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ABSTRACT OF THE DISSERTATION

The structure and analysis of a scene: A photometric approach

by

Satya Prakash Mallick

Doctor of Philosophy in Electrical Engineering (Signal & Image Processing)

University of California San Diego, 2006

Professor David Kriegman, Chair

Professor Nuno Vasconcelos, Co-Chair

The field of computer vision has grown enormously in the last decade, and significant

progress has been made in many different areas. Several reasonable solutions to techni-

cally challenging problems like stereo, optical flow, tracking, detection, recognition, shape

from shading, photometric stereo etc. have emerged. The principle challenge today is

to make these algorithms, designed and tested in laboratory conditions, to work in real

life situations. Several assumptions that make vision problems tractable, break down in

the real world. The most common among these assumptions is that the reflectance of

all objects in an image is Lambertian.

This dissertation focuses on algorithms that can be applied to a large class of

non-Lambertian materials whose reflectance can be described as a linear combination of

diffuse (matte) and a specular (gloss) term. We propose a transformation of the RGB

color space that recovers two purely diffuse components of an RGB color image. We

extend our approach to the case of multiple colored illuminants in a scene, and derive a

class of photometric invariants. These photometric invariants can then be used as inputs

to several computer vision algorithms to improve their performance. This is empirically

demonstrated for photometric stereo, shape from shading, stereo, optical flow, passive

photometric stereo, and color based segmentation.

While the problem of recovering two purely diffuse components of a color image

is well-posed, the problem of completely separating the specular and diffuse components

of a color image is an ill-posed one. We propose a unified approach to solve this problem

for images and videos of textureless as well as textured scenes. A partial differential equa-

tion is derived that uses neighborhood color information of a pixel to iteratively erode

xiv



the specular component of color. Finally, we introduce an application called Dichromatic

Editing – the process of independently editing and recombining the two components of

color to achieve a variety of visual effects.

This thesis also ventures into a relatively unexplored and difficult problem of

inferring information about a scene where refraction occurs. We present a generalization

of the optical flow equation for the case when light rays bend (due to reflection or

refraction) as they travel from an object in the scene to the camera. By solving the

unknowns in this flow equation, we show that it is possible to recover the path of light

transport as it travels from a background plane to the camera through a refractive

medium.
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1

Introduction

"Where shall I begin, please your Majesty?" he asked. "Begin at the beginning,"

the King said, very gravely, "and go on till you come to the end: then stop."

Alice in Wonderland

Lewis Carroll

A bundle of rays captured by a camera tells many interesting, yet incomplete stories

about the interplay between different materials and lights in the scene. With the knowl-

edge of the underlying physics of image formation, the images can be used to recover the

geometric structure, material properties, and light sources in the scene.

There are two parts to the photometric enterprise of analyzing a scene. The

first part deals with the formation of mathematical models for physical phenomena.

Photometry – established as a major field in the eighteenth century after Johann Heinrich

Lambert’s seminal work called Photometria – deals with the study of different physical

phenomena like reflection, refraction, dispersion, polarization, extinction, and spectral

distribution of light. Centuries of research has produced an excellent understanding of

the physics governing these different photometric phenomena.

The second part is the inverse problem of recovering information about a scene

based on physical principles. This line of research led by Berthold K.P. Horn in the 1970s

is referred to as "Physics based vision". It includes using the mathematical models for the

properties of surfaces , illuminants, and sensors to recover information about geometrical

shape, reflectance, color, shadows, inter-reflections, refractive indices of surfaces, and

path of light transport, as well as properties of the sensors such as a camera’s spectral

response curve. This dissertation extends the tradition of "Physics based vision".

1



2

The entire field of computer vision deals extensively with inference problems,

where images serve as observations of a scene, and the objective is to obtain certain

information about the scene. For example, in binocular stereo, two images of a scene

are used to obtain depth (structural) information about the scene. More often than not,

these inference problems are ill-posed, and a unique solution can be resolved only under

certain assumptions. At other times, assumptions are not strictly necessary for making

the problem well posed, but are used to make the problem more tractable leading to an

elegant solution. However, deviation from these assumptions in the real world can limit

the applicability of various algorithms. Sometimes, a minor variation of the algorithm

is able to handle this deviation. At other times, the assumption is so critical to the

development of the algorithm that the algorithm becomes unsuitable for the real world

and a new one needs to be devised from scratch.

In computer vision, it is common to assume that objects in an image are Lam-

bertian (matte). However, it is well known that different materials reflect light in widely

different ways. The interaction of a material with light is usually modeled as a four di-

mensional function called the Bidirectional Reflectance Distribution Function (BRDF).

Lambertian reflectance is the simplest form of the BRDF, and materials with a Lamber-

tian BRDF follow Lambert’s cosine law of reflection defined as

Definition 1.1. Lambert’s cosine law: The total radiant power observed from a "Lam-

bertian" surface is directly proportional to the cosine of the angle θ between the observer’s

line of sight and the surface normal.

The cosine law is explicitly used in algorithms like shape from shading, and

photometric stereo to recover the 3D structure of objects. The cosine law is a consequence

of the fact that Lambertian materials reflect light equally in all directions. As a result, if

the lighting in a scene remains the same, a surface patch appears the same when viewed

from two different camera positions. This property of Lambertian surfaces forms the

basic assumption in a broad range of vision algorithms like multiview stereo, optical

flow, tracking, and recognition.

Objects in the real world rarely follow the Lambertian reflection model. Con-

sequently, in each problem domain where the Lambertian assumption is made, there are

a few pieces of work that address the extension to non-Lambertian surfaces. In this

thesis we present a unified approach that can potentially improve the performance of all

algorithms that make the Lambertian assumption. Given that we cannot change the real

world around us, a natural question to investigate is whether we can modify the acquired
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Figure 1.1 Bidirectional Reflectance Distribution Function (BRDF) f(θi, φi, θr, φr), is
the ratio of reflected radiance along the direction (θr, φr) to the incident irradiance in a
particular direction (θi, φi).

images so that the Lambertian part of reflectance is isolated, and serves as input to all

vision algorithms that assume Lambertian reflectance. A significant part of this thesis

is devoted to answering the above question, and identifying the limitations of such an

approach.

We now define a few basic concepts necessary for understanding the rest of the

thesis. In Sec. 1.2 we discuss a few different vision problems, the algorithms used to

solve the problems, and the existing literature on handling non-Lambertian surfaces in

specific problem domain.

1.1 Background

At an appropriate scale, reflectance at a surface point is described by the bi-directional

reflectance distribution function.

Definition 1.2. Bi-directional Reflectance Distribution Function (BRDF) is

defined as the ratio of the reflected radiance (watts/meters2/steradians) in a particu-

lar direction (θr,φr) to the incident irradiance (watts/meters2) from direction (θi,φi).

Mathematically, the BRDF, f(θi, φi, θr, φr) is given by

f(θi, φi, θr, φr) =
δLr(θr, φr)

Li(θi, φi) cos θiδωi
(1.1)

where L denotes radiance and ω represents solid angle. The subscripts i and r are used

to denoted incident and reflected quantities. The BRDF of a material can also vary with
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the wavelength of light incident on it, in which case the BRDF f(λ, θi, φi, θr, φr) is a

five-dimensional function of wavelength λ and imaging geometry

f(λ, θi, φi, θr, φr) =
δLr(λ, θr, φr)

Li(λ, θi, φi) cos θiδωi
(1.2)

A few properties of a BRDF model are enumerated below.

1. Energy Conservation: Any BRDF model assumes that the total energy incident

on a surface patch is either reflected or absorbed. A BRDF model does not allow

for self-emission. Therefore,∫
Ω
f(θi, φi, θr, φr) cos θrdωr ≤ 1 ∀ θi, φi (1.3)

2. Helmholtz Reciprocity: The BRDF remains unchanged if the incident and the

reflected directions are interchanged.

f(θi, φi, θr, φr) = f(θr, φr, θi, φi) (1.4)

3. No sub-surface scattering: Sub-surface scattering refers to the phenomenon in

which a light ray enters a material, undergoes multiple scattering inside the ma-

terial, and is subsequently reflected back. A BRDF model does not allow for

sub-surface scattering.

In addition to the above properties, for the purpose of mathematical convenience, a

BRDF model is sometimes assumed to have the following additional properties

1. Isotropy: An isotropic BRDF is independent of rotation about the surface normal.

The BRDF reduces to a 3-parameter function given by

f(θi, φi, θr, φr) = f(θi, θr, φi − φr) (1.5)

2. Separability: When the BRDF of a material depends on the wavelength of incident

light, it is often assumed that the effects of wavelength are independent of the effects

of imaging geometry.

f(λ, θi, φi, θr, φr) = fλ(λ)fθ(θi, φi, θr, φr) (1.6)
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Since the BRDF is a four dimensional function of incident and reflected direc-

tions, the estimation of the BRDF of a material requires illuminating a surface patch

of the material from all possible directions and measuring the reflected light from all

possible directions in a unit hemisphere around the surface. In many vision and graphics

applications, instead of accurate estimation of the BRDF, a parametric approximation is

used. The Lambertian reflection model (constant BRDF) is the simplest and most widely

used approximation. It captures the matte or diffuse component of the reflection. It is

common in computer graphics to model glossy materials like plastics using the isotropic

Phong reflectance model which assumes that the BRDF is a combination of an ambient

term, a diffuse term, and an ad-hoc specular (gloss) term [87]. While the Phong model is

a good approximation for smooth plastics, it cannot be used to effectively model metals

and rough surfaces. Several other physics based BRDF models have emerged that more

accurately approximate the true BRDF of different materials [5,27,36,78,107]. Notable

among these is the Torrance-Sparrow reflectance model [107] which assumes that the

surface being simulated is composed of a collection of mirror-like micro facets that are

oriented in random directions on the surface. Surface BRDF is simulated by assuming

a distribution of the micro facets, and the amount by which the micro facets shadow

and mask each other. Fresnel reflection is used to model the interaction of light with

the micro facets. In recent years non-parametric models for BRDF have emerged. The

BRDF is measured directly and suitable basis functions are used for representation [52].

In our work, we assume Shafer’s [98] Dichromatic reflection model.

1.1.1 Image Formation

According to Eq. 1.2, the radiance reflected in direction (θr, φr) by a surface patch is

given by

Lr(λ, θr, φr) =
∫

Ω
f(λ, θi, φi, θr, φr)Li(λ, θi, φi) cos θidωi (1.7)

Assuming that there is a single point (sphere with an infinitesimal radius) light source

located at an infinite distance from the scene, the above expression can be written as

Lr(λ, θr, φr) = f(λ, θi, φi, θr, φr)Li(λ) cos θi (1.8)
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Lambertian Transparent Layer Dichromatic

Figure 1.2 Lambertian versus dichromatic reflection: The top row shows the interaction
of three different materials with an incident light ray in 1D. A Lambertian surface reflects
light in all directions equally. A transparent layer refracts most of the light incident on
it, and reflects a small fraction. Dichromatic materials are modeled as a combination of
a Lambertian surface covered by a transparent layer. The bottom row shows rendered
spheres corresponding to the three material types.

Let Ck(λ) represent the camera sensitivity of the kth channel. The image formation

equation is given by

Ik =
∫
f(λ, θi, φi, θr, φr)Li(λ)Ck(λ) cos θidλ (1.9)

where Ik represents the kth image channel.

1.1.2 The Dichromatic Model

The dichromatic model of reflectance is a common special case of the BRDF model,

and it was originally developed by Shafer [98] to model dielectrics. It assumes that the

BRDF of the surface can be decomposed into two additive components: the interface

(specular) reflectance and the body (diffuse) reflectance. Furthermore, it assumes that

each of these two components can be factored into a univariate function of wavelength

and a multivariate function that depends on the imaging geometry. That is,

f(λ,θ) = gd(λ)fd(θ) + gs(λ)f̃s(θ). (1.10)
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where λ is the wavelength of light and θ = (θi, φi, θr, φr) describes the imaging geometry.

Finally, the model assumes that the index of refraction on the surface is constant over

the visible spectrum—a valid assumption for many materials—so that gs(λ) is a constant

function. This leads to the common expression for the BRDF of a dichromatic surface,

f(λ,θ) = gd(λ)fd(θ) + fs(θ), (1.11)

where fs(θ) = gsf̃s(θ). The function gd(λ) is often referred to as the spectral reflectance

and is an intrinsic property of the material.

Figure 1.2 shows an intuitive explanation of the dichromatic model. Many

surfaces can be thought to be composed of a diffuse component with a transparent

reflecting layer on top. According to Fresnel’s law of reflection, The transparent layer

allows most of the light to be transmitted, and reflects a small fraction of incident light.

The diffuse layer reflects the color of the surface, while the reflection off the transparent

layer is the same as the light source color.

Even though it was originally used to describe the reflectance of dielectrics [98],

the dichromatic model has been used successfully as an approximation of the reflectance

of many different materials. For example, although the reflectance of human skin is

more accurately described by a higher dimensional function (the 8-dimensional BSSRDF

[115]), the BRDF approximation—and more specifically, the dichromatic BRDF model—

has proven useful for a number of applications, including face recognition [19, 32] and

pigment-based image analysis and synthesis [109]. The validity of this approximation for

skin reflectance is also supported by the spectrophotometry measurements of Marszalec

et al. [71].

In order to derive an expression for the image of a dichromatic surface, consider

an observed surface point x illuminated from direction l̂, and let θ = (θi, φi, θr, φr)

represent this direction and the viewing direction in a local coordinate system. We

assume that the sensor is a linear devise with sensitivity function Ck(λ), and that the

spectral power distribution (SPD) of the light source is given by L(λ). Under these

conditions, assuming that the BRDF is given by Eq. 1.11, the sensor response is

Ik = (Dkfd(θ) + Skfs(θ)) n̂ · l̂, (1.12)
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with

Dk =
∫
Ck(λ)L(λ)gd(λ)dλ

Sk =
∫
Ck(λ)L(λ)dλ. (1.13)

An RGB color vector I = [IR, IG, IB]> from a typical camera consists of three

such measurements, each with a different sensor response with support in the visible

spectrum.

Note that Sk represents the effective source strength as measured by the kth

sensor and is independent of the surface being observed. For notational simplicity, we

define S = [SR, SG, SB]> (with a corresponding definition for D), and since scale can be

absorbed by fd and fs, we assume ‖D‖ = ‖S‖ = 1.

1.2 Lambertian Assumption in Computer Vision

The most common photometric assumption made by computer vision algorithms is that

the scene is Lambertian. The Lambertian assumption makes many difficult problems in

computer vision tractable. For example, matching pixels (or patterns) across multiple

images (or frames of a video) is a central problem in stereo, optical flow, object detection,

and recognition. These algorithms assume that appearance of a surface patch does not

change when the camera is moved, but the lighting remains constant. This assumption

holds only when all surfaces in the scene follow the Lambertian reflectance model.

Several other computer vision algorithms, like shape from shading, photometric

stereo, and passive photometric stereo directly exploit Lambert’s cosine law to recover

3D structure of a scene. The results of these algorithms are severely affected by the

deviation of surface BRDF from the assumed Lambertian model.

Two classes of techniques have emerged for handling non-Lambertian surfaces.

1. Specular-diffuse separation techniques. The algorithms take as input one color

image, and output a color diffuse image and a monochromatic specular image.

These algorithms have the potential to improve the performance of computer vision

techniques across the board. However, the problem of specular-diffuse separation is

inherently ill-posed as it attempts to recover a 4-channel image (3 diffuse channels

and 1 specular channel) from an input 3-channel image.

2. Problem specific techniques. These techniques address the issue of specular high-
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lights in their problem domain.

Specular diffuse separation is dealt with in detail in chapter 4. An introduction

to different computer vision problems, and a review of literature related to handling

non-Lambertian surfaces in each case follows.

1.2.1 Vision Algorithms

In this section, the basics of a few vision algorithms are covered. The description of

each algorithm is followed by a literature review of techniques to handle non-Lambertian

reflectance.

Photometric Stereo

Photometric stereo [121] is the process of recovering 3D shape from a series of images

captured from a fixed viewpoint under changing light source direction. The camera is

typically assumed to be orthographic, and the light sources are assumed to be point lights

located far from the object to be reconstructed. Figure 1.3 shows a typical photometric

stereo setup.

Since they rely on the inversion of the image formation process, photometric

stereo methods typically require significant knowledge about the reflectance of surfaces

in the scene. Usually the scene is assumed to be Lambertian. The ith light source can be

represented as a 3 × 1 vector l̂i, the magnitude of which specifies the effective strength

of the source, and the direction specifies the orientation of the line connecting the object

to the light source. Given n > 3 images I = [ i1 i2 · · · in] of a scene point, and known

light sources L = [ l̂1 l̂2 · · · l̂n], the image formation equation can be written as

I = ρL>n̂ (1.14)

where ρ is the surface texture, often referred to as the albedo. The surface normal n̂

can be recovered by solving the above linear system. Finally, the normals are integrated

to recover the surface. The normal at a point (x, y) of a surface z(x, y) is given by

n̂ = [−∂y
∂z

∂x
∂z 1]>. The recovered normals can therefore be integrated to recover the

surface z(x, y) up to a scale.

Many photometric stereo techniques assume that surfaces are Lambertian [121],

and when this reflectance assumption is not satisfied, the accuracy of the recovered shape

is compromised. Figure 1.4 shows an example where photometric stereo is applied to
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Figure 1.3 A typical photometric stereo setup. Three images of an object are acquired
using a static camera by varying the position of the light source.

images of a specular sphere and it recovers a wrong structure. This is because the

algorithm wrongly attributes the highlight on the sphere to structure, while in fact it is

due to reflectance.

The dramatic degradation in the quality of the recovered structure as the re-

flectance of an object deviates from the Lambertian model has prompted researchers

to address this problem. Coleman and Jain [26] were perhaps the first to present a

photometric technique for reconstructing non-Lambertian surfaces without an explicit

reflectance model. In their method, the BRDF is assumed to be a linear combination of

a Lambertian diffuse component and an undefined specular component with limited an-

gular support. When images with four point-source illuminations are available, specular

measurements can be treated as outliers and discarded, provided that the illumination

directions are far from one another relative to the angular extent of the specular lobe.

(This ensures that the specular reflectance component is zero for three of the four obser-

vations of each surface point.) Barsky and Petrou [13] refine this technique by using color

information to improve the detection of specular measurements. Like the original work,

however, specular measurements are treated as outliers, and the specular component is

assumed to have limited angular support.
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Figure 1.4 Result of deviation from Lambertian assumption in photometric stereo. The
top row shows three images of a diffuse sphere taken under three different lighting con-
ditions, and the structure recovered using traditional photometric stereo. The bottom
row shows three images of a non-Lambertian sphere under three different lighting con-
ditions, and the recovered structure. The incorrect 3D structure is a result of assuming
a Lambertian BRDF.

Researchers have used several different assumptions about reflectance to deal

with non-Lambertian surfaces. For example, Silver [99] assumed that the reflectance is

given a priori by a reference object. This technique was independently rediscovered and

extended by Hertzmann and Seitz [38] who modeled surface reflectance using a linear

basis of reference objects. Several researchers have used an analytic BRDF model [44,

76,100].

Another approach to photometric stereo for non-Lambertian surfaces is to as-

sume dichromatic surfaces, and to remove highlights as a pre-processing step. This is the

approach taken by Schlüns and Wittig [96], who assume homogeneous dichromatic sur-

faces, and separate the diffuse and specular components using color histogram analysis

techniques similar to Klinker et al. [51]. Sato and Ikeuchi [92] take a similar approach,

but avoid the restriction to homogeneous surfaces by using a large number of light source

directions to compute a distinct color histogram at each point. Because these methods

explicitly recover the diffuse and specular components, they have the additional benefit

of providing an estimate of the diffuse color D at each point in addition to recovering

the surface shape. Since they are based on conventional dichromatic color separation,

however, they are subject to the restrictions discussed in the previous section. Most

importantly, they assume that the specular lobe is narrow relative to the surface curva-

ture, an assumption similar to that underlying the four-source method of Coleman and
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Jain [26].

Shape from Shading

Shape from shading (SFS) is a method for recovering the 3D structure of a textureless

Lambertian surface (having constant albedo) from a single image illuminated by a light

source with known direction. Unlike photometric stereo, SFS is an ill-posed problem –

we have a single equation relating the brightness of a pixel to the cosine of the angle

between the light source direction and the surface normal at a point, and the objective

is to recover the unit normal resulting in two unknowns. Solving SFS requires additional

constraints (assumptions).

Zhang et al. [126] provide a thorough review of various SFS algorithms. They

classify SFS algorithms as Minimization based – an energy function is minimized to

obtain the 3D structure [31,41,45,127], Propagation based – shape information is propa-

gated from a few surface points (e.g., singular points) [6], Local approaches – assumption

is made about the local shape of the surface [83], Linear approaches – the solution is

computed based on linearization of the reflectance map [84,108].

Minimization based algorithms are arguably the most popular approaches. As

mentioned in [126], the ill-posed problem of SFS becomes solvable by incorporating one

or more of the following assumptions in a variational framework

1. Brightness constraint requires the reconstructed image R to have the same intensity

as the input image I. In other words, it requires the minimization of the following

error term

Eb =
∫ ∫

(I −R) .2dx dy (1.15)

2. Smoothness constraint, introduced by Ikeuchi and Horn [45], demands a smooth

reconstructed surface. Let p and q represent the surface gradient in the x and y

directions. The smoothness constraint requires the minimization of the following

error

Es =
∫ ∫ (

p2
x + q2y

)
dx dy (1.16)

3. Integrability constraint, introduced by Frankot and Chellappa [31], requires the

recovered surface normal to be integrable; which is equivalent to minimizing the
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following error

Ei =
∫ ∫

(px − qy)
2 dx dy (1.17)

4. Intensity gradient constraint, introduced by Zheng and Chellappa [127], requires

the intensity gradient of the reconstructed image and input image to be the same.

This corresponds to minimizing the following constraints

Eg =
∫ ∫ (

(Rx − Ix)2 + (Ry − Iy)2
)
dx dy (1.18)

5. Unit normal constraint requires the recovered normals n̂ to be unit magnitude

En =
∫ ∫ (

‖−→n ‖2 − 1
)
dx dy (1.19)

Recently it was shown by Prados and Faugeras [89] that if the attenuation of light

with distance is modeled, and the light source is co-located with the camera center,

SFS becomes a completely well-posed problem. Using the same modeling as Prados

and Faugeras [89], and modeling the diffuse reflectance using a more realistic Oren and

Nayar [78] reflectance model, Ahmed and Farag [2] propose a new SFS algorithm that

resolves the convex-concave ambiguity.

There is a sparse body of literature dealing with SFS for non-Lambertian sur-

faces. Bakshi and Yang [8] modified a heuristic based SFS algorithm called Shading

Logic [112] to handle the Torrance and Sparrow [107] reflectance model. Tian and

Tsui [105] assume the surfaces to be dichromatic (instead of Lambertian). The spec-

ular reflection is assumed to lie along the direction of perfect mirror reflection. Hue

information is used to segment the image into perfect diffuse and hybrid (specular +

diffuse) reflectance. Finally, they extend the Zheng and Chellappa [127] SFS algorithm

to account for the new reflectance model. Ragheb and Hancock [90] assume the surface

reflectance at a pixel to be either diffuse or specular. Reflectance of specular pixels is

modeled using the Torrance and Sparrow [107] reflectance model. A Bayesian framework

is set up by assuming different probability distributions for diffuse and specular pixels.

Using the iterated conditional modes [14] algorithm, the a posteriori probability of a

pixel being diffuse or specular is computed. Once an assignment is made, the surface

normals are reconstructed using the smoothness assumption.
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Figure 1.5 (a) A simplified stereo set up. The points x1 and x2 are images of the
same 3D point X and are called corresponding points. (b) Geometrical interpretation
of rectification. The images acquired in a stereo setup can be transformed so that
corresponding points lie on the same scanline in the two images. This process is called
Rectification. Geometrically two rectified images are equivalent to two images acquired
using a stereo rig with their images planes aligned, and separated by a distance.

Stereo

The problem of stereo vision has fascinated many researchers, and is still one of the

most active research areas in computer vision. Motivated partly by human vision, a

stereo vision system aims to recover the 3D depth of a scene from two images obtained

from two different viewpoints. Figure 1.5 (a) shows a simplified stereo setup in which a

single scene point X projects to x1 and x2 (called corresponding points) on the image

planes of two pin hole cameras with optical centers at o1 and o2. When the locations

x1, x2, o1, and o2, and the camera focal lengths are all known, in theory, the depth

of the 3D point X can be found by intersecting the vectors ¯o1x1 and ¯o2x2. Therefore,

the fundamental problem in stereo vision is to find dense correspondence among pixels

of the two images. Fortunately, it can be shown that the geometry of image formation

imposes a constraint on corresponding points, such that the point corresponding to a

particular pixel in one image lies on a line in the other image. This constraint, called

the Epipolar constraint, allows the images to be geometrically transformed (rectified), so

that corresponding points lie along the same scanline of the two images. Figure 1.5 (b)

shows a geometrical interpretation of stereo rectification. In turn, the distance x1 − x2

between coordinates of corresponding points in rectified images, called the disparity, is

proportional to the inverse depth of the 3D point X [20]. Figure 1.6 shows a pair of
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rectified images, and the disparity map.

Dense correspondence between images is inherently under-constrained [10], and

therefore requires assumptions about reflectance of scene surfaces. Most stereo algo-

rithms assume that the appearance of an image feature or a patch does not change

across images. This simplifying assumption implicitly assumes all surfaces in the scene

are Lambertian. The most common approach to handle non-Lambertian specular high-

lights is to treat them as outliers. These outliers are either explicitly detected and

removed [23], or handled implicitly by modifying the matching function to a robust one.

A natural extension of binocular stereo is multiview stereo. Seitz et al. [97]

present a comprehensive evaluation of multiview stereo algorithms. In addition to more

precise depth estimation due to availability of more data, some multiview stereo algo-

rithms also attempt to address the problem of specular highlights [15, 48, 57, 60, 122].

A further extension of multiview stereo is to use multiple views under different (possi-

bly known) lighting conditions [29, 65, 129]. Some of these methods, like the Helmholtz

stereopsis [129] can be used to extract depth and normal information about surfaces with

arbitrary BRDF.

A small number of binocular stereo algorithms propose methods to handle spec-

ular highlights. Bhat and Nayar [15] assume a lower bound on surface roughness and

propose an optimal stereo configuration that maximizes the accuracy of depth estima-

tion even in the presence of specular highlights. They acknowledge that it is extremely

difficult to estimate surface roughness in a practical situation, and therefore, they pro-

pose a roughness independent trinocular configuration such that accurate depth at each

pixel can be measured using at least two of the three cameras. Zickler et al. [131] extend

Helmholtz stereopsis [129] and show that “the fundamental Helmholtz stereopsis con-

straint defines a nonlinear partial differential equation, which can be solved using only

two images”. Binocular Helmholtz stereopsis can handle arbitrary BRDFs.

Unlike the two stereo algorithms mentioned above, a few stereo algorithms

do not require special camera and/or light configurations. Kim et al. [50] propose a

new measure of patch similarity that does not depend on pixel intensities, but instead

maximizes mutual information for correspondence. Empirically it is shown to improve

performance for non-Lambertian surfaces. In [124], specular highlights are treated as

outliers by first separating the specular and diffuse components of color, and then as-

signing lower weights to pixels containing a large specular component in the matching

process. Yoon and Kweon [123], assume the dichromatic model for surface reflectance

and propose a two band specular free image (I −min(IR, IG, IB)) that is used as input
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Figure 1.6 In a typical stereo setup, two images of a scene (left and right) are acquired
from two different viewpoints. The output of a stereo vision algorithm is a depth map
(center) with intensity proportional to the depth of the scene as measured from one of
the cameras. The above images were obtained from the Middlebury Stereo Page [1].

to a standard vision algorithm.

Optical Flow

3D motions of objects relative to the camera appear as 2D motions in the image plane.

This image motion is called Optical Flow. In other words [43], “The optical flow is a

velocity field in the image that transforms one image into the next image in a sequence.”

The problem of locally recovering optical flow is an ill-posed one. The following

assumptions make the computation of optical flow feasible.

1. Brightness Constancy constraint [42] states that the brightness of an image patch

I(x, y, t) remains constant as it moves to location (x + δx, y + δy) over time δt.

Therefore,

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (1.20)

= I(x, y, t) + δx
∂I

∂x
+ δy

∂I

∂y
+ δt

∂I

∂t
+ ε (1.21)

where ε contains higher order terms. Cancelling the term I(x, y, t) from both sides

of the equation, and dividing through by δt we obtain

δx

δt

∂I

∂x
+
δy

δt

∂I

∂y
+
∂I

∂t
+O(δt) = 0 (1.22)
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As ∂t→ 0, we obtain the Optical Flow Equation

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0

⇒ ∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0 (1.23)

where (u, v) = (dx
dt ,

dy
dt ) is the optical flow vector. Note that if the flow is due to the

motion of the camera while the objects remain stationary, the brightness constancy

constraint implicitly assumes that the objects in the scene are Lambertian. On the

other hand, if the flow is due to the motion of the objects, the objects are assumed

to be locally planar in addition to being Lambertian.

2. Smoothness Constraint The flow Eq 1.23 provides only one contraint on the flow

vector (u, v), and additional constraints are required to solve it. Smoothness of

the velocity field [42, 62] is usually used as the additional constraint required to

solve the optical flow equation. Smoothness of the flow field can be expressed as a

minimization of the gradient of the optical flow velocity [42]

(
∂u

∂x

)2

+
(
∂u

∂y

)2

and
(
∂v

∂x

)2

+
(
∂v

∂y

)2

Horn and Schunck [42] use a variational framework in which an error function

consisting of a brightness constancy term and a smoothness term is minimized.

Lucas and Kanade [62] assume that the flows of all pixels in a small neighborhood

around a pixel are the same. This allows them to set up a system of linear equations

which can be solved to obtain the optical flow locally at each pixel.

3. Gradient Constancy constraint [111] assumes that the gradient of image patch

I(x, y, t) remains constant as it moves to a new location (x+ δx, y+ δy) after time

δt. It can be written as

∇I(x, y, t) = ∇I(x+ δx, y + δy, t+ δt) (1.24)

This constraint was introduced to relax the brightness constancy assumption which

frequently breaks down in natural scenes.

Black and Anandan [17] introduced robust estimation of the optical flow by

rejecting outliers using robust error functions (for example, the truncated quadratic)

instead of the quadratic error function used in least squares estimation. Traditional least
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squares based optical flow estimation algorithms aggregate information over a spatial

neighborhood and result in incorrect estimates at motion boundaries. Robust estimation

of optical flow alleviates the “problems of oversmoothing and noise sensitivity typically

associated with the least-squares formulations.”

Yet another recent development in optical flow literature is the use of color

images [4, 116, 118]. Barron and Klette [11] present a survey of color based optical flow

methods. The optical flow equation can be extended to each channel separately

∂R

∂x
u+

∂R

∂y
v +

∂R

∂t
= 0

∂G

∂x
u+

∂G

∂y
v +

∂G

∂t
= 0

∂B

∂x
u+

∂B

∂y
v +

∂B

∂t
= 0 (1.25)

The flow vector (u, v) can be calculated from the over determined system in Eq. 1.25.

However, due to the high correlation between the three color channels, the smoothness

constraint is used in addition to Eq. 1.25. Almost all color based optical flow algorithms

use color information to produce photometric invariant images that are independent

of shading (for example, the two channel normalized RGB image
(

R
R+G+B ,

G
R+G+B

)
)

and specular highlights (for example, the hue component of the HSV color space). The

optical flow calculated using these photometric invariant images as inputs is a better

representation of the underlying scene motion.

Photometric/Geometric Stereo

In recent years there have been a few attempts to recover the 3D structure of a Lamber-

tian object using a video of the moving object in front of a stationary camera [58, 125].

As the object moves in front of the camera, “its appearance changes in two fundamental

ways: geometrically and photometrically” [125]. The basic idea is to recover 3D shape

by utilizing geometrical constraints (optical flow) for heavily textured regions and photo-

metric constraints (shading) for lightly textured regions. Notice that in these approaches,

both normal information and depth information are estimated.

Zhang et al. [125] use standard structure from motions algorithms to first esti-

mate the camera motion and an initial estimate of lighting using a small set of tracked

features. They then device an iterative scheme to alternately estimate the shape and

lighting. The surface normals are first estimated at each pixel, and a rough surface con-

structed by integrating the normals. This is followed by refinement of the structure by
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using a dense optical flow algorithm devised to take into account varying illumination.

The optical flow problem is formulated such that “surface positions, normals, motion,

and illumination are all coupled together into the same minimization problem”.

Lim et al. [58] track a few feature points across all frames of a video, and

reconstruct a piecewise linear 3D shape of the object. An iterative scheme based on the

current reconstruction, and available photometric information is used to refine the 3D

shape. At each iteration, normals are estimated up to a Generalized Bas Relief (GBR)

ambiguity, and integrated to obtain a new surface reconstruction. The GBR is resolved

using the tracked feature points.

Both the above algorithms assume that the surfaces in the scene are Lamber-

tian. To the best of our knowledge, we do not know of any method extending the above

approaches to non-Lambertian surfaces.

1.3 Thesis Overview

This section provides a brief overview of the rest of the thesis.

1.3.1 The SUV Color Space

The ubiquity of the Lambertian assumption in computer vision notwithstanding, ma-

terials in the real world rarely follow the convenient Lambertian reflection model. The

reflectance of a wide variety of materials like plastics, paper, plant leaves, ceramics,

fruits and vegetables, wood, leather, and human skin etc. can be approximated by the

dichromatic reflectance model that models reflectance as a linear combination of a diffuse

(Lambertian) term and a specular (glossy) term.

Chapter 2 of the thesis introduces a novel color space, that gives access to two

purely diffuse channels of a color image of a dichromatic surface. These two diffuse

channels preserve shading, and can potentially improve the performance of all vision

algorithms that assume the scene to be Lambertian. We show results on photomet-

ric stereo, shape from shading, stereo, optical flow, and passive photometric stereo to

demonstrate the usefulness of this novel color space transformation.

1.3.2 Complex Illumination and Photometric Invariants

In many real world scenarios, the illumination of a scene is complex. For example, in

an office environment, there are two sources of illumination – the light bulb inside the
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office, and the sunlight through the windows. In Chapter 3 of this thesis we address

the problem of complex illumination. More specifically, we show that it is possible to

transform a k channel image, into a k − m channel illumination invariant image, that

is independent of the effects of m color illuminants in a scene. We also generalize the

concept of hue for the case of non-white illuminants.

1.3.3 Removing Specular Highlights

Using the transformation described in chapter 2, an RGB color image can transformed

into another three channel image, two channels of which are diffuse, while the third

channel contains the entire specular component, and an unknown amount of diffuse

component. While this representation is useful for certain tasks, several other vision and

graphics problems demand a complete separation of the diffuse and specular components

of an RGB color image. For example, in the movie industry, it is common to use polarizers

on the lights and the camera, to obtain diffuse texture maps of human faces.

In chapter 4 of this thesis, we propose a unified approach to remove specular

highlights from images and videos. We show that under some mild assumptions, it is

possible to evolve a partial differential equation (PDE) to iteratively remove specular

highlights from a color image. Once separated, the diffuse and specular components can

be independently processed and recombined to obtain dramatic visual effects.

1.3.4 Refractive Optical Flow

A class of materials that are rarely dealt with in computer vision are transparent mate-

rials. Part of the reason for this is that refraction is extremely difficult to handle, even

though the laws governing refraction are pretty simple. Refraction through a material,

governed by Snell’s law, not only depends on refractive indices of materials, it also de-

pends on the geometry of the refracting material, as well as the number of refractive

surfaces involved.

In chapter 5, we generalize the optical flow equation to the case of refraction

and reflection, and present a novel solution to the problem of Environment Matting. In a

typical Environment Matting setup, a refractive object is matted into a new background.

The background is assumed to be planar, and the objective is to find the path of light

transport, as it travels from the background into the camera. We show that it is possible

to use only the differential motion of a background plane to solve the problem.
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1.4 Contributions

This thesis makes the following major contributions

• Introduces a novel color space transformation that gives access to two purely diffuse

components of color images.

• Experimentally demonstrates that the two diffuse components can be used to im-

prove the performance of a wide range of computer vision algorithms including

photometric stereo, shape from shading, binocular stereo, optical flow, and passive

photometric stereo.

• Extends the above transformation to handle complex illumination and experimen-

tally demonstrates performance improvements of optical flow, stereo, and segmen-

tation.

• Proposes a novel unified framework for solving the ill-posed problem of removing

specular highlights for images and videos.

• Introduces the concept of Dichromatic Editing – the process of independently edit-

ing and then combining the two separated dichromatic layers to achieve dramatic

visual effects.

• Proposes a novel solution to Environment Matting.

• Introduces a generalization of the optical flow equation – Refractive Optical Flow

– valid in the presence of refraction (and other transformations).

1.5 Other Works

This section describes work undertaken during the course of my graduate study that is

not part of this dissertation. In addition to the material covered in this dissertation, I

have worked on two other problem areas.

1.5.1 3D Modeling and Animation of Human Faces

This work was motivated by the application of low bandwidth virtual Tele-presence using

avatars. The idea was to generate a 3D model of a person’s face and animate different

emotions on the face at a remote observer’s end, thus eliminating the need to send raw

video. A color based algorithm was used to segment skin pixels, and features (corners)
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Figure 1.7 3D modeling: The left and right images serve as input to the algorithm. A
3D mesh is obtained by deforming a pre-defined 3D mesh according to depth estimates
of feature points extracted from the input images. The image in the center shows the
deformed 3D mesh projected back onto the image plane.

Neutral Happy Sad Angry Disgust Fear

Figure 1.8 Animating emotions: Different emotions can be animated by warping the 3D
mesh according to pre-defined transformations.

in skin regions were automatically detected and matched in the two views. The depth

estimates of these feature points were used to warp a predefined 3D mesh model. See

Fig. 1.7. Six different emotions were modeled by warping the 3D mesh according to

pre-defined transformations. See Fig. 1.8.

1.5.2 Cryo-Electron Microscopy

Single particle reconstruction using Cryo-Electron Microscopy (cryo-EM) is an emerg-

ing technique in structural biology for estimating the 3D structure (density) of protein

macromolecules. Unlike tomography where a large number of images of a specimen can

be acquired, the number of images of an individual molecule (particle) is limited be-

cause of radiation damage. Instead, the specimen consists of identical copies of the same

protein macro-molecule embedded in vitreous ice at random and unknown 3D orienta-

tions. Because the images are extremely noisy, thousands to hundreds-of-thousands of

projections are needed to achieve the desired resolution of 5 Å. Along with differences of

the imaging modality compared to photographs, single particle reconstruction provides a
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unique set of challenges to existing computer vision algorithms. We briefly describe our

contributions in areas of particle detection, contrast transfer function (CTF) estimation,

and initial 3-D model construction.

Particle Detection

One of the first steps in single particle reconstruction using cryo-EM is locating protein

macromolecules (particles) in acquired images. Since the reconstruction process typi-

cally requires a few tens of thousands of images, the task of manually locating particles

in images is extremely tedious and time consuming. A new learning-based approach [68]

was presented for particle detection using the Adaboost learning algorithm. The ap-

proach builds directly on the successful detectors developed for the domain of face de-

tection [114]. It is a discriminative algorithm which learns important features of the

particles appearance using a set of training examples of the particles and a set of images

that do not contain particles. The algorithm is fast (10 seconds on a 1.3 GHz Pentium

M processor), is generic, and is not limited to any particular shape or size of the particle

to be detected. The method was evaluated on a publicly available dataset of 82 cryo-EM

images of keyhole lympet hemocyanin (KLH). Figure 1.9 shows the result of detecting

two different views of KLH on two typical images. From 998 automatically extracted

particle images, the 3D structure of KLH has been reconstructed at a resolution of 23.2

Å which is the same resolution as obtained using particles manually selected by a trained

user. In [128] , it was shown to be one of the most effective methods for particle detection

in a benchmark dataset of KLH. See Fig. 1.10.

Automated CTF Estimation

A critical step in the processing and analysis of cryo-EM images involves the estimation

of the factors that modulate the image and which must be corrected in order to generate

an accurate 3D reconstruction of the specimen. Principal among these is the contrast

transfer function (CTF) of the microscope. The effect of the CTF is to introduce spatial

frequency dependent oscillations into the Fourier space representation of the image. The

theory of contrast transfer in the electron microscope [34,35] provides a parametric form

for the CTF, the envelope function, and the background noise. In our own work [67],

we introduce a completely automated algorithm for estimating the parameters of the

CTF of a transmission electron microscope. Once estimated, the micrographs can be

corrected in order to generate an accurate 3-D reconstruction of the specimen.
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Figure 1.9 Particle detection: Rectangular and circular views of KLH detected in two
typical micrographs. The locations of detected particles are shown using white marks.
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Figure 1.10 Receiver operating characteristic (ROC) of the our particle detector. Our1
is the ROC with circular particles removed and Our2 is the ROC obtained without
removing the circular particles before detection of the rectangular particles.



25

Molecular Reconstruction

In [66] we address the problem of reconstructing the density of a scene from multiple

projection images produced by modalities such as x-ray, electron microscopy, etc. where

an image value is related to the integral of the scene density along a 3D line segment

between a radiation source and a point on the image plane. While computed tomog-

raphy (CT) addresses this problem when the absolute orientation of the image plane

and radiation source directions are known, this work addresses the problem when the

orientations are unknown – it is akin to the structure-from-motion (SFM) problem when

the extrinsic camera parameters are unknown. We study the problem within the context

of reconstructing the density of protein macro-molecules in cryo-EM, where images are

very noisy and existing techniques use several thousands of images. In a non-degenerate

configuration, the viewing planes corresponding to two projections intersect in a line in

3D. Using the geometry of the imaging setup, it is possible to determine the projections

of this 3D line on the two image planes. In turn, the problem can be formulated as

a type of orthographic structure from motion from line correspondences where the line

correspondences between two views are unreliable due to image noise. We formulate

the task as the problem of denoising a correspondence matrix and present a Bayesian

solution to it. Subsequently, the absolute orientation of each projection is determined

followed by density reconstruction. We show results on cryo-EM images of proteins and

compare our results to that of Electron Micrograph Analysis (EMAN) – a widely used

reconstruction tool used by the cryo-EM community. See Fig. 1.11.
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Figure 1.11 The first column shows the top and side views of a macro-molecule called
GroEL produced from a 11.5 Å reconstruction [64] in a publicly available Molecu-
lar Structure Database. The middle column shows the initial model estimated using
EMAN [63] – A widely used tool in cryo-EM. The right column shows the initial model
estimated using our method. The same dataset was used to generate the two initial
models.
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The SUV Color Space

“The least questioned assumptions are often the most questionable.”

Paul Broca

Scene analysis is complicated by the presence of highlights due to specular reflection,

since these highlights are a complex function of viewpoint, illumination and surface mi-

crostructure. Typically, in order to obtain meaningful information about a scene from

its images, complex reflection effects such as highlights are either roughly approximated

or completely ignored by vision systems. For example, most stereo and structure-from-

motion techniques ignore specular highlights altogether, and instead model surfaces as

being Lambertian; even state-of-the-art recognition systems are based on relatively sim-

ple (e.g., spatially-invariant, parametric) models of reflectance. See, Ref. [19].

Even when the illumination of a scene can be controlled, the coupling of re-

flectance and shape makes the recovery of information (i.e., 3D shape) a difficult task.

Recently, a small number of surface reconstruction techniques have overcome these diffi-

culties by effectively decoupling shape and reflectance in images. These techniques rely

on the careful acquisition of images to exploit physical properties such as reflectance

isotropy [61], reciprocity [65,130] and the constancy of radiance in free space [53,65]. By

reducing or eliminating the restrictions on surface reflectance, these techniques provide

accurate reconstructions for a much broader class of surfaces.

This chapter introduces a color space transformation as a means to remove

specular reflection effects. This color space transformation allows us to distill the image,

removing the specular effects, and leaving only the much simpler – ideally Lambertian

– diffuse effects. (See Fig. 2.1.) The technique can be applied to any dichromatic sur-

face (i.e., a surface whose reflectance can be represented using Shafer’s dichromatic

27
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(a) (b)

Figure 2.1 Removal of specular reflectance effects. A rotation of RGB color space (a)
provides an image that is void of specular reflection effects (b) and provides a more direct
measurement of scene shape.

model [98]) for which the body spectral reflectance varies significantly over the visi-

ble spectrum (i.e., not ‘white’). The color transformation is applied to the problem

of photometric stereo, shape from shading, binocular stereo, optical flow, and passive

photometric stereo. We show that by eliminating specular effects, this transformation

enables well-known Lambertian algorithms to be applied non-Lambertian surfaces.

2.1 A Data-dependent Color Space

In this section we introduce a color space transformation that gives access to two purely

diffuse channels of a three channel color image. The two diffuse channels can be used to

improve the performance of algorithms that make the Lambertian assumption.

Suppose we linearly transform RGB color space by rotating the coordinate axes,

and as shown in the left of Fig. 2.2, suppose this rotation is such that one of the axes

becomes aligned with the direction of the effective source color S. This transformation

defines a new color space, which we refer to as the SUV color space. It can be defined

according to

ISUV = [R]I (2.1)

using any [R] ∈ SO(3) that satisfies S = [R][1, 0, 0]>. Here, we choose [R] =

[RG(−θS)][RB(φS)]> where [Rk(θ)] is a right-handed rotation about the k-axis by angle

θ, and (θS, φS) are the elevation and azimuthal angles of the source vector S in the RGB
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Figure 2.2 Linear and non-linear transformations of RGB color space. Three observations
of the same material yield color vectors I1 . . . I3 in the dichromatic plane spanned by the
source and diffuse colors S and D. Left: The proposed SUV color space is a rotation of
the RGB space. One axis is aligned with the source color, and two of three transformed
channels (UV) are independent of specular reflectance. Diffuse shading information is
preserved and can be used to recover shape. Right: Central projection used to compute r-
g chromaticity values and HSV-type color spaces does not preserve shading information.

coordinate system. From Eq. 1.12 it follows that

ISUV =
(
D̄fd(θ) + S̄fs(θ)

)
n̂ · l̂, (2.2)

where D̄ = [R]D and S̄ = [R]S = [1, 0, 0]>. D and S are defined in Eq. 1.13.

This SUV space is a data-dependent color space because it depends on the

effective source color in the image. It has two important properties. First, it separates

the diffuse and specular reflection effects. The first channel (the S channel) encodes the

entire specular component and an unknown fraction of the diffuse component, while the

remaining two channels (U and V) are independent of fs(θ) and are functions of only

the diffuse reflectance.

The second important property is that, since the transformation is a rotation,

shading information is preserved. This is clear from Eq. 2.2; if r>i denotes the ith row of

[R], the two diffuse channels are

IU = r>2 Dfd(θ)n̂ · l̂ and

IV = r>3 Dfd(θ)n̂ · l̂.
(2.3)
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The S-channel is given by

IS = r>1 Dfd(θ)n̂ · l̂ + fs(θ)n̂ · l̂. (2.4)

It contains all of the specular component in addition to an unknown portion of the diffuse

component. Also note that while the S-channel of an RGB color vector is positive, the

U and V channels can be negative.

Assuming Lambertian diffuse reflectance, fd(θ) is a constant function of θ. In

this case, the two-channel color vector

J = [IU , IV ]> (2.5)

provides direct information about the normal vector on the surface, with the coefficients

ρU = r>2 Dfd and ρV = r>3 Dfd behaving as Lambertian albedos. Note that the norm of

the two channel image J given by

‖J‖ =
(
I2
U + I2

V

) 1
2 = fd

(
(r>1 D)2 + (r>1 D)2

) 1
2 n̂ · l̂. (2.6)

is also purely diffuse and preserves shading information. In addition, since it contains

information from both diffuse channels, it has improved signal to noise ratio, and is

therefore suitable for use in vision algorithms that use grayscale images as input.

Figure 2.2 compares this linear, data-dependent color space with conventional

non-linear color spaces. Non-linear color spaces such as r-g chromaticity and hue-

saturation-value (HSV) are computed by central projection. Each RGB pixel corresponds

to a vector in the RGB cube, and these are intersected with the plane R + G + B = c

for some c. For example, hue and saturation correspond to the distance and polar angle

of these intersection points relative to the cube diagonal, and chromaticity coordinates

are derived from the intersection of these color vectors with the plane R + G + B = 1.

Non-linear color spaces such as these are useful for recognition, for example, since they

remove Lambertian shading and shadow information. (All positive scalar multiples of I

map to the same chromaticity coordinates and the same hue.) Since they do not preserve

photometric information, however, they are generally unsuitable for recovering shape.

In contrast, the SUV color space does preserve shading information, and by

providing two channels that are independent of the complex, specular component of

reflectance, it can be a useful tool for scene analysis.

In the last few years there has been a burst of activity in defining color space
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transformations that exploit knowledge of the illuminant color to provide more direct

access to the diffuse information in an image. While motivated by different applications,

the transformations discussed below all share the same idea of linearly combining the

three color channels of an RGB image to obtain one or two “diffuse” channels.

Tan and Ikeuchi [102] obtain a one-channel diffuse image through the transfor-

mation

Id =
3 maxk(Ik/Sk)−

∑
k(Ik/Sk)

3λ̃− 1
, (2.7)

where k ∈ {1, 2, 3}, and the bounded quantity 1/3 < λ̃ ≤ 1 is chosen arbitrarily. This

transformation yields a positive monochromatic diffuse image, which can be seen by

expanding Eq. 2.7 using Eq. 1.12 and assuming (for argument’s sake) that I1/S1 >

max(I2/S2, I3/S3). In this case,

Id =
2I1/S1 − I2/S2 − I3/S3

3λ̃− 1
=

(2D1/S1 −D2/S2 −D3/S3) fdn̂ · l̂
3λ̃− 1

. (2.8)

Since this expression is independent of fs and is directly related to n̂ · l̂, the positive

image Id is specular-free and depends directly on diffuse shading information.

An alternative transformation is proposed by Park [82], who isolates two pre-

dominantly diffuse channels while retaining a similarity to HSI color space. The trans-

formation is composed of a linear transformation Lp and rotation Rp, and is written

Ip = RpLpI, with RpLpS = [ 0 0 2 ]>. (2.9)

The matrices Rp and Lp are chosen such that the third color axis is aligned with the

illumination color. As a result, that channel contains the majority of the specular com-

ponent, leaving the other two channels to be predominantly diffuse.

Similar to Park’s transformation, one of the transformed axes in SUV space is

aligned with the illuminant color. Unlike Park’s transformation, however, this channel

includes the complete specular component, leaving the remaining two channels to be

purely diffuse.

Each of the three transformations described in this section exploits knowledge

of the illuminant to provide a partial dichromatic separation. Unlike Eq. 2.7, the SUV

color space is obtained by a linear transformation that yields two “diffuse” channels, and

unlike Eq. 2.9, these two “diffuse” channels are in fact completely free of specularity.
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2.1.1 Practical Considerations

For shape recovery we are generally interested in the two-channel diffuse signal J in

Eq. 2.5. The quality of this signal depends on the spectral characteristics of the surface

in addition to sensor noise.

Spectral Reflectance

When the surface is ‘white’, the spectral reflectance is a constant function of wavelength.

In this case, gd(λ) = gd, and since

Dk = gd

∫
Ck(λ)L(λ)dλ = gdSk,

it follows that the color vector I and the source color S are collinear in color space. For

these surfaces, the UV channels of the image of the scene point are zero; and as a result,

they provide no information about the surface, regardless of the illuminant and sensors

that we choose. (This is the same restriction experienced by Klinker et al. [51]; when

the diffuse surface color and source color are the same, there is no way to distinguish

between the two reflection components.) In order to recover surface shape for these

materials without restricting the BRDF, alternative (and more complex) reconstruction

methods can be used. See, for example, Refs. [53, 130].

Sensor Noise

Assuming independent, additive Gaussian noise with zero mean and variance σ2 in each

of the three channels of color vector I, and assuming ‖I‖ ≤ 1, the signal-to-noise ratio

(denoted SNR(I)) is 10 log10(1/σ) dB. The magnitude of the diffuse color vector J is

related to that of the original color vector by ‖J‖ = ‖I‖ sinα, and since the noise is the

same in both cases, it follows that

SNR(J) = SNR(I) + 10 log10(sinα). (2.10)

This relationship is shown in Fig. 2.3, and it suggests that when the angle between

the image and the source color is less than 10◦, the two-channel diffuse signal suffers

severe degradation. The effects of this degradation can be mitigated by using multiple

exposures to collect high dynamic range (HDR) images. When exposures are chosen

judiciously [33], we can increase the SNR of the original image and therefore that of the

two-channel diffuse image as well.
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Figure 2.3 The signal-to-noise ratio (SNR) of the two-channel diffuse image (J) relative
to that of the original image (I) as a function of α, the angle between I and the source
color S in RGB color space. (See Fig. 2.2.)

2.1.2 Computing Diffuse Images

In order to compute the two-channel diffuse image, it is necessary to know the effective

source color, S. Under controlled conditions, the source color can be calibrated, and in

an uncontrolled setting it can be estimated using a number of established techniques.

Tominga and Wandell [106] demonstrate a method for estimating the source

color based on the fact that color vectors from a homogeneous surface span the dichro-

matic plane. They determine the source color by intersecting multiple dichromatic planes

(from different dichromatic surfaces) in color space. Similarly, Lee [55] finds the source

color by intersecting lines in 2D chromaticity space. More recently, Finlayson and Schae-

fer [30] use the fact that the chromaticity of the majority of illuminants lie along a known

curve in chromaticity space and recover the source color from an image of a single ho-

mogeneous dichromatic surface.

Figure 2.1 shows a diffuse image that was computed using the source color

determined by intersecting lines in chromaticity space [55]. (Three homogeneous surfaces

were manually segmented for this purpose.) The monochrome diffuse image was created

by transforming the input image to the SUV color space and computing ‖J‖ at each pixel.

Comparing this to the original image, we see that the specular effects have been removed

as expected. Note that the dichromatic model is violated when saturation occurs in one

or more color channels of the input images, and this causes errors at points of extreme

specularity. This is seen in Fig. 2.1 as violations at saturated pixels of the image are

readily identified. Additional examples computed with calibrated sources are shown in

Sect. 2.2.1.
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2.2 Applications

2.2.1 Photometric Stereo

The two-channel diffuse image of the previous section is derived without making any as-

sumptions about the nature of specular reflectance, and yet it is independent of specular

reflection effects for dichromatic surfaces. By assuming that the diffuse component of

the reflectance is Lambertian, we can use these images along with established techniques

for photometric stereo to obtain estimates of surface shape.

Assuming the light source color is known, the color vector I at each pixel can be

transformed to SUV space using Eq. 2.2. The two diffuse UV channels preserve shading

information, and the two-channel image J is independent of the specular component.

Assuming that the diffuse reflection component is Lambertian, standard photometric

stereo techniques can be used for surface reconstruction. Here, we discuss a modified

version1 of the color photometric stereo method of Barsky and Petrou [12].

Let J1, J2 and J3 be three 2-channel color vectors produced by observing a

single point under three different light source directions l̂1, l̂2 and l̂3. As in Eq. 2.3, it

follows that

Jk =
[
Ik
U , I

k
V

]>
= (n̂ · l̂k)ρ, (2.11)

where ρ is a 2-channel UV albedo. A shading vector is defined according to F =[
f1, f2, f3

]> = [̂l1 l̂2 l̂3]>n̂, and the shading information from all three observations is

combined in an intensity matrix that satisfies

[J ] =


J1

1 J1
2

J2
1 J2

2

J3
1 J3

2

 =


f1ρU f1ρV

f2ρU f2ρV

f3ρU f3ρV

 = Fρ>. (2.12)

The least squares estimate of the shading vector F can easily be computed from the

intensity matrix; it is the principal eigenvector of [J ][J ]>. Once the shading vector is

known, the surface normal is found by solving the matrix equation F = [̂l1 l̂2 l̂3]>n̂.

Once the normals are estimated for every pixel in the image, the normal field is integrated

to produce a surface. In the implementation here, we use an iterative least squares
1The method was originally designed for color images with three channels. Here we use the same

method for two-channel images.
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Figure 2.4 Photometric stereo using SUV color space. Three or more RGB images are
acquired under known illumination conditions, and these are transformed to SUV space
using the known source color. The UV channels represent diffuse images of the object,
and these are used with standard photometric stereo techniques to estimate the surface
normal at each pixel. The normals are integrated to recover the surface.

optimization that minimizes the re-construction error [40].

This reconstruction procedure is outlined in Fig. 2.4, and it can be applied

without change to any number of images larger than three.

Experimental Results

To validate the method quantitatively, we used objects of known shape with varying

material properties. The objects are shown in Fig. 2.7, and they consist of a set of

spheres with increasing specularity. The incident-plane BRDFs are shown in Fig. 2.5.

For each sphere, a set of four high dynamic range (HDR) images were captured

from a fixed viewpoint and four known illumination directions. The source color was

calibrated by imaging a Macbeth color checker, and it was used to compute the SUV

images as described in Sect. 2.1. The second column of Fig. 2.7 confirms that the UV

channels of these images depend largely on the diffuse reflectance. These monochrome

diffuse images show the magnitude of the two diffuse channels, computed using ‖J‖ =

(I2
U + I2

V )
1
2 at each pixel.
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Figure 2.5 Comparison of photometric stereo using two different color spaces. Top:
Relative BRDFs (in decibels) of the five red spheres of Fig. 2.7 as a function of half-angle.
Bottom: Mean-square angular error in the recovered surface normals as a function of
increasing specularity using both the SUV color space and existing RGB methods.

Using the diffuse UV images, the surface normals of each sphere were estimated

using the photometric stereo method described in Sect. 2.2.1. As a means of comparison,

we implemented two different RGB-based photometric techniques. The first method

uses all four RGB images and assumes Lambertian reflectance [12]. The second method

assumes Lambertian+specular reflectance and reconstructs the surface by choosing the

three ‘least specular’ RGB measurements at each pixel [13,26].

The results are shown in Figs. 2.5 and 2.7. The recovered surfaces, including

cross-sections overlaid on the true shape, are displayed in Fig. 2.7. More quantitative

results are shown in Fig. 2.5, with the bottom of that figure displaying the angular

difference between the true and estimated surface normals as a function of increasing

specularity. (This plot shows the mean-square error computed over a window encom-
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Figure 2.6 SUV-based photometric stereo applied to natural surfaces. Left: Input RGB
images show significant specular reflectance and texture. By transforming the images
to SUV space, the specular effects are removed, enabling accurate recovery of shape.
Middle, Right: The surfaces recovered by integrating the estimated surface normals.

passing the visible specularities in the four images.) These results demonstrate that the

SUV-based reconstruction is largely independent of the specular reflectance, whereas

both the four-image and three-image RGB methods are affected by it. The four-image

method assumes Lambertian reflectance and its performance degrades monotonically as

gloss increases; and while the three-image RGB method performs well for the high-gloss

(narrow specular lobe) spheres, it performs less well when the angular support of the

specular lobe is large relative to the separation of the light source directions.

Figure 2.6 shows the results of applying our SUV-based photometric stereo

method to two natural objects (a pear and a pumpkin.) For each object, four HDR

images were captured and transformed to SUV color space, and the two-channel diffuse

images were used to estimate the surface normals. For each object, we show an input

image and the surfaces recovered by integrating these surface normals. Since the trans-

formation to SUV space is purely local, the method requires no spatial coherence in the

image, and it performs well for surfaces with arbitrary texture as shown by the pear ex-

ample. This is not true for alternative photometric stereo techniques that use color-based

highlight removal [51,96], since these methods generally require spatial coherence.
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Figure 2.7 Comparison of photometric stereo methods using two different color spaces.
Five red spheres with increasing specular reflectance are each observed under four illu-
mination directions, and these images are used to recover the surface. From left to right,
each row shows: i) an input RGB image, ii) the corresponding diffuse image given by
the linear transformation to SUV space, iii) surfaces integrated from the surface normals
estimated by three photometric stereo methods, and iv) cross-sections of the surfaces
overlaid on the true shape.

2.2.2 Shape from Shading

Shape from shading algorithms use a single grayscale image to recover the 3D shape

of an object. As mentioned earlier, the norm ‖J‖ of the 2-channel diffuse image J

represents a surface with an effective albedo fd

(
(r>1 D)2 + (r>1 D)2

) 1
2 , and it suggests

that the specular invariant can be used directly as input to Lambertian-based shape

from shading algorithms.

The benefit of this approach is demonstrated in Fig. 2.8, where we assess the

performance of Zheng and Chellappa’s shape from shading algorithm [127] for both a

conventional grayscale image Ig and a single-color invariant image ‖J‖. The top row of

the figure shows grayscale and specular invariant images computed from an RGB image

of a pear, and the middle row shows the surfaces that are recovered by applying the
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same algorithm in the two cases. The solid blue profile in the bottom graph shows that

specular reflections cause severe artifacts when the algorithm is applied to the grayscale

image. In contrast, as shown by the dashed red profile, one can obtain vastly improved

results using the same algorithm by computing the specular invariant as a pre-processing

step.

2.2.3 Stereo

The vast majority of stereo algorithms are based either explicitly or implicitly on the

assumption that surfaces are Lambertian. Since specular reflections violate this as-

sumption, stereo reconstructions of specular surfaces are often inaccurate. In cases of

significant specular reflections, we can improve the accuracy of existing stereo algorithms

by computing the specular invariant of Eq. 2.6 as a pre-process. This is demonstrated by

Fig. 2.9, which compares binocular stereo results obtained using conventional grayscale

images to those obtained using specular invariant images. The grayscale and specular

invariant images are computed from a rectified RGB stereo pair (top of Fig. 2.9), and

they are used as input to the binocular stereo algorithms of Birchfield and Tomasi [16]

and Boykov et al. [22]. As seen by the noisy disparity maps on the left of Fig. 2.9, these

stereo algorithms break down in the presence of strong specularities. When the same

algorithms are applied to specular invariant images, however, specular reflections are

effectively ignored, and the results are greatly improved.

2.2.4 Optical Flow

Motion estimation through the computation of optical flow is another example of an

application that can benefit from specular invariance. Recovering dense optical flow

relies on the constant-brightness assumption, which is violated when an observer moves

relative to a static, specular scene. As demonstrated by the results in Fig. 2.10, optical

flow in the presence of specular reflections in a complex illumination environment can

be improved by computing a specular invariant as a pre-processing step.

In Fig. 2.10, an RGB image sequence is captured by a camera translating hor-

izontally relative to a static scene. The sequence is used to compute a conventional

grayscale sequence Ig(t) and a specular invariant sequence computed using Eq. 2.6.

These two videos are used as input to Black and Anandan’s algorithm for robust optical

flow [17]. The left of Fig. 2.10 shows a single color image from the sequence, and the right

shows the recovered flows in the indicated window. Since the camera undergoes pure
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translation, the ‘ground-truth’ flow lies along parallel horizontal lines. Incorrect flow

(shown in red) is recovered using the conventional grayscale image; and as expected, the

flow is severely corrupted by specular highlights. In contrast, the flow computed from

the specular invariant image (shown in blue) is close to the ground truth and is largely

unaffected by these non-Lambertian effects.

2.2.5 Photometric/Geometric Reconstruction

More generally, the specular invariant can be used to improve the performance of a

broad class of Lambertian-based reconstruction systems in the presence of specular, non-

Lambertian surfaces. This includes, for example, methods that combine both geometric

and photometric constraints to obtain accurate surface shape [47,58,125]. To provide an

example, we use the passive photometric stereo algorithm described by Lim et al. [58].

This method begins with an approximate, piece-wise planar reconstruction obtained by

tracking a small number of features across a video sequence under (possibly varying)

directional illumination. Then, an iterative method based on uncalibrated Lambertian

photometric stereo simultaneously refines the reconstruction and estimates the unknown

illumination directions.

Figure 2.11 compares the results obtained from an image sequence that consists

of a moderately specular cylinder moving under fixed illumination and viewpoint. The

shape is estimated by applying the same algorithm to both the conventional grayscale

sequence (Ig(t)) and the specular invariant sequence (Jinv(2)) computed from the same

RGB data. The right-most surface in Fig. 2.11 shows that the reconstruction obtained

using the specular invariant is nearly cylindrical, while that computed from the conven-

tional grayscale sequence is severely corrupted by specular reflections.

2.3 Conclusion

This chapter presents a data-dependent rotation of RGB color space that separates the

diffuse reflection effects from the more complex, specular reflection effects in images of

dichromatic surfaces. Since it is linear, this transformation preserves diffuse shading

information, and images in this transformed space can be used to obtain photometric

reconstructions that are independent of the specular reflectance. The method is evaluated

both qualitatively and quantitatively, on a variety of vision algorithms, and it is shown

to perform well for both painted surfaces with varying specular reflectance and natural

surfaces with and without texture.
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This chapter is based on “Beyond Lambert: Reconstructing Specular Surfaces

Using Color” by S. P. Mallick, T. E. Zickler, D. J. Kriegman, and P. N. Belhumeur. I

developed the theory that a linear combination of color channels can be used to obtain

diffuse channels and was responsible for implementation and experiments described in

the paper. I also contributed toward writing the paper.
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Grayscale [(R + G + B)/3] Specular Invariant [Iinv ]

Specular Image

UV image

Figure 2.8 Shape from shading comparison. An RGB image of a pear is used to compute
conventional grayscale (top-left) and specular invariant (top-right) images, and these
are input to Zheng and Chellappa’s shape from shading algorithm [127]. Middle row:
surfaces recovered in both cases. Bottom row: cross-sections of the recovered surfaces
along the indicated horizontal lines.
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Figure 2.9 Stereo comparison. Both conventional grayscale images and specular invariant
images (Eq. 2.6) are computed from a rectified stereo pair (top) and these are used as
input to existing binocular stereo algorithms. Middle row: disparity maps obtained from
the grayscale (left) and specular invariant (right) images using the method of Birchfield
and Tomasi [16]. Bottom row: those obtained using the method of Boykov, Veksler and
Zabih [22].
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Figure 2.10 Optical flow comparison. An RGB image sequence is captured by a camera
translating left relative to a specular apple. Both conventional grayscale and specular
invariant images are computed from this RGB sequence, and these are used as input
to Black and Anandan’s robust optical flow algorithm [17]. Left: Single frame from
the grayscale sequence. Right: flows obtained in the two cases. Red flow is computed
from the grayscale sequence and is severely corrupted by specular reflection. Blue flow
is computed from the specular invariant sequence and is much closer to ground truth,
which is horizontal and to the right.
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Figure 2.11 Comparison of shape from combined photometric and geometric constraints.
(Top) Three RGB frames of a specular cylinder moving under fixed view and illumination.
(Botton) Result of simultaneous tracking and photometric reconstruction (as described
by Lim et al. [58]) using both the conventional grayscale (left) and specular invariant
(right) sequences.
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Complex Illumination

“Sometimes the questions are complicated and the answers are simple.”

Theodor Seuss Geisel

An image is the product of the shape, reflectance and illumination in a scene. For many

visual tasks, we require only a subset of this information, and we wish to extract it in a

manner that is insensitive to variations in the remaining ‘confounding’ scene properties.

For 3D reconstruction, for example, we seek accurate estimates of shape, and we design

systems that are insensitive to variations in reflectance and illumination.

One practical approach to these problems is to compute a function of the in-

put images that is invariant to confounding scene properties but is discriminative with

respect to desired scene information. Such functions yield so-called invariants, and a

number of examples are described in the literature. Perhaps the simplest example for

a Lambertian scene is a normalized-RGB image. The normalized RGB color vector at

each pixel depends on the spectral reflectance of the corresponding surface patch but

not its orientation, which makes it useful for material-based segmentation.

Like normalized-RGB, many existing invariants seek to isolate information

about the material properties in a scene and are therefore designed to be invariant to

local illumination and viewing geometry. In contrast, we consider a class of invariants

that deliberately preserve geometry information in a way that is invariant to specular

reflections. These invariants give direct access to surface shape in the form of diffuse

shading effects, and since diffuse shading is often well approximated by the Lambertian

model, they satisfy the ‘constant-brightness assumption’ underlying most approaches to

stereo reconstruction and structure-from-motion. In addition, these invariants provide

access to surface normal information, which can be recovered using Lambertian-based

photometric reconstruction methods.

46
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Figure 3.1 Left: Two frames of an RGB video of a scene with mixed illumination. A blue
light on the right and a yellow light on the left induce complex specular effects. Right:
Projecting these images onto the one-dimensional subspace orthogonal to the source
color vectors in RGB space, yields an invariant to specular reflections that preserves
diffuse shading and spectral reflectance information. (The complete video is included as
supplemental material.)

In the previous chapter we showed that when surfaces are well-described by the

dichromatic model [98], a specular-free image can be computed by projecting the RGB

color vector at each image point onto the two-dimensional subspace orthogonal to the

illuminant color. Inspired by these results, we:

1. Derive a general class of specular invariants based on color subspaces. These invari-

ants can be applied to dichromatic surfaces under mixed illumination environments

with multiple colored lights (see Fig. 3.1.)

2. Derive a second class of functions that, in addition to specular reflections, are

invariant to diffuse shading. They depend only on the spectral reflectance of a

dichromatic surface.
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3. Demonstrate that these invariants can enhance many existing Lambertian-based

vision techniques, vastly expanding their domain of applicability.

3.1 Related Work

A number of photometric invariants have been proposed for Lambertian scenes

without specularity. Normalized-RGB, r-g chromaticity, and hue/saturation images are

all examples of representations that are independent of ‘diffuse shading’ (the geometric

relation between a surface normal and the illumination direction) and depend only on

the spectral reflectance of the surface and the spectral power distribution (SPD) of the

illuminant. Additional invariants to either local geometry or spectral reflectance can

be computed when multiple images of a scene are available (e.g., [119]), or when the

reflectance of the surface is spatially coherent (e.g.. [77]); and an invariant to both local

geometry and illuminant SPD can be computed from a single image under appropriate

imaging conditions [39].

Invariants for scenes with more general reflectance functions are developed by

Narasimhan et al. [74]. They describe a general model of reflectance consisting of a prod-

uct of a “material” term (Lambertian albedo, Fresnel coefficient, etc.) and a “geometry”

term that encodes the relationship between the surface normal, light-source, and viewing

direction. Invariants to both of these terms can be computed from either multiple ob-

servations of a single point under variable view or illumination, or from one observation

of a spatially-coherent scene. The geometry invariant is of particular interest, since it

can be used directly for material-based segmentation [74].

3.1.1 Invariants for Dichromatic Surfaces

A substantial body of work is devoted to exploiting the dichromatic model of reflec-

tion [98] in order to separate diffuse and specular reflection components, which are

independent of specular and diffuse reflection effects, respectively. According to the

dichromatic model, the observation of a surface point is written

Ik = σdDk + σsSk, (3.1)
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where σd and σs are geometric scale factors that depend on surface shape and material

properties and

Dk =
∫
E(λ)R(λ)Ck(λ)dλ (3.2)

Sk =
∫
E(λ)Ck(λ)dλ. (3.3)

Here, E(λ) is the SPD of the incident illumination, R(λ) is the spectral reflectance of

the surface, and Ck(λ) is the spectral sensitivity of a linear sensor. A typical RGB

camera yields three such observations, and in this case we write IRGB = {Ik}k=R,G,B

and define D = {Dk}k=R,G,B and S = {Sk}k=R,G,B to be the diffuse color and specular

color, respectively. These are conventionally assumed to be vectors of unit length.

There is practical utility in separating the diffuse and specular components in an

image. Since diffuse reflections are typically well-represented by the Lambertian model,

this separation allows the application of powerful Lambertian-based vision algorithms to

a broad class of non-Lambertian scenes. Unfortunately, computing such a separation is

ill-posed. It traditionally requires additional constraints such as texture-less surfaces [51],

knowledge about (e.g., segmentation of) diffuse colors, constraints on the neighborhood

of a pixel [69,102] or specific parametric models for specular reflectance [91].

When the source color is known and constant over a scene, one can compute

invariants to specular reflections that are based on transformations of RGB color space

and do not require explicit specular/diffuse separation. As described in the previous

chapter, Tan and Ikeuchi [102] obtain such a specular invariant using a non-linear com-

bination of the RGB values IRGB at a pixel and the RGB color vector of the source

S. Park [82] defines an alternative, linear transformation providing two color channels

that, while not pure invariants, are highly insensitive to specular reflections. In this

transformation, one of the coordinate axes of color space is aligned with the source color

S, leaving the remaining two channels to be predominantly diffuse.

In the previous chapter, we defined the SUV color space using ISUV = RIRGB,

where R is any rotation of R3 satisfying RS = (1, 0, 0). Like Park’s transformation,

this rotation aligns one of the color axes (the S-axis) with the source color S, but unlike

Park’s transformation, the components along the remaining two axes are indeed invariant

to specular reflections. This is easily seen by applying the transformation to Eq. 3.1 and

verifying that the U and V components are given by

IU = σdr>2 D, IV = σdr>3 D, (3.4)
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where r>2 and r>3 denote the 2nd and 3rd rows of the rotation matrix R. Since they are

independent of the specular geometric scale factor σs, these components constitute a

specular invariant. An important feature of this transformation is that it preserves and

isolates the diffuse shading information (σd).

3.2 Color Subspaces

The SUV color transformation can be viewed as a projection of RGB color

vectors onto the two-dimensional subspace orthogonal to the source color S. (See left of

Fig. 3.2.) This interpretation provides the main motivation for this chapter, and in this

section we show that: 1) it can be generalized to mixed illuminants and hyper-spectral

images; and 2) it leads naturally to a notion of generalized hue.

The SUV color transformation is based on Eq. 3.1, which in turn is premised

on the assumption that the illuminant SPD is constant over the incident hemisphere of a

surface point (i.e., that the illuminant ‘color’ is the same in all directions.) Notationally,

if L(ωi, λ) represents the incident radiance at a surface point, where ωi = (θi, φi) ∈ Ω

parameterizes the hemisphere of incident directions, the model requires that this input

radiance field can be factored (with a slight abuse of notation) as L(ω)E(λ). To relate

this to the terms in Eq. 3.1, we let f(θ, λ) with θ = (θi, φi, θo, φo, λ) denote the BRDF

of the surface, and we write the image formation equation as

Ik =
∫

λ

∫
Ω
f(θ, λ)L(ωi, λ)Ck(λ) cos θi dωidλ.

According to the dichromatic model, the BRDF of the surface can be decomposed ac-

cording to

f(θ, λ) = fd(θ)S(λ) + ksfs(θ), (3.5)

where ks is a constant, and this yields the expressions

σd =
∫

Ω
fd(θ)L(ωi) cos θi dωi

σs = ks

∫
Ω
fs(θ)L(ωi) cos θi dωi

Dk =
∫
S(λ)E(λ)Ck(λ) dλ

Sk =
∫
E(λ)Ck(λ) dλ.
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To generalize the model, we consider a mixed illumination environment whose

spectral content can be written in terms of a finite linear basis:

L(ωi, λ) =
N∑

j=1

Lj(ωi)Ej(λ). (3.6)

An example with N = 2 is an office environment where the illumination can be described

as a solid angle of daylight in the direction of the window and a distinct solid angle of

fluorescent light in the direction of the ceiling. When the input radiance field can be

decomposed in this manner, the BRDF decomposition of Eq. 3.5 yields

Ik =
N∑

j=1

σ
(j)
d D

(j)
k + σ(j)

s S
(j)
k , (3.7)

with

σ
(j)
d =

∫
Ω
fd(θ)Lj(ωi) cos θi dωi

σ(j)
s = ks

∫
Ω
fs(θ)Lj(ωi) cos θi dωi

D
(j)
k =

∫
S(λ)Ej(λ)Ck(λ) dλ

S
(j)
k =

∫
Ej(λ)Ck(λ) dλ.

Equation 3.7 suggests the existence of a specular invariant that is analogous to

the two-dimensional UV subspace of the SUV color space. In the SUV formulation, the

illuminant color is assumed constant over the input hemisphere (which corresponds to

N = 1 in Eq. 3.7) and the specular invariant subspace computed from a three-channel

RGB image is two-dimensional. In general, given an M -channel (possibly hyper-spectral)

image and an N -dimensional spectral basis {Ej(λ)}j=1...N for the incident illumination,

there exists a subspace of dimension (M−N) that is independent of all σ(j)
s and therefore

invariant to specular reflections. Letting {rl}l=1...(M−N) represent an orthonormal basis

for this specular invariant subspace, the lth component (or ‘channel’) of the specular

invariant image is given by

Jl =
N∑

j=1

σ
(j)
d r>l D(j). (3.8)

A specular invariant image with (M − N) channels defined by this equation can be
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treated as an image with (M−N) ‘colors’, but these ‘colors’ can assume negative values.

In some cases it is more convenient to use a grayscale specular invariant given by

Jinv(M−N) =

(
M−N∑
l=1

I2
l

) 1
2

, (3.9)

where the subscript Jinv(u) is used to indicate that the grayscale invariant is derived from

a u-dimensional invariant subspace.

Since the vast majority of cameras record three (RGB) channels, the most

interesting case to consider is N = 2. An example is shown in Fig. 3.1, where light comes

from two sources with different SPDs. These SPDs induce two source color vectors S(1)

and S(2) in RGB space, and by projecting the RGB color vectors of the input image

onto the one-dimensional subspace orthogonal to these vectors, we create an image that

is void of specular reflection effects.

An essential feature of the specular invariants of Eqs. 3.8 and 3.9 is that they

preserve diffuse reflection effects encoded in the geometric scale factors σ(j)
d . For many

surfaces, the diffuse component is well approximated by the Lambertian model, meaning

that the term fd(θ) in Eq. 3.7 is a constant function of θ and the geometric scale fac-

tors σ(j)
d do not change with viewpoint. This implies that the specular invariant images

defined by Eqs. 3.8 and 3.9 often: 1) satisfy the ‘constant-brightness assumption’ under-

lying most stereo and structure-from-motion systems; and 2) provide access to surface

normal information through Lambertian-based photometric reconstruction methods such

as shape-from-shading. As a result, by computing these invariants as a pre-processing

step, we can expand the domain of applicability of many Lambertian-based algorithms to

include a much broader class of specular, non-Lambertian surfaces as seen under complex

lighting.

Applications are explored in Sect. 3.3. Next, we define a second class of invari-

ants that can be computed from the color subspaces defined above.

3.2.1 Generalized Hue

In an M -channel image of a scene, illuminated by N different colored lights, the general-

ized hue is defined as the surface of an (M−N−1) dimensional unit sphere parameterized

by angles Ψ embedded in the (M −N) dimensional diffuse space. The generalized hue

is independent of both shading and specularity.

Returning to the case of uniform source color (N = 1) in Eq. 3.6), we derive a
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Figure 3.2 Left: Projecting RGB color vector IRGB onto the 2D subspace orthogonal to
the source color S results in a specular invariant that preserves diffuse shading. The ratio
between the channels in this subspace represents generalized hue (ψ), which provides a
second invariant depending only on spectral reflectance. Right: For two source colors,
the specular invariant subspace is one-dimensional. By projecting RGB color vectors
onto this line, a specular invariant can still be computed (see Fig. 3.1.)

second invariant by taking the ratio between specular invariant channels in Eq. 3.8. The

result,

J1/J2 = r>1 D/r>2 D,

is independent of both the diffuse and specular geometric scale factors σd and σd. As

shown in Fig. 3.2, it is instructive to interpret this ratio as an angle and define

ψ = tan−1 (J1/J2) = tan−1
(
r>1 D/r>2 D

)
. (3.10)

We refer to ψ as the generalized hue, since it reduces to the standard definition of hue

when the source color S is white.

Examples of generalized hue images are shown in Fig. 3.3 for a specular globe

under two different source colors. In each case, the known source color is used to com-

pute a two-channel subspace image according to Eq. 3.8, and the ratio between the two

channels is used to compute ψ. Since it depends only on D, each country on the globe

appears ‘flat’ and is free of both specular reflections and diffuse shading.

It is interesting to note that this isolation of spectral reflectance can be general-

ized to mixed illumination and hyper-spectral images, albeit at the expense of requiring

either multiple images, spatial coherence, or both. As an illustration, consider an illumi-
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Figure 3.3 Generalized hue images (bottom), each computed from a single RGB image
(top) of a globe. Generalized hue is invariant to both specularities and diffuse shading,
and is discriminative only with respect to the spectral reflectance of the surface.

nation environment with two different source colors (N = 2 in Eq. 3.6), and suppose we

acquire two RGB images with altered illumination directions. (The SPDs of the sources

remain the same.) In this case, the specular invariant subspace is one-dimensional, and

the specular invariant images J and J̄ of a surface point under the two lighting configu-

rations are given by (see Eq. 3.8)

J = σ
(1)
d r>D(1) + σ

(2)
d r>D(2)

J̄ = σ̄
(1)
d r>D(1) + σ̄

(2)
d r>D(2).

Here, we have suppressed the subscript corresponding to the invariant channel index,

since there is only a single channel.

Now, suppose we have identified two additional image points (p2 and p3) that

correspond to surface points having the same geometric configurations (e.g., the same

surface normal under distant lighting) but distinct spectral reflectance. This yields a

total of six specular invariant observations—three points under two illuminations—that
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can be assembled into a 3× 2 observation matrix. As shown by Narasimhan et al. [74],

such a matrix can be factored as
Jp1 J̄p1

Jp2 J̄p2

Jp3 J̄p3

 =


r>D(1)

p1 r>D(2)
p1

r>D(1)
p2 r>D(2)

p2

r>D(1)
p3 r>D(2)

p3


 σ

(1)
d σ̄

(1)
d

σ
(2)
d σ̄

(2)
d

 ,
from which it follows that the ratio of determinants of its two 2×2 sub-matrices satisfies

Jp1 J̄p2 − J̄p1Jp2

Jp2 J̄p3 − J̄p2Jp3

=
D(1)>

p1 D(2)
p2 −D(2)>

p1 D(1)
p2

D(1)>
p2 D(2)

p3 −D(2)>
p3 D(1)

p2

, (3.11)

which depends only on the spectral reflectance of the surface points and is invariant to

the geometric scale factors.

While this example relies on the identification of three surface points (p1, p2, p3),

a similar invariant can be computed using a single surface point and multiple specular

invariant channels collected from a hyper-spectral image. Determinant-based invariants

of this form have been well studied by Narasimhan et al. [74], who apply them directly

to RGB images and obtain invariants for relatively general reflectance functions under

monochromatic environments. The analysis presented here can be viewed simultane-

ously as an extension of their approach to mixed-illumination environments as well as a

specialization to the dichromatic model. The latter is an important difference, because it

enables the distinction between specular and diffuse material properties in the resulting

invariants.

3.2.2 Practical Limitations

The utility of the proposed invariants relies on the angular separation between

the diffuse and source colors (D(j) and S(j)) in color space. When this separation is small,

the signal-to-noise ratio (SNR) in the subspace image can be prohibitively low. This is

evident, for example, in the generalized hue image of the globe in the bottom-right of

Fig. 3.3, where the hue variation within the People’s Republic of China is seen to be

large. In practice, this can be improved using high dynamic range images. Additionally,

surface points with low SNR can be detected by monitoring the angle between the source

colors S(j) and the input color vectors IRGB, and this information can be incorporated

into any robust vision algorithm (see, e.g., [113]).

It is also important to note that in order to compute the invariants described
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Figure 3.4 Stereo reconstruction under mixed illumination. Top left: One image of an
input stereo pair with blue and yellow illumination. Top center: Single-color invariant
image Jinv(2) from Eqs. 3.8 and 3.9 with S in the direction of the blue source. Top
right: Two-color invariant Jinv(1) obtained by projecting to the 1D subspace orthogonal
to both sources. Bottom row: depth map obtained using the stereo algorithm of Boykov
et al. [22] in each case.

in the previous sections, we require knowledge of the source colors S(j). In a controlled

setting, these colors can be measured by imaging a ‘white’ surface under the given

illuminants; and estimates of the illuminant colors in an uncontrolled setting can be

obtained using existing methods (e.g., [9,103]). From a practical standpoint, it is difficult

to provide a meaningful quantitative evaluation of the sensitivity of these invariants to

errors in the source colors since it depends on the spectral reflectance and illuminant

SPD of a particular scene. We leave a statistical evaluation for future work, and instead,

in the next section we assess the practical utility of these invariants by evaluating their

performance in a very broad range of applications.

3.3 Applications and Evaluation

This section demonstrates the utility of the proposed invariants using RGB

images for a number of vision algorithms and compares the results to those obtained
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using standard grayscale images Ig = (R + G + B)/3. For RGB images, when the

illumination is a mixture of two known colors, the two-color specular invariant J1 from

Eq. 3.8 is grayscale and is equal to Jinv(1) from Eq. 3.9. On the other hand, a single-

color specular invariant computed from an RGB image includes two diffuse channels

{J1, J2}, which can be combined into a grayscale invariant Jinv(2) using Eq. 3.9. (This

is equivalent to the representation ‖J‖ of Eq. 2.6.) The results in this section show that

Jinv(2) is effective in situations where the source color is uniform, and that it performs

much better than Ig. In situations where the scene illumination is a mixture of two colors,

however, Jinv(2) is not invariant to all specular reflections, and significantly better results

can be obtained using the invariant Jinv(1), which is derived from the one-dimensional

subspace orthogonal to both source colors.

This section also includes an application of generalized hue to the problem of

material-based segmentation.

3.3.1 Stereo

Specular highlights arising due to complex illumination can severely limit the accuracy

of stereo algorithms that assume simple illumination and/or Lambertian surfaces. To

the best of our knowledge, there are no algorithms for stereo reconstruction that can

work for non-Lambertian objects under complex illumination. In cases of significant

specular reflections and complex illumination conditions, we can improve the accuracy

of existing stereo algorithms by computing the specular invariant as a pre-process. This

is demonstrated in Fig. 3.4, which compares binocular stereo results obtained using

conventional grayscale images Ig, the single-illuminant (2D subspace) invariant Jinv(2),

and the two-color (1D subspace) invariant Jinv(1). In this figure, the grayscale and

invariant images are computed from a rectified RGB stereo pair (top of Fig. 3.4) and are

used as input to the binocular stereo algorithm of Boykov et al. [22]. The original RGB

image includes two specular highlights caused by blue and yellow illuminants. The blue

highlight is largely eliminated in the single-color invariant Jinv(2), while image Jinv(1)

is invariant to specular reflections of both colors. As expected, the results from the

grayscale and single-color invariant images are poor in specular regions, and the depth

map obtained using Jinv(1) is significantly improved.
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3.3.2 Optical Flow

As shown in chapter 2, traditional optical flow algorithms applied to non-Lambertian

objects yield incorrect results. These problems are amplified under complex illumina-

tion. As demonstrated by the results in Fig. 3.5, optical flow in the presence of specular

reflections in a complex illumination environment can be improved by computing a spec-

ular invariant as a pre-processing step. In Fig. 3.5, an RGB image sequence is captured

by a camera translating horizontally relative to a static scene. The sequence is used

to compute a conventional grayscale sequence Ig(t), a single-color invariant sequence

Jinv(2)(t), and a two-color invariant sequence Jinv(1)(t). These three videos are used as

input to Black and Anandan’s algorithm for robust optical flow [17]. The left of Fig. 3.5

shows a single image from each sequence, and the right shows the recovered flows in the

indicated window. Since the camera undergoes pure translation, the ‘ground-truth’ flow

lies along parallel horizontal lines. The flows recovered using the conventional grayscale

and single-color invariant sequences are shown in green and blue, respectively; and as

expected, these flows are severely corrupted by specular highlights. In contrast, the flow

computed from the mixed-illuminant invariant (shown in red) is close to the ground

truth and is largely unaffected by these non-Lambertian effects.

3.3.3 Material-based Segmentation

Sections 3.3.1 and 3.3.2 demonstrate the utility of the first class of specular invariants

under mixed illumination for stereo and optical flow. In this section, we demonstrate an

application of the second class of invariants, which is independent of both the specular

reflections and diffuse shading in an image. Potential applications of this invariant

include segmentation, tracking, and recognition. Here, we consider the application of

generalized hue to the problem of material-based segmentation.

Figure 3.6 shows an RGB image of a dichromatic scene under uniform source

color (N = 1) as well as a number of pseudo-colored representations related to the

invariants presented in Sect. 3.2. The top row shows conventional grayscale and specular

invariant images, and in the latter, the specular effects (most notably on the green apples,

the pumpkin, and the red pepper) are largely eliminated. The bottom-right of Fig. 3.6

shows the generalized hue image given by Eq. 3.10, which is invariant to diffuse shading

in addition to specular reflections, and therefore depends only on the spectral reflectance.

The fact that the generalized hue within each region is relatively constant suggests that

it is a useful representation for segmentation. The same is not true for the conventional
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hue image (shown on the bottom-left) because the illuminant is not white.

3.4 Conclusion

This chapter presents two classes of photometric invariants that are derived

from color subspaces. They are efficiently computed from a single image of a dichro-

matic scene and are valid in cases of mixed (i.e., spectrally-varying) illumination envi-

ronments. The invariants are computed point-wise and therefore place no restriction on

scene texture.

Computation of these invariants requires that the source color(s) be known a

priori, but in the future, we plan to investigate methods that exploit these representations

to recover this information from the data. For scenes such as that in Fig. 3.6, for example,

it is possible that the entropy of the generalized hue image provides an indicator of the

accuracy of the estimated source color.

The practical utility of these invariants is demonstrated by their ability to

improve the performance of a wide variety of vision algorithms, including those for

stereo and motion estimation. As a result, they provide a means for extending the

applicability of existing Lambertian-based algorithms to a more general class of non-

Lambertian scenes.

This chapter is based on “Color Subspaces as Photometric Invariants” by T.

Zickler, S. P. Mallick, D. J. Kriegman, and P. N. Belhumeur. I was responsible for

developing the theory for obtaining specular-invariant image in an M channel image

illuminated by N light colors. I conducted all the experiments described in the paper.
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Figure 3.5 Optical flow comparison. An RGB image sequence (top left) is captured by a
camera translating left relative to a specular apple under yellow and blue illumination.
Derived conventional grayscale Ig(t), yellow-invariant Jinv(2)(t) (left middle), and two-
color invariant Jinv(1)(t) (left bottom) sequences are computed and used as input to
Black and Anandan’s robust optical flow algorithm [17]. Right: flows obtained in the
three cases. Green and blue flows are from grayscale and yellow-invariant sequences,
respectively, and both are corrupted by specular reflections. Red flow is computed from
the two-color invariant and is much closer to ground truth, which is horizontal and to
the right.
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Input RGB Conventional Grayscale Specular Invariant

Conventional Hue Generalized Hue

Figure 3.6 Generalized hue for material-based segmentation. Each panel shows a pseudo-
colored representation that is computed from the RGB image on the top-left. The
generalized hue image on the bottom-right is useful for segmentation because it depends
only on the spectral reflectance of the surfaces. The same is not true for a conventional
hue image (bottom-left) unless the illuminant is white.
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Removing Specular Highlights

“There are two kinds of light - the glow that illuminates, and the glare
that obscures.”

James Thurber

The reflectance of a wide variety of materials (including plastics, plant leaves, cloth,

wood and human skin) can be described as a linear combination of specular and dif-

fuse components. When this description is accurate, there are benefits to decomposing

an image in this way. The diffuse reflectance component is often well-described by the

Lambertian model, and by isolating this component, powerful Lambertian-based tools

for tracking, reconstruction and recognition can be applied more successfully to real-

world, non-Lambertian scenes. There is also evidence that specular reflectance plays

a role in human perception, and there is a set of computer vision algorithms that rely

solely on this component (e.g., [18, 37, 80]). Finally, in addition to image-analysis ap-

plications, specular/diffuse separation is important in image-based 3-D modeling, where

(specular-free) diffuse texture maps are often desired, and in photo-editing, where the

two components can be independently processed and recombined.

The methods presented in the previous chapters separate part of the diffuse

information from mixed signal (e.g., the U and V channels of the SUV color space).

Here we address the problem of complete separation of reflection components in images

of general, possibly textured, scenes. We continue to restrict our attention to surfaces

that are well-represented by Shafer’s dichromatic reflectance model [98], in which the

spectral distribution of the specular component is similar to that of the illuminant while

that of the diffuse component depends heavily on the material properties of the surface.

Given a single image, specular/diffuse separation requires that color information

be shared between image points, and significant research has been devoted to developing

62
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Figure 4.1 An image of a textured surface (left) is separated into its diffuse (middle)
and specular (right) components. Images should be viewed on a monitor or in very
high-quality color print.

global approaches that operate by explicitly segmenting an image into distinct regions of

homogeneous diffuse color. When one or more such regions can be identified, the diffuse

and specular colors can be estimated, for example, through color histogram analysis [51].

Global approaches have proven useful in color constancy applications where only the

illuminant color is desired [30,55,106], but since many natural surfaces exhibit significant

diffuse texture, explicitly separating reflectance components using these methods is often

difficult to achieve.

We have also seen the development of methods that share color information

exclusively through local interactions between image points. These methods do not rely

on explicit segmentation and can therefore be applied to a much broader class of scenes,

including those with texture. Nayar et al. [75], for example, use an iterative scheme

that shares color information between each specular point and its diffuse neighbors. The

selection of neighboring pixels is governed by both color and polarization constraints

that are obtained from multiple exposures. More recently, Tan and Ikeutchi [102] have

demonstrated impressive results on single images of textured scenes by sharing diffuse

color information between each pixel and one of its four neighbors.

This chapter presents a framework for dichromatic separation based purely on

local interactions. Unlike previous approaches, the method is developed in the continuous

domain, with local interactions governed by partial differential equations (PDEs). This

process selectively shares color information between nearby image points through multi-

scale erosion [3, 21, 24] with structuring sets that vary over the image plane. We derive

a family of PDEs that are appropriate for differing conditions, including images of both

textured and untextured surfaces. We also show how this framework extends naturally
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to videos, where motion information is available as an additional cue.

On the practical front, we present results on high-quality images acquired in

the laboratory (Figs. 4.1 and 4.5), and show that they compare favorably to ground-

truth determined using cross polarization (Fig. 4.6). We also present results on 8-bit

images downloaded from the Internet (Fig. 4.7), suggesting robustness to artifacts caused

by low dynamic range, JPEG compression, and lack of knowledge of the illuminant

color. Finally, we show results on videos (Fig. 4.8) for which explicit optical flow is not

necessarily available.

4.1 Color-based Specular/Diffuse Separation

The dichromatic model suggests the possibility of decomposing an image into its specular

and diffuse components based on color information. Beginning with a three-channel RGB

image, the objective is to recover an RGB diffuse image and a monochromatic specular

layer. This is an ill-posed problem, even when the illuminant color is known. Given a

single image, most methods operate by aggregating color information spatially across the

image plane. As mentioned in the introduction, we can differentiate between methods

that are global and local in nature.

Klinker et al. [51] show that when the diffuse color is the same at each point

on an object’s surface, the color histogram of its image forms a T-shaped distribution,

with the diffuse and specular pixels forming linear clusters. They use this information to

estimate a single “global” diffuse color, and in principle, this approach can be extended

to cases in which an image is segmented into several regions of homogeneous diffuse

color. Results can be improved by exploiting knowledge of the illuminant color through

transformations of color space [7, 104], but these methods also require an explicit seg-

mentation of the scene into large regions of constant diffuse color. In recent work, Tan

and Ikeutchi [101] avoid explicit segmentation by representing all of the diffuse colors in

a scene by a global, low-dimensional, linear basis.

In addition to the global approaches mentioned above, there has been consider-

able interest in separating reflection components through purely local interactions. The

advantage of this approach is that it admits highly textured scenes that do not contain

piecewise constant diffuse colors. In most local methods, the illuminant color is assumed

to be known a priori, which is not a severe restriction since it can often be estimated

using established (global) methods (e.g., [30,55,106]). Tan and Ikeutchi [102] iteratively

reduce the specular component of a pixel by considering one of its neighbors that puta-
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tively has a related diffuse component. Ping et al. [88] allow a user to specify a closed

curve surrounding a specular region and then minimize an objective function based on

local variations in diffuse chromaticity and specular intensity. One of the earliest local

methods is that of Nayar et al. [75], which also uses polarization as an additional cue to

enable the recovery of a spatially-varying source color.

The goal of this chapter is to formalize the notion of “local interactions” for

specular/diffuse separation, and thereby develop a general framework for achieving sep-

aration through local interactions in both images and videos. We consider images to be

continuous signals of two (or, in the case of video, three) dimensions. This enables a

flexible and precise description of a neighborhood, which leads naturally to a family of

PDEs that govern local interactions.

Note that in this discussion of color-based methods, we have omitted a number

of other methods that rely on additional cues, such as variable lighting [7, 59, 81, 92]

variable polarization [75,110,120], and parametric reflectance [90].

4.2 Specularity Removal and Differential Morphology

This section derives a family of non-linear PDEs for completing the partial

specular/diffuse separation provided by a transformation to SUV color space. Intuitively,

these PDEs define a series of local interactions in which color information is shared along

curves (or surfaces) of constant “hue.”

We begin by re-parameterizing SUV color space using a combination of cylindri-

cal and spherical coordinates. As depicted in Fig. 4.2, suppressing the spatial dependence

for notational simplicity, we define

ρ =
√
I2
U + I2

V , θ = tan−1

(
IU
IV

)
, φ = tan−1

(
IS
ρ

)
. (4.1)

This parameterization has the following properties:

1. Since they depend only on the diffuse UV channels, both ρ and θ are independent

of the specular reflectance component.

2. Since the illuminant color is aligned with the S-axis, the angle θ parameterizes the

pencil of dichromatic planes in an image. The generalized hue θ reduces to the

standard definition of hue in the special case of a white illuminant. It depends

on the direction of the diffuse color vector but not the magnitude of the diffuse

component.
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Figure 4.2 A color in the SUV color space is parameterized by (ρ, θ, φ). ρ and θ are
independent of specularity, and θ generalizes the notion of “hue” for arbitrarily col-
ored illuminants. The problem of computing a specular/diffuse separation is reduced to
finding φd, the diffuse part of φ.

3. The ρ-value represents diffuse shading, since it is directly related to n̂ · l̂, and

therefore, the magnitude of the diffuse component.

4. The φ-value is a linear combination of specular and diffuse components, and we

can write φ = φs + φd, where φs and φd are the specular and diffuse contributions

to φ.

According to these properties, the problem of computing a specular/diffuse separation is

reduced to one of estimating φd(x, y), the diffuse contribution to φ at each image point.

Once the scalar function φd(x, y) is known, the RGB specular and diffuse components

follow directly from inverting the transformations in Eqs. 4.1 and 2.1, with φ replaced

by φs and φd, respectively.

4.2.1 Multi-scale Erosion

Our goal is to compute a specular/diffuse separation through estimation of the scalar

function φd(x, y). As stated in the introduction, we seek to accomplish this goal through
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purely local interactions. This section describes how this can be accomplished by evolving

a PDE that iteratively “erodes” the specular contribution to φ and converges to an

estimate of φd at each point. The erosion process is guided locally by the diffuse color

information provided by ρ and θ, and is formulated in the continuous domain using one

of a family of non-linear PDEs that define multi-scale erosions [3, 21, 24]. The theory

presented in this section is related to the formulation of multi-scale erosion presented by

Brockett and Maragos [24].

The multi-scale erosion ε(x, t) of a bivariate function f : R2→R by structuring

set B ⊆ R2 at scale t is defined as

ε(x, t) = (f 	 tB)(x)
4
= inf{f(x + ∆x) : ∆x ∈ tB} ,

where the set B is compact, and tB , {tb : b ∈ B}. Intuitively, ε(x, t) evaluated at a

particular value of t corresponds to an erosion of the function f(x), where the function

value at x = (x, y) has been replaced by the minimum of all function values in the

“neighborhood” tB, which is a scaled replica of structuring set B. A multi-scale erosion

is computed by considering the PDE

∂ε

∂t
(x, t) = lim

∆t→0

ε(x, t+ ∆t)− ε(x, t)
∆t

. (4.2)

When the structuring set is both compact and convex, the multi-scale erosion has a

semigroup structure, allowing one to write [24]

∂ε

∂t
(x, t) = lim

∆t→0

inf{∇ε>∆x : ∆x ∈ ∆tB}
∆t

, (4.3)

where ∇ε is the two-dimensional spatial gradient of ε evaluated at t. Finally, as shown

in Ref. [24], in the special case where B is disk-shaped, Eq. 4.3 becomes

εt = −‖∇ε‖. (4.4)

Equation 4.4 is an example of a PDE that can be used for specular/diffuse

separation, albeit in the special case when the scene consists of a texture-less surface

with uniform diffuse color. To see this, suppose we are given an input image with

corresponding functions ρ(x), θ(x) and φ(x), and suppose we define ε(x, 0) = φ(x). The

solution to Eq. 4.4 evaluated at scale t corresponds to the erosion of φ by a disk-shaped

structuring set, meaning that the value of φ at each image point is replaced by the
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Textureless Texture 1 Texture 2 Video 1 Video 2

Set 2D Disk 2D Line 2D Ellipse 3D Disk 3D Line

Direction Isotropic Iso-cont. of θ Iso-cont. of θ Iso-surf. of θ Optic Flow

M I2×2 I2×2 −∇θ̂ ∇θ̂> AA> I3×3 −∇θ̂∇θ̂> FF>/‖F‖2

Figure 4.3 Summary of five cases from left to right: (1) image with uniform diffuse color,
(2-3) textured image, (4) video, and (5) video with known optical flow. Rows depict: the
structuring set used, the direction/surface of erosion, and the matrix M in the multi-
scale erosion equation (Eq. 4.5.) In×n is the identity matrix, and ∇θ̂, A and F are as
defined in Sect. 4.2.

minimum value within a disk-shaped neighborhood of radius t. Since φd(x) ≤ φ(x),

it follows that when the image contains at least one image point that is purely diffuse

(that is, for which φs = 0) then ε(x, t) evaluated at t will converge to φd(x) as t is made

sufficiently large.

In the next three sub-sections, we develop more sophisticated PDEs for cases

of multiple regions of uniform diffuse color, complex diffuse texture, and video. In all

of these, the basic idea is the same: the value of φd at each image point is estimated

by eroding the initial function φ. By changing the structuring set, however, the process

can be controlled so that region boundaries and diffuse texture are preserved during the

process. In particular, we show that the PDE governing the evolution of φ for three

different cases – texture-less images, textured images, and video – can all be written in

the form

εt = −g(ρ,∇ρ)
(
∇ε>M∇ε

)1/2
, (4.5)

where M is a different matrix for each case. g(ρ,∇ρ) is called the stopping function and

is defined in the following section. Figure 4.3 shows a summary of the different cases

described in this chapter.

4.2.2 Texture-less Surfaces: Isotropic Erosion

Equation 4.4 describes a process in which the specular component of φ is eroded

equally in all directions. This is desirable in cases of homogeneous diffuse color, but if

regions of distinct color exist, there is a possibility that “color bleeding” may occur. To

prevent this, we introduce a “stopping function” analogous to that used in anisotropic

diffusion [85]. In fact, a stopping function is useful for attenuating the erosion process
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in two different cases.

1. If a region of the surface is “white” (i.e., it reflects all wavelengths equally) or if the

surface is the same color as the light source, the diffuse component of color cannot

be isolated using the dichromatic model. Since ρ = 0 in this case, no diffuse color

information is available, and erosion should be arrested.

2. Information about φ should not be shared across boundaries between regions of

distinct color. Since these boundaries often coincide with large values of ‖ρ‖,
erosion should be attenuated when ‖ρ‖ is large.

One possible stopping function that meets these guidelines is

g(ρ,∇ρ) =
(

1− e−ρ

1 + e−ρ

)
e−(‖∇ρ‖−τ)

1 + e−(‖∇ρ‖−τ)
, (4.6)

where τ is a threshold on ‖∇ρ‖, above which erosion is heavily attenuated. The stopping

function is the same for all cases. Incorporating this into Eq. 4.4 yields

εt = −g(ρ,∇ρ)‖∇ε‖ = −g(ρ,∇ρ)
(
∇ε>I2×2∇ε

)1/2
. (4.7)

The erosion process defined by this equation can be used for the specular/diffuse sepa-

ration of images containing large regions of uniform diffuse color.

4.2.3 Textured Surfaces: Anisotropic Erosion

An example of a scene that does not contain regions of uniform diffuse color

is shown in Fig. 4.4. In this case, eroding the function φ isotropically would blur the

diffuse texture. Instead, we need to erode φ anisotropically, only sharing information

between neighboring image points for which φd is likely to be equal. Of course, we have

no information about the diffuse color a priori, so it is impossible to know the correct

direction (if it even exists) with certainty. As depicted in Fig. 4.4, however, since θ is

independent of both specularity and shading information, the directions tangent to the

iso-contours of θ(x) provide a good choice. In the absence of any additional information,

they provide a good local predictor for the direction in which φd is constant.

We define

∇θ̂ =

∇θ/‖∇θ‖ ‖∇θ‖ > 0

0 ‖∇θ‖ = 0,
(4.8)
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Figure 4.4 Left: a rendered RGB image of a textured sphere. Middle: The value of
θ at each pixel. Notice that θ is constant in regions of constant diffuse color and is
independent of specularity as well as shading. Right: Blown-up view of the iso-contours
of θ in the region indicated in the middle frame. White indicates regions of constant θ.
In textured images, erosion of the specular component occurs along iso-contours of θ,
which ensures that diffuse texture is preserved while the specularity is removed.

where ∇(·) refers to the spatial gradient as before, and we denote the direction orthogonal

to ∇θ by V.1 The multi-scale erosion of φ with the spatially-varying, linear structuring

sets V(x) is derived analogous to the isotropic (disk-shaped) case discussed previously.

εt = lim
∆t→0

inf{∇ε>∆x : ∆x ∈ ∆tV}
∆t

= lim
∆t→0

−∆t|∇ε>V|
∆t

= −|∇ε>V| . (4.9)

Using the fact that V = [ θ̂y − θ̂x ]> (or [θ̂y − θ̂x ]> ), and including the stopping

function, we obtain

εt = −g(ρ,∇ρ)
[
∇ε>

(
I2×2 −∇θ̂∇θ̂>

)
∇ε
]1/2

. (4.10)

Using similar arguments to that in the isotropic case, it can be shown that ε(x, t) evalu-

ated at sufficiently large t will be equal to φd(x) (and will yield a correct specular/diffuse

separation) if the iso-contour of θ passing through each point x: 1) contains only points

for which φd is constant; and 2) contains at least one point at which a purely diffuse

observation (φs = 0) is available. Note that in regions where the diffuse color is constant

(i.e., ∇θ̂= [ 0 0 ]>), this equation reduces to Eq. 4.7, and the erosion becomes isotropic

as desired.

In practice, the transition from linear to disk-shaped structuring sets in Eq. 4.10
1Since θ is periodic, a definition of distance is necessary for its gradient to be correctly computed.

We define the distance between two angles θ1 and θ2 as min(|θ1 − θ2|, 2π − |θ1 − θ2|).
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is controlled by a threshold on ‖∇θ‖. This discontinuous transition can be avoided by

employing an elliptical structuring set with a minor axis aligned with the direction of

∇θ and with an eccentricity that varies smoothly with ‖∇θ‖. To derive a PDE for the

corresponding multi-scale erosion, we let E denote an elliptical structuring set, and we

describe this set by the lengths of its major and minor axes (λ1, λ2) and the angle between

its major axis and the x-axis (ψ). Points x on the boundary of E satisfy x>Qx = 1

where Q = R(−ψ)Λ−2R(ψ) , Λ = diag(λ1, λ2) and R(ψ) is a clockwise rotation of the

plane. As before, the multi-scale erosion defined by this set satisfies

εt = lim
∆t→0

inf{∇ε>∆x : ∆x ∈ ∆tE}
∆t

. (4.11)

To simplify the right-hand side of this equation, we define the transformation x = Ax′,

with A = R(−ψ)ΛR(ψ)′. The spatial gradient of ε with respect to x′ is given by the

chain rule: ∇ε′ = A>∇ε. The transformation A maps the set E to the unit disk (since

x>Qx = x>A>QAx = x′>x′ = 1), and as a result, we can write inf{∇ε>∆x : ∆x ∈
∆tE} = inf{∇ε′>∆x′ : ∆x′ ∈ ∆tB}. Substituting this into Eq. 4.11 and comparing with

Eq. 4.4, we obtain εt = −‖∇ε′‖ = −
(
∇ε>AA>∇ε

)1/2
. Finally, adding the stopping

function yields

εt = −g(ρ,∇ρ)
(
∇ε>AA>∇ε

)1/2
. (4.12)

4.2.4 Videos: Anisotropic Erosion in Three Dimensions

Thus far, we have dealt exclusively with still images, but the framework extends

naturally to video, which can be treated as a 3D volume I(x, y, z) in which time is the

third dimension z. As in the case of textured images, the direction of ∇θ is assumed to

be a good local predictor for the direction (in 3D space-time) of maximum diffuse color

change. We would like to preserve the component of ∇φ along this direction during the

erosion process, which is accomplished by restricting the erosion of φ to the iso-surfaces

of θ. In the absence of additional information, there is no preferred direction within an

iso-surface of θ, so a natural choice of structuring set is a circular disk contained within

its tangent plane.

To compute the multi-scale erosion equation, we note that the structuring set

described above consists of a disk (denoted C) whose surface normal is aligned with ∇θ.
Then, the maximum projection of ∇φ onto the plane that contains this disk is given by
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(
‖∇φ‖2 − ‖∇θ̂>∇φ‖2

)1/2
, and the evolution equation can be simply written as

εt = lim
∆t→0

inf{∇ε>∆x : ∆x ∈ ∆tC}
∆t

= lim
∆t→0

−∆t
(
‖∇ε‖2 − ‖∇θ̂>∇ε‖2

)1/2

∆t

= −
(
‖∇ε‖2 − ‖∇θ̂>∇ε‖2

)1/2
.

After some algebraic manipulations, and taking into account the stopping function, we

obtain

εt = −g(ρ,∇ρ)
[
∇ε>(I3×3 −∇θ̂∇θ̂>)∇ε

]1/2
. (4.13)

Note that the erosion equation for textured and texture-less surfaces are special cases of

the erosion equation for videos.

As mentioned earlier, if some a priori information is known, better structuring

sets can be designed. An interesting example is when optical flow estimates are avail-

able at each location in a video. Even though the video contains specularities which

violate the brightness-constancy constraint, accurate optical flow can be estimated us-

ing UV or by using θ, which is independent of both shading and specularity. We let

[ u(x, y, z) v(x, y, z) ]> represent the estimated optical flow at location (x, y, z) in the

video, so that space-time points (x, y, z) and (x+ u, y + v, z + 1) correspond to projec-

tions of the same surface element. It follows that φd can be estimated by eroding φ along

the direction F = [u v 1]>. Using the expression for erosion by a linear set derived in

Eq. 4.10 we obtain

εt = −g(ρ,∇ρ)
∣∣∣∣ F>‖F‖∇ε

∣∣∣∣ = −g(ρ,∇ρ)
(
∇ε>FF>

‖F‖2
∇ε
)1/2

. (4.14)

4.3 Results

The methods were evaluated using images and videos acquired in the laboratory

as well as those downloaded from the Internet. Using a known (or approximately known)

illuminant color, each image is transformed into SUV space, and the functions ρ, θ and

φ are computed. Specular/diffuse separation is achieved by numerically integrating the

appropriate multi-scale erosion PDE with initial condition ε(x, 0) = φ(x). The process



73

Figure 4.5 Input image (left) with recovered diffuse (center) and specular components
(right). Anisotropic multi-scale erosion (Eq. 4.10) is used in both cases, since it naturally
handles both textured and untextured surfaces. In the lower example, texture that
is nearly completely masked by specularity in the input image is apparent once the
specularity is removed. Images should be viewed on a monitor or in very high-quality
print.

is complete when the maximum change in ε is below a selected threshold, and this yields

an estimate of φd(x), which completely defines the specular and diffuse components.

It is important to note that the non-linear PDEs that govern erosion are defined

at points where the partial derivatives exist. Even if this is satisfied by the initial data,

however, at finite scales the multi-scale erosion generally develops discontinuities in the

derivatives referred to as shocks. Shocks can be dealt with (as we do here) by replacing

standard derivatives by morphological derivatives [24]. They can also be handled using

viscosity solutions [28].

Fig. 4.5 shows two 12-bit images acquired in a controlled setting (with known

illuminant color) along with the recovered specular and diffuse components. Both results

were obtained using the anisotropic erosion defined in Eq. 4.10. The method correctly

handles both regions of uniform color (e.g., the orange pepper) and regions with signifi-

cant texture (e.g., the pear). Looking closely at the pear, we notice that diffuse texture

that is barely visible in the input image is revealed when the specularity is removed.
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Figure 4.6 Comparison to ground truth. Left: Input image. Middle: Ground truth diffuse
component obtained by using linear polarizers. Right: Diffuse component recovered
using anisotropic multi-scale erosion. Images should be viewed on a monitor or in very
high-quality print.

Results from an image of a human face captured under laboratory conditions

are shown in Fig. 4.1. Again, diffuse texture is preserved, while the specular component

is reduced. Pixels on the forehead between the eyebrows are saturated, and this results

in artifacts. The stopping function ensures that these pixels are implicitly identified and

treated as outliers during the erosion process. While left here for illustrative purposes,

these artifacts can be reduced by inpainting the diffuse and/or specular components in

a post-process. (This is done, for example, by Ping et al. [88].)

Fig. 4.6 compares the result of our algorithm with the ground truth obtained

using polarization filters on the light source and camera. The polarizer in front of the

light source is fixed while the polarizer in front of the camera is rotated to an orientation

that produces an image with minimal specularity. The result of our algorithm is very

close to the ground truth on both the textured surfaces (i.e., the vase and pear) and the

untextured surfaces (i.e., the sphere).

Additional still-image results are shown in Fig. 4.7. These images were down-

loaded from the Internet, so they exhibit low dynamic range (8-bit) and are corrupted

by JPEG compression. Since illuminant color was not known, it was assumed to be

white, and the gamma was assumed to be 2.2. Despite these sources of noise, the multi-

scale erosion defined in Eq. 4.10 still succeeds in separating the diffuse and specular

components. An animation of the erosion process has been uploaded as supplemental

material.

In addition to still images, we also evaluated the method on video sequences,

some frames of which are shown in Fig. 4.8. In both cases, erosion is performed along iso-

surfaces of θ using Eq. 4.13, and in both cases, texture is preserved while the specularity

is removed. Complete videos are uploaded as supplementary material.
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Figure 4.7 Decomposition in the presence of low dynamic range and JPEG artifacts.
Eight-bit images (left) were downloaded from the Internet, the illuminant was assumed
to be white, and the gamma was assumed to be 2.2. Despite these sources of uncertainity,
diffuse and specular components can be recovered using anisotropic multi-scale erosion.
Images should be viewed on a monitor or in very high-quality print.

4.3.1 Dichromatic Editing

To further demonstrate the efficacy of our approach, we use it as a means for

dichromatic editing – the simulation of visual effects by the independent processing of

reflection components. Some examples are shown in Fig. 4.9 and Fig. 4.10, where: 1)

the specular and diffuse components are recovered using Eq. 4.10, 2) each component is

processed individually, and 3) they are recombined. Since the diffuse and specular com-

ponents often form two distinct components of visual perception, dichromatic editing can

achieve a variety of visual effects, including the effects of make-up, surface roughening,

and wetness.
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4.4 Discussion

This chapter presents a framework for specular/diffuse separation in images

and video that is based on local spatial (and spatio-temporal) interactions. Separation is

framed in terms of differential morphology, which leads to a family of non-linear PDEs.

By evolving these PDEs, we effectively erode the specular component at each image

point. This erosion is guided by local color and shading information, so that diffuse

texture is preserved without requiring an explicit segmentation of the image. Videos are

naturally considered in this formulation, with the erosion equation for videos including

the still-image equations as a special case.

The approach described in this chapter relies purely on local color information,

and is therefore limited to dichromatic surfaces for which the diffuse and specular colors

are distinct. It also requires the illuminant color to be known (at least approximately)

a priori. In the future, we plan to overcome these limitations by exploiting additional

cues, such as local shape, in addition to color.

Separation results presented in this chapter include those from low dynamic

range JPEG images downloaded from the Internet. For these images, the illuminant

color and gamma correction are only approximately known. The results on these im-

ages suggest that the approach is robust to various sources of noise, a property that

likely stems from the continuous formulation of the problem. Indeed, by developing

the problem in terms of morphological PDEs, we benefit from existing robust numeri-

cal algorithms to solve them [70]. This is an important advantage over purely discrete

formulations.

This chapter is based on “Specularity Removal in Images and Videos: A PDE

approach” by S. P. Mallick, T. E. Zickler, P. N. Belhumeur, and D. J. Kriegman. I

derived most of the Partial Differential Equations for specular highlight removal in images

and videos. I was also responsible for implementation and experiments. In addition, I

contributed toward writing the paper.
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Figure 4.8 Frames representing separation in (12-bit) video. Top row includes frames
from an input sequence, and bottom row shows the recovered diffuse component. The
results are obtained by eroding along the iso-surfaces of θ(x, y, z) as described by Eq. 4.13.
Images should be viewed on a monitor or in very high-quality print.
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a. b.

c. d.

Figure 4.9 Dichromatic editing examples. In each case a visual effect is simulated by
independent processing of the recovered specular and diffuse components. (a) Input
image. (b) Sharpened specular lobe, as would occur if the surface were more smooth.
This is acheived by eroding the specular component using a disk-shaped structuring
element and amplifying it. (c) Effect of an additional light source obtained by exploiting
the object symmetry and reflecting the specular component about the vertical axis. (d)
Avocado-like appearance by modulating the specular component.
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Figure 4.10 Dichromatic editing examples. In each case a visual effect is simulated by
independent processing of the recovered specular and diffuse components. (a) Input
image. (b) An effect of makeup is simulated by removing the gloss from the face and
enhancing it on the lips. (c) Input image. (d) An effect of wetness is simulated by
sharpening the specular layer of skin.
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Refractive Optical Flow

“While we all have our own perception about what is going on that is
filtered through our experience, there is at the bottom the simple truth, which
is what I look for.”

Michael Ramirez

The human visual system is remarkable in its ability to look at a scene through a trans-

parent refracting object and to deduce the structural properties of that object. For

example, when cleaning a wine glass, imperfections or moisture may not be visible at

first, but they become apparent when one holds the glass up and moves or rotates it.

We believe that the primary cue here is the optical flow of the background

image as observed through the refracting object, and our aims in this chapter are to

build a theory of how motion can be used for recovering the structure of a refracting

object, to introduce algorithms for estimating this structure, and to empirically validate

these algorithms. By structure here we mean a representation of how the object warps

and attenuates (or amplifies) the light passing through it. Recall, as a light ray enters or

exits the object, its direction will change according to Snell’s Law (known as Descartes’

Law in France). Furthermore, the emitted radiance may differ from the incident radiance

due to the difference in solid angle caused by the geometry of the interfaces between the

object and the air as well as absorption along the light ray’s path through the object.

The geometric shape of the object itself, while of independent interest [54,73], is not the

focus of our inquiry here.

The primary contribution of this work is to generalize the optical flow equation

to account for the warping and attenuation caused by a refractive object, and to present

algorithms for solving for the warp and attenuation using a sequence of images obtained

as a planar background moves behind the refracting object. Both the case where the

80
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background motion is known and where it is unknown are considered. We demonstrate

the performance of these algorithms on both synthetic and real data.

While there is a vast literature on motion understanding (including trans-

parency), the warp induced by refraction appears to have been neglected hitherto [46,

49, 56, 95]. The ability to recover the refractive structure of an object has a number of

applications. Recently, environment matting and compositing have been introduced as

techniques for rendering images of scenes which contains foreground objects that refract

and reflect light [25, 117, 132]. The proposed approach offers a new method for creating

a matte of real objects without the need for extensive apparatus besides a video camera.

Refractive optical flow may also be useful for visual inspection of transparent/translucent

objects.

This work was inspired by the work of Zongker et al. [132] on environment

matting and its subsequent extension by Chuang et al. [25]. We discuss this method in

the next section. In [132] the authors utilize images of a refracting object acquired by

placing it in front of a set of calibrated patterns and a combinatorial search to minimize

the reconstruction error, to recover the geometrical warping, the attenuation of light

through the object and specular highlights on the surface of the refracting object. More

details on this method are provided in the next section. However the work that comes

closest to ours in spirit is that of H. Murase [73]. Murase uses optical flow to recover the

shape of a flexible transparent object, e.g., water waves that change over time. To make

the problem tractable he makes a number of simplifying assumptions (a) The camera is

orthographic, (b) The refracting object is in contact with the background plane which

has a flat shape and a static unknown pattern on it, (c) the average shape over time of

the refracting surface is known a priori to have zero slope. In this chapter our interest

is in scenes where the refracting object is rigid and stationary. Beyond that, we make

no assumptions about the number of objects, their refractive indices, or the positioning

of the refracting object in the scene. We do not address effects due to specular, Fresnel

or total internal reflections in this work.

There is a significant amount of work on understanding the shape of specular

surfaces in a scene. While not of direct relevance to the problem of refraction, the

methods used for recovering specular surface geometry serve as a rich source of techniques

for analyzing refraction also. See for example [79, 93, 94]. Recently, Kutulakos and

Steger [54] reduced the problem of estimating the 3D shape of refracting and reflecting

surfaces to the problem of reconstructing individual 3D light paths that cross the image

plane. They derive three key results – 1) An algorithm for reconstructing the interface
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I(x, t) B(u, t)

x1

x2

T (x2)

T (x1)

I(x, t) B(u, t)

(a) (b)

Figure 5.1 The image formation model: (a) The general image formation model, where
the incident irradiance at a point x in the foreground plane I is a result of the emitted
radiance of some number of points in the background plane B. (b) The single ray image
formation model, where the incident irradiance at x is linear function of the emitted
radiance at the point T (x) in the background plane.

using a single view, when light rays undergo a single refraction/reflection, 2) In case when

light rays undergo two refractions/reflections, three views of the surface are sufficient to

reconstruct the surface, 3) It is impossible to reconstruct the light paths in case the light

undergoes more than two refractions/reflections.

Detecting a refractive object in a scene is also a related problem. Recently,

Kenton et al. [72] trained a hierarchy of classifiers to detect glass by utilizing visual cues

such as systematic distortion of the background, and strong highlights.

The rest of the chapter is organized as follows. In the next section we begin by

describing our image formation model and we then introduce the notion of an optical

kernel and describe how the choice of a particular optical kernel leads to a new general-

ization of the optical flow equation. Section 5.2 describes algorithms for solving for the

refractive structure using this equation. Section 5.3 demonstrates the performance of

our algorithm on synthetic and real data, and its application to matting. We conclude

in Section 5.4 with a discussion and directions for future work.

5.1 A Theory of Refractive Optical Flow

In this section we describe our image formation model and use it to derive the refractive

optical flow equation. As illustrated in Figure 5.1(a), we assume that the scene consists

of three entities.

1. A background image plane B, where B(u, t) denotes the emitted radiance at the

point u = (u, v)> and time t.
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2. A foreground image plane I, where I(x, t) denotes the incident radiance at the

point x = (x, y)> and time t.

3. A collection of one or more refracting objects between I and B.

The illumination in the scene is assumed to be ambient or coming from a directional

light source, and the background plane is assumed to be an isotropic radiator. The

background and the foreground planes are not constrained to be parallel. No assump-

tions are made about the shape of the refracting objects, or optical properties of their

constituent materials. We treat the refracting objects as a “black-box” function that

warps and attenuates the light rays passing through it. It is our aim to recover this

function from a small set of images of the scene.

Given the assumptions about scene illumination stated earlier, the incident

radiance at a point x in the foreground is a result of the reflected and emitted radiance

from the background plane. Now let the function that indicates what fraction of the

light intensity observed at a point x in the foreground comes from the point u in the

background be denoted by the optical kernel K(u,x). The total light intensity at x can

now be expressed as an integral over the entire background plane,

I(x, t) =
∫
K(u,x)B(u, t)du (5.1)

The problem of recovering the refractive structure of an object can now be restated as

the problem of estimating the optical kernel associated with it.

The set of all functions of the form K(u,x) is huge. A large part of this set

consists of functions that violate laws of physics. However the set of physically plausible

optical kernels is still very big, and the reconstruction of K using a small number of

images is an ill-posed problem. Additional constraints must be used to make the problem

tractable.

One such direction of inquiry is to assume a low dimensional form for K by a

small set of parameters. Zongker et al.in their work on environment matting, assume a

parametric box form for K(u,x),

K(u,x) =

1/µ(x) if a(x) ≤ u ≤ b(x)& c(x) ≤ v ≤ d(x)

0 otherwise
(5.2)

where, a(x), b(x), c(x), d(x) are functions of x. µ(x) is the area of the rectangle en-

closed by (a, c) and (b, d). The kernel maps the average intensity of a rectangular re-
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gion in the background to a point in the foreground. The values of the parameters

{a(x), b(x), c(x), d(x)} for each point x are determined using a set of calibrated back-

ground patterns and performing a combinatorial search on them so as to minimize the

reconstruction error of the foreground image. Chuang et al. [25] generalize K to be from

the class of oriented two-dimensional Gaussians. The estimation procedure now is a two

stage non-linear optimization procedure that minimizes the reconstruction error. In both

of these cases, knowledge of the background image is assumed.

In this chapter we choose to pursue an alternate direction. We consider optical

kernels of the form

K(u,x) = α(x)δ(u− T (x)) (5.3)

where δ(·) is Dirac’s delta function, T (x) is a piecewise differentiable function that serves

as the parameter for the kernel indicating the position in the background plane where

the kernel is placed when calculating the brightness at x in the foreground image plane.

The function α(x) is a positive scalar function that accounts for the attenuation of light

reaching x. Figure 5.1 illustrates the setup.

In the following we will show how if we restrict ourselves this class of optical

kernels, we can recover the refractive structure without any knowledge of the background

plane. We will also demonstrate with experiments how this subclass of kernels despite

having a very simple description is capable of capturing refraction through a variety of

objects.

The image formation equation can now be re-written as

I(x, t) =
∫
α(x)δ(u− T (x))B(u, t)du (5.4)

= α(x)B(T (x), t) (5.5)

We begin by differentiating the above equation w.r.t x, to get

∇xI(x, t) =(∇xα(x))B(T (x)) + α(x)J>(T (x))(∇T (x)B(T (x), t)) (5.6)
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Here, J>(T (x)) is the transpose of the Jacobian of the transformation T (x). Using

Eq. 5.5 the above equation can be written as

∇xI(x, t) = I(x, t)
∇xα(x)
α(x)

+ J>(T (x))
[
α(x)∇T (x)B(T (x))

]
J−>(T (x))

[
∇xI(x, t)− I(x, t)

∇xα(x)
α(x)

]
= α(x)∇T (x)B(T (x)) (5.7)

Taking temporal derivatives of Eq. 5.5 gives

It(x, t) = α(x)Bt(T (x), t) (5.8)

Now, let c(u, t) denote the velocity of the point u at time t in the background plane.

Then from the Brightness Constancy Eq. [42] we know

c(u, t)>∇uB(u, t) +Bt(u, t) = 0 (5.9)

Now assuming that the background image undergoes in-plane translation with velocity

c(u, t) = c(T (x), t), we take the dot product of equation 5.7 with c(T (x), t) and add it

to Eq. 5.8 to get

c(T (x), t)J−>(T (x))
[
∇xI(x, t)− I(x, t)

∇xα(x)
α(x)

]
+ It(x, t) =

α(x)
[
c(T (x), t)∇T (x)B(T (x)) +Bt(T (x)

]
(5.10)

From Eq. 5.9 we know that the right hand side goes to zero everywhere, giving us

c(T (x), t)J−>(T (x))
[
∇xI(x, t)− I(x, t)

∇xα(x)
α(x)

]
+ It(x, t) = 0 (5.11)

Now for simplification’s sake, let β(x) = logα(x). Dropping the subscript on ∇ we get

c(T (x), t)J−>(T (x)) [∇I(x, t)− I(x, t)∇β(x)] + It(x, t) = 0 (5.12)

This is the refractive optical flow equation.

5.1.1 Properties of the Refractive Optical Flow Equation

Before we dive into the solution of Eq. 5.12 for recovering the refractive structure, we

comment on its form and some of its properties. The first observation is that if there is
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no distortion or attenuation, i.e.,

T (x) = x, α(x) = 1

the Jacobian of T reduces to the identity, and the gradient of β(x) reduces to zero

everywhere, giving us the familiar optical flow equation in the foreground image.

c>(x, t)∇I(x, t) + It(x, t) = 0 (5.13)

The second observation is that the equation is independent of B(u, t). This

means that we can solve for the refractive flow through an object just by observing a

distorted version of the background image. Knowledge of the background image itself is

not needed.

Finally we observe that Eq. 5.12 is in terms of the Jacobian of T , i.e. for any

function T ′(x) = T (x) + u0 will result in the same equation. This implies that the T

can only be solved up to a translation ambiguity. Visually this is equivalent to viewing

the scene through a periscope. The visual system has no way of discerning whether or

not an image was taken through a periscope. A second ambiguity is introduced into the

solution when we note that the velocity c(u, t) is in the background plane and there is

nothing that constrains the two coordinate systems from having different scales along

each axis. Hence T (x) can only be recovered up to a four parameter family of ambiguities

corresponding to translation and scaling. The attenuation function β(x) is not affected

by the scaling in c(u, t) and hence is recovered up to a translation factor which in turn

means that α(x) is recovered up to a scale factor.

5.2 Solving the Equation of Refractive Flow

In this section, we further analyze Eq. 5.12 for the purposes of solving it. We begin

by considering a further simplification of Eq. 5.12. We assume that the background

plane translates with in plane velocity c(u, t) = c(t) that is constant over the entire

background plane. We consider two cases, the calibrated case (when the motion of the

background c(t) is known) and the uncalibrated case (when the motion of the background

is unknown). In each case we describe methods for recovering T (x) and α(x), and note

the ambiguities in the resulting solution.
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Let T (x) be denoted by

T (x, y) = (g(x, y), h(x, y))> (5.14)

The Jacobian of T and its inverse transpose are

J(T (x)) =

 gx gy

hx hy

 J−>(T (x)) =
1

gxhy − gyhx

 hy −hx

−gy gx


The translation velocity in the background plane is c(u, t) = (ξ(t), η(t))>. Substituting

these in Eq. 5.12 we get

[
ξ η

] 1
gxhy − hxgy

 hy −hx

−gy gx

 Ix − βxI

Iy − βyI

+ It = 0 (5.15)

which rearranges to

ηIygx − ηIxgy − ξIyhx + ξIxhy + ηI(gyβx − gxβy)− ξI(hyβx − hxβy)
gxhy − gyhx

+ It = 0 (5.16)

Now let

p =
gx

gxhy − gyhx
q =

gy

gxhy − gyhx
a =

gyβx − gxβy

gxhy − gyhx
(5.17)

r =
hx

gxhy − gyhx
s =

hy

gxhy − gyhx
b =

hyβx − hxβy

gxhy − gyhx
(5.18)

we get

ηIyp− ηIxq − ξIyr + ξIxs+ ηIa− ξIb+ It = 0 (5.19)

5.2.1 The Calibrated Case

In the case where the velocity of the background plane c(u, t) is known, Eq. 5.19 is

linear in p, q, r, s, a, b. Given seven or more successive frames of a video or 14 or more

pairs of successive frames and the associated motion of the background plane, we can

solve the equation point-wise over the entire image. Given n + 1 successive frames,

we get n equations in 6 variables at each point in the foreground plane, giving us an

over-constrained linear system of the form

Ap = m (5.20)
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here the ith row of the matrix A is given by

Ai =
[
η(i)Iy(i) −η(i)Ix(i) −ξ(i)Iy(i) ξ(i)Ix(i) η(i)I(i) −ξ(i)I(i)

]
m = [−It(1), . . . ,−It(n)]> p =

[
p q r s a b

]>
(5.21)

The above system of equations is solved simply by the method of linear least squares.

The corresponding values of gx, gy, hx, hx, βx, βy can then be obtained as follows.

gx =
p

ps− qr
gy =

q

ps− qr
βx =

bp− ar

ps− qr
(5.22)

hx =
r

ps− qr
hy =

s

ps− qr
βy =

bq − as

ps− qr
(5.23)

5.2.2 The Uncalibrated Case

If the motion of the background image is not known, Eq. 5.19 is bilinear in the variables

p, q, r, s, a, b and ξ(t), η(t). If we consider frames i = 1, . . . , n+ 1 and pixels j = 1, . . . ,m

in the foreground image, then we can rewrite Eq. 5.19 in the following form

c>i Aijpj = 1 i = 1, . . . , n j = 1, . . . ,m (5.24)

where

ci =
[
ξ(i) η(i)

]>
pj =

[
p(j) q(j) r(j) s(j) a(j) b(j)

]>
Aij =

−1
It(i, j)

 0 0 −Iy(i, j) Ix(i, j) 0 −I(i, j)
Iy(i, j) −Ix(i, j) 0 0 I(i, j) 0


This gives us nm equations in 2n + 6m variables and we can solve them whenever

nm > 2n+ 6m.

Eq. 5.24 is a system of bilinear equations,i.e. given ci, the system reduces to

a linear system in pj and vice versa. The overall problem however is highly non-linear.

Using this observation a simple alternating procedure for solving the system can be used,

which starting with a random initialization, alternates between updating ci and pj using

linear least squares. Even with the fast iterative procedure, solving for the structure in

this manner is not feasible. Hence we use a small slice through image stack and use it

to solve for cj , which is then used as input to the calibrated algorithm described in the

previous section to recover the flow over the entire foreground plane.
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Properties of the Solution

Observe that, QAijR = Aij ∀i, j where

Q =

 q12 q12

q21 q22

 R =
1

q11q22 − q12q21



q11 0 q21 0 0 0

0 q11 0 q21 0 0

q12 0 q22 0 0 0

0 q12 0 q22 0 0

0 0 0 0 q11 q21

0 0 0 0 q12 q22


(5.25)

Hence, not knowing c(u, t) gives rise to a solution which is ambiguous up to a 2 × 2

invertible transformation, and a corresponding ambiguity in the values of the various

gradient estimates. Coupled with this is the translation ambiguity in g and h. This

gives rise to a six parameter family of ambiguities in the overall solution.

5.2.3 Integration

The methods described in the previous two sections give us estimates of the partial

derivatives of g(x, y), h(x, y) and β(x, y). The final step is integrating the respective

gradient fields to recover the actual values of the functions. Reconstruction of a function

from its first partial derivatives is a widely studied problem. We use an iterative least

squares optimization that minimizes the reconstruction error [40].

5.3 Experiments

All experiments were done with video sequences of 200 frames each. The synthetic data

were generated using a combination of MATLAB and POVRay, a public domain ray

tracer. The real data was captured by placing a refracting object in front of an LCD

screen, and imaging the setup using a firewire camera. Figure 5.2 illustrates the data

acquisition setup. Calculation of image derivatives is very sensitive to noise. Smoothing

was performed on the images using anisotropic diffusion [86], which has superior behavior

along sharp edges as compared to Gaussian filtering. This is important for objects that

cause light rays to be inverted, which in turn causes the optical flow across the boundary

to be opposite sign; a naive Gaussian based smoothing procedure will result in significant

loss of signal.

The least squares estimation step in the calibrated estimation algorithm was



90

Figure 5.2 (a) Shown above is a photograph of the data acquisition system used in our
experiments. It consists of Samsung 19” LCD display screen on the left, a Sony DFW-
VL500 firewire camera on the right and a refracting object between the screen and the
camera. (b) shows a frame from the background image sequence for all our experiments.

made robust by only considering equations for which the temporal gradient term It was

within 85% of the maximum temporal gradient at that pixel over time. This choice

results in only those constraints being active where some optical flow can be observed.

The boundary of refracting objects typically have little or no optical flow visible.

This results in the refractive optical flow constraint breaking down along the boundary as

well as certain medium interfaces. We mask these pixels out by considering the average

absolute temporal gradient at each point in the foreground image plane and ignoring

those pixels that fall below a chosen threshold. This results in a decomposition of the

image into a number of connected components. All subsequent calculations are carried

out separately for each connected component.

5.3.1 Results

We begin by considering a synthetic example to illustrate the performance of our al-

gorithm in the calibrated and the uncalibrated case. The warping function used was

T (x, y) = (xe−(x2+y2), ye−(x2+y2))> and the attenuation factor was α(x, y) = e−(x2+y2).

Figure 5.3.1 shows a comparison between the estimated and the true motion in the

uncalibrated case. Figure 5.4 illustrates the results of the experiment. The estimated

warp and attenuation functions are virtually identical to the true warp and attenuation

functions. In the uncalibrated case, the estimated motion was disambiguated by doing

a least squares fit to the ground truth for the purposes of illustration.

Figures 5.4 and 5.4 illustrate the result of applying the refractive structure of

a glass with and without water inside it to the task of environment matting. Note that
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Figure 5.3 Estimation of background motion in the uncalibrated case. This figure plots
the true and estimated motion in the background plane. The two curves show motion
along the ξ(t) and η(t) along the u and v axis respectively. As can be seen there is
virtually no difference between the true and estimated values for ξ(t) and η(t).

the region along the rim of the glass is missing. This is more so in case of the glass filled

with water. These are the regions where the refractive optical flow equation breaks down.

The black band in the case of the filled glass is due to a combination of the breakdown

of the refractive optical flow equation along the air/water/glass interface and the finite

vertical extent of the image.

5.4 Discussion

We have introduced a generalization of the optical flow constraint, described methods

for solving for the refractive structure of objects in the scene, and shown that this can

be readily computed from images. We now comment on the limitations of our work and

directions of future work.

First, our method does not address Fresnel and total internal reflection. This

places a limit on our analysis to the case where all the illumination comes from behind the

object being observed. Methods for recovering surface geometry from specular reflections

are an active area of research and are better suited for this task [79,93,94].

Second, the presented approach, like [25,132], formulates the objective as deter-

mining a plane-to-plane mapping, i.e., it only informs us about how the object distorts

a plane in 3-space. A more satisfactory solution will be to recover how the object dis-
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torts arbitrary light rays. We believe this is solvable using two or more views of the

background plane and is the subject of our ongoing work.

The choice of the optical kernel that resulted in the single ray model was made

for reasons of tractability. This however leaves the possibility of other optical kernels

that account for multiple ray models. Chuang et al [25] extend the box kernel from [132]

to include oriented variable width Gaussian optical kernels. Their work however assumes

knowledge of the background patterns.

Our experiments were carried out using a 19 inch LCD screen as the background

plane. For most refracting objects, as their surface curvature increases, the area of the

background plane that they project onto a small region in the foreground image can

increase rapidly. If one continues to use a flat background one would ideally require an

infinite background plane to be able to capture all the optical flow. Obviously that is not

practical. An alternate approach is to use a curved surface as the background, perhaps

a mirror which reflects an image projected onto it.

The algorithms described in this chapter estimates the function gradients gx, gy,

hx, hy and integrates them in two separate stages. This still leaves open the possibility

of a direct approach that discretizes Eq. 5.12 and solves it directly in one step based on

methods borrowed from the study of partial differential equations.

The current work only considers gray scale images; extensions to color or multi-

spectral images are straightforward. There are two cases here: if the distortion T is

assumed to be the same across spectral bands, the generalization can be obtained by

modeling α(x) as a vector valued function that accounts for attenuation in each spectral

band. In case T is dependent on the wavelength of light, each spectral band results is

an independent version of Eq. 5.12 and can be solved using the methods described.

Finally, the refractive optical flow equation is a very general equation describing

optical flow through a distortion function. This allows us to address distortion not due

to transmission through transparent objects, but also due to reflection from non-planar

mirrored and specular surfaces. We believe that the problem of specular surface geometry

can be addressed using this formalism.

This chapter is based on “On Refractive Optical Flow” by S. Agarwal, S. P.

Mallick, D. J. Kriegman, and S. J. Belongie. I played a small part in theoretical devel-

opment, and was responsible for implementation and experiments.
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(a) α(x) (b) αc(x) (c) αu(x)

(d) T (x) (e) Tc(x) (f) Tu(x)

Figure 5.4 This figure shows compares the performance of refractive structure estimation
in the calibrated and the uncalibrated case. (a) and (d) show the true warp T (x)
applied to a checkerboard pattern and the attenuation factor α(x). (b) and (e) show the
estimated warp and the alpha for the calibrated case, and (c) and (f) show the estimated
warp and alpha for the uncalibrated case.
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(a) (b)

(c) (d)
Without Water

Figure 5.5 Results of using the refractive structure for environment matting. (a), (c)
show the true warping of a background image when an empty glass is placed in front of
it, (b) and (d) show the estimated refractive structure applied to the same images.
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(e) (f)

(g) (h)
With Water

Figure 5.6 Results of using the refractive structure for environment matting. (a) and (c)
show the true warping of a background image when a glass filled with water is placed
in front of it, (b) and (d) show the estimated refractive structure applied to the same
images.
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Conclusion and Future Work

“The black belt represents the beginning – the start of a never ending
journey of discipline, work, and the pursuit of an ever-higher standard”

A Parable of the Black Belt
Built to Last: Successful Habits of Visionary Companies

James C. Collins and Jerry I. Porras

As the field of computer vision matures and vision algorithms make their way into real

world applications, there is need to question long held assumptions that can potentially

cripple the utility of these algorithms. This thesis provides simple, yet elegant algorithms

to relax the Lambertian assumption in computer vision. More significantly, this thesis

does not demand new algorithms be developed to handle non-Lambertian surfaces. In-

stead, it proposes algorithms that provide access to the Lambertian components of color

images which can be used as inputs to Lambertian based algorithms.

At a philosophical level, our approach is in contrast to traditional approaches.

While traditionally specialized algorithms were developed to handle non-Lambertian

surfaces in each problem domain, this thesis argues for a unified solution to problems

arising because of the Lambertian assumption. The development of unified solutions can

benefit vision algorithms across the board and lead to a novel methods of relaxing the

Lambertian assumption.

This thesis also clears a general misunderstanding that a complete specular-

diffuse separation (an ill-posed problem) is necessary to extend algorithms for Lambertian

surfaces to dichromatic surfaces. We show that we only need to solve a well-posed

problem of recovering purely diffuse channel(s) of a color image. These diffuse channels

can be used as inputs to Lambertian based algorithms.

In the real world, illumination can be complex due to the presence of multiple

96



97

colored light sources in a scene. While several aspects of complex illumination (for exam-

ple, the proximity of light source to the object, the size of the light source(s), the number

of light sources, etc. ) have been addressed to some extent in the existing literature, the

issue of multiple color illuminants, which arguably cause the most dramatic change in

image appearance, is rarely dealt with. In this thesis, we propose algorithms to handle

complex illumination for color as well as hyper spectral images. A class of photometric

invariants are defined that are invariant to specular highlights and/or shading under

complex illumination.

The theory developed in the thesis is supplemented with empirical evidence

demonstrating the usefulness of the proposed algorithms. The thesis also identifies the

limitations of the proposed solutions. In particular, conditions on light source color and

object color are identified under which the proposed algorithms become ineffective due to

decrease in signal to noise ratio in the photometric invariant images. The identification

of these limitations can also serve as guidelines for carefully choosing components of

computer vision systems. For example, in a photometric stereo set up for recovering the

3D shape of human face, the knowledge of the distribution of human skin colors can be

utilized to carefully choose the light source color to maximize the signal to noise ratio in

specular-invariant image.

A possible direction of future work is the estimation of light source color from

the image(s). The estimation of the light source color using a single image is dealt with

in color constancy literature. However, there are possible opportunities to get better

estimates of light source color when multiple images of a scene are acquired either by

moving the camera (as in the case of stereo) or by moving the light source (as in the

case of photometric stereo). In the case of complex illumination the estimation of light

source color provides even greater challenges.

As mentioned earlier the signal to noise ratio of invariant images is much lower

than the original image. This primarily due to the fact that a portion of the diffuse

component is lost while calculating the invariants. For example, the S-channel in the

SUV color space contains a portion of the diffuse color, and as the light source color

approaches the object color, the signal in the U and V channels approach zero. It needs

to be investigated whether it is possible make geometric assumptions (for example, an

upper bound on surface curvature) about the surfaces in the scene to isolate part of the

diffuse component from the S-channel.

The thesis also proposes a unified PDE based approach for separating the diffuse

and specular components of textureless and textured images and videos. To the best
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of our knowledge, this is the only algorithm in its class that generalizes to videos and

takes into account the temporal coherence of neighboring frames by treating videos as

a spatio-temporal volume of pixels. A novel application of specular-diffuse separation

called Dichromatic Editing is presented that independently processes and then combines

the two dichromatic components to produce a variety of visual effects. In particular

we show that this reflectance aware processing allows a digital artist to manipulate the

appearance of objects in a digital image in physically meaningful ways (for example,

broadening the specular lobe of the BRDF by dilating the separated specular layer).

While, the theory for specular-diffuse separation is cast as an anisotropic erosion

equation, there are several other approaches using which the same equation may be

derived. Due to a close link between Differential Morphology, Level Set Methods, and

Curve Evolution, it would be a good theoretical exercises to derive the same equations

using the other two frameworks as part of future work. In addition to providing greater

theoretical insight, and showing mathematical harmony, such an exercise might help

come up with methods for faster convergence and greater stability of the PDE.

Saturation of pixels is currently not handled explicitly in the PDE; although in

the implementation, saturated regions are inpainted (i.e. information from other parts

of the image is borrowed to fill in saturated regions). Inpainting is the best available

option when all three channels of a pixel are saturated. However, when only one or two

channels of a pixel are saturated, new methods need to be developed so as to incorporate

unsaturated channels of the pixel in the estimation procedure.

Finally, the thesis ventures into a difficult and neglected territory of problems

involving refraction. We show that it is possible to recover the path of light transport as

it moves from a background plane to the image plane of a camera through a refracting

object by observing the differential motion of the warped background. This work gen-

eralizes the optical flow equation to the case when light rays bend (due to reflection or

refraction) as they travel from the object to the camera. Results of the algorithm are

shown using Environment Matting, where a refractive objected is matted into a scene.

There are several avenues of future work, as not many vision algorithms deal

with refraction. In our current framework, a point in the background image maps to

a point the image plane. However, if the scene in which the refractive object needs

to be matted is not planar (for example, when a 3D model of the scene is available),

we need mappings of rays from background 3D structure to point in the image plane.

This may be accomplished by finding the point to point mappings corresponding to two

background planes separated by a distance. Yet another interesting direction of future
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work is to recover the 3D shape of a refractive material using motion cues, or by using

multiple views.
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