distribution given the information available (Jaynes
1957). More specifically, MaxEnt predicts the flattest and thus least informative shape of
a probability distribution given constraints from prior knowledge. The fundamental idea of
this method has been introduced for more than half a century, but only in the recent decade
did it start to play an active role in theories and models of ecology (Phillips et al. 2006a;
Shipley et al. 2006a; Pueyo et al. 2007; Banavar et al. 2010; Harte et al. 2008).

The absence of an explicit mechanistic basis for models based on MaxEnt has been noted
and questioned (McGill 2006; Haegeman & Loreau 2008; McGill & Nekola 2010). A recent
paper (Harte & Newman 2014a) has addressed this issue within the context of a particular
theory, METE (the maximum entropy theory of ecology) (Harte 2011a). Meanwhile, MaxEnt
has been compared to another mechanistically simplified theory of ecology, the neutral theory
of biodiversity and biogeography or NTB (Hubbell 2001). However, the links between them
are hard to identify. For example, it is unclear whether there is an effective assumption of
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species or individual neutrality in MaxEnt-based models. It is also unclear as to whether
the distribution of species abundances that emerges from METE describes demographic
stochasticity, which is the basis of NTB.

To clarify these points and identify potential future directions, it is necessary to review the
existing applications of MaxEnt in ecology. Previously there have been a number of reviews
for this purpose (Baldwin 2009; Banavar et al. 2010; Petchey 2010; Harte & Newman 2014a)
but each focuses on one specific type of application, e.g. spatial distribution modeling.
In the following I will try to summarize on a broader scale all ecological applications of
MaxEnt. After that I discuss the linkages between MaxEnt and concepts like stochasticity
and neutrality and how to incorporate these linkages in future studies.

1.2 The general procedure of MaxEnt

Information entropy is defined over a probability distribution. Given a probability mass
function (for a discrete random variable) or a probability density function (for a continuous
random variable) p(X) (X is the random variable) , the equation for Shannon information
entropy H over p(X) is shown in Eq. 1.1 (Shannon 1951).

H = −
∑
X

p(X)logp(X) (X is discrete)

= −
∫
X

p(X)logp(X) (X is continuous)

(1.1)

Note that X can be multiple random variables, in which case p(X) would be a joint
distribution over all of them. Shannon information entropy as in Eq. 1.1 is the only formula
that satisfies the four information criterion (Shannon 1949; Khinchin 1957; Jaynes 1957).
The more generalized forms of information entropy, e.g. Renyi entropy (Renyi 1961), and
their applications are beyond the scope of this review.

From Eq. 1.1 one can derive that H is maximized when p(X) is completely flat, i.e. a
uniform distribution. In general, the bigger the information entropy, the flatter the prob-
ability distribution, and the less information it contains. This is because if a probability
distribution is very sharp at some value, we can have a better guess about the random vari-
able compared to when the probability distribution is flat over all values. In other words,
maximizing information entropy is equivalent to maximizing our ignorance and therefore
minimizing bias in making inferences. Using the predicted least informative distribution as
a prior, information we get from extra measurements can be maximized.

With no further information, maximizing H leads to a uniform distribution for X. How-
ever, we sometimes have prior knowledge about the probability distribution that can be
incorporated into the inference. For example, if the mean of a random variable f(X) that is
a function of X is known, it can be used as a constraint on p(X) (Eq. 1.2).
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∑
X

f(X)p(X) = f̄(X) (X is discrete)

or

∫
X

f(X)p(X) = f̄(X) (X is continuous)

(1.2)

Maximizing H subject to constraints like Eq. 1.2 yields a non-uniform distribution for
p(X) (Eq. 1.3).

p(X) =
e−

∑
i λifi(X)

Z
(1.3)

In Eq. 1.3, fi(X) is the ith function of X whose mean f̄i(X) is known. λi is a constant
that is determined by f̄i(X). Z is the normalization constant which ensures that the sum
(or integral) of p(X) over all values of X equals to 1. The derivation of Eq. 1.3 can be
found in the original work of Jaynes (Jaynes 1957) and will not be elaborated on here. It
is worth noticing, however, that p(X) in Eq. 1.3 is a very general distribution from which
many of the well-known distributions emerge, e.g. normal distribution (for continuous X)
and geometric distribution (for discrete X), depending on what prior knowledge is assumed.

Introduced above is how to incorporate prior knowledge through constraints on the prob-
ability distribution. Sometimes we have prior knowledge in the form of a distribution. In
that case, the procedure of maximizing relative information entropy can be useful (Kullback
1959):

H = −
∑
X

p(X)ln
p(X)

p0(X)
(X is discrete)

= −
∫
X

p(X)ln
p(X)

p0(X)
(X is continuous)

(1.4)

In Eq. 1.4, p0(X) is the prior distribution of X, or the probability distribution when no
other constraints exist. Comparing Eqs. 1.1 & 1.4 we can see that, maximizing information
entropy without a prior distribution is equivalent to assuming that the prior distribution is
uniform (p0(X) is a constant for all X).

All applications of MaxEnt in ecological modeling stem from the simple framework de-
scribed above. In the following, I will categorize these applications by their purposes, i.e.
the metric to predict, with their connections and distinctions clarified.
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1.3 An overall review of ecological modeling with

MaxEnt

Spatial distribution modeling (SDM)

One question in biodiversity research is that given limited samples in space, how can we
predict the spatial distribution of a particular species. Since the first model was proposed
(Phillips et al. 2006a), MaxEnt has been shown to be a powerful method for this purpose. In
this scenario, p(x) is the probability that a random individual of the species is present at a
location x given the values of the environmental variables (f1(x), f2(x), ...). The information
entropy H over p(x) will be maximized subject to constraints on the environmental variables,
usually their mean values across the landscape (f̄1(x), f̄2(x), ...). This procedure yields a
probability distribution of the same form as Eq. 1.3:

p(x) =
e−

∑
i λifi(x)

Z
(1.5)

In Eq. 1.5, x is a grid cell in space, fi(x) is the value of the ith environmental variable at
cell x.

Though powerful, this model also has its issues. For example, it is sometimes difficult
to determine the landscape boundary. Also there is a tendency to overfit (Hernandez et al.
2006; Phillips & Dud́ık 2008; Baldwin 2009). In spite of these issues, it is still an active
area of study that produces an abundance of literature both on improving the model itself
and applying it to new systems (Kramer-Schadt et al. 2013; Merow et al. 2013; Mainali
et al. 2015). It is worth noticing that this procedure is mathematically equivalent to logistic
regression between species presence and the environmental variables based on a Poisson point
process model (He 2010; Renner & Warton 2013).

Relative abundance from traits (trait-based community assembly)

Another application of MaxEnt in ecology is to predict relative abundance of species in a
community from functional traits (Shipley et al. 2006a; Shipley 2010a). The mathematical
setting is very similar to that of SDM, just with a different interpretation for p(x): in this
context, it is the probability that a random individual in the community belongs to species
x given the values of traits (f1(x), f2(x), ...). Correspondingly, the constraints are the mean
values of the traits over all species (f̄1(x), f̄2(x), ...).

p(x) =
e−

∑
i λifi(x)

Z
(1.6)

In Eq. 1.6, x is a species in the community, fi(x) is the value of the ith trait for species
x.



5

While similar, technically, to the MaxEnt SDM, this application has been much more
criticized. One argument against it is on the circularity of the logic: while the model aims
to predict the abundances, one has to know the abundances of all species to calculate the
constraints, i.e. the community level mean values of the trait variables (Marks & Muller-
Landau 2007; Roxburgh & Mokany 2007). Another more important issue about it is that it is
seriously over constrained. It has been shown that with the number of constraints used in the
original study (Shipley et al. 2006a), any information criteria (not limited to MaxEnt) can
give an equally good estimate for the relative abundances (Haegeman & Loreau 2008, 2009).
One reason for this is that unlike in SDM, no cross-validation is done in this application to
make sure that the parameters for the traits (the λis) are not overfitted: the whole dataset
is used to train the model as well as to test the model. This may be due to the fact that
the number of species (around 30 in Shipley et al. 2006a) is too small to be further split
for training, cross-validation and testing, which is also the reason the model is doomed to
overfit.

Although controversial, this study has certainly posed important questions for ecologists
looking to apply MaxEnt in their models. For example, what makes an application of MaxEnt
more productive than alternative approaches? Summarizing different critiques so far, first,
we need to have knowledge of the system that is relevant to the pattern or the process of
interest, i.e. the constraints; second, that knowledge has to be “lean” so that it is highly
distilled on a coarser grain and not overly constraining.

Species-level spatial abundance distribution (SSAD)

Aside from environmental effects as accounted for in SDMs, the spatial distribution of
a species is also shaped by demographic processes (e.g. birth, death, immigration) and
intraspecific interactions (Durrett & Levin 1998; Nathan & Muller-Landau 2000). Empirical
evidence has shown that individuals of the same species tend to aggregate at the local
scale, even when the environment is comparatively homogeneous (Plotkin et al. 2000; Green
et al. 2003). To explain this pattern, ecologists sometimes look at the species-level spatial
abundance distribution (SSAD), which is the probability that a certain number of individuals
n is observed in area A given the total number of individuals n0 of the species and the total
area of the landscape A0 (Harte et al. 2005; Green & Plotkin 2007). It is sometimes denoted
by P (n|A,A0, n0).

There have been several attempts to derive the form of the SSAD from a MaxEnt-based
approach. The simplest approach is introduced as part of the Maximum Entropy Theory
of Ecology or METE (Harte et al. 2008; Harte 2011a). It applies the general MaxEnt
procedure introduced in section 2 to the P (n|A,A0, n0) distribution using the mean number
of individuals in a cell across the landscape as the constraint. The solution is shown in Eq.
1.7.

P (n|A,A0, n0) =
e−λn

Z
(1.7)
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In Eq. 1.7, n is the abundance class, or the possible numbers of individuals in one cell
(n = 0, 1, 2, ...). Notice that here the only constraint variable is n itself (f(n) = n). The
λ parameter is determined by the mean number of individuals in a cell (n0

A
A0

); Z is still
the normalization constant. Since n can only take integer values (0, 1, 2, ...), Eq. 1.7 is a
geometric distribution with a mean that equals to n0

A
A0

.
However, empirical studies show that the shape of the SSAD depends on scale (Conlisk

et al. 2007). Notice that the above is not the only way to derive SSAD from MaxEnt,
nor is geometric distribution the only prediction. In a review on this topic (Haegeman
& Etienne 2010), it has been shown that a number of different predictions for SSAD can
emerge from a MaxEnt framework, depending on the choice of the probability distribution to
conduct the MaxEnt procedure over. In particular, if we maximize information entropy over a
probability distribution of individual-cell configurations, such as P (c1, c2, ...|A,A0, n0), where
ci is the identity of the cell that the ith individual is in, and then derive P (n|A,A0, n0) from
that distribution, we actually get a different answer from directly maximizing information
entropy over P (n|A,A0, n0). The difference is whether individual identity matters: when
conducting MaxEnt over P (c1, c2, ...|A,A0, n0), we are assuming a uniform prior distribution
among all configurations of individuals among cells (identity acknowledged representation
in Fig. 1.1), in which case individual identity matters. When directly applying MaxEnt
to P (n|A,A0, n0), we are assuming a uniform prior distribution among all configurations of
cells among abundance classes (n = 0, 1, 2, ...) (identity ignored representation in Fig .1.1).
In this case, individual identity does not matter. Fig. 1.1 shows the difference between these
two definitions of configurations.
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{3, 0} 

{2, 1} 

{1, 2} 

{0, 3} 

Identity ignored Identity acknowledged 

Figure 1.1: Two ways to represent different configurations of allocating three individuals to
two cells.
The configurations on the left consider individual identity while the configurations on the
right do not, where the numbers in the brackets indicate the numbers of individuals in
each cell. When assuming a uniform probability distribution among configurations on the
left, {2,1} is three times the probability of {3,0}. When assuming a uniform probability
distribution among configurations on the right, {2,1} has the same probability as {3,0}.
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The same paper also showed that the choice of constraints can be exchangeable with
the choice of prior distribution and the probability distribution to which MaxEnt is applied.
Scale inconsistency is another potential problem that emerges from these methods: if one
applies MaxEnt to the SSAD at one scale (a certain value of A) and scale transform to a
higher scale (merge cells of area A into bigger cells), one usually gets a different SSAD from
directly applying MaxEnt to the SSAD at the higher scale. This could be reconciled by
allowing for certain spatial autocorrelation among individuals, for example, the probability
of presence in one cell is contingent on presence in adjacent cells. The accurate form of
spatial autocorrelation that makes MaxEnt consistent across scales has not been solved yet.

There have been other studies exploring the use of MaxEnt in predicting SSAD (Young
& Willson 1987a) or biodiversity distribution among sites (Kelly et al. 2011, where species
is used in place of individuals and sites in place of cells), but all fall within the general
framework introduced here.

Species abundance distribution (SAD)

The species abundance distribution P (n) is the probability that a species has n individ-
uals (usually conditional on the total number of individuals N0 and total number of species
S0 in the community and therefore denoted by P (n|N0, S0)). Empirical studies show that
the species abundance distribution tends to follow a Fisher log-series in stable communities
(Fisher et al. 1943; Pueyo 2006; White et al. 2012). There have been multiple attempts to
derive this distribution from fundamental principles (Kendall 1948; MacArthur 1957; Tokeshi
1993; Hubbell 2001). Here I will only focus on the approaches based on MaxEnt.

The first approach (Pueyo et al. 2007) used an informative prior distribution (as opposed
to the uninformative uniform distribution used in all applications above):

P0(n|N0, S0) = Cn−1 (1.8)

In Eq. 1.8, C is a constant determined by N0 and S0. This is derived from a negative
binomial SSAD combined with the hypothesis of scale invariance (Dewdney 1998; Pueyo
et al. 2007): the abundance of a random species in a plot is independent of the size of the
plot. The rationale is that it is hard to distinguish between the sample of a rarer species at a
larger scale from that of a more common species at a smaller scale, since they should result in
very similar sample abundances. Using Eq. 1.8 as the prior distribution, maximizing relative
information entropy (Eq. 1.4) subject to a constraint on the mean species abundance yields
a log-series distribution for SAD:

P (n|N0, S0) = Cn−1e−λn (1.9)

In Eq. 1.9, n is the abundance class, or the possible numbers of individuals in one species
(n = 0, 1, 2, ...). λ is a constant determined by the constraint.

One could also obtain the same prior distribution in Eq. 1.8 by assuming that without any
constraints, the system goes through a Markov birth-death process (Kendall 1948; Hubbell
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2001; Banavar et al. 2010) and that birth and death rates are equal and completely density
independent.

Another approach that successfully derived a log-series SAD used an uninformative prior
distribution but made different choices for the constraints and the probability distribution
to conduct MaxEnt over (Harte et al. 2008; Harte 2011a). A joint distribution between
abundance and metabolic energy is defined, and constraints on both mean abundance and
mean metabolic energy are used. More details on this approach will be discussed in Section
1.3.5: metabolic energy distribution.

In general, predicting SAD is technically very similar to predicting SSAD with MaxEnt:
instead of allocating individuals of one species among cells in space, we allocate individuals
of the whole community among species. The same issues for SSAD also hold: the choice of
probability distribution is crucial. Conducting MaxEnt over P (s1, s2, ...) where individuals
are all labeled with their species identities gives a different SAD from conducting MaxEnt
over P (n|N0, S0) as defined above (Banavar et al. 2010). Constraints and prior distributions
also immensely affect the result. Similar to the scale inconsistency issue with SSAD, applying
MaxEnt to different taxonomic scales might lead to different solutions to certain metrics.
Choice of taxonomic levels to include in the model needs to be made with caution.

Metabolic energy distribution

Aside from the SSAD and the SAD, METE also predicts the metabolic energy distribution
within and across species. In the first model of METE (Harte et al. 2008), the probability
distribution over which the information entropy is maximized is defined as a joint distribution
R(n, ε) between n, the abundance of a random species in the community, and ε, the metabolic
energy of a random individual of that species. Using total number of species S0, total number
of individuals N0 and total metabolic energy E0 as state variables from which the constraints
can be calculated (mean species abundance N0/S0, mean species metabolic energy E0/S0),
this model predicts the shape of R(n, ε) (Eq. 1.10).

R(n, ε) =
e−λ1n−λ2nε

Z
(1.10)

In Eq. 1.10, λ1 and λ2 are constants determined by the constraints; Z is the normalization
constant. From R(n, ε) one can derive the metabolic energy distribution across all individuals
in the community (denoted by Ψ(ε) in METE) as well as the metabolic energy distribution
within a species given its abundance (denoted by θ(ε|n) in METE). Here I will not go over
the derivations and interested readers should refer to the original publications of METE
(Harte et al. 2008; Harte 2011a).

In this very first model, the energetic equivalence rule (EER, Damuth 1981) is predicted:
all species have the same total metabolic energy. However, data shows that there is often a
lot of scatter around the prediction of EER (Marquet et al. 1995a; George-Nascimento et al.
2004; White et al. 2007b). In a later extension of METE (Harte et al. 2015), a new model
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incorporating constraints on higher taxonomic levels (mean number of species in a family) is
developed. It predicts a different total species metabolic energy in each family which better
fits empirical patterns than EER.

Population dynamics and species coexistence

As mentioned above, the choice of probability distribution to conduct MaxEnt over is
of crucial importance. The pressing question is which distribution we should assume to be
uniform without further constraints. For example in SSAD, should it be the distribution over
all individual-cell configurations or the distribution over all cell-abundance class configura-
tions? Although this remains an open question, there have been attempts using a generalized
MaxEnt framework based on the fundamental concepts of microstate and macrostate that
provide insights into this decision.

It has been known in physics that the thermodynamic entropy of a macrostate is a
function of the number of microstates associated with it:

S = kBlogW (1.11)

Eq. 1.11 is the Boltzmann’s entropy formula (Boltzmann & Gibbs 1870), which states
that the thermodynamic entropy S of any macrostate for ideal gas is the natural log of the
number of microstates W associated with that macrostate times a constant (kB ≈ 1.38065×
10−23J/K, the Boltzmann constant). In this context, macrostates are particular values for
temperature, volume and pressure, while microstates are particular allocation patterns of
particles among energy levels (Dewar 2009; Banavar et al. 2010). In general, a macrostate
can be understood as a coarse-grain observation at the macroscopic level, e.g. three balls
in a box, while a microstate is a fine-grain observation at the microscopic level, e.g. two
red balls and one white ball in the box. A microstate contains more information than a
macrostate: a macrostate can correspond to multiple microstates but one microstate can
only be associated with one macrostate. Furthermore, assuming all microstates are equally
probable, the number of microstates W of a macrostate is proportional to the probability of
the macrostate.

Given this framework, one can find the most probable macrostate by maximizing S, the
Boltzmann entropy. This is equivalent to maximizing W since according to Eq. 1.11 S
is a positive function of W and W only. This makes it possible to make inferences about
any macroscopic variables, without having to define a probability distribution or choosing
constraints. One study explored the prediction for population dynamics in a simple chemo-
stat scenario for microbes (Neill et al. 2009b): defining the number of resource units each
species gets as the macrostate variable while specific resource allocation between species as
microstates (middle column of Fig. 1.2), the model is able to derive the most probable re-
source allocation pattern between the two species at each time step and thereby a population
dynamic path. However, the equally probable microstates in this model are defined at the
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species level, and therefore individual identity within each species does not matter when
counting the number of microstates. When individual identity within each species matters,
each microstate diversifies into multiple scenarios (right column of Fig. 1.2).
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{R1 = 1, R2 = 1} 

a	   c	  b

r1	   r2	  

a	   c	  b

r1	   r2	  

a	   c	  b

r1	   r2	  

a	   c	  b

r2	   r1	  

a	   c	  b

r2	   r1	  

a	   c	  b

r2	   r1	  

Species 1     Species 2 Species 1     Species 2 

Not considering individual identity Considering individual identity 

Figure 1.2: Macrostate and microstates for resource allocation between two species.
The macrostate is each species gets one resource unit (R1 = R2 = 1). Not considering
individual identity (a, b, c), microstates are the two ways to shuffle resource units between
the species. When individual identity is considered, microstates also include the different
ways to shuffle resource units between individuals within the species.
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In a paper published by this author (Zhang & Harte 2015), a model is developed in which
it is possible to switch between the two options: acknowledging or ignoring individual iden-
tities. This is realized through the definition of relative distinguishability Dr, a continuous
variable between 0 and 1 and potentially different for each species. When Dr = 0, individual
identity within the species can be ignored; when Dr = 1, individual identity should be fully
considered when counting the number of microstates. Connections have been made between
Dr and functional dispersion as well as genetic variation within- compared to across-species.
This model predicts the condition for species to coexist through time, a distinct steady
state abundance-metabolic rate relationship that generalizes the prediction of the energetic
equivalence rule (EER), and a relationship between population stability and metabolic rate.

1.4 Discussion

Mechanisms and tests

The assumptions of most models introduced above are not based on specific processes.
Therefore, tests of these models are targeted towards the potential mechanisms shaping the
patterns of interest (spatial distribution, abundance distribution, etc.). Instead of precisely
”what is going on and how”, these models focus on the broader question of ”what matters”,
more specifically ”what it is that mechanisms should incorporate to be able to predict certain
patterns”. For example, in an SDM, including temperature as a variable assumes that
temperature matters to the presence of a species without specifying how exactly it takes
effect. If including temperature does not significantly improve the prediction on species
presence, then this assumption is falsified. For another example, in METE, including three
state variables (total number of species, total abundance and total energy) yields pretty good
predictions for species abundance distributions (SAD) in stable ecosystems. This means
that in these ecosystems, mechanisms determining the three state variables are the key
mechanisms determining the shape of SAD. The fact that the METE model does not work
as well in disturbed ecosystems suggests that there are additional important mechanisms
involved in those systems, which can be manifested once a new state variable (e.g. total
water use) that significantly improves predictions is found.

Links to other concepts in ecology

From the introductions in previous sections we can see that, the choice of model setting
(constraint, prior distribution, definition of probability distribution) can hugely affect the
predictions in MaxEnt models. However, it is very difficult to justify the choice of one
model setting over another, if not by examining ad hoc which yields predictions that better
describe empirical patterns. Researchers are gradually realizing that this can be enlightened
by linking MaxEnt assumptions to processes and mechanisms that ecologists are familiar
with (Banavar et al. 2010; Haegeman & Etienne 2010; Harte & Newman 2014a). However,
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up to this point, models and theories based on MaxEnt have been comparatively independent
of other ecological theories. Many questions need to be answered linking specific aspects of
MaxEnt to different theories. With these questions not properly addressed, there have been
prevalent confusions about MaxEnt and its applications in ecology. Below I will discuss
two examples of linkage between MaxEnt and existing concepts in ecological theories. In
each example I will try and highlight the ambiguous points, identify the gaps and make
suggestions for future model development.

Entropy and stochasticity

It has been a common misunderstanding that MaxEnt models predicting ecological met-
rics assume stochastic demographic processes, e.g. stochastic birth, death and immigration.
In fact, most MaxEnt models are agnostic about processes; they focus on the patterns in-
stead. The stochasticity of MaxEnt lies in the assumption that there is a space consisting
of all possible outcomes, i.e. the microstates, corresponding to the pattern of interest, i.e.
the macrostate, and the system takes a random walk in the microstate space. The random
walk is assumed to be ergodic so through time the macrostate with the most number of
microstates is mostly likely to be observed.

This is very different from stochastic birth-death models like the one in NTB (Hubbell
2001), where the transition between any two states correspond to specific demographic pro-
cesses, i.e. birth, death, immigration, speciation. Instead in MaxEnt, the random walk in
the microstate space is merely a theoretical representation and does not correspond to any
real processes in nature: we do not know how nature jumps from one microstate to another
and whether that has anything to do with ecological processes or mechanisms. In short,
MaxEnt is stochastic, but is not mechanistic, in other words does not specify where the
stochasticity comes from.

Although MaxEnt has mainly been applied to patterns, it does not mean that MaxEnt
is unable to predict processes. Macrostate can be defined based on not only static patterns,
but also dynamic terms. As is introduced in Section 1.3.6: population dynamics and species
coexistence, the theory developed in this dissertation predicts the most likely birth and
death rates (the macrostate) under a simple resource allocation scenario where microstates
are defined. The remaining question is how to combine a traditional stochastic model,
e.g. the one presented by NTB, with a MaxEnt model on processes. Here we propose two
potential solutions. First, apply MaxEnt to derive probability distributions for demographic
rates that can be used as parameters in stochastic models. Second, use stochastic models to
predict the dynamics of the constraints or the prior distribution for a MaxEnt model. In such
applications, one needs to be aware of the combined assumptions of stochasticity at different
scales: MaxEnt assumes stochasticity at the microscopic scale but not at the macroscopic
scale (there is only one macrostate corresponding to the maximized entropy). Most stochastic
models in ecology assume stochasticity at the macroscopic scale. Most importantly, we have
to be clear about the choice of microstate as well as constraints and prior distribution; they
are the essence of MaxEnt-based models and determine what predictions emerge from them.
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Niche and neutrality

For a similar reason as the confusion with stochastic models, the dependence of MaxEnt-
based models on the assumption of neutrality has been frequently suspected (Pueyo et al.
2007; McGill 2010). A similar argument also applies: MaxEnt per se is agnostic about species
or individual neutrality; no assumption related to neutrality is needed to apply MaxEnt.
In fact, from this review we can see that many ecological models applying MaxEnt have
significant non-neutral or niche-based assumptions: SDM predicts that a set of environment
variables determine the spatial distribution of a given species in a way specific to that
species; trait-based community assembly assumes that the relative abundance of a species is
determined by its traits. Even in the original model realization of METE (the ASNE model)
where only three state variables (total number of species, total number of individuals, total
metabolic rate) are used as input, a non-uniform distribution of metabolic rate among species
is predicted.

Such confusion exists partly due to the fact that the definition of neutrality is not clear.
The assumption of neutral species has been mostly related to fitness equality and niche
irrelevance, where most criticism are also aimed at (Chave 2004; Clark 2009). One common
cause of confusion is that the concept of neutrality is relative and always needs a reference.
For example, immigration of mammals is probably not neutral about body size (since bigger
individuals may be more mobile), but is very likely to be neutral about fur color. The
scale at which neutrality is defined also matters: individuals within the same species may
be neutral about demographic processes, but different species are not. In future studies
involving assumptions related to neutrality, it would be helpful to clarify the subject and
scale of concern instead of using the general term which can easily cause confusion.

As is discussed in Section 1.3.6, the relative distinguishability parameter Dr makes it
possible to switch between ignoring and acknowledging conspecific individual identity. This
parameter could potentially serve as an indicator for the level of neutrality assumed in
MaxEnt-based models. Though reasonable hypotheses have been made, It remains to be seen
from data whether Dr is related to functional dispersion or genetic variation or something
else. Once this is clarified, more connections between MaxEnt model settings and ecological
mechanisms as well as neutrality can readily be made.

To summarize, connections among stochasticity, neutrality and MaxEnt do exist but can
be versatile depending on the context of a specific application. Interpretation of these con-
cepts should be more open and not limited to views based on established models. Future
efforts are needed to expand the horizon of MaxEnt applications in ecology by, for exam-
ple, modeling not just patterns but also processes, combining with traditional stochastic
models, and further clarifying assumptions associated with niche or neutrality at different
organization scales.
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1.5 Conclusion

Models based on the principle of Maximum Entropy (MaxEnt) have made significant
achievements predicting ecological metrics such as SAD (species abundance distribution),
IED (individual energy distribution), SSAD (species-level abundance distribution) and SAR
(species area relationship). However, there are still challenges regarding choice of constraints,
prior distribution and definition of probability distribution. We proposed that one way
to tackle these challenges is to link MaxEnt assumptions to existing ecological theories,
and based on that we summarized future directions to apply MaxEnt in ecology. With
these directions explored in the future, MaxEnt can be a powerful tool to identify crucial
ingredients in processes and mechanisms and greatly expand the power of ecological theory.
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Chapter 2

Population dynamics and competitive
outcome derive from resource
allocation statistics: the governing
influence of the distinguishability of
individuals

Abstract

Model predictions for species competition outcomes highly depend on the assumed form
of the population growth function. In this paper we apply an alternative inferential method
based on statistical mechanics, maximizing Boltzmann entropy, to predict resource-constrained
population dynamics and coexistence. Within this framework, population dynamics and
competition outcome can be determined without assuming any particular form of the pop-
ulation growth function. The dynamics of each species is determined by two parameters:
the mean resource requirement θ (related to the mean metabolic rate) and individual dis-
tinguishability Dr (related to intra- compared to interspecific functional variation). Our
theory clarifies the condition for the energetic equivalence rule (EER) to hold, and provide
a statistical explanation for the importance of species functional variation in determining
population dynamics and coexistence patterns.

2.1 Introduction

Although the competitive exclusion principle has been extensively studied since first
proposed, its connection to actual patterns of biodiversity remains elusive (Volterra 1938;
Hutchinson 1961; Wilson & Lindow 1994; Anderson et al. 2002). Consequently the question
of how species diversity is maintained under limited resources continues to intrigue ecologists
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(Wright 2002; Kelly & Bowler 2002; Wilson & Abrams 2005; Calcagno et al. 2006; Lobry &
Harmand 2006; Tokeshi 2009; Siepielski & McPeek 2010).

In a review of this topic, Chesson (2000) identified two properties of mechanisms of
population dynamics that shape the species coexistence outcomes: equalizing, which leads
to diminishing average fitness difference between species(Tilman 1981; Chave 2004); and
stabilizing, which leads to higher intraspecific than interspecific density dependence (Ama-
rasekare 2003; Lobry & Harmand 2006). He then partitioned different models using these
two properties and concluded that coexistence is only possible when fitness differences (the
opposite of equalizing mechanisms) are compensated by stabilizing mechanisms. The equal-
izing and stabilizing behaviors of a model, however, are largely determined by the form of the
population growth function the model assumes, which is usually chosen phenomenologically,
applying functions most familiar to ecologists, e.g. linear, exponential and logistic (Volterra
1938; Hassell 1975).

Although these simple function forms are convenient and neat, nature is undoubtedly
more complex (Abrams & Ginzburg 2000; Chase et al. 2002; Melbourne & Chesson 2005).
And while some competition models have assumed more complex equations, either fitted
from data (Leirs et al. 1997) or derived from more nonlinear mechanisms (Toro et al. 1971;
Dennis & Desharnais 1995), the more complex the model, the more vulnerable it usually is
to over parameterization, adding to the difficulty of falsification. More importantly, since
most studies only look at a handful of species, the form of the population growth function
varies from study to study. How this variation is generated would be better understood if a
theory involving only general principles, potentially applicable to all species, existed.

Our goal is such a theory, one that predicts the most phenomena with the fewest unver-
ifiable assumptions. Statistical mechanics provides a widely applicable method, maximum
entropy (MaxEnt), for inferring the most likely form of the pattern of interest given limited
information available. MaxEnt based on Shannon entropy (Jaynes 1982) has been used in
ecology to predict species spatial distributions from environmental variables (Phillips et al.
2006b) or from the species abundance distribution (Shipley et al. 2006b) and has nurtured a
comprehensive theory that predicts numerous macroecological metrics including the species
abundance distribution, the species level spatial abundance distribution and the species area
relationship (Harte 2011b; Harte & Newman 2014b; see also Dewar & Porté 2008).

So far there has been little effort to apply MaxEnt to the study of population dynamics
and species interaction. It is not obvious how to do so basing such an application on Shannon
entropy. But it is much more straightforward starting with the definition of Boltzmann
entropy (Boltzmann 1896), which is applicable to any discrete process, such as resource
allocation that can be easily associated with demographic processes. The Boltzmann entropy
of a macrostate is defined to be the natural log of the number of microstates compatible with
the macrostate:

S = kblog(W ) (2.1)

Where S is the thermodynamic entropy of a macrostate, kb is the Boltzmann constant
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(≈ 1.38 × 10−23m2kg s−2K−1), and W is the number of microstates associated with the
macrostate. The second law of thermodynamics states that the entropy of an isolated system
cannot decrease and the most likely state of a system is the one associated with the highest
entropy. Consistent with Eq. 2.1, according to which maximizing the Boltzmann entropy
gives the macrostate that is associated with the largest number of microstates, the state with
the highest entropy has the highest probability to be observed.

To apply this idea to a resource allocation scenario, a way of counting microstates is
needed. A natural approach is to equate the number of microstates with the number of ways
the available resources can be allocated to the individuals in the system. In a first attempt
in this direction (Neill et al. 2009a), the number of resource allocations for two species is
maximized in each constant growth period subject to an energy constraint, from which the
form of population growth function is derived. This innovative model, however, leads to the
conclusion that coexistence is the ultimate competition outcome under all circumstances,
contradicting both theory and observation (Phillips et al. 2004; Fargione & Tilman 2005).
Their model fails for several reasons. First, the MaxEnt part of the model predicted birth rate
only, while death was introduced by imposing a constant per capita death rate, making the
theoretical basis for birth and death inconsistent. Second, this model only includes between-
species allocation but not within-species allocation, which as we will show later, can flip
the coexistence outcome under certain conditions; third, the model allocates two resources
(a constrained “energy” and an unconstrained “resource”) at the same time, adding to the
number of parameters and ad hoc assumptions, while the more fundamental scenario of
allocating one resource was unexamined. Another study uses a similar method to derive
abundance distributions by maximizing the number of ways to allocate total biomass to
each species subject to constraints on traits (Shipley 2010b). Unlike Neill et al. (2009a), this
model does not separately specify the birth and death processes and also does not account
for within-species allocation.

Here we propose and explore a theory that simultaneously predicts the birth and death
rates of two species competing for one constrained resource. It is based on maximizing the
Boltzmann entropy of resource allocation, or as will be elaborated on later, the number of
ways in which resources can be allocated to individuals and species. Within-species alloca-
tion is included using an adjustable exponent corresponding to the within-species individual
distinguishability relative to the between-species individual distinguishability. Under this
framework, the population growth function, the steady state abundance distribution, the
metabolic rate-abundance relationship and the form of the population dynamics can be ana-
lytically or numerically determined. Implications of the results and future extensions of this
simplest scenario are discussed.
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Table 2.1: Symbols used

Symbols (i = 1, 2) Interpretations

R,Ri
The total amount of resources allocated in one

allocation period or the amount allocated to species i.

Ni, Ni,t, N̂i
The abundance of species i (i=1,2) at any given time,

at the tth allocation period, or at steady state.

Bi, Di

Species level birth and death rates, i.e. the total
number of births and deaths for species i in one

allocation period.

ΩBi,Di

A macrostate of resource allocation, indicating that in
the given allocation period, species i has Bi births and

Di deaths

Wgrouping

Number of ways to group individuals into demographic
groups, i.e. individuals that reproduce, survive, or die

(Fig. 2.1a).

Wbetween
Number of ways to allocate resources between the two

species (Fig. 2.1b).

Wwithin,i
Number of ways to allocate resources within species i

(Fig. 2.1c).

Wtotal

Total number of ways to allocate resources, combining
demographic grouping, between-species allocation and

within-species allocation (see Eq 2.4).

gi
Per capita net population growth rate at any allocation

period.
tij The trait value of the jth individual of species i.

Dbetween, Dwithin

Mean pairwise difference of a trait relevant to resource
acquisition between or within species (see Eq. 2.5 and

2.6).

Dr
Individual level distinguishability within species

relative to across species.
θi Relative resource requirement for species i.

S, λ
The objective function for constrained maximization

and the Lagrange multiplier (see Eq. 2.14).
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2.2 Materials and Methods

A complete list of symbols used in this paper and their implications is shown in Table
2.1.

Scenario setting

Throughout, the term “community” is interpreted as a group of species that significantly
depend on and actively compete for the same resource that is essential for their survival and
reproduction; the term “resource” is defined generally as something beneficial, exclusive and
potentially limiting that is to be allocated among individuals within and between species.
This definition covers 1) material resources such as food, water, and nitrogen, 2) energy,
including solar radiation and heat, and 3) others, such as space and transportation medium.
While this framework can be extended to more complicated scenarios (see Discussion), we
focus here on the case of a two-species community competing for one resource. We assume
populations grow in a discrete manner and define an allocation period as a time interval
in which the resource is allocated among all individuals of the two species; it is also the
shortest interval during which population shifts are assumed to occur. A resource unit
is defined as the minimum “batch” of resource that can be allocated independently in an
allocation period. We also assume during one allocation period an individual can give birth
to at most one offspring. We assume the total amount of resource R that is allocated in
each allocation period to be the same, corresponding to both the case that the resource
is constantly replenished (e.g. solar radiation, food source) and the case that the resource
is a constant stock recycled within the community (e.g. space). Finally we are assuming
that in each allocation period, the resource is completely exploited with no resource left, or
R1 + R2 = R, where R1 and R2 are the amounts of the resource allocated to species 1 and
2 respectively, in a zero-sum process.

Bi,t is defined as the discrete species level birth rate at time t, or the number of births
at the tth allocation period for species i(i = 1, 2). Di,t is the corresponding rate for death.
Capital letters are used here to indicate that these are measures over the whole species
instead of per capita. We make no assumptions about the dependence of Bi,t and Di,t on
abundance; the theory will determine that dependence. By definition:

Ni,t+1 = Ni,t +Bi,t −Di,t (i = 1,2) (2.2)

Next we introduce a simple model to predict birth and death rates at the same time: in
any allocation period, each individual of species i requires θi resource units to survive; to
reproduce, a surviving individual has to acquire an extra amount of θi, in total 2θi resource
units. The values of θi are determined by the relative magnitude between the amount of
resource required for an individual to survive and the size of a resource unit. Since our theory
does not incorporate individual growth (individuals become adults instantly after they are
born), the extra resource requirement for reproduction is assumed to be the same as that for
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Table 2.2: Resource allocation consequence for an individual of species i

Units of
resource

allocated to the
individual

Consequence

0 Death
θi Survive (but not reproduce)
2θi Survive and reproduce

survival so that the actual resource used is always proportional to the updated abundance
of the species (see Eq. 2.3). The ratio θ1/θ2 quantifies how resource demanding species 1 is
compared to species 2. The consequence for an individual after one allocation is shown in
Table 2.2.
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Based on the above, we can easily calculate Ri,t which is the number of resource units
used by species i at allocation period t.

Ri,t = θi × number of individuals that survive but do not reproduce

+2θi × number of individuals that reproduce

= θi(Ni,t −Bi,t −Di,t) + 2θiBi,t

= θi(Ni,t +Bi,t −Di,t)

= θiNi,t+1

(2.3)

Later we suppress t in the annotation and use Ri, Ni, Bi and Di to represent the resource
consumption, abundance, birth and death rates at any given allocation period for species i.

Allocation macrostate and microstate

A macrostate in a given allocation period (with N1 and N2 given as initial abundances)
is defined as any particular combination of the species level birth and death rates for each
species, represented by ΩB1,D1,B2,D2 . In contrast, a microstate is a unique way to allocate
each distinct resource unit to individuals of the two species. Multiple microstates could be
associated with the same macrostate.

To better illustrate these concepts, we use a simple example where there are R = 4
resource units and two species each with 3 individuals at the start of an allocation period
(N1 = N2 = 3) as is shown in Fig. 2.1. We assume θ1 = θ2 = 1 so that individuals of both
species could at most get 2 resource units in one allocation period. One specific example
for a macrostate under this scenario is ΩB1=1,D1=1,B2=0,D2=2, indicating there is one birth
and one death for species 1 while no birth and two deaths for species 2. From Eq. 2.3 we
can get R1 = 3 and R2 = 1. To see what a microstate of this macrostate looks like, in the
following the resource allocation process is broken down to separate steps. We assume that
the different patterns within each allocation step should be equally weighted, corresponding
to a maximally uninformative prior distribution (Shipley 2010c).
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Figure 2.1: Resource allocation process.
With total resource R = 4, equal abundances N1 = N2 = 3 and equal resource requirements
θ1 = θ2 = 1, the many ways (microstates) to realize the macrostate Ω(B1 = 1, D1 =
1, B2 = 0, D2 = 2) (resulting in R1 = 3, R2 = 1) is shown in the figure. Resource units and
individuals are numerically and alphabetically labeled, respectively, to be differentiated from
each other. The three steps of resource allocation are separately shown in a) demographic
grouping, divide each species into groups of reproducing, surviving and dead individuals; b)
between-species allocation (divide resources into two batches, each for one of the species); c)
shows that combining a) and b) gives specific allocation patterns to the demographic group
level; d) within-species allocation at the individual level. In this case there are 3 unique
ways - each represented by a specific arrow type (solid, dashed or dotted) - to allocate the
resource units to the surviving or reproducing individuals chosen in the first two steps within
each species.
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1. Demographic grouping: Individuals of the same species are divided into three
different demographic groups: individuals that reproduce, survive or die. In this example
(Fig. 2.1a) there are 3!

1!1!1!
= 6 different ways of grouping for species 1 and 3!

0!1!2!
= 3 different

ways of grouping for species 2, combining into 6× 3 = 18 ways of demographic grouping for
the two species.
2. Between-species allocation: Resource is divided into two batches, each for one of
the species. From Fig. 2.1b we can see that for the macrostate ΩB1=1,D1=1,B2=0,D2=2 there
are 4!

3!1!
= 4 ways to allocate between the two species.

After these two steps, we have a range of combinations between demographic grouping and
between-species allocation. If we ignore the difference between the various ways to allocate
resource units within each species (among the individuals that reproduce or survive), as
is implicitly assumed in Neill et al. (2009a), each of the 18 × 4 = 72 combinations is a
microstate, which can be defined as a unique way to allocate resources between species to
individual-specified demographic groups (Fig. 2.1c).

On the other hand, we might not want to ignore the possible difference among various
allocation patterns at the individuals-within-species level, which can be specified in a third
step where resource is further allocated within each species:
3. Within-species allocation: Resource is allocated within each species among indi-
viduals that reproduce or survive (Fig. 2.1d). For species 1 in the above example, for
each combination between step 1 and 2, there are 3!

2!1!
= 3 to allocate the R1 = 3 re-

source units between B1 = 1 individual that reproduces (and thus gets 2 resource units) and
N1 − B1 − D1 = 1 individual that survives (and thus gets 1 resource unit). Similarly for
species 2, there are 1!

1!
= 1 ways of within-species allocation. If we take each of these out-

comes where the within-species allocation pattern is specified as a microstate, a microstate
can be defined as a specific way to allocate resource units to the individual level.

Relative individual distinguishability

In the section above we introduced two alternative ways to define the microstate (depend-
ing on whether within-species allocation is ignored). Here we introduce a critical parameter
that makes it possible for our model to switch between the two definitions, and more im-
portantly, to explore the space in between the two underlying assumptions. This parameter
is named relative individual distinguishability, represented by Dr, which is defined to be
an attribute that quantifies the mean relative distinguishability between two individuals of
the same species (conspecific) compared to two individuals of different species (heterospe-
cific). The rationale behind this definition is that, if conspecific individuals are as different
from each other as heterospecific individuals, in which case Dr = 1, the difference between
two microstates generated by relocating resource units between two conspecific individu-
als should be equally weighted as that generated by relocating resource units between two
heterospecific individuals. Therefore in calculating the number of microstates, the number
of within-species allocations should be equally weighted as the number of between-species
allocations . In contrast, if conspecific individuals are totally indistinguishable from each
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other, in which case Dr = 0, no difference is generated by relocating resource units within
the species, therefore within-species allocation should be ignored and only the number of
between-species allocation will be counted as microstates. A case in between is represented
by 0 < Dr < 1. The simplest mathematical representation of the above is:

Wtotal(Ω) = Wgrouping(Ω)×Wbetween(Ω)
2∏
i

Wwithin,i(Ω)Dr (2.4)

Where the total number of microstates for a given macrostate Ω (annotated with Wtotal)
is the number of ways to group conspecific individuals into demographic groups (Wgrouping)
times the number of ways to allocate resource between the species (Wbetween) times the
weighted number of ways to allocate resource units among the individuals of the same species,
the exponent being the relative individual distinguishability of that species (WDr

within,i).
Although Dr defined in the above is primarily a statistical attribute, to attach some em-

pirical sense to it, we further interpret Dr as the ecological distinguishability (the converse of
substitutability) of conspecific compared to heterospecific individuals. To elaborate on that,
the lower the Dr, the more indistinguishable and thus substitutable conspecific individuals
are, therefore the smaller the difference among situations where resource units are relocated
within the species. While there are many potential measures for ecological substitutabil-
ity, here we propose one possible approach assuming that the ecological substitutability of
individuals is represented by their relative similarity in one or more functional traits. Em-
pirically, which trait(s) to use for Dr measurement depends on the resource as well as the
species. To give a specific example, when the resource to be allocated is space and species
are plants, the relevant trait might be body size, since it certainly makes a difference for a
bigger plant to occupy the space unit compared to when it is occupied by a smaller plant
(through influence on the microclimate and biotic interactions). Calculation of Dr for a
simple two-species case using trait data is illustrated in Fig. 2.2, where we have used:

Dwithin =
2
∑2

i=1

∑Ni
j=1

∑Ni
k=i+1 |tij − tik|

N1(N1 − 1) +N2(N2 − 1)
(2.5)

Dacross =

∑N1

j=1

∑N2

k=1 |t1j − t2k|
N1N2

(2.6)

Dr = Dwithin/Dacross (2.7)

In Eqs. 2.5-2.7, tij is the trait value of the jth individual in species i. Dwithin is the
mean pairwise trait difference between conspecific individuals while Dacross is that between
heterospecific individuals. Substituting the trait values in Fig. 2.2 into Eqs. 2.5-2.7, we get
Dr = 0.9, indicating that conspecific individuals are 90% as distinguishable as heterospecific
individuals. While Dwithin/Dacross could potentially be bigger than 1 (when the trait distri-
bution is over-dispersed) and so is Dr, in this paper we only discuss the situations where Dr

falls within the range [0,1], or within-species variation cannot be bigger than between-species
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Figure 2.2: Calculation of Dr using a trait relevant to resource acquisition.
This is illustrated with a simple two-species case where there are three individuals for the first
species and two for the second. Trait values for all individuals are plotted on the trait axis
with a distinct point type for each species. tij represents the trait value of the jth individual
in species i. Within- and across- species pairwise distances are represented by line segments
of different types. Dr is the relative individual distinguishability calculated from pairwise
trait distances using Eqs. 2.5-2.7. In this graph, t11 = 5, t12 = 30, t13 = 60, t21 = 50, t22 =
90, substituting in Eqs. 2.5-2.7, we get Dwithin,1 = 2 ∗ (25 + 30 + 55)/6 = 36.67,Dwithin,2 =
2 ∗ 40/2 = 40 Dacross = (45 + 85 + 20 + 60 + 10 + 30)/6 = 41.67, Dr,1 = 36.67/41.67 = 0.88,
Dr,2 = 40/41.67 = 0.96.

variation. Based on this method, multiple traits and potentially genetic data can be used to
calculate Dr.
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For simplicity we have assumed that the two species have equal Dr. This can be easily
relaxed, with Dwithin calculated separately for each species, and the exponent of Wwithin in
Eq. 2.4 being the species specific Dr. Also notice that the measure proposed in the above is
only a preliminary attempt based on the assumption that trait difference can be proxy for
ecological substitutability (and further for statistical distinguishability). Also if we had used
different units for the traits, or a log scale rather than the scale in Fig. 2.2, Eq. 2.7 would
be different. Further implications and alternative assumptions will be addressed later in the
discussion section.

Calculation

Next we calculate the maximal total number of allocation microstates Wtotal(Ω) over all
possible Ω, with which the most likely macrostate Ω̂ is associated. To do this we first need
to express Wtotal(Ω) as a function of the macrostate variables (B1, D1, B2, D2). Then we
will separately derive each term on the right side of Eq. 2.4. Throughout, C(x1, x2, ...|X)
denotes the number of ways to combine X individuals into groups of xi:

C(x1, x2, ...|X) =
X!

x1!x2!...
(2.8)

Wgrouping is the number of ways to group conspecific individuals into demographic groups,
i.e. reproducing, surviving and dead individuals. Using the notation defined above,

Wgrouping(ΩB1,D1,B2,D2) = C(B1, D1, N1 −B1 −D1|N1)

×C(B2, D2, N2 −B2 −D2|N2)

=
2∏
i=1

Ni!

Bi!Di!(Ni −Bi −Di)!

(2.9)

Wbetween is the number of ways to divide resource into two batches (R1, R2), each for one
of the species. Combining Eq. 2.3 and Eq. 2.8, we have

Wbetween(ΩB1,D1,B2,D2) = C(R1, R2|R)

= C(θ1(N1 +B1 −D1), θ2(N2 +B2 −D2)|R)

=
R!

[θ1(N1 +B1 −D1)]![θ2(N2 −B2 −D2)]!

(2.10)

Wwithin,i is the number of ways the resources allocated to each species are allocated among
the reproducing or surviving individuals. For species i, each reproducing individual gets 2θi
resource units and each surviving individual gets θi:
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Wwithin,i(ΩBi,Di,Bi,Di) = C(θi, θi, θi, ...︸ ︷︷ ︸
Ni −Bi −Di

2θi, 2θi, 2θi,...︸ ︷︷ ︸
Bi

|Ri)

=
Ri!

(θi!)Ni−Bi−Di [(2θi)!]Bi
=

[θi(Ni +Bi −Di)]!

(θi!)Ni−Bi−Di [(2θi)!]Bi

(2.11)

Substituting Eqs. 2.9-2.11 into Eq. 2.4, we can get Wtotal(ΩB1,D1,B2,D2) as a function of
B1, D1, B2 and D2

Wtotal(ΩB1,D1,B2,D2) = R
2∏
i=1

{
Ni!

Bi!Di!(Ni −Bi −Di)![θi(Ni −Bi −Di)]!

×{ [θi(Ni +Bi −Di)]!

(θi!)Ni−Bi−Di [(2θi)!]Bi
}Dr
} (2.12)

Since the resource in this scenario is assumed to be constrained (see illustration in Section
2.2.1), maximization is subject to the constraint

R = R1 +R2 =
2∑
i=1

θi(Ni +Bi −Di) (2.13)

Applying the method of Lagrange multipliers for constrained maximization(Bellman 1956),
we define an objective function S as

S(ΩB1,D1,B2,D2) = log(Wtotal(ΩB1,D1,B2,D2)− λ[R−
2∑
i=1

θi(Ni +Bi −Di)] (2.14)

where λ is the Lagrange multiplier. The constrained maximal Wtotal(Ω) can be obtained
by substituting Eq. 2.12 into Eq. 2.14 and maximizing by setting to zero the derivatives of
S(ΩB1,D1,B2,D2) over each macrostate variable (B1, D1, B2, D2):

∂S(ΩB1,D1,B2,D2)

∂Bi

= log
Bi[θi(Ni +Bi −Di)]

θi(1−Dr)

Ni −Bi −Di

+Drlog
(2θi)!

θi!
+ λθi = 0 (2.15)

∂S(ΩB1,D1,B2,D2)

∂Di

= log
Di

[θi(Ni +Bi −Di)]θi(1−Dr)(Ni −Bi −Di)
−Drlogθi!−λθi = 0 (2.16)

In deriving Eqs. 2.15 - 2.16, Stirling’s approximation to a factorial is applied assuming
the highest digits are bigger than 10 (< 1% correction), as is also assumed in Neill et al.
(2009). These equations combined with the constraint (Eq. 2.13) compose the determining
equations of this macrostate. From them the macrostate variables associated with the most
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likely macrostate (B1, D1, B2, D2) can be solved as functions of the initial conditions (N1,
N2, R, θ1, θ2 and Dr).

Combining Eqs. 2.3 and 2.13, we can derive that θ1N1,t + θ2N2,t = R for all t > 0. With
gi,t defined as the per capita population growth rate of species i at time t, we can further
derive that θ1g1,t + θ2g2,t = 0 for all t > 0 (because R = θ1N1,t + θ2N2,t = θ1N1,t(1 + g1,t) +
θ2N2,t(1+g2,t) = θ1N1,t+1+θ2N2,t+1). These two equations will be referred to as the zero-sum
condition in later discussions.

2.3 Results

In this section we will show the result of solving the determining equations (Eqs. 2.13,
2.15 and 2.16) under various conditions. Specifically, we will derive the population growth
function and steady state abundances analytically, and track the population dynamics nu-
merically.

Special case: When Dr = 1

Because solving the equations for the most general case (arbitrary θi and Dr) is com-
paratively difficult, we will start with the simplest case where Dr = 1 and thus the term
[θi(Ni +Bi−Di)]

θi(1−Dr) = 1 and can be dropped from the equations. Under this condition,
Eqs. 2.15-2.16 reduce to:

Bi

Ni −Bi −Di

=
θi!e

−λθi

(2θi)!
(2.17)

Di

Ni −Bi −Di

= θi!e
λθi (2.18)

From which we can solve Bi and Di:

Bi =
Ni

(2θi)!

C2θi
+ (2θi)!

θi!Cθi
+ 1

(2.19)

Di =
Ni

C2θi

(2θi)!
+ Cθi

θi!
+ 1

(2.20)

where C = e−λ, a constant determined by the resource constraint:

R =
2∑
i=1

(Ni +Bi −Di) =
2∑
i=1

Niθi
2C2θi + (2θi)!

θi!
Cθi

C2θi + (2θi)!
θi!

Cθi + (2θi)!
(2.21)

The per capita net population growth rate gi is given by:
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gi =
Bi −Di

Ni

=
C2θi − (2θi)!

C2θi + (2θi)!
θi!

Cθi + (2θi)!
(2.22)

From Eq. 2.22 we can see that when Dr = 1, θ1 = θ2 always leads to g1 = g2. Previously
we have shown that g1 and g2 have to follow the relationship θ1g1 + θ2g2 = 0 due to the
zero-sum condition imposed by the resource constraint. Therefore g1 = g2 always means
g1 = g2 = 0 since both θ1 and θ2 are positive. This means that when Dr = 1 and θ1 = θ2, the
system has neutral equilibrium states along the resource constraint line, or the community
can end up with any N1 and N2 that satisfy θ1N1 + θ2N2 = R.

Given Dr = 1, when θ1 6= θ2, however, the species with smaller θ will always exclude
the other. To see this, first θ1 6= θ2 suggests that g1 6= g2. Because θ1g1 + θ2g2 = 0, g1
and g2 cannot be both positive or negative, and therefore g1 6= g2 means that g1 and g2
are of opposite signs. Eq. 22 suggests that all else equal, the bigger the θi, the smaller
the gi. Therefore the gi corresponding to the lower θi is always positive while the other is
always negative. This will eventually lead to the species with lower θi excluding the other.
These inferences will be confirmed below from numerical solutions tracking the population
dynamics of the two species.

Population growth rate variation in relation to abundances of
both species

When Dr 6= 1, Bi and Di cannot be solved analytically and therefore we take a different
approach to determine the gi by defining a new variable ri:

ri =
Bi

Di

(2.23)

Combining ri with Eqs. 2.15-2.16 we can solve analytically for the relationship between
gi or Ni and ri(a detailed derivation is in the Appendix)

gi =
ri − 1

2Drθir
1
2
i + ri + 1

(2.24)

Ni =
2

e
(C ′θir

1
2θi
i )

1
Dr−1

2Drθir
1
2
i + ri + 1

2Drθir
1
2
i + 2ri

(2.25)

Here C ′ is another constant that equals 2eλ−1; given r1 and r2, it is determined from

R = R1 +R2 =
2∑
i=1

θi(Ni +Bi −Di)

=
2∑
i=1

θiNi(1 + gi) =
2∑
i=1

θi
2

e
(C ′θir

1
2θi
i )

1
Dr−1

(2.26)
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Figure 2.3: Predicted relationship between per capita population growth rate gi and N1, N2.
For all calculations, the resource requirement of species 1 and the total resource are fixed
(θ1 = 1, R = 200). Different colors are used for different species (black for species 1, light
gray for species 2). Different combinations for resource requirement of species 2 (θ2) and the
relative individual distinguishability (Dr) are represented by curves of different types.

For any given N1 and N2 (and R), g1 and g2 can be solved by first combining Eqs. 2.25
(for both species) and 2.26 to solve for r1 and r2 (and C ′), then substituting into Eq. 2.24.
Notice that N1 and N2 have to satisfy the zero-sum condition (θ1N1 + θ2N2 = R), therefore
an increase in N1 is always associated with a decrease in N2 and vice versa. The relationship
between gi and Ni resulting from this procedure is shown in Fig. 2.3.
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From Fig. 2.3 we can see that, in all cases, the per capita population growth rate of the
species is positive when its abundance is below the steady state level (when g1 = g2 = 0)
and negative when it is above the steady state level, suggesting the steady state in this case
(Dr < 1) is stable as long as both species start with positive abundances (0 < Ni < R/θi).
Specifically, the curves for g1 and g2 are symmetrical and the steady state abundances for
both species are the same when θ1 = θ2, which makes intuitive sense because of the symmetry
of the model. However when θ2 > θ1, the curves are asymmetrical and the community
converges to a steady state where N1 > N2, a result that can be analytically proved in the
next section. Moreover, the smaller the Dr, the faster the system converges to the steady
state, indicated by the bigger absolute values of g1 and g2 at any given N1 and N2 different
from the steady state.

Analytical solution to steady state abundances

When both species are at steady state, B1 = D1, B2 = D2 and r1 = r2 = 1. Substituting
this into Eq. 2.24 and again applying Stirling’s approximation, we have

N̂i =
2

e
(C ′θi)

1
Dr−1 (2.27)

N̂i is the steady state abundance for species i; C ′ is the same constant as in Eqs. 24-
25. Since Dr < 1, N̂i is a negative function of θi. Therefore species with higher resource
requirement ends up with lower abundance at steady state. Taking the ratio of steady state
abundances between the two species we have:

N̂1

N̂2

= (
θ1
θ2

)
1

Dr−1 (2.28)

In other words, when θ1
θ2

is constant, the bigger the Dr, the more different the steady state
abundances are. When Dr = 1 and θ1 6= θ2, the steady state is complete exclusion of one
species (N̂1/N̂2 = 0 or ∞) as was discussed in Section 2.3.1. On the other hand, holding
Dr constant, the abundance distribution at steady state is solely determined by the relative
resource requirement θ1/θ2. Specifically when Dr = 0, Eq. 2.27 indicates that Ni ∝ θ−1i , the
implication of which will be discussed later in the next section.

Two-species population dynamics

In this section, the two-species population dynamics under the zero-sum resource con-
straint is examined by numerically solving the determining equations and updating species
abundances through time:

Ni,t+1 = Ni,t(1 + gi,t) (2.29)
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Results are shown in Fig. 2.4. We can see from each graph that given θi, the higher
the Dr, the more different the steady state abundances between the species, as is suggested
by the analytical solution in Section 2.3.3. When Dr = 1, our result is consistent with the
inference in Section 2.3.1: when resource requirements are equal between the species (Fig.
2.4a), Dr = 1 is corresponding to a neutral equilibrium; when resource requirements are
not equal (Fig. 2.4b and c), Dr = 1 results in the species with higher θi to exclude the
other. What’s more, from the dynamics we can see that the closer the resource requirements
between the species (Fig. 2.4c compared to Fig. 2.4b), the longer it takes for exclusion to
happen. In spite of that, exclusion is definite eventually as long as Dr = 1 and θ1 6= θ2.
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Figure 2.4: Population dynamics through time predicted by maximizing resource allocation
entropy between two species.
N1 and N2 are the abundances for species 1 and species 2, respectively. At time t=0,
N1 = 300, N2 = 50. Dr is the relative individual distinguishability. Predictions for dynamic
variation in abundances for both species are compared for different relative values between θ1
and θ2 across the graphs (a, b and c), and within each graph, among different combinations
of the absolute values of θ1 and θ2 and Dr (represented by different line types).
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Compared across graphs, for the same Dr < 1, the more different the resource require-
ments (θ1 and θ2), the more different the steady state abundances between the two species,
as is also suggested by the analytical solution to the steady state. Specifically when θ1 = θ2,
except for the case where Dr = 1 which leads to a neutral equilibrium, the two species al-
ways end up with the same abundance at steady state. Another implication of the analytical
solution is that, when Dr is held constant, the steady state is solely determined by the ratio
θ1/θ2, which is also demonstrated in Fig. 2.4. In addition, the graph shows that with this
ratio held constant, while steady state abundances are the same, it takes longer time for
steady state to be reached when θ1 and θ2 are both smaller.

2.4 Discussion

In this paper a new theory is established to understand factors affecting the form of
the population growth function that leads to various competition outcomes. It reveals the
conditions for competitive exclusion or coexistence to happen. Most prominently, we have
shown that relative individual distinguishability is a key parameter governing coexistence; a
smaller value indicates a higher chance of coexistence. Based on the current results, some
important inferences and insights for future studies are discussed in the below.

Species resource requirement and energy equivalence rule (EER)

While the absolute values of the species resource requirements θ1 and θ2 do not affect the
steady state abundances which only depend on the relative resource requirement θ1/θ2, they
do affect the time to reach steady state. As discussed when introducing the parameters, the
absolute values of θ1 and θ2 are determined by the ratio of the amount an individual needs
to survive to the size of a resource unit. Our result shows that all else equal, the bigger the
resource unit and therefore the smaller the absolute values of θ1 and θ2, the longer it takes
for steady state to be reached.

In the current framework we have assumed θi to be independent of Dr, and that θi is
the same for all individuals of species i. The alternatives, i.e. Dr is correlated with θi and
θi varies within the species, are worth future examination. Intuitively, the species resource
requirement θ can be related to metabolic rate, based on which the implication of our results
for the metabolic energy distribution can be examined. Specifically, when Dr = 0, Ni ∝ θ−1i ,
and if we take θi as the metabolic rate of species i, Eq. 2.27 is consistent with the energetic
equivalence rule (EER, Nee et al. 1991), which states that the total metabolic rate is the
same across all species in the community. Within the theoretical framework introduced here,
the energetic equivalence rule should hold only when conspecific individuals can be treated
as identical compared to heterospecific individuals (Dr = 0); deviations from Dr = 0 could
explain the widely observed violations of the energetic equivalence rule (White et al. 2007a;
Blackburn & Gaston 1994; Marquet et al. 1995b).
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Notice that we have assumed Dr to be the same for both species but the alternative, i.e.
Dr is different between the species, could also be easily explored under this framework, in
which case both the relative and the absolute values of θ1 and θ2 could potentially affect the
steady state. Fig. 2.2 presents one way to measure Dr under both assumptions. Choosing
between them, however, requires better understanding of what Dr really means ecologically.

Relative individual distinguishability: Challenges and promises

The distinguishability of conspecific individuals is not a new concept in ecology and has
been discussed in the context of species level spatial abundance distributions (Young &
Willson 1987b; Harte 2011b), where different levels of distinguishability lead to different
distribution patterns. In the context of species coexistence, the effect of social factors, i.e.
interactions among conspecific individuals, have been discussed in contrast to niche difference
among the species (Chesson 1991; McPeek 2012). So far, however, distinguishability has only
been treated as a binary value (distinguishable vs indistinguishable). Neither the continuous
definition nor any method to measure this important attribute has been proposed.

In this paper we only gave one example of an interpretation (Fig. 2.2) of this very
important attribute Dr, but we do not want to limit its interpretation. Fig. 2.2 assumes
that higher relative individual distinguishability (lower ecological substitutability) can be
associated with higher intraspecific compared to interspecific variation in functional traits
(and vice versa). The latter is also known as functional overdispersion (Swenson & Enquist
2009), the importance of which is an active topic in plant functional ecology (Albert et al.
2010; Auger & Shipley 2013). If the relevant functional trait is related to the type of food
source, a high Dr could also indicate more generalists in the community. Based on these
interpretations, a series of macroecological inferences follow from our result, which can be
used to generate hypotheses for empirical studies:

Hypothesis 1 The species abundance distributions are more skewed in communities
where functional overdispersion is prevalent (higher Dr).

Hypothesis 2 Steady state can be reached faster, and thus the system is more resilient,
when the community has more specialists (lower Dr).

Combined with the assumption that the species resource requirement θi is positively
correlated to its metabolic rate and therefore to body size, there are two additional inferences:

Hypothesis 3 The body size distribution is more skewed (or difference in body size
results in larger difference in abundance) in a community with more generalists/functional
overdispersion (higher Dr).

Hypothesis 4 The system is more resilient for a community where individuals of species
are generally bigger (bigger absolute values of θi)

Notice that in the last hypothesis, it is assumed that the length of allocation period is
independent of body size. Violation of this assumption (e.g. a positive relationship between
body size and population growth period) might confound the result.

Many other hypotheses can be similarly made from the trait-focused point of view illus-
trated in the above. Alternatively, the ecological substitutability of conspecific individuals
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can be obtained from measures of the population structure, based on the assumption that
individuals from the same “subgroup” (e.g. a local population in a metapopulation struc-
ture, a certain age group) are more substitutable for each other compared to those outside
the subgroup. Under this interpretation, Dr can be measured by the level of intraspecific
subgrouping: the more distinct subgroups there are within the species, the less substitutable
two random conspecific individuals and thus the higher the Dr. Finally, since within-species
variation is also related to evolutionary potential (Lewontin 1974), the interplay between
evolutionary mechanisms and species competition could also be studied with this frame-
work.

Comparison with previous theories

Instead of including specific equalizing or stabilizing mechanisms, our theory predicts
species interactions from two species attributes, θ andDr, which are the biological constraints
for the stochastic process of the theory and assumed to be fixed for the time being considered.
Although this does not affect the formula or predictions, we believe that the mechanism-
based explanation of this theory lies in the interpretation of these attributes, which we
have made some first attempts in the above two sections. In particular, closer values of
θ between species has an effect similar to that obtained from an equalizing mechanism
in models describing species interaction (by imposing a similar maximal abundance R/θi
between the species), while a smaller Dr has an effect similar to that obtained by including
a stabilizing mechanism (by causing faster convergence to the steady state). Although the
actual values of these attributes are probably the outcome of a series of evolutionary and
biophysical mechanisms and have to be empirically determined (guidelines have been given
in previous sections), our theory has revealed that species coexistence is the general outcome
for most cases (Dr < 1), providing a new approach to the long standing conundrum of why
species coexistence is possible.

Unlike many models involving spatial or temporal fluctuations (Chesson 2000; Barabás
et al. 2012), the theory focuses on a zero-sum scenario under fixed resource supply. Under this
framework, each species has to have a positive abundance to start with (Ni,0 > 0). However,
if we assume a non-zero invasion rate for both species, based on the criterion derived from
Kang & Chesson (2010), our model predicts permanent coexistence when Dr < 1.

Our theory is more like a null hypothesis (or null theory), with no explicit biological mech-
anisms incorporated in the resource allocation process. In other words, when our predictions
resemble real patterns, it suggests that a stochastic process similar to the one described by
this theory is capable of describing the resource allocation process and the associated popu-
lation dynamics. Similarly, deviations from our predictions suggest the need to incorporate
explicit biological mechanisms in describing these dynamics. This, however, does not mean
that there is no biology/ecology in this theory. The biology/ecology of this theory lies implic-
itly in the species attributes: θ (related body size) and Dr (related to functional variation),
the determinant parameters for the stochastic process discussed here. The evolutionary and
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biophysical mechanisms and constraints influencing these attributes are not the focus of this
theory.

Although the key process of the theory is based on a statistical principle (maximum en-
tropy), our result has highlighted the effect of a biological constraint that has previously
been neglected: the relative individual distinguishability Dr, which we have suggested could
be related to functional variation of the species. In this interpretation, species coexistence
might be more governed by internal biological constraints than previously thought. Com-
bining our theory with the theories focusing more on external, abiotic factors (Levin 1970;
Armstrong & McGehee 1980; Chesson 2000; Barabás et al. 2012), we might ultimately be
able to resolve the species coexistence problem combining mechanisms from a spectrum of
spatial, ecological and temporal scales.

Future extensions

There are many potential future extensions to this model. To summarize in a most general
way, first, more species (> 2) can readily be included, the implication for community struc-
ture and species abundance distribution be examined. Second, more than one resource could
be incorporated, which might significantly change the model behavior. Third, other types
of interaction can be incorporated. For example, instead of allocating resource among two
species, individuals of one species could be allocated among another to predict predator-prey
interactions. Combining all three directions, the theory can be used to predict the network
structure of food web. Finally, by examining the roles of relative individual distinguishability
in both processes, insight into the relationship between evolution and competition might be
possible with this theory.

The mathematical forms of population growth functions and species interactions vary
from species to species in a poorly understood manner, making it hard to make general
predictions for species coexistence. In this paper, we started with only a simple rule of maxi-
mizing the Boltzmann entropy (number of microstates) for a resource allocation process and
predicted a variety of population dynamics and steady state patterns, from which general
inferences about conditions leading to species coexistence can be made. Relative individual
distinguishability has been highlighted as an important attribute governing species interac-
tions. Our work reveals a promising approach to utilizing fundamental principles of statistics
to explain the structure and dynamics of important patterns in ecology.

Appendix: Derivation for the relationship between gi,

Ni and ri (Eqs. 2.24 -2.25)

Substituting Eq. 2.23 into Eqs. 2.15 - 2.16 then taking Eq. 2.15 - Eq. 2.16, we have

2θi(1−Dr)log[θi(Ni +Bi −Di)] + log(ri) +Drlog2θi! + 2λθi = 0 (2.30)
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From which we can solve for Ni + Bi −Di, which is also Ni(1 + gi) based on the definition
of gi (Eq. 2.22):

Ni(1 + gi) = Ni +Bi −Di =
2

e
(C ′θir

1
2θi
i )

1
Dr,i−1 (2.31)

Where C ′ = 2eλ−1. Combining Eqs. 2.22 and 2.23 we have

Bi =
Nigiri
ri − 1

(2.32)

Di =
Nigi
ri − 1

(2.33)

Substituting 2.32 and 2.33 back into Eq. 2.15:

2θi(1−Dr)log[θiNi(1 + gi)] + log

Nigiri
ri−1

Ni(1 + gi)−Nigi
2ri
ri−1

+Drlog
(2θi)!

θi!
+ λθi = 0 (2.34)

Combining A.31 and A.34 we can solve for Ni and gi separately as functions of ri, θi, Dr

and C ′, as is shown in Eqs. 2.24 - 2.25.
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Chapter 3

Modifications for more realistic
dynamics: beyond the zero-sum
scenario

Abstract

In this chapter, modifications are made to the assumptions of the model in Chapter 2 so
that community dynamics can be modeled without the zero-sum constraint for a community
with any number of species. Using the same fundamental approach (maximizing resource
allocation entropy), this second model gives a number of predictions in addition to those
of the first model; it predicts the shape of the within-species resource distribution, thereby
revealing the factors influencing population genetic variation. It also predicts a non-trivial
population growth pattern for a single species community, which can be compared with the
logistic growth equation, and multiple competitor dynamics, which can be compared with
the Lotka-Volterra equations. A life span-body size relationship also emerges from this model
with one extra assumption about individual selfishness. In addition to supporting most of
the conclusions in Chapter 2, the results in this chapter reveal a number of paths linking
evolution and ecology.

3.1 Introduction

To begin, we elaborate on a few assumptions of the first model, and then introduce
modifications that will lead to a second, more realistic model.

Clarification on assumptions

I. The resource being allocated is constant through time, and is the only es-
sential resource for any individual of the community to survive and to reproduce.
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Naturally there can be more than one resource that are essential to survival and repro-
duction. The resource in our model can be thought of as the most limiting prerequisite
for survival and reproduction (e.g. water for a community prone to drought). Of course
this does not apply to ecosystems where there are multiple limiting conditions that drive
the community dynamics, in which case it may be necessary to include more than one re-
source types in the model. Such modification is technically simple especially if the multiple
resources can be assumed to be independent (in which case the number of microstates can
simply be multiplied across resource types to get the total number of microstates). In this
chapter we will not explore this direction in depth.

II. Both resource allocation and population growth are discrete in time and
happen simultaneously for all species. This means that the time interval for resource
allocation is equal to that for population growth. Population growth instantly and fully
reflects the result of resource allocation. More specifically, all offspring generated from
the last time interval become adults ready for reproduction at the beginning of the next.
Therefore in the following we will use “reproductive interval” exchangeably with resource
allocation period.

III. The amount of resource required for an adult individual to survive is
the same as that for a newborn of the same species to be born and survive
through one reproductive interval. This is because the resource requirement parameter
θ is defined in such a way that an individual needs θ resource units to survive and another
θ to give birth to an offspring (and therefore 2θ to survive and reproduce). In Chapter 2 we
have argued that this is an approximation ignoring ontogenetic growth (newborns instantly
become adults). Here we want to provide two alternative perspectives that may help justify
this assumption. First, since the reproductive interval is defined as the time between birth
and adulthood, the additional θ the individual needs to give birth to an offspring that will
survive till the end of the current reproductive interval (otherwise there is no reason to
count it) actually includes expenses for both the reproductive activities before the offspring
is born, and survival of the newborn till it reaches adulthood. By this argument, if we assume
ontogenetic growth to be linear with respect to time, the resource a newborn takes to survive
should be half of that for its adult parent in one reproductive interval. Adding the cost for
reproductive activities to the former, we can assume that the two should be comparable.
Second, for each reproductive interval between its birth and death, it has to take exactly
the same amount of resource an adult takes to survive. Therefore if we ignore the short-
term fluctuations and focus on the general trend through time, survival requirement should
be roughly the same as reproduction requirement, and the latter should be defined as “the
average amount of resource required in one reproductive interval to produce an individual
that will survive more than one reproductive intervals”. In reality there are surely newborns
that cannot survive till adulthood but still consumes a certain amount of resource. In our
models we are assuming that the resource these individuals take is either negligible, or can
be instantly recycled for use by other individuals.

IV. Between-species resource allocation matters as much as demographic group-
ing, while within-species resource allocation matters as much or less than the
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former two. In calculating the total number of microstates, the weight for between-species
resource allocation (ways to put resource units into different species) and that for demo-
graphic grouping (ways to put individuals into death, survival, birth groups) are assumed
to be the same. On the other hand, the weight for within-species resource allocation (ways
to put resource units into different individuals of the same species) can be smaller than the
former two when its exponent Dr < 1. This might sound very arbitrary, yet it does reflect
prevailing notions in ecology: species identity matters; demographic rates (birth and death)
matter; individual identity, however, might not matter as much. In Chapter 4 this particular
assumption will be further explored to reveal how important it is to our predictions.

We understand that none of our assumptions are flawless. We are applying them just
to initiate this new approach that could potentially provide a valuable insight approach to
ecological theory. These assumptions can all be modified and are not essential to the theory.
In Chapter 4 we will describe a more thorough roadmap to future modifications and tests
of the theory. Here in this chapter, we want to focus on a few modifications that can be
done comparatively easily and as will be shown later, add greatly to the number of testable
predictions.

Modifications

I. Species specific Dr (for any number of species). In Chapter 2 we have used
a common relative individual distinguishability Dr for a two-species community. It was
mentioned in the discussion that this can be easily modified so that the model applies to
multiple (> 2) species, using a different Dr for each species. That will be done in this chapter.
Although potentially variable across species, the interpretation for Dr is the same as before.
At one extreme, if species i has Dr,i = 1, it means each of its individuals is as important as
a distinct species in resource allocation. If, at the other extreme, it has Dr,i = 0, it means
that the number and identity of its individuals do not matter and they should always be
considered as one whole in resource allocation.

Having species-specific Dr,i values does not change the predictions of the first model that
we have looked at in Chapter 2: it can be easily shown that wherever Dr shows up in the
equations, it can be replaced by the species specific Dr,i. In some of the following analyses,
we will still use a common Dr for all species. However, it is important to notice is that this
is not a constraint and Dr by definition can vary from species to species. This is of crucial
importance in understanding the interpretation of Dr which will be discussed in more depth
later in Chapter 4.

II. Removing the resource constraint. In nature, due to perturbations (e.g. fire,
hurricane), a community sometimes is pushed down to a very small size when each species
only has a few individuals. In such a case, the total resource use of the community is far less
than what the environment provides, and it takes time for the community to grow to the
carrying capacity. Because of the constant resource constraint, the first model in Chapter 2
is not able to deal with such a scenario. Besides, it is not realistic to state that the resource
can always be exhaustively used: there has to be some portion that is left unused by any
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species, either by mere chance or because the community is not always big enough to use all
the resource. Therefore, in the modified model that will be introduced in this chapter we
eliminate the constant resource constraint but instead let the same procedure of maximum
entropy tell us how much resource the community should use given its current size and all
the species attributes.

III. Including intrinsic growth rate. The first model assumed the maximum number
of offspring in one resource allocation period for each species to be one (so the maximum
number resource units an individual gets is 2θi). In reality, fecundity varies from species to
species and in some cases, an adult can give birth to up to thousands of offspring in one
reproductive interval. To account for this effect, we are introducing a new species attribute,
the intrinsic growth rate ri, which is the maximum number of offspring an individual can
have in one reproductive interval. (We have defined a variable ri = Bi

Di
in Chapter 2 which

will not be used again. Whenever ri appears later in Chapter 3 and 4, it represents the in-
trinsic growth rate.) An individual of species i can get any number of resource units between
0 and (ri + 1)θi, the actual distribution of which is determined by the procedure of maxi-
mizing resource allocation entropy and depends on the resource availability R0, the current
abundances Ni and all the species attribute parameters (θi, Dr, i, ri) in the community.

The values of ri determine how fast the community reaches its steady state after pertur-
bation: when the values are bigger, it takes a shorter time since the “steps” each species can
take are bigger. Due to other constraints that are not related to resource availability, species
cannot grow at an infinite speed even if the resource is infinite, and so ri cannot be infinite.
Previous studies have revealed that ri is in negative relationship with body size (Fenchel
1974), which will be incorporated in our analyses.

Although another species attribute parameter, ri, has been introduced, but including ri
actually does not add much complication to the predictions. As will be shown here, it has a
minor effect on the steady state predictions. The most important conclusions from our model
regarding species coexistence and abundance distribution hold regardless of the values of ri,
whether they are big or small, same or variable across species. This by itself is an interesting
revelation: maximal fecundity of species do not significantly affect the community structure
at steady state.

IV. Allocation between parent and offspring. In the first model in Chapter 2,
we assumed that the individual always acquire resource units with priority (choosing itself
over one of its offspring to survive). This is the case where death is minimized and purely
determined by resource availability. Here we relax this assumption: while net growth can be
determined from the number of resource units allocated to the individual, the actual number
of birth or death is not. For example, when an individual gets 2θi resource units, it can either
die and leave two offspring to survive, or survive and only leave one offspring to survive. The
birth and death rates for the former case are both higher. Without further assumptions, our
theory is not able to tell these two cases apart. This does not matter if we are only interested
in the overall population dynamics and the steady state, for which we only need to know the
net growth of all species. It is only when we want to know specifically about birth and death
rules that we need to differentiate one case from another. This question will be addressed
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Table 3.1: Resource allocation outcome for an individual of species i

# resource units Outcome

0
net population growth = -1 (0 birth, 1

death)

θi
net population growth = 0 (1 birth, 1 death

or 0 birth, 0 death)

2θi
net population growth = 1 (2 birth, 1 death

or 1 birth, 0 death)

3θi
net population growth = 2 (3 birth, 1 death

or 2 birth, 0 death)

..
.

..
.

(ri + 1)θi
net population growth =ri (ri + 1 birth, 1

death or ri birth, 0 death)

again later in the analysis. Before that we will just leave it as an open option (Table. 3.1).
Based on the above, we now have a new demographic outcome table, as shown in Table

3.1.

3.2 Method: a modified model for resource allocation

Macrostate: Ni,k

With the new demographic outcome table (Table. 3.1), the macrostate variable becomes
Ni,k. It denotes the number of individuals in the kth demographic group, i.e. those that get
kθi resource units and generate k − 1 net growth (row k + 1 in Table. 3.1). The previous
macrostate variable Bi and Di are simply Ni,2 and Ni,0 under the special case ri = 1 for all i.
For each species i, we have ri + 1 independent macrostate variables Ni,k (k from 1 to ri + 1;
Ni,0 can be calculated from Ni −

∑ri+1
k=1 Ni,k).

Expressing and maximizing number of microstates

While the definition of a microstate is the same as in the first model (a particular resource
unit - species - individual permutation), the space for possible microstates has been expanded
with the relaxation of the resource constraint and the introduction of ri. In the following we
will derive a new equation for the number of microstates Wtotal of a given macrostate Ni,k

(for all i from 1 to S0, and for each i, k from 0 to ri + 1). Also in the equations are R0, the
current abundances Ni and the species attributes θi, Dr,i and ri.

The general equation for Wtotal is very similar to the previous model (with Wacross in place
of Wbetween since there can be more than two species):
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Wtotal = Wacross ×
S0∏
i

Wgrouping,iW
Dr,i
within,i (3.1)

Where

Wacross =
R0!∏S0

i Ri!Rn!
(3.2)

Notice that without the resource constraint, we have an extra box in addition to the species
boxes at the cross species allocation step: the null box, the size of which Rn = R0 −

∑S0

i Ri

determines how many resource units are not allocated to any species. In Chapter 2 we have
constrained this box to be empty. Now we can derive the size of it by maximizing the number
of microstates in the expanded microstate space. Since there are no individuals in the null
box, it does not have a corresponding Wwithin,i like the species boxes.

Wwithin,i =
Ri!∏ri+1

k=1 (kθi)!Ni,k
(3.3)

Ri, the total amount of resource allocated to species i, can be calculated by:

Ri =

S0∑
i

Ni,kkθi (3.4)

Wgrouping,i counts the number ways to allocate Ni individuals into different demographic
groups.

Wgrouping,i =
Ni!∏ri+1

k=0 Ni,k!
(3.5)

As is mentioned earlier, although k can take ri + 2 different values (0 to ri + 1), for
each species i we only have ri + 1 independent Ni,k since the last one can be obtained from
subtracting the sum of the rest from Ni. Here we are using Ni,k where k = 1, 2, ..., ri + 1 as
the independent macrostate variables to solve for, and replace Ni,0 by Ni −

∑ri+1
k=1 Ni,k. log

transform Wtotal we get:

log Wtotal = log R0!− log (R0 −
S0∑
i

Ri)! +

S0∑
i

[(Dr,i − 1)log Ri!

−Dr,i

ri+1∑
k=1

Ni,klog (kθi)! + log Ni!−
ri+1∑
k=1

log Ni,k!− log (Ni −
ri+1∑
k=1

Ni,k)!]

(3.6)

Next we maximize Wtotal by taking the partial derivative of log Wtotal over Ni,k (k =
1, 2, ..., ri + 1) and making it equal to 0:
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∂log Wtotal

∂Ni,k

= kθilog (R0 −
S0∑
i

ri+1∑
k=1

Ni,kkθi) + kθi(Dr,i − 1)log (

ri+1∑
k=1

Ni,kkθi)

−Dr,ikθi(log kθi − 1)− log Ni,k + log (Ni −
ri+1∑
k=1

Ni,k) = 0

(3.7)

The
∑S0

i (ri + 1) (ri + 1 for each species) simultaneous equations in the form of Eq. 3.7
are the determining equations from which the macrostate variables Ni,k (k = 1, 2, ..., ri + 1)
can be solved:

Ni,k = (Ni −
ri+1∑
k=1

Ni,k)[
R
Dr,i−1
i Rn

(kθi
e

)Dr,i
]kθi

=> Ni,k = Ni

[
R
Dr,i−1

i Rn

(
kθi
e

)Dr,i
]kθi∑ri+1

k=1 [
R
Dr,i−1

i Rn

(
kθi
e

)Dr,i
]kθi + 1

(3.8)

e is the Euler’s number.

Solving for per capita net growth rate

Here we use gi to denote the average per capita net growth of species i in one allocation
period. By definition

gi(t) =
Ni(t+ 1)−Ni(t)

Ni(t)
=

Ri(t)
θi
−Ni(t)

Ni(t)
(3.9)

The t in parenthesis indicates that the value is for the tth time interval. gi is the realized
growth of the species and gi ≤ ri. gi = ri only happens when resource is in the infinite limit
or the current abundances are much lower than the steady state values.

Suppressing t from the subscript and substitute Eq. 3.4 into Eq. 3.9 we get

gi =

∑ri+1
k=0 (k − 1)Ni,k∑ri+1

k=0 Ni,k

(3.10)

Notice that k starts from 0 in the subscript. Substituting Eq. 3.8 into Eq. 3.10 we get

gi =

∑ri+1
k=1 (k − 1)[

R
Dr,i−1

i Rn

(
kθi
e

)Dr,i
]kθi − 1∑ri+1

k=1 [
R
Dr,i−1

i Rn

(
kθi
e

)Dr,i
]kθi + 1

(3.11)
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In Eq. 3.11, Ri = θiNi(gi + 1) and Rn = R0 −
∑S0

i Ri so the only unknown is gi, which
can be solved from S0 simultaneous equations in the same form.

When Dr,i = 1

In Chapter 2 we have specifically looked at the case where Dr = 1. Here if we substitute
Dr,i = 1 into Eq. 3.11 we get

gi =

∑ri+1
k=1 (k − 1)( eRn

kθi
)kθi − 1∑ri+1

k=1 ( eRn
kθi

)kθi + 1
(3.12)

In Eq. 3.12, Ri does not appear as an independent term (but only in Rn = R0−
∑S0

i Ri).
First, it means that when θi and ri are both the same for all i, gi should also be the same
regardless of the current Ri for each species. Specifically, the steady state can be any Ri

combination that gives an Rn = R0 −
∑S0

i Ri that satisfies gi = 0 in Eq. 3.12. This
is consistent with our prediction from the first model: when Dr = 1 and θ1 = θ2, the
community has a neutral steady state.

Second, Eq. 3.12 shows that when Dr = 1, net growth rate gi is independent of Ni and
always a negative function of θi. This means that when resource limit is reached and therefore
species cannot all have positive growth rates, those with bigger θ will have negative growth
rates and eventually be excluded. Another way to look at this is that, the dependence of gi
on its own abundance, i.e. conspecific density dependence, is the same as its dependence on
abundance of any other species, i.e. heterospecific density dependence. This property tends
to enlarge the resource imbalance among species: if the abundance of one species increases,
its population growth is not affected more than other species. In other words, there is no
feedback to offset the initial increase. In our model, this means the system is prone to
competitive exclusion.

Solving for steady state (when Dr,i 6= 1)

At steady state ĝi = 0 for all i, and R̂i = N̂iθi. Substituting these into Eq. 3.11 we get

ri+1∑
k=1

(k − 1)[
(N̂iθi)

Dr,i−1(R0 −
∑S0

i N̂iθi)

(kθi
e

)Dr,i
]kθi = 1 (3.13)

The only unknown is N̂i, which can be solved from S0 simultaneous equations in the form
of Eq. 3.13.

When ri = 1 for all i, Eq. 3.13 is simplified into

−1 + [
(N̂iθi)

Dr,i−1(R0 −
∑S0

i N̂iθi)

(2θi
e

)Dr,i
]2θi = 0 (3.14)
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From which N̂i can be solved:

N̂i =
2

e
(Cθi)

1
Dr,i−1 (3.15)

Where C = 2

eR̂n
. Eq. 3.15 is in exactly the same form with the steady state solution for

the first model in Chapter 2. This suggests that the previous model is very close to a special
case for this more general model where ri is constraint to be 1 for all species.

Under the most general condition (different ri for each species), the steady state cannot
be analytically solved. With θi, Dr,i and ri known for all species, we can numerically solve
Eq. 3.13 to get the steady state. Fig. 3.1 compares between the first model in Chapter 2
and the modified model in this chapter their predictions for steady state abundances.

Previously in the first model, only the ratio between R0 and θi matters. In other words,
the unit by which the resource is measured does not matter, as long as it is consistent for
all the θi and R0. However, this is not the case for the modified model. In Fig. 3.1, keeping
the ratio between θi and R0 constant, the steady state solutions for the modified model can
be different if the absolute value of R0 is different.

We could see that overall, the steady state abundances predicted by the two models are in
positive relationship. With the magnitude of R0 (and θi) increasing, the correlation between
the two models’ steady state predictions becomes better and eventually almost perfect in
the last graph. This means that when the absolute amount of resource is not too small, the
analytical equation for steady state (Eq. 3.15) still holds for this model, even if there is an
extra parameter (intrinsic growth rates ri) for each species. The property of Eq. 3.15 has
been discussed in detail in Chapter 2.

Fig. 3.1 also shows that, when the absolute magnitude of R0 is small, the modified model
predicts more species with low abundances (dots that are below the solid line) at steady
state than the first model. This suggests that when resource is limited, there are more rare
species and higher risk for extinction even if all species are proportionately smaller.

In the following section we will look at the predictions of the modified model for 1) within-
species resource distribution, 2) single species population growth, 3) multiple competitor
dynamics and 4) lifespan-body size relationship.

3.3 Result

Within-species resource distribution

Eq. 3.8 gives Ni,k as a function of k. Since kθi is the number of resource units an individual

gets in the kth demographic group,
Ni,k
Ni

is the relative frequency that an individual of the

species gets kθi resource units. In other words, the shape of the
Ni,k
Ni

vs k curve tells us how
resource is distributed within the species.
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Figure 3.1: Comparing predictions for steady state abundances (N̂i) between the original
model in Chapter 2 (X axis) and the modified model (Y axis).
Dr,i is uniformly drawn from 0.1 to 0.9, ri from 1 to 20. For the first graph, θi from 1 to 10,
R0 = 5. For the other graphs, R0 and θi are both multiplied by a scale factor (2, 4 or 20)
so that their relative magnitudes are unchanged. The absolute value of R0 is shown in the

X label. The solid line is a linear fit between X and Y.
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In Fig. 3.2 this curve is plotted for the simplest case of single-species community at
steady state. When the steady state abundance is controlled, R0 is determined by θ, r and
Dr, which means there are three free parameters. Since there is only one species, i will be
suppressed in the notations.

At steady state, the mean of k has to be 1 (g=
∑
k(k−1)Nk
N

=0 so
∑
k kNk
N

=1). However, as
Fig. 3.2 shows, the variation of k can be different for different Dr values: when Dr = 0,
the probability for k = 0 (in which case the individual definitely dies) is the highest and
decreases as k increases; as Dr increases, the distribution of k becomes more and more peaked
around k = 1 (in which case either the individual survives with no offspring, or dies with
one offspring) and the probability for an individual to get more extreme number of resource
units (k = 0 or k is big) gets smaller.

We can also see that these variations are more significant at the range where k is much
smaller than r. The difference among different Dr diminishes and Nk quickly drops to 0 as
k gets bigger. Because of this, the shape of the distribution should not change much if we
increase the intrinsic growth rate r (r+ 1 is the upper limit for k) as is shown in the second
row of Fig. 3.2: all else equal, the distribution is the same for r = 10 and r = 20. From this
we can deduce that r is not a very important parameter for the k distribution. Notice that
changing N̂ does not change the shape of this distribution: all else equal, the same graphs
can be obtained from N̂ = 10 or N̂ = 200.

Because k−1 is the net growth from any of the Nk individuals that get kθ resource units,
the distribution of k also reflects the distribution of reproductive success: as k gets more
and more peaked around k = 1, reproductive success gets more and more evenly distributed
among individuals while extreme cases (no offspring or a lot of offspring from one individual)
become rarer.

The distribution of reproductive success affects the genetic variability of the species:
given a background mutation rate, when reproductive success is more evenly distributed or
all individuals tend to have the same number of offspring (as when Dr = 1 in Fig. 3.2), the
genetic variation of the population can steadily increase through time. On the contrary, if
reproductive success is unevenly distributed or some individuals tend to have much more
offspring than others (as when Dr = 0 in Fig. 3.2), the genetic variation of the population
increases more slowly or even decreases through time since there are more individuals that
are related (offspring of the same individual). Comparing across graphs we can see that this
effect is stronger when θ is bigger: when Dr = 1, k distribution is more peaked when θ is
bigger. These results suggest that, species fitness might be enhanced by large θ and Dr,
yielding a more even distribution for reproductive success and higher genetic diversity. More
implications will be discussed later in this chapter.

Single species population growth

In the first model in Chapter 2 we compared how per capita net growth rate g changes
with population size N to reveal the density dependence of population growth in a zero-sum
scenario (Fig. 2.3 of Chapter 2). In that scenario, the single species case is trivial because of
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Figure 3.2: Within-species resource distribution for a single species community at steady
state (N̂ = 100).

The Y axis is Nk
N̂

. The X axis is k. θ is varied between left and right, while r is varied
between upper and lower graphs; both are specified in the X label. Within each graph,

different line types represent different Dr values (see the legend).
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the constant resource constraint: the species has to jump from any initial state to its steady
state in one step. Therefore, the first model is not able to predict the gradual increase of
population size from a minimal value to the steady state as the logistic growth equation
does. This can now be done by the modified model with the zero-sum assumption relaxed
and intrinsic growth rate introduced.

Using Eq. 3.11 we can numerically solve for g as a function of all model parameters
(R0, θ,Dr, r) and the current abundance N . To compare our model with the logistic growth
equation which has the carrying capacity (equal to the steady state abundance it predicts)
as one of its parameters, the steady state abundance N̂ will be controlled as a constant.
Therefore here we also have three free parameters: θ, Dr and r (R0 can be obtained by
substituting the rest of the parameters into Eq. 3.13).
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(a) Density dependence of population growth. The horizontal dotted line indicates g = 0 the
vertical one N = N̂ .
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(b) Population dynamic path of the species.

Figure 3.3: Comparing the modified model for a one-species community with the logistic
growth equation.

For all graphs N̂ = 100. θ is varied between left and right while r is varied between upper
and lower graphs; both are specified in the X label. Within each graph, different line types
represent different Dr values or the logistic growth equation (see the legend).
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From Fig. 3.3a we can see that, in the modified model per capita net growth rate generally
declines with abundance, as is predicted by the logistic growth equation. However, instead of
a linear decline like the logistic growth equation predicts, here how fast g decreases with N
(i.e. the slope) varies with N : when N is small, g is close to the intrinsic growth rate r and
does not decline much with N . As N increases, g starts to decline faster with N , and gets
the fastest at a point between 0 and the steady state (the inflection point, where curvature
goes from negative to positive). After that point, the decline gets slower with increasing N
and keeps that way.

Looking within each graph we can see that, before the steady state is reached, the higher
the Dr, the higher the g; after the steady state is reached, however, higher Dr leads to lower
g. Therefore all else equal, higher Dr for the species leads to faster convergence to steady
state, whether the current abundance is smaller or bigger than the steady state. This means
that species with higher Dr have higher resilience: it takes shorter time to resume when the
population size is perturbed away from its steady state. This result is the opposite from
that of the first model: in the zero-sum scenario, the community is more resilient when Dr

is smaller.
Comparing between left and right, when Dr = 0, the effect of a bigger θ is similar to that

of a bigger Dr given θ. However, the effect is opposite when Dr = 1. This suggests that
when the species Dr is small, increasing θ increases resilience; when Dr is big, increasing
θ decreases resilience. This is also different from the prediction of the first model, where
smaller θ always leads to more resilience regardless of the value of Dr.

Comparing between upper and lower graphs, when r = 2, the curvature is bigger (i.e. the
slope changes faster) with respect to the logistic growth equation: when abundance is small,
just like when r = 1, g decreases slowly with abundance and is bigger than predicted by the
logistic growth equation; as abundance further increases, however, g decreases much faster
that it drops below the prediction of the logistic growth equation for all Dr values (this only
happens for Dr = 0 when r = 1). After the intersection with the logistic growth equation,
the decrease of g slows down. When abundance approaches the steady state, the decrease of
g becomes much slower and again intersects with the logistic growth equation. After that, g
stays bigger than the logistic growth equation. This patterns holds for all r > 1. In general,
when r > 1, our model predicts that the population growth to be more “sluggish” than the
logistic growth equation around the steady state: slower increase right before the steady
state is reached and slower decrease after the steady state is reached. As will be shown in
the following, this leads to less fluctuation in population dynamics in our model compared
to the logistic growth equation,

In Fig. 3.3a the curves predicted by the modified model are clearly differentiable from
the logistic growth equation. In practice, we do not usually compare the pattern of g vs N
but instead how abundance changes through time, i.e. N vs t, since that is usually what we
directly observe from data and what we want to predict. In Fig. 3.3b, I have plotted the
predicted N against time, where time is a discrete variable, i.e. the number of reproductive
intervals from the initial point.

From the r = 1 case we can also see that, regardless of the obvious differences on the
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g vs N plot, all model predictions tend to follow a similar shape to that predicted by the
logistic growth equation on the N vs time plot: an S-shaped curve. This suggests that the
commonly observed S-shaped population dynamic curve could be the result of many different
functions other than the logistic equation (including the ones predicted by our theory), and
it is easiest to tell them apart using g vs N plot instead of N vs time plot.

When r = 2, one distinct difference is that while there are fluctuations in the prediction
by the discrete logistic growth equation, in our model there are not. This is mostly due to
our assumptions that 1) the resource constraint has to be satisfied every time resource is
allocated and 2) population instantly and fully reflects the resource allocation outcome. This
means that the population cannot overshoot since that will violate the resource constraint.
Therefore there are no fluctuations in the predicted abundance by our model. Fluctuations
will emerge if we relax the above assumptions by either 1) making resource fluctuates or 2)
creating a time lag between population growth and resource allocation so the population does
not have to meet the resource constraint at all times. Since our model is discrete in time,
an interesting revelation here is that there can be more factors complicating the mechanism
of population fluctuation in addition to the discreteness or continuity of population growth,
which is the most important factor that affects population fluctuation for populations obeying
the logistic growth equation (discrete and continuous).

The results of this section inform us that for the one species case, 1) Dr and θ both affect
how fast population converges to steady state and therefore the resilience of the population
but in different ways from predicted by the first model, 2) actual density dependence of
growth can be much more complicated than the logistic growth equation, even if they all
generate an S-shaped population dynamic curve, 3) the model does not predict population
fluctuations even when r > 1, indicating more potential complication than the simple discrete
vs continuous-time dichotomy in temporal behavior of populations.

Two competitors population dynamics

To make it easier to compare with the results in Chapter 2, we assume that the two
competitors have equal Dr although this model can be applied to multiple (> 3) species
each with a different Dr. Also to compare with the competitive Lotka-Volterra equations,
we assume that the carrying capacity for each species (the K parameter) is the abundance
of the species if all resource at steady state of the community is allocated to it (as in the
competitive Lotka-Volterra equations, K is the abundance of the species if no other species
exists at steady state).

Ki =

∑S0

j θjN̂j

θi
(3.16)

Also since we are only considering exploitative competition (consumption of the resource
by one species makes it unavailable to the other), we assume that the αij parameter of the
Lotka-Volterra equations, i.e. the effect of species j on species i, is simply the ratio between
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the resource requirements of species j and i, or the number of individuals of species i from
which resource will be deprived of if one extra individual of species j survives.

αij =
θj
θi

(3.17)

With Ki and αij defined within our framework, we can then use the classic form of
competitive Lotka-Volterra equations (Gilpin & Ayala 1973):

gi = ri(1−
∑S0

j αijNj

Ki

) = ri(1−
∑S0

j
θj
θi
Nj∑S0

j
θj
θi
N̂j

) (3.18)

We can see that gi is linearly related to Nj (both when j = i and j 6= i) and the coefficient
is ri.

With these assumptions clarified, now we can compare our model prediction with that of
the Lotka-Volterra equations. First we look at the case where θ1 = θ2.
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(a) θ1 = θ2 = 1.
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(b) θ1 = 1, θ2 = 3.
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Figure 3.4: Dependence of per capita net growth rate on population size of the species and
its competitor in a two-species community.

Species 2 is set at its steady state level (N2 = N̂2) while the abundance of species 1 is varied
(X axis). per capita net growth rate (Y axis) is plotted for the two species, each with a
different point type. Predictions of the Lotka-Volterra equations are plotted with a different
line type for each species (see the legend). Dr is varied among columns (left: 0, middle: 0.5
middle, right: 0.9), and r1 and r2 are varied among the rows (row 1: r1 = r2 = 1, row 2:
r1 = r2 = 10, row 3: r1 = 2, r2 = 1, row 4: r1 = 1, r2 = 2). Dr, r1 and r2 are specified in the
X label. The horizontal dotted line is g = 0 and the vertical N1 = N̂1.
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In each graph of Fig. 3.4a, the hollow dots show us how the net growth rate of species
1 changes with its own abundance, i.e. conspecific density dependence of growth, while the
solid dots tell us how the net growth rate of species 2 changes with the abundance of species
1, i.e. heterospecific density dependence of growth. For convenience in the following, I will
refer to them as simply conspecific and heterospecific density dependence. Meanwhile, the
abundance of species 2 is controlled to be at its steady state (N2 = N̂2). Since Dr = 1 will
lead to no single steady state solution (exclusion or neutral steady state), in this section the
highest Dr value we will look at is 0.9.

For all graphs in Fig. 3.4a, the conspecific density dependence is more negative than
heterospecific density dependence. This suggests a stabilizing effect in our model because
increasing the abundance of species 1 tends to decrease its own growth more than the growth
of species 2, which is a negative feedback that tends to offset the initial increase.

Comparing across the columns we can see that, the difference between conspecific and
heterospecific density dependence of growth diminishes as Dr increases. When Dr = 0.9,
increasing the abundance of one species has basically the same impact on its own population
growth as on the other species. This means there is little stabilizing effect to offset the initial
increase. As we have discussed earlier in 2.4, when Dr = 1, conspecific density dependence
equals heterospecific density dependence, which means stabilizing effect is zero. This is
consistent with our conclusion from Chapter 2: the bigger the Dr, the smaller the stabilizing
effect and the less the chance for coexistence.

Comparing across the rows we can see that, especially when Dr is small, the patterns
look very similar regardless of the values of r1 and r2. While the predictions from the Lotka-
Volterra equations change significantly with r (since r is the slope of the g vs N curve), in
our model, having different r mostly just changes the starting point of g when N1 is small
but does not significantly change the relative magnitude of g1 and g2 or how they each vary
with N1.

So far θ has been set to be equal for the two species. In Fig. 3.4b, we examine the case
where they are different. From Fig. 3.4b we can see that when θ1 6= θ2, big Dr can lead to
a reversal of the relative magnitude of g1 and g2: while in all cases where θ1 = θ2, g2 < g1
when N1 < N̂1 and g2 > g1 when N1 > N̂1, here when θ1 6= θ2, there are exceptions when
Dr > 0. This means that when Dr is big enough, increasing the abundance of species 1
could negatively affect the growth of species 2 more than itself (and vice versa), which is a
positive feedback and will lead to exclusion of species 2. This result is also consistent with
the conclusion in Chapter 2: when θ is different between the species, having high Dr leads to
exclusion of the species with bigger θ (species 2 in this case). Again changing r1 or r2 does
not change the shape of the density dependence curves much especially when N1 is close to
or bigger than its steady state value.

In summary, the result in this section shows that in the modified model, 1) Dr is still
the key parameter that determines whether coexistence or exclusion happens: the higher
the Dr, for more chance for exclusion; 2) the effect of θ is similar to that in the first model
(Chapter 2): difference in θ can lead to exclusion when Dr > 0; 3) unlike the Lotka-Volterra
equations, in our model intrinsic growth rates affects the growth curve only when abundance
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is much smaller than the steady state value. Finally, despite the connection we have made
between α and θ (Eq. 3.17), in our model θ does not have the dominating effect α has in
the Lotka-Volterra equations (Gause 1934). Instead, conspecific and heterospecific density
dependence are determined by θ and Dr together.

Lifespan-body size relationship

So far we have only looked at the overall change in population size, where only net growth
(birth minus death) matters. If we are interested in predicting specifically birth and death
rates and related to which, species lifespan, we will need to make further assumptions.

By looking at Table. 3.1 again, we can see that the missing information is the death
probability when an individual gets a number of resource units that is between 0 (in which
case death probability is definitely 1) and (r+1)θ (in which case death probability is definitely
0). An extra assumption is needed to fill this gap.

To see what exactly this assumption should be, let’s look at the specific case where an
individual gets 2θ resource units. As is mentioned earlier in section 3.1.2 IV, the individual
can either die and give birth to 2 offspring (one death, two births), or survive and give birth
to only 1 offspring (zero death, one birth). The difference lies in whether the individual keeps
the resource to itself or gives it to an offspring. With no existing metric for this behavior,
we will define it as “selfishness”, denoted by Sf , which is equal to the probability of survival
when the number of resource units an individual gets is bigger than 0 but smaller than
(r + 1)θ. If Sf = 0, the individual is perfectly selfless and always give the resource to its
offspring with priority, in which case all individuals die after one reproductive interval. This
is true for species with non-overlapping generations. At the opposite extreme, if Sf = 1,
the individual is perfectly selfish and always prioritize itself in resource allocation, which
means death (and birth, since they are equal at steady state) is minimized and individuals
all tend to live longer. Other than these two extremes, there can be states in-between. For
example, if Sf = 0.5, there is a 50% chance the individual can survive when the resource is
not zero or absolutely abundant. In the following this will be referred to as the indifferent
case, indicating that the individual is indifferent to giving the resource to itself or to its
offspring. These three cases and their interpretations are illustrated in Table 3.2.
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Table 3.2: Three cases for individual selfishness

Scenario Sf death probability* Number of deaths for the species

Selfless 0 1 Ni

Indifferent 0.5 0.5 Ni,0 + 0.5
∑ri

k Ni,k

Selfish 1 0 Ni,0

*Here it refers to the death probability for an individual when the number of resource units
the individual gets is between 0 and (r + 1)θ.
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Once the value for Sf is specified, our model can predict not just net growth, but also
birth and death specifically from the resource allocation outcome.

With birth and death resolved, we can further look at lifespan. By lifespan we mean
the average lifetime over all individuals of the species. Lifetime here is a random variable
representing the number of reproductive intervals before death happens, which follows a
geometric distribution with a success rate that equals to the per capita death rate (assuming
this rate is constant through time once steady state is reached). Since the expectation of a
geometric distribution is one over the success rate, lifespan is always equal to one over the
steady state per capita death rate (or birth rate, since they are equal).

The perfectly selfless case (Sf=0) is straightforward: all individuals die after one repro-
ductive interval (since they always prioritize their offspring in resource allocation) so death
rate is always 1 and the lifespan is one reproductive interval regardless of the species at-
tributes (θ, Dr and r). The selfish case and indifferent case, however, could each predict
a non-trivial relationship between birth rate or death rate or lifespan and the species at-
tributes of our model. It has been widely observed that bigger species (with bigger θ) tend
to live longer and have fewer offspring in each reproductive interval. In the following, we will
use our model to predict the species lifespan in the single species community for different θ
values keeping all other parameters constant (Fig. 3.5a).
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(a) X axis is θ, Y axis is log (lifespan).
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(b) X axis is log-transformed log(θ), Y axis is log (lifespan).

Figure 3.5: Relationship between θ and lifespan.

For graphs on the left, r = 1. For graphs on the right, r is proportional to 1
θ

and varies from
1 to 50. Different Dr values are represented by different point types as is illustrated in the
legend of the first graph. The lines are each a linear fit between X and Y for a given Dr

value with the slope specified in the legend of each graph.
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Since the log of per capita birth (or death) rate is just the inverse of the logarithmic of
lifespan, the pattern of it varying with θ should be perfectly symmetrical to the pattern in
Fig. 3.5a against the X axis.

The first row of Fig. 3.5a shows that when individuals are selfish (Sf = 1) and Dr > 0,
the predicted lifespan increases with θ (which is positively related to body size), suggesting
that under these conditions, our prediction is consistent with the empirical observation that
lifespan increases with body size. When Dr = 0, however, predicted lifespan does not change
with θ.

On the left graph we have used a constant r (=1). A more realistic scenario is to set r
to be related to θ: bigger species are observed to have lower intrinsic growth rates (Fenchel
1974). Therefore in the graph on the right we have assumed that r is proportional to 1

θ
. The

pattern is not much affected.
Next we look at the case where individuals are indifferent (Sf = 0.5). Results are shown

in the second row of Fig. 3.5a. We can see that r = 1 leads to a flat line, i.e. no correlation,
between lifespan and θ for all Dr values. When r is set to decrease with θ, although lifespan
does increase with θ when Dr > 0, the slopes are very small compared to when Sf = 1.

In Fig. 3.5a we have log-transformed the lifespan but not θ because this gives the best
linear relationship between X and Y (as is predicted by our model). On the other hand,
empirical data on lifespan and body size have been mostly plotted on a log-log scale. To
compare with those results, in Fig. 3.5b we re-plot predictions against θ on a log-log scale.

The empirical slope for a log-log plot between lifespan and body mass is around 0.2
(between 0.15 and 0.3) for both birds and mammals (Speakman 2005). Assuming θ is
proportional to body mass, the result here indicates that 1) most species must have Dr > 0;
2) given the selfishness of individuals, the higher the Dr, the faster lifespan increases with
body size; 3) an average individual is probably somewhere in between selfish and indifferent
(0.5 < Sf < 1).

3.4 Discussion

In this chapter we have intensively explored a modified model for resource allocation which
gives a number of predictions. Some of them are consistent with the first model (effect of θ
and Dr on species coexistence at steady state), some are inconsistent (effect of θ and Dr on
population resilience), but most are new predictions that are beyond the scope of the first
model. Here we want to focus our discussion on the new predictions.

In both this model and the model developed in Chapter 2, Dr is a key factor determining
the steady state coexistence pattern among species. If Dr < 1, all species have positive
steady state abundances. However, the difference in abundance among species is larger
with bigger Dr values. Considering stochasticity at the population level, i.e. environmental
or demographic stochasticity (Morris et al. 2002), and that a species may have a non-zero
minimum viable population size (Soulé 1987), it is less likely for species with smaller steady
state abundances to survive in the long term. Therefore although in theory our model
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predicts coexistence of all species as long as Dr < 1, in practice it predicts less stability
for coexistence at steady state with bigger Dr. When Dr = 1 as is discussed in section
2.4, even without fluctuations or a non-zero minimum viable population size, species cannot
coexist unless they all have the same θ: the species with the smallest θ are the only ones
with non-zero abundances at steady state.

It is necessary to clarify that our model does not involve stochasticity at the popula-
tion level. The community follows exactly the path that maximizes Wtotal, the number of
microstates, and therefore the dynamics is deterministic. The coexistence and exclusion
predicted here has nothing to do with demographic or environmental stochasticity. In fu-
ture work population stochasticity can be introduced into the current framework for a more
complete theory.

Although the interpretation of Dr is far from its final resolution (which will be further
discussed in the next chapter), it has been generally accepted that it should be somehow
related to within-species variation. In 3.3.1 we have proved that the higher the Dr, the more
even reproductive success is distributed, which counteracts the effect of genetic drift (Lande
1976) and helps enhance the genetic diversity of the population. If Dr is positively related
to functional variation (illustrated in Fig. 2.2 of Chapter 2), and assuming the functional
traits have phylogenetic signal (Losos 2008), Dr should also be positively related to genetic
variation. Then the result here suggests that there is a positive feedback for the population to
become more and more genetically diverse: an increase in genetic variation will be reinforced
in future generations by increasing the value of Dr. If this keeps happening, the eventual
result will have to be diversification, when the population gets too genetically diverse to
remain as one species. Then each new species with more homogenous genome will start with
a small Dr and go through the process all over again. So far our theory has only been able to
make predictions for communities where species identities are determined. This result could
augment ability to predict speciation patterns from resource allocation statistics.

Either way, contingent on the relationship between Dr and genetic variation, many ex-
citing predictions regarding the interaction of ecology and evolution can emerge from our
theory. We will do a more thorough summary of analyses that can be done to achieve this
goal in the next chapter. Here we will give an example: so far our theory consistently pre-
dicts that Dr determines how abundance correlates with body size. If Dr is positively related
to genetic variation, we would expect to see better conformity with energy equivalence rule
(EER, the prediction of our model when Dr = 0) for a community that is newly established
or a rapidly evolving where each species is believed to have lower genetic variation. If the
opposite is observed, then Dr should be negatively related to genetic variation.

Another interesting inference from the new predictions is the implication for body size
evolution. Previously we only know that species with bigger θ end up with smaller abundance
and therefore are more prone to extinction, which raises the question why all species do not
become as small as possible. In this chapter we have shown that 1) bigger θ increases the
evenness of reproductive success and therefore helps maintain genetic variation, and 2) bigger
θ also increases the resilience of populations when Dr is small. Based on our interpretation
that θ should be positively related to body size, these results suggest that there is a definite
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benefit for species to grow bigger especially when their Dr is not big. Combined with
our previous hypothesis on the relationship between Dr and genetic variation, a number of
testable hypotheses can be made on the relationship between evolutionary trend for body
size. For example, if Dr is positively related to genetic variation, we can infer that there is
a tendency for new species to become bigger and for older species to become smaller.
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Chapter 4

Maximizing resource allocation
entropy on a functional space:
implications for species coexistence,
macroevolution and life history

Abstract

A new model is developed applying maximum entropy to resource allocation on a func-
tional space. From this framework, a number of predictions for ecological and evolutionary
processes for natural communities emerge. Steady state patterns (coexistence or exclusion)
are affected by both body size and functional dispersion; their interaction generates possible
evolutionary tradeoffs for species. Within this framework, the dichotomy of r-selected vs
K-selected life history strategies can also be illuminated. This theory provides a way for
different ecological theories, i.e. the niche theory and the neutral theory, to be combined in
a unified framework. Concrete plans for empirical tests will be illustrated.

4.1 Introduction

In Chapters 2 and 3, I have explored the approach of maximizing Boltzmann entropy to
predict population dynamics and community structure. This novel method yields a num-
ber of predictions including a steady state abundance-body size relationship, population
dynamics (for one species and for multiple competitors), the within-species distribution of
reproductive success and a lifespan-body size relationship.

To better understand this new model presented here, it is important to see how it differs
from the approach in Chapter 3. In the introduction of Chapter 3, I listed the biological
assumptions behind the resource allocation scenario. In addition to those, I also assumed
that 1) species and individuals are the only relevant taxonomic units for resource allocation;
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2) species identities and attributes are given as inputs and do not change through time; 3) the
only attributes that differentiate one species from another are the species-specific resource
requirement θi (number of resource units an individual of species i needs to survive one time
interval) and the relative individual distinguishability Dr,i (how distinguishable individuals
of species i are compared to heterospecific individuals). If two species have the same θ and
Dr, they will be equivalent in this model.

I started with these assumptions for simplicity. However, justifying them can be chal-
lenging. First, the definition for species is often ambiguous: it is not clear whether in this
context we should use reproductive species, typological species, phylogenetic species or eco-
logical species (Mallet 1995, Meier 2000, De Queiroz 2007). Nor is it clear why species rather
than populations or genera or functional groups, for example, should be the relevant units
for resource allocation. Secondly, one major difference among species in our model lies in
the species-specific resource requirement θi, which is determined by the species average body
size. Although body size is important, it is definitely not the only difference among species
that matters. The relative individual distinguishability Dr is intended to capture additional
differences among species, it does not yet clear what trait(s) it is based on, nor exactly how
it can be calculated from data. Thus, if two traits are both relevant to resource allocation,
and one species has higher variation in trait A while lower variation in trait B, and another
species has lower variation in trait A while higher variation in trait B, it is not clear which
species has higher Dr. Notice that the two traits can be incomparable (e.g. beak shape and
foraging time). These problems are hard to solve in the current resource allocation scenario,
where functional traits are not directly involved.

These problems suggest that, it is necessary to redefine the resource allocation process
so that it is not taxonomy-based and more readily incorporates functional traits other than
body size. One way to do this is to assume that resource is randomly allocated across a
functional space, on which all individuals of the community can be mapped and microstates
defined.

In the following I will first introduce the scenario of resource allocation to a functional
space, and then explore a few specific cases where functional distribution patterns among
species and individuals are given. In each of these cases, the same community- and population-
level metrics can be predicted as in Chapter 3. The new formula for total number of mi-
crostates has the same parameters as in Chapter 3 (R0, θ,Dr, r), only now the interpretation
of Dr is more straightforward and measurable. Most importantly, the new model opens
the possibility to explore the effect of functional distribution among species and individuals
on all of our predictions, as well as to utilize information from other taxonomic levels in
the model. Based on the results, plans for empirical tests will be demonstrated and future
extensions summarized.
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4.2 Method

Resource allocation to a functional space

Here I consider a scenario where a resource is randomly allocated across a functional
space. The resource here can be thought of as a melded pool of all critical conditions for
survival and reproduction, e.g. space, sunlight, water, nutrients, and each unit of it is of
equal quality. The definition of functional space is similar to Hutchinson’s definition of niche,
an N-dimensional hypervolume with each axis being an environmental variable (Hutchinson
1965). Later in the discussion I will relate it directly to the niche space. The variables can
also include geographic coordinates (x, y, z) and time.

Given this definition, I further assume that the functional space can be divided into
discrete functional cells. Microstates for resource allocation are particular resource unit-
functional cell matching patterns. To give an example, for Darwin’s finches on the Galapagos
islands (Grant & Grant 1989), taking food as the resource (including seeds, fruits, insects,
etc.) and food hardness as the axis of the functional space, a microstate would be a particular
food unit-hardness association among all food units across the hardness range. Using letters
(A, B, ...) to represent resource units and numbers (1, 2, ...) to represent hardness levels, a
microstate could be seed A - 10, seed B - 9, insect A - 2, fruit A - 1, ... . Since maximizing the
number of microstates as defined here will lead to a uniform distribution of resource across
the functional space, the associated assumption for Galapagos islands is that the hardness
distribution of food is uniform, i.e. randomly sampling a food unit, there is an equal chance
for it to have any hardness value. If the variable is time or space, the associated assumption
would be that resource is evenly distributed through time or across space. Which variable
to choose depends on the system of interest and will be discussed later.

In this chapter I will focus on the simplest scenario assuming that the resource is uniformly
distributed across the functional space. Uniform distribution is the MaxEnt solution when
there are no other constraints than the boundaries of the random variable to be predicted. In
the future scenarios with additional constraints (e.g. mean values of the functional variables)
can be explored. Notice that this does not mean that the fitness landscape (Wright 1932) is
flat for any species or individual; each species and individual can still have higher fitness at
some functional locations than others. As will be illustrated later, where and how scattered
a species is distributed on the functional space are considered as constraints given to this
model. We are only assuming that species and individuals have equal optimized fitness, i.e.
when they are at their optimal locations at the functional space, their fitness are equal. A
similar argument has been used to justify the neutral theory (Clark 2009).

As in the previous chapters, the community here is defined as a group of species competing
for the resource being allocated. To predict community patterns from the above resource
allocation scenario, I need to map all species in the community onto the functional space.
The mapping can be done by linking axis variables of the functional space to biological traits
of the species. In other words, the axes of the functional space can also be considered as
biological traits, as is often applied in niche-based studies (Violle & Jiang 2009). In the
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example of Darwin’s finches, the corresponding trait is beak shape (adapted to a certain
hardness level). Applying this model to this case assumes that the chance of getting food is
equal for birds with all beak shapes.

Once all individuals of the community are mapped onto the functional space, across-
and within-species resource allocation patterns can be combined to represent microstates
of resource allocation among functional cells. The simplest case would be that, if each
species covers exactly one functional cell and does not overlap with any other species, each
across-species resource allocation pattern corresponds to a distinct microstate on the func-
tional space. In this case, since all individuals of the same species completely overlap, all
within-species demographic grouping and resource allocation patterns correspond to the same
microstate and therefore should not be counted in calculating the number of microstates.
On the other hand, if each individual covers a different functional cell, each within-species
demographic grouping and resource allocation combination corresponds to a different mi-
crostate on the functional space. Notice that for the former case, even if a species covers
multiple functional cells, as long as it does not overlap with any other species, the number
of across-species allocations is proportional to the number of microstates. The proportion-
ality factor is the number of microstates each across-species allocation pattern corresponds
to and is determined by the number of functional cells each species covers, the number of
species, and the total resource available, and therefore is a constant. Since this factor does
not influence the maximization, we will leave it out of the equations. The same applies at
the individual level, i.e. the number of functional cells an individual covers is constant. The
more important thing is how much different species and individuals overlap with each other
functionally.

Here I define two parameters, O and Oi, to quantify respectively 1) how much different
species overlap and 2) how much individuals of species i overlap on the functional space.
For both O and Oi, the value is 0 when there is no overlapping, and 1 when there is com-
plete overlapping. As is illustrated in the last paragraph, the extent to which species- and
individual-level patterns should be counted as microstates is negatively related to O and Oi,
respectively. In Chapter 2 I have defined Dacross and Dwithin as distinguishability across-
and within-species. Here I redefine them to be the complement of overlap:

Dacross = 1−O (4.1)

Dwithin,i = 1−Oi (4.2)

Based on these definitions the total number of microstates Wtotal can be calculated from
the number of across-species resource allocations Wacross, the number of within-species demo-
graphic grouping Wgrouping,i and the number of within-species resource allocations Wwithin,i.

Wtotal = WDacross
across ×

S0∏
i

(Wgrouping,iWwithin,i)
Dwithin,i (4.3)
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Eq. 4.3 is consistent with the rationale introduced earlier: when Dacross and Dwithin,i

are both zero, species and individuals completely overlap with each other. This means that
different species- and individual-level patterns all correspond to one microstate on the func-
tional space so Wtotal = 1. When Dacross = 1 and Dwithin,i = 0, species do not but conspecific
individuals completely overlap. This means that across-species allocation patterns each cor-
responds to a distinct microstate on the functional space while within-species demographic
grouping and resource allocation patterns do not affect the outcome, so Wtotal = Wacross.
When Dacross and Dwithin,i are both equal to 1, species and individuals are all completely sep-
arated from each other. This means that each across-species and within-species demographic
grouping and resource allocation combination pattern corresponds to a distinct microstate,
so Wtotal = Wacross ×

∏S0

i (Wgrouping,iWwithin,i). The distribution patterns of species and
individuals on the functional space for these cases are shown in graph 1-3 of Fig. 4.1.
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Figure 4.1: Species and individual distribution on the functional space
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Dr is still defined as the ratio between Dwithin and Dacross, so for species i:

Dr,i =
Dwithin,i

Dacross

(4.4)

Notice that this definition is not based on “distinguishability” as in the previous chapters,
but the more biologically explicit idea of “functional overlapping”: the bigger the Dr,i, the
less functional overlapping there is within species i compared to across species. Substituting
Eq. 4.4 into Eq. 4.3:

W
1

Dacross
total = Wacross ×

S0∏
i

(Wgrouping,iWwithin,i)
Dr,i (4.5)

Notice that the exponent 1
Dacross

on the left has no influence on the maximization. Eq.
4.5 is very similar to the equation for Wtotal in Chapter 2 and 3 except that the exponent
for Wgrouping,i and Wwithin,i are now both Dr,i. Notice that the special case when Dr,i = 1 is
the same as the previous model so the predictions for that case still holds: when all species
have the same θ, the community has a neutral steady state; otherwise the species with the
smallest θ deterministically excludes all other species. Given the new definition, Dr,i can now
be bigger than 1 when Dacross < Dwithin,i or O > Oi, in which case there is less functional
overlap or more dispersion within species i than across species (graph 4 in Fig. 4.1).

The expressions for Wacross, Wwithin and Wgrouping are the same as in Chapter 3:

Wacross =
R0!∏S0

i Ri!Rn!
(4.6)

Wwithin,i =
Ri!∏ri+1

k=1 (kθi)!Ni,k
(4.7)

Wgrouping,i =
Ni!∏ri+1

k=0 Ni,k!
(4.8)

In Eqs. 4.6-4.8, R0 is the total resource available; ri is the intrinsic growth rate, i.e. the
maximum number of offspring an individual can have in one allocation period; Ni is the
current abundance of species i; Ri is the amount of resource species i takes in the current
allocation period; Rn is the amount of resource not allocated to any species (Rn = R0−

∑S0

i ),
and Ni,k (k from 1 to ri+1) is the macrostate variable which quantifies how many individuals
from species i can get k resource units. Ni,0 is not an independent variable and can be
calculated from Ni−

∑ri+1
k Ni,k. Substituting Eqs. 4.6-4.8 into Eq. 4.4 and log-transforming:
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log Wtotal = Dacross(log R0!− log Rn!) +

S0∑
i

[(Dwithin,i −Dacross)log Ri!

−Dwithin,i(

ri+1∑
k=1

Ni,klog (kθi)! + log Ni!−
ri+1∑
k=1

log Ni,k!− log Ni,0!)]

(4.9)

To maximize log Wtotal, I take the partial derivative of log Wtotal over the macrostate
variable Ni,k (k from 1 to ri + 1) and equate it to zero:

∂log Wtotal

∂Ni,k

= Dacrosskθilog Rn + kθi(Dwithin,i −Dacross)log Ri

−Dwithin,ikθi(log kθi − 1)−Dwithin,i(log Ni,k − log Ni,0) = 0

(4.10)

Eq. 4.10 gives the determining equation from which the macrostate variables Ni,k can be
solved. In the following, predictions from Eq. 4.10 on community structure and population
dynamics will be examined and compared with those from the previous chapter. After that
the connections between this framework and existing ecological theories will be clarified.
Then I will introduce ways to empirically estimate functional overlapping and Dr,i. Based
on this empirical methods to test the theory and directions it can be extended in future will
be discussed.

4.3 Results

When Dacross = 0 (Dr =∞)

Substituting Dacross = 0 into Eq. 10 we derive,

Ni,k

Ni

=
( eRi
kθi

)kθi∑ri+1
j=1 (( eRi

jθi
)jθi + 1

(4.11)

Notice that Dwithin,i becomes the common multiplier for all terms and is dropped. From
Eq. 4.11, the per capita net growth rate gi can be calculated:

gi =

ri+1∑
k=0

(k − 1)
Ni,k

Ni

=

∑ri+1
k=1 (k − 1)( eRi

kθi
)kθi − 1∑ri+1

j=1 (( eRi
jθi

)jθi + 1
(4.12)

At steady state, ĝi = 0 and therefore:
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ri+1∑
k=1

(k − 1)(
eR̂i

kθi
)kθi =

ri+1∑
k=1

(k − 1)(
eN̂i

k
)kθi = 1 (4.13)

In Eq. 4.13, the first non-zero term in the summation is ( eN̂i
2

)2θi for k = 2 and is bigger

than 1 as long as the steady state abundance N̂i ≥ 1 (since e > 2 and 2θi > 0). Therefore
for Eq. 4.13 to hold, N̂i has to be smaller than 1. Since actual abundance has to be at least
1, there is no meaningful steady state in this model when Dacross = 0.

Meanwhile, Eq. 4.12 shows that gi is only affected by the abundance and parameters
(θi and ri) of species i but not any other species. This means that the single species case
gives the same prediction as the multiple competitor case, so the latter will not be explored
separately.
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Figure 4.2: Dependence of per capita net growth rate g on abundance N when Dacross = 0.
R0 does not affect this pattern. r is varied between the two graphs and specified in the label
of the X axis. Different line types represent different θ values and are specified in the legend.
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From Fig. 4.2 we can see that when Dacross = 0, population growth has positive density
dependence: the bigger the abundance N , the bigger the per capita net growth rate g and
the faster the population grows. This effect is stronger with bigger θ.

In reality populations cannot grow forever; growth has to stop when the resource limit
is reached. The result here tells us that when species have the same θ, the one with higher
initial abundance is very likely to end up with much higher abundance due to the positive
density dependence of growth; otherwise, the species with bigger θ is more likely to win over
the other species.

When Dacross 6= 0 but Dwithin = 0 (Dr = 0)

Substituting Dwithin,i = 0 into Eq. 4.10 we get:

Ri = Rn (4.14)

Eq. 4.14 suggests that when Dwithin,i = 0, species i always gets the same amount of
resource as Rn, the amount of resource not allocated to any species. This also means that
when all species have Dwithin,i = 0, the resource distribution among species is perfectly even
despite the initial state and potential differences in species attributes.

When Dacross > 0 and Dwithin,i > 0 (0 < Dr,i <∞)

When Dacross > 0 and Dwithin,i > 0, Dr,i can be used in place of
Dwithin,i
Dacross

. Substituting it
into Eqs. 4.10 & 4.12:

Ni,k

Ni

=
(
R

1
Dr,i
n R

Dr,i−1

Dr,i
i

kθi
e

)kθi

∑ri+1
k=1 (

R

1
Dr,i
n R

Dr,i−1

Dr,i
i

kθi
e

)kθi + 1

(4.15)

and

gi =

ri+1∑
k=0

(k − 1)
Ni,k

Ni

=

∑ri+1
k=1 (k − 1)(

R

1
Dr,i
n R

Dr,i−1

Dr,i
i

kθi
e

)kθi − 1

∑ri+1
k=1 (

R

1
Dr,i
n R

Dr,i−1

Dr,i
i

kθi
e

)kθi + 1

(4.16)

In the following I will look at the predictions of Eqs. 4.15-4.16 for the same metrics
explored in Chapter 3, i.e. steady state abundance, within-species resource allocation, single
species population growth, multiple competitor dynamics and lifespan-body size relationship.
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Steady state abundance

Substituting the steady state condition gi = 0 into Eq. 4.16:

ri+1∑
k=1

(k − 1)(
eR

1
Dr,i
n N̂i

Dr,i−1

Dr,i θ
−1
Dr,i

i

k
)kθi = 1 (4.17)

First I will show how Eq. 4.17 can be analytically solved with approximations. The
summation of Eq. 4.17 can be expanded as

(
Pi
2

)2θi + 2(
Pi
3

)3θi + 3(
Pi
4

)4θi + ... = 1 (4.18)

Where Pi is a positive value and is equal to eR
1

Dr,i
n N̂i

Dr,i−1

Dr,i θ
−1
Dr,i

i . Since the first term on the
left side of Eq. 4.18, (Pi

2
)2θi , is greater than 1 when Pi ≥ 2, for Eq. 4.18 to hold, Pi has to

be smaller than 2. Given Pi < 2 and that θ is positive, the magnitude of terms on the left
should decrease with k faster than exponentially. Furthermore, when θ is much bigger than
1, all terms but the first (when k = 2) can be ignored and Eq. 4.18 can be approximated as:

(
Pi
2

)2θi ≈ 1 (4.19)

Substituting Pi = eR
1

Dr,i
n N̂i

Dr,i−1

Dr,i θ
−1
Dr,i

i into Eq. 4.19 we get:

N̂i ≈
2

e
(

2θi
ˆeRn

)
1

Dr,i−1 (4.20)

We can see that this approximated solution is very similar to the analytical solution for

the first model in Chapter 2 where N̂i = (Cθi)
1

Dr,i−1 and C is a also constant determined
by total resource available. Therefore the approximated analytical solution to steady state
is the same as that in Chapter 2 and 3. This also turns out to be a good approximation
especially when θ is big: in Fig. 4.3 the approximated solution is compared with the result
of numerically solving Eq. 4.17 for the steady state.
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Figure 4.3: Comparing predictions for steady state abundances (N̂i) between the approx-
imated solution (X axis; same with the model in Chapter 2) and the accurate numerical
solution (Y axis).
Dr,i is uniformly drawn from 0.1 to 0.9, ri from 1 to 20. For the first graph, θi is uniformly
drawn from 0 to 4, R0 = 20. For the other graphs, R0 and θi are both multiplied by a scale
factor (2.5 or 5) so that their relative magnitudes are unchanged. The absolute value of the
mean of θ is shown in the X label. The solid line is a linear fit between X and Y.
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Fig. 4.3 shows that, as was inferred earlier, the steady state solution for the model in
Chapter 2 is well correlated with the steady state solution in this new model especially when
the absolute magnitude of θ is big.

Within-species resource distribution at steady state

Eq. 4.15 gives the relationship between Ni,k and k which gives the within-species resource
distribution. Substituting the approximated steady state solution (Eq. 4.19) into Eq. 4.15,
I get the approximated steady state within-species resource distribution:

N̂i,k

N̂i

≈
( 2
k
)kθi∑ri+1

k=1 ( 2
k
)kθi + 1

(4.21)

From Eq. 4.21 we can see that Dr,i does not affect the within-species distribution at
steady state; only θi does. The shape of this distribution is shown in Fig. 4.4.
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Figure 4.4: Within-species resource distribution at steady state

(N̂ = 100, r = 10). The Y axis is Nk
N̂

. The X axis is k. Different line types represent
different θ values (see the legend).
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Notice that the shape of this distribution is independent of r once it passes a certain level.
This is because Nk decreases very fast with k. For example, in Fig. 4.4 the value of Nk

N̂
is

zero when k > 5, so r = 10 and r = 20 give the same shape of distribution.
Fig. 4.4 shows that the bigger the θ, the more peaked the distribution is at k = 1. Since

net growth is zero at steady state, k = 1 or one resource unit per individual corresponds
to a perfectly even resource distribution within the species. In this model, θ is positively
related to body size; resource determines both survival and reproduction. Therefore the
result here suggests that all else equal, reproduction opportunity is more evenly distributed
among individuals when the species has bigger body size.

Single species population growth

Notice that when there is only one species in the community, there is no other species to
overlap with so Dacross is always equal to 1. This means that Dr is always equal to Dwithin

and cannot be bigger than 1.
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Figure 4.5: Density dependence of population growth for a one species community.

For all graphs N̂ = 50. θ is varied between left and right while r is varied between upper
and lower graphs; both are specified in the X label. Within each graph, different line types
represent different Dr values (see the legend). The horizontal dotted line indicates g = 0 the
vertical one N = N̂ .
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Fig. 4.5 shows that similar to the result in Chapter 3, the slope of the g−N curve changes
with abundance in this model: when N is small, the slope gets more negative (steeper) as
N increases; when N surpasses a certain level, the pattern is reversed and the slope gets
slower as N increases. However, different from the result in Chapter 3, the effect of Dr is
not very straightforward: the slope around steady state is the steepest when Dr takes an
intermediate value (= 0.5). This suggests that the population has higher resilience around
steady state when Dr is either smaller or higher than 0.5. The difference among different Dr

is diminished as θ increases.

Two competitor dynamics

In this case the community has two species that exploitatively compete for the resource
to be allocated. This scenario can be easily generalized to include more than two species
without substantially changing the patterns predicted. Notice that when there are more
than one species in the community, as discussed earlier, Dacross can be smaller than Dwithin,i

in which case Dr,i > 1.
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(a) θ1 = θ2 = 1.
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(b) θ1 = 1, θ2 = 2.
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Figure 4.6: Dependence of per capita net growth rate on abundance in a two-species com-
munity.

Species 2 is controlled to be at its steady state level (N2 = N̂2) while the abundance of
species 1 is varied (X axis). Per capita net growth rate g (Y axis) is plotted for the two
species, each with a different point type. Dr is varied among columns (left: 0.5, middle:
0.9 middle, right: 1.5), and r1 and r2 are varied among the rows (row 1: r1 = r2 = 1, row
2: r1 = 2, r2 = 1, row 3: r1 = 1, r2 = 2). Dr, r1 and r2 are specified in the X label. The
horizontal dotted line is g = 0.
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In Chapter 4.3 I defined conspecific density dependence as the dependence of the per
capita net growth rate of a species (g1) on the abundance of the same species (N1), and
heterospecific density dependence as the dependence of g2 on N1. Given this, if conspecific
density dependence is more negative than heterospecific density dependence, a perturbation
to the species abundances tends to be offset and species tend to coexist with each other. If,
on the other hand, conspecific density dependence is less negative than heterospecific density
dependence, a perturbation to the abundances tends to be reinforced, causing less chance
for coexistence among the species.

From Fig. 4.6a and 4.6b we can see that the result here is very similar to that of Chapter
3: the bigger the Dr, the less negative conspecific density (g1 on N1) dependence is compared
to heterospecific density (g2 on N1) dependence and therefore less chance for coexistence.
Specifically when Dr > 1, conspecific density dependence is always less negative (or more
positive) than heterospecific density dependence, which tends to enlarge the difference in
abundance. This means that when Dr > 1, although there is a steady state where species
coexist (where g1 = g2 = 0 in Fig. 4.6a and 4.6b), it is unstable and any perturbation can
drive one species to exclusion. When θ is different among the species, all species except for
the one with the smallest θ are excluded; when θ is the same for all species, the identity of
the excluded species depends on the direction of the perturbation.

The effect of θ is similar to that in Chapter 3: all else equal, bigger difference in θ leads to
less negative (or more positive) conspecific density dependence compared to heterospecific
density dependence, which reinforces initial perturbations and leads to less chance for coexis-
tence. Also similar to the conclusion in Chapter 3, here the values of r do not fundamentally
change the result.

Lifespan-body size relationship

In Chapter 3 I defined a parameter Sf to quantify the selfishness of individuals of a given
species. It is equal to the probability that an individual prioritizes itself over its offspring in
resource allocation. Given this extra parameter, this model can predict the actual birth and
death rate as well as the lifespan of a species at steady state. The calculation is the same as
in Chapter 3. The relationship between predicted lifespan and θ is shown in Fig. 4.7.
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Figure 4.7: Relationship between θ and lifespan.
Y axis is log-transformed lifespan (number of reproductive intervals between birth and
death). For the graph on the left, X axis is θ; in the graph on the right, X axis is log
θ. Steady state abundance N̂ , Dr and r do not affect this pattern. Different selfishness
values (Sf ) are represented by different point types as is illustrated in the legend.
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Notice that the pattern is not affected by Dr or r. This is because lifespan is completely
determined by the k distribution at steady state (N̂i,k), which in this model is not affected
by Dr or r (Fig. 4.4).

From Fig. 4.7 we can see that in this model, a positive lifespan-body size relationship
is predicted when Sf > 0.5. Empirical studies have found that the slope of a log-log fit
between lifespan and body size is around 0.2 (Speakman 2005). It is clear from Fig. 4.7 that
lifespan is not in an exponential relationship (straight line on left graph) nor a power law
relationship (straight line on the right graph) with θ: in both graphs, the slope decreases as
θ increases.

Notice that the lifespan calculated here is actually the number of reproductive intervals
between birth and death. For species with non-overlapping generations, this number is al-
ways one, i.e. each individual reproduces once before it dies. For species with overlapping
generations, this number is bigger than one. Since bigger species usually have longer re-
productive intervals, the patterns in Fig. 4.7 will be steeper if lifespan in absolute time is
used.

In Section 4.4.3 Results I examined all the predictions of this new model that were explored
in Chapter 3. Some of them are different: Dr does not affect the shape of within-species
resource distribution or lifespan-body size relationship; the effects of θ and Dr on population
resilience are not as significant. However, the majority of the predictions are consistent with
those in Chapter 3. First steady state abundance approximately follows the same equation

(Ni = (Cθi)
1

1−Dr,i ); the higher the Dr or the bigger the difference in θ among the species, the
less chance for species coexistence. Second, the within-species resource distribution is more
even when θ is bigger, suggesting a more even distribution of reproductive success for species
with bigger body size. Lastly, lifespan (measured as the number of reproductive intervals
between birth and death) increases with body size when individual selfishness (Sf ) is higher
than 0.5.

In the next section I will first discuss how the new scenario of resource allocation explored
here helps clarify the connections between this theory and existing ecological theories, then
outline approaches to empirically test the predictions.

4.4 Discussion

Dr: connecting niche and species neutrality

In this new scenario of resource allocation, the definition of Dr is based on biologically
specific metrics, i.e. across- and within-species functional overlapping. This helps clarify
several points that were ambiguous in the previous framework. First, Dr,i represents the
level of trait dispersion of the species i: if species i is more dispersed in functional traits
than species j, the functional overlapping within species i (Oi) is smaller than that within

species j (Oj) and therefore Dr,i = 1−Oi
O

>
1−Oj
O

= Dr,j. Second, the theoretical upper limit
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of Dr is not 1 but∞. A species can have Dr,i > 1 when its individuals are functionally more
dispersed than different species are.

Throughout this framework, Dr is a key factor determining the steady state coexistence
pattern among species. Same as in Chapters 2 and 3, if Dr < 1, all species theoretically
coexist; in practice where population stochasticity is present, there is a higher probability of
exclusion with a bigger Dr. When Dr = 1, regardless of population stochasticity, all species
except those with the smallest θ are excluded at steady state. In this chapter, the case when
Dr > 1 (same for all species) is also explored. The result shows that although analytically
there is a steady state where species coexist, it is not stable and the slightest perturbation
can drive the species to exclusion (discussed in Section 4.3.3.4). In all, if all species have the
same Dr but different θ, stable coexistence only happens when Dr < 1.

Based on the above it is easy to make connections between this theory and niche theory
(Whittaker & Levin 1975, Pianka 1981); when the species each has a unique niche in the
ecospace (the functional space in this theory), they have the maximal within-species func-
tional overlapping (Oi = 1) but minimal across-species overlapping (O = 0). This means
that Dr,i = 0 for all species (section 4.3.2), which leads to stable coexistence among all
species just as the niche theory predicts.

Moreover, there are multiple connections with Hubbell’s neutral theory (Hubbell 2001).
Species neutrality can be interpreted in different ways in our theory. First of all, if we think
of neutrality as equivalence in species attributes, it means that all species have the same
θ, r and Dr. This leads to stable coexistence among species when Dr ≤ 1. Secondly, if
species neutrality means that all species completely overlap functionally, in this theory it
corresponds to Dacross = 0 and Dr,i =∞ for all species. From section 4.3.1 we can see that
this leads to exclusion of all species except for the one with the highest initial abundance.
Thirdly, in a more relaxed sense, species neutrality could also mean that individuals are as
functionally dispersed within-species as across-species, which corresponds to Dr,i = 1 in this
theory. This leads to coexistence (neutral steady state) when all species have equal θ, and
otherwise exclusion of all other species except the one with the smallest θ.

Recall that the neutral theory predicts that the steady state of any community (without
speciation) to be exclusion of all species but one. This result is most similar to the second
interpretation (i.e. species completely overlap functionally (Dacross = 0)), which means that
this can actually be the underlying assumption of the neutral theory. The fact that the
other interpretations (equal attributes for all species, Dr,i = 1 for all species) have different
predictions suggests that the framework presented here provides a means of clarifying the
concept of species neutrality.

In summary, through the definition and incorporation of Dr in resource allocation, our
theory bridges the niche- and neutrality-based view of community assembly under a unified
framework: a small Dr represents functional clustering within species and predicts coexis-
tence among species like the niche theory; a big Dr represents functional dispersion or no
distinct niche for each species, which leads to predictions compatible with those of the neu-
tral theory. Moreover, this theory highlights the middle ground where predictions can be
made for communities where niche and neutrality apply to varying degrees.
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Empirical measure of Dr

Here I summarize three different ways to calculate Dr from data. The first is the most
data demanding, while the second and the third invoke additional assumptions.

Trait distribution-based

Dr,i is the ratio between Dwithin,i and Dacross, which are the complement of functional
overlapping within and across species (Oi and O, Eqs. 4.1-4.2). Therefore,

Dr,i =
Dwithin,i

Dacross

=
1−Oi

1−O
(4.22)

Oi and O can be measured from trait distributions. First suppose the functional space has
only one dimension, i.e. one trait, Fig. 4.8 shows how across-species functional overlapping
can be calculated from distributions of all species on this trait axis.
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Figure 4.8: Calculate functional overlapping O among species from trait distributions.
Each curve is the probability distribution of a trait (X axis) for a species (annotated at the
peak of the curve). The shaded areas are overlaps between species (O12 between species 1
and 2, O34 between species 3 and 4, etc.). The overall functional overlapping across species is
calculated by dividing total overlapping area (counted once for each species) by the maximum
possible overlapping over all species, or O = 2O12+2O23+2O34

4(4−1) . See text for more explanation.
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To calculate O, first plot trait distributions for all the species as in Fig. 4.8; then add up
all the overlap among distributions (shaded area in Fig. 4.8). Notice that the overlap should
be counted once for each species, i.e. the area where three species are overlapping should be
counted three times. After the total overlap is calculated, divide it by the maximum possible
overlapping over all species. The latter can be calculated by S0(S0−1), where S0 is the total
number of species S0. This is because when all species perfectly overlap, for each species,
the area of overlapping with all the other species is S0 − 1 (since the area under curve for
one species is 1). This way O = 1 when all distributions completely overlap and O = 0 when
they are completely separate. Notice that the trait can be either categorical (e.g. color,
shape) or numerical (e.g. length, timing). This difference might affect how area-under-curve
is calculated (summation for the former and integral for the latter), but not the fundamental
idea behind the calculation.

When the functional space has multiple trait-axes, we can first do the calculation above,
then take the product of the result for each trait. In other words, only when all the traits
completely overlap can we get an O = 1. On the other hand, complete separation O = 0
happens as long as species are completely separated on at least one of the traits. The
same method can be used to calculate within-species overlapping Oi by simply switching the
distributions to be each for an individual instead of a species.

Trait difference-based

An alternative way to calculate functional overlapping is to use mean functional differ-
ences, assuming that the bigger the difference in mean trait values between two individuals
or species, the less likely it is for them to overlap functionally:

1−Oi ∝ MPDfunctional,i

1−O ∝ MPDfunctional

(4.23)

Where MPDfunctional,i and MPDfunctional are the mean pairwise distance between any two
individuals of species i and between any two species in the functional space, respectively. Dr

can then be calculated by

Dr,i =
1−Oi

1−O
=

MPDfunctional,i

MPDfunctional

(4.24)

This method only applies to traits that can be ordered for mean pairwise distance to
make sense. However, it provides a simple approximation when data on individual-level
trait distribution is not available.

In the above two methods, expert knowledge is required to determine whether a trait (or
more generally, any variable) is relevant to resource allocation and should be incorporated
in the calculation for Dr. The fundamental standard is whether the resource tends to be
evenly distributed along that trait. For example, in MacArthur’s warbler study (MacArthur
1958), the resource (food) is believed to be evenly distributed through time so feeding time
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is the trait that should be used to calculate Dr. If the resource is evenly distributed across
space, then location should be used.

Phylogenetic distance-based

In some cases, functional data is not available or the resource allocation process is unclear
so that it is hard to determine which trait(s) to use in the calculation of Dr. In those
cases, it might be necessary to use genetic information as proxy for functional information.
The underlying assumption for this would be that functional differences are correlated with
genetic differences, or that the relevant functional traits have phylogenetic signal (Blomberg
et al. 2003). Then we can simply substitute phylogenetic distance for functional difference
in the calculation for Dr,i:

Dr,i =
MPDphylo,i

MPDphylo

(4.25)

Here MPDphylo,i and MPDphylo are the mean pairwise phylogenetic distance between any
two individuals of species i and between any two species, respectively. Both functional and
phylogenetic MPD are established metrics in bioinformatics (Webb et al. 2008) so I will not
show the calculation details.

This method has two advantages over the functional difference-based method. First, we
don’t have to select traits or order them. Second, it makes use of the phylogenetic data and
therefore expands the application of this model. However, it does assume that the relevant
functional trait(s) have phylogenetic signal, which may not always be true (Ackerly 2009,
Losos 2008).

Empirical tests

With a specific measure for Dr, the quantitative predictions of the model can be directly
tested. The prediction for steady state abundance is:

Ni = (Cθi)
1

Dr,i−1 (4.26)

And therefore:

logNi(Dr,i − 1) = logθi + logC (4.27)
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Figure 4.9: Steady state relationship between abundance N and resource requirement θ on
a log-log scale when Dr is a constant for all species.
Three different cases for Dr are plotted for comparison and the values are specified next to

the corresponding curves.



101

The steady state relationship between abundance and θ is also illustrated in Fig. 4.9.
When available, data for abundance (Ni), body size (θi) and functional traits (Dr,i) can be
fitted to a linear model in Eq. 4.27; the goodness of fit (R squared) shows how well this
model describes the data.

Doing the above model fitting requires a lot of data and may not be pragmatic. When
no such data are available, less data demanding tests can be done for the qualitative pre-
dictions of the model. In the following I group them into three broad categories: species
coexistence, macroevolution and life history strategies. In the following I will use θ and body
size interchangeably.

Species coexistence

Hypothesis I: Abundance decreases faster with body size when each species
is functionally more dispersed.

From Fig. 4.9 we can see that, the bigger the Dr or trait dispersion, the faster the
steady state abundance decreases with θ. To test this hypothesis, we can compare the
abundance-body size relationships for communities among which functional dispersion poten-
tially varies. For example, communities in tropical areas are believed to have less niche over-
lap across species (and therefore smaller Dr) than communities in temperate areas (Klopfer
& MacArthur 1961). If that is the case, this model predicts that the correlation between
abundance and body size is more negative for temperate communities. In general, the infer-
ence of whether a community has more functional dispersion than another requires expert
knowledge on both communities and is context dependent. With no other information, a
first guess can be made using the following standard:

Hypothesis II: Species in a community where body size distribution is highly
skewed tend to be functionally clustered.

The model predicts that the bigger the difference in θ and the bigger the Dr, the less
even the steady state abundances are. Therefore given the shape of the species abundance
distribution, if the difference in body size is big, Dr has to be small which means species
have to be functionally clustered.

Controlling not the abundance but the body size distribution, the steady state prediction
also generates the following hypothesis:

Hypothesis III: Given the body sizes of all species, the abundance distribution
is more even when species are functionally clustered.

Empirical studies have found that species abundance distribution can take the shape of a
log-series distriution, a lognormal distribution and sometimes even a geometric distribution
(Ulrich et al. 2010). This theory gives an explanation: communities with more even species
abundance distributions are functionally more clustered.

Macroevolution

Hypothesis IV: Effective population size is bigger when body size is bigger.
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As is illustrated in Results (section 4.3.3.2), this model predicts that a resource is more
evenly distributed among individuals when the species has bigger θ (Fig. 4.4). In this
model, more even resource distribution means more even reproductive opportunity among
individuals. In population genetics, this corresponds to bigger effective population size, which
is defined as the number of individuals that contribute offspring to the next generation or
the efficiency of the population to pass genetic diversity on to future generations (Lande
& Barrowclough 1987). The result here reveals that there is a tradeoff between body size
and effective population size: according to Eq. 4.26, steady state abundance is higher when
body size is smaller, but effective population size is comparatively smaller. Based on this,
the polarization of r- and K-selected strategies can be interpreted as this: the former tries to
maximize population size, while the latter tries to maximize effective population size relative
to population size. More implications on life history strategies will be discussed later.

Further generalizing this result we have:
Hypothesis V: All else equal, a population is genetically more diverse when

the body size is bigger.
Hypothesis VI: Diversification is faster for species with bigger body size.
This also provides an alternative explanation to Cope’s rule (Brown & Maurer 1986, Hunt

& Roy 2006): lineages tend to evolve to larger body size.
Since genetic diversity is usually correlated with phenotypic diversity (Reed & Frankham

2003), this result also suggests that there is possibly positive correlation between Dr and
θ: the bigger the θ, the more genetically and functionally diverse the species is, the less
functional overlapping within the species and therefore the higher the Dr. If this is the case,

Hypothesis VII: The slope of abundance varying with body size decreases with
body size.

In other words, it should not be a straight line on the log-log plot between abundance
and body size as is predicted when Dr is the same for all species. According to Eq. 4.26, the
slope of this plot should be 1

Dr−1 , a negative function of Dr. If Dr is positively correlated
with θ, then this slope should be in negative correlation with bigger θ.

Life history strategies

The selfishness parameter Sf quantifies how likely it is for the individual to give the
resource to itself instead of an offspring. Therefore the bigger the Sf , the less investment the
individual makes to reproduce. Based on this, the result for lifespan-body size relationship
(section 4.3.3.5) can be interpreted as:

Hypothesis VIII: The more reproductive effort species make, the faster lifes-
pan increases with body size.

Test for this hypothesis can also be based on the r- vs K-selected life history strategies.
Species with r-selected strategy make more reproductive effort than species with K-selected
strategy (Pianka 1970). According to the result here, only species with K-selected strategy
have longer lifespan with bigger body size. The correlation between lifespan and body size
for species with r-selected strategy should be much less positive or even negative (Fig. 4.7).
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The application of the theory is not limited to what I have explored. In the following I
will summarize prospective topics that can be further explored with this framework in the
future.

Future extensions

Incorporate taxonomic levels other than species

Under the new resource allocation scenario, our model is now flexible to incorporate not
just species and individuals but also higher taxonomic levels. For example, if functional
overlapping among genera is known, we can generalize the equation for total number of
microstates to be:

Wtotal = WDgenus
genus ×

G0∏
g

WDacross,g
across,g ×

Sg∏
i

(Wgrouping,iWwithin,i)
Dwithin,i (4.28)

Wgenera is the number of ways to allocate resource units among G0 genera; Wacross,g is
the corresponding number among the Sg species in genus g (g = 1, 2, ..., G0). Dgenera =
1 − Ogenera and Ogenera is the level of functional overlapping among all genera; Dacross,g is
the corresponding value for genus g. Other taxonomic levels can be added similarly.

In this theory the pattern at a given taxonomic level only matters if the functional over-
lapping at that level is small (so the exponent for the corresponding W is big). This can be
used as a standard for whether to include information from a taxonomic level. For example,
insects are functionally very different among orders (Zheng & Gui 1999). Therefore it makes
much sense to include the order level in our model when predicting patterns for insects.

Incorporating ontogenetic growth

So far I have assumed that all species have equal reproductive interval, i.e. takes equal
amount of time to grow into sexual maturity after born. In nature, species with bigger body
size usually takes longer to mature than smaller ones. In the future this can be realized
in our model by imposing longer waiting time for species with bigger θ to reproduce. This
will enable our model to predict more realistic population dynamics and lifespan-body size
relationship.

Predicting ecological network structure

In nature, species can interact with each other in many other ways than exploitative
competition. Interspecific (trophic, mutualistic) relationships can also be taken as trait axes
of the niche space. Based on the interpretation of Dr as trait dispersion, Dr,i of a species
should be bigger when it is a generalist and smaller when it is a specialist. In other words,
the number of links between a certain species and other species should be positively related
to its Dr,i. Dr,i can be calculated from the steady state solution (Eq. 4.22) given the
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total resource flow, the abundance and body size information of all species in the network.
Then simulations can be done to find out the network structure that best satisfies a positive
relationship between number of links and Dr,i (and any other given constraints, e.g. total
number of links in the network).

4.5 Conclusion

A model of population dynamics and species coexistence generated from a new perspec-
tive of the resource allocation process is explored. Many previous predictions on species
coexistence, macroevolution and life history strategies have been proved to be robust. With
a clearer interpretation of the Dr parameter as functional dispersion, empirical tests of the
theory can readily be done. In this framework, several links can be established with the
concepts of niche and species neutrality, suggesting new directions for existing ecological
theories to be combined. This theory can be extended in many different directions to predict
patterns at higher taxonomic level, ontogenetic growth, and ecological networks.
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