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Abstract

Image Synthesis for Self-Supervised Visual
Representation Learning

by

Richard Zhang

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alexei A. Efros, Chair

Deep networks are extremely adept at mapping a noisy, high-dimensional signal
to a clean, low-dimensional target output (e.g., image classification). By solving
this heavy compression task, the network also learns about natural image priors.
However, this process requires the curation of large, labeled datasets. Meanwhile,
the world provides massive amounts of raw, unlabeled pixels for free. This thesis
investigates learning representations of high-dimensional input signals by mapping
them to high-dimensional output targets. While more difficult, it is not only possible
to learn a strong feature representation, but also to synthesize realistic images.

Part I describes the use of deep networks for conditional image synthesis. The
section begins by exploring the problem of image colorization, proposing both
automatic and user-guided approaches. This section then proposes a system for
general image-to-image translation problems, BicycleGAN, with the specific aim of
capturing the multimodal nature of the output space.

Part II explores the visual representations learned within deep networks. Col-
orization, as well as cross-channel prediction in general, is a simple but powerful
pretext task for self-supervised learning. The representations from cross-channel
prediction networks transfer strongly to high-level semantic tasks, such as image
classification, and to low-level human perceptual similarity judgments. For the latter,
a large-scale dataset of human perceptual similarity judgments is collected. The
proposed cross-channel network method outperforms traditional metrics such as
PSNR and SSIM. In fact, many unsupervised and self-supervised methods transfer
strongly, even comparably to fully-supervised methods.
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Chapter 1

Introduction

Recent progress in computer vision has largely been driven by (i) large, la-
beled datasets and (ii) convolutional neural networks (CNNs), or deep learning. In
particular, deep networks are proficient at the task of classification – mapping a
high-dimensional input (e.g., images) to a low-dimensional output (e.g., labels), as
shown in Figure 1.1(left). An important side benefit is that the emergent represen-
tation in intermediate network layers can be easily transferred to other tasks [1–3].
For example, a classification network [4] can be repurposed for predicting depth and
normals [5], segmenting images [6], detecting objects [7], and even correlate extremely
well with IT neural responses in the macaque visual cortex [8]. Internally, the network
appears to learn a feature hierarchy, bridging low-level pixels to high-level semantics
[9,10]. However, there is a strong drawback to this paradigm – the necessity of large,
labeled datasets. Dataset labeling is expensive, can lead to bias [11], and ultimately
restricts the quantity of data that can be used.

The world is full of unlabeled, free data. Is it possible for a deep network to
learn from this raw signal instead? Can a network map from a high-dimensional
input to a high-dimensional output, as shown in Figure 1.1(right)? If so, the benefits
are potentially two-fold. First, if successful, networks can potentially be used to
solve graphics tasks. Secondly, using raw data as a supervisory signal, known as
self-supervised training [12], unlocks a much larger scale of data to learn from, which
can be used to learn a representation of the visual world. In this dissertation, we
explore both of these aspects – graphics and representation learning.

Part I: Image synthesis using deep networks We first study the use of deep
networks for image generation, or synthesis. Image generation is challenging for
two fundamental reasons. First, because the output is structured, the answer can
look “wrong” in many ways. However, there is no simple, closed-form function which
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Learning by Classification

“Rockfish”

Semantic 
labels

Learned feature 
hierarchy

+ Solve discriminative tasks
+ Learn about the visual world + Force the network to learn about the visual 

world for free

Raw, unlabeled 
data

Learned feature 
hierarchy

Learning by Synthesis (Ours)

+ Solve multimodal graphics tasks

Figure 1.1: Learning by classification vs learning by synthesis Deep networks
have been extremely effective at solving classification tasks (left). For example, a
network can successfully associate an image to the label “rockfish”. An emergent
benefit is by learning to solve this task, the network learns a feature hierarchy which
captures patterns in the visual world. In our work, we explore using deep networks
for conditional image synthesis (right). The potential benefits are twofold – solving
graphics tasks, which are typically multimodal in nature (Part I) and a free, emergent
visual representation (Part II).

can describe the relative ordering of these bad answers. Thus, it is unclear what
objective function should be used to optimize a deep network. Secondly, in many
problems, there is often more than one “right” answer. Without accounting for the
multimodal nature to the problem, a naive objective function will simply average
between possible answers. For graphical results to look realistic and visually pleasing,
these factors have to be accounted for. In Figure 1.2, we provide an overview of the
image synthesis problems we tackle in this dissertation.

In Chapter 2, we first study the problem of automatic image colorization. To
account for the multimodal nature of the problem, given a grayscale image, we train
a network to predict a distribution of possible colors for each individual pixel, and
then provide a single “best” guess. We test the resulting colorizations by running a
Visual Turing test [13] – good colorizations should fool human judges into thinking
that they are real.

The automatic colorization method was one of the first applications which
produced images using deep networks. While the results were sometimes very good,
the method could make mistakes. A more fundamental issue was the method could
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only produce a single answer. Motivated by these problems, in Chapter 3, we propose
a user-guided system for image colorization. The interface incorporates user inputs
in the form of point-wise colors or global color histograms, and colorizes a grayscale
image according to these constraints. In this user-guided paradigm, the multimodal
nature of the colorization problem is effectively resolved by the user.

Predicted ColorInput Grayscale

Input User “Hints”

Predicted Color

!
"#

$
Latent “code”

Input domain

Output domain

Automatic Image Colorization

User-Guided Image Colorization

Image-to-Image Translation

Figure 1.2: Image synthesis
overview. In Part I, we explore the
tasks of automatic image colorization
(top), user-guided image colorization
(middle), and the general problem of
image-to-image translation (bottom).
A primary challenge in image synthe-
sis is the multimodal nature of the
problem.

Having explored the problem of colorization
in great detail, we move onto the more general
problem of image-to-image translation. Many of
these problems are by nature multimodal (for
example, colorization). In Chapter 4, we propose
the BicycleGAN system, which specifically aims
to resolve the multimodality of the output space.
We demonstrate its application it to a variety of
problems such as generating images from edge
maps, imagining a day image given a night we-
bcam image, and synthesizing a satellite image
from a Google map. We show that our general
method produces results which are both realistic
and diverse.

Part II: Self-supervised visual representa-
tion learning Next, we focus on studying the
visual representations induced within networks.
In Chapter 5, we find that the automatic coloriza-
tion network proposed in Chapter 2 provides a
representation which transfers surprisingly well
to high-level semantic tasks, such as image clas-
sification or object detection. Intuitively, by be-
ing forced to associate different visual patterns
to appropriate color distributions, the network
is able to find higher-level abstractions. Moti-
vated by these results, we propose Split-Brain
Autoencoders, a generalization of colorization to
cross-channel visual prediction. We note that
self-supervised learning is not unlike classic un-
supervised learning, where the goal is to learn
patterns of the data without the use of labels. In fact, our system is similar to
classic autoencoders [14], the de facto method for unsupervised learning with deep
networks. We find that split-brain autoencoders learn strong features, comparable
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and state-of-the-art relative to other previous and concurrent unsupervised and
self-supervised methods. We test them by investigating how well they transfer to
high-level tasks, such as object detection and segmentation [7].

Figure 1.3: Perceptual similar-
ity. In Part II, we explore how
well the representation learned by
deep networks transfer to high-level
tasks, as well as low-level perceptual
similarity. For example, deep net-
works can provide a “distance” be-
tween these two patches, as well as
other pairs of patches, which have a
consistent relative ordering to human
judges.

Finding a function which can compare the
“distance” between two images has been a long-
standing, open problem in the graphics commu-
nity [15–18]. In Chapter 6, we investigate how
well visual representations transfer to low-level
human perceptual similarity judgments. We col-
lect a large-scale dataset of human perceptual
similarity judgments by taking natural image
patches and distorting them in a variety of ways.
An example distorted image is shown in Fig-
ure 1.3. Distortions include hand-coded pertur-
bations, such as blurring, warping, photometric
changes, etc. as well as CNN-based corruptions.
We then provide two random distorted images,
and ask humans on Amazon Mechanical Turk
(AMT) as to which distortion is less perceptually

noticeable. We find that our method outperforms traditional metrics such as PSNR
and SSIM [15]. We make the surprising discovery that networks across architectures
and supervisory signals (supervised, self-supervised, and unsupervised!) transfer
strongly. This indicates a common shared, emergent structure across networks.

Finally, we conclude in Chapter 7 and discuss possible directions for future work.
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Part I

Image Synthesis using Deep
Networks
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Chapter 2

Automatic Image Colorization

Given a grayscale photograph as input, this chapter attacks the problem of
hallucinating a plausible color version of the photograph. This is a specific instance
of an image-to-image translation problem, and one which has some properties which
make it easier than the general problem. Specifically, the structure of an image is
mostly provided by the grayscale input, and humans are less sensitive to the color
components of an image. However, there are significant challenges to this problem.
First, the problem is clearly underconstrained, so previous approaches have either
relied on significant user interaction or resulted in desaturated colorizations. We
propose a fully automatic approach that produces vibrant and realistic colorizations.
We embrace the underlying uncertainty, or multimodality, of the problem by posing
it as a classification task and use class-rebalancing at training time to increase the
diversity of colors in the result. The system is implemented as a feed-forward pass in
a CNN at test time and is trained on over a million color images. We evaluate our
algorithm using a “colorization Turing test," asking human participants to choose
between a generated and ground truth color image. Our method successfully fools
humans on 32% of the trials, significantly higher than previous methods. Moreover,
we show that colorization can be a powerful pretext task for self-supervised feature
learning, acting as a cross-channel encoder. At time of publication1, this approach
resulted in state-of-the-art performance on several feature learning benchmarks. We
explore this idea further in Part II, Chapter 5.

1This work was published as Colorful Image Colorization in ECCV, 2016 [19].
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2.1 Motivation and Background
Consider the grayscale photographs in Figure 2.1. At first glance, hallucinating

their colors seems daunting, since so much of the information (two out of the three
dimensions) has been lost. Looking more closely, however, one notices that in many
cases, the semantics of the scene and its surface texture provide ample cues for many
regions in each image: the grass is typically green, the sky is typically blue, and
the ladybug is most definitely red. Of course, these kinds of semantic priors do
not work for everything, e.g., the croquet balls on the grass might not, in reality,
be red, yellow, and purple (though it’s a pretty good guess). However, our goal is
not necessarily to recover the actual ground truth color, but rather to produce a
plausible colorization that could potentially fool a human observer. Therefore, our
task becomes much more achievable: to model enough of the statistical dependencies
between the semantics and the textures of grayscale images and their color versions
in order to produce visually compelling results.

Given the lightness channel L, our system predicts the corresponding a and b
color channels of the image in the CIE Lab colorspace. To solve this problem, we
leverage large-scale data. Predicting color has the nice property that training data is
practically free: any color photo can be used as a training example, simply by taking
the image’s L channel as input and its ab channels as the supervisory signal. Others
have noted the easy availability of training data, and previous works have trained
convolutional neural networks (CNNs) to predict color on large datasets [20, 21].
However, the results from these previous attempts tend to look desaturated. One
explanation is that [20,21] use loss functions that encourage conservative predictions.
These losses are inherited from standard regression problems, where the goal is to
minimize Euclidean error between an estimate and the ground truth.

We instead utilize a loss tailored to the colorization problem. As pointed out
by [22], color prediction is inherently multimodal – many objects can take on several
plausible colorizations. For example, an apple is typically red, green, or yellow, but
unlikely to be blue or orange. To appropriately model the multimodal nature of the
problem, we predict a distribution of possible colors for each pixel. Furthermore, we
re-weight the loss at training time to emphasize rare colors. This encourages our
model to exploit the full diversity of the large-scale data on which it is trained. Lastly,
we produce a final colorization by taking the annealed-mean of the distribution. The
end result is colorizations that are more vibrant and perceptually realistic than those
of previous approaches.

Evaluating synthesized images is notoriously difficult [23]. Since our ultimate goal
is to make results that are compelling to a human observer, we introduce a novel way
of evaluating colorization results, directly testing their perceptual realism. We set up
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Figure 2.1: Example input grayscale photos and output colorizations from our
algorithm. These examples are cases where our model works especially well. Please
visit http://richzhang.github.io/colorization/ to see the full range of results
and to try our model and code. Best viewed in color (obviously).

a “colorization Turing test," in which we show participants real and synthesized colors
for an image, and ask them to identify the fake. In this quite difficult paradigm,
we are able to fool participants on 32% of the instances (ground truth colorizations
would achieve 50% on this metric), significantly higher than prior work [21]. This test
demonstrates that in many cases, our algorithm is producing nearly photorealistic
results (see Figure 4.1 for selected successful examples from our algorithm). We also
show that our system’s colorizations are realistic enough to be useful for downstream
tasks, in particular object classification, using an off-the-shelf VGG network [24].

We make progress on the graphics problem of automatic image colorization by (a)
designing an appropriate objective function that handles the multimodal uncertainty
of the colorization problem and captures a wide diversity of colors, (b) introducing a
novel framework for testing colorization algorithms, potentially applicable to other
image synthesis tasks, and (c) setting a new high-water mark on the task by training
on a million color photos.

We also introduce the colorization task as a competitive and straightforward
method for self-supervised representation learning, where raw data is used as its own
source of supervision, and explore this further in Chapter 5. The idea of learning
feature representations in this way goes back at least to autoencoders [25]. More
recent works have explored feature learning via data imputation, where a held-out
subset of the complete data is predicted (e.g., [26–32]). Our method follows in this
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line, and can be termed a cross-channel encoder.
Prior work on colorization Colorization algorithms mostly differ in the ways

they obtain and treat the data for modeling the correspondence between grayscale
and color. Non-parametric methods, given an input grayscale image, first define
one or more color reference images (provided by a user or retrieved automatically)
to be used as source data. Then, following the Image Analogies framework [33],
color is transferred onto the input image from analogous regions of the reference
image(s) [34–37]. Parametric methods, on the other hand, learn prediction functions
from large datasets of color images at training time, posing the problem as either
regression onto continuous color space [20, 21, 38] or classification of quantized color
values [22]. Our method also learns to classify colors, but does so with a larger
model, trained on more data, and with several innovations in the loss function and
mapping to a final continuous output.

Concurrent work on colorization Concurrently with our work, Larsson et
al. [39] and Iizuka et al. [40] have developed similar systems, which leverage large-scale
data and CNNs. The methods differ in their CNN architectures and loss functions.
While we use a classification loss, with rebalanced rare classes, Larsson et al. use an
un-rebalanced classification loss, and Iizuka et al. use a regression loss. In Section
5.5.1, we compare the effect of each of these types of loss function in conjunction
with our architecture. The CNN architectures are also somewhat different: Larsson
et al. use hypercolumns [41] on a VGG network [24], Iizuka et al. use a two-stream
architecture in which they fuse global and local features, and we use a single-stream,
VGG-styled network with added depth and dilated convolutions [42,43]. In addition,
while we and Larsson et al. train our models on ImageNet [4], Iizuka et al. train
their model on Places [44]. In Section 2.3.1, we provide quantitative comparisons to
Larsson et al.

2.2 Approach
We train a CNN to map from a grayscale input to a distribution over quantized

color value outputs using the architecture shown in Figure 2.2. Architectural details
are described in the supplementary materials on the project webpage2, and the
model is publicly available. In the following, we focus on the design of the objective
function, and our technique for inferring point estimates of color from the predicted
color distribution.

2http://richzhang.github.io/colorization/
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Figure 2.2: Our network architecture. Each conv layer refers to a block of 2 or 3
repeated conv and ReLU layers, followed by a BatchNorm [45] layer. The net has no
pool layers. All changes in resolution are achieved through spatial downsampling or
upsampling between conv blocks.

2.2.1 Objective Function

Given an input lightness channel X ∈ RH×W×1, our objective is to learn a
mapping Ŷ = F(X) to the two associated color channels Y ∈ RH×W×2, where H,W
are image dimensions. We denote predictions with a ·̂ symbol and ground truth
without. We perform this task in CIE Lab color space. Because distances in this
space model perceptual distance, a natural objective function, as used in [20,21], is
the Euclidean loss L2(·, ·) between predicted and ground truth colors:

L2(Ŷ,Y) =
1

2

∑
h,w

‖Yh,w − Ŷh,w‖22 (2.1)

However, this loss is not robust to the inherent ambiguity and multimodal nature
of the colorization problem. If an object can take on a set of distinct ab values, the
optimal solution to the Euclidean loss will be the mean of the set. In color prediction,
this averaging effect favors grayish, desaturated results. Additionally, if the set of
plausible colorizations is non-convex, the solution will in fact be out of the set, giving
implausible results.

Instead, we treat the problem as multinomial classification. We quantize the
ab output space into bins with grid size 10 and keep the Q = 313 values which
are in-gamut, as shown in Figure 2.3(a). For a given input X, we learn a mapping
Ẑ = G(X) to a probability distribution over possible colors Ẑ ∈ [0, 1]H×W×Q, where
Q is the number of quantized ab values.

To compare predicted Ẑ against ground truth, we define function Z = H−1gt (Y),
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Figure 2.3: (a) Quantized ab color space with a grid size of 10. A total of 313 ab
pairs are in gamut. (b) Empirical probability distribution of ab values, shown in log
scale. (c) Empirical probability distribution of ab values, conditioned on L, shown in
log scale.

which converts ground truth color Y to vector Z, using a soft-encoding scheme3. We
then use multinomial cross entropy loss Lcl(·, ·), defined as:

Lcl(Ẑ,Z) = −
∑
h,w

v(Zh,w)
∑
q

Zh,w,q log(Ẑh,w,q) (2.2)

where v(·) is a weighting term that can be used to rebalance the loss based on
color-class rarity, as defined in Section 2.2.2 below. Finally, we map probability
distribution Ẑ to color values Ŷ with function Ŷ = H(Ẑ), which will be further
discussed in Section 2.2.3.

2.2.2 Class Rebalancing

The distribution of ab values in natural images is strongly biased towards values
with low ab values, due to the appearance of backgrounds such as clouds, pavement,
dirt, and walls. Figure 2.3(b) shows the empirical distribution of pixels in ab space,
gathered from 1.3M training images in ImageNet [4]. Observe that the number of
pixels in natural images at desaturated values are orders of magnitude higher than

3Each ground truth value Yh,w can be encoded as a 1-hot vector Zh,w by searching for the
nearest quantized ab bin. However, we found that soft-encoding worked well for training, and
allowed the network to quickly learn the relationship between elements in the output space [46].
We find the 5-nearest neighbors to Yh,w in the output space and weight them proportionally to
their distance from the ground truth using a Gaussian kernel with σ = 5.
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for saturated values. Without accounting for this, the loss function is dominated by
desaturated ab values. We account for the class-imbalance problem by reweighting the
loss of each pixel at train time based on the pixel color rarity. This is asymptotically
equivalent to the typical approach of resampling the training space [47]. Each pixel
is weighed by factor w ∈ RQ, based on its closest ab bin.

v(Zh,w) = wq∗ , where q∗ = arg max
q

Zh,w,q (2.3)

w ∝
(

(1− λ)p̃ +
λ

Q

)−1
, E[w] =

∑
q

p̃qwq = 1 (2.4)

To obtain smoothed empirical distribution p̃ ∈ ∆Q, we estimate the empirical
probability of colors in the quantized ab space p ∈ ∆Q from the full ImageNet
training set and smooth the distribution with a Gaussian kernel Gσ. We then mix
the distribution with a uniform distribution with weight λ ∈ [0, 1], take the reciprocal,
and normalize so the weighting factor is 1 on expectation. We found that values of
λ = 1

2
and σ = 5 worked well. We compare results with and without class rebalancing

in Section 2.3.1.

2.2.3 Class Probabilities to Point Estimates

Finally, we define H, which maps the predicted distribution Ẑ to point estimate
Ŷ in ab space. One choice is to take the mode of the predicted distribution for each
pixel, as shown in the right-most column of Figure 2.4 for two example images. This
provides a vibrant but sometimes spatially inconsistent result, e.g., the red splotches
on the bus. On the other hand, taking the mean of the predicted distribution
produces spatially consistent but desaturated results (left-most column of Figure 2.4),
exhibiting an unnatural sepia tone. This is unsurprising, as taking the mean after
performing classification suffers from some of the same issues as optimizing for a
Euclidean loss in a regression framework. To try to get the best of both worlds,
we interpolate by re-adjusting the temperature T of the softmax distribution, and
taking the mean of the result. We draw inspiration from the simulated annealing
technique [48], and thus refer to the operation as taking the annealed-mean of the
distribution:

H(Zh,w) = E
[
fT (Zh,w)

]
, fT (z) =

exp(log(z)/T )∑
q exp(log(zq)/T )

(2.5)

Setting T = 1 leaves the distribution unchanged, lowering the temperature T
produces a more strongly peaked distribution, and setting T → 0 results in a 1-hot
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Figure 2.4: The effect of temperature parameter T on the annealed-mean out-
put (Equation 2.5). The left-most images show the means of the predicted color
distributions and the right-most show the modes. We use T = 0.38 in our system.

encoding at the distribution mode. We found that temperature T = 0.38, shown in
the middle column of Figure 2.4, captures the vibrancy of the mode while maintaining
the spatial coherence of the mean.

Our final system F is the composition of CNN G, which produces a predicted
distribution over all pixels, and the annealed-mean operation H, which produces a
final prediction. The system is not quite end-to-end trainable, but note that the
mapping H operates on each pixel independently, with a single parameter, and can
be implemented as part of a feed-forward pass of the CNN.

2.3 Experiments
In Section 2.3.1, we assess the graphics aspect of our algorithm, evaluating the

perceptual realism of our colorizations, along with other measures of accuracy. We
compare our full algorithm to several variants, along with recent [21] and concurrent
work [39]. In Section 2.3.2, we show qualitative examples on legacy black and white
images. In Section 2.3.3, we test how semantically interpretable our results are
to a downstream classifier. In Section 2.3.4, we qualitatively investigate whether
some low-level cues may be inordinately helping the network. In Section 2.3.5, we
observe the multimodal distribution predicted by the network. We evaluate how well
colorization works as a pretext task for self-supervised learning in Chapter 5.
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Colorization Results on ImageNet

Model AuC VGG Top-1 AMT
Method Params Feats Runtime non-rebal rebal Class Acc Labeled

(MB) (MB) (ms) (%) (%) (%) Real (%)
Ground Truth – – – 100 100 68.3 50
Gray – – – 89.1 58.0 52.7 –
Random – – – 84.2 57.3 41.0 13.0±4.4
Dahl [21] – – – 90.4 58.9 48.7 18.3±2.8
Larsson et al. [39] 588 495 122.1 91.7 65.9 59.4 27.2±2.7
Ours (L2) 129 127 17.8 91.2 64.4 54.9 21.2±2.5
Ours (L2, ft) 129 127 17.8 91.5 66.2 56.5 23.9±2.8
Ours (class) 129 142 22.1 91.6 65.1 56.6 25.2±2.7
Ours (full) 129 142 22.1 89.5 67.3 56.0 32.3±2.2

Table 2.1: Colorization results on 10k images in the ImageNet validation set [4],
as used in [39]. AuC refers to the area under the curve of the cumulative error
distribution over ab space [38]. Results column 2 shows the class-balanced variant
of this metric. Column 3 is the classification accuracy after colorization using the
VGG-16 [24] network. Column 4 shows results from our AMT real vs. fake test
(with mean and standard error reported, estimated by bootstrap [49]). Note that
an algorithm that produces ground truth images would achieve 50% performance in
expectation. Higher is better for all metrics. Rows refer to different algorithms; see
text for a description of each. Parameter and feature memory, and runtime, were
measured on a Titan X GPU using Caffe [50].

2.3.1 Evaluating colorization quality

We train our network on the 1.3M images from the ImageNet training set [4],
validate on the first 10k images in the ImageNet validation set, and test on a separate
10k images in the validation set, same as in [39]. We show quantitative results in
Table 1 on three metrics. A qualitative comparison for selected success and failure
cases is shown in Figure 2.5. For a comparison on a full selection of random images,
please see our project webpage.

To specifically test the effect of different loss functions, we train our CNN with
various losses. We also compare to previous [21] and concurrent methods [39], which
both use CNNs trained on ImageNet, along with naive baselines:

1. Ours (full) Our full method, with classification loss, defined in Equation 2.2,
and class rebalancing, as described in Section 2.2.2. The network was trained
from scratch with k-means initialization [51], using the ADAM solver for
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Figure 2.5: Example results from our ImageNet test set. Our classification loss
with rebalancing produces more accurate and vibrant results than a regression loss
or a classification loss without rebalancing. Successful colorizations are above the
dotted line. Common failures are below. These include failure to capture long-range
consistency, frequent confusions between red and blue, and a default sepia tone on
complex indoor scenes. Please visit http://richzhang.github.io/colorization/
to see the full range of results.
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approximately 450k iterations4.

2. Ours (class) Our network on classification loss but no class rebalancing (λ = 1
in Equation 2.4).

3. Ours (L2) Our network trained from scratch, with L2 regression loss, described
in Equation 2.1, following the same training protocol.

4. Ours (L2, ft) Our network trained with L2 regression loss, fine-tuned from
our full classification with rebalancing network.

5. Larsson et al. [39] A CNN method that also appears in these proceedings.

6. Dahl [21] A previous model using a Laplacian pyramid on VGG features,
trained with L2 regression loss.

7. Gray Colors every pixel gray, with (a, b) = 0.

8. Random Copies the colors from a random image from the training set.

Evaluating the quality of synthesized images is well-known to be a difficult task,
as simple quantitative metrics, like RMS error on pixel values, often fail to capture
visual realism. To address the shortcomings of any individual evaluation, we test
three that measure different senses of quality, shown in Table 1.

1. Perceptual realism (AMT): For many applications, such as those in
graphics, the ultimate test of colorization is how compelling the colors look to a
human observer. To test this, we ran a real vs. fake two-alternative forced choice
experiment on Amazon Mechanical Turk (AMT). Participants in the experiment
were shown a series of pairs of images. Each pair consisted of a color photo next to
a re-colorized version, produced by either our algorithm or a baseline. Participants
were asked to click on the photo they believed contained fake colors generated by a
computer program. Individual images of resolution 256× 256 were shown for one
second each, and after each pair, participants were given unlimited time to respond.
Each experimental session consisted of 10 practice trials (excluded from subsequent
analysis), followed by 40 test pairs. On the practice trials, participants were given
feedback as to whether or not their answer was correct. No feedback was given
during the 40 test pairs. Each session tested only a single algorithm at a time,
and participants were only allowed to complete at most one session. A total of 40

4β1 = .9, β2 = .99, and weight decay = 10−3. Initial learning rate was 3× 10−5 and dropped to
10−5 and 3× 10−6 when loss plateaued, at 200k and 375k iterations, respectively. Other models
trained from scratch followed similar training protocol.
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Ground truth Ours
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Figure 2.6: Images sorted by how often AMT participants chose our algorithm’s
colorization over the ground truth. In all pairs to the left of the dotted line,
participants believed our colorizations to be more real than the ground truth on
≥ 50% of the trials. In some cases, this may be due to poor white balancing in the
ground truth image, corrected by our algorithm, which predicts a more prototypical
appearance. Right of the dotted line are examples where participants were never
fooled.

participants evaluated each algorithm. To ensure that all algorithms were tested in
equivalent conditions (i.e. time of day, demographics, etc.), all experiment sessions
were posted simultaneously and distributed to Turkers in an i.i.d. fashion.

To check that participants were competent at this task, 10% of the trials pitted
the ground truth image against the Random baseline described above. Participants
successfully identified these random colorizations as fake 87% of the time, indicating
that they understood the task and were paying attention.

Figure 2.6 gives a better sense of the participants’ competency at detecting subtle
errors made by our algorithm. The far right column shows example pairs where
participants identified the fake image successfully in 100% of the trials. Each of these
pairs was scored by at least 10 participants. Close inspection reveals that on these
images, our colorizations tend to have giveaway artifacts, such as the yellow blotches
on the two trucks, which ruin otherwise decent results.

Nonetheless, our full algorithm fooled participants on 32% of trials, as shown in
Table 1. This number is significantly higher than all compared algorithms (p < 0.05
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in each case) except for Larsson et al., against which the difference was not significant
(p = 0.10; all statistics estimated by bootstrap [49]). These results validate the
effectiveness of using both a classification loss and class-rebalancing.

Note that if our algorithm exactly reproduced the ground truth colors, the forced
choice would be between two identical images, and participants would be fooled 50%
of the time on expectation. Interestingly, we can identify cases where participants
were fooled more often than 50% of the time, indicating our results were deemed
more realistic than the ground truth. Some examples are shown in the first three
columns of Figure 2.6. In many case, the ground truth image is poorly white balanced
or has unusual colors, whereas our system produces a more prototypical appearance.

2. Semantic interpretability (VGG classification): Does our method
produce realistic enough colorizations to be interpretable to an off-the-shelf object
classifier? We tested this by feeding our fake colorized images to a VGG network [24]
that was trained to predict ImageNet classes from real color photos. If the classifier
performs well, that means the colorizations are accurate enough to be informative
about object class. Using an off-the-shelf classifier to assess the realism of synthesized
data has been previously suggested by [31].

The results are shown in the second column from the right of Table 1. Classifier
performance drops from 68.3% to 52.7% after ablating colors from the input. After
re-colorizing using our full method, the performance is improved to 56.0% (other
variants of our method achieve slightly higher results). The Larsson et al. [39] method
achieves the highest performance on this metric, reaching 59.4%. For reference, a
VGG classification network fine-tuned on grayscale inputs reaches a performance of
63.5%.

In addition to serving as a perceptual metric, this analysis demonstrates a
practical use for our algorithm: without any additional training or fine-tuning, we
can improve performance on grayscale image classification, simply by colorizing
images with our algorithm and passing them to an off-the-shelf classifier.

3. Raw accuracy (AuC): As a low-level test, we compute the percentage of
predicted pixel colors within a thresholded L2 distance of the ground truth in ab
color space. We then sweep across thresholds from 0 to 150 to produce a cumulative
mass function, as introduced in [38], integrate the area under the curve (AuC), and
normalize. Note that this AuC metric measures raw prediction accuracy, whereas
our method aims for plausibility.

Our network, trained on classification without rebalancing, outperforms our
L2 variant (when trained from scratch). When the L2 net is instead fine-tuned
from a color classification network, it matches the performance of the classification
network. This indicates that the L2 metric can achieve accurate colorizations, but
has difficulty in optimization from scratch. The Larsson et al. [39] method achieves



2.3. EXPERIMENTS 19

slightly higher accuracy. Note that this metric is dominated by desaturated pixels,
due to the distribution of ab values in natural images (Figure 2.3(b)). As a result,
even predicting gray for every pixel does quite well, and our full method with class
rebalancing achieves approximately the same score.

Perceptually interesting regions of images, on the other hand, tend to have a
distribution of ab values with higher values of saturation. As such, we compute a
class-balanced variant of the AuC metric by re-weighting the pixels inversely by color
class probability (Equation 2.4, setting λ = 0). Under this metric, our full method
outperforms all variants and compared algorithms, indicating that class-rebalancing
in the training objective achieved its desired effect.

2.3.2 Legacy Black and White Photos

Since our model was trained using “fake” grayscale images generated by stripping
ab channels from color photos, we also ran our method on real legacy black and white
photographs, as shown in Figure 2.7 (additional results can be viewed on our project
webpage). Figures 2.8, 2.9, and 2.10 show examples including work of renowned
photographers, such as Ansel Adams and Henri Cartier-Bresson, photographs of
politicians and celebrities, and old family photos. One can see that our model is
often able to produce good colorizations, even though the low-level image statistics
of old legacy photographs are quite different from those of modern-day photos. One
can see that our model is still able to produce good colorizations, even though the
low-level image statistics of the legacy photographs are quite different from those of
the modern-day photos on which it was trained.

2.3.3 Semantic Interpretability of Colorizations

In Section 2.3.1, we investigated using the VGG classifier to evaluate the semantic
interpretability of our colorization results. We show the categories which perform
well and the ones which perform poorly, using this metric. We also show commonly
confused categories after recolorization.

Category Performance In Figure 2.11, we show a selection of classes that have
the most improvement in VGG classification with respect to grayscale, along with
the classes for which our colorizations hurt the most. Interestingly, many of the
top classes actually have a color in their name, such as the green snake, orange,
and goldfinch. The bottom classes show some common errors of our system, such
as coloring clothing incorrectly and inconsistently and coloring an animal with a
plausible but incorrect color. This analysis was performed using 48k images from the
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Figure 2.7: Applying our method to legacy black and white photos. Left to right:
photo by David Fleay of a Thylacine, now extinct, 1936; photo by Ansel Adams of
Yosemite; amateur family photo from 1956; Migrant Mother by Dorothea Lange,
1936.

ImageNet validation set, and images in the top and bottom 10 classes are provided
on the website.

Our process for sorting categories and images is described below. For each
category, we compute the top-5 classification performance on grayscale and recolorized
images, agray, arecolor ∈ [0, 1]C , where C = 1000 categories. We sort the categories
by arecolor − agray. The re-colored vs grayscale performance per category is shown
in Figure 2.12(a), with top and bottom 50 categories highlighted. For the top
example categories, the individual images are sorted by ascending rank of the correct
classification of the recolorizeed image, with tiebreakers on descending rank of the
correct classification of the grayscale image. For the bottom example categories, the
images are sorted in reverse, in order to highlight the instances when recolorization
results in an errant classification relative to the grayscale image.

Common Confusions To further investigate the biases in our system, we look
at the common classification confusions that often occur after image recolorization,
but not with the original ground truth image. Examples for some top confusions are
shown in Figure 2.13. An image of a “minibus" is often colored yellow, leading to a
misclassification as “school bus". Animal classes are sometimes colored differently
than ground truth, leading to misclassification to related species. Note that the
colorizations are often visually realistic, even though they lead to a misclassification.

To find common confusions, we compute the rate of top-5 confusion Corig,Crecolor ∈
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Figure 2.8: Applying our method to black and white photographs by Ansel Adams.
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Figure 2.9: Applying our method to black and white photographs by Henri Cartier-
Bresson.
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Figure 2.10: Applying our method to legacy black and white photographs. Top to
bottom, left to right: photo of Elvis Presley, photo of Migrant Mother by Dorothea
Lange, photo of Marilyn Monroe, an amateur family photo, photo by Henri Cartier-
Bresson, photo by Dr. David Fleay of Benjamin, the last captive thylacine which
went extinct in 1936.
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Figure 2.11: Images colorized by our algorithm from selected categories. Categories
are sorted by VGG object classification accuracy of our colorized images relative
to accuracy on gracyscale images. Top: example categories where our colorization
helps the most. Bottom: example categories where our colorization hurts the most.
Number in parentheses indicates category rank amongst all 1000. Notice that the
categories most affected by colorization are those for which color information is
highly diagnostic, such as birds and fruits. The bottom examples show several kinds
of failures: 1) artificial objects such as modems and clothes have ambiguous colors;
color is not very informative for classification, and moreover, our algorithm tends
to predict an incoherent distribution of red and blue, 2) for certain categories, like
the gray fox, our algorithm systematically predicts the wrong color, confusing the
species.

[0, 1]C×C , with ground truth colors and after recolorization. A value of Cc,d = 1
means that every image in category c was classified as category d in the top-5. We find
the class-confusion added after recolorization by computing A = Crecolor−Corig, and
sort the off-diagonal entries. Figure 2.12(b) shows all C× (C− 1) off-diagonal entries
of Crecolor vs Corig, with the top 100 entries from A highlighted. For each category
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Figure 2.12: (a) Performance of VGG top-5 classification on recolorized images vs
grayscale images per category (b) Top-5 confusion rates with recolorizations and
original colors. Test was done on last 48,000 images in ImageNet validation set.

pair (c, d), we extract the images that contained the confusion after recolorization,
but not with the original colorization. We then sort the images in descending order
of the classification score of the confused category.

2.3.4 Is the network exploiting low-level cues?

Unlike many computer vision tasks that can be roughly categorized as low, mid
or high-level vision, color prediction requires understanding an image at both the
pixel and the semantic-level. Studies of natural image statistics have shown that the
lightness value of a single pixel can highly constrain the likely color of that pixel:
darker lightness values tend to be correlated with more saturated colors [52].

Could our network be exploiting a simple, low-level relationship like this, in
order to predict color?5 We tested this hypothesis with the simple demonstration
in Figure 2.14. Given a grayscale Macbeth color chart as input, our network was
unable to recover its colors. This is true, despite the fact that the lightness values
vary considerably for the different color patches in this image. On the other hand,

5E.g., previous work showed that CNNs can learn to use chromatic aberration cues to predict,
given an image patch, its (x,y) location within an image [53].
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Figure 2.13: Examples of some most-confused categories. Top rows show ground
truth image. Bottom rows show recolorized images. Rank of common confusion
in parentheses. Ground truth and confused categories after recolorization are
labeled.



2.3. EXPERIMENTS 27

Figure 2.14: Left: pixel lightness on its own does not reveal color, as shown by the
color chart. In contrast, two vegetables that are nearly isoluminant are recognized
as having different colors. Right: stability of the network predictions with respect to
low-level image transformations.

given two recognizable vegetables that are roughly isoluminant, the system is able to
recover their color.

In Figure 2.14, we also demonstrate that the prediction is somewhat stable with
respect to low-level lightness and contrast changes. Blurring, on the other hand, has
a bigger effect on the predictions in this example, possibly because the operation
removes the diagnostic texture pattern of the zucchini.

2.3.5 Does our model learn multimodal color distributions?

As discussed in Section 2.2.1, formulating color prediction as a multinomial
classification problem allows the system to predict multimodal distributions, and
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Figure 2.15: The output probability distributions per image. The top-left image is
final prediction of our system. The black sub-images are quantized blocks of the
ab gamut. High probabilities are shown as higher luminance and are quantized for
clarity. (a) Background of bird is predicted to be green or brown. Foreground bird
has distribution across blue and red colors. (b) Oranges are predicted to be different
colors. (c) The person’s shirt and sarong has uncertainty across turqoise/cyan/orange
and red/pink/purple colors, respectively. Note that despite the multimodality of
the per-pixel distributions, the results after taking the annealed-mean are typically
spatially consistent.

can capture the inherent ambiguity in the color of natural objects. In Figure 2.15,
we illustrate the probability outputs Ẑ and demonstrate that the network does
indeed learn multimodal distributions. The system output Ŷ is shown in the top-left
of Figure 2.15. Each block illustrates the probability map Ẑq ∈ [0, 1]H,W given
ab bin q in the output space. For clarity, we show a subsampling of the Q total
output bins and coarsely quantize the probability values. In Figure 2.15(a), the
system clearly predicts a different distribution for the background vegetation and the
foreground bird. The background is predicted to be green, yellow, or brown, while
the foreground bird is predicted to be red or blue. Figure 2.15(b) shows that oranges
can be predicted to be different colors. Lastly, in Figure 2.15(c), the man’s sarong is
predicted to be either red, pink, or purple, while his shirt is classified as turquoise,
cyan or light orange. Note that despite the multi-modality of the prediction, taking
the annealed-mean of the distribution produces a spatially consistent prediction.

2.4 Discussion
While image colorization is a boutique computer graphics task, it is also an

instance of a difficult pixel prediction problem in computer vision. Our method not
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only provides a useful graphics output, but can also be viewed as a pretext task for
representation learning. In Chapter 5, we show that although only trained to color,
our network learns a representation that is surprisingly useful for high-level semantic
tasks, such as object classification, detection, and segmentation.

Here we have shown that colorization with a deep CNN and a well-chosen objective
function can come closer to producing results indistinguishable from real color photos.
However, the method can make mistakes. In addition, in this chapter, we proposed a
method which attempts to produce a single, plausible answer. However, a user may
have wanted a different colorization. Motivated by these problems, in Chapter 3, we
investigate integrating user inputs into the colorization pipeline.
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Chapter 3

User-Guided Image Colorization

In this chapter, we propose a deep learning approach for user-guided image
colorization. The system directly maps a grayscale image, along with sparse, local
user “hints" to an output colorization with a CNN. Rather than using hand-defined
rules, the network propagates user edits by fusing low-level cues along with high-level
semantic information, learned from large-scale data. In the previous chapter, we
resolved multimodality by posing the problem as a classification. Here, we actually
rely on the user at test time to resolve the ambiguity. We train on a million images,
with simulated user inputs. To guide the user towards efficient input selection, the
system recommends likely colors based on the input image and current user inputs.
The colorization is performed in a single feed-forward pass, enabling real-time use.
Even with randomly simulated user inputs, we show that the proposed system helps
novice users quickly create realistic colorizations, and offers large improvements in
colorization quality with just a minute of use. In addition, we demonstrate that the
framework can incorporate other user “hints" to the desired colorization, showing
an application to color histogram transfer. Our code and models are available at
https://richzhang.github.io/ideepcolor. 1

3.1 Motivation
There is something uniquely and powerfully satisfying about the simple act

of adding color to black and white imagery. Whether as a way of rekindling old,
dormant memories or expressing artistic creativity, people continue to be fascinated

1This work was originally published as Real-Time User-Guided Image Colorization with Learned
Deep Priors in SIGGRAPH, 2017 [54]. We often refer to the Chapter 2 automatic colorization
method as Zhang et al. [19].

https://richzhang.github.io/ideepcolor
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Figure 3.1: Our proposed method colorizes a grayscale image (left), guided by sparse
user inputs (second), in real-time, providing the capability for quickly generating
multiple plausible colorizations (middle to right). Photograph of Migrant Mother by
Dorothea Lange, 1936 (Public Domain).

by colorization. From remastering classic black and white films, to the enduring
popularity of coloring books for all ages, to the surprising enthusiasm for various
(often not very good) automatic colorization bots online2, this topic continues to
fascinate the public.

In computer graphics, two broad approaches to image colorization exist: user-
guided edit propagation and data-driven automatic colorization. In the first paradigm,
popularized by the seminal work of Levin et al. [55], a user draws colored strokes over
a grayscale image. An optimization procedure then generates a colorized image that
matches the user’s scribbles, while also adhering to hand-defined image priors, such
as piecewise smoothness. These methods can achieve impressive results but often
require intensive user interaction (sometimes over fifty strokes), as each differently
colored image region must be explicitly indicated by the user. Because the system
purely relies on user inputs for colors, even regions with little color uncertainty, such
as green vegetation, need to be specified. Less obviously, even if a user knows what
general color an object should take on, it can be surprisingly difficult to select the
exact desired natural chrominance.

To address these limitations, researchers have also explored more data-driven
colorization methods. These methods colorize a grayscale photo in one of two ways:
either by matching it to an exemplar color image in a database and non-parametrically
“stealing” colors from that photo, an idea going back to Image Analogies [33], or
by learning parametric mappings from grayscale to color from large-scale image
data. The recent methods in this paradigm proposed by Iizuka et al. [40], Larsson
et al. [39], and our own method from Chapter 2 [19], use deep networks and are
fully automatic. Although this makes colorizing a new photo cheap and easy, the

2e.g., http://demos.algorithmia.com/colorize-photos/

http://demos.algorithmia.com/colorize-photos/
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results often contain incorrect colors and obvious artifacts. More fundamentally, the
color of an object, such as a t-shirt, is often inherently ambiguous – it could be blue,
red, or green. Current automatic methods aim to choose a single colorization, and
do not allow a user to specify their preference for a plausible, or perhaps artistic,
alternative.

Might we be able to get the best of both worlds, leveraging large-scale data
to learn priors about natural color imagery, while at the same time incorporating
user control from traditional edit propagation frameworks? We propose to train a
CNN to directly map grayscale images, along with sparse user inputs, to an output
colorization. During training, we randomly simulate user inputs, allowing us to
bypass the difficulty of collecting user interactions. Though our network is trained
with ground truth natural images, the network can colorize objects with different, or
even unlikely colorizations, if desired.

Most traditional tools in interactive graphics are defined either procedurally –
e.g., as a designed image filter – or as constraints applied in a hand-engineered
optimization framework. The behavior of the tool is therefore fully specified by
human fiat. This approach is fundamentally limited by the skill of engineers to
design complex operations/constraints that actually accomplish what is intended
of them. Our approach differs in that the effect of interaction is learned. Through
learning, the algorithm may come up with a more powerful procedure for translating
user edits to colorized results than would be feasible by human design.

Our contribution are as follows: (1) We end-to-end learn how to propagate sparse
user points from large-scale data, by training a deep network to directly predict the
mapping from grayscale image and user points to full color image. (2) To guide the
user toward making informed decisions, we provide a data-driven color palette, which
suggests the most probable colors at any given location. (3) We run a study, showing
that even given minimal training with our interface and limited time to colorize an
image (1 min), novice users can quickly learn to produce colorizations that can often
fool real human judges in a real vs. fake test. (4) Though our system is trained on
natural images, it can also generate unusual colorizations. (5) We demonstrate that
this framework is not limited to user points, and can, in principle, be trained with
any statistic of the output, for example, global color distribution or average image
saturation.

3.2 Background
User-guided colorization Prior interactive colorization work focused on local
control, such as user strokes [55, 56]. Because the strokes are propagated using
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Figure 3.2: Network architecture We train two variants of the user interaction
colorization network. Both variants use the blue layers for predicting a colorization.
The Local Hints Network also uses red layers to (a) incorporate user points
Ul and (b) predict a color distribution Ẑ. The Global Hints Network uses the
green layers, which transforms global input Ug by 1 × 1 conv layers, and adds
the result into the main colorization network. Each box represents a conv layer,
with vertical dimension indicating feature map spatial resolution, and horizontal
dimension indicating number of channels. Changes in resolution are achieved through
subsampling and upsampling operations. In the main network, when resolution is
decreased, the number of feature channels are doubled. Shortcut connections are
added to upsampling convolution layers.

low-level similarity metrics, such as spatial offset and intensity difference, numerous
user edits are typically required to achieve realistic results. To reduce user efforts,
later methods focused on designing better similarity metrics [57, 58] and utilizing
long-range connections [59,60]. Learning machinery, such as boosting [61], local linear
embeddings [62], feature discrimination [63], and more recently, neural networks [64],
have been proposed to automatically learn similarity between pixels given user strokes
and input images. In addition to local control, varying the color theme [65,66] and
color palette [67] are popular methods of expressive global control. We show that we
can integrate global hints to our network and control colorization results by altering
the color distribution and average saturation (see Section 3.3.3). Concurrently,
Sangkloy et al. [68] developed a system to translate sketches to real images, with
support for user color strokes, while PaintsChainer [69] and Frans [70] have developed
open-source interactive online applications for line-drawing colorization.

Automatic colorization Early semi-automatic methods [34–37, 71] utilize an
example-based approach that transfers color statistics from a reference image or
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multiple images [72,73] to the input grayscale image with techniques such as color
transfer [74] and image analogies [33]. These methods work remarkably well when
the input and the reference share similar content. However, finding reference images
is time-consuming and can be challenging for rare objects or complex scenes, even
when using semi-automatic retrieval methods [37]. In addition, some algorithms
[37, 71] involve tedious manual efforts on defining corresponding regions between
images.

Recently, fully automatic methods [20,38–40,75] have been proposed, including
our own [19]. The recent methods from train CNNs [76] on large-scale image
collections [4, 44] to directly map grayscale images to output colors. The networks
can learn to combine low and high-level cues to perform colorization, and have been
shown to produce realistic results, as determined by human judgments [19]. However,
these approaches aim to produce a single plausible result, even though colorization
is intrinsically an ill-posed problem with multi-modal uncertainty [22]. Larsson
et al. [39] provide some post-hoc control through globally biasing the hue, or by
matching global statistics to a target histogram. Our work addresses this problem
by learning to integrate input hints in an end-to-end manner.

Deep semantic image editing Deep neural networks [77] excel at extracting rich
semantics from images, from middle-level concepts like material [78, 79] and segmen-
tation [80], to high-level knowledge such as objects [81] and scene categories [44]. All
of this information could potentially benefit semantic image editing, i.e. changing the
high-level visual content with minimal user interaction. Recently, neural networks
have shown impressive results for various image processing tasks, such as photo
enhancement [82], sketch simplification [83], style transfer [84,85], inpainting [29],
image blending [86] and denoising [87]. Most of these works built image filtering
pipelines and trained networks that produce a filtered version of the input image with
different low-level local details. However, none of these methods allowed dramatic,
high-level modification of the visual appearance, nor do they provide diverse outputs
in a user controllable fashion. On the contrary, we train a network that takes an input
image as well as minimal user guidance and produces global changes in the image
with a few clicks. Barnes et al. [88] emphasize that control and interactivity are key
to image editing, because user intervention not only can correct errors, but can also
help explore the vast design space of creative image manipulation. We incorporate
this concept into an intuitive interface that provides expressive controls as well as
real-time feedback. Zhu et al. [89] provided an interactive deep image synthesis
interface that builds on an image prior learned by a deep generative network. Xu et
al. [90] train a deep network for interactive object segmentation. Isola et al. [75] and
Sangkloy et al. [68] train networks to generate images from sketches, using synthetic
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sketches generated by edge detection algorithms for training data.

3.3 Approach
We train a deep network to predict the color of an image, given the grayscale

version and user inputs. In Section 3.3.1, we describe the objective of the network.
We then describe the two variants of our system (i) the Local Hints Network in
Section 3.3.2, which uses sparse user points, and (ii) the Global Hints Network
in Section 3.3.3, which uses global statistics. In Section 3.3.4, we define our network
architecture.

3.3.1 Learning to Colorize

The inputs to our system are a grayscale image X ∈ RH×W×1, along with an
input user tensor U. The grayscale image is the L, or lightness in the CIE Lab color
space, channel. The output of the system is Ŷ ∈ RH×W×2, the estimate of the ab
color channels of the image. The mapping is learned with a CNN F , parameterized
by θ, with the network architecture specified in Section 3.3.4 and shown in Figure
6.2. We train the network to minimize the objective function in Equation 3.1, across
D, which represents a dataset of grayscale images, user inputs, and desired output
colorizations. Loss function L describes how close the network output is to the
ground truth.

θ∗ = arg min
θ
EX,U,Y∼D[L(F(X,U; θ),Y)] (3.1)

We train two variants of our network, with local user hints Ul and global user
hints Ug. During training, the hints are generated by giving the network a “peek",
or projection, of the ground truth color Y using functions Pl and Pg, respectively.

Ul = Pl(Y) Ug = Pg(Y) (3.2)

The minimization problems for the Local and Global Hints Networks are then
described below in Equation 3.3. Because we are using functions Pl,Pg to synethti-
cally generate user inputs, our dataset only needs to contain grayscale and color
images. We use the 1.3M ImageNet dataset [4].

θ∗l = arg min
θl
EX,Y∼D[L(Fl(X,Ul; θl),Y)]

θ∗g = arg min
θg
EX,Y∼D[L(Fg(X,Ug; θg),Y)]

(3.3)
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Grayscale	image	

Suggested	colors Different	possible	colorizations

Figure 3.3: Suggested Palette Our interface provides suggested colors for any pixel,
sorted by likelihood, based on the predicted color distribution given by our network.
In this example, we show first suggested colors on the background vegetation (top
palette), sorted by decreasing likelihood. The suggested colors are common colors
for vegetation. We also show the top six suggested colors (bottom palette) of a pixel
on the image of the bird. On the right, we show the resulting colorizations, based
on the user selecting these top six suggested colors. Photograph of blue-and-yellow
macaw by Luc Viatour, 2009.

Loss Function The choice of an appropriate loss function L, which measures
network performance and guides learning, requires some consideration. Iizuka et
al. [40] use an `2 loss. As discussed in Chapter 2 and by previous work [22, 39], this
loss is not robust to the inherent multi-modal nature of the problem, and instead
use a classification loss, followed by a fixed inference step. Another challenge is the
large imbalance in natural image statistics, with many more pixels in desaturated
regions of the color gamut. This can often lead to desaturated and dull colorizations.
In Chapter 2, we use a class-rebalancing step to oversample more colorful portions
of the gamut during training. This results in more colorizations which are vibrant
and able to fool humans, but at the expense of images which are over-aggressively
colorized. In the pix2pix framework, Isola et al. [75] use an `1 regression loss with a
Generative Adversarial Network (GAN) [91] term, which can help generate exciting,
higher frequency patterns.

However, in this chapter, we forgo the use of class rebalancing from Chapter 2 and
GAN term from [75] and use a smooth-`1 (or Huber) loss, described in Equation 3.4.
In the Local Hints Network, from a user experience standpoint, we found it more
pleasing to start with a conservative colorization and allow the user to inject desired
colors, rather than starting with a more vibrant but artifact-prone setting and having
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the user fix mistakes. Much of the multi-modal ambiguity of the problem is quickly
resolved by a few user clicks. In cases where there is ambiguity, the smooth-`1 is also
a robust estimator [92], which can help avoid the averaging problem. In addition,
using a regression loss, described in Equation 3.4 with δ = 1, enables us to perform
end-to-end learning without a fixed inference step.

`δ(x, y) = 1
2
(x− y)21{

|x−y|<δ
} + δ(|x− y| − 1

2
δ)1{

|x−y|≥δ
} (3.4)

The loss function `δ is evaluated at each pixel and summed together to evaluate
the loss L for a whole image.

L(F(X,U; θ),Y) =
∑
h,w

∑
q

`δ
(
F(X,U; θ)h,w,q,Yh,w,q

)
(3.5)

Next, we describe the specifics of the local and global variants.

3.3.2 Local Hints Network

The Local Hints Network uses sparse user points as input. We describe the input,
how we simulate user points, and features of our user interface.

System Input The user points are parameterized as Xab ∈ RH×W×2, a sparse
tensor with ab values for the points provided by the user and Bab ∈ BH×W×1, a binary
mask indicating which points are provided by the user. The mask differentiates
unspecified points from user-specified gray points with (a, b) = 0. Together, the
tensors form input tensor Ul = {Xab,Bab} ∈ RH×W×3.

Simulating User Interactions One challenge in training deep networks is col-
lecting training data. While data for automatic colorization is readily available – any
color image can be broken up into its color and grayscale components – an appro-
priate mechanism for acquiring user interaction data is far less obvious. Gathering
this on a large scale is not only expensive, but also comes with a chicken and egg
problem, as user interaction behavior will be dependent on the system performance
itself. We bypass this issue by training with synthetically generated user interactions.
A concern with this approach is the potential domain gap between the generated
data and test-time usage. However, we found that even through randomly sampling,
we are able to cover the input space adequately and train an effective system.

We sample small patches and reveal the average patch color to the network. For
each image, the number of points are drawn from a geometric distribution with
p = 1

8
. Each point location is sampled from a 2-D Gaussian with µ = 1

2
[H,W ]T ,Σ =
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diag
([(

H
4

)2
,
(
W
4

)2]), as we expect users to more often click on points in the center
of the image. The revealed patch size is drawn uniformly from size 1× 1 to 9× 9,
with the average ab within the patch revealed to the network. Lastly, we desire
the correct limiting characteristic – given all of the points by the user, the network
should simply copy the colors from the input to the output. To encourage this, we
provide the full ground truth color to the image for 1% of the training instances.
Though the network should implicitly learn to copy any provided user points to the
output, there is no explicit constraint for the network to do so exactly. Note that
these design decisions for projection function Pl(Y) were initially selected based on
intuition, found to work well, but not finely tuned.

User interface Our interface consists of a drawing pad, showing user points
overlaid on the grayscale input image, a display updating the colorization result in
real-time, a data-driven color palette that suggests likely color for a given location
(as shown in Figure 3.3), and a regular ab gamut based on the lightness of the current
point. A user is always free to add, move, delete, or change the color of any existing
points. Please see our supplemental video for a detailed introduction of our interface,
along with several demonstrations.

Data-driven color palette Picking a plausible color is an important step towards
realistic colorization. Without the proper tools, selecting a color can be difficult
for a novice user to intuit. For every pixel, we predict a probability distribution
over output colors Ẑ ∈ RH×W×Q, where Q is the number of quantized color bins.
We use the parametrization of the CIE Lab color space from Chapter 2 – the ab
space is divided into 10 × 10 bins, and the Q = 313 bins that are in-gamut are
kept. The mapping from the input grayscale image and user points to predicted
color distribution Ẑ is learned with network Gl, parametrized by ψl. Ground truth
distribution Z is encoded from ground truth colors Y with the soft-encoding scheme
from before – a real ab color value is expressed as a convex combination of its 10
nearest bin centers, weighted by a Gaussian kernel with σ = 5. We use a cross-entropy
loss function for every pixel to measure the distance between predicted and ground
truth distributions, and sum over all pixels.

Lcl(Gl(X,Ul;ψl),Z) = −
∑
h,w

∑
q

Zh,w,q log(Gl(X,Ul;ψl)h,w,q) (3.6)

Network Gl is trained to minimize expected classification loss over the training
set. We further describe the network architecture in Section 3.3.4.

ψ∗l = arg min
ψl

EX,Y∼D[Lcl(Gl(X,Ul;ψl),Y)] (3.7)
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To provide discrete color suggestions, we soften the softmax distribution at the
queried pixel, to make it less peaky, and perform weighted k-means clustering (with
K = 9) to find modes of the distribution. For example, the system often recommends
plausible colors based on the type of object, material and texture, for example,
suggesting different shades of green the vegetation in Figure 3.3. For objects with
diverse colors such as a parrot, our system will provide a wide range of suggestions.
Once a user selects a suggested color, our system will produce the colorization result
in real-time. In Figure 3.3, we show six possible colorizations based on the different
choices for the parrot’s feather. The color suggestions are continuously updated as
the user adds additional points.

3.3.3 Global Hints Network

An advantage of the end-to-end learning framework is that it may be easily
adapted to different types of user inputs. We show an additional use case, where
the user provides global statistics, described by a global histogram Xhist ∈ ∆Q and
average image saturation Xsat ∈ [0, 1]. Whether or not the inputs are provided is
indexed by indicator variables Bhist,Bsat ∈ B, respectively. The user input to the
system is then Ug = {Xhist,Bhist,Xsat,Bsat} ∈ R1×1×(Q+3).

We compute global histograms by resizing the color Y to quarter resolution using
bilinear interpolation, encoding each pixel in quantized ab space, and averaging
spatially. Saturation is computed by converting the ground truth image to HSV
colorspace and averaging over the S channel spatially. We randomly reveal the
ground truth colorization distribution, ground truth saturation, both, or neither, to
the network during training.

3.3.4 Network Architecture

We show our network architecture in Figure 6.2. The main colorization branch is
used by both Local Hints and Global Hints networks. We then describe the layers
which are only used for the Local Hints Network, namely processing the sparse user
input Ul and the color distribution prediction branch, both shown in red. Finally,
we describe the Global Hints Network-specific input branch, shown in green, as well
as its integration in the main network.

Main colorization network

The main branch of our network, F , uses a U-Net architecture [93], which has been
shown to work well for a variety of conditional generation tasks [75]. We also utilize
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Figure 3.4: User study results These results are collected from novice users using
our Local Hints Network system for 1 minute for each image, with minimal training.
Users were not given the ground truth image, and were instructed to create a “realistic
colorization". The first column shows the grayscale input image. Columns 2-5 show
automatic results from previous methods, as well as our system without user points.
Column 6 shows input points from a user, collected in 1 minute of time from a
novice user. Columns 7-8 show the results from the seminal method of [55] and
our model, incorporating user points, on the right. The final column shows the
ground truth image (which was not provided to the user). In the selected examples
in rows 1-4, our system produces higher quality colorizations given sparse inputs
than [55], and produce nearly photorealistic results given little user interaction.
Rows 5-6 show some failures of our system. In row 5, the green color by the user on
the top-right is not successfully propagated to the top-left of the image. In row 6,
the colors selected on the jeans are propagated to the background, demonstrating
undesired non-local effects. All of the user study results are publicly available
on https://richzhang.github.io/ideepcolor/. Images are from the ImageNet
dataset [4].

design principles from [24] and [43]. The network is formed by 10 convolutional

https://richzhang.github.io/ideepcolor/
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Figure 3.5: Selected User Study Results We show grayscale images with user
inputs, alongside the output from our algorithm. Each image was colorized in only 1
minute of time by a novice user. All of the user study results are publicly available
on https://richzhang.github.io/ideepcolor/. Images are from the Imagenet
dataset [4].

blocks, conv1-10. In conv1-4, in every block, feature tensors are progressively
halved spatially, while doubling in the feature dimension. Each block contains 2-3
conv-relu pairs. In the second half, conv7-10, spatial resolution is recovered, while
feature dimensions are halved. In block conv5-6, instead of halving the spatial
resolution, dilated convolutions with factor 2 is used. This has an equal effect on the
receptive field of each unit with respect to the input pixels, but allows the network
to keep additional information in the bottleneck. Symmetric shortcut connections
are added to help the network recover spatial information [93]. For example, the
conv2 and conv3 blocks are connected to the conv8 and conv9 blocks, respectively.
This also enables easy accessibility to important low-level information for later layers;
for example, the lightness value will limit the extent of the ab gamut. Changes in
spatial resolution are achieved using subsampling or upsampling operations, and each
convolution uses a 3× 3 kernel. BatchNorm layers are added after each convolutional
block, which has been shown to help training.

https://richzhang.github.io/ideepcolor/
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A subset of our network architecture, namely conv1-8 without the shortcut
connections, was used in our automatic colorization work [19]. For these layers,
we fine-tune from these pre-trained weights. The added conv9, conv10 layers and
shortcut connections are trained from scratch. A last conv layer, which is a 1× 1
kernel, maps between conv10 and the output color. Because the ab gamut is bounded,
we add a final tanh layer on the output, as is common practice when generating
images [89,91].

Local Hints Network The layers specific to the Local Hints Network are shown
in red in Figure 6.2. Sparse user points are integrated by concatenation with the
input grayscale image. As a side task, we also predict a color distribution at each
pixel (conditioned on the grayscale and user points) to recommend to the user.
The task of predicting a color distribution is undoubtedly related to the task of
predicting a single colorization, so we reuse features from the main branch. We use a
hypercolumn approach [39, 41] by concatenating features from multiple layers of the
main branch, and learning a two-layer classifier on top. Network Gl is composed of
the main branch, up to conv8, along with this side branch. The side task should not
affect the main task’s representation, so we do not back-propagate the gradients from
the side task into the main branch. To save computation, we predict the distribution
at a quarter resolution, and apply bilinear upsampling to predict at full resolution.

Global Hints Network Because the global inputs have no spatial information,
we choose to integrate the information into the middle of the main colorization
network. As shown in the top green branch in Figure 6.2, the inputs are processed
through 4 conv-relu layers, with kernel size 1 × 1 and 512 channels each. This
feature map is repeated spatially to match the size of the conv4 feature in the main
branch, RH/8×W/8×512, and merged by summation, a similar strategy to the one used
by Iizuka et al. [40].

3.4 Experiments
We detail qualitative and quantitative experiments with our system. In Section

3.4.1, we first automatically test the Local Hints Network. We then describe our user
study in Section 3.4.2. The results suggest that even with little training and just 1
minute to work with an image, novice users can quickly create realistic colorizations.
In Section 3.4.3, we show qualitative examples on unusual colorizations. In Section
3.4.4 we evaluate our Global Hints Network. In Section 3.4.5, we investigate how the



3.4. EXPERIMENTS 43

Figure 3.6: Average PSNR vs Number of Revealed Points We measure the
average PSNR from our ImageNet test set across different algorithms. Points are
revealed to each algorithm by random or max-error sampling. Max-error sampling
selects the point with maximum `2 error in ab space between predicted and ground
truth. Random sampling uses a uniformly drawn random point. The average color
on a 7× 7 patch is revealed to the algorithm. The x-axis is on a logarithmic scale.
Baselines [55, 64, 94] are computed with publicly available code from the authors.
Because our algorithm is learned on a large-scale corpus of data, our system provides
more accurate colorizations given little user supervision. With large amounts of
input points (approximately 500 for random sampling), [55] begins to achieve equal
accuracy to ours. For reference, we show our network without user inputs, Ours
(auto), and predicting Gray for every pixel.

Local Hints Network reconciles two colors within a single segment. Finally, we show
qualitative examples on legacy grayscale images in Section 3.4.6.

3.4.1 How well does the system incorporate inputs?

We test the system automatically by randomly revealing patches to the algorithm,
and measuring PSNR, as shown in Figure 3.6. The pitfalls of using low-level or
per-pixel metrics have been discussed in the automatic colorization regime [19]. A
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Method Added Inputs PSNR (dB)
Predict gray – 22.82±0.18
Zhang et al. [19] automatic 22.04±0.11
Zhang et al. [19] (no-rebal) automatic 24.51±0.15
Larsson et al. [39] automatic 24.93±0.14
Iizuka et al. [40] automatic 23.69±0.13
Ours (Local) automatic 24.43±0.14
Ours (Global) + global hist 27.85±0.13
Ours (Global) + global sat 25.78±0.15
Ours (Local) + gt colors 37.70±0.14
Edit propagation + gt colors ∞

Table 3.1: PSNR with added information. Run on 1000 held-out test images, in
the ILSVRC2012 [4] validation dataset. Ours (Local)-automatic is run completely
automatically, with no user inputs. Methods [19, 39, 40] are recently automatic
colorization methods. Even though our network is trained primarily for interactive
colorization, it performs competitively for automatic colorization as well by this
metric. Ours (Global) +global hist provides global distribution of colors in the
ab gamut; Ours (Global) +global sat provides global saturation to the system.
Our Global Hints Network learns to incorporate global statistics for more accurate
colorizations.

system which chooses a plausible but different mode than the ground truth color
will be overly penalized, and may even achieve a lower score than an implausible
but neutral colorization, such as predicting gray for every pixel (PSNR 22.8). In
this context, however, since ground truth colors are revealed to the algorithm, the
problem is much more constrained, and PSNR is a more appropriate metric.

With no revealed information, edit propagation methods will default to gray for
the whole image. Our system will perform automatic colorization, and provide its
best estimate (PSNR 24.4), as described in Table 3.1. As points are revealed, PSNR
incrementally increases across all methods. Our method achieves a higher PSNR than
other methods, even up to 500 random points. As the number of points increases,
edit propagation techniques such as [55] approach our method, and will inevitably
surpass it. In the limiting case, where every point is revealed, edit propagation
techniques such as [55,64,94] will correctly copy the inputs to the outputs (PSNR
∞). Our system is taught to do this, based on 1% of the training examples, but
will not do so perfectly (PSNR 37.70). As the number of points increases to the
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Method AMT Fooling Rate
Ours-automatic 18.58% ± 1.09
Ours-no recommendation 26.98% ± 1.76
Ours 30.04% ± 1.80

Table 3.2: Amazon Mechanical Turk real vs fake fooling rate We test how
often colorizations generated by novice users fool real humans. Ours is our full
method, with color recommendations. Ours-no recommendation is our method,
without the color recommendation system. Ours-automatic is our method with
no user inputs. Note that the 95% confidence interval shown is not accounting for
possible inter-subject variation (all subjects are assumed to be identical).

hundreds, knowledge of mid-to-high-level natural image statistics has diminishing
importance, and the problem can be solved using low-level optimization.

We also run the same test, but with points sampled in a more intelligent manner.
Given an oracle which provides the ground truth image, we compute the `2 error
between the current prediction and the ground truth, and average over a 25 × 25
window. We then select the point with the maximum error to reveal a 7× 7 patch,
excluding points which overlap with previously revealed patches. As expected, this
sampling strategy typically achieves a higher PSNR, and the same trend holds – our
method achieves higher accuracy than the current state-of-the-art method. Inferring
the full colorization of an image given sparsely revealed points has been previously
exploited in the image compression literature [95, 96]. An interesting extension of
our network would be to optimally choose which points to reveal.

We also note that our method has been designed with point inputs, whereas
previous work has been designed with stroke and point-based inputs in mind. In an
interactive setting, the collection cost of strokes versus points is difficult to define,
and will heavily depend on factors such as proper optimization of the user interface.
However, the results strongly suggest that our method is able to accurately propagate
sparse, point-based inputs.

3.4.2 Does our system aid the user in generating realistic
colorizations?

We run a user study, with the goal of evaluating if novice users, given little
training, can quickly produce realistic colorizations using our system. We provide
minimal training for 28 test subjects, briefly walking them through our interface
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for 2 minutes. The subjects are given the goal of producing “realistic colorizations"
(without benefit of seeing the ground truth), and are provided 1 minute for each
image. Images are randomly drawn from our ImageNet test set. Each subject is given
20 images – 10 images with our algorithm and full interface, including suggested
colors, and 10 images with our algorithm but no color suggestions, for a total of
560 images (280 per test setting). We evaluate the resulting colorizations, along
with automatic colorization, by running a real vs. fake test on Amazon Mechanical
Turk (AMT), using the procedure proposed for automatic colorization [19]. AMT
evaluators are shown two images in succession for 1 second each – one ground truth
and one synthesized – and asked to identify the synthesized. We measure the “fooling
rate" of each algorithm; one which produces ground truth colorizations every time
would achieve 50% by this metric. The results are shown in Table 3.2. Note that the
results may differ on an absolute scale from previous iterations of this test procedure,
such as in the previous chapter or in [75], due to shifts or biases in the AMT
population when the algorithm has been tested. Our network produces a fooling rate
of 18.6% when run completely automatically (no user inputs). We test our interface
without recommended colors, but with HSV sliders and 48 common colors. With
this baseline interface, the fooling rate increases dramatically to 27.0%, indicating
that users quickly acclimated to our network and made dramatic improvements with
just 1 minute. When provided the data-driven color palette, the fooling rate further
increases to 30.0%. This suggests that the color prediction feature can aid users in
quickly selecting a desired color.

We show example results from our study in Figures 3.4 and 3.5. We compare
the annotations to the seminal method proposed by Levin et al. [55], along with the
automatic output from our network. Qualitatively, the added user points typically
add (1) saturation when the automatic result is lacking and (2) accurate higher
frequency detail, that automatic methods have difficulty producing. Comparing
our method to Levin et al. [55], our method is more effective at finding segment
boundaries given sparse user inputs. We do note that the user points are collected by
running our system, which provides an advantage. However, collecting these points,
with the right colors, is enabled by the interactive nature of our algorithm and our
color recommendation system.

3.4.3 Does the network generalize to unusual colorizations?

During training, we use natural images, and reveal the ground truth colors to
simulate user input. However, there are use cases where the user may intentionally
desire an unusual colorization. Will the network be able to follow the inputs in these
cases? In Figure 3.7, we show an unusual colorization guided by the user, giving the
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(a) (b) (c)

Figure 3.7: Unusual colorization (a) User inputs with unusual colors (b) Output
colorization using user points with unusual colors (c) Output colorization with user
points using conventional colors. Photograph by Corporal Michael Guinto, 2014
(Public Domain).

(a) (b) (c) (d) (e) (f)

Figure 3.8: Multiple user colors within a segment. (a) Input grayscale image.
(b,c) Output colorization conditioned on a single centered user point colored (b-blue,
c-red). (d) Locations used for user points for (e) and (f). (e,f) Outputs given
different user input colors (e-blue&red, f-green&pink).

actor a green face with three user points on the face. These results suggest that in
the absence of nearby user inputs, the network will attempt to find an appropriate
colorization for the object, based on the training corpus. However, once an input is
provided by the user, the system fills in the segment with the desired color.
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Figure 3.9: Global histogram transfer Using our Global Hints Network, we
colorize the grayscale version of the image on the left using global histograms from
the top-right inset images. Images are from the Imagenet dataset [4].

Figure 3.10: Legacy black and white photographs Our method applied to legacy
black and white photographs. Top left: The Tetons and Snake River, Ansel Adams,
1942; Bottom left: Photo by John Rooney of Muhammad Ali versus Sonny Liston,
1965 (c.f. color photo by Neil Leifer at almost exactly the same moment); Right:
V-J Day in Times Square, Alfred Eisenstaedt, 1945.

3.4.4 Is the system able to incorporate global statistics?

We train a variant of our system, taking global statistics as inputs, instead of local
points. As described in Table 3.1, when given the ground truth statistics, such as the
global histogram of colors or average saturation, the network achieves a higher PSNR
scores, 27.9 and 25.6, respectively, than when performing automatic colorization
(24.4), indicating that the network has learned how to fuse global statistics. We also
test on the SUN-6 dataset, shown in Table 3.3, proposed by Deshpande et al. [38].
We show higher performance than Despande et al. [38] and almost equal performance
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Method Added Inputs PSNR (dB)
Deshpande et al. [38] automatic 23.18 ± 0.20
Larsson et al. [39] automatic 25.60 ± 0.23
Ours automatic 25.65 ± 0.23
Deshpande et al. [38] + global hist 23.85 ± 0.23
Larsson et al. [39] + global hist 28.62 ± 0.23
Ours + global hist 28.57 ± 0.21

Table 3.3: Global Histogram We test our Global Hints Network at incorporating
the global truth histogram on 240 images from SUN used by [38].

with Larsson et al. [39], which fuses the predictions from an automatic colorization
network with a ground truth histogram using an energy minimization procedure.

The network has only been trained on images with its own ground truth histogram.
In Figure 3.9, we qualitatively the network’s generalization ability by computing
the global histogram on separate reference images, and apply them to a photograph.
The bird is an interesting test case, as it can be plausibly colorized in many different
ways. We observe that that the color distributions of the reference input image is
successfully transferred to the target grayscale image. Furthermore, the colorizations
are realistic and diverse.

3.4.5 How does the system respond to multiple colors within
an equiluminant segment?

In natural images, chrominance changes almost never appear without a lightness
change. In Figure 3.8(a), we show a toy example of an image of a gray square on top
of a black square. If given a 7× 7 point in the center of the image, the system will
successfully propagate the color to the center region, as shown in Figures 3.8(a)(b).
However, how does the system respond if given two different colors within the same
segment, as shown in Figure 3.8(d)? Given blue and red points, the system draws
a seam between the two colors, as shown in Figure 3.8(e), where two points are
placed symmetrically around the center of the image. Because our system is learned
from data, it is difficult to characterize how the system will exactly behave in such
a scenario. Qualitatively, we observe that the seam is not straight, and the shape
as well as the sharpness of the transition is dependent on the colors. For example,
in Figure 3.8(f), green and pink points produce a harder seam. We found similar
behavior under similar scenarios in natural images as well.
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3.4.6 Is the system able to colorize legacy photographs?

Our system was trained on “synthetic" grayscale images by removing the chromi-
nance channels from color images. We qualitatively test our system on legacy
grayscale images, and show some selected results in Figure 3.10.

3.5 Limitations and Discussion
A benefit of our system is that the network predicts user-intended actions based

on learned semantic similarities. However, the network can also be over-optimistic
and produce undesired non-local effects. For example, points added on a foreground
object may cause an undesired change in the background, as shown on the last row
in Figure 3.4. Qualitatively, we found that adding some control points can remedy
this. In addition, the network can also fail to completely propagate a user point, as
shown in the fifth row in Figure 3.4. In these instances, the user can fill in the region
with additional input.

For scenes with difficult segmentation boundaries, the user sometimes needs
to define boundaries explicitly by densely marking either side. Our system can
continuously incorporate this information, even with hundreds of input points, as
shown on Figure 3.6. Points can be added to fix color bleeding artifacts when the
system has poor underlying segmentation. However, our interface is mainly designed
for the “few seconds to couple minutes" interaction regime. For users wanting high-
precision control and willing to spend hours per photograph, working in Photoshop
is likely a better solution.

Our system is currently trained on points; we find that in this regime random
sampling covers the low-dimensional workspace surprisingly well. However, a future
step is to better simulate the user, and to effectively incorporate stroke-based inputs
that traditional methods utilize. Integration between the local user points and global
statistics inputs would be an interesting next step. Our interface code and models are
publicly available at https://richzhang.github.io/ideepcolor, along with all
images generated from the user study and random global histogram transfer results.

So far, in the last two chapters, we have investigated the specific problem of
image colorization. In Chapter 2, we proposed a system for automatic colorization,
where multimodality was resolved by predicting a distribution of possible colors for
each pixel. In this chapter, the multimodality was resolved with the benefit of a
user. The colorization problem can be seen as a special instance of image-to-image
translation. Next, in Chapter 4, we propose a system for the general image-to-image
translation problem, where multimodality is resolved with a learned, low-dimensional
latent code.

https://richzhang.github.io/ideepcolor
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Chapter 4

Toward Multimodal Image-to-Image
Translation

Many image-to-image translation problems are ambiguous, as a single input
image may correspond to multiple possible outputs. One example is the grayscale-to-
color translation problem, which we explored in Chapters 2 and 3. In this chapter,
we explore the general image-to-image translation problem. We aim to model a
distribution of possible outputs in a conditional generative modeling setting. The
ambiguity of the mapping is distilled into a low-dimensional latent vector, which
can be randomly sampled at test time. A generator learns to map the given input,
combined with this latent code, to the output. We explicitly encourage the connection
between output and the latent code to be invertible. This helps prevent a many-
to-one mapping from the latent code to the output during training, also known
as the problem of mode collapse, and produces more diverse results. We explore
several variants of this approach by employing different training objectives, network
architectures, and methods of injecting the latent code. Our proposed method
encourages bijective consistency between the latent encoding and output modes. We
present a systematic comparison of our method and other variants on both perceptual
realism and diversity.1

4.1 Motivation
Deep learning techniques have made rapid progress in conditional image gen-

eration. For example, networks have been used to inpaint missing image re-
1This work was originally published as Toward Multimodal Image-to-Image Translation. In

NIPS, 2017 [97].
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(a) Input night image

(b) Diverse day images sampled by our model

⋯

Figure 4.1: Multimodal image-to-image translation using our proposed method:
given an input image from one domain (night image of a scene), we aim to model a
distribution of potential outputs in the target domain (corresponding day images),
producing both realistic and diverse results.

gions [29, 75,98], add color to grayscale images [19, 39,40, 75], and generate photore-
alistic images from sketches [68, 75]. However, most techniques in this space have
focused on generating a single result.

In this work, we model a distribution of potential results, as many of these
problems may be multimodal in nature. For example, as seen in Figure 4.1, an image
captured at night may look very different in the day, depending on cloud patterns
and lighting conditions. We pursue two main goals: producing results which are (1)
perceptually realistic and (2) diverse, all while remaining faithful to the input.

Mapping from a high-dimensional input to a high-dimensional output distribution
is challenging. A common approach to representing multimodality is learning a
low-dimensional latent code, which should represent aspects of the possible outputs
not contained in the input image. At inference time, a deterministic generator uses
the input image, along with stochastically sampled latent codes, to produce randomly
sampled outputs. A common problem in existing methods is mode collapse [99],
where only a small number of real samples get represented in the output. We
systematically study a family of solutions to this problem.

We start with the pix2pix framework [75], which has previously been shown
to produce high-quality results for various image-to-image translation tasks. The
method trains a generator network, conditioned on the input image, with two losses:
(1) a regression loss to produce similar output to the known paired ground truth
image and (2) a learned discriminator loss to encourage realism. The authors note
that trivially appending a randomly drawn latent code did not produce diverse
results. Instead, we propose encouraging a bijection between the output and latent
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space. We not only perform the direct task of mapping the latent code (along with
the input) to the output but also jointly learn an encoder from the output back to
the latent space. This discourages two different latent codes from generating the
same output (non-injective mapping). During training, the learned encoder attempts
to pass enough information to the generator to resolve any ambiguities regarding
the output mode. For example, when generating a day image from a night image,
the latent vector may encode information about the sky color, lighting effects on
the ground, and cloud patterns. Composing the encoder and generator sequentially
should result in the same image being recovered. The opposite should produce the
same latent code.

In this work, we instantiate this idea by exploring several objective functions,
inspired by literature in unconditional generative modeling:

• cVAE-GAN (Conditional Variational Autoencoder GAN): One approach is
first encoding the ground truth image into the latent space, giving the generator
a noisy “peek" into the desired output. Using this, along with the input image,
the generator should be able to reconstruct the specific output image. To ensure
that random sampling can be used during inference time, the latent distribution
is regularized using KL-divergence to be close to a standard normal distribution.
This approach has been popularized in the unconditional setting by VAEs [100]
and VAE-GANs [101].

• cLR-GAN (Conditional Latent Regressor GAN): Another approach is to first
provide a randomly drawn latent vector to the generator. In this case, the produced
output may not necessarily look like the ground truth image, but it should look
realistic. An encoder then attempts to recover the latent vector from the output
image. This method could be seen as a conditional formulation of the “latent
regressor" model [102,103] and also related to InfoGAN [104].

• BicycleGAN: Finally, we combine both these approaches to enforce the connection
between latent encoding and output in both directions jointly and achieve improved
performance. We show that our method can produce both diverse and visually
appealing results across a wide range of image-to-image translation problems,
significantly more diverse than other baselines, including naively adding noise in
the pix2pix framework. In addition to the loss function, we study the performance
with respect to several encoder networks, as well as different ways of injecting the
latent code into the generator network.

We perform a systematic evaluation of these variants by using humans to judge
photorealism and a perceptual distance metric [105] to assess output diversity. Code
and data are available at https://github.com/junyanz/BicycleGAN.

https://github.com/junyanz/BicycleGAN
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4.2 Background
Generative modeling Parametric modeling of the natural image distribution is
a challenging problem. Classically, this problem has been tackled using restricted
Boltzmann machines [106] and autoencoders [14,107]. Variational autoencoders [100]
provide an effective approach for modeling stochasticity within the network by
reparametrization of a latent distribution at training time. A different approach
is autoregressive models [108–110], which are effective at modeling natural image
statistics but are slow at inference time due to their sequential predictive nature.
Generative adversarial networks [91] overcome this issue by mapping random values
from an easy-to-sample distribution (e.g., a low-dimensional Gaussian) to output
images in a single feedforward pass of a network. During training, the samples are
judged using a discriminator network, which distinguishes between samples from
the target distribution and the generator network. GANs have recently been very
successful [89, 102–104, 111–116]. Our method builds on the conditional version
of VAE [100] and InfoGAN [104] or latent regressor [102, 103] models by jointly
optimizing their objectives. We revisit this connection in Section 4.3.4.

Conditional image generation All of the methods defined above can be easily
conditioned. While conditional VAEs [117] and autoregressive models [109, 110]
have shown promise [118–120], image-to-image conditional GANs have lead to a
substantial boost in the quality of the results. However, the quality has been attained
at the expense of multimodality, as the generator learns to largely ignore the random
noise vector when conditioned on a relevant context [29,68,75,98,121,122]. In fact, it
has even been shown that ignoring the noise leads to more stable training [29,75,123].

Explicitly-encoded multimodality One way to express multiple modes is to
explicitly encode them, and provide them as an additional input in addition to
the input image. For example, color and shape scribbles and other interfaces
were used as conditioning in iGAN [89], pix2pix [75], Scribbler [68] and interactive
colorization [54]. An effective option explored by concurrent work [124–126] is to use a
mixture of models. Though able to produce multiple discrete answers, these methods
are unable to produce continuous changes. While there has been some degree of
success for generating multimodal outputs in unconditional and text-conditional
setups [91,101,113,127,128], conditional image-to-image generation is still far from
achieving the same results, unless explicitly encoded as discussed above. In this
work, we learn conditional image generation models for modeling multiple modes of
output by enforcing tight connections between the latent and image spaces.
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(a) Testing Usage for all models (b) Training pix2pix+noise

(c) Training cVAE-GAN (d) Training cLR-GAN

(e) Training BicycleGAN
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Figure 4.2: Overview: (a) Test time usage of all the methods. To produce a sample
output, a latent code z is first randomly sampled from a known distribution (e.g., a
standard normal distribution). A generator G maps an input image A (blue) and
the latent sample z to produce a output sample B̂ (yellow). (b) pix2pix+noise [75]
baseline, with an additional ground truth image B (brown) that corresponds to
A. (c) cVAE-GAN (and cAE-GAN) starts from a ground truth target image B and
encode it into the latent space. The generator then attempts to map the input image
A along with a sampled z back into the original image B. (d) cLR-GAN randomly
samples a latent code from a known distribution, uses it to map A into the output
B̂, and then tries to reconstruct the latent code from the output. (e) Our hybrid
BicycleGAN method combines constraints in both directions.
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4.3 Approach
Our goal is to learn a multi-modal mapping between two image domains, for

example, edges and photographs, or night and day images, etc. Consider the input
domain A⊂ RH×W×3, which is to be mapped to an output domain B ⊂ RH×W×3.
During training, we are given a dataset of paired instances from these domains,{

(A ∈ A,B ∈ B)
}
, which is representative of a joint distribution p(A,B). It is

important to note that there could be multiple plausible paired instances B that
would correspond to an input instance A, but the training dataset usually contains
only one such pair. However, given a new instance A during test time, our model
should be able to generate a diverse set of output B̂’s, corresponding to different
modes in the distribution p(B|A).

While conditional GANs have achieved success in image-to-image translation
tasks [29,68,75,98,121,122], they are primarily limited to generating a deterministic
output B̂ given the input image A. On the other hand, we would like to learn the
mapping that could sample the output B̂ from true conditional distribution given
A, and produce results which are both diverse and realistic. To do so, we learn a
low-dimensional latent space z ∈ RZ , which encapsulates the ambiguous aspects of
the output mode which are not present in the input image. For example, a sketch of
a shoe could map to a variety of colors and textures, which could get compressed
in this latent code. We then learn a deterministic mapping G : (A, z)→ B to the
output. To enable stochastic sampling, we desire the latent code vector z to be
drawn from some prior distribution p(z); we use a standard Gaussian distribution
N (0, I) in this work.

We first discuss a simple extension of existing methods and discuss its strengths
and weakness, motivating the development of our proposed approach in the subse-
quent subsections.

4.3.1 Baseline: pix2pix+noise (z→ B̂)

The recently proposed pix2pix model [75] has shown high quality results in
the image-to-image translation setting. It uses conditional adversarial networks [91,
129] to help produce perceptually realistic results. GANs train a generator G
and discriminator D by formulating their objective as an adversarial game. The
discriminator attempts to differentiate between real images from the dataset and fake
samples produced by the generator. Randomly drawn noise z is added to attempt to
induce stochasticity. We illustrate the formulation in Figure 5.2(b) and describe it
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below.

LGAN(G,D) = EA,B∼p(A,B)[log(D(A,B))] + EA∼p(A),z∼p(z)[log(1−D(A, G(A, z)))]
(4.1)

To encourage the output of the generator to match the input as well as stabilize
the training, we use an `1 loss between the output and the ground truth image.

Limage
1 (G) = EA,B∼p(A,B),z∼p(z)||B−G(A, z)||1 (4.2)

The final loss function uses the GAN and `1 terms, balanced by λ.

G∗ = arg min
G

max
D

LGAN(G,D) + λLimage
1 (G) (4.3)

In this scenario, there is little incentive for the generator to make use of the noise
vector which encodes random information. Isola et al. [75] note that the noise was
ignored by the generator in preliminary experiments and was removed from the final
experiments. This was consistent with observations made in the conditional settings
by [29, 123], as well as the mode collapse phenomenon observed in unconditional
cases [99, 130]. In this chapter, we explore different ways to explicitly enforce the
latent coding to capture relevant information.

4.3.2 Conditional Variational Autoencoder GAN: cVAE-GAN
(B→ z→ B̂)

One way to force the latent code z to be “useful" is to directly map the ground
truth B to it using an encoding function E. The generator G then uses both the
latent code and the input image A to synthesize the desired output B̂. The overall
model can be easily understood as the reconstruction of B, with latent encoding z
concatenated with the paired A in the middle – similar to an autoencoder [14]. This
interpretation is better shown in Figure 5.2(c).

This approach has been successfully investigated in Variational Autoencoder [100]
in the unconditional scenario without the adversarial objective. Extending it to
conditional scenario, the distribution Q(z|B) of latent code z using the encoder
E with a Gaussian assumption, Q(z|B) , E(B). To reflect this, Equation 4.1 is
modified to sampling z ∼ E(B) using the re-parameterization trick, allowing direct
back-propagation [100].

LVAE
GAN = EA,B∼p(A,B)[log(D(A,B))] + EA,B∼p(A,B),z∼E(B)[log(1−D(A, G(A, z)))]

(4.4)
We make the corresponding change in the `1 loss term in Equation 4.2 as well to
obtain LVAE

1 (G) = EA,B∼p(A,B),z∼E(B)||B−G(A, z)||1. Further, the latent distribution
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encoded by E(B) is encouraged to be close to a random Gaussian to enable sampling
at inference time, when B is not known.

LKL(E) = EB∼p(B)[DKL(E(B)|| N (0, I))], (4.5)

where DKL(p||q) = −
∫
p(z) log p(z)

q(z)
dz. This forms our cVAE-GAN objective, a condi-

tional version of the VAE-GAN [101] as

G∗, E∗ = arg min
G,E

max
D

LVAE
GAN(G,D,E) + λLVAE

1 (G,E) + λKLLKL(E). (4.6)

As a baseline, we also consider the deterministic version of this approach, i.e.,
dropping KL-divergence and encoding z = E(B). We call it cAE-GAN and show a
comparison in the experiments. There is no guarantee in cAE-GAN on the distribution
of the latent space z, which makes the test-time sampling of z difficult.

4.3.3 Conditional Latent Regressor GAN: cLR-GAN (z→ B̂→
ẑ)

We explore another method of enforcing the generator network to utilize the
latent code embedding z, while staying close to the actual test time distribution p(z),
but from the latent code’s perspective. As shown in Figure 5.2(d), we start from a
randomly drawn latent code z and attempt to recover it with ẑ = E(G(A, z)). Note
that the encoder E here is producing a point estimate for ẑ, whereas the encoder in
the previous section was predicting a Gaussian distribution.

Llatent
1 (G,E) = EA∼p(A),z∼p(z)||z− E(G(A, z))||1 (4.7)

We also include the discriminator loss LGAN(G,D) (Equation 4.1) on B̂ to
encourage the network to generate realistic results, and the full loss can be written
as:

G∗, E∗ = arg min
G,E

max
D

LGAN(G,D) + λlatentLlatent
1 (G,E) (4.8)

The `1 loss for the ground truth image B is not used. Since the noise vector
is randomly drawn, the predicted B̂ does not necessarily need to be close to the
ground truth but does need to be realistic. The above objective bears similarity to
the “latent regressor" model [102–104], where the generated sample B̂ is encoded to
generate a latent vector.
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4.3.4 Our Hybrid Model: BicycleGAN

We combine the cVAE-GAN and cLR-GAN objectives in a hybrid model. For
cVAE-GAN, the encoding is learned from real data, but a random latent code may
not yield realistic images at test time – the KL loss may not be well optimized.
Perhaps more importantly, the adversarial classifier D does not have a chance to
see results sampled from the prior during training. In cLR-GAN, the latent space
is easily sampled from a simple distribution, but the generator is trained without
the benefit of seeing ground truth input-output pairs. We propose to train with
constraints in both directions, aiming to take advantage of both cycles (B→ z→ B̂

and z→ B̂→ ẑ), hence the name BicycleGAN.

G∗, E∗ = arg min
G,E

max
D

LVAE
GAN(G,D,E) + λLVAE

1 (G,E)

+LGAN(G,D) + λlatentLlatent
1 (G,E) + λKLLKL(E),

(4.9)

where the hyper-parameters λ, λlatent, and λKL control the relative importance of
each term.

In the unconditional GAN setting, Larsen et al. [101] observe that using sam-
ples from both the prior N (0, I) and encoded E(B) distributions further improves
results. Hence, we also report one variant which is the full objective shown above
(Equation 4.9), but without the reconstruction loss on the latent space Llatent

1 . We
call it cVAE-GAN++, as it is based on cVAE-GAN with an additional loss LGAN(G,D),
which allows the discriminator to see randomly drawn samples from the prior.

4.3.5 Implementation Details

The code and additional results are publicly available at https://github.com/
junyanz/BicycleGAN. Please refer to our website for more details about the datasets,
architectures, and training procedures.

Network architecture For generator G, we use the U-Net [93], which contains an
encoder-decoder architecture, with symmetric skip connections. The architecture has
been shown to produce strong results in the unimodal image prediction setting when
there is a spatial correspondence between input and output pairs. For discriminator
D, we use two PatchGAN discriminators [75] at different scales, which aims to predict
real vs. fake for 70× 70 and 140× 140 overlapping image patches. For the encoder
E, we experiment with two networks: (1) ECNN: CNN with a few convolutional and
downsampling layers and (2) EResNet: a classifier with several residual blocks [131].

https://github.com/junyanz/BicycleGAN
https://github.com/junyanz/BicycleGAN
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z z

+ +

Figure 4.3: Alternatives for injecting z into generator. Latent code z is injected
by spatial replication and concatenation into the generator network. We tried two
alternatives, (left) injecting into the input layer and (right) every intermediate
layer in the encoder.

Training details We build our model on the Least Squares GANs (LSGANs)
variant [132], which uses a least-squares objective instead of a cross entropy loss.
LSGANs produce high-quality results with stable training. We also find that not
conditioning the discriminator D on input A leads to better results (also discussed
in [29]), and hence choose to do the same for all methods. We set the parameters
λimage = 10, λlatent = 0.5 and λKL = 0.01 in all our experiments. We tie the weights
for the generators and encoders in the cVAE-GAN and cLR-GAN models. For the
encoder, only the predicted mean is used in cLR-GAN. We observe that using two
separate discriminators yields slightly better visual results compared to sharing
weights. We only update G for the `1 loss Llatent

1 (G,E) on the latent code (Equation
4.7), while keeping E fixed. We found optimizing G and E simultaneously for the
loss would encourage G and E to hide the information of the latent code without
learning meaningful modes. We train our networks from scratch using Adam [133]
with a batch size of 1 and with a learning rate of 0.0002. We choose latent dimension
|z| = 8 across all the datasets.

Injecting the latent code z to generator. We explore two ways of propagating
the latent code z to the output, as shown in Figure 4.3: (1) add_to_input: we
spatially replicate a Z-dimensional latent code z to an H× W × Z tensor and
concatenate it with the H×W× 3 input image and (2) add_to_all: we add z to
each intermediate layer of the network G, after spatial replication to the appropriate
sizes.

4.4 Experiments
Datasets We test our method on several image-to-image translation problems

from prior work, including edges → photos [89,134], Google maps → satellite [75],
labels → images [135], and outdoor night → day images [136]. These problems are
all one-to-many mappings. We train all the models on 256× 256 images.
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Input Ground truth Generated samples

Figure 4.4: Example Results We show example results of our hybrid model BicycleGAN.
The left column shows the input. The second shows the ground truth output. The final four
columns show randomly generated samples. We show results of our method on night→day,
edges→shoes, edges→handbags, and maps→satellites. Models and additional examples are
available at https://junyanz.github.io/BicycleGAN.

https://junyanz.github.io/BicycleGAN
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Figure 4.5: Qualitative method comparison We compare results on the labels →
facades dataset across different methods. The BicycleGAN method produces results which
are both realistic and diverse.

Realism Diversity
AMT Fooling LPIPS

Method Rate [%] Distance
Random real images 50.0% .262
pix2pix+noise [75] 27.93±2.40 % .013
cAE-GAN 13.64±1.80 % .204
cVAE-GAN 24.93±2.27 % .096
cVAE-GAN++ 29.19±2.43 % .098
cLR-GAN 29.23±2.48 % *.090
BicycleGAN 34.33±2.69 % .110 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
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Figure 4.6: Realism vs Diversity. We measure diversity using average LPIPS
distance [105], and realism using a real vs. fake Amazon Mechanical Turk test on
the Google maps → satellites task. The LPIPS metric corresponds well to low-level
human perceptual judgments, and we describe it in greater detail in Chapter 6.
The pix2pix+noise baseline produces little diversity. Using only cAE-GAN method
produces large artifacts during sampling. The hybrid BicycleGAN method, which
combines cVAE-GAN and cLR-GAN, produces results which have higher realism while
maintaining diversity. *We found that cLR-GAN resulted in severe mode collapse,
resulting in ∼ 15% of the images producing the same result. Those images were
omitted from this calculation.
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MethodsWe evaluate the following models described in Section 6.2: pix2pix+noise,
cAE-GAN, cVAE-GAN, cVAE-GAN++, cLR-GAN, and our hybrid model BicycleGAN.

4.4.1 Qualitative Evaluation
We show qualitative comparison results on Figure 4.5. We observe that pix2pix+noise

typically produces a single realistic output, but does not produce any meaningful
variation. cAE-GAN adds variation to the output, but typically at a large cost to
result quality. An example on facades is shown on Figure 4.4.

We observe more variation in the cVAE-GAN, as the latent space is encouraged to
encode information about ground truth outputs. However, the space is not densely
populated, so drawing random samples may cause artifacts in the output. The
cLR-GAN shows less variation in the output, and sometimes suffers from mode collapse.
When combining these methods, however, in the hybrid method BicycleGAN, we
observe results which are both diverse and realistic. Please see our website for a full
set of results.

4.4.2 Quantitative Evaluation
We perform a quantitative analysis of the diversity, realism, and latent space

distribution on our six variants and baselines. We quantitatively test the Google
maps → satellites dataset.

Diversity We compute the average distance of random samples in deep feature
space. Pretrained networks have been used as a “perceptual loss" in image generation
applications [84, 137, 138], as well as a held-out “validation" score in generative
modeling, for example, assessing the semantic quality and diversity of a generative
model [130] or the semantic accuracy of a grayscale colorization [19].

In Figure 4.6, we show the diversity-score using the LPIPS metric proposed
by [105]2. For each method, we compute the average distance between 1900 pairs of
randomly generated output B̂ images (sampled from 100 input A images). Random
pairs of ground truth real images in the B ∈ B domain produce an average variation
of .265. As we are measuring samples B̂ which correspond to a specific input A, a
system which stays faithful to the input should definitely not exceed this score.

The pix2pix system [75] produces a single point estimate. Adding noise to
the system pix2pix+noise produces a small diversity score, confirming the finding
in [75] that adding noise does not produce large variation. Using the cAE-GAN model

2Learned Perceptual Image Patch Similarity (LPIPS) metric computes distance in AlexNet [139]
feature space (conv1-5, pretrained on Imagenet [4]), with linear weights to better match human
perceptual judgments.
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Encoder EResNet EResNet ECNN ECNN
Injecting z add_to_all add_to_input add_to_all add_to_input
label→photo 0.292± 0.058 0.292± 0.054 0.326± 0.066 0.339± 0.069
map → satellite 0.268± 0.070 0.266± 0.068 0.287± 0.067 0.272± 0.069

Table 4.1: The encoding performance with respect to the different encoder ar-
chitectures and methods of injecting z. Here we report the reconstruction loss
||B−G(A, E(B))||1

.
to encode a ground truth image B into a latent code z does increase the variation.
The cVAE-GAN, cVAE-GAN++, and BicycleGAN models all place explicit constraints
on the latent space, and the cLR-GAN model places an implicit constraint through
sampling. These four methods all produce similar diversity scores. We note that high
diversity scores may also indicate that unnatural images are being generated, causing
meaningless variations. Next, we investigate the visual realism of our samples.

Perceptual Realism To judge the visual realism of our results, we use human
judgments, as proposed in [19] and later used in [75, 122]. The test sequentially
presents a real and generated image to a human for 1 second each, in a random order,
asks them to identify the fake, and measures the “fooling" rate. Figure 4.6(left)
shows the realism across methods. The pix2pix+noise model achieves high realism
score, but without large diversity, as discussed in the previous section. The cAE-GAN
helps produce diversity, but this comes at a large cost to the visual realism. Because
the distribution of the learned latent space is unclear, random samples may be from
unpopulated regions of the space. Adding the KL-divergence loss in the latent space,
used in the cVAE-GAN model, recovers the visual realism. Furthermore, as expected,
checking randomly drawn z vectors in the cVAE-GAN++ model slightly increases
realism. The cLR-GAN, which draws z vectors from the predefined distribution
randomly, produces similar realism and diversity scores. However, the cLR-GAN
model resulted in large mode collapse - approximately 15% of the outputs produced
the same result, independent of the input image. The full hybrid BicycleGAN gets
the best of both worlds, as it does not suffer from mode collapse and also has the
highest realism score by a significant margin.

Encoder architecture In pix2pix, [75] conduct extensive ablation studies on
discriminators and generators. Here we focus on the performance of two encoder
architectures, ECNN and EResNet, for our applications on the maps and facades datasets.
We find that EResNet better encodes the output image, regarding the image recon-
struction loss ||B−G(A, E(B))||1 on validation datasets as shown in Table 4.1. We
use EResNet in our final model.
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|z| = 2 |z| = 256|z| = 8Input label

Figure 4.7: Different label→ facades results trained with varying length of the latent
code |z| ∈ {2, 8, 256}.
Methods of injecting latent code We evaluate two ways of injecting latent code
z: add_to_input and add_to_all (Section 4.3.5), regarding the same reconstruction
loss ||B−G(A, E(B))||1. Table 4.1 shows that two methods give similar performance.
This indicates that the U_Net [93] can already propagate the information well to the
output without the additional skip connections from z. We use add_to_all method
to inject noise in our final model.

Latent code length We study the BicycleGAN model results with respect to
the varying number of dimensions of latent codes {2, 8, 256} in Figure 4.7. A very
low-dimensional latent code may limit the amount of diversity that can be expressed.
On the contrary, a very high-dimensional latent code can potentially encode more
information about an output image, at the cost of making sampling difficult. The
optimal length of z largely depends on individual datasets and applications, and how
much ambiguity there is in the output.

4.5 Discussion
In conclusion, we have evaluated a few methods for combating the problem

of mode collapse in the conditional image generation setting. We find that by
combining multiple objectives for encouraging a bijective mapping between the latent
and output spaces, we obtain results which are more realistic and diverse. We see
many interesting avenues of future work, including directly enforcing a distribution
in the latent space that encodes semantically meaningful attributes to allow for
image-to-image transformations with user controllable parameters.
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Part II

Self-Supervised Visual
Representation Learning
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Chapter 5

Representation Learning by
Cross-Channel Prediction

The colorization network from Chapter 2 is a type of cross-channel encoder, as
it performs the difficult task of predicting one subset of the data channels (color)
from another (grayscale). While solving the task, the network learns to capture
patterns in the visual world, using only raw data as supervision. By forcing the
network to solve cross-channel prediction tasks, we induce a representation within
the network which transfers well to other, unseen tasks. In this chapter, we further
investigate how well colorization, and cross-channel encoding in general, serves as a
pretext task for inducing abstract representations. One weakness of a cross-channel
encoder is that the network can only extract a representation from one subset of the
data. For example, the colorization network is colorblind. We show that combining
multiple cross-channel encoders into a “split-brain autoencoder" can mitigate this
problem and lead to further improvements. The method can also be thought of
as a straightforward modification of the traditional autoencoder architecture. At
time of publication1, this method achieved state-of-the-art performance on several
large-scale transfer learning benchmarks.

5.1 Motivation
A goal of unsupervised learning is to model raw data without the use of labels, in a

manner which produces a useful representation. By “useful" we mean a representation
1This work was first published as Split-Brain Autoencoders: Unsupervised Learning by Cross-

Channel Prediction in CVPR, 2017. This chapter will sometimes refer to the colorization method
from Chapter 2 as Zhang et al. [19]
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that should be easily adaptable for other tasks, unknown during training time.
Unsupervised deep methods typically induce representations by training a network
to solve an auxiliary or “pretext” task, such as the image reconstruction objective in
a traditional autoencoder model, as shown on Figure 5.1(top). We instead force the
network to solve complementary prediction tasks by adding a split in the architecture,
shown in Figure 5.1 (bottom), dramatically improving transfer performance.

Traditional	Autoencoder
Raw	Data Reconstructed

Data

X"X

Split-Brain	Autoencoder

X

Raw	Data
Channels

Predicted	Data
Channels

Predicted	
Data

X"

Raw	Data

X#

X$
X#%
X$%

Figure 5.1: Traditional vs Split-Brain Au-
toencoder architectures. (top) Autoencoders
learn feature representation F by learning to re-
construct input data X. (bottom) The proposed
split-brain autoencoder is composed of two dis-
joint sub-networks F1,F2, each trained to pre-
dict one data subset from another, changing the
problem from reconstruction to prediction. The
split-brain representation F is formed by con-
catenating the two sub-networks, and achieves
strong transfer learning performance. The model is
publicly available on https://richzhang.github.
io/splitbrainauto.

Despite their popularity, au-
toencoders have actually not
been shown to produce strong
representations for transfer tasks
in practice [29, 107]. Why is
this? One reason might be the
mechanism for forcing model ab-
straction. To prevent a triv-
ial identity mapping from be-
ing learned, a bottleneck is typ-
ically built into the autoen-
coder representation. However,
an inherent tension is at play:
the smaller the bottleneck, the
greater the forced abstraction,
but the smaller the information
content that can be expressed.

Instead of forcing abstrac-
tion through compression, via
a bottleneck in the network ar-
chitecture, recent work has ex-
plored withholding parts of the
input during training [19, 29,
107]. For example, Vincent et
al. [107] propose denoising au-
toencoders, trained to remove
iid noise added to the input.
Pathak et al. [29] propose con-
text encoders, which learn fea-
tures by training to inpaint large, random contiguous blocks of pixels. Rather than
dropping data in the spatial direction, several works have dropped data in the channel
direction, e.g. predicting color channels from grayscale (the colorization task) [19,39].

Context encoders, while an improvement over autoencoders, demonstrate lower

https://richzhang.github.io/splitbrainauto
https://richzhang.github.io/splitbrainauto
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performance than competitors on large-scale semantic representation learning bench-
marks [19]. This may be due to several reasons. First, image synthesis tasks are
known to be notoriously difficult to evaluate [23] and the loss function used in [29]
may not properly capture inpainting quality. Second, the model is trained on images
with missing chunks, but applied, at test time, to full images. This causes a “domain
gap" between training and deployment. Third, it could simply be that the inpainting
task in [29] could be adequately solved without high-level reasoning, instead mostly
just copying low and mid-level structure from the surround.

On the other hand, colorization turns out to be a surprisingly effective pretext
task for inducing strong feature representations [19,140]. Though colorization, like
inpainting, is a synthesis task, the spatial correspondence between the input and
output pairs may enable basic off-the-shelf loss functions to be effective. In addition,
the systematic, rather than stochastic nature of the input corruption removes the
pre-training and testing domain gap. Finally, while inpainting may admit reasoning
mainly about textural structure, predicting accurate color, e.g., knowing to paint
a schoolbus yellow, may more strictly require object-level reasoning and therefore
induce stronger semantic representations. Colorization is an example of what we
refer to as a cross-channel encoding objective, a task which directly predicts one
subset of data channels from another.

In this chapter, we further explore the space of cross-channel encoders by sys-
tematically evaluating various channel translation problems and training objectives.
Cross-channel encoders, however, face an inherent handicap: different channels of the
input data are not treated equally, as part of the data is used for feature extraction
and another as the prediction target. In the case of colorization, the network can
only extract features from the grayscale image and is blind to color, leaving the color
information unused. A qualitative comparison of the different methods, along with
their inherent strengths and weaknesses, is summarized in Table 5.1.

Might there be a way to take advantage of the underlying principle of cross-
channel encoders, while being able to extract features from the entire input signal?
We propose an architectural modification to the autoencoder paradigm: adding a
single split in the network, resulting in two disjoint, concatenated, sub-networks.
Each sub-network is trained as a cross-channel encoder, predicting one subset of
channels of the input from the other. A variety of auxiliary cross-channel prediction
tasks may be used, such as colorization and depth prediction. For example, on RGB
images, one sub-network can solve the problem of colorization (predicting a and
b channels from the L channel in Lab colorspace), and the other can perform the
opposite (synthesizing L from a, b channels). In the RGB-D domain, one sub-network
may predict depth from images, while the other predicts images from depth. The
architectural change induces the same forced abstraction as observed in cross-channel
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auxiliary domain input
task type gap handicap

Autoencoder [14] reconstruction no no
Denoising autoencoder [107] reconstruction suffers no
Context Encoder [29] prediction no suffers
Cross-Channel Encoder [19, 140] prediction no suffers
Split-Brain Autoencoder prediction no no

Table 5.1: Qualitative Comparison We summarize various qualitative aspects
inherent in several representation learning techniques. Auxiliary task type: pretext
task predicated on reconstruction or prediction. Domain gap: gap between the
input data during unsupervised pre-training and testing time. Input handicap:
input data is systematically dropped out during test time.

encoders, but is able to extract features from the full input tensor, leaving nothing
on the table.

Our contributions are as follows:
• We propose the split-brain autoencoder, which is composed of concatenated

cross-channel encoders, trained using raw data as its own supervisory signal.
• We demonstrate state-of-the-art performance on several semantic representation

learning benchmarks in the RGB and RGB-D domains.
• To gain a better understanding, we perform extensive ablation studies by
(i) investigating cross-channel prediction problems and loss functions and
(ii) researching alternative aggregation methods for combining cross-channel
encoders.

5.2 Background
Many unsupervised learning methods have focused on modeling raw data using

a reconstruction objective. Autoencoders [14] train a network to reconstruct an
input image, using a representation bottleneck to force abstraction. Denoising
autoencoders [107] train a network to undo a random iid corruption. Techniques for
modeling the probability distribution of images in deep frameworks have also been
explored. For example, variational autoencoders (VAEs) [100] employ a variational
Bayesian approach to modeling the data distribution. Other probabilistic models
include restricted Boltzmann machines (RBMs) [106], deep Boltzmann machines
(DBMs) [141], generative adversarial networks (GANs) [91], autoregressive models
(Pixel-RNN [109] and Pixel-CNN [110]), bidirectional GANs (BiGANs) [102] and
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Adversarially Learned Inference (ALI) [103], and real NVP [128]. Many of these
methods [14,102,103,107,141] have been evaluated for representation learning.

Another form of unsupervised learning, sometimes referred to as “self-supervised"
learning [12], has recently grown in popularity. Rather than predicting labels
annotated by humans, these methods predict pseudo-labels computed from the raw
data itself. For example, image colorization [19,39] has been shown to be an effective
pretext task. Other methods generate pseudo-labels from egomotion [27,28], video
[142,143], inpainting [29], co-occurence [144], context [53,145], and sound [12,32,146].
Concurrently, Pathak et al. [147] use motion masks extracted from video data.
Concurrently, Larsson et al. [140] provide an in-depth analysis of colorization for
self-supervision. These methods generally focus on a single supervisory signal and
involve some engineering effort. In this work, we show that simply predicting raw data
channels with standard loss functions is surprisingly effective, often outperforming
previously proposed methods.

The idea of learning representations from multisensory signals also shows up in
structure learning [148], co-training [149], and multi-view learning [150]. Our method
is especially related to [12, 146,151], which use bidirectional data prediction to learn
representations from two sensory modalities.

A large body of additional work in computer vision and graphics focuses on
image channel prediction as an end in itself, such as colorization [19,39,40], depth
prediction [152], and surface normal prediction [152,153]. In contrast, rather than
focusing on the graphics problem, we explore its utility for representation learning.

5.3 Approach
In Section 5.3.1, we define the paradigm of cross-channel encoding. In Section

5.3.2, we propose the split-brain autoencoder and explore alternatives methods for
aggregating multiple cross-channel encoders into a single network.

5.3.1 Cross-Channel Encoders

We would like to learn a deep representation on input data tensor X ∈ RH×W×C ,
with C channels. We split the data into X1 ∈ RH×W×C1 and X2 ∈ RH×W×C2 ,
where C1, C2 ⊆ C, and then train a deep representation to solve the prediction
problem X̂2 = F(X1). Function F is learned with a CNN, which produces a layered
representation of input X1, and we refer to each layer l as F l. By performing this
pretext task of predicting X2 from X1, we hope to achieve a representation F(X1)
which contains high-level abstractions or semantics.
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Figure 5.2: Split-Brain Autoencoders applied to various domains (a) Lab
images Input images are divided into the L channel, which contains grayscale
information, and the a and b channels, which contain color information. Network F1

performs automatic colorization, whereas network F2 performs grayscale prediction.
(b) RGB-D images Input data X contains registered RGB and depth images.
Depth images are encoded using the HHA encoding [154]. Image representation F1

is trained by predicting HHA channels. Representation F2 on HHA images is learned
by predicting images in Lab space. Note that the goal of performing these synthesis
tasks is to induce representations F1,F2 that transfer well to other tasks.

This prediction task can be trained with various loss functions, and we study
whether the loss function affects the quality of the learned representation. To begin,
we explore the use of `2 regression, as shown in Equation 5.1.

`2(F(X1),X2) = 1
2

∑
h,w

‖X2h,w −F(X1)h,w‖22 (5.1)

We also study the use of a classification loss. Here, the target output X2 ∈
RH×W×C2 is encoded with function H into a distribution Y2 ∈∆H×W×Q, where Q
is the number of elements in the quantized output space. Network F is then trained
to predict a distribution, Ŷ2 = F(X1) ∈∆H×W×Q. A standard cross-entropy loss
between the predicted and ground truth distributions is used, as shown Equation
5.2.

`cl(F(X1),X2) = −
∑
h,w

∑
q

H(X2)h,w,q log(F(X1)h,w,q) (5.2)

In Chapter 2, we discovered that the classification loss is more effective for the
graphics task of automatic colorization than regression. We hypothesize that for some
tasks, especially those with inherent uncertainty in the prediction, the classification
loss may lead to better representations as well, as the network will be incentivized
to match the whole distribution, and not only predict the first moment.

Note that with input and output sets C1, C2 = C, and an `2 regression loss, the
objective becomes identical to the autoencoder objective.
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5.3.2 Split-Brain Autoencoders as Aggregated Cross-Channel
Encoders

We can train multiple cross-channel encoders, F1, F2, on opposite prediction
problems, with loss functions L1, L2, respectively, described in Equation 5.3.

F∗1 = arg min
F1

L1(F1(X1),X2)

F∗2 = arg min
F2

L2(F2(X2),X1)
(5.3)

By concatenating the representations layer-wise, F l = {F l1,F l2}, we achieve a
representation F which is pre-trained on full input tensor X. Example split-brain
autoencoders in the image and RGB-D domains are shown in Figures 5.2(a) and (b),
respectively. If F is a CNN of a desired fixed size, e.g., AlexNet [77], we can design
the sub-networks F1,F2 by splitting each layer of the network F in half, along the
channel dimension. Concatenated representation F will then have the appropriate
dimensionality, and can be simply implemented by setting the group parameter
to 2 in most deep learning libraries. As each channel in the representation is only
connected to half of the channels in the preceding layer, the number of parameters
in the network is actually halved, relative to a full network.

Note that the input and the output to the network F is the full input X, the
same as an autoencoder. However, due to the split nature of the architecture, the
network F is trained to predict X = {X1,X2}, rather than simply reconstruct it
from the input. In essence, an architectural change in the autoencoder framework
induces the same forced abstraction achieved by cross-channel encoding.

Alternative Aggregation Technique We found the split-brain autoencoder,
which aggregates cross-channel encoders through concatenation, to be more effective
than several alternative strategies. As a baseline, we also explore an alternative: the
same representation F can be trained to perform both mappings simultaneously.
The loss function is described in Equation 5.4, with a slight abuse of notation: here,
we redefine X1 to be the same shape as original input X ∈ RH×W×C , with channels
in set C\C1 zeroed out (along with the analogous modification to X2).

F∗ = arg min
F
L1(F(X1),X2) + L2(X1,F(X2)) (5.4)

The network only sees data subsets but never full input X. To alleviate this problem,
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we mix in the autoencoder objective, as shown in Equation 5.5, with λ ∈ [0, 1
2
].

F∗ = arg min
F

λL1(F(X1),X2) + λL2(F(X2),X1)

+ (1− 2λ)L3(X,F(X))
(5.5)

Note that unlike the split-brain architecture, in these objectives, there is a domain
gap between the distribution of pre-training data and the full input tensor X.

5.4 Implementation Details
Here, we describe the pre-training and feature evaluation architectures. For

pre-training, we use an AlexNet architecture [77], trained fully convolutionally [155].
The network is trained with 180×180 images, cropped from 256 × 256 resolution,
and predicts values at a heavily downsampled 12×12 resolution. One can add
upsampling-convolutional layers or use a trous [42]/dilated [43] convolutions to

Fully Convolutional
AlexNet [77] Architecture

Layer X C K S D P
data 180 * – – – –
conv1 45 96 11 4 1 5
pool1 23 96 3 2 1 1
conv2 23 256 5 1 1 2
pool2 12 256 3 2 1 1
conv3 12 384 3 1 1 1
conv4 12 384 3 1 1 1
conv5 12 256 3 1 1 1
pool5 12 256 3 1 1 1
fc6 12 4096 6 1 2 6
fc7 12 4096 1 1 1 0
fc8 12 * 1 1 1 0

Table 5.2: Fully Convolutional AlexNet architecture used for pre-training.
X spatial resolution of layer, C number of channels in layer; K conv or pool kernel
size; S computation stride; D kernel dilation [42, 43]; P padding; * first and last
layer channel sizes are dependent on the pre-text task, last layer is removed during
transfer evaluation.
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predict full resolution images at the expense of additional memory and run-time,
but we found predicting at a lower resolution to be sufficient for representation
learning. See Table 5.2 for feature map and parameter sizes during pre-training
time. We remove LRN layers and add BatchNorm layers after every convolution layer.
After pre-training, we remove BatchNorm layers by absorbing the parameters into
the preceding conv layers. The pre-training network predicts a downsampled version
of the desired output, which we found to be adequate for feature learning.

During feature evaluation time (such as the ImageNet [77], Places [44], and PAS-
CAL [7] tests), the parameters are copied into an AlexNet classification architecture,
shown in Table 5.3. During the linear classification tests, we downsample feature
maps spatially, so that each layer has approximately the same number of features.

Quantization procedure Zhang et al. [19] use a class-rebalancing term, to over-
sample rare colors in the training set, and a soft-encoding scheme forH. These choices
were made from a graphics perspective, to produce more vibrant colorizations. In our
classification colorization network, L→ab(cl), our objective is more straightforward,
as we do not use class-rebalancing. In addition, we use a 1-hot encoding representation

AlexNet Classification [77] Architecture

Layer X Xd C Fd K S D P
data 227 – * – – – – –
conv1 55 10 96 9600 11 4 1 0
pool1 27 10 96 9600 3 2 1 0
conv2 27 6 256 9216 5 1 1 2
pool2 13 6 256 9216 3 2 1 0
conv3 13 5 384 9600 3 1 1 1
conv4 13 5 384 9600 3 1 1 1
conv5 13 6 256 9216 3 1 1 1
pool5 6 6 256 9216 3 2 1 0
fc6 1 – 4096 – 6 1 1 0
fc7 1 – 4096 – 1 1 1 0

Table 5.3: AlexNet architecture used for feature evaluation. X spatial reso-
lution of layer, Xd downsampled spatial resolution for feature evaluation, C number
of channels in layer; Fd = X2

dC downsampled feature map size for feature evalu-
ation (kept approximately constant throughout), K conv or pool kernel size; S
computation stride; D kernel dilation [42,43]; P padding; * first layer channel size is
dependent on the pre-text task e.g., 3 for the split-brain autoencoder or 1 for the
L→ ab(cl) cross-channel encoder
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of classes, rather than soft-encoding. The simplification in the objective function
achieves higher performance on ImageNet and Places classification, as shown on
Tables 5.4 and 5.5.

5.5 Experiments
In Section 5.5.1, we apply our proposed split-brain autoencoder architecture to

learn unsupervised representations on large-scale image data from ImageNet [4].
We evaluate on established representation learning benchmarks and demonstrate
state-of-the-art performance relative to previous unsupervised methods [29,32,51,
53, 102, 142, 143]. In Section 5.5.2, we apply the proposed method on the NYU-D
dataset [5], and show performance above baseline methods.

5.5.1 Split-Brain Autoencoders on Images

We work with image data X in the Lab color space, and learn cross-channel
encoders with X1 representing the L, or lightness channel, and X2 containing the
ab channels, or color information. This is a natural choice as (i) networks such
as Alexnet, trained with grouping in their architecture, naturally separate into
grayscale and color [77] even in a fully-supervised setting, and (ii) the individual
cross-channel prediction problem of colorization, L to ab, has produced strong
representations [19, 39]. In preliminary experiments, we have also explored different
cross-channel prediction problems in other color spaces, such as RGB and YUV. We
found the L and ab to be most effective data split.

To enable comparisons to previous unsupervised techniques, all of our trained
networks use AlexNet architectures [77]. Concurrent work from Larsson et al. [140]
shows large performance improvements for the colorization task when using deeper
networks, such as VGG-16 [24] and ResNet [156]. Because we are training for a
pixel-prediction task, we run the network fully convolutionally [155]. Using the 1.3M
ImageNet dataset [4] (without labels), we train the following aggregated cross-channel
encoders:

• Split-Brain Autoencoder (cl,cl) (Our full method): A split-brain au-
toencoder, with one half performing colorization, and the other half performing
grayscale prediction. The top-level architecture is shown in Figure 5.2(a). Both
sub-networks are trained for classification (cl), with a cross-entropy objective.
(In Figure 5.2(a), the predicted output is a per-pixel probability distribution,
but is visualized with a point estimate using the annealed-mean [19].)
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• Split-Brain Autoencoder (reg,reg): Same as above, with both sub-networks
trained with an `2 loss (reg).
• Ensembled L→ab: Two concatenated disjoint sub-networks, both perform-
ing colorization (predicting ab from L). One subnetwork is trained with a
classification objective, and the other with regression.
• (L,ab)→(ab,L): A single network for both colorization and grayscale pre-
diction, with regression loss, as described in Equation 5.4. This explores an
alternative method for combining cross-channel encoders.
• (L,ab,Lab)→(ab,L,Lab): λ = 1

3
using Equation 5.5.

Single cross-channel encoders are ablations of our main method. We systematically
study combinations of loss functions and cross-channel prediction problems.

• L→ab(reg): Automatic colorization using an `2 loss.
• L→ab(cl): Automatic colorization using a classification loss. We follow the
quantization procedure proposed in [19]: the output ab space is binned into
grid size 10× 10, with a classification loss over the 313 bins that are within
the ab gamut.
• ab→L(reg): Grayscale prediction using an `2 loss.
• ab→L(cl): Grayscale prediction using a classification loss. The L channel,
which has values between 0 and 100, is quantized into 50 bins of size 2 and
encoded.
• Lab→Lab: Autoencoder objective, reconstructing Lab from itself using an `2

regression loss, with the same architecture as the cross-channel encoders.
• Lab(drop50)→Lab: Same as above, with 50% of the input randomly dropped

out during pre-training. This is similar to denoising autoencoders [107].

We compare to the following methods, which all use variants of Alexnet [77].
For additional details, refer to Table 3 in [19]. Note that one of these modifications
resulted in a large deviation in feature map size2.

• ImageNet-labels [77]: Trained on ImageNet labels for the classification task
in a fully supervised fashion.
• Gaussian: Random Gaussian initialization of weights.

2The method from [145] uses stride 2 instead of 4 in the conv1 layer, resulting in 4× denser
feature maps throughout all convolutional layers. While it is unclear how this change affects
representational quality, experiments from Larsson et al. [140] indicate that changes in architecture
can result in large changes in transfer performance, even given the same training task. The network
uses the same number of parameters, but 5.6× the memory and 7.4× the run-time.
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Task Generalization on ImageNet Classification [4]

Method conv1 conv2 conv3 conv4 conv5
ImageNet-labels [77] 19.3 36.3 44.2 48.3 50.5
Gaussian 11.6 17.1 16.9 16.3 14.1
Krähenbühl et al. [51] 17.5 23.0 24.5 23.2 20.6
1Noroozi & Favaro [145] 19.2 30.1 34.7 33.9 28.3
Doersch et al. [53] 16.2 23.3 30.2 31.7 29.6
Donahue et al. [102] 17.7 24.5 31.0 29.9 28.0
Pathak et al. [29] 14.1 20.7 21.0 19.8 15.5
Zhang et al. [19] 13.1 24.8 31.0 32.6 31.8
Lab→Lab 12.9 20.1 18.5 15.1 11.5
Lab(drop50)→Lab 12.1 20.4 19.7 16.1 12.3
L→ab(cl) 12.5 25.4 32.4 33.1 32.0
L→ab(reg) 12.3 23.5 29.6 31.1 30.1
ab→L(cl) 11.6 19.2 22.6 21.7 19.2
ab→L(reg) 11.5 19.4 23.5 23.9 21.7
(L,ab)→(ab,L) 15.1 22.6 24.4 23.2 21.1
(L,ab,Lab)→(ab,L,Lab) 15.4 22.9 24.0 22.0 18.9
Ensembled L→ab 11.7 23.7 30.9 32.2 31.3
Split-Brain Auto (reg,reg) 17.4 27.9 33.6 34.2 32.3
Split-Brain Auto (cl,cl) 17.7 29.3 35.4 35.2 32.8

Table 5.4: Task Generalization on ImageNet Classification To test unsuper-
vised feature representations, we train linear logistic regression classifiers on top of
each layer to perform 1000-way ImageNet classification, as proposed in [19]. All
weights are frozen and feature maps spatially resized to be ∼9000 dimensions. All
methods use AlexNet variants [77], and were pre-trained on ImageNet without la-
bels, except for ImageNet-labels. Note that the proposed split-brain autoencoder
achieves the best performance on all layers across unsupervised methods.

• Krähenbühl et al. [51]: A stacked k-means initialization method.
• Doersch et al. [53], Noroozi & Favaro [145], Pathak et al. [29], Donahue
et al. [102], and Zhang et al. [19] all pre-train on the 1.3M ImageNet
dataset [4].
• Wang & Gupta [142] and Owens et al. [32] pre-train on other large-scale

data.
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Dataset & Task Generalization on Places Classification [44]

Method conv1 conv2 conv3 conv4 conv5
Places-labels [44] 22.1 35.1 40.2 43.3 44.6
ImageNet-labels [77] 22.7 34.8 38.4 39.4 38.7
Gaussian 15.7 20.3 19.8 19.1 17.5
Krähenbühl et al. [51] 21.4 26.2 27.1 26.1 24.0
1Noroozi & Favaro [145] 23.0 32.1 35.5 34.8 31.3
Doersch et al. [53] 19.7 26.7 31.9 32.7 30.9
Wang & Gupta [142] 20.1 28.5 29.9 29.7 27.9
Owens et al. [32] 19.9 29.3 32.1 28.8 29.8
Donahue et al. [102] 22.0 28.7 31.8 31.3 29.7
Pathak et al. [29] 18.2 23.2 23.4 21.9 18.4
Zhang et al. [19] 16.0 25.7 29.6 30.3 29.7
L→ab(cl) 16.4 27.5 31.4 32.1 30.2
L→ab(reg) 16.2 26.5 30.0 30.5 29.4
ab→L(cl) 15.6 22.5 24.8 25.1 23.0
ab→L(reg) 15.9 22.8 25.6 26.2 24.9
Split-Brain Auto (cl,cl) 21.3 30.7 34.0 34.1 32.5

Table 5.5: Dataset & Task Generalization on Places Classification We train
logistic regression classifiers on top of frozen pre-trained representations for 205-
way Places classification. Note that our split-brain autoencoder achieves the best
performance among unsupervised learning methods from conv2-5 layers.

Transfer Learning Tests How well does the pre-text task of cross-channel pre-
diction generalize to unseen tasks and data? We run various established large-scale
representation learning benchmarks.

ImageNet [77] As proposed in [19], we test the task generalization of the
representation by freezing the weights and training multinomial logistic regression
classifiers on top of each layer to perform 1000-way ImageNet classification. Note
that each classifier is a single learned linear layer, followed by a softmax. To reduce
the effect of differences in feature map sizes, we spatially resize feature maps through
bilinear interpolation, so that the flattened feature maps have approximately equal
dimensionality (9600 for conv1,3,4 and 9216 for conv2,5). The results are shown
in Table 5.4 and Figures 5.3(a) and 5.4.

Places [44] In the previous test, we evaluated the representation on the same
input training data, the ImageNet dataset, with a different task than the pretraining
tasks. To see how well the network generalizes to new input data as well, we run
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Figure 5.3: Comparison to Previous Unsupervised Methods We compare
our proposed Split-Brain Autoencoder on the tasks of (a) ImageNet classification
and (b) Places Classification. Note that our method outperforms other large-scale
unsupervised methods [19, 29, 32, 53, 102, 142] on all layers in ImageNet and from
conv2-5 on Places.
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Figure 5.4: Ablation Studies We conduct various ablation studies on our proposed
method, using the ImageNet classification benchmark proposed in [19]. Specifically,
we compare (a) variations using an autoencoder objective (b) different cross-channel
problems and loss functions (c) different methods for aggregating multiple cross-
channel encoders.

the same linear classification task on the large-scale Places dataset [44]. The dataset
contains 2.4M images for training and 20.5k for validation from 205 scene categories.
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The results are shown in Table 5.5 and Figure 5.3(b).
PASCAL [7] To further test generalization, we fine-tune the learned represen-

tation on standard representation learning benchmarks on the PASCAL dataset,
as shown in Table 5.6, using established testing frameworks in classification [51],
detection [157], and segmentation [155]. Classification involves 20 binary classifi-
cation decisions, regarding the presence or absence of 20 object classes. Detection
involves drawing an accurately localized bounding box around any objects in the
image, and is performed using the Fast R-CNN [157] framework. Segmentation is
pixel-wise labeling of the object class, either one of the 20 objects of interest or
background. Here, the representation is fine-tuned through multiple layers of the
network, rather than frozen. Prior to fine-tuning, we follow common practice and
use the rescaling method from [51], which rescales the weights so that the layers
learn at the same “rate", using the ratio of expected gradient magnitude over feature
activation magnitude as a heuristic.

Split-Brain Autoencoder Performance Our primary result is that the pro-
posed method, Split-Brain Auto (cl,cl), achieves state-of-the-art performance
on almost all established self-supervision benchmarks, as seen in the last row on
Tables 5.4, 5.5, 5.6, over previously proposed self-supervision methods, as well as
our ablation baselines. Figures 5.3(a) and (b) shows our split brain autoencoder
method compared to previous self-supervised methods [19, 29, 32, 53, 102, 142] on
the ImageNet and Places classification tests, respectively. We especially note the
straightforward nature of our proposed method: the network simply predicts raw
data channels from other raw data channels, using a classification loss with a basic
1-hot encoding scheme.

As seen in Figure 5.4(a) and Table 5.4, the autoencoder objective by itself,
Lab→Lab, does not lead to a strong representation. Performance is near Gaus-
sian initialization through the initial layers, and actually falls below in the conv5 layer.
Dropping 50% of the data from the input randomly during training, Lab(drop50)→Lab,
in the style of denoising autoencoders, adds a small performance boost of approxi-
mately 1%. A large performance boost is observed by adding a split in the architec-
ture, Split-Brain Auto (reg,reg), even with the same regression objective. This
achieves 5% to 20% higher performance throughout the network, state-of-the-art
compared to previous unsupervised methods. A further boost of approximately
1-2% throughout the network observed using a classification loss, Split-Brain Auto
(cl,cl), instead of regression.

Cross-Channel Encoding Objectives Figure 5.4(b) compares the performance
of the different cross-channel objectives we tested on the ImageNet classification
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Task and Data Generalization on PASCAL VOC [7]

Classification [51] Detection [157] Seg. [155]
(%mAP) (%mAP) (%mIU)

frozen layers conv5 none none none
fine-tuned layers Ref fc6-8 all Ref all Ref all
ImageNet labels [77] [19] 78.9 79.9 [51] 56.8 [155] 48.0
Gaussian [29] – 53.3 [29] 43.4 [29] 19.8
Autoencoder [102] 16.0 53.8 [29] 41.9 [29] 25.2
Krähenbühl et al. [51] [102] 39.2 56.6 [51] 45.6 [102] 32.6
Jayaraman & Grauman [28] – – – [28] 41.7 – –
Agrawal et al. [27] [51] – 52.9 [51] 41.8 – –
Agrawal et al. [27]† [102] 31.0 54.2 [51] 43.9 – –
Wang & Gupta [142] [51] – 62.8 [51] 47.4 – –
Wang & Gupta [142]† [51] – 63.1 [51] 47.2 – –
Doersch et al. [53] [51] – 55.3 [51] 46.6 – –
Doersch et al. [53]† [102] 55.1 65.3 [51] 51.1 – –
Pathak et al. [29] [29] – 56.5 [29] 44.5 [29] 29.7
Donahue et al. [102]† [102] 52.3 60.1 [102] 46.9 [102] 35.2
Misra et al. [143] – – – [143] 42.4 – –
Owens et al. [32] . 54.6 54.4 [32] 44.0 – –
Owens et al. [32]† . 52.3 61.3 – – – –
Zhang et al. [19]† [19] 61.5 65.9 [19] 46.9 [19] 35.6
Larsson et al. [140]� [140] – 65.9 – – [140] 38.4
Pathak et al. [147]� [147] – 61.0 [147] 52.2 – –
Split-Brain Auto (cl,cl)† . 63.0 67.1 . 46.7 . 36.0

Table 5.6: Task and Dataset Generalization on PASCAL VOC Classification
and detection on PASCAL VOC 2007 [158] and segmentation on PASCAL VOC
2012 [159], using mean average precision (mAP) and mean intersection over union
(mIU) metrics for each task, with publicly available testing frameworks from [51],
[157], [155]. Column Ref documents the source for a value obtained from a previous
paper. Character . indicates that value originates from this chapter. †indicates
that network weights have been rescaled with [51] before fine-tuning, as is common
practice. Character � indicates concurrent work in these proceedings.

benchmark. As shown in [19] and further confirmed here, colorization, L→ab(cl),
leads to a strong representation on classification transfer tasks, with higher per-
formance than other unsupervised representations pre-trained on ImageNet, using
inpainting [29], relative context [53], and adversarial feature networks [102] from
layers from conv2 to pool5. We found that the classification loss produced stronger
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representations than regression for colorization, consistent with the findings from
concurrent work from Larsson et al. [140].

Interestingly, the task of predicting grayscale from color can also learn representa-
tions. Though colorization lends itself closely to a graphics problem, the application
of grayscale prediction from color channels is less obvious. As seen in Tables 5.4 and
5.5 and Figure 5.4(b), grayscale prediction objectives ab→L(cl) and ab→L(reg)
can learn representations above the Gaussian baseline. Though the learned repre-
sentation by itself is weaker than other self-supervised methods, the representation
is learned on a and b channels, which makes it complementary to the colorization
network. For grayscale prediction, regression results in higher performance than
classification. Choosing the appropriate loss function for a given channel prediction
problem is an open problem. However, note that the performance difference is
typically small, indicating that the cross-channel prediction problem is often times
an effective method, even without careful engineering of the objective.

Cross-Channel Encoder Aggregation Analysis In Figure 5.4(c), we show
variations on aggregated cross-channel encoders. To begin, we hypothesize that the
performance improvement of split-brain autoencoders Split-Brain Auto (cl,cl)
over single cross-channel encoders L→ab is due to the merging of complementary
signals, as each sub-network in Split-Brain Auto has been trained on different
portions of the input space. However, the improvement could be simply due to
an ensembling effect. To test this, we train a split-brain autoencoder, comprising
of two L→ab networks, Ensemble L→ab. As seen in Figure 5.4(c) and Table
5.4, the ensembled colorization network achieves lower performance than the split-
brain autoencoder, suggesting that concatenating signals learned on complementary
information is beneficial for representation learning.

We find that combining cross-channel encoders through concatenation is effective.
We also test alternative aggregation techniques. As seen in Figure 5.4(c), training
a single network to perform multiple cross-channel tasks (L,ab)→(ab,L) is not
effective for representation learning on full Lab images. Adding in the autoencoder
objective during training, (L,ab,Lab)→(ab,L,Lab), in fact lowers performance in
higher layers.

Our proposed methods outperform these alternatives, which indicates that (i) our
choice of aggregating complementary signals improves performance (ii) concatenation
is an appropriate choice of combining cross-channel encoders.



5.5. EXPERIMENTS 84

Method Data Label RGB D RGB-D
Gupta et al. [154] 1M ImNet [4] X 27.8 41.7 47.1
Gupta et al. [160] 1M ImNet [4] X 27.8 34.2 44.4
Gaussian None – 28.1 –
Krähenbühl et al. [51] 20 NYU-D [5] 12.5 32.2 34.5
Split-Brain Autoencoder 10k NYU-D [5] 18.9 33.2 38.1

Table 5.7: Split-Brain Autoencoder Results on RGB-D images We perform
unsupervised training on 10k RGB-D keyframes from the NYU-D [5] dataset, ex-
tracted by [154]. We pre-train representations on RGB images using `2 loss on depth
images in HHA space. We pre-train HHA representations on L and ab channels using
`2 and classification loss, respectively. We show performance gains above Gaussian
and Krähenbühl et al. [51] initialization baselines. The methods proposed by Gupta
et al. [154, 160] use 1.3M labeled images for supervised pre-training. We use the
test procedure from [154]: Fast R-CNN [157] networks are first trained individually
in the RGB and D domains separately, and then ensembled together by averaging
(RGB-D).

5.5.2 Split-Brain Autoencoders on RGB-D

We also test the split-brain autoencoder method on registered images and depth
scans from NYU-D [5]. Because RGB and depth images are registered spatially,
RGB-D data can be readily applied in our proposed framework. We split the data
by modality, predicting RGB from D and vice-versa. Previous work in the video and
audio domain [146] suggest that separating modalities, rather than mixing them,
provides more effective splits. This choice also provides easy comparison to the test
procedure introduced by [160].

Dataset & Detection Testbed The NYUD dataset contains 1449 RGB-D
labeled images and over 400k unlabeled RGB-D video frames. We use 10k of these
unlabeled frames to perform unsupervised pre-training, as extracted from [154]. We
evaluate the representation on the 1449 labeled images for the detection task, using
the framework proposed in [154]. The method first trains individual detectors on
the RGB and D domains, using the Fast R-CNN framework [157] on an AlexNet
architecture, and then late-fuses them together through ensembling.

Unsupervised Pre-training We represent depth images using the HHA encod-
ing, introduced in [160]. To learn image representation FHHA, we train an Alexnet
architecture to regress from RGB channels to HHA channels, using an `2 regression
loss.

To learn depth representations, we train an Alexnet on HHA encodings, using `2



5.6. DISCUSSION 85

loss on L and classification loss on ab color channels. We chose this combination,
as these objectives performed best for training individual cross-channel encoders
in the image domain. The network extracts features up to the conv5 layer, using
an Alexnet architecture, and then splits off into specific branches for the L and ab
channels. Each branch contains AlexNet-type fc6-7 layers, but with 512 channels
each, evaluated fully convolutionally for pixel prediction. The loss on the ab term was
weighted 200× with respect to the L term, so the gradient magnitude on the pool5
representation from channel-specific branches were approximately equal throughout
training.

Across all methods, weights up to the conv5 layer are copied over during fine-
tuning time, and fc6-7 layers are randomly initialized, following [160].

Results The results are shown in Table 5.7 for detectors learned in RGB and D
domains separately, as well as the ensembled result. For a Gaussian initialization,
the RGB detector did not train using default settings, while the depth detector
achieved performance of 28.1%. Using the stacked k-means initialization scheme
from Krähenbühl et al. [51], individual detectors on RGB and D perform at 12.5%
and 32.2%, while achieving 34.5% after ensembling. Pre-training with our method
reaches 18.9% and 33.2% on the individual domains, above the baselines. Our
RGB-D ensembled performance was 38.1%, well above the Gaussian and Krähenbühl
et al. [51] baselines. These results suggest that split-brain autoencoding is effective
not just on Lab images, but also on RGB-D data.

5.6 Discussion
We present split-brain autoencoders, a method for unsupervised pre-training on

large-scale data. The split-brain autoencoder contains two disjoint sub-networks,
which are trained as cross-channel encoders. Each sub-network is trained to predict
one subset of raw data from another. We test the proposed method on Lab images, and
achieve state-of-the-art performance relative to previous self-supervised methods. We
also demonstrate promising performance on RGB-D images. The proposed method
solves some of the weaknesses of previous self-supervised methods. Specifically, the
method (i) does not require a representational bottleneck for training, (ii) uses input
dropout to help force abstraction in the representation, and (iii) is pre-trained on
the full input data.

An interesting future direction of is exploring the concatenation of more than 2
cross-channel sub-networks. Given a fixed architecture size, e.g. AlexNet, dividing
the network into N disjoint sub-networks results in each sub-network becoming
smaller, less expressive, and worse at its original task. To enable fair comparisons to
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previous large-scale representation learning methods, we focused on learning weights
for a fixed AlexNet architecture. It would also be interesting to explore the regime
of fixing the sub-network size and allowing the full network to grow with additional
cross-channel encoders.

In this chapter, we tested the ability for the representation to transfer to high-level
semantic tasks. In the next chapter, we test the transferability to a low-level task –
predicting human perceptual judgments.
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Chapter 6

Using Deep Representations as a
Low-Level Perceptual Metric

While it is nearly effortless for humans to quickly assess the perceptual similarity
between two images, the underlying processes are thought to be quite complex.
Despite this, the most widely used perceptual metrics today, such as PSNR and
SSIM, are simple, shallow functions, and fail to account for many nuances of human
perception. Recently, the deep learning community has found that features of the
VGG network trained on ImageNet classification has been remarkably useful as a
training loss for image synthesis. But how perceptual are these so-called “perceptual
losses"? What elements are critical for their success? To answer these questions, we
introduce a new dataset of human perceptual similarity judgments. We systematically
evaluate deep features across different architectures and tasks and compare them
with classic metrics. We find that deep features outperform all previous metrics
by large margins on our dataset. More surprisingly, this result is not restricted to
ImageNet-trained VGG features, but holds across different deep architectures and
levels of supervision (supervised, self-supervised, or even unsupervised). Our results
suggest that perceptual similarity is an emergent property shared across deep visual
representations.1

6.1 Motivation and Background
The ability to compare data items is perhaps the most fundamental operation

underlying all of computing. In many areas of computer science it does not pose
1This work was originally published as The Unreasonable Effectiveness of Deep Features as a

Perceptual Metric in CVPR, 2018.
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Original Perturbed Patches

(a) Traditional

Original Perturbed Patches

(b) CNN-based

Figure 6.1: Example distortions. We show example distortions using our (a)
traditional and (b) CNN-based methods.

much difficulty: one can use Hamming distance to compare binary patterns, edit
distance to compare text files, Euclidean distance to compare vectors, etc. The unique
challenge of computer vision is that even this seemingly simple task of comparing
visual patterns remains a wide-open problem. Not only are visual patterns very
high-dimensional and highly correlated, but, the very notion of visual similarity is
often subjective, aiming to mimic human visual perception. For instance, in image
compression, the goal is for the compressed image to be indistinguishable from the
original by a human observer, irrespective of the fact that their pixel representations
might be very different.

Classic per-pixel measures, such as `2 Euclidean distance, commonly used for
regression problems, or the related Peak Signal-to-Noise Ratio (PSNR), are insuf-
ficient for assessing structured outputs such as images, as they assume pixel-wise
independence. A well-known example is that blurring causes large perceptual but
small `2 change.

What we would really like is a “perceptual distance," which measures how similar
are two images in a way that coincides with human judgment. This problem has been
a longstanding goal, and there have been numerous perceptually motivated distance
metrics proposed, such as SSIM [15], MSSIM [16], FSIM [17], and HDR-VDP [18].

However, constructing a perceptual metric is challenging, because human judg-
ments of similarity (1) depend on high-order image structure [15], (2) are context-
dependent [161–163], and (3) may not actually constitute a distance metric [164].
The crux of (2) is that there are many different “senses of similarity" that we can
simultaneously hold in mind: is a red circle more similar to a red square or to a blue
circle? Directly fitting a function to human judgments may be intractable due the
the context-dependent and pairwise nature of the judgments (which compare the
similarity between two images). Indeed, we show in this chapter a negative result
where this approach fails to generalize, even when trained on a large-scale dataset
containing many distortion types.
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Dataset # Input Input Num Distort # # Distorted # Judg- Judgment
Imgs/Patches Type Distort. Types Levels Imgs/Patches ments Type

LIVE [165] 29 images 5 traditional cont. .8k 25k MOS
CSIQ [166] 30 images 6 traditional 5 .8k 25k MOS

TID2008 [167] 25 images 17 traditional 4 2.7k 250k MOS
TID2013 [168] 25 images 24 traditional 5 3.0k 500k MOS

BAPPS (2AFC–Distort) 160.8k 64× 64 patch 425 trad+CNN cont. 321.6k 349.8k 2AFC
BAPPS (2AFC–Real alg) 26.9k 64× 64 patch – alg outputs – 53.8k 134.5k 2AFC
BAPPS (JND–Distort) 9.6k 64× 64 patch 425 trad+CNN cont. 9.6k 28.8k Same?

Table 6.1: Dataset comparison. A primary differentiator between our proposed
Berkeley-Adobe Perceptual Patch Similarity (BAPPS) dataset and previous work
is scale of distortion types. We provide human perceptual judgments on distortion
set using uncompressed images from [169,170]. Previous datasets have used a small
number of distortions at discrete levels. We use a large number of distortions (created
by sequentially composing atomic distortions together) and sample continuously.
For each input patch, we corrupt it using two distortions and ask for a few human
judgments (2 for train, 5 for test set) per pair. This enables us to obtain judgments
on a large number of patches. Previous databases summarize their judgments into a
mean opinion score (MOS); we simply report pairwise judgments (two alternative
force choice). In addition, we provide judgments on outputs from real algorithms, as
well as a same/not same Just Noticeable Difference (JND) perceptual test.

Instead, might there be a way to learn a notion of perceptual similarity without
directly training for it? The computer vision community has discovered that internal
activations of deep convolutional networks, though trained on a high-level image
classification task, are often surprisingly useful as a representational space for a much
wider variety of tasks. For example, features from the VGG architecture [24] have
been used on tasks such as neural style transfer [84], image superresolution [137],
and conditional image synthesis [125,138]. These methods measure distance in VGG
feature space as a “perceptual loss" for image regression problems [137,138].

But how well do these “perceptual losses” actually correspond to human visual
perception? How do they compare to traditional perceptual image evaluation metrics?
Does the network architecture matter? Does it have to be trained on the ImageNet
classification task, or would other tasks work just as well? Do the networks need to
be trained at all?

In this chapter, we evaluate these questions on a new large-scale database of
human judgments, and arrive at several surprising conclusions. We find that internal
activations of networks trained for high-level classification tasks, even across network
architectures [24, 77, 171] and no further calibration, do indeed correspond to human
perceptual judgments. In fact, they correspond far better than the commonly used
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metrics like SSIM and FSIM [15,17], which were not designed to handle situations
where spatial ambiguities are a factor [172]. Furthermore, the best performing self-
supervised networks, including BiGANs [102], puzzle solving [145], and our split-brain
autoencoder [19,173] perform just as well at this task, even without the benefit of
human-labeled training data. Even a simple unsupervised network initialization with
stacked k-means [51] beats the classic metrics by a large margin! This illustrates
an emergent property shared across networks, even across architectures and training
signals. Importantly, however, having some training signal appears crucial – a
randomly initialized network achieves much lower performance.

Our study is based on a newly collected perceptual similarity dataset, using
a large set of distortions and real algorithm outputs. It contains both traditional
distortions, such as contrast and saturation adjustments, noise patterns, filtering, and
spatial warping operations, and CNN-based algorithm outputs, such as autoencoding,
denoising, and colorization, produced by a variety of architectures and losses. Our
dataset is richer and more varied than previous datasets of this kind [168]. We also
collect judgments on outputs from real algorithms for the tasks of superresolution,
frame interpolation, and image deblurring, which is especially important as these
are the real-world use cases for a perceptual metric. We show that our data can
be used to “calibrate" existing networks, by learning a simple linear scaling of layer
activations, to better match low-level human judgments.

Our results are consistent with the hypothesis that perceptual similarity is not
a special function all of its own, but rather a consequence of visual representations
tuned to be predictive about important structure in the world. Representations that
are effective at semantic prediction tasks are also representations in which Euclidean
distance is highly predictive of perceptual similarity judgments.

Our contributions are as follows:
• We introduce a large-scale, highly varied, perceptual similarity dataset, con-

taining 484k human judgments. Our dataset not only includes parameterized
distortions, but also real algorithm outputs. We also collect judgments on a
different perceptual test, just noticeable differences (JND).
• We show that deep features, trained on supervised, self-supervised, and un-

supervised objectives alike, model low-level perceptual similarity surprisingly
well, outperforming previous, widely-used metrics.
• We demonstrate that network architecture alone does not account for the

performance: untrained nets achieve much lower performance.
• With our data, we can improve performance by “calibrating" feature responses

from a pre-trained network.
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Prior work on datasets In order to evaluate existing similarity measures, a
number of datasets have been proposed. Some of the most popular are the LIVE [165],
TID2008 [167], CSIQ [166], and TID2013 [168] datasets. These datasets are referred
to Full-Reference Image Quality Assessment (FR-IQA) datasets and have served
as the de-facto baselines for development and evaluation of similarity metrics. A
related line of work is on No-Reference Image Quality Assessment (NR-IQA), such
as AVA [174] and LIVE In the Wild [175]. These datasets investigate the “quality"
of individual images by themselves, without a reference image. We collect a new
dataset that is complementary to these: it contains a substantially larger number
of distortions, including some from newer, deep network based outputs, as well as
geometric distortions. Our dataset is focused on perceptual similarity, rather than
quality assessment. Additionally, it is collected on patches as opposed to full images,
in the wild, with a different experimental design (more details in Sec 6.2).

Prior work on deep networks and human judgments Recently, advances in
DNNs have motivated investigation of applications in the context of visual similarity
and image quality assessment. Kim and Lee [176] use a CNN to predict visual
similarity by training on low-level differences. Concurrent work by Talebi and
Milanfar [177,178] train a deep network in the context of NR-IQA for image aesthetics.
Gao et al. [179] and Amirshahi et al. [180] propose techniques involving leveraging
internal activations of deep networks (VGG and AlexNet, respectively) along with
additional multiscale post-processing. In this work, we conduct a more in-depth study
across different architectures, training signals, on a new, large scale, highly-varied
dataset.

Recently, Berardino et al. [181] train networks on perceptual similarity, and
importantly, assess the ability of deep networks to make predictions on a separate
task – predicting most and least perceptually-noticeable directions of distortion.
Similarly, we not only assess image patch similarity on parameterized distortions,
but also test generalization to real algorithms, as well as generalization to a separate
perceptual task – just noticeable differences.

6.2 Berkeley-Adobe Perceptual Patch Similarity
(BAPPS) Dataset

To evaluate the performance of different perceptual metrics, we collect a large-
scale highly diverse dataset of perceptual judgments using two approaches. Our
main data collection employs a two alternative forced choice (2AFC) test, that asks
which of two distortions is more similar to a reference. This is validated by a second
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Sub-type Distortion type
Photometric lightness shift, color shift, contrast, saturation

uniform white noise, Gaussian white, pink,
Noise & blue noise, Gaussian colored (between

violet and brown) noise, checkerboard artifact
Blur Gaussian, bilateral filtering

Spatial shifting, affine warp, homography,
linear warping, cubic warping, ghosting,

chromatic aberration,
Compression jpeg

Parameter type Parameters
Input null, pink noise, white noise,

corruption color removal, downsampling
# layers, # skip connections,

Generator # layers with dropout, force skip connection
network at highest layer, upsampling method,

architecture normalization method, first layer stride
# channels in 1st layer, max # channels

Discriminator number of layers
Loss/Learning weighting on oixel-wise (`1), VGG,

discriminator losses, learning rate

Table 6.2: Our distortions. Our traditional distortions (left) are performed by
basic low-level image editing operations. We also sequentially compose them to
better explore the space. Our CNN-based distortions (right) are formed by randomly
varying parameters such as task, network architecture, and learning parameters.
The goal of the distortions is to mimic plausible distortions seen in real algorithm
outputs.

experiment where we perform a just noticeable difference (JND) test, which asks
whether two patches – one reference and one distorted – are the same or different.
These judgments are collected over a wide space of distortions and real algorithm
outputs.

6.2.1 Distortions

Traditional distortions We create a set of “traditional" distortions consisting of
common operations performed on the input patches, listed in Table 6.2 (left). In
general, we use photometric distortions, random noise, blurring, spatial shifts and
corruptions, and compression artifacts. We show qualitative examples of our tradi-
tional distortions in Figure 6.1. The severity of each perturbation is parameterized -
for example, for Gaussian blur, the kernel width determines the amount of corruption
applied to the input image. We also compose pairs of distortions sequentially to
increase the overall space of possible distortions. In total, we have 20 distortions and
308 sequentially composed distortions.

CNN-based distortions To more closely simulate the space of artifacts that can
arise from deep-learning based methods, we create a set of distortions created by
neural networks. We simulate possible algorithm outputs by exploring a variety of
tasks, architectures, and losses, as shown in Table 6.2 (right). Such tasks include
autoencoding, denoising, colorization, and superresolution. All of these tasks can be
achieved by applying the appropriate corruption to the input. In total, we generated
96 “denoising autoencoders" and use these as CNN-based distortion functions. We
train each of these networks on the 1.3M ImageNet dataset [4] for 1 epoch. The
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goal of each network is not to solve the task per se, but rather to explore common
artifacts that plague the outputs of deep learning based methods.

Distorted image patches from real algorithms The true test of an image
assessment algorithm is on real problems and real algorithms. We gather perceptual
judgments using such outputs. Data on real algorithms is more limited, as each
application will have their own unique properties. For example, different colorization
methods will not show much structural variation, but will be prone to effects such as
color bleeding and color variation. On the other hand, superresolution will not have
color ambiguity, but may see larger structural changes from algorithm to algorithm.

Superresolution We evaluate results from the 2017 NTIRE workshop [182]. We
use 3 tracks from the workshop – ×2, ×3, ×4 upsampling rates using “unknown"
downsampling to create the input images. Each track had approximately 20 algo-
rithm submissions. We also evaluate several additional methods, including bicubic
upsampling, and four of the top performing deep superresolution methods [183–186].
A common qualitative way of presenting superresolution results is zooming into
specific patches and comparing differences. As such, we sample random 64 × 64
triplets from random locations of images in the Div2K [182] dataset – the ground
truth high-resolution image, along with two algorithm outputs.

Frame interpolation We sample patches from different frame interpolation al-
gorithms, including three variants of flow-based interpolation [187], CNN-based
interpolation [188], and phase-based interpolation [189] on the Davis Middleburry
dataset [190]. Because artifacts arising from frame interpolation may occur at
different scales, we randomly rescale the image before sampling a patch triplet.

Video deblurring We sample from the video deblurring dataset [191], along with
deblurring outputs from Photoshop Shake Reduction, Weighted Fourier Aggrega-
tion [192], and three variants of a deep video deblurring method [191].

Colorization We sample patches using random scales on the colorization task,
on images from the ImageNet dataset [4]. The algorithms are from pix2pix [144],
Larsson et al. [39], and the variants from Chapter 2 [19].
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6.2.2 Psychophysical Similarity Measurements

2AFC similarity judgments We randomly select an image patch x and apply
two distortions to produce patches x0, x1. We then ask a human which is closer
to the original patch x, and record response h ∈ {0, 1}. On average, people spent
approximately 3 seconds per judgment. Let T denote our dataset of patch triplets
(x, x0, x1, h).

A comparison between our dataset and previous datasets is shown in Table 6.1.
Previous datasets have focused on collecting large numbers of human judgments for
a few images and distortion types. For example, the largest dataset, TID2013 [168],
has 500k judgments on 3000 distortions (from 25 input images with 24 distortions
types, each sampled at 5 levels). We provide a complementary dataset that focuses
instead on a large number of distortions types. In, addition, we collect judgments on
a large number of 64× 64 patches rather than a small number of images. There are
three reasons for this. First, the space of full images is extremely large, which makes
it much harder to cover a reasonable portion of the domain with judgments (even
64× 64 color patches represent an intractable 12k-dimensional space). Second, by
choosing a smaller patch size, we focus on lower-level aspects of similarity, to mitigate
the effect of differing “respects of similarity" that may be influenced by high-level
semantics [162]. Finally, modern methods for image synthesis train deep networks
with patch-based losses (implemented as convolutions) [125, 193]. Our dataset
consists of over 161k patches, derived from the MIT-Adobe 5k dataset [169] (5000
uncompressed images) for training, and the RAISE1k dataset [170] for validation.

To enable large-scale collection, our data is collected “in-the-wild" on Amazon
Mechanical Turk, as opposed to a controlled lab setting. Crump et al. [194] show
that AMT can be reliably used to replicate many psychophysics studies, despite the
inability to control all environmental factors. We ask for 2 judgments per example
in our “train" set and 5 judgments in our “val" sets. Asking for fewer judgments
enables us to explore a larger set of image patches and distortions. We add sentinels
which consist of pairs of patches with obvious deformations, e.g., a large amount
of Gaussian noise vs a small amount of Gaussian noise. Approximately 90% of
Turkers were able to correctly pass at least 93% of the sentinels (14 of 15), indicating
that they understood the task and were paying attention. We choose to use a larger
number of distortions than prior datasets.

Just noticeable differences (JND) A potential shortcoming of the 2AFC task
is that it is “cognitively penetrable," in the sense that participants can consciously
choose which respects of similarity they will choose to focus on in completing the
task [162], which introduces subjectivity into the judgments. To validate that the
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Dataset
Data Train/ # Ex- # Judge
source Val amples /Example

Traditional [169] Train 56.6k 2
CNN-based [169] Train 38.1k 2

Mixed [169] Train 56.6k 2

2AFC–Distort [Trn] – Train 151.4k 2

Traditional [170] Train 4.7k 5
CNN-based [170] Train 4.7k 5

2AFC–Distort [Val] – Val 9.4k 5

Superres [195] Val 10.9k 5
Frame Interp [190] Val 1.9 5
Video Deblur [196] Val 9.4 5
Colorization [4] Val 4.7 5

2AFC–Real Alg [Val] – Val 26.9k 5

Traditional [170] Val 4.8k 3
CNN-based [170] Val 4.8k 3

JND–Distort – Val 9.6k 3

Table 6.3: Our dataset breakdown. We split our 2AFC dataset in to three main
portions (1,2) training and test sets with our distortions. Our training and test
sets contain patches sampled from the MIT5k [169] and RAISE1k [170] datasets,
respectively (3) a test set containing real algorithm outputs, containing patches from
a variety of applications. Our JND data is on traditional and CNN-based distortions.

judgments actually reflected something objective and meaningful, we also collected
user judgments of “just noticeable differences" (JNDs). We show a reference image,
followed by a randomly distorted image, and ask a human if the images are the
same or different. The two image patches are shown for 1 second each, with a 250
ms gap in between. Two images which look similar may be easily confused, and a
good perceptual metric will be able to order pairs from most to least confusable.
JND tests like this may be considered less subjective, since there is a single correct
answer for each judgment, and participants are presumed to be aware of what correct
behavior entails. We gather 3 JND observations for each of the 4.8k patches in our
traditional and CNN-based validation sets. Each subject is shown 160 pairs, along
with 40 sentinels (32 identical and 8 with large Gaussian noise distortion applied).
We also provide a short training period of 10 pairs which contain 4 “same" pairs, 1
obviously different pair, and 5 “different" pairs generated by our distortions. We
chose to do this in order to prime the users towards expecting approximately 40%
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Figure 6.2: Computing distance from a network (Left) To compute a distance
d0 between two patches, x, x0, given a network F , we first compute deep embeddings,
normalize the activations in the channel dimension, scale each channel by vector w,
and take the `2 distance. We then average across spatial dimension and across all
layers. (Right) A small network G is trained to predict perceptual judgment h from
distance pair (d0, d1).
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Figure 6.3: Quantitative comparison. We show a quantitative comparison
across metrics on our test sets. (Left) Results averaged across our traditional and
CNN-based distortions. (Right) Results averaged across our 4 real algorithm sets.

of the patch pairs to be identical. Indeed, 36.4% of the pairs were marked “same"
(70.4% of sentinels and 27.9% of test pairs).

6.3 Deep Feature Spaces as a Perceptual Metric
We evaluate feature distances in different networks. For a given convolutional

layer, we compute cosine distance (in the channel dimension) and average across
spatial dimensions and layers of the network. We also discuss how to tune an existing
network on our data.
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Network architectures We evaluate the SqueezeNet [171], AlexNet [77], and
VGG [24] architectures. We use 5 conv layers from the VGG network, which has
become the de facto standard for image generation tasks [84, 125, 138]. We also
compare against the shallower AlexNet network, which may more closely match the
architecture of the human visual cortex [8]. We use the conv1-conv5 layers from [139].
Finally, the SqueezeNet architecture was designed to be extremely lightweight (2.8
MB) in size, with similar classification performance to AlexNet. We use the first
conv layer and some subsequent “fire" modules.

We additionally evaluate self-supervised methods, including puzzle-solving [145],
cross-channel prediction [19,173], learning from video [147], and generative model-
ing [102]. We use publicly available networks from these and other methods, which
use variants of AlexNet [77].

Network activations to distance Figure 6.2 (left) and Equation 6.1 illustrate
how we obtain the distance between reference and distorted patches x, x0 with
network F . We extract feature stack from L layers and unit-normalize in the channel
dimension, which we designate as ŷl, ŷl0 ∈ RHl×Wl×Cl for layer l. We scale the
activations channel-wise by vector wl ∈ RCl and compute the `2 distance. Finally,
we average spatially and sum channel-wise. Note that using wl = 1∀l is equivalent
to computing cosine distance.

d(x, x0) =
∑
l

1

HlWl

∑
h,w

||wl � (ŷlhw − ŷl0hw)||22 (6.1)

Training on our data We consider a few variants for training with our perceptual
judgments: lin , tune , and scratch . For the lin configuration, we keep pre-trained
network weights F fixed, and learn linear weights w on top. This constitutes a
“perceptual calibration" of a few parameters in an existing feature space. For example,
for the VGG network, 1472 parameters are learned. For the tune configuration,
we initialize from a pre-trained classification model, and allow all the weights for
network F to be fine-tuned. Finally, for scratch , we initialize the network from
random Gaussian weights and train it entirely on our judgments. Overall, we refer to
these as variants of our proposed Learned Perceptual Image Patch Similarity
(LPIPS) metric. We illustrate the training loss function in Figure 6.2 (right). Given
two distances, (d0, d1), we train a small network G on top to map to a score ĥ ∈ (0, 1).
The architecture uses two 32-channel FC-ReLU layers, followed by a 1-channel FC
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layer and a sigmoid. Our final loss function is shown in Equation 6.2.

L(x, x0, x1, h) = −h log G(d(x, x0), d(x, x1))

−(1− h) log(1− G(d(x, x0), d(x, x1)))
(6.2)

In preliminary experiments, we also tried a ranking loss, which attempts to force
a constant margin between patch pairs d(x, x0) and d(x, x1). We found that using a
learned network, rather than enforcing the same margin in all cases, worked better.

We train with 5 epochs at initial learning rate 10−4, 5 epochs with linear decay,
and batch size 50. Each training patch pair is judged 2 times, and the judgments are
grouped together. If, for example, the two judges are split, then the classification
target (h in Figure 3) will be set at 0.5. We enforce non-negative weightings on
the linear layer w, since larger distances in a certain feature should not result in
two patches becoming closer in the distance metric. This is done by projecting
the weights into the constraint set at every iteration. In other words, we check for
any negative weights, and force them to be 0. The project was implemented using
PyTorch [197].

6.4 Experiments

6.4.1 Evaluation on our dataset

Results on our validation sets are shown in Figure 6.3. We first evaluate how well
our metrics and networks work. All validation sets contain 5 pairwise judgments
for each triplet. Because this is an inherently noisy process, we compute agreement
of an algorithm with all of the judgments. For example, if there are 4 preferences
for x0 and 1 for x1, an algorithm which predicts the more popular choice x0 would
receive 80% credit.

If humans chose patches {x1,x0} with fraction {p,1−p}, the theoretical maximum
for an oracle is max(p, 1 − p). However, human performance is lower. If an agent
chooses them with probability {q,1− q}, the agent will agree with qp+ (1− q)(1− p)
humans on expectation. With a human agent, q = p, the expected human score is
p2 + (1− p)2.

How well do low-level metrics and classification networks perform? Fig-
ure 6.3 shows the performance of various low-level metrics (in red), deep networks,
and human ceiling (in black). The scores are averaged across the 2 distortion test
sets (traditional+CNN-based) in Figure 6.3 (left), and 4 real algorithm benchmarks
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Figure 6.4: Correlating Perceptual Tests. We show performance across methods,
including unsupervised [51], self-supervised [19,27,29,31,53,102,142,145,147,173],
supervised [24,139,171], and our perceptually-learned metrics (LPIPS). The scores are
on our 2AFC and JND tests, averaged across traditional and CNN-based distortions.

(superresolution, frame interpolation, video deblurring, colorization) in Figure 6.3
(right). All scores within each test set are shown in the appendix. Averaged across
all 6 test sets, humans are 73.9% consistent. Interestingly, the supervised networks
perform at about the same level to each other, at 68.6%, 68.9%, and 67.0%, even
across variation in model sizes – SqueezeNet (2.8 MB), AlexNet (9.1 MB), and VGG
(58.9 MB) (only convolutional layers are counted). They all perform better than
traditional metrics `2, SSIM, and FSIM at 63.2%, 63.1%, 63.8%, respectively. Despite
its common use, SSIM was not designed for situations where geometric distortion is
a large factor [172].

Does the network have to be trained on classification? In Figure 6.3, we
show model performance across a variety of unsupervised and self-supervised tasks,
shown in green – generative modeling with BiGANs [102], solving puzzles [145], cross-
channel prediction [173], and segmenting foreground objects from video [147]. These
self-supervised tasks perform on par with classification networks. This indicates
that tasks across a large spectrum can induce representations which transfer well
to perceptual distances. Also, the performance of the stacked k-means method [51],
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2AFC JND Class. Det. Avg

Perceptual 2AFC – .928 .640 .363 .644
Perceptual JND .928 – .612 .232 .591
PASCAL Classification .640 .612 – .429 .560
PASCAL Detection .363 .232 .429 – .341

Table 6.4: Task correlation. We correlate scores between our low-level perceptual
tests along with high-level semantic tests across methods. Perceptual scores are
averaged between traditional and CNN-based distortion sets. Correlation scores are
computed for AlexNet-like architectures.

shown in yellow, outperforms low-level metrics. Random networks, shown in orange,
with weights drawn from a Gaussian, do not yield much improvement. This indicates
that the combination of network structure, along with orienting filters in directions
where data is more dense, can better correlate to perceptual judgments.

In Table 6.4, we explore how well our perceptual task correlates to semantic
tasks on the PASCAL dataset [158], using results summarized in [173], including
additional self-supervised methods [19,27,29,31,53,142]. We compute the correlation
coefficient between each task (perceptual or semantic) across different methods. The
correlation from our 2AFC distortion preference task to classification and detection is
.640 and .363, respectively. Interestingly, this is similar to the correlation between the
classification and detection tasks (.429), even though both are considered “high-level"
semantic tasks, and our perceptual task is “low-level."

Do metrics correlate across different perceptual tasks? We test if training
for the 2AFC distortion preference test corresponds with another perceptual task, the
JND test. We order patch pairs by ascending order by a given metric, and compute
precision-recall on our CNN-based distortions – for a good metric, patches which
are close together are more likely to be confused for being the same. We compute
area under the curve, known as mAP [158]. The 2AFC distortion preference test has
high correlation to JND: ρ = .928 when averaging the results across distortion types.
Figure 6.4 shows how different methods perform under each perceptual test. This
indicates that 2AFC generalizes to another perceptual test and is giving us signal
regarding human judgments.

Where do deep metrics and low-level metrics disagree? In Figure 6.5, we
show a qualitative comparison across our traditional distortions for a deep method,
BiGANs [102], and a representation traditional perceptual method, SSIM [15]. Pairs
which BiGAN perceives to be far but SSIM to be close generally contain some blur.
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Figure 6.5: Qualitative comparisons on distortions. We show qualitative
comparison on traditional (top) and CNN-based (bottom) distortions, using the
SSIM [15] metric and BiGAN network [102]. We show examples where the metrics
agree and disagree. A primary difference is that deep embeddings appear to be more
sensitive to blur. Please see the appendix for additional examples.
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BiGAN tends to perceive correlated noise patterns to be a smaller distortion than
SSIM.

6.4.2 Training using our dataset

Can we train a metric on traditional and CNN-based distortions? In
Figure 6.3, we show performance using our lin , scratch , and tune configurations,
shown in purple, pink, and brown, respectively. When validating on the traditional
and CNN-based distortions (Figure 6.3(a)), we see improvements. Allowing the
network to tune all the way through (brown) achieves higher performance than
simply learning linear weights (purple) or training from scratch (pink). The higher
capacity network VGG also performs better than the lower capacity SqueezeNet
and AlexNet architectures. These results verify that networks can indeed learn from
perceptual judgments.

Does training on traditional and CNN-based distortions transfer to real-
world scenarios? We are more interested in how performance generalizes to
real-world algorithms, shown in Figure 6.3(b). The SqueezeNet, AlexNet, and VGG
architectures start at 64.0%, 65.0%, and 62.6%, respectively. Learning a linear
classifier (purple) improves performance for all networks. Across the 3 networks and
4 real-algorithm tasks, 11 of the 12 scores improved, indicating that “calibrating"
activations on a pre-existing representation using our data is a safe way to achieve
a small boost in performance (1.1%, 0.3%, and 1.5%, respectively). Training a
network from scratch (pink) yields slightly lower performance for AlexNet, and
slightly higher performance for VGG than linear calibration. However, these still
outperform low-level metrics. This indicates that the distortions we have expressed
do project onto our test-time tasks of judging real algorithms.

Interestingly, starting with a pre-trained network and tuning throughout lowers
transfer performance. This is an interesting negative result, as training for a low-
level perceptual task directly does not necessarily perform as well as transferring a
representation trained for the high-level task.

What weights are learned when perceptually linearly calibrating net-
works? Learning linear weights on top of the Alex model achieves state-of-the-art
results on the real algorithms test set. The linear models have a learned linear layer
on top of each channel, whereas the out-of-the-box versions weight each channel
equally. In Figure 6.6b, we show the learned weights for the Alex –frozen model.
The conv1-5 layers contain 64, 192, 384, 256, and 256 channels, respectively, for a
total of 1152 weights. For each layer, conv1-5, 79.7%, 71.4%, 56.8%, 46.5%, 27.7%,
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Figure 6.6: Learned linear weights by layer. (a) Unlearned weights correspond
to using weighting 1 for each channel in each layer, which results in computing cosine
distance. (b) We show the learned weights from each layer of our Alex–lin model.
This is the w term in Figure 6.2. Each subplot shows the channel weights from
each layer, sorted in descending order. The x-axis shows the channel number, and
y-axis shows the weight. Weights are restricted to be non-negative, as image patches
should not have negative distance. (c,d) Same as (b), but with the VGG–lin and
Squeeze–lin models.
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respectively, of the weights are zero. This means that a majority of the conv1 and
conv2 units are ignored, and almost all of the conv5 units are used. Overall, about
half of the units are ignored. Taking the cosine distance is equivalent to setting all
weights to 1 (Figure 6.6a).
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Figure 6.7: TID Dataset We show the Spearman correlation coefficient of various
methods on the TID2013 Dataset [168]. Note that deep networks trained for
classification perform well out of the box (blue).

6.4.3 TID2013 Dataset

In Figure 6.7, we compute scores on the TID2013 [168] dataset. We test the images
at a different resolutions, using {128, 192, 256, 384, 512} for the smaller dimension.
We note that even averaging across all scales and layers, with no further calibration,
the AlexNet [139] architecture gives scores near the highest metric, FSIMc [17]. On
our traditional perturbations, the FSIMc metric achieves 61.4%, close to `2 at 59.9%,
while the deep classification networks we tested achieved 73.3%, 70.6%, and 70.1%,
respectively. The difference is likely due to the inclusion of geometric distortions in
our dataset. Despite their frequent use in such situations, metrics such as SSIM were
not designed to handle geometric distortions [172].

6.5 Discussion
Our results indicate that networks trained to solve challenging visual prediction

and modeling tasks end up learning a representation of the world that correlates
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Figure 6.8: Individual results (left) traditional distortions (right) CNN-based
distortions

well with perceptual judgments. A similar story has recently emerged in the repre-
sentation learning literature: networks trained on self-supervised and unsupervised
objectives end up learning a representation that is also effective at semantic tasks [53].
Interestingly, recent findings in neuroscience make much the same point: representa-
tions trained on computer vision tasks also end up being effective models of neural
activity in macaque visual cortex [8]. Moreover (and roughly speaking), the stronger
the representation is at the computer vision task, the stronger it is as a model of
cortical activity. Our work makes a similar finding: the stronger a feature set is at
classification and detection, the stronger it is as a model of perceptual similarity
judgments, as suggested in Table 6.4. Together, these results suggest that a good
feature is a good feature. Features that are good at semantic tasks are also good
at self-supervised and unsupervised tasks, and also provide good models of both
human perceptual behavior and macaque neural activity. This last point aligns
with the “rational analysis" explanation of visual cognition [198], suggesting that
the idiosyncrasies of biological perception arise as a consequence of a rational agent
attempting to solve natural tasks. Further refining the degree to which this is true is
an important question for future research.

In Table 6.5, we show full quantitative results across all validation sets and
considered metrics, including low-level metrics, along with random, unsupervised,
self-supervised, supervised, and perceptually-learned networks.

In Figures 6.8, 6.9, 6.10, we plot performance in individual validation sets.
Figure 6.8 shows our traditional and CNN-based distortions, and Figures 6.9, 6.10
show results on real algorithm applications individually.
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Figure 6.9: Individual results (left) superresolution (right) frame interpolation
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Figure 6.10: Individual results (left) video deblurring (right) colorization

Data quantity for training models on distortions The performance of the
validation set on our distortions (80.6% and 81.4% for Alex – tune and VGG –
tune , respectively), is almost equal to human performance of 82.6%. This indicates
that our training set size of 150k patch pairs and 300k judgments is nearly large
enough to fully explore the traditional and CNN-based distortions which we defined.
However, there is a small gap between the tune and scratch models (0.4% and
0.6% for Alex and VGG, respectively).
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Subtype Metric

Distortions Real Algorithms All

Trad- CNN- All Super- Video Color- Frame All Allitional Based res Deblur ization Interp

Oracle Human 80.8 84.4 82.6 73.4 67.1 68.8 68.6 69.5 73.9

Low-level

L2 59.9 77.8 68.9 64.7 58.2 63.5 55.0 60.3 63.2
SSIM [15] 60.3 79.1 69.7 65.1 58.6 58.1 57.7 59.8 63.1
FSIMc [17] 61.4 78.6 70.0 68.1 59.5 57.3 57.7 60.6 63.8
HDR-VDP [18] 57.4 76.8 67.1 64.7 59.0 53.7 56.6 58.5 61.4

Net (Random) Gaussian 60.5 80.7 70.6 64.9 59.5 62.8 57.2 61.1 64.3

Net (Unsupervised) K-means [51] 66.6 83.0 74.8 67.3 59.8 63.1 59.8 62.5 66.6

Net (Self-supervised)

Watching [147] 66.5 80.7 73.6 69.6 60.6 64.4 61.6 64.1 67.2
Split-Brain [173] 69.5 81.4 75.5 69.6 59.3 64.3 61.1 63.6 67.5
Puzzle [145] 71.5 82.0 76.8 70.2 60.2 62.8 61.8 63.8 68.1
BiGAN [102] 69.8 83.0 76.4 70.7 60.5 63.7 62.5 64.4 68.4

Net (Supervised)
SqueezeNet [171] 73.3 82.6 78.0 70.1 60.1 63.6 62.0 64.0 68.6
AlexNet [139] 70.6 83.1 76.8 71.7 60.7 65.0 62.7 65.0 68.9
VGG [24] 70.1 81.3 75.7 69.0 59.0 60.2 62.1 62.6 67.0

*LPIPS (Learned

Squeeze – lin 76.1 83.5 79.8 71.1 60.8 65.3 63.2 65.1 70.0

Perceptual Image

Alex – lin 73.9 83.4 78.7 71.5 61.2 65.3 63.2 65.3 69.8

Patch Similarity)

VGG – lin 76.0 82.8 79.4 70.5 60.5 62.5 63.0 64.1 69.2
Squeeze – scratch 74.9 83.1 79.0 71.1 60.8 63.0 62.4 64.3 69.2
Alex – scratch 77.6 82.8 80.2 71.1 61.0 65.6 63.3 65.2 70.2
VGG – scratch 77.9 83.7 80.8 71.1 60.6 64.0 62.9 64.6 70.0
Squeeze – tune 76.7 83.2 79.9 70.4 61.1 63.2 63.2 64.5 69.6
Alex – tune 77.7 83.5 80.6 69.1 60.5 64.8 62.9 64.3 69.7
VGG – tune 79.3 83.5 81.4 69.8 60.5 63.4 62.3 64.0 69.8

Table 6.5: Results. We show 2AFC scores (higher is better) across a spectrum of
methods and test sets. The bolded & underlined values are the highest performing.
The bolded & italicized values are within 0.5% of highest. *LPIPS metrics are
trained on the same traditional and CNN-based distortions, and as such have an
advantage relative to other methods when testing on those same distortion types,
even on unseen test images. These values are indicated by gray values. The best
gray value per column is also bolded.
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Chapter 7

Conclusions and Discussion

This thesis explored using deep networks for image synthesis, and investigated
the visual representations learned from these tasks. Image synthesis is challenging, as
the problem is often multimodal in nature. This thesis first descrxibed the problem
of automatic and user-guided colorization in Chapters 2 [19] and 3 [54], respectively.
In automatic colorization, multimodality was modeled by predicting the distribution
of possible colors for each pixel. In user-guided colorization, the method incorporated
intuitive ways for a human to provide input to the system, which helped resolve
ambiguities. Chapter 4 [97] tackled the image-to-image translation problem in
general. Ambiguity is resolved with a learned low-dimensional code, which described
the possible variations of the output.

Chapter 5 investigated the representation learned by the colorization network. By
solving the colorization task, the network learned a representation which transferred
surprisingly well to high level semantic tasks. This approach could be generalized
as a cross-channel encoder. Concatenating multiple cross-channel encoders into a
split-brain autoencoder [173] boosted performance further. Distances in deep network
embedding space corresponded well to low-level human perceptual judgments, as
described in Chapter 6, even across supervisory signals.

Below, I describe some potential future directions, building on the insights from
the work in this thesis.

Finding the “Right" Self-Supervisory Task This thesis found that bidirec-
tional prediction in a cross-channel setting served as strong pretext task for self-
supervised learning. While synthesizing pixels across channels works well, synthesiz-
ing a missing hole in an image, the inpainting task, does not perform as well [29].
However, context prediction [53, 145], foreground segmentation [147], and predicting
rotations [199] do perform well. So why do some self-supervisory signals work well,
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while others do not? One possible hypothesis is the mutual information shared
between the two parts of the split-brain autoencoder, L and ab channels, is smaller
than the information shared between the middle of an image and its surrounding,
which forces a network to work harder and induces a more abstract representa-
tion. Formally investigating what makes certain signals or data splits form better
representations is an interesting future direction.

Investigating the connections between self-supervised and unsupervised learning
is a possible future direction as well. So far, self-supervised learning has involved
coming up with clever tricks to induce labels. A few of these variants, for example our
cross-channel prediction [173], as well as inpainting [29], model conditional probability
P (X2|X1) in some way. Similarly, Pixel-RNN/Pixel-CNN [109,110] model conditional
probabilities P (Xi|X0:i−1). By modeling the conditional probabilities for each pixel
given all previous pixels, the model actually models the full joint probability P (X)
(as the conditionals can be composed into the joint by using chain rule). Generally,
unsupervised learning involves maximizing the likelihood of the data P (X). For
example, VAEs maximize the data likelihood by maximizing the variational bound
of the evidence lower bound [100]. The generative BiGAN [102]/ALI [103] model the
full distribution and produce strong representations. It is currently unclear which
leads to better representations – modeling the full joint distribution or a cleverly
chosen subset, and may warrant further investigation.

User Interactivity in Image-to-Image Translation Chapter 3 defined a set of
ways for a user to inject inputs to the system to customize a colorization, specifically
sparse, pointwise color inputs. This can be thought of as a fixed, sparse, interpretable
space which can express the possible outputs. However, this space was not easy to
sample from, and the system relied on a user’s guidance to generate possible outputs.
Afterwards, Chapter 4 proposed the BicycleGAN system, which uses a learned,
dense, easy-to-sample space. However, this space was not necessarily interpretable.
What a user would really like is all the factors of variation to be accounted for,
and easy “dials” to choose desired output. A longstanding goal in unsupervised
learning is the idea of disentanglement [25], where the learned latent structure should
decompose into separate explanatory factors of variation, freely discovered from
data. A continuous latent space is currently used, parameterized as a latent isotropic
Gaussian, partially due to the ease of the reparameterization trick, which allows us
to backpropagate through a sampling step [100]. One possible avenue of exploration
includes mixing discrete and continuous latent spaces, which may allow for easier
clustering of discrete patterns. Another possible direction is to augment a dataset
of real images using computer generated images to “guide” the learning, so that
elements which should be factorized in the latent space are more easily able to do
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so. The idea of learning from CG has been explored in the context of generating
chairs and faces [200,201]. For example, for night-to-day translation, two elements
in the latent vector should correspond to the angular position of the sun relative to
the scene. Given a graphics engine, one could simulate such variation, and enforce
those variations to be completely captured with two latent elements, while leaving
the other elements untouched. Additional steps to enabling user interactivity would
make deep generative models more useful for practical applications.
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