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ABSTRACT OF THE DISSERTATION 

 

Acquisition of Network Graph Structure 

 

by 

 

Jason Jeffrey Jones 

 

Doctor of Philosophy in Psychology 

 

University of California, San Diego, 2011 

 

Professor Harold Pashler, Chair 

 

 A network graph describes the web of connections between entities in a system.  

Network graphs are a flexible abstraction; they are equally useful in representing which 

neurons communicate in a flatworm’s brain and which international terrorists collaborate.  

Understanding how humans learn the structure of network graphs will be useful both to 

maximize the efficiency of teaching natural networks and to minimize cognitive 

complexity when designing artificial networks. 

 To this end, I conducted five experiments in which subjects learned which objects 

in a set were connected.  For example, some learned “who is friends with whom” in a 

social network.  These experiments yielded several results.  Strong support was found for 
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the hypothesis that the deep structure of a graph affects how quickly it will be learned.  

Scale-free graphs were acquired more readily than other graphs.  Much less support was 

found for the hypothesis that the surface description given a graph affects learning.  For 

example, learning a social network was no easier or harder than learning a transportation 

network.  The manner in which the learning task was described also had no discernible 

effect on the rate of acquisition. 

 Learning followed two patterns within each graph.  First, if a node of strong 

salience was present (e.g. a person node labeled “You” in a social network), then edges 

involving that node were learned quickly.  Second, learners responded to network 

centrality.  They responded most accurately when queried on an edge that involved two 

central nodes. 

 In the last experiment, I show that graphs of medium density are difficult to train, 

and care must be taken to match training technique to graph structure.  I also demonstrate 

that visual depictions of graphs are generally better teaching material than verbal 

descriptions. 

 Finally, I propose a general model for network graph acquisition.  In this model, 

the learner initially relies on a frequency heuristic to identify which nodes have many 

connections and which have few.  This allows for educated guessing regarding which 

edges are valid.  Slowly, explicit knowledge is accrued until the subject has perfect 

knowledge and need no longer rely on a heuristic. 
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Chapter 1: Introduction 

1.1  Why Study Network Graph Acquisition? 

 The success of Task Force 121’s mission to find Saddam Hussein in post-war Iraq 

depended upon their understanding and use of social network graphs.  Capturing and 

interrogating Baath government officials (i.e. the 54 men and 1 woman identified in the 

“Most Wanted Iraqis” deck of playing cards) yielded surprisingly little information as to 

Saddam’s whereabouts.  Saddam’s personal social network graph – painstakingly pieced 

together by analysts using Hussein family photo albums and eyewitness accounts of who 

spent time with Saddam – ultimately identified the individuals most likely to know where 

he was.  The central nodes in this graph turned out to be Saddam’s closest bodyguards, 

and one of them – Mohammed Ibrahim Omar al-Musslit – pinpointed the location at 

which Saddam was found hiding. 

 This is but one example of a graph structure enabling important insight.  Network 

graph models are a substrate for much current research.  Network graphs have been used 

to describe both the series of chemical reactions that enable neuron-to-neuron 

communication (Bhalla & Iyengar, 1999) and the organization of the nervous system as a 

whole (Koch & Laurent, 1999).  Graphs are in use in social science to explain the 

diffusion of behavior (McDermott, Fowler & Christakis, 2011) and ideas (Scherer & 

Cho, 2003) through networks of personal interactions. 

 As network theory has advanced recently, one important perspective has been 

missing.  If more and more formerly unruly areas of research are to be tamed by the study 

of graphs, then it is important to understand how the human brain confronts the graph.  
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Graphs are expressive data structures and capable of boundless complexity.  The brain is 

a very finite thing and limited in its ability to learn by the constraints of space, energy and 

especially time.  How does the brain meet the challenge of representing these entities of 

combinatorial complexity?  What is lost?  How best to present graph structure to 

minimize that loss?  These are important questions. 

 As a practical example, imagine yourself back in the year 2007.  Someone hands 

you a list of the liabilities each bank in the United States has to other banks.  Were you to 

look at that list, Bear Sterns and Lehman Brothers might look like just two more banks 

(as they did to regulators at the time).  Transformed into a graph, you could make better 

use of this information.  The central location of these nodes in the liability network would 

be alarming.  Perhaps it would be useful for psychology to know how information about 

discrete relationships is aggregated into mental representations of graph structures. 

1.2  What is a Network Graph? 

 A network graph is a formalism describing some number of entities and how they 

are connected.  Those entities are represented by nodes in the graph.  Nodes are 

connected by edges that represent the relationship of interest. 

 A canonical example is the social network graph.  A social network contains 

people, and people are connected by a relationship – say friendship, for example.  In the 

graph, nodes represent people and edges represent friendships. 

 In this work, I will use the words network and graph interchangeably.  Both refer 

to the entire system – the collection of nodes and edges.  The term “network graph” is 

used as well (mostly in titles) to differentiate graphs the formalism describing a network 
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from graphs that are graphical depictions of data (e.g. a bar graph).  I also use the words 

“node” and “vertex” interchangeable to mean the same thing.  Likewise, “edge,” “link,” 

and “connection” are synonymous. 

 An important distinction regarding edges is that between valid and invalid.  A 

valid edge is one that exists in the graph.  For example, the edge between Alice and Bob 

is valid in the social network if Alice and Bob are friends.  An invalid edge is one that 

possibly could exist, but does not in the graph in question.  The edge between Bob and 

Carol is invalid if Bob and Carol are both in the same network, but are not friends. 

1.3  Organization of this Dissertation 

 Chapters 2 through 4 present experimental results.  Each was written first as an 

independent manuscript.  There may thus be some redundancy between these chapters, 

for which I apologize.  Hopefully, the reader will agree that some of the points made bear 

repeating. 

 In Chapter 2, I introduce a hypothesis that will drive much of the research 

discussed in this dissertation.  The effects of a graph’s deep structure and its surface 

description on acquisition are investigated.  In Chapter 3, the effects of additional graph 

structures and the properties of individual nodes on acquisition are explored.  In Chapter 

4, I address the practical question of how best to present graph structure information.  

Interactions with graph properties reveal this is a question with no simple answer.  

Chapter 5 contains two additional analytic approaches to the empirical data.  Using the 

framework of signal detection theory, I confirm and further interpret previous 

conclusions.  I also develop two computational models of learning for the task of graph 
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acquisition and compare their performance to human performance.  Chapter 6 brings the 

dissertation to an end with concluding remarks. 
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Chapter 2:  The Anthropomorphic Acquisition Hypothesis and 

the Learning of Network Graph Structure 

2.1  Introduction and Experiment 1 

 For more than five decades, researchers have been studying how humans acquire 

and retain information about social networks.  In this tradition, social networks are 

represented by graphs, and the graphs consist of nodes (representing people) and edges 

(representing the relationships between people).  Figure 1 is an illustration of a social 

network represented as a graph.  By manipulating such graphs – specifically by 

controlling which edges are present and which are absent – researchers create social 

network stimuli that conform to or diverge from people’s natural expectations (De Soto, 

1960). 

  

Figure 1.  An example social network graph.  Nodes represent people, and edges represent the relationships 
that exist between them. 

 
 

Alice

Carol David

Bob
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 Many reliable effects have been discovered and replicated numerous times.  For 

instance, it is clear there is an expectation in people’s minds that friendships are 

reciprocal (Cottrell, 1975; De Soto, 1960; De Soto, Henley & London, 1968; De Soto & 

Kuethe, 1959; Janicik & Larrick, 2005; Krackhardt & Kilduff, 1999; Walker, 1976).  In 

other words, if Alice is friends with Bob, we assume Bob is friends with Alice. 

 Another consistent finding is an expectation of transitivity (De Soto, 1960; De 

Soto, Henley & London, 1968; De Soto & Kuethe, 1959; Janicik & Larrick, 2005; 

Krackhardt & Kilduff, 1999; Poitou, 1970; Tsujimoto & Robertson, 1978).  Subjects 

assume that two people with a common friend are likely to be friends.  For instance, if 

Alice is friends with Bob, and Bob is friends with Carol, then it is assumed Alice is also 

friends with Carol. 

 In the experimental work to date, researchers have severely limited the size of the 

social networks subjects learned.  For the set of experimental papers cited in this article, 

the median and modal number of nodes in the stimulus graph structure is 4.  It is easy to 

understand the reasons experimenters use small graphs.  Small graphs allow for very tight 

control of experimental variables.  Small graphs can be learned more quickly than large 

graphs, and many experimenters use perfect knowledge of the graph as the learning 

criterion.  Large graphs quickly become very complex structures. 

 An unfortunate consequence of only studying the learning of small graphs is that 

little is known about how subjects acquire information about larger social networks.  This 

article seeks to extend our knowledge of social network acquisition to larger graphs 

(about the size of a small class) while also proposing and testing two novel hypotheses.

 The two hypotheses concern the effects of deep structure and surface description 
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on the rate at which connections within a network can be learned.  The specific 

hypotheses (discussed momentarily) are driven by the more general anthropomorphic 

acquisition hypothesis.  The anthropomorphic acquisition hypothesis states that humans 

use the social network as a metaphor when learning any new network.  Humans have 

existing knowledge and beliefs about social networks that they apply to new networks.  It 

follows that the more a novel network stimulus resembles a true human social network, 

the less adjustment to belief necessary during learning, and the more quickly it should be 

acquired.  The experiments to follow will investigate whether the anthropomorphic 

acquisition hypothesis is borne out both on a deep level of abstract structural similarity 

and at a surface level of semantic descriptive similarity. 

Scale-Free versus Random Graph Structure 

 The structural hypothesis begins with the assumption that human subjects will 

expect novel networks to resemble social networks they have encountered in the past.  It 

has frequently been observed that well-documented human social networks reveal a 

formal structure best described as a scale-free graph (Csányi & Szendrői, 2004; Ebel, 

Mielsch & Bornholdt, 2002; Liljeros, Edling, Amaral, Stanley, Åberg, 2001; Wang, 

Moreno & Sun, 2006).  In a scale-free social network, few people have many friends and 

many people have few friends. 

 (The name scale-free refers to the degree distribution.  Scale-free graphs have 

many nodes that participate in few edges and a few nodes that participate in many edges.  

When plotted as a histogram, the degree distribution decays according to a power-law.  

The scale-invariance of power laws gives rise to the term scale-free.) 
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 A natural graph structure to contrast with scale-free is the random graph.  In a 

random graph, edges are randomly placed between nodes.  In the context of a social 

network, a random graph would appear if in a group of people, dyads chosen at random 

became friends.  A scale-free graph would arise if having more friends in the first place 

made one more likely to acquire new friends. 

 One can easily imagine how social networks come to be scale-free rather than 

random.  It is probably not the case that in any dyad there is a constant chance of a 

friendship randomly occurring.  Some individuals are easier to become friends with than 

others.  Further, existing friendships increase the opportunities to meet new people and 

form new friendships.  A large number of existing friendships is a signal that an 

individual would make a good friend, and might even serve as an incentive itself – if one 

is looking to maximize the number of people in one’s extended network, adding a 

popular person as a friend is more profitable than befriending a loner.  All of these forces 

act to concentrate friendships in a central core rather than spread friendships evenly 

among groups of people. 

 If past experience with human social networks drives expectations about novel 

networks, and past experience is likely to be with scale-free networks, the hypothesis that 

follows is that subjects will most quickly learn networks with a scale-free graph structure.  

In the experiments described in this paper, the hypothesis that scale-free network graphs 

are acquired more quickly than random network graphs will be tested directly. 

Is Social Network Acquisition Exceptional? 

 Humans find human social networks exceptionally interesting.  The online social 

network site facebook.com is the second-most visited website in the world, behind only 
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google.com (Alexa Internet, Inc., 2011).  The movie The Social Network grossed nearly 

100 million dollars in theaters (The Internet Movie Database, 2011).  Before online social 

networks, people played The Kevin Bacon Game, the goal of which was to connect an 

actor to Kevin Bacon with as few co-starring links as possible.  Academia is not immune 

to the fascination with social networks.  Over the last ten years, the frequency of the term 

“social network” in the titles and abstracts of academic journal articles has increased at an 

average annual rate of 22% (Thomson Reuters, 2011). 

 Perhaps there is something exceptional about social networks that drives this 

fascination.  There is at least one demonstration that people categorize human social 

relations differently than the relations between non-human stimuli.  Cottrel (1975) had 

subjects classify stimuli based on three binary features.  The stimuli consisted of two 

individuals’ feelings toward an issue (each could be positive or negative) and their 

feelings toward each other (they could like or dislike each other).  Consider this example: 

Doris is in favor of draft protests.  Jenny is against draft protests.  Doris and Jenny like 

each other.  (The feelings toward each other were always reciprocal.) 

 Subjects in the study performed well when required to classify the stimuli based 

on balance.  Balance, as defined by Heider (1958), occurs when two people’s feelings 

toward each other are predicted by their feelings toward an object.  If Doris and Jenny’s 

opinions about draft protests are in agreement, they should like each other.  If they 

disagree, they should dislike each other.  If the state is of any other form, as it is in the 

example above, the situation is said to be unbalanced. 

 Subjects find balance the most difficult classification rule to learn when the 

stimuli are geometric forms rather than social relations.  Shepard, Hovland and Jenkins 
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(1961) had subjects learn to categorize sequences of three shapes into two categories.  

Each shape could be large or small, so each stimulus consisted of three binary features.  

Balance dictates that the size of the third shape be dictated by the first two shapes.  For 

example, the balance rule could require that if the first two shapes are unequal in size, 

then the third shape must be small.  Otherwise the stimulus should be classified as 

unbalanced.  (Another form of the balance rule could require that two unequal size shapes 

be followed by a large shape.  The important distinction is that the required size of the 

third shape is dictated by the agreement or disagreement in size of the first two shapes.) 

 When subjects must learn the balance rule to categorize shape stimuli, they make 

more errors than they do for other rules and take more trials to reach steady perfect 

performance.  This is not the case when the stimuli are social in nature.  Even though the 

abstract form of the problem is the same, it is easier for people to learn that two 

individuals’ feelings about an issue predict their feelings toward each other than it is to 

learn that the congruence of the sizes of two shapes should predict the size of a third 

shape. 

 In addition, some have made the argument that knowing how social networks are 

structured enhances one’s own “social capital” and can lead to positive social and 

financial outcomes (Burt & Ronchi, 2007; Flynn, Reagans, Amanatullah & Ames, 2006).  

Thus, there may be advantages to being especially skillful at acquiring social network 

graphs that do not exist for other types of graphs. 

 On the other hand, there may be nothing exceptional about the acquisition of 

social networks.  In favor of this hypothesis are the results of an experiment in which 

subjects’ learning of two different graph structures was disrupted.  It was found that 
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learning was slowed equally for social stimuli (people with military ranks) and non-social 

stimuli (nonsense syllables followed by numbers) (Poitou, 1970). 

 In the following experiments, learning of social, transportation and computer 

networks will be contrasted.  If acquisition of social networks is exceptional, it will be 

apparent in the results. 

EXPERIMENT 1 

Method 

Participants 

 102 UCSD undergraduates participated in the study. 

Design 

 The design was a 2 (Graph Structure, within) x 3 (Surface Description, between) 

mixed design.  Each subject was trained and tested on two Random graph structures and 

two Scale-Free graph structures.  Upon beginning the experiment, each subject was 

randomly assigned to one of three surface descriptions: Social, Transport or Computer 

Network.  All of the instructions and stimuli corresponded to this condition throughout 

the experiment. 

Stimuli 

 All graphs consisted of 20 nodes.  There were 190 potential edges (20 choose 2).  

Self-edge loops were not allowed.  The number of potential graphs was very large: 2190. 

 Graph Structure.  Random graphs were generated by the process specified in 

Erdős & Rényi (1960).  To form edges, two nodes were selected at random, and an edge 

placed between them.  This process was repeated 20 times.  If the two nodes drawn were 
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already connected, another draw was performed.  As a result, each Random Graph 

contained 20 edges. 

 Scale-Free graphs were generated by the process specified in Barabási & Albert 

(1999).  The graph began as two connected nodes.  New nodes were added one at a time.  

Each new node formed an edge with each existing node with the probability Ei/2N, where 

Ei was the number of edges node i participated in and N was the total number of edges in 

the graph.  To illustrate, the first node added to the seed set of two connected nodes had a 

1/2 chance to form an edge with the first node and an independent 1/2 chance to form an 

edge with the second node. 

 This process leads to preferential attachment.  The more edges a node already has, 

the more likely it will be to participate in new edges.  This preferential attachment results 

in the power-law degree distribution characteristic of a scale-free graph.  The resulting 

graphs contained a mean of 19.1 edges. 

 A deliberate choice was made to generate new graphs for each block for each 

subject.  Using only one “Random” graph and one “Scale-Free” graph would greatly 

reduce the generalizability of any results found in that manner.  Any results in that case 

could easily and probably appropriately be attributed to the particular graphs employed.  

By generating new graphs for each subject and each training block based on two different 

processes, much broader inferences can be made about the learning of the family of 

random graphs versus the family of scale-free graphs rather than a very narrow inference 

about one graph versus one other graph. 
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 Figure 2 presents the combined degree distributions for all graphs used in this 

experiment and one random graph and one scale-free graph to illustrate the difference 

between graph structures. 

 Figure 2.  (a) An example of a random graph.  (b) An example of a scale-free graph.  (c) A histogram of 
the degree distribution for all nodes in all random graph stimuli.  (d) A histogram of the degree distribution 

for all nodes in all scale-free graph stimuli. 
 

 

 Surface Description.  The instructions and stimuli corresponded to one of three 

surface descriptions: Social, Transport or Computer Network.  Subjects in the Social 

Network condition were instructed to learn “Who is friends with whom?” in a class of 20 

students.  Lists containing 10 male names and 10 female names were constructed by 
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choosing names from the Social Security Administration’s list of popular baby names in 

the 1990’s (Social Security Administration, 2011).  The initial letter of each name was 

unique within each list. 

 Subjects in the Transport Network condition were instructed to learn which cities 

were connected by train tracks in a set of 20 cities.  City names were drawn from online 

lists of small cities in various countries.  The initial letter of each city name was unique 

within each list. 

 Subjects in the Computer Network condition were instructed to learn which 

computer servers were connected by fiber optic wires in a set of 20 computer servers.  

The server names were constructed by concatenating a letter, three digits and a “.net” or 

“.com” suffix.  The initial letter of each server name was unique within each list. 

 Lists of all stimuli are included as Appendix A.  At the beginning of each block, 

the stimuli names were randomly mapped to nodes in the abstract graph structure. 

Procedure 

 The experiment was administered online through a PHP/mySQL/Flash Web 

application.  Subjects followed a link to the experiment website from the subject pool 

administration software. 

 Subjects first read through several short paragraphs of instructions.  They were 

informed that they would be learning the connections between 20 

students/cities/computers.  In the case of students, they were told to learn who was 

friends with whom.  In the case of cities, they were told to learn which cities were 

connected by train tracks.  In the case of computers, they were told to learn which 

computers were connected by fiber optic wires. 
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 Subjects were informed that all links were reciprocal – if A was connected to B, 

then B was also connected to A.  Subjects were also instructed to expect test trials in 

which two stimuli would be presented and they were to answer YES the items were 

connected or NO the items were not.  Subjects were instructed to give their best guess if 

they did not know the answer. 

 In the experiment, training trials alternated with test trials.  There were 4 blocks of 

80 training and test trials each.  In each block, the subjects were trained and tested on a 

new graph.  Half of the subjects were given the pattern Random, Scale-Free, Random, 

Scale-Free, and the remaining subjects were given the complementary pattern. 

 Training Trials.  In a training trial, the name of one node was presented at the top 

of the screen.  Directly below, in a smaller font, were the words “is friends with” for 

social networks or “is connected to” for transport and computer networks.  In two 

columns below these words appeared the names of all the nodes the trained node formed 

an edge with.  If the trained node participated in no edges, the token --NONE-- appeared 

instead of the list of connected nodes. 

 Nodes were sampled for training without replacement from the list of 20 nodes 

until all had been shown.  This process then repeated.  Thus, over the course of 80 trials, 

each node was the focus of a training trial exactly four times. 

 The training trial information remained onscreen for 3 seconds.  A blank, white 

screen followed for 1 second before the onset of a test trial. 

 Test Trials.  In a test trial, two names appeared next to each other.  Below the 

names was the prompt “Friends?” in the Social condition or “Connected?” in the 
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Transport and Computer conditions.  Below the prompt were two equally-sized light-grey 

buttons labeled YES and NO. 

 Feedback was provided after the subject made a response.  The button for the 

correct answer was highlighted, and a 300 millisecond sound clip of a bell was played for 

a correct response or a buzzer for an incorrect response. 

 For each network, a matching number of valid (existing) and invalid (non-

existent) test edges were generated.  All valid edges (approximately 20, depending on 

structure) and an equal number of invalid edges (chosen at random from the many 

possible invalid edges) comprised the set of test edges.  These edges were randomly 

sampled without replacement until all had been shown.  At that point, all of the 

constructed test edges became available again for re-testing.  This procedure was 

followed so that responses should be distributed evenly between YES and NO, even 

though most edges in the graph were invalid. 

Results 

No significant effects of block were found.  The remaining analyses collapse 

across blocks.  d’ within a block was the primary dependent variable.   

A mixed-design ANOVA with Greenhouse-Geisser correction was performed to 

test for effects of graph structure and surface description.  d’ for each combination of 

conditions is graphed in Figure 3.  Subjects’ d’ in Scale-Free blocks was .74 and was 

reliably higher than the .46 d’ scored in Random blocks F(1, 99) = 50.16, MSE = .08, p < 

.001.  The main effect of the between-subjects manipulation Surface Description was 

significant F(2, 99) = 7.13, MSE = .43, p = .001.  Additionally, the interaction of Graph 
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Structure and Surface Description reached marginal significance F(2, 99) = 2.74, MSE = 

.08, p = .07. 

0

0.5

1

1.5

Social Transport Computer

Surface Description

d'
Random Graph Scale-Free Graph

 
Figure 3.  d’ in each condition in Experiment 1.  All values are reliably greater than chance performance of 

d’ = 0. 
 

 

Post-hoc comparisons imply the main effect of Surface Description was driven by 

the inferior performance of subjects in the Computer Network condition.  d’ was higher 

for both the Social Network t(66) = 3.95, p < .001 and Transport Network t(66) = 2.56, p 

= .01 conditions. 

Discussion 

 There is strong support for the hypothesis that scale-free graphs are easier to learn 

than random graphs.  Figure 4 depicts the learning curves under these two conditions.  
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While there is significant learning in both, the rate of learning is clearly faster for scale-

free graphs. 
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Figure 4.  Error rates as a function of trial by graph type.  Subjects acquired scale-free graph structure 

faster than random graph structure. 
 

 

 The Anthropomorphic Acquisition Hypothesis predicts this outcome because the 

scale-free network structure is congruent with the learner’s expectations of network 

structure, because these expectations are based on social networks.  However, the same 

effect could be due to the statistics of the learning procedure and the strategies subjects 

adopt to make educated guesses early in learning.  For example, determining whether a 

node is highly-connected or isolated is a good initial strategy.  It allows one to make a 

judgment as to whether an edge is valid based on knowledge of whether the nodes 

involved generally have many connections or few.  Further, this is a better strategy for 
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learning a scale-free graph than a random graph.  This is true because scale-free graphs 

have greater degree variability than random graphs.  (See the distributions in Figure 2.) 

 Learners can quickly gain information about how many edges a node participates 

in based on two sources of information in the experiment.  First, the name of a node that 

participates in many edges will appear many times during training.  This is because it 

must appear in the list of connected nodes for every node it is connected to.  Second, a 

node with many connections will appear with a long list when it is the trained node.  

Isolated nodes have short lists.  As we will see when subjects’ learning is simulated in 

Chapter 5, this type of learning that focuses first on how many (rather than which) 

connections a node has may be the best explanation for subject performance in early 

training. 

 The data concerning surface descriptions are mixed, however.  Figure 5 depicts 

the learning curves under these three conditions.  If one only compared the Social 

Network and Transport Network conditions, the conclusion one would reach is that 

performance is similar across surface descriptions.  If one contrasted either with the 

Computer Network condition, however, one’s conclusion might be that the structure of a 

computer network is uniquely difficult to acquire.  Furthermore, the computer network 

condition was unique in the fact that subjects did not show a reliable learning advantage 

for scale-free over random graphs. 
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Figure 5.  Error rates as a function of trial by surface description.  Subjects’ acquisition in the Computer 

condition was slower than in the other two conditions. 
 

 

 These results may have an analog in a previous study of associative recognition 

(Clark, 1992).  In the associative recognition paradigm, subjects first study pairs of words 

(AB, CD, EF).  Then, they must distinguish between intact pairs (AB) and rearranged 

pairs (AF) in a recognition test.  In Clark’s experiments, when the studied words were 

high-frequency words, subjects did a better job of discriminating intact pairs from 

rearranged pairs.  Clark and others (Kelley & Wixted, 2001) have argued this effect is 

due to subjects’ ability to augment pair recognition by sometimes recalling intact pairs.  

High-frequency words are more easily recalled than low-frequency words, and therefore 

associative recognition may be facilitated more often by recall.  It could be argued that a 

similar effect accounts for the current results if we consider the pronounceable, word-like 

proper name stimuli of the Social and Transport conditions to be more like high-
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frequency words and the unpronounceable, random string stimuli of the Computer 

condition to like low-frequency words. 

 It seems likely that the poor performance subjects displayed in the Computer 

Network condition was due to the node labels, rather than any consideration of the nature 

of the network.  Therefore, a second experiment was undertaken to perform a more 

equitable test of the power of surface descriptions to affect the acquisition of graph 

structures.  Specifically, the names of the nodes were equated across the surface 

description conditions. 

2.2  Experiment 2 

 This experiment duplicates the design and procedure of Experiment 1 except for 

differences mentioned below. 

Method 

Participants 

 177 UCSD undergraduates participated in the study. 

Stimuli 

 In this experiment, the four lists of names were the same for “students,” “cities,” 

and “computers.”  The instructions included the sentence “All of the names of the 

students/cities/computers will be foreign, so PAY CLOSE ATTENTION.”  The stimuli 

are listed in Appendix A. 

Results 

 Again, no significant effects of block were found.  The remaining analyses 

collapse across blocks.  d’ for each combination of conditions is graphed in Figure 6. 
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Figure 6.  d’ in each condition in Experiment 2.  All values are reliably greater than chance performance of 

d’ = 0. 
 

 The main effect of graph structure was replicated.  Subjects’ d’ in Scale-Free 

blocks was .74 and was reliably higher than the .47 d’ scored in Random blocks F(1, 174) 

= 66.45, MSE = .09, p < .001.  The main effect of Surface Description was not significant 

F(2, 174) = .51, MSE = .46, p = .60.  The interaction of Graph Structure and Surface 

Description again reached marginal significance F(2, 174) = 2.50, MSE = .09, p = .09.  

Unlike in the last experiment, d’ was reliably higher in the Scale-Free + Computer 

condition than in the Random + Computer condition t(58) = 2.86, p = .006. 

General Discussion 

 It is clear that the structure of a graph determines how quickly it may be learned.  

Knowledge of the structure of scale-free graphs was acquired more quickly and more 

completely than random graphs of similar density. 
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 One interpretation of these results is a validation of the anthropomorphic 

acquisition hypothesis.  Subjects used their knowledge of social network structure to 

shape their expectations concerning all novel networks.  True social networks are of 

scale-free structure.  Therefore, new networks of scale-free structure are learned most 

efficiently regardless of the supposed context given by the surface description. 

 An alternative explanation is possible by way of information theory.  Intuitively, 

it would seem that it requires more information to describe a random graph than a scale-

free graph.  Take, for instance, the graphs in this experiment.  Between 20 nodes, there 

exist 190 potential undirected edges (self-edges excluded).  The maximum number of bits 

necessary to describe one graph in particular is 190 – one bit for each edge to denote if it 

is valid or invalid. 

 To learn the structure of a random graph requires all 190 bits to be provided.  A 

partial description of the graph still leaves maximum uncertainty about the structure of 

the unrevealed portions of the graph.  The known edges provide no information about 

which unknown edges exist or do not. 

 In contrast, a partial description of a scale-free graph limits the possible 

configurations of the rest of the graph.  If it is assumed (or induced) that some nodes 

attract edges more readily than others, then the known edges place probabilities on the 

existence of the unknown edges.  (Note that it must be assumed or induced that the graph 

is scale-free for this to be true, however.  If one fully expects a graph to have random 

structure, even the revelation of 19 edges of a scale-free graph does not inform one of 

where the 20th edge “should” be.) 
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 The evidence is not clear as to whether surface description alone has an effect on 

graph acquisition.  In Experiment 1, it appeared that describing a graph as the set of fiber 

optic connections between computer servers made the structure of those graphs especially 

difficult to learn.  However, that deficit was successfully erased by giving the servers 

more pronounceable, less confusable names.  One could argue that computer network 

engineers have already discovered this effect.  74.125.224.114 is referred to as 

google.com rather than the numeric IP address.  Computer servers in data centers are 

often named after hobbits, Star Wars characters or other sets of named entities (Libes, 

1989).  No doubt these names make learning the connections between computers easier. 

 In no case was the learning of networks described as “social” exceptional.  In this 

experiment, it did not matter whether subjects believed they were learning who is friends 

with whom, which cities are connected by train or which computers are wired together.  

In this experiment, it appears that the learning mechanism functioned in a manner 

agnostic to context and learned graphs based on their deep structure with no regard to the 

surface description. 

Yes Bias 

 Table 1 contains truth tables for both experiments collapsed across conditions.  

Subjects display a strong YES bias.  (The bias was similar across conditions, so separate 

tables per condition are not shown.)  This bias is especially surprising considering how 

few edges actually exist in the graphs to be learned.  Most edges in the graphs were 

invalid, and yet subjects were more likely to respond YES than NO when asked if two 

nodes were connected. 
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Table 1. Truth Tables for Experiments 1 and 2. 
Experiment 1 

True Answer   
No Yes Marginal 

No 26 % 16 % 42 %Subject 
Response Yes 24 % 34 % 58 %

 Marginal 50 % 50 % 
 

Experiment 2 
True Answer   

No Yes Marginal 
No 28 % 17 % 45 %Subject 

Response Yes 22 % 33 % 55 %
 Marginal 50 % 50 % 

 
 

 A similar effect was reported in one of the first experimental studies of the 

perception of social relations.  De Soto and Kuethe (1959) had subjects judge the 

probability of one relation given another.  For example, subjects were asked, “Jack likes 

Dave.  Does Russ like Dave?”  In what must have been a perplexing moment for subjects, 

some trials did not include a given relationship.  Instead there was only a question (e.g. 

“Does Les like Al?”).  For these types of questions, subjects assigned a subjective 

probability of 59% to a yes response.  This subjective probability was reliably greater 

than 50% and higher than that for other relations such as “is happier than,” “dominates,” 

and “dislikes.”   

 Both the past and the current finding suggest people have a tendency to assume 

two people are friends until evidence is provided otherwise.  However, the yes bias in 

these experiments was not specific to the social network conditions.  In fact, it appears in 

every condition.  It may be that a yes bias is characteristic of graph learning in general. 



26 

 

 It should also be noted that the yes bias decreased across learning trials within a 

block and across blocks.  As subjects learned the structure of a particular graph and 

became familiar with the task in general, they became better calibrated. 

Intra versus Intergender Friendships   

 In the Social condition of Experiment 1, the names used as stimuli strongly imply 

gender.  Indeed, the names were chosen from the Social Security Administrations lists of 

most common boy and girl baby names. 

 Therefore, in each test trial, the friendships in question could be either intragender 

(MM or FF) or intergender (MF or FM).  Interestingly, this factor had no discernable 

effect on accuracy.  By the end of the experiment, subjects had learned to associate MF 

and FM pairs just as well as MM and FF pairs. 

 Subjects had to adjust their prior beliefs to reach this point, however.  Figure 7 

presents the percentage of responses that were YES categorized by the genders of the two 

test stimuli names.  The general tendency toward a YES bias is evident in that all values 

are above 50%.  The YES bias is even greater for intragender pairs.  A paired-samples t-

test comparing frequency of YES responses for intra versus intergender pairs within 

subjects revealed a significant difference t(33) = 3.71, p = .001. 
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Figure 7.  The percentage of subjects’ responses that were YES given the implied genders of the name 

stimuli. 
 

Summary 

 This investigation is the first to experimentally test the acquisition of social 

networks larger than just a handful of nodes.  Two novel hypotheses were tested.  

Support was found for the hypothesis that humans learn scale-free graphs more 

efficiently than random graphs.  Evidence was mixed as to whether the surface 

description of a network affects its acquisition.  In this experiment, it did not appear to 

matter whether a graph was described as the set of connections between people, cities or 

computers.  As long as the labels assigned to nodes were remained constant across 

domain, all graphs were learned equally well. 
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Chapter 3:  Scale-Free Superiority, Egocentric Bias and 

Network Centrality Heuristics in Social Graph Learning 

 The intelligence teams that tracked down both Saddam Hussein and Osama Bin 

Laden made use of the tools and terminology of social network analysis.  In the case of 

Saddam Hussein, success came when the central nodes in his informal social network 

were identified.  A pair of brothers who had been childhood friends with and were the 

closest bodyguards of Saddam were the key captures that brought the U.S. military’s hunt 

to Saddam’s spider hole.  In the case of Bin Laden, the important break came by finding a 

courier that linked the network of Al Qaeda in Iraq and the leadership of Al Qaeda 

proper.  It was this broker between networks who held the critical knowledge necessary 

to track the people close to Bin Laden, and ultimately the terrorist leader himself.   

 Not all social network graphs involve high-value intelligence targets, obviously.  

Each of us has our own graph, which we must come to know and constantly update in 

order to make new friends, find new opportunities and avoid uncomfortable social 

missteps.  With this paper, I hope to begin a discussion concerning how social network 

structure is acquired and how it is represented in the mind. 

 Beyond the immediate practical benefits that may be delivered – such as 

suggestions for training intelligence analysts more efficiently – the study of social 

network acquisition will supply data pertaining to broader theoretical questions.  

Understanding how people come to know social network graph structures will provide 

insight as to how people come to know graph structures generally.  Given that formal 

graphs are a data structure well-suited to represent a wide range of complex systems 
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(websites connected by hyperlinks, proteins connected by coparticipation in metabolic 

reactions, neurons connected by synapses, banks connected by liabilities or any other 

phenomena in which entities form ties) it is necessary that we study how human 

cognition comprehends network structure. 

 Previous work has identified a number of reliable effects that emerge when people 

are tasked with learning a novel social network.  People expect friendship relations to be 

reciprocal (Cottrell, 1975; De Soto, 1960; De Soto, Henley & London, 1968; De Soto & 

Kuethe, 1959; Janicik & Larrick, 2005; Krackhardt & Kilduff, 1999; Walker, 1976).  

That is, if Alice is friends with Bob, we assume Bob is friends with Alice. 

 People expect friendship relations to be transitive (De Soto, 1960; De Soto, 

Henley & London, 1968; De Soto & Kuethe, 1959; Janicik & Larrick, 2005; Krackhardt 

& Kilduff, 1999; Poitou, 1970; Tsujimoto & Robertson, 1978).  Network learners assume 

that two people with a common friend are likely to be friends.  For instance, if Alice is 

friends with Bob, and Bob is friends with Carol, then it is assumed Alice is also friends 

with Carol. 

 These studies predominately used small graphs as stimuli.  (Most studies use 4-

person social networks.)  Additionally, the effects under examination involved dyads or 

triads rather than the graph structure as a whole.  As a necessary evil, the current 

experiment eschews the simplicity and clean design afforded by small graphs to extend 

our knowledge of graph acquisition to larger structures.  Instead of manipulating dyad or 

triad structure, the current study examines the effect of gross structural differences. 
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Three Graph Structures: Random, Caveman and Scale-Free 

 To assess how the deep structure of a social network graph affects how quickly it 

can be acquired, this experiment makes use of three categorically different graph 

structures.  One example of each graph type is pictured in Figure 8.  The general 

hypothesis under examination is that some structures will be more quickly acquired than 

others.  More desirable would be a hypothesis that makes specific predictions about the 

ordering of acquisition difficulty.  To fill that role, I propose the anthropomorphic 

acquisition hypothesis: the more a graph stimulus resembles true human social networks, 

the faster it will be acquired.  In other words, the more properties a novel social graph to 

be learned shares in common with the general properties of real-world human social 

networks, the faster it will be learned.  To understand how the anthropomorphic 

acquisition hypothesis applies to the current study, one must first know how much the 

graph structures to be used as stimuli have in common with true human social networks.  

To that end, these three structures are placed in an (admittedly somewhat subjective) 

order from least “humanlike” to most humanlike. 

                  
 

Figure 8.  Left: an example random graph.  Center: an example caveman graph.  Right: an example scale-
free graph. 
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 Random graphs (Erdős & Rényi, 1960) are least like true human social networks.  

In a random graph, edges are placed randomly between nodes.  In a social network, this 

would be the equivalent of each pair of people in a group having the same uniform 

probability of becoming friends.  This process of placing edges leads to networks with 

low transitivity.  This is unlike human social networks which exhibit higher transitivity, 

because in the real world, having a common friend makes it more likely that two people 

are friends. 

 Random graphs also exhibit a Poisson degree distribution, unlike human social 

networks.  In random graphs, each node (or person) is likely to have a number of edges 

(friendships) that is close to the mean.  The degree distribution of human social networks 

is better described by a power-law curve than a Poisson.  In human social networks, a 

great many people have few friends and few people have a great many friends. 

 In these two ways, random graphs are unlike true human social networks. 

 Caveman graphs (Watts, 1999) are more like true human social networks.  In a 

caveman graph, nodes are first organized into several disjoint, fully intraconnected 

cliques (or caves).  Then, in each cave, one intracave edge is removed and an intercave 

edge created in its place.  All caves become connected through a central ring of 

individuals.  A caveman graph has high transitivity due to the cliquishness of the caves.  

In this way it imitates human social networks. 

 However, the degree distribution of a caveman graph is unlike that of a human 

social network.  In fact, almost all the nodes in a caveman graph participate in the same 

number of edges.  This fact makes the caveman graph a bad analog of human social 
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networks, because it clashes with the expectation that a few people should have many 

friends and many people should have few friends. 

 Scale-free graphs (Barabási & Albert, 1999) are most like true human social 

networks.  In a scale-free graph, there are central hubs (nodes with many links) and more 

peripheral nodes with fewer links.  In a social network, this would be the equivalent of a 

few popular people who are friends with many others, while most people have just a few 

friends or none at all. 

 Scale-free networks have high transitivity, because hub nodes are likely to be 

connected and form many transitive triads.  Additionally, scale-free graphs have a power-

law degree distribution, similar to the degree distributions of true human social networks.  

It has frequently been observed that well-documented human social networks reveal a 

formal structure best described as a scale-free graph (Csányi & Szendrői, 2004; Ebel, 

Mielsch & Bornholdt, 2002; Liljeros, Edling, Amaral, Stanley, Åberg, 2001; Wang, 

Moreno & Sun, 2006). 

Task Description 

 Will the learner of a social network graph structure have more or less success 

depending upon how this task has been described to them?  On the surface, it is a very 

different task to learn who is friends with whom in a class one is observing versus 

learning who is friends with whom in a tense survival situation one is personally involved 

in.  The abstract, deep structure of the problem is the same, but the surface framing of the 

problem is different. 

 It is difficult for people to abstract away irrelevant details in the description of a 

problem (Gick & Holyoak, 1983; Rein & Markman, 2010).  The framing one uses to 
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understand a system can affect how accurately it is understood.  For example, Gentner 

and Gentner (1983) used two different analogies to train participants on the principles of 

electrical circuits involving batteries, wires and resistors.  Some subjects were instructed 

to think of an electrical circuit as a hydraulic system of reservoirs, pipes and constrictions 

in said pipes.  Other subjects were instructed to think of an electrical circuit as a track on 

which a moving crowd of mice ran away from a loudspeaker and through narrow gates.  

Among other effects, Gentner and Gentner found that subjects who were given the 

moving crowd task description were better at solving problems involving resistors wired 

in parallel.  Participants had better natural intuitions concerning what would happen when 

a crowd must navigate through tight alleyways than they did concerning steady-state 

hydraulics.  Although the abstract structure of the problem did not differ between these 

groups, their performance did, due to the manner in which the problem had been framed. 

 In the current study, the description given to the task of social network graph 

learning was varied not by instructing participants to use different metaphors, but instead 

by varying the extent to which acquiring information about the graph was personally 

relevant.  The initial hypothesis was that participants would acquire the structure of a 

social graph slowly when it was described as a class they were observing, more quickly 

when it was described as a class the participant would themselves be participating in and 

fastest when it was described as a group of people (including the participant) in a survival 

situation (Nairne, Pandeirada & Thompson, 2008). 

 It is not always possible to vary personal relevance in learning and memory tasks.  

However, when it is done, increasing personal relevance often aids retention.  When 

words are rated as to how easily they bring to mind personal memories, they become 
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more likely to be recalled later (Challis, Velichkovsky & Craik, 1996; Craik & Tulving, 

1975; Rogers, Kuiper & Kirker, 1977).  In addition, the higher words are rated on this 

self-reference scale, the larger the effect (Craik & Tulving, 1975; Rogers, Kuiper & 

Kirker, 1977). 

 There is also some neuropsychological support for the idea that information 

relative to the self receives special processing in the brain.  Klein, Cosmides, Murray and 

Tooby (2004) recently provided provocative evidence for a dissociation between 

acquiring information about the self and acquiring information about others.   

 A striking example of personal relevance enhancing acquisition was recently 

demonstrated with participants learning about stroke symptoms (McDonald, et. al., 

2009).  In this study, participants were given a pretest and posttest with questions 

regarding the correct response to stroke symptoms.  Between tests they read a pamphlet 

about stroke symptoms and the appropriate response to each.  Although both groups 

increased their scores from pretest to posttest, subjects who read the statement “Learn 

about stroke to save someone you love” learned the correct response to two more items 

on average than subjects in the control condition who did not receive the personal 

relevance statement. 

 Survival might be described as the interest one holds most extremely personally 

relevant.  Survival processing has recently been proposed as a mnemonic device effective 

for promoting retention (Nairne, Pandeirada & Thompson, 2008; Nairne, Thompson & 

Pandeirada, 2007).  The central idea behind survival processing is that the human 

memory system is tuned to retain information important for survival.  Therefore, when 

stimuli are evaluated in terms of how much they pertain to the individual’s survival (i.e. 
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survival processing) those stimuli stand a higher chance of being marked survival-

relevant and retained in memory.   

 It seems natural to test the efficacy of survival processing in the current study.  If 

there was any domain in which it was important for our ancestors to consider survival, 

surely it would have been the social domain.  It would be difficult to argue that knowing 

one’s place in the social order and knowing who was allied with whom were not among 

the highest survival priorities in our evolutionary past. 

Node Attribute Analysis 

 The experimental design of the current study calls for two independent variables: 

graph structure and task description.  Thus, conclusions can be drawn concerning the 

causal effect of varying the deep structure and surface description of social network 

graph learning.  However, we need not stop there.  Because some conditions include 

“You” in the list of social network nodes, tests will reveal if this node becomes special in 

participants’ learning.  Will there be an egocentric bias to learn one’s “own” friends?   

 Also, nodes will necessarily differ in centrality – a measure of how integral a 

node is to the pattern of connections in a graph.  A node’s centrality reflects whether it is 

isolated and peripheral or well-connected and central to the community of nodes.  One 

common measure of centrality is eigenvector centrality.  The eigenvector centrality of a 

node is determined not just by the number of edges the node participates in, but also by 

the centrality of the nodes on the other end of each edge.  It is best understood by way of 

an example.  The PageRank formula used by the Google search engine computes the 

eigenvector centrality of a webpage in the graph of webpage hyperlinks (Brin & Page, 

1998).  More incoming links from other pages increase PageRank, but not all links are 
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counted equally.  The more incoming links of its own that a linking page has, the greater 

its contribution to PageRank.  In a social graph, eigenvector centrality increases with 

number of friendships, but more so with the number of other friends each friend has.  

(See Bonacich, 1987 for a derivation of and methods for calculating eigenvector 

centrality.)  Will learners respond to centrality, or will they acquire knowledge about who 

is connected to whom without regard to the properties of individual nodes? 

Method 

Participants 

 135 UCSD undergraduates participated in the study. 

Design 

 The design was a 3 (Graph Structure) x 3 (Task Description) mixed design.  

Graph Structure was varied within subjects, and all subjects were trained on one graph of 

each type (Random, Caveman, and Scale-Free).  The order in which the structures were 

presented was chosen randomly for each subject. 

 Task Description was varied between subjects.  Participants received the same 

task description for each of the three graphs they were to learn.  The task description (one 

of Class, Class + You, or Survival + You) was assigned randomly to each subject. 

Stimuli 

 All graphs consisted of 20 nodes.  Edges were undirected and unweighted.  Self-

edge loops were not allowed.  In each graph, there were 190 potential edges (i.e. 20 

choose 2).  Participants were trained on three graph structures: Random, Caveman and 

Scale-Free. 
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 Graph Structure.  Figure 8 depicts an example of each graph structure.  Random 

graphs were generated by the process specified in Erdős & Rényi (1960).  To form edges, 

two nodes were selected at random, and an edge placed between them.  This process was 

repeated 40 times.  If the two nodes drawn were already connected, a replacement draw 

was performed.  As a result, each Random Graph contained 40 edges. 

 Caveman graph structures (Watts, 1999) were not generated by a stochastic 

process, unlike the Random and Scale-Free graphs.  The Caveman graph consisted of 

four groups (caves) of five nodes.  Each cave was fully connected – meaning all nodes in 

the cave were connected to all other nodes in the cave.  To connect the caves, one node in 

each cave broke one intracave edge and replaced it with one intercave edge.  The 

Caveman graph contained 40 edges.  Names were randomly mapped to nodes, so while 

the structure of every Caveman graph was the same, the actual stimuli presented to 

subjects varied.  It was not the case that the same names appeared in the same structural 

positions for these graphs or any others. 

 Scale-Free graphs (Barabási & Albert, 1999) were generated through two rounds 

of preferential attachment edge formation.  In the first round, the graph began as two 

connected nodes.  New nodes were added one at a time.  Each new node formed an edge 

with each existing node with the probability Ei/2N, where Ei was the number of edges 

node i participated in and N was the total number of edges in the graph.  To illustrate, the 

first node added to the seed set of two connected nodes had a 1/2 chance to form an edge 

with the first node and an independent 1/2 chance to form an edge with the second node. 

 The same process was followed in the second round with minor adjustments.  

Each node i formed a new edge with each other node j in the graph with the probability 
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(Ej + 1)/2N.  One was added to each node’s edge count so that nodes left without any 

edges in the first round would have a probability greater than zero of acquiring edges in 

the second round.  The resulting graphs contained a mean of 38.8 edges. 

 A deliberate choice was made to generate Random and Scale-Free graphs 

stochastically.  Using only one “Random” graph and one “Scale-Free” graph would 

greatly reduce the generalizability of any results found in that manner.  Any results in that 

case could easily and probably appropriately be attributed to the particular graphs 

employed.  By generating new graphs for each subject based on two different processes, 

we can make much broader inferences about the learning of the family of random graphs 

versus the family of scale-free graphs rather than a very narrow inference about one graph 

versus one other graph.  The Caveman graph structure is much more constrained (given a 

set number of caves), and most variants are isomorphic, so the same specification was 

used for all participants. 

 Task Description.  Participants were randomly assigned one of three task 

descriptions: Class, Class + You, or Survival + You.  These conditions differed in the text 

of the instructions that preceded each training block. 

 The Class instructions read:  

  Imagine you are a sociologist studying a class of 20 students in order to  

  write a report.  The first thing you must do is learn who is friends with  

  whom in this class. 

 The Class + You instructions read: 

  Imagine you are taking a class with 19 other students.  You want to learn  

  who is friends with whom in this new class.  You may already be friends  
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  with some of the students yourself. 

 The Survival + You instructions read: 

  Imagine your plane has crashed and you are stranded in the grasslands of  

  a foreign land, without any basic survival materials.  Over the next few  

  months, you'll need to find steady supplies of food and water and protect  

  yourself from predators.  19 other people are stranded with you, some of  

  whom are friends already.  It will be important to your survival to learn  

  who is friends with whom. 

 Name Lists.  Three lists containing 10 male names and 10 female names were 

constructed by choosing names from the Social Security Administration’s list of popular 

baby names in the 1990’s (Social Security Administration, 2011).  The initial letter of 

each name was unique within each list.  At the beginning of each block, the stimuli 

names were randomly mapped to nodes in the abstract graph structure.  In the Class + 

You and Survival + You conditions, one name was chosen at random and replaced with 

the word “You.” 

Procedure 

 The experiment was administered online through a PHP/mySQL/Flash Web 

application.  Subjects followed a link to the experiment website from the subject pool 

administration software. 

 Subjects first read through several short paragraphs of instructions.  They were 

told they would be learning “who is friends with whom” in a group of 20 people. 

 Subjects were informed that all links were reciprocal – if A was connected to B, 

then B was also connected to A.  Subjects were also instructed to expect test trials in 
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which two stimuli would be presented and they were to answer YES the people were 

friends or NO they were not.  Subjects were instructed to give their best guess if they did 

not know the answer. 

 In the experiment, training trials alternated with test trials.  There were 3 blocks of 

80 training and test trials each.  In each block, the subjects were trained and tested on a 

new graph.  Participants were trained on one graph of each Graph Structure.  The order 

was determined by randomly permuting the three types for each participant. 

 Training Trials.  In a training trial, the name of one node was presented at the top 

of the screen.  Directly below, in a smaller font, were the words “is friends with.”  In two 

columns below these words appeared the names of all the nodes the trained node formed 

an edge with.  If the trained node participated in no edges, the token --NONE-- appeared 

instead of the list of connected nodes. 

 Nodes were sampled for training without replacement from the list of 20 nodes 

until all had been shown.  This process then repeated.  Thus, over the course of 80 trials, 

each node was the focus of a training trial exactly four times. 

 The training trial information remained onscreen for 5 seconds.  A blank, white 

screen followed for 500 milliseconds before the onset of a test trial. 

 Test Trials.  In a test trial, two names appeared next to each other.  Below the 

names was the prompt “Friends?”.  Below the prompt were two equally-sized light-grey 

buttons labeled YES and NO. 

 Feedback was provided after the subject made a response.  The button for the 

correct answer was highlighted, and a 300 millisecond sound clip of a bell was played for 

a correct response or a buzzer for an incorrect response. 
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 For each graph, an equal number of valid (existing) and invalid (non-existent) test 

edges were generated.  All valid edges (approximately 40, depending on structure) and an 

equal number of invalid edges (chosen at random from all invalid edges) comprised the 

set of test edges.  These edges were randomly sampled without replacement until all had 

been shown.  At that point, all of the constructed test edges became available again for re-

testing.  This procedure was followed so that responses should be distributed evenly 

between YES and NO, even though most edges in the graph were invalid. 

Results 

d’ for each combination of conditions is graphed in Figure 9.  In all conditions, 

d’was statistically significantly greater than the value of zero expected from uninformed 

guessing.  A mixed-design ANOVA with Greenhouse-Geisser correction was performed 

to test for effects of graph structure and task description.  The main effect of Graph 

Structure was significant F(2, 264) = 14.88, MSE = .22, p < .001.  Subjects’ d’ in Scale-

Free blocks was .75 and was reliably higher than the .53 d’ in Caveman blocks and the 

.46 d’ scored in Random blocks.  The slight apparent advantage in Caveman blocks was 

not significant t(134) = 1.31, p = .19.  No significant effect of Task Description was 

found nor any interaction with Graph Structure. 
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Figure 9.  d’ in each combination of experimental conditions.  Graph Structure varied within-participants.  

Task Description varied between-participants. 
 

 

Egocentric Bias.  Figure 10 compares d’ in test trials in which “You” was a 

component of the test edge to test trials that did not involve the “You” node.  Overall, 

participants displayed greater discrimination when a test included the “You” node t(89) = 

8.28, p < .001.  The size of the effect does not differ significantly as a function of graph 

structure or task description. 
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Figure 10.  d’ for test trials that did or did not include the “You” node, separated by Task Description.  The 

Class condition did not include the “You” node. 
 

 

Network Centrality.  Figure 11 plots response accuracy as a function of the mean 

network centrality of the nodes in the test edge for random and scale-free graphs.  A U-

shaped curve is apparent in each plot.  Note that more test trials fall in the central area of 

both plots, because a combination of two nodes in the same extreme degree range was 

more infrequent than a combination of two nodes both in the medium range of degree 

values or with opposite extreme scores.  Points with fewer than 50 observations were not 

plotted. 
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Figure 11.  Top: Accuracy as a function of the mean eigenvector centrality of the two nodes in a test trial 
for the Random Graph condition.  Bottom:  Accuracy as a function of the mean eigenvector centrality of 

the two nodes in a test trial for the Scale-Free Graph condition. 
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 Examining sensitivity and bias leads to a deeper understanding of this pattern of 

results.  Figures 12-15 plot hit rate, false alarm rate, d’ and c as a function of node 

centrality for both random and scale-free graphs.  The patterns are similar qualitatively 

across graph structures.  Subjects’ strategies do not differ between graph structures. 
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Figure 12.  Hit rate as a function of test node centrality. 
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Figure 13.  False alarm rate as a function of test node centrality. 
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Figure 14.  d’ as a function of test node centrality. 
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Figure 15.  c as a function of test node centrality. 

 
 

 Contrast Figure 14 with Figure 11.  With this new analysis, it appears that two 

different processes are at work at the ends of the centrality spectrum.  Actual 

discriminability is low for pairs of nodes of very low centrality (those less than .10).  The 

high values of c at this point in the graph indicate a strategic choice by subjects to always 

favor a No response when the edge in question is purported to be between two peripheral 

nodes.  Subjects achieve good accuracy in these cases by betting on a No response (a 

rational choice).  They do not, on average, possess good knowledge about which 

peripheral nodes are connected. 

 On the other end of the spectrum, however, discriminability is very high.  

Subjects’ best performance comes when they must judge whether two nodes of high 

centrality are connected.  The low false alarm rate shows that they do not do this by just 
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responding Yes.  In fact, the value of c indicates that subjects become conservative when 

confronted with central nodes.  Their better knowledge about these nodes overcomes this 

bias, however, and leads to the high accuracy previously observed. 

 Just like the accuracy results, the discriminability results show that subjects have 

difficulty retaining knowledge concerning nodes of middling centrality.  The values of d’ 

closest to zero occur at eigenvector centrality scores between .20 and .30.  To use a social 

network as a metaphor,  the results imply that we assume unpopular people have no 

friends at all, we know in fine-grained detail who likes whom in the well-connected set, 

and those in the middle exist in a grey haze of possible connections. 

 (Another explanation for the apparently changing values of d’ and c is that the 

equal-variance signal detection model is not appropriate to describe subjects’ judgments 

in these tasks.  It is possible an unequal variance model of memory (Jang, Wixted & 

Huber, 2009) would be more appropriate.) 

Discussion 

 Scale-free graph structure is acquired more quickly than caveman or random 

graph structure.  A slight, marginally significant advantage for caveman over random 

graph structure also appeared in the data.  Survival relevance and personal relevance 

manipulations of the task description failed to produce significant differences in 

performance.  However, there is evidence participants do pay extra attention to the node 

labeled “You” when it is present.  Participants do well when asked about edges that 

involve nodes of extreme centrality.  They develop a sensitivity to the fact that central 

nodes have many links and peripheral nodes have few links. 
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 The task of learning a network among 20 nodes is a difficult one.  Participants do 

not know how many edges to expect in the graph.  There are 190 edges that might exist, 

so in actuality the participants must learn which one of 2190 possible graphs they are 

confronted with.  Despite this level of difficulty, participants do manage to acquire 

knowledge about who is friends with whom in the several minutes of training and testing 

devoted to each graph.  In the Random Graph condition, in which performance is lowest, 

participants still achieve an overall accuracy of 58%.  This is better than the performance 

one would expect from uninformed guessing t(134) = 10.14, p < .001.  It is an impressive 

feat given the scale of the possible-graph space and the fact that random graphs (by 

design) have no structure. 

 Caveman graphs, on the other hand, have a well-defined structure.  Participants 

achieve slightly better acquisition of caveman graphs.  On average, participants respond 

correctly to 1.1 more test edges when learning a caveman rather than a random graph.  

Two properties of caveman graphs work against participants’ expectations.  The first is 

the relative homogeneity of degree.  Unlike in real social networks or in constructed 

scale-free networks, in a caveman social graph all individuals have nearly the same 

number of friends.  Thus, learners are not able to use centrality heuristics to pick out 

popular and unpopular nodes for easy classification. 

 The second difficulty presented by a caveman graph is the intransitivity 

introduced during construction of the graph.  In this process, one node in each cave 

breaks an intracave connection, disrupting the pattern of complete connectivity within the 

cave.  The false alarm rate for broken intracave test edges is 61% (where false alarm rate 

is defined as number of false positives divided by the sum of false positives and true 
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negatives).  Participants make a reasonable assumption of transitivity, but are punished 

by this peculiarity of the caveman graph. 

 Scale-free graphs elicited the best acquisition.  This finding has been replicated in 

similar work in which scale-free graph structure was acquired more quickly than random 

graph structure (Chapter 2).  In those studies, acquisition of scale-free graphs was found 

to be superior whether the graphs were described as social, computer or transportation 

networks.  Clearly, scale-free graphs are more easily acquired.  Why this is the case is not 

as clear, however, and alternative explanations are discussed later in this article. 

 Unlike graph structure, no significant effects due to task description surfaced.  

Accuracies in the Class, Class + You and Survival + You conditions were very similar: 

60%, 60%, and 61% respectively.  Of course, we cannot simply accept the null 

hypothesis.  However, it can be pointed out the experiment was not underpowered.  To 

detect a 5 percentage point difference (the same size as the difference between the Scale-

Free Graph and Random Graph conditions) between any two task description conditions, 

a two-sample t-test had power greater than .80. 

 Broadly, there are two explanations for the lack of an effect.  First, that no effect 

exists, and second, that the current treatment was too weak to evoke the true effect.  In 

the first case, one would argue that learners successfully abstract away the superfluous 

personal relevance and survival relevance narrative framing of the instructions.  The task 

is performed by creating associations between individuals, and this is true whether one is 

instructed to behave as a sociologist, a student or a survivor.  The presence of egocentric 

bias is evidence against learners’ ability to completely abstract away irrelevant details, 
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however.  There is no advantage to learning best about the local subgraph around the 

“You” node, but participants do so anyway. 

 It may instead be the case that the personal relevance treatment was too weak.  In 

the stroke study discussed in the Introduction (McDonald, et. al., 2009), the personal 

relevance treatment implied that the participant could use the information learned to 

actually save the life of a loved one.  In the current study, the personal involvement was 

only hypothetical. 

 It may be too ambitious to ask participants to adopt a novel and strange network 

as personally relevant in the brief space of an experimental session.  Surely, of all 

possible social networks, people have the best information about their own – the network 

centered around themselves.  However, it may be interesting to compare participants’ 

knowledge of their own personal social networks with their knowledge of those of 

celebrities, reality show cast members and fictional characters. 

 Like personal relevance, the survival relevance manipulation failed to produce an 

effect.  It should be noted, however, that the protocol in this study differed in several 

ways from that used in successful demonstrations of the survival processing effect.  

Foremost is that participants were not required to evaluate each stimulus in terms of 

survival relevance.  It is also the case that the current task (classify each test edge as a 

friendship or not a friendship) is not the same as the task in demonstrations of survival 

processing, which have so far involved straightforward recognition or recall. 

 Merely describing the task of social network learning in terms of survival did not 

produce an effect.  Future work could present edges one at a time, ask subjects to rate 

each on a survival relevance scale and require participants to recall or recognize the edges 
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at test in order to more closely replicate previous successful survival processing 

protocols. 

 The inclusion of a node labeled “You” did not have a global effect on accuracy, 

but it did produce a reliable local effect.  Participants displayed an undeniable egocentric 

bias.  Accuracy in trials that included the “You” node was 10 percentage points higher 

than in trials that did not.  Of the 90 participants in conditions that included “You” nodes, 

70 consistently scored higher in You trials as compared to other trials. 

 The egocentric bias is interesting for two reasons.  The first involves the literal 

interpretation of the effect.  It would appear that people are more interested in their own 

relationships than those of others.  Even in this hypothetical-universe social network (in 

which “You” is just as arbitrary a label for a node as the rest of the list of names) the self 

draws outsized attention.  Gilovich, Medvec and Savitsky (2000) have discussed the 

“spotlight effect” in reference to the belief that others notice us more than they really do.  

The self cannot get past the outsized salience the self has to the self.  This is true even at 

very early stages of attention.  It has been demonstrated that the attentional blink and 

repetition blindness are both attenuated when the probe stimulus is the subject’s own 

name (Arnell, Shapiro, & Sorensen, 1999; Shapiro, Caldwell, & Sorensen, 1997). 

 In the current study we see evidence of self-salience yet again.  Participants bias 

their attention and learning toward their own connections.  Combined with the spotlight 

effect, the current results predict people should overestimate the accuracy with which 

their acquaintances could identify their close friends.  Another prediction given the 

current results would be that knowledge of the structure of one’s own social network will 

drop off severely as the degree from the self increases.  One of the reasons for online 
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social networking’s success may be that the user has to manage only those connections 

directly incident on the self, and knowledge of the extended network is provided as a side 

effect. 

 The second interesting aspect of egocentric bias is a more general demonstration 

of a graph learning phenomenon.  Namely, egocentric bias illustrates it is possible to 

learn local subgraphs to a greater degree than the graph as a whole.  It is useful to know 

that a node can be highlighted during training in such a way that the learner will become 

especially aware of its connections. 

 The presence of egocentric bias predicts more generally that an exceptionally 

salient node will cause uneven learning of the graph structure.  To confirm this finding, 

this prediction could be tested in a number of ways.  For instance, one node could be 

made perceptionally salient by presenting the name in a different color than other names.  

Or the node could be made semantically salient – by presenting one female name among 

many male names, for instance. 

 Examining the effects of nodes themselves on learning also uncovered the effects 

of network centrality.  The graphs in Figures 11 tell a clear story.  Specifically, a 

“popularity position effect” similar to the serial position effect in verbal list learning is 

apparent.  Participants answer correctly more often when they are tested on edges 

consisting of two nodes both of low centrality or both of high centrality. 

 This evidence suggests that in addition to having some true knowledge of the 

social graph structure, learners also employ a simple heuristic: answer no for peripheral 

nodes and yes for central nodes.  Let us choose one set of data to illustrate this point.  

When participants are learning scale-free graphs, they respond YES 46% of the time 
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when the test edge has mean node degree less than the median value, and they respond 

YES 69% of the time when the test edge has mean node degree greater than the median 

value.  Clearly, subjects adjust their propensity to respond yes or no as they rationally 

should in accordance with node degree. 

 It is easy to distinguish central nodes from peripheral nodes during training.  

Central nodes have long lists of connections when they are the trained node, and 

peripheral nodes have short lists.  Central nodes appear often in other nodes’ lists of 

connections, and peripheral nodes do not. 

 One of the advantages learners have in confronting a scale-free graph is this graph 

structure’s greater variance in node centrality.  Learners thus have greater opportunity to 

employ the network centrality heuristic.  Undoubtedly, this contributes to the greater 

acquisition of scale-free graphs.  Further evidence that subjects employ a heuristic based 

on a node’s centrality will be provided by the formal modeling of subjects’ learning in 

Chapter 5. 

 It is important to acknowledge the limitations of the current study before drawing 

final conclusions.  It may be premature to wholeheartedly endorse the anthropomorphic 

acquisition hypothesis.  As predicted, scale-free graphs were acquired most quickly.  The 

advantage for caveman graphs over random graphs was small and only marginally 

significant, however.  It is clear that graph structure can affect acquisition.  The exact 

reasons and mechanisms are still up for debate.  The evidence so far is consistent with the 

idea that the more a social graph stimulus comports with the properties of true social 

networks, the easier it is to learn.  The ultimate test (and a target for future research) 

would be to use real-world social networks as training data.  Are the graph motifs most 
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common in real social graphs the most easily learned graph motifs?  Do learners respond 

best to real-world levels of graph properties (moderate transitivity, for example) or is 

learning optimized by maximal, unrealistic values? 

 The current study found that describing the social graph learning task as 

personally relevant or survival relevant had no discernable effect on acquisition.  As 

discussed previously, the manipulations may have been too weak or it may be that the 

effect does not translate to this domain or this training and testing paradigm.   

 The field typically frowns on the publication of null results, because they are 

supposedly uninformative.  In cases like this study, however, where the experiment does 

not lack power and there were legitimate grounds to expect the manipulation to produce 

an effect, it is useful to see the results.  If nothing else, the current study begins to bound 

the parameters that allow for an effective relevance manipulation. 

 The author does not expect this work to be the final word on social network 

acquisition.  Indeed, given the current level of interest in social networks, acquisition is a 

neglected area of study abounding in interesting questions.  Which individual differences 

measured a priori could account for performance on this task?  Is social graph acquisition 

more a function of general intelligence or is there some skill orthogonal to g that allows 

for smooth navigation of the social landscape?  Of the many ways graphs can differ (in 

density, transitivity, connectedness, efficiency, etc.) which predict the difficulty of human 

acquisition?  There is a great deal of work in computer science attempting to automate 

the learning and prediction of link patterns in networks (e.g. Menon & Elkan, 2011).  Are 

there ways in which humans can outperform machines?  The answers to these questions 

await the attention of social cognition scholars. 
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Chapter 4:  Interactions of Graph Structure and Training 

Regimen: How Best to Teach Differing Graphs 

4.1  Introduction and Experiment 1 

 Network graphs are complex structures.  The number of possible configurations 

of a graph grows exponentially as a function of the nodes in the graph.  The relation 

between graph size and complexity is graphed in Figure 16.  A graph of two nodes may 

exist in only one of two states: connected or not connected.  Three nodes allow for three 

possible edges, each of which may exist or not.  Already the space has grown from two 

potential graphs to eight.  Increasing the size of the graph by just one more node yields 

six possible edges and sixty-four possible graph configurations. 
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Figure 16.  The number of potential edges in a graph as a function of the number of nodes.  The value 
increases as (N choose 2).  Note that the number of possible graphs over (N choose 2) edges is 2(N choose 2).  
This function rises so steeply, there is nothing to be gained in graphing it, except in log values on the y-

axis, which (with a base of 2) would yield the present graph. 
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 In the studies to follow, the stimuli are relatively small graphs of eight nodes.  

Yet, in each case, the demand placed on subjects is to learn one of 228 or 268,435,456 

potential graphs.  Given this teeming forest of possibilities, what is the most efficient path 

to knowledge of the one true structure of a graph? 

 A simple answer to this question would be satisfying.  Alas, as I will demonstrate, 

the best method for teaching a network graph structure depends upon the structure itself.  

My previous work (Chapters 2 and 3) has made it clear that graph structure is a 

determinant of the pace at which knowledge about a graph will be acquired.  In this work 

it will be shown that acquisition rate is affected also by the interaction of structure and 

training.  The first distinction of structure investigated was that between regular and 

irregular graphs. 

Regular and Irregular Graphs 

 A regular graph is defined as a graph in which a simple pattern of connectivity is 

repeated again and again at every node.  When diagrammed, such graphs form geometric 

patterns such as a lattice or grid.  The ring lattice – depicted in Figure 17 – was chosen as 

a regular graph structure for this experiment. 
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Figure 17.  A ring lattice graph of 8 nodes. 
 

 An irregular graph is any graph in which the pattern of connectivity is 

unpredictable from node to node.  The slightest perturbation of a regular graph will 

produce an irregular graph.  Figure 18 depicts the irregular graph stimulus to be used in 

this experiment.  Close inspection will confirm that this graph is the ring lattice of Figure 

14 after two edges have been “rewired.”  The edge 7-0 has become 7-2 and the edge 1-3 

has become 1-5. 
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Figure 18.  An irregular graph formed by rewiring two edges of the ring lattice. 
 

 

 This particular distinction between a regular graph and irregular graph has been 

important in the development of network theory and especially in the domain of social 

networks (Watts, 1999; Watts & Strogatz, 1998).  As Watts and Strogatz observed, ring 

lattice graphs possess several characteristics that make them good models of social 

networks. 

 Most importantly, the ring lattice is highly clustered.  Connected nodes have 

many edge partners in common.  In a social network, this is the equivalent of having 

friends who are also your friend’s friends.  This clustering reflects the propensity of true 

social networks to display high transitivity and to contain highly-connected cliques.  

However, a perfectly regular ring lattice is too highly clustered to accurately represent 

true network structures. 
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 Ring lattice graphs have a high diameter – the greatest distance between any two 

nodes.  Here, distance is defined as the number of intermediate nodes one must visit in 

the shortest path that follows valid edges from one node to another.  Ring lattice graphs 

have a high diameter, because nodes are only connected to their neighbors.  It takes many 

edge traversals through intermediate nodes to reach the opposite side of the lattice. 

 True networks are often “small-world” networks.  As Watts and Strogatz 

demonstrated with data on the power grid of the western United States, the collaboration 

graph of film actors, and the neural network of the worm Caenorhabditis elegans, these 

networks are highly clustered and at the same time of low diameter. 

 Watts and Strogatz provided a model to transform regular graphs into more 

realistic representations of small-world networks.  They introduced the parameter β 

which takes as its value the probability of rewiring each edge in a graph.  Rewiring an 

edge meant keeping one node (think of this as the source) fixed and choosing a second 

node (the destination) at random.  At β = 0, a ring lattice would be unchanged.  At β = 1, 

the lattice would be completely transformed into a random graph.  At low values of β, 

clustering remains high, while diameter falls quickly, creating a small-world network. 

 The graph in Figure 18 can be considered the result of applying the Watts and 

Strogatz process to the ring lattice in Figure 17 with β = .125. 

 No work has yet explored whether regular or irregular graphs are more easily 

learned.  The predictability of the patterns of connectivity in a regular graph may make 

these graphs easier to represent in memory.  Experiments in visual perception and 

memory have shown that the brain is biased toward symmetric representations (Freyd & 

Tversky, 1984; Tversky & Schiano, 1989).  Near-symmetric figures are distorted toward 
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symmetry in memory, but already symmetric figures are not distorted.  This work would 

suggest that regular graphs will be represented with fewer errors in memory.  This should 

be especially true for graphs represented as diagrams.  The symmetric or asymmetric 

nature of the graph will be visually salient in this case. 

 On the other hand, irregular graphs are a more realistic representation of actual 

networks, and may therefore be more familiar and easily remembered.  An irregular 

graph is more likely to match one’s expectations about the structure of a true social 

network.  In addition, regular graphs have no variability in the number of edges each 

node participates in.  (This is known as the node’s degree.)  Irregular graphs do have 

degree variability.  In previous experiments, degree variability has correlated positively 

with acquisition and has been a good predictor of performance.  These two factors predict 

an advantage in learning an irregular graph. 

 The structure of a graph is one factor likely to affect the rate at which knowledge 

about it is acquired.  Another is the type of training employed to impart that knowledge. 

Diagram or Verbal Training 

 When one works with network data, two forms of representation quickly become 

familiar: the edge list and the network diagram. 

 An edge list is the list of dyads (node pairs) that are connected in a graph.  The 

presence of a dyad in the list means the two nodes are connected, and the absence of a 

dyad means the nodes are not connected.  An edge list is a compact representation for 

sparsely connected networks.  In a well-organized edge list, one can quickly look up a 

particular node and examine all its connections. 
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 A network diagram is a visual representation of a graph.  Each node is represented 

with a circle, and lines connect the circles representing nodes that are connected by edges 

in the graph.  Network diagrams are also somewhat compact representations of sparsely 

connected graphs, because only existing edges are drawn.  One can determine all of the 

edges a node participates in by finding the appropriate circle and examining all of the 

lines connected to it.  Crossing lines can sometimes make this process difficult, however.  

One potential benefit of the network diagram is the opportunity to use the spatial layout 

of the nodes to provide information that must be inferred from edge lists.  For example, 

one can place nodes that are connected and that share other connection partners closer 

together to represent the metaphorical “closeness” of those nodes. 

 Given these two common network graph representations, two methods of teaching 

novel graph structures suggest themselves.  Presenting edge lists constituted Verbal 

training.  Names of connected nodes were shown together, as they would appear in an 

edge list.  Presenting network diagrams constituted Diagram training.  Circles labeled 

with node names were connected by lines representing edges. 

 The aphorism “A picture is worth 1000 words” succinctly paraphrases the 

hypothesis under test in regard to training.  It is often assumed that diagrams make better 

learning aids than verbal descriptions, but it has proven difficult to demonstrate (Cheng, 

2002; Larkin & Simon, 1987).  Cheng developed a system for diagramming electrical 

circuits that represented the relationships between current, voltage, resistance and power 

with geometric features such as line lengths and rectangle areas.  He compared training 

utilizing diagrammatic representations of circuits to conventional training focusing on the 

equations that relate theses concepts (e.g. Ohm’s Law: V = Ir).  On most measures, 
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performance was similar for those taught with diagrams and those given conventional 

training.  However, diagram training conferred reliable advantages on complex problems 

after a 5-day retention interval.  Cheng argued this result was due to diagram students 

attaining a more coherent understanding of the laws of electricity. 

 In summary, this experiment sought to address how the characteristics of network 

training and networks themselves affect acquisition.  Regular and irregular graphs were 

trained through both verbal descriptions and diagrammatic depictions.  Previous work 

weakly suggests that regular graphs should be easier to acquire and diagrams will make 

better teachers than verbal lists. 

Method 

Participants 

 172 UCSD undergraduates participated in the study. 

Design 

 The design was a 2 (Graph Structure) x 2 (Training Regimen) within-subject 

design.  All subjects were trained on one graph of each type (Ring Lattice and Watts-

Strogatz) once under each training regimen (Diagram or Verbal).  The order in which the 

four conditions were presented was chosen randomly for each subject, under the 

constraint that the number of subjects in each ordering should be as near equal as 

possible. 

Stimuli 

 All graphs consisted of 8 nodes.  Edges were undirected and unweighted.  Self-

edge loops were not allowed.  In each graph, there were 28 potential edges (i.e. 8 choose 

2).  Participants were trained on two graph structures: Ring Lattice and Watts-Strogatz. 
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 Graph Structure.  Figure 17 depicts the Ring Lattice graph.  The Ring Lattice 

graph had a regular structure.  Every node participated in four edges.  The nodes could be 

arranged in a ring such that each node was connected to its two nearest neighbors and its 

two second-nearest neighbors and no other nodes. 

 The Watts-Strogatz graph was identical to the Ring Lattice graph except for two 

perturbations.  Two of the sixteen edges in the Ring Lattice graph were “rewired.”  Two 

nodes lost connections and thus participated in only three edges, and two nodes gained 

connections and thus participated in five edges.  As can be seen in Figure 18, it remains 

likely that neighbors are connected, but some neighbor connections are missing and new 

long-distance connections have taken their place. 

 Name Lists.  Four lists containing four male names and four female names were 

constructed by choosing names from the Social Security Administration’s list of popular 

baby names in the 1990’s (Social Security Administration, 2011).  The initial letter of 

each name was unique within each list.  At the beginning of each block, the stimuli 

names were randomly mapped to nodes in the abstract graph structure. 

Procedure 

 The experiment was administered online through a PHP/mySQL/Flash Web 

application.  Subjects followed a link to the experiment website from the subject pool 

administration software. 

 Subjects first read through several short paragraphs of instructions.  They were 

told they would be learning “who is friends with whom” in four different groups of eight 

people. 
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 Participants were told to expect one of two types of training for each group of 

people.  The instructions stated: 

 Your job is to learn who is friends with whom.  To teach you, you will be shown  

 either diagrams or pairs. For pairs, you will see the names of two people who are  

 friends.  For diagrams, you will see 8 circles with a name by each one.  If two  

 circles are connected by a line, it means those two people are friends. 

 Subjects were informed that all links were reciprocal – if A was connected to B, 

then B was also connected to A.  Subjects were also instructed to expect test trials in 

which two stimuli would be presented and they were to answer YES the people were 

friends or NO they were not.  Subjects were instructed to give their best guess if they did 

not know the answer. 

 In the experiment, training trials alternated with test trials.  There were 4 blocks of 

64 training and test trials each.  Subjects completed one block of training and test trials 

for each combination of Graph Structure and Training Regimen.  Each subject received a 

randomly chosen permutation of conditions, with the constraint that the number of 

subjects in each permutation remained as equal as possible. 

 Diagram Training Trials.  In a diagram training trial, a visual representation of 

the graph to be learned was presented to the subject for 10 seconds.  The diagrams 

appeared as depicted in Figures 17 and 18, with the addition of a name next to each node.  

The words “Friends are connected by lines.” appeared above the diagram. 

 Verbal Training Trials.  In a verbal training trial, one node was selected to be the 

focus of training.  Nodes were sampled without replacement from the list of 8 nodes until 
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all had been selected.  This process then repeated.  Thus, over the course of 64 trials, each 

node was the focus of training exactly 8 times. 

 All of the edges that involved the node in focus were presented to the participant.  

An edge presentation began with a blank, white screen presented for 500 milliseconds.  

Next, the name of the training node appeared alone for 500 milliseconds.  The words “is 

friends with” appeared to the right of the training node, and 500 milliseconds later, the 

name of a node connected to the training node.  The complete stimulus (e.g. Amanda is 

friends with Benjamin) remained onscreen for 1 second.  This process repeated for every 

edge involving the node to be trained. 

 Test Trials.  In a test trial, two names appeared next to each other.  Below the 

names was the prompt “Friends?”.  Below the prompt were two equally-sized light-grey 

buttons labeled YES and NO. 

 Feedback was provided after the subject made a response.  The button for the 

correct answer was highlighted, and a 300 millisecond sound clip of a bell was played for 

a correct response or a buzzer for an incorrect response. 

 For each graph, subjects were tested on an equal number of valid (existing) and 

invalid (non-existent) test edges.  The set of valid edges and (separately) the set of invalid 

edges were randomly sampled without replacement until all in a set had been shown.  At 

that point, all of the edges in the set became available again for re-testing.  This 

procedure was followed so that responses should be distributed evenly between YES and 

NO.  In each block, there were 32 valid test edge trials and 32 invalid test edge trials. 
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Results 

d’ for each combination of conditions is graphed in Figure 19.  In all conditions, 

d’ was statistically significantly greater than the value of zero expected from uninformed 

guessing.  A repeated-measures ANOVA with Greenhouse-Geisser correction was 

performed to test for effects of graph structure and training regimen.  The main effect of 

Graph Structure was significant F(1, 171) = 7.60, MSE = .39, p = .006.  Subjects’ d’ in 

Ring Lattice blocks was 1.04 and was reliably higher than the .92 d’ in Watts-Strogatz 

blocks. 
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Figure 19.  d’ in each condition in Experiment 1.  The main effect of graph structure, the main effect of 

training and the interaction of training and graph structure are significant. 
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The main effect of Training Regimen was significant F(1, 171) = 59.50, MSE = 

..74, p < .001.  Subjects’ d’ in Diagram training blocks was 1.23 and was reliably higher 

than the .73 d’ in Verbal training blocks. 

The interaction between Graph Structure and Training Regimen was significant 

F(1, 171) = 10.08, MSE = .37, p = .002.  Paired-sample t-tests reveal that the d’ 

advantage conferred by Diagram training is greater for Ring Lattice graphs as opposed to 

Watts-Strogatz graphs.  Under Verbal training, no reliable difference between graph 

structures is observed. 

Discussion 

 For both graphs, diagram training led to better acquisition than verbal training.  A 

regular, ring-lattice graph was easier to learn than the same graph slightly perturbed into 

an irregular form.  However, this was only the case under one form of training.  Verbal 

training leads to poorer performance no matter the structure of the graph.  In all cases, 

there is learning.  Participants do learn to discriminate existing friendship edges from 

non-edges. 

 The results of this experiment strongly suggest a practical recommendation 

accompanied by a theoretically interesting caveat.  The practical recommendation is to 

represent a network graph with a diagram whenever possible if the goal is to help others 

understand its structure.  However, it is necessary to take care in constructing the proper 

diagram. 

 In their theoretical treatise on the utility of diagrams in problem-solving, Larkin 

and Simon (1987) were adamant that it is not enough to create just any arbitrary diagram.  

Instead, they argued diagrams provide advantages by following three conventions: 
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• Diagrams group together all information that is used together, thus avoiding 

large amounts of search for the elements needed to make a problem-solving 

inference. 

• Diagrams typically use location to group information about a single element, 

avoiding the need to match symbolic labels. 

• Diagrams automatically support a large number of perceptual inferences, which 

are extremely easy for humans. 

 Network diagrams meet all three conditions.  They group together all information 

into one figure.  In fact, all nodes and edges must be present or else a network diagram 

would provide misleading information.  Network diagrams use location (circles) to group 

information about elements (nodes).  Although the difference may seem trivial at first 

glance, the results of this experiment imply that a node labeled Alice with lines reaching 

out to Bob and Carol is a more effective representation than the two statements “Alice is 

friends with Bob” and “Alice is friends with Carol.”  Network diagrams support 

perceptual inferences, if care is taken creating the diagrams.  In the experimental stimuli, 

nodes placed near each other were likely to be friends.  In addition to examining the lines 

connecting node markers, simple proximity of the markers could be used as a heuristic 

for inferring whether nodes were connected by an edge.  For Watts-Strogatz graphs, 

proximity was not the perfect cue it was for Ring Lattice graphs and performance in the 

Diagram condition suffered. 

 The observation that learning a Watts-Strogatz graph benefits less from a diagram 

than a Ring Lattice graph leads to an important caveat.  Though the Ring Lattice graph 

was the “regular” graph and the Watts-Strogatz graph the “irregular” graph in this study, 
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the Watts-Strogatz graph is still mostly regular.  The value of β for the Watts-Strogatz 

graph was only .125.  Thus, 87.5% of the edges are the same as those in a perfectly 

regular ring lattice.  This difference was enough to create a reliable decline in the 

advantage of a diagram over a verbal description.  The advantage is likely to continue to 

decline as β increases.  At β = 1, the graph would be completely randomly determined, 

and it is possible the benefits of a diagram would no longer apply and the advantage over 

a verbal description could be lost.  If one imagines the spaghetti-like mess of a diagram 

for a random graph, a diagram might even provoke a disadvantage over a verbal 

description.  These predictions should be tested empirically. 

 The previous caveat might be reframed as an admonition to shape a diagram to 

reflect the network.  The arrangement of nodes in the experimental stimuli was perfect 

for the Ring Lattice graph, but not for the Watts-Strogatz graph.  A reshaping that 

reflected the more central position of the nodes that gained edges in the Watts-Strogatz 

perturbation may have lessened the decrease in the efficacy of diagram training.  There 

are many methods to shape network diagrams, and one should choose the method that 

best represents the underlying structure of the graph. 

 As a case in point, it is interesting to examine a particular set of errors that 

subjects made while acquiring Watts-Strogatz graph structure.  There are four errors that 

could be called “symmetry errors,” because they imply the graph was perceived or 

remembered as more symmetrical than it actually was.  The four edges marked with 

broken grey lines in Figure 20 depict these potential errors.  In two cases, the error 

involves a false-alarm response, i.e. the subject mistakenly reports an edge exists when it 

does not.  In the other two cases, the error involves a miss response, i.e. the subject 
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mistakenly reports an edge does not exist when it does.  These errors occurred in roughly 

equal numbers in Verbal and Diagram training conditions.  Keep in mind, however, that 

subjects made reliably fewer errors in Diagram training.  The proportion of errors that are 

symmetry errors was higher in the Diagram condition (17.8%) than it was in the Verbal 

condition (15.6%).  This difference can be examined within-subject, and a paired-sample 

t-test approached significance t(171) = 1.91, p = .057. 

  

Figure 20.  A Watts-Strogatz graph illustrating potential symmetry errors.  Dashed grey lines indicate 
false-alarm symmetry errors.  Dotted grey lines indicate miss symmetry errors. 

 
 

 When trained with a diagram, subjects remembered (or perceived) irregular 

network graphs to be more symmetrical than they actually were.  This conclusion accords 

well with findings of symmetry bias in visual form perception and memory (Freyd & 

Tversky, 1984; Tversky & Schiano, 1989).  Tversky and Schiano showed subjects 

asymmetric curves that looked like normal curves skewed to various degrees either left or 

right.  Subjects were asked to draw from memory the curve they had studied.  Subjects’ 
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drawings, on average, were more symmetrical than the studied stimulus.  The same effect 

(to a lesser degree) was present when subjects merely copied a stimulus they had in front 

of them.  The curves were both misperceived and misremembered as more symmetrical 

than they were.  Provisionally, it can be suggested that the same process led to the greater 

proportion of symmetry errors in the Diagram condition (in which this effect could 

operate) than the Verbal condition (in which it could not). 

 One should be mindful of the brain’s symmetry bias when representing network 

graphs that are not symmetrical.  Symmetry bias is greatest for near-symmetric stimuli 

and weakens the further from symmetry a form strays.  When constructing a diagram for 

an irregular graph, it may be wise to accentuate the asymmetries in the diagram to avoid 

the errors that would arise due to the brain’s tendency to erase small deviations from 

symmetry. 

4.2  Experiment 2 

 The previous experiment compared the acquisition of graphs at two points on the 

regularity-to-randomness dimension.  There are many other dimensions on which graphs 

may vary.  One of the most fundamental is density. 

 Graph density is defined as the proportion of possible edges that are valid edges.  

Density takes a value between zero and one.  An empty graph contains no edges and has 

density zero.  A fully connected graph contains all possible edges and has density one.  In 

a low density graph, few of the edges that might exist do exist.  In a high density graph, 

most of the edges that might exist do exist. 
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 Density is perhaps the most informative single number that describes a graph.  

With just the density, one can place a subjective probability on the existence of each edge 

in a graph.  (All probabilities would be equal and equal to the density.) 

 One definition of graph entropy relies solely on graph density and the number of 

nodes in the graph (Li, Wang, Wang & Zhou, 2008).  Graph entropy is a measure of the 

information content of a graph.  Calculating graph entropy is an attempt to quantify – in 

bits – the minimum size a message would need to be to completely describe a graph.  

There are competing definitions of graph entropy (see Solé & Valverde, 2004 and 

Gadouleau & Riis, 2011).  I use the definition of Li, Wang, Wang and Zhou exclusively 

here, because it is the most straightforward to apply and explain. 

 Li entropy is directly analogous to binomial entropy.  Figure 21 plots entropy as a 

function of the probability of an event X.  If event X is sure to never happen and thus has 

probability zero, there is no doubt about the outcome and no information gained when X 

does not occur.  Thus entropy is zero when the probability of X is zero.  A very similar 

argument explains why entropy is zero when the probability of X is one.  It is sure to 

happen, and no information is gained when it does.  Maximal entropy exists when the 

probability of X is .50.  This is the least predictable system, and thus uncertainty as to the 

outcome is greatest.  When the outcome is revealed, uncertainty is reduced to zero.  The 

greatest change in information occurs in this case. 
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Figure 21.  Entropy as a function of the probability of an event X. 
 

 

 The Li entropy of a graph is nearly identical, except that graph density is 

substituted for event probability.  Figure 22 plots Li entropy as a function of graph 

density for graphs of three different sizes.  The shape of the function is the same for all 

three graphs – zero at density zero or one and maximal at density = .50.  As one would 

expect, larger graphs are defined to contain more information, because there are more 

independent events (i.e. edges) occurring with a given probability (i.e. density). 
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Figure 22.  Li entropy as a function of graph density for graphs of 4, 6 and 8 nodes. 
 

 

 Li entropy makes a strong prediction regarding density and acquisition.  Given the 

assumption that people acquire information at a constant rate (on average) it should take 

longest to approach total knowledge of a medium-density graph, because medium-density 

graphs contain the most information.  Low and high density graphs contain less 

information.  Low and high density graphs should be more easily learned because there is 

a default state for edges (invalid and valid, respectively) and learning can be focused on 

the exceptions to the general rule.  Either state (valid or invalid) is equally likely in a 

medium-density graph. 

 Separate from the effects of density on acquisition, this experiment will again 

address the practical question of how best to communicate graph structure.  One fact to 

keep in mind is that many interesting networks are sparsely connected.  For example, for 
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all the many hyperlinks on the World Wide Web, it is absolutely the case that most 

websites do not link to most other websites.  The same is true for social networks.  Most 

people will never in their life interact with most other people. 

 Because many interesting networks are sparsely connected, it is tempting to teach 

the structure of a network by enumerating only its valid edges.  If all unnamed edges can 

be assumed to not exist, naming only valid edges would seem the most efficient method 

to communicate the existing structure of a graph.  However, the acquisition of high-

density graphs may suffer in this context.  If most edges are valid, and one is trained on a 

list of valid edges, learning depends on noticing which edges are absent from the list – a 

difficult task.  To distinguish it from other types of training, training on valid edges only 

will be referred to as Positive training in this manuscript. 

 Another method of training would be to spend equal time training the set of valid 

edges and the set of invalid edges.  Consider pairs of training edges in which one edge is 

always a valid edge and the other is always an invalid edge.  This type of training seems 

like a natural fit for medium density graphs.  In addition to efficiently revealing the state 

of edges in a medium density graph, this method suggests a medium density state by 

alternately presenting valid and invalid edges.  For the same reasons, this method may be 

ill-suited to low and high density graphs.  Edges of the rare class will necessarily be 

oversampled and repeated, which may be a waste of training time while edges in the 

common class have yet to be revealed.  Additionally, training on equal numbers of valid 

and invalid edges may give the learner the false impression that a graph is of medium 

density when it is not.  Training on valid and invalid edge pairs will be referred to as 

Equal training. 
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 Finally, rather than selecting edges for training in any systematic manner, one 

might simply sample edges and reveal their state to the learner.  Researchers and pollsters 

randomly sample populations in order to efficiently gather information about general 

tendencies.  Similarly, a random sample of edges will quickly provide information about 

density, because the ratio of valid to invalid edges trained should converge toward the 

true ratio.  A random sample avoids the redundant presentation of the rare class that is a 

problem with Equal training.  The learner will not need to infer that an edge is invalid 

through its absence as he would under Positive training.  Invalid edges will be explicitly 

named as such.  Training on randomly sampled edges will be referred to as Sample 

training. 

 This experiment compares three types of training applied to graphs of three 

different densities.  The results will have implications for theories of graph information 

complexity and will provide practical recommendations regarding how best to teach 

network structure. 

Method 

Participants 

 225 users of Amazon Mechanical Turk participated in the study.  Participants 

ranged in age from 18 to 60 years old with a mean age of 32.  60.4% of the subjects were 

female.  Participants were paid $0.45 upon successful completion of the experiment. 

Design 

 The design was a 3 (Graph Density) x 3 (Training Regimen) between-subject 

design.  Each subject was trained and tested on one graph under one training regimen.  
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Subjects were randomly assigned to conditions, under the constraint that the number of 

subjects in each condition should be as near equal as possible. 

Stimuli 

 All graphs consisted of 8 nodes.  Edges were undirected and unweighted.  Self-

edge loops were not allowed.  In each graph, there were 28 potential edges (i.e. 8 choose 

2).  A participant was trained on one of three graphs varying in density. 

 Graph Density.  Figure 23 depicts the three graph stimuli.  In an 8-node, 

undirected graph there are 28 potential edges.  The Low Density graph contains 7 edges 

and has density 7/28 = .25.  The Medium Density graph contains 14 edges and has 

density 14/28 = .50.  The High Density graph contains 21 edges and has density 21/28 = 

.75. 
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Figure 23.  Network diagrams of the Low, Medium and High Density graph stimuli. 
 

 

 Previous work (Chapters 2 and 3) has shown that subjects learn scale-free graphs 

– graphs in which few nodes have many connections and many nodes have few 

connections – most quickly.  The stimuli graphs were constructed to be scale-free in their 

structure, so that subjects would not find structure to be an impediment to their learning. 

 It is worth noting that the High Density graph contains subgraphs of valid edges 

equivalent to the valid edges of the Medium and Low Density graphs, and the Medium 

Density graph contains a subgraph of valid edges equivalent to the valid edges of the 

Low Density graph.  Also, the Low Density graph contains subgraphs of invalid edges 

equivalent to the invalid edges of the other two graphs and the Medium Density graph 
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contains a subgraph of invalid edges equivalent to the full set of invalid edges within the 

High Density graph. 

 Name Lists.  Four lists containing four male names and four female names were 

constructed by choosing names from the Social Security Administration’s list of popular 

baby names in the 1990’s (Social Security Administration, 2011).  The initial letter of 

each name was unique within each list.  At the beginning of each block, the stimuli 

names were randomly mapped to nodes in the abstract graph structure. 

Procedure 

 The experiment was administered online through a PHP/mySQL/Flash Web 

application.  Subjects followed a link to the experiment website from the Amazon 

Mechanical Turk user interface. 

 Subjects first read through several short paragraphs of instructions.  They were 

told they would be learning “who is friends with whom” in a group of eight people.  It 

was explained they would learn by observing pairs of names, some labeled FRIENDS 

and some labeled NOT FRIENDS.  Subjects were informed that all links were reciprocal 

– if A was friends with B, then B was also friends with A.  They were told to consider 

two people friends only if the experiment explicitly named them as friends. 

 Subjects were instructed to expect test trials in which two stimuli would be 

presented and they were to answer FRIENDS if the people were friends or NOT 

FRIENDS if they were not.  Subjects were instructed to give their best guess if they did 

not know the answer. 

 In the experiment, training trials alternated with test trials.  There were 112 

training and test trials.   
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 Training Trials.  Each training trial consisted of two edges presented to the 

subject.  If an edge to be trained was valid (that is, if the two nodes were connected in the 

graph), the names associated with each node were presented in green, close together, with 

a line between them and the word FRIENDS printed above.  If the edge to be trained was 

invalid (not connected in the graph), the names were presented in red, far apart, with 

empty space between them and the words NOT FRIENDS printed below.  Figure 24 

depicts a training trial for a valid edge and Figure 25 an invalid edge. 

 
Figure 24.  A valid edge training trial. 

 

 
Figure 25.  An invalid edge training trial. 

 
 

 An edge presentation began with a blank, white screen presented for 500 

milliseconds.  Next, the name of a node appeared alone for 750 milliseconds.  Then the 

name of the second node appeared.  (At this point, the color and spacing of the names 

already identified the edge as valid or invalid.)  After 750 milliseconds, the label 
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FRIENDS or NOT FRIENDS appeared along with a connecting line in the case of 

FRIENDS.  The complete stimulus remained onscreen for 1 second. 

 In the Positive training condition, subjects observed valid edges only.  All valid 

edges were sampled without replacement until all had been presented.  This process then 

repeated.  The number of times each edge was trained depended on the density of the 

graph.  The lower the density, the fewer valid edges, and thus the more training 

repetitions there were of each valid edge. 

 In the Equal training condition, subjects observed one invalid edge for each valid 

edge.  Valid edges were sampled without replacement and paired with invalid edges 

sampled (separately) without replacement.  When a sampling process ran out of edges, all 

edges of that type (and only that type) were made eligible for sampling again.  

Consequently, valid edges were repeated during training more often than invalid edges in 

the Low Density graph condition.  The converse was true in the High Density graph 

condition.  In the Medium Density graph condition, each edge was the object of training 

an equal number of times. 

 In the Sample training condition, subjects observed randomly sampled potential 

edges.  All potential edges were sampled without replacement until all had been 

presented.  This process repeated exactly 8 times.  (28 potential edges x 8 presentations = 

224 = 112 training trials x 2 edges per trial.) 

 Test Trials.  Potential edges were randomly sampled for testing without 

replacement until all had been tested.  This process then repeated.  All 28 edges were 

tested 4 times each. 
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 In a test trial, two names appeared next to each other.  Above and below the 

names were two equally-sized light-grey buttons.  The upper button was labeled 

FRIENDS and the lower button was labeled NOT FRIENDS. 

 Feedback was provided after the subject made a response.  The button for the 

correct answer was highlighted, and a 300 millisecond sound clip of a bell was played for 

a correct response or a buzzer for an incorrect response.  Near the button that the user 

clicked, a smiling face appeared if the response was correct, or a frowning face if the 

response was incorrect.  Figure 26 depicts a test trial in which the subject incorrectly 

chose the NOT FRIENDS response. 

 
Figure 26.  A test trial in which the subject chose NOT FRIENDS as a response when the correct answer 

was FRIENDS. 
 
 

Results 

d’ for each combination of conditions is graphed in Figure 27.  In all conditions, 

discrimination was statistically significantly greater than the d’ value of zero expected 
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from uninformed guessing.  ANOVA was performed to test for effects of graph density 

and training regimen.  The main effect of Graph Density was marginally significant F(2, 

216) = 2.25, MSE = .49, p = .10.  Mean d’ for Low Density graphs was .99, while 

Medium Density d’ was .80 and High Density d’ was .77. 
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Figure 27.  d’ in each combination of graph density and training regimen condition. 

 
 

 There was not a consistent main effect of Training Regimen F(2, 216) = 1.21.  

Instead, the influence of training was apparent in the interaction of Training Regimen and 

Graph Density F(4, 216) = 8.15, MSE = .49, p < .001.  For Medium Density graphs, 

subject performance is similar across training conditions.  Subjects excel when a Low 

Density graph is trained exclusively with valid edges.  High Density graphs are better 

learned through Sample training than Positive training. 
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Discussion 

 The predictions made based on calculations of Li entropy did not hold.  It was not 

the case that Low and High Density graphs were consistently acquired more quickly than 

the Medium Density graph. 

 Still, the results demonstrate that it is possible to construct training such that 

subjects learn a low density graph quickly.  The results also imply that acquisition of high 

density graphs varies by training regimen and is best when training consists of sampling 

edges and revealing their state.  It would be interesting to attempt to train a high density 

graph through “negative” training – that is, teach the learner only which edges are 

invalid.  It is possible the extraordinary performance seen for positive training of the low 

density graph could also be attained for high density graphs in this way.  It is not clear 

how (or if) one could design training so that learning would be fastest for graphs of 

medium density. 

 Training regimen on its own had no reliable effect.  However, the interaction 

makes clear the practical recommendations to be made regarding how to teach network 

graph structure.  If the network to be trained is of low density, it is best to train using only 

positive examples.  Choice of training regimen seems to matter less for graphs of medium 

to high density.  One might wish to favor random edge sampling.  Discrimination 

performance trends higher the more training shifts away from systematic selection of 

edges and toward simple random sampling. 

Conclusion 
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 There is no one-size-fits-all best method for the training of graph structure.  

Making general recommendations without sounding vacuous or adding a string of 

qualifications is not easy.  Nonetheless, following is a short list: 

• Diagram the network.  This makes all information immediately available to the 

learner.  The learner can focus his attention as necessary to learn about specific 

elements in the graph. 

• Arrange the nodes in the diagram to emphasize the information you wish the 

learner to acquire.  If the graph is regular, make the diagram representation 

symmetrical.  If it is near-regular, emphasize the asymmetry or risk symmetry 

errors. 

• If it is not feasible to diagram the network, select the appropriate form of edge 

training based on graph density.  Low density graphs should be trained by 

enumerating the valid edges.  All other graphs will likely benefit from a simple 

strategy of randomly sampling potential edges and revealing their state. 

 

 The current work illuminates a critical shortcoming in network theory.  It is not 

well-defined how we should quantify the complexity or information content of a graph.  

Graph entropy failed to consistently predict acquisition rates.  There exists a great 

multitude of quantifiable graph features (density, connectedness, efficiency, transitivity, 

etc.).  No one variable has yet asserted itself as the best predictor of acquisition difficulty.  

Finding the right variable (or minimum set of variables) to adequately describe the 

informational complexity of a network would be very useful. 



87 

 

 More work is necessary to advance on this goal.  Better models will aid with 

practical applications such as predicting how long it will take to learn a given network 

and how to construct networks and hierarchies that are easier for humans to internalize 

and understand.  Additionally, better models will provide insight into how the brain 

forms and maintains associations in large, potentially very complex spaces. 
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Chapter 5:  Modeling Learning Performance 

 In all the experiments in this work, learning the structure of a network has 

followed a number of patterns: accuracy increases with more training, accuracy is higher 

when learning scale-free graphs as opposed to random graphs, and accuracy is highest 

when tested on edges containing nodes of extreme centrality.  Here, I test two simple 

models of graph acquisition.  These learning systems were given the same input in the 

same sequence as human learners and tested on the same edges.  How the systems’ output 

matches and strays from subject performance sheds light on how humans approach the 

problem of learning a graph structure. 

Perfect Memory Model 

 The first class of model rests on one simple assumption: at each learning 

opportunity, the system (with some probability) forms a perfect representation in memory 

of the information presented and never forgets that information.  Because encoding is 

perfect, and there is no loss or interference at storage or retrieval, the model is called the 

Perfect Memory Model. 

 One parameter – p – represents the probability that a bit of information presented 

by the experiment is stored in memory.  If that bit of information is stored, the 

information is stored without distortion and for the duration of training and testing.  The 

model responds to test edge prompts for which it has information with perfect accuracy.  

If the state of the edges is unknown to the model, it will respond Yes with probability .50.  

Versions of the model at varying levels of p were trained and tested using training and 

testing histories identical to those of subjects in Experiment 2 of Chapter 2. 
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 Figure 28 plots the learning curves produced by the model and the data from 

subjects in the experiment.  The best fitting model is one with a low value of p.  A value 

of .05 produces a close match.  Interpreting this result provides a convenient rule-of-

thumb.  Recall that in this experiment, graphs had twenty nodes.  In each training trial, 

one node was chosen and presented together with a list of all nodes it formed an edge 

with.  By implication, the states of all possible edges involving the trained node (19 edges 

in all) were revealed.  Names present formed valid edges and names absent invalid edges.   
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Figure 28.  Accuracy as a function of training for subjects and five versions of the Perfect Memory Model.  

PM5, the version with probability of .05 to remember each trained edge is the best fit. 
 

 A value of p at .05 implies that the state of approximately one edge was learned 

per training trial.  (More precisely, this is the expected value of edges learned per training 

trial.)  The model suggests that despite the fact that all of the information about one 

node’s edges was available on each training trial, what subjects took away was 

knowledge about one edge. 
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 Another fact Figure 28 makes clear is that all of the information about each graph 

has been delivered to the model (and subjects) by the end of the second trial bin.  Trial 

bins are 10 trials wide, so this means after 20 trials the complete structure of the graph 

has been made known.  This makes sense, because each graph has 20 nodes, and one 

node is trained per trial.  If subjects had perfect memory (like a Perfect Memory Model 

where p = 1), they would know all there is to know about the graph.  For both subjects 

and models, all training after the first 20 trials repeats information they have already had 

at least one opportunity to learn. 

 Figure 29 plots accuracy over the course of the experiment separated by graph 

structure.  It can be seen that unlike human learners, the model does not distinguish 

between random and scale-free graphs.  The model grabs bits of information regarding 

edges as stochasticity allows and is not affected by graph structure. 
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Figure 29.  Accuracy as a function of training for subjects and PM5.  The subject data (open markers) 
shows separation by graph structure.  The model data (filled markers) does not differ between graph 

structures. 
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 Figure 30 plots accuracy as a function of mean eigenvector centrality of the edge 

nodes.  The model curve is flat, but human performance (as it has been in repeated 

experiments) is best for the most peripheral and the most central nodes. 
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Figure 30.  Accuracy as a function of test node centrality for subjects and PM5.  The subject data (open 

markers) rises at both extremes.  The model (filled markers) does not respond to node centrality. 
 

 

 In addition, the model responded Yes only 50% of the time, whereas subjects 

responded Yes 55% of the time, showing the usual yes-bias in responses. 

 At the highest level of abstraction, the Perfect Memory Model does well at 

producing a learning curve similar to that of human subjects.  It also quantifies just how 

much information subjects take in at each training trial and indicates it is just a fraction of 

the available information.  The model fails to capture the more subtle patterns of human 

performance, however.  The model is insensitive to graph structure and node properties.  

It cannot reproduce the yes-bias ever present in human responses. 
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Frequency Heuristic Model 

 The Perfect Memory Model assumed that learning was focused on edges.  The 

Frequency Heuristic Model instead focuses on nodes.  This model does not even bother 

to represent beliefs about the states of possible edges.  The Frequency Heuristic Model 

simply counts the number of occurrences of each node during training and relies on the 

(correct) assumption that highly connected nodes appear more often to make educated 

guesses regarding the existence of edges. 

 Specifically, the model stores 20 counts, one for each node.  Each time a node 

was presented for training and each time it appeared in a list of connected nodes, the 

node’s counter was incremented.  When an edge was presented for testing, the model 

made two calculations.  First, it summed the incidence counts of the two nodes in the test 

edge.  Then it calculated the mean summed incidence counts over all possible two-node 

combinations.  Thus, it calculated 190 sums.  For every possible edge in the graph, it 

added the incidence counts of the two nodes.  The model then compared two numbers.  

The first was the summed incidence for the two nodes in the test edge.  The other number 

was the mean of the summed incidences for the other 189 possible edges.  If the summed 

incidence of the test edge was greater than the mean for all other possible edges, the 

model responded Yes.  If the test edge value was less than the mean, the model responded 

No.  If the values were equal, the model responded Yes with probability .50. 

 (This model was compared to a model that used the median as the criterion and to 

a model that used the incidence counts in a softmax decision process.  No substantial 

differences in model fit were found.  Being the simplest to explain and implement, the 

mean model is presented exclusively.) 
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 Figure 31 plots the learning curve produced by the model and the data from 

participants in the experiment.  This simple model ignores the information about specific 

edges the training trials are meant to convey.  This simple model contains no free 

parameters that are tuned to this particular learning task.  And yet, this simple model 

performs better than subjects do. 
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Figure 31.  Accuracy as a function of training for subjects and the Frequency Heuristic Model.  FHM 

achieves higher accuracy, but asymptotes, whereas subject performance is still improving. 
 

 

 In defense of the human subjects, the model does possess complexity not 

immediately obvious.  The model keeps perfect track of 20 independent values at all 

times.  It averages 190 sums each time it answers a test prompt.  Introducing reasonable 

levels of noise to the model’s observations and calculations would necessarily decrease 

its performance. 

 Another trend to notice is that learning plateaus after trial bin 2.  This happens 

because the first 20 trials provide all of the useful relative frequency information.  After 
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this point, sets of training trials only multiply the incidence counts by a constant value.  

The different permutations of trained nodes subjects received introduces some random 

noise per trial bin (as can be seen in Figure 31), but no additional information can be 

learned nor any improvement in performance made. 

 Figure 32 plots accuracy over the course of the experiment and separated by 

graph structure.  The model possesses the same advantage for scale-free graphs over 

random graphs that human subjects have.  This is due to the greater variability in node 

degree present in scale-free graphs.  The frequency heuristic is simply more effective for 

scale-free structure than random structure. 
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Figure 32.  Accuracy as a function of training for subjects and the Frequency Heuristic Model.  The model 

performs better in the scale-free condition, just like subjects. 
 

 

 Figure 33 plots accuracy as a function of node centrality.  The model displays the 

same U-shaped accuracy curve as human subjects.  The frequency heuristic is more 

effective at classifying edges in which nodes are of extreme centrality.  Peripheral nodes 
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appear less often during training, and thus the model is likely to choose a No response 

when an edge contains these nodes.  Two peripheral nodes are unlikely to be connected, 

so the model’s bet is often a good one.  Similar logic explains why the model often 

responds correctly for central nodes. 
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Figure 33.  Accuracy as a function of test node centrality for subjects and FHM.  The model data displays 

the same U-shaped pattern as the subject data. 
 

 The yes-bias of the Frequency Heuristic Model is 63% and is even more severe 

than subjects’ yes-bias. 

 The Frequency Heuristic Model produces all the patterns of performance evident 

in human data.  This suggests that human learners rely on a similar heuristic.  The failure 

of the Perfect Memory Model to capture these patterns, and the low value of p that 

produced a good fit suggests that human learners rely on the heuristic more than they rely 

on storing specific edge information in memory. 
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 Figure 34 sketches a multinomial model that subsumes the two models 

implemented here. 

• The probability p is that from the perfect memory model.  It represents the 

probability the state of the test edge has been represented in memory.  p is 

likely to be low, at least during early training. 

• Probability q extends the perfect memory model.  It allows for the 

possibility that the learner stored the wrong value in memory or that the 

learner makes a response error.  Fitting a value to q would reveal how 

likely these events are. 

• Probability (1-p) is the probability no specific edge information is stored 

for a test edge.  It is likely to be high, at least during early training. 

• Probability r is the probability that the learner resorts to the frequency 

heuristic.  This probability is likely to be high, making this path the most 

likely in the model. 

• Probability (1-r) is the probability the learner does not have enough 

information to trust the frequency heuristic or is not willing to expend the 

effort.  The subject will simply guess. 
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Figure 34.  A multinomial model that subsumes the Perfect Memory and Frequency Heuristic Models.  

 

 Fitting values to these parameters after varying amounts of training would reveal 

the degree to which each branch is employed and how this varies as the learner accrues 

knowledge.  It is necessary to contemplate such things if one imagines how learning 

would continue past the amount of training involved in the current experiment. 

 Surely, with enough training one could learn even a complex network with 

complete fidelity.  The Frequency Heuristic Model is successful at matching the current 

data, but it is not capable of achieving full knowledge.  Indeed, the curves suggest the 

model reaches its upper asymptote of accuracy approximately halfway into training.  

Human learning appears to continue through the last trial, albeit at a slow rate.  The full 

multinomial model, though somewhat unwieldy, is capable of representing a learner at 

any stage of learning – from novice to infallible expert. 
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Chapter 6:  Concluding Remarks 

 Network graphs describe how everything and everyone is connected.  It is 

essential that we understand them.  Hopefully, this work will add to our knowledge of 

how the brain comprehends complex systems and point the way toward techniques to 

make that comprehension more efficient. 

 I have introduced the Anthropomorphic Acquisition Hypothesis – which states 

that people use their own social network graph as a model for learning new networks.  

The hypothesis receives some support.  People learn networks with the same scale-free 

structure as human relationship networks more quickly than random networks.  This is 

true regardless of the surface description of the network or the training task.  However, it 

is not necessarily true that the reason scale-free graphs are learned efficiently is because 

of their resemblance to social network structure.  As they do in many areas, it may be that 

human learners are simply responding to the statistics of the environment.  The fact that 

the frequency heuristic model mimics human performance so well suggests that (at least 

initially) learners identify nodes as generally well-connected or poorly-connected and 

make educated guesses about the validity of edges based on these observations. 

 Some results are not consistent with the Anthropomorphic Acquisition 

Hypothesis.  A perfect, symmetric network was learned more readily than a less regular, 

more realistic network.  This suggests more spatial, perhaps perceptual processes are at 

work representing networks in the brain rather than those concerned with social 

cognition. 
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 A cavalcade of future studies suggest themselves in this line of research.  For 

example, what accounts for individual differences in acquisition?  Will intelligence 

predict who will acquire a new network structure quickly?  Do people with larger and 

denser social graphs learn network structure more efficiently? 

 It is clear that graph structure affects acquisition.  It is encouraging that the 

current experiments found no evidence that the surface description of a network graph 

had any effect.  If it is indeed the case surface description matters little or not at all, 

general theories of graph acquisition may be simpler and yet still powerful. 

 As the world becomes more connected and complex, an understanding of network 

graph acquisition will become more and more essential.  It is already necessary today in 

fields as disparate as integrated circuit design and international counterterrorism.  

Studying acquisition of graph structure will give us the means to learn natural networks 

more efficiently and to design new networks and hierarchies in a way that best suits our 

cognitive architecture. 
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Appendix 

Experiment 1 Name Stimuli 

Students 
Andrew Anthony Ashley Amanda 
Brittany Brooke Brandon Benjamin 
Christopher Cody Courtney Chelsea 
Danielle Diana Daniel David 
Eric Evan Emily Elizabeth 
Faith Frances Frank Forrest 
Gregory Gabriel Grace Gina 
Hannah Heather Hunter Henry 
Ian Isaac Isabel Irene 
Jessica Jennifer Joshua Jacob 
Kyle Kevin Kelsey Katherine
Laura Lindsey Logan Luke 
Michael Matthew Megan Melissa 
Nicole Natalie Nicholas Nathan 
Oscar Omar Olivia Octavia 
Paige Patricia Patrick Paul 
Ryan Robert Rachel Rebecca 
Sarah Samantha Steven Samuel 
Thomas Timothy Tiffany Tara 
Vanessa Veronica Victor Vincent 

 

Cities 
Alchevsk Ardee Abingdon Abiko 
Bibrka Balbriggan Bacup Bando 
Chasiv Carlow Caistor Chiba 
Debaltseve Dundalk Dagenham Daito 
Enerhodar Edenderry Ealing Ena 
Fastiv Fermoy Fairford Fujiidera 
Hadiach Gorey Gorleston Gamagori 
Ichnia Hillsborough Harlow Habikino 
Kaharlyk Inver Ilford Ibaraki 
Makiivka Johnstown Jarrow Joso 
Nadvirna Kells Keighley Kadoma 
Obukhiv Leixlip Langport Matsubara 
Pavlohrad Macroom Nailsea Nagareyama
Radekhiv Naas Oakengates Obu 
Saky Omagh Paddock Ryugasaki 
Talne Passage Ramsey Saijo 
Uhniv Shannon Saffron Tahara 
Valky Templemore Tadcaster Urayasu 
Yahotyn Westport Uckfield Wajima 
Zhovti Youghal Ventnor Yachimata 
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Computer Servers 
A646.net A131.com A508.net A505.com 
B269.com B764.com B316.com B686.net 
C828.net C979.com C907.com C023.com 
D893.com D097.net D137.com D034.com 
E951.net E177.com E590.net E270.com 
F230.com F481.net F212.net F766.net 
G133.com G814.com G372.com G801.net 
H035.net H979.com H077.net H427.com 
I864.net I723.net I522.net I230.com 
J830.net J597.com J470.net J973.net 
K156.com K470.com K518.com K159.com 
L969.net L174.net L268.com L858.com 
M415.com M243.com M233.net M435.net 
N625.com N575.net N249.com N611.net 
O655.com O167.com O720.net O759.com
P119.com P968.net P221.com P196.net 
Q495.net Q731.net Q838.com Q594.net 
R119.net R766.net R730.net R637.com 
S707.net S734.net S194.net S703.com 
T743.com T299.com T737.net T547.net 

 

Experiment 2 Name Stimuli 

Alchevsk Adrasmon Asahan Abiko 
Bibrka Buston Burmeso Bando 
Chasiv Chkalovsk Cilacap Chiba 
Debaltseve Dushanbe Demak Daito 
Enerhodar Farkhor Elelim Ena 
Fastiv Ghafurov Fef Fujiidera 
Hadiach Hisor Gunung Gamagori 
Ichnia Isfara Ilaga Habikino 
Kaharlyk Jomi Jepara Ibaraki 
Makiivka Khujand Keerom Joso 
Nadvirna Mastchoh Lotu Kadoma 
Obukhiv Nurak Mappi Matsubara 
Pavlohrad Panjakent Nias Nagareyama
Radekhiv Qayroqqum Oksibil Obu 
Saky Rumi Puncak Ryugasaki 
Talne Sharora Rantau Saijo 
Uhniv Tursunzoda Sugapa Tahara 
Valky Vose Tegal Urayasu 
Yahotyn Yovon Wonogir Wajima 
Zhovti Zafarobod Yalimo Yachimata 

 




