
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Evaluation and Design of Robust Neural Network Defenses

Permalink
https://escholarship.org/uc/item/7wm430r5

Author
Carlini, Nicholas

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7wm430r5
https://escholarship.org
http://www.cdlib.org/

Evaluation and Design of Robust Neural Network Defenses

by

Nicholas Carlini

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor David Wagner, Chair

Professor Dawn Song
Professor David Bamann

Summer 2018

Evaluation and Design of Robust Neural Network Defenses

Copyright 2018

by

Nicholas Carlini

1

Abstract

Evaluation and Design of Robust Neural Network Defenses

by

Nicholas Carlini

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Wagner, Chair

Neural networks provide state-of-the-art results for most machine learning tasks. Un-
fortunately, neural networks are vulnerable to test-time evasion attacks (i.e., adversar-
ial examples): inputs specifically designed by an adversary to cause a neural network
to misclassify them. This makes applying neural networks in security-critical areas
concerning.

In this dissertation, we introduce a general framework for evaluating the robustness
of neural network through optimization-based methods. We apply our framework
to two different domains, image recognition and automatic speech recognition, and
find it provides state-of-the-art results for both. To further demonstrate the power of
our methods, we apply our attacks to break 14 defenses that have been proposed to
alleviate adversarial examples.

We then turn to the problem of designing a secure classifier. Given this apparently-
fundamental vulnerability of neural networks to adversarial examples, instead of tak-
ing an existing classifier and attempting to make it robust, we construct a new classi-
fier which is provably robust by design under a restricted threat model. We consider
the domain of malware classification, and construct a neural network classifier that
is can not be fooled by an insertion adversary, who can only insert new functionality,
and not change existing functionality.

We hope this dissertation will provide a useful starting point for both evaluating and
constructing neural networks robust in the presence of an adversary.

i

Dedications

bbd7cf8166e40c0ab87b683a68a5ce3f

d3b01ccd6aa1e3856239a03ea9ecbfdd

ii

Contents

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 3

1.2.1 Neural Networks . 3

1.3 Related Work . 5

1.3.1 Evasion Attacks . 5

1.3.2 Adversarial Examples . 5

1.3.3 Finding Adversarial Examples 6

1.3.4 L-BFGS . 6

1.3.5 Fast Gradient Sign . 6

1.3.6 JSMA . 7

1.3.7 Deepfool . 8

1.3.8 Defending Against Adversarial Examples 9

1.3.9 Poisoning Attacks . 9

2 Evaluating the Robustness of Neural Networks 10

iii

2.1 Background . 11

2.1.1 Adversarial Examples . 11

2.1.2 Distance Metrics . 11

2.2 Experimental Setup . 13

2.3 Our Approach . 14

2.3.1 Objective Function . 15

2.3.2 Box constraints . 18

2.3.3 Evaluation of approaches . 19

2.3.4 Discretization . 20

2.4 Our Three Attacks . 21

2.4.1 Our L2 Attack . 21

2.4.2 Our L0 Attack . 23

2.4.3 Our L∞ Attack . 24

2.5 Attack Evaluation . 26

3 Attack Application: Breaking Defenses 32

3.1 Assorted Defenses . 32

3.1.1 Distillation as a Defense . 32

3.1.2 MagNet . 39

3.1.3 “Efficient Defenses against Adversarial Attack” 41

3.1.4 APE-GAN . 43

3.2 Detection Defenses . 46

3.2.1 Attack Approach . 47

3.2.2 Secondary Classification Based Detection 48

3.2.3 Principal Component Analysis Detection 52

iv

3.2.4 Distributional Detection . 57

3.2.5 Normalization Detection . 60

3.3 Lessons . 64

3.3.1 Properties of adversarial examples 64

3.3.2 Recommendations for Defenses 65

4 Attack Application: Speech Recognition 67

4.1 Preliminaries . 68

4.2 Audio Adversarial Examples . 70

4.2.1 Threat Model & Evaluation Benchmark 71

4.2.2 An Initial Formulation . 73

4.2.3 Improved Loss Function . 75

4.2.4 Audio Information Density . 77

4.2.5 Starting from Non-Speech . 77

4.2.6 Targeting Silence . 78

4.3 Audio Adversarial Example Properties 78

4.3.1 Evaluating Single-Step Methods 78

4.3.2 Robustness of Adversarial Examples 80

4.4 Open Questions . 81

5 Malware Classification 82

5.1 Related Work . 84

5.2 Motivation: Neural Network Priors 86

5.3 Problem Domain . 87

5.3.1 Dataset . 87

5.3.2 Feature Set . 89

v

5.3.3 Use Case . 89

5.3.4 Temporally Consistent Splitting 89

5.3.5 Ground Truth . 90

5.3.6 Threat Model . 90

5.4 Case Study 1: File Access Classifier 92

5.4.1 Initial Construction & Evaluation 92

5.4.2 Improving Robustness with Existing Defenses 95

5.4.3 Robust Classifier Design . 97

5.4.4 Training . 99

5.4.5 Evaluation . 100

5.5 Case Study 2: System Call Classifier 101

5.5.1 Initial Construction & Evaluation 101

5.5.2 Evaluation. 101

5.5.3 Robust Classifier Design . 103

5.5.4 Toy Problem Experiments . 105

5.5.5 Malware Evaluation . 109

5.6 Conclusion & Future Work . 111

5.7 Conclusion & Future Work . 113

6 Conclusion 114

Bibliography 116

vi

List of Figures

2.1 Sensitivity on the constant c. We plot the L2 distance of the adversarial
example computed by gradient descent as a function of c, for objective
function f6. When c < .1, the attack rarely succeeds. After c > 1, the
attack becomes less effective, but always succeeds. 17

2.2 Our L2 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the
dataset with that label. 22

2.3 Our L0 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the
dataset with that label. 25

2.4 Our L∞ adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the
dataset with that label. 27

2.5 Targeted attacks for each of the 10 MNIST digits where the starting
image is totally black for each of the three distance metrics. 29

2.6 Targeted attacks for each of the 10 MNIST digits where the starting
image is totally white for each of the three distance metrics. 30

3.1 Mean distance to targeted (with random target) adversarial examples
for different distillation temperatures on MNIST. Temperature is un-
correlated with mean adversarial example distance. 37

3.2 Probability that adversarial examples transfer from one model to an-
other, for both targeted (the adversarial class remains the same) and
untargeted (the image is not the correct class). 38

vii

3.3 Probability that adversarial examples transfer from the baseline model
to a model trained with defensive distillation at temperature 100. . . 39

3.4 MagNet targeted adversarial examples for each source/target pair of
images on MNIST. We achieve a 99% grey-box success (the 7 → 6
attack failed to transfer). 42

3.5 MagNet targeted adversarial examples for each source/target pair of
images on CIFAR. We achieve a 100% grey-box success. 42

3.6 Attacks on “Efficient Defenses...” on MNIST and CIFAR-10: (a) orig-
inal reference image; (b) adversarial example on the defense with only
BReLU; (c) adversarial example on the complete defense with Gaus-
sian noise and BReLU. 43

3.7 Attacks on APE-GAN on MNIST and CIFAR-10: (a) original refer-
ence image; (b) adversarial example on APE-GAN; (c) reconstructed
adversarial example. 45

3.8 PCA on the MNIST dataset reveals a difference between natural images
and adversarial images, however this is caused by an artifact of MNIST:
border pixels on natural images are often 0 but slightly-positive on
adversarial examples. 53

3.9 Performing dimensionality reduction increases the robustness of a 100-
100-10 fully-connected neural network, but is still less secure than just
using an unsecured CNN (the baseline). Dimensionality reduction does
not help on a network that is already convolutional. 55

3.10 Summary of Results: adversarial examples on the MNIST and CI-
FAR datasets for each defense we study. The first row corresponds to
the original images. 60

4.1 Illustration of our attack: given any waveform, adding a small pertur-
bation makes the result transcribe as any desired target phrase. . . . 72

4.2 Original waveform (blue, thick line) with adversarial waveform (orange,
thin line) overlaid; it is nearly impossible to notice a difference. The
audio waveform was chosen randomly from the attacks generated and
is 500 samples long. 77

viii

4.3 CTC loss when interpolating between the original audio sample and the
adversarial example (blue, solid line), compared to traveling equally far
in the direction suggested by the fast gradient sign method (orange,
dashed line). Adversarial examples exist far enough away from the
original audio sample that solely relying on the local linearity of neural
networks is insufficient to construct targeted adversarial examples. . . 79

5.1 Plot of malware collection timeline; the ratio of malware to benign
files is approximately evenly split, with cumulative growth rate nearly
linear. Note the Y-axis is in millions. 88

5.2 A diagram of our file path classifier. Each file path is read by a LSTM
which labels each access as either malicious or benign. A merge op-
eration then takes the predictions and outputs a prediction for the
resulting sample. 92

5.3 ROC curve of the file path and registry key access classifier; note the
log-scaled x-axis. 94

5.4 True positive rate of our malware classifier on the test set when each
sample adds a small number of benign accesses. The true positive rate
of the classifier falls below 10% with only three insertions. 96

5.5 ROC curve of our robust, monotonic classifier. The true positive rate
at 1% false positive rate is 33%. 100

5.6 ROC curve of our non-robust system call classifier. The true positive
rate at 1% false positive rate is 42%. 102

5.7 Training curves of three architectures on the simple task of determining
single-item membership. 108

5.8 Training curves of three architectures on the task of determining sub-
sequence membership. 109

5.9 ROC curve of the monotonic classifier on a single malware family (av-
eraged over 10 different families). 112

ix

List of Tables

2.1 Model architectures for the MNIST and CIFAR models. This archi-
tecture is identical to that of the original defensive distillation work.
[103] . 13

2.2 Model parameters for the MNIST and CIFAR models. These param-
eters are identical to that of the original defensive distillation work.
[103] . 13

2.3 Evaluation of all combinations of one of the seven possible objective
functions with one of the three box constraint encodings. We show the
average L2 distortion, the standard deviation, and the success proba-
bility (fraction of instances for which an adversarial example can be
found). Evaluated on 1000 random instances. When the success is not
100%, mean is for successful attacks only. 16

2.4 Comparison of the three variants of targeted attack to previous work
for our MNIST and CIFAR models. When success rate is not 100%,
the mean is only over successes. 26

2.5 Comparison of the three variants of targeted attack to previous work
for the Inception v3 model on ImageNet. When success rate is not
100%, the mean is only over successes. 28

3.1 Comparison of our attacks when applied to defensively distilled net-
works. Compare to Table 2.4 for undistilled networks. 33

3.2 The success rate of our attack on MagNet. The last column shows the
mean distance to the nearest targeted adversarial example, across the
first 1000 test instances, with the target chosen uniformly at random
from the incorrect classes. 41

x

3.3 Neither adding Gaussian data augmentation during training nor using
the BReLU activation significantly increases robustness to adversarial
examples on the MNIST or CIFAR-10 datasets; success rate is always
100%. 44

3.4 APE-GAN does not significantly increase robustness to adversarial ex-
amples on the MNIST or CIFAR-10 datasets. 46

5.1 Survey of related work applying neural networks to malware classifi-
cation. Only one paper performs an evaluation using proper temporal
splitting (see Section 5.3.4), and only two perform any evasion anal-
ysis. This makes accuracy comparisons with prior work exceptionally
difficult, as the focus of this chapter is robustness in the presence of
evasion attacks. 84

xi

Acknowledgments

This dissertation would not have been possible without the support I have received
from many: my advisor, David Wagner, for mentoring me during both my undergrad-
uate and graduate years; Linda Lee and Christopher Thompson, for the conversations
in our office, Grant Ho and Paul Pearce, for useful discussions on malware; Brad Miller
and Alex Kantchelian, for useful discussions on machine learning, Michael McCoyd,
for his continuous feedback on talks and papers; William Robertson and Adrienne
Porter Felt, for their mentorship as an undergraduate; Dawn Song, Anthony Joseph,
and David Bamman, for their advice and guidance through this dissertation process;
my parents, Susan Rendina and Giuliano Carlini, for everything else; and finally,
Anensshiya Govinthasamy, for always being there.

1

Chapter 1

Introduction

Recent advances in machine learning have resulted in it being used in increasingly
many domains: image recognition, once seen as one of the most difficult tasks in
computer science [91] is now reaching human-levels of accuracy [124]; a machine
learning algorithm has defeated the world’s best Go players [118], a feat believed to
be more than a decade away; and self-driving cars [14, 16] can now be seen on many
streets.

The same approach has driven many of the recent successes in machine learning: neu-
ral networks. All of the previously-mentioned successes (image recognition, playing
go, and self-driving cars) as well as many others (speech recognition [132], NLP [107],
caption generation [133], etc) rely heavily on neural networks. While the ideas date
back to the 1940’s, neural networks’ first true success came the 1990s when they were
shown to have higher accuracy than any other machine learning algorithm at recog-
nizing hand-written digits. Further still, it wasn’t until 2012 that their true power
was put to use when Krizhevsky et al. submitted the only neural-network-based
approach and blew away the competition in the 2012 ImageNet Large Scale Visual
Recognition Challenge. In a testament to the efficacy of this approach, in 2013, all
top submissions used neural networks [110]. In the three years following, the error
rate has dropped by a factor of four to 3% top-5 accuracy.

The security of machine learning, and neural networks in particular, is therefore of
utmost importance. Without a strong understanding of the ways in which neural
networks fail when attacked, it would be worrying to apply them in security-critical
domains.

In this dissertation we investigate evasion attacks on these classifiers. An adversary
is given a classifier and a correctly classified sample, and wishes to distort the sample
so the classifier assigns this distorted sample a different label. We construct powerful

2

evasion attacks and apply them to many domains, finding that nearly all neural
networks are vulnerable to our attacks. Then, we propose our own classifier to detect
malware that is provably robust to specific classes of attack.

1.1 Motivation

The problem of evasion attacks on machine learning problems is not new. One of
the first wide-scale uses of machine learning for classification in the presence of an
adversary was spam [26], followed immediately by evasion attacks by adversaries who
still wanted to send spam. Much of the existing work on evasion attacks, however, has
studied conventional machine-learning tasks, such as SVMs, decision trees, or simple
Bayesian prediction.

Neural networks currently provide state-of-the-art results across many tasks that were
previously unsolvable (or, nearly unsolvable), each of which must consider adversaries
who seeks to cause misclassifications:

1. In image recognition, a model is given an image and it must output a classifi-
cation of what the object in that image is. Current image recognition networks
perform at human levels of accuracy [124]. A related problem is that of caption
generation where we train a model to create a caption for an image; neural
networks have become accurate at this, too [133].

Neural networks in these cases must be robust against an adversary who can
make slight changes to the input pixels, to cause the object classification to
be changed. For example, it has been shown that an adversary can generate
images where, even after taking a picture of them, the photographed image
remains misclassified [66].

2. Neural networks have been trained to play games at levels higher than any
human. This includes the game of Go [118], Chess, and traditional video games
[85, 28].

An adversary in this case can be seen as the opponent, who wishes to beat
the neural network agent. Recent work has demonstrated evasion attacks are
possible on simple games [49].

3. Self-driving cars [14, 16] are now common occurrences on the roads. In this
setting, the neural networks make decisions about how a car should drive.

There are many possible goals an adversary may have. The simplest is simply
to cause harm, by causing a car to drive the wrong direction after incorrectly

3

reading a sign changed in only a minor manner. Other objectives could be to
cause less traffic down a given road, or to direct the passengers to the wrong
destination.

4. Speech recognition systems that transcribe a given audio sequence to text
have achieved human-level performance [132].

There is a significant threat in this space, as increasingly voice commands are
used for controlling users’ devices. If an adversary could construct audio that
sounded like a benign phrase, but is transcribed as a different command to
the device, an adversary could use this to control others devices’ without their
knowledge.

When applied to neural networks, such evasion attacks are known as adversarial
examples, and were first observed in the space of image classification [125].

As neural networks are used in an increasingly large number of domains, we must
consider their security more seriously.

1.2 Background

1.2.1 Neural Networks

A neural network is a function F (x) = y that accepts an input x ∈ Rn and produces
an output y ∈ Rm. F also implicitly depends on some model parameters θ; in our
work the model is fixed, so for convenience we don’t show the dependence on θ.

We focus exclusively on neural networks used as an m-class classifier. The output of
the network is computed using the softmax function, which ensures that the output
vector y satisfies 0 ≤ yi ≤ 1 and y1 + · · · + ym = 1. The output vector y is thus
treated as a probability distribution, i.e., yi is treated as the probability that input x
has class i. The classifier assigns the label C(x) = arg maxi F (x)i to the input x. Let
C∗(x) be the correct label of x. The inputs to the softmax function are called logits.

Define F to be the full neural network including the softmax function, Z(x) = z to
be the output of all layers except the softmax (so z are the logits), and

F (x) = softmax(Z(x)) = y.

A neural network consists of layers

F = softmax ◦ Fn ◦ Fn−1 ◦ · · · ◦ F1

4

where
Fi(x) = σ(θi · x) + θ̂i

for some non-linear activation function σ, some matrix θi of model weights, and some
vector θ̂i of model biases. Together θ and θ̂ make up the model parameters. Common
choices of σ are tanh [84], sigmoid, ReLU [76], or ELU [23]. In this dissertation we
focus primarily on networks that use a ReLU activation function, as it currently is
the most widely used activation function [124, 122, 84, 103].

Image Representation. An h × w-pixel grey-scale image is a two-dimensional
vector x ∈ Rhw, where xi denotes the intensity of pixel i and is scaled to be in the
range [0, 1]. 1 A color RGB image is a three-dimensional vector x ∈ R3hw. We do not
convert RGB images to HSV, HSL, or other cylindrical coordinate representations of
color images: the neural networks act on raw pixel values.

Audio Representation. An audio waveform is represented in one of two ways,
depending on the context.

1. Raw encoding: the input is represented as a vector in Zsd where s is the
sample rate (in samples per second) and d is the duration (in seconds). The
samples are typically within the range [−215, 215 − 1].

2. MFCC encoding: instead of encoding the raw audio, the audio is preprocessed
using an encoding called the MFCC (described in Section 4.1) that transforms
the input to a vector in Zmdf where m is the dimensionality of an MFCC vector,
d is the duration (in seconds), and f is the number of MFCC vectors per second.

Malware Representation. We represent malware by a collection of discrete fea-
ture vectors extracted both statically from the executable and dynamically from sim-
ple dynamic analysis. These features include system calls issued (with arguments
and return values), files accessed (read, written, moved, or deleted), and all network
traffic. We describe our feature extraction further, later.

1In practice, each pixel must be one of 256 discrete values chosen among {0, 1
256 ,

2
256 , . . . , 1}.

However we often omit this requirement for simplicity.

5

1.3 Related Work

1.3.1 Evasion Attacks

As mentioned earlier, one of the first instances of evasion attacks on machine learning
classifiers was in the case of spam. There has been a significant amount os research
on simple classifiers to detect spam, and the attacks that an adversary must perform
to defeat them. [7, 94, 130, 74, 26] Most work in this space relies on one of two
attacks: (a) inject good words [74] into spam to make it appear like legitimate email,
or (b) modify the bad words [94] that make an email appear as spam so they are not
recognized.

In the space of malware, machine learning has been used to detect malware from
benign files [21, 104, 20, 29, 60, 108] (even using neural networks [24]) and an equal
amount of work has been performed on attacking such classifiers [75, 134, 89, 92]. And
in the space of intrusion detection, there is a similar story of research on detecting
intrusions [137, 138, 54, 47] (and again, even using neural networks [71]) and evading
intrusion detection [120, 30].

1.3.2 Adversarial Examples

In this dissertation, we focus more narrowly on neural networks used for classification,
and evasion attacks on those neural networks.

Szegedy et al. were the first to specifically study evasion attacks on image classifica-
tion neural networks [125], and found that the total amount of change required for
the network to shift classification is so small as to be undetectable; they called such
images adversarial examples.

Specifically, given a valid input x and a target t 6= C∗(x), it is often possible to find
a similar input x′ such that C(x′) = t yet x, x′ are close according to some distance
metric. An example x′ with this property is known as a targeted adversarial example.

A less powerful attack also discussed in the literature instead asks for untargeted
adversarial examples: instead of classifying x as a given target class, we only search
for an input x′ so that C(x′) 6= C∗(x) and x, x′ are close.

Following this initial observation, many others began studying different aspects of
this phenomenon, from attempting to understand why adversarial examples exist
[34], to generating images that look completely random but are strongly classified as
any given target image [96], to generating better attacks and constructing defenses

6

(discussed in the following sections).

1.3.3 Finding Adversarial Examples

There are many existing algorithms for constructing adversarial examples. We review
these algorithms and discuss their strengths and weaknesses.

1.3.4 L-BFGS

Szegedy et al. [125] generated adversarial examples using box-constrained L-BFGS.
Given an image x, their method finds a different image x′ that is similar to x under
L2 distance, yet is labeled differently by the classifier. They model the problem as a
constrained minimization problem:

minimize ‖x− x′‖2
2

such that C(x′) = l

x′ ∈ [0, 1]n

This problem can be very difficult to solve, however, so Szegedy et al. instead solve
the following problem:

minimize c · ‖x− x′‖2
2 + lossF,l(x′)

such that x′ ∈ [0, 1]n

where lossF,l is a function mapping an image to a positive real number. One common
loss function to use is cross-entropy. Line search is performed to find the constant
c > 0 that yields an adversarial example of minimum distance: in other words, we re-
peatedly solve this optimization problem for multiple values of c, adaptively updating
c using bisection search or any other method for one-dimensional optimization.

1.3.5 Fast Gradient Sign

The fast gradient sign [34] method has two key differences from the L-BFGS method:
first, it is optimized for the L∞ distance metric, and second, it is designed primarily
to be fast instead of producing very close adversarial examples. Given an image x
the fast gradient sign method sets

x′ = x− ε · sign(∇lossF,t(x)),

7

where ε is chosen to be sufficiently small so as to be undetectable, and t is the target
label. Intuitively, for each pixel, the fast gradient sign method uses the gradient of the
loss function to determine in which direction the pixel’s intensity should be changed
(whether it should be increased or decreased) to minimize the loss function; then, it
shifts all pixels simultaneously.

It is important to note that the fast gradient sign attack was designed to be fast, rather
than optimal. It is not meant to produce the minimal adversarial perturbations.

Iterative Gradient Sign Kurakin et al. introduce a simple refinement of the fast
gradient sign method [66] where instead of taking a single step of size ε in the direction
of the gradient-sign, multiple smaller steps α are taken, and the result is clipped by
the same ε. Specifically, begin by setting

x′0 = 0

and then on each iteration

x′i = x′i−1 − clipε(α · sign(∇lossF,t(x′i−1)))

Iterative gradient sign was found to produce superior results to fast gradient sign [66].

1.3.6 JSMA

Papernot et al. introduced an attack optimized under L0 distance [102] known as
the Jacobian-based Saliency Map Attack (JSMA). We give a brief summary of their
attack algorithm; for a complete description and motivation, we encourage the reader
to read their original paper [102].

At a high level, the attack is a greedy algorithm that picks pixels to modify one at
a time, increasing the target classification on each iteration. They use the gradient
∇Z(x)l to compute a saliency map, which models the impact each pixel has on the
resulting classification. A large value indicates that changing it will significantly
increase the likelihood of the model labeling the image as the target class l. Given the
saliency map, it picks the most important pixel and modify it to increase the likelihood
of class l. This is repeated until either more than a set threshold of pixels are modified
which makes the attack detectable, or it succeeds in changing the classification.

In more detail, we begin by defining the saliency map in terms of a pair of pixels p, q.

8

Define

αpq =
∑
i∈{p,q}

∂Z(x)t
∂xi

βpq =

 ∑
i∈{p,q}

∑
j

∂Z(x)j
∂xi

− αpq
so that αpq represents how much changing both pixels p and q will change the target
classification, and βpq represents how much changing p and q will change all other
outputs. Then the algorithm picks

(p∗, q∗) = arg max
(p,q)

(−αpq · βpq) · (αpq > 0) · (βpq < 0)

so that αpq > 0 (the target class is more likely), βpq < 0 (the other classes become
less likely), and −αpq · βpq is largest.

Notice that JSMA uses the output of the second-to-last layer Z, the logits, in the
calculation of the gradient: the output of the softmax F is not used. We refer to this
as the JSMA-Z attack.

Sometimes, the computation uses the output of the softmax (F) instead of the logits
(Z). We refer to this modification as the JSMA-F attack.

When an image has multiple color channels (e.g., RGB), this attack considers the L0

difference to be 1 for each color channel changed independently (so that if all three
color channels of one pixel change change, the L0 norm would be 3). While we do not
believe this is a meaningful threat model, when comparing to this attack, we evaluate
under both models.

1.3.7 Deepfool

Deepfool [87] is an untargeted attack technique optimized for the L2 distance metric.
It is efficient and produces closer adversarial examples than the L-BFGS approach
discussed earlier.

The authors construct Deepfool by imagining that the neural networks are totally
linear, with a hyperplane separating each class from another. From this, they an-
alytically derive the optimal solution to this simplified problem, and construct the
adversarial example.

Then, since neural networks are not actually linear, they take a step towards that
solution, and repeat the process a second time. The search terminates when a true
adversarial example is found.

9

The exact formulation used is rather sophisticated; interested readers should refer to
the original work [87].

1.3.8 Defending Against Adversarial Examples

There have been many defenses proposed for adversarial examples. In this disserta-
tion, we evaluate many and break most of these.

1.3.9 Poisoning Attacks

In contrast to evasion attacks (where we are given a model and attempt to construct
instances that evade the model), a poisoning attack controls some small fraction of
the training data, and attempts to use this to cause a specific testing instance to be
misclassified.

The first work done in this space is due to Kearns and Li [57] who study poisoning
attacks on a model known as Probably Approximately Correct (PAC) due to Valiant
[127]. They formally study this space and prove bounds by which an adversary is
able to influence classification accuracy.

Nelson and Joseph [95] study the problem of poisoning in the space of a anomaly
detection system. Given a set of points in n−dimensional space, they consider an
anomaly detection system as a simple hypersphere where points interior to the sphere
are normal, and exterior are anomalous. In this domain it is possible to prove bounds
on the adversary.

A problem related to this has been studied in the case of malware signature generation
by Perdisci et al. [106] who show it is possible to construct malware samples so that
if one controls 50% of the training data, it is possible to make the signature generator
fail.

Following this, Biggio et al. [12, 13] study the poisoning problem on support vec-
tor machines (SVMs). By looking at both random training-data label flipping and
adversarial training-data label flipping they find that an adversary must control a
relatively large fraction of the training data (about 20%) to cause a significant drop
in accuracy. In their followup study, they consider the specific case of causing a single
instance to be misclassified and develop an algorithm to do this effectively. SVMs
have also been analyzed by others [81] to similar effect.

10

Chapter 2

Evaluating the Robustness of Neural
Networks

In order to construct robust defenses for neural networks, we must first be able to
effectively evaluate the robustness of any given neural network. There are two ways
in which security is argued in any domain:

1. A proof of robustness formally argues why the proposed defense is secure
under some given threat model for some specific class of attacks. If the proof is
sound, no attack can do better than the provided lower bound.

2. An empirical robustness analysis takes the given defense and attacks it.
The best attack found is an upper bound on the robustness of the system.
Stronger attacks may exist, but the defense can be no more secure than the
best attack found.

In general, it is much more difficult to construct proofs of robustness than empirical
robustness arguments. In some domains (e.g., cryptography) this is possible with very
restrictive threat models. However, for other areas, it is often impractical to construct
such an argument: either the set of required assumptions is so large as produce a weak
argument, or the set of assumptions is sufficiently small but the guaranteed security
is minimal.

On the other hand, empirical robustness arguments are a useful method of quickly
ruling out defenses. As soon as a defense fails against one concrete attack, it can be
dismissed as a strong defense to all attacks.

In this section, we construct a framework for empirically evaluating the robustness of
neural networks by attacking them.

11

2.1 Background

2.1.1 Adversarial Examples

As mentioned earlier, if we are given a valid input x and a target t 6= C∗(x), it is often
possible to find a similar input x′ such that C(x′) = t yet x, x′ are close according
to some distance metric. An example x′ with this property is known as a targeted
adversarial example.

A less powerful attack also discussed in the literature instead asks for untargeted
adversarial examples: instead of classifying x as a given target class, we only search
for an input x′ so that C(x′) 6= C∗(x) and x, x′ are close. Untargeted attacks are
strictly less powerful than targeted attacks and we do not consider them here. 1

Instead, we consider three different approaches for how to choose the target class, in
a targeted attack:

• Average Case: select the target class uniformly at random among the labels
that are not the correct label.

• Best Case: perform the attack against all incorrect classes, and report the target
class that was least difficult to attack.

• Worst Case: perform the attack against all incorrect classes, and report the
target class that was most difficult to attack.

In all of our evaluations we perform all three types of attacks: best-case, average-case,
and worst-case. Notice that if a classifier is only accurate 80% of the time, then the
best case attack will require a change of 0 in 20% of cases.

On ImageNet, we approximate the best-case and worst-case attack by sampling 100
random target classes out of the 1,000 possible for efficiency reasons.

2.1.2 Distance Metrics

In our definition of adversarial examples, we require use of a distance metric to quan-
tify similarity. There are three widely-used distance metrics in the literature for
generating adversarial examples, all of which are Lp norms.

1An untargeted attack is simply a more efficient (and often less accurate) method of running a
targeted attack for each target and taking the closest. We focus on identifying the most accurate
attacks, and do not consider untargeted attacks.

12

The Lp distance is written ‖x− x′‖p, where the p-norm ‖ · ‖p is defined as

‖v‖p =

(
n∑
i=1

|vi|p
) 1

p

.

In more detail:

1. L0 distance measures the number of coordinates i such that xi 6= x′i. Thus, the
L0 distance corresponds to the number of pixels that have been altered in an
image.2

Papernot et al. argue for the use of the L0 distance metric, and it is the primary
distance metric under which defensive distillation’s security is argued [103].

2. L2 distance measures the standard Euclidean (root-mean-square) distance be-
tween x and x′. The L2 distance can remain small when there are many small
changes to many pixels.

This distance metric was used in the initial adversarial example work [125].

3. L∞ distance measures the maximum change to any of the coordinates:

‖x− x′‖∞ = max(|x1 − x′1|, . . . , |xn − x′n|).

For images, we can imagine there is a maximum budget, and each pixel is
allowed to be changed by up to this limit, with no limit on the number of pixels
that are modified.

Goodfellow et al. argue that L∞ is the optimal distance metric to use [129]
and in a follow-up paper Papernot et al. argue distillation is secure under this
distance metric [99].

No distance metric is a perfect measure of human perceptual similarity, and we pass
no judgement on exactly which distance metric is optimal. We believe constructing
and evaluating a good distance metric is an important research question we leave to
future work.

However, since most existing work has picked one of these three distance metrics,
and since defensive distillation argued security against two of these, we too use these

2In RGB images, there are three channels that each can change. We count the number of pixels
that are different, where two pixels are considered different if any of the three colors are different.
We do not consider a distance metric where an attacker can change one color plane but not another
meaningful. We relax this requirement when comparing to other L0 attacks that do not make this
assumption to provide for a fair comparison.

13

Layer Type MNIST Model CIFAR Model

Convolution + ReLU 3×3×32 3×3×64
Convolution + ReLU 3×3×32 3×3×64
Max Pooling 2×2 2×2
Convolution + ReLU 3×3×64 3×3×128
Convolution + ReLU 3×3×64 3×3×128
Max Pooling 2×2 2×2
Fully Connected + ReLU 200 256
Fully Connected + ReLU 200 256
Softmax 10 10

Table 2.1: Model architectures for the MNIST and CIFAR models. This architecture
is identical to that of the original defensive distillation work. [103]

Parameter MNIST Model CIFAR Model

Learning Rate 0.1 0.01 (decay 0.5)
Learning Rate 0.9 0.9 (decay 0.5)
Delay Decay - 10 epochs
Batch Size 128 128
Epochs 50 50

Table 2.2: Model parameters for the MNIST and CIFAR models. These parameters
are identical to that of the original defensive distillation work. [103]

distance metrics and construct attacks that perform superior to the state-of-the-art
for each of these distance metrics.

When reporting all numbers in this paper, we report using the distance metric as
defined above, on the range [0, 1]. (That is, changing a pixel in a greyscale image
from full-on to full-off will result in L2 change of 1.0 and a L∞ change of 1.0, not
255.)

2.2 Experimental Setup

Before we develop our attack algorithms to break distillation, we describe how we
train the models on which we will evaluate our attacks.

We train two networks for the MNIST [69] and CIFAR-10 [65] classification tasks, and

14

use one pre-trained network for the ImageNet classification task [111]. Our models
and training approaches are identical to those presented in [103]. We achieve 99.5%
accuracy on MNIST, comparable to the state of the art. On CIFAR-10, we achieve
85% accuracy, nearly identical to the accuracy given in the distillation work. 3

MNIST The model architecture is given in Table 2.1 and the hyperparameters
selected in Table 2.2. We use a momentum-based SGD optimizer. We perform no
data-set augmentation.

CIFAR-10 The model architecture is given in Table 2.1 and the hyperparameters
selected in Table 2.2. We use a momentum-based SGD optimizer.

We perform data-set augmentation to increase the accuracy. We randomly crop a
24x24 region out of the 32x32 images, and whiten this crop to have mean value 0
and standard deviation 1. We additionally randomly flip images left/right, randomly
adjust the contrast, and randomly adjust the brightness of each image. This achieves
85% accuracy on the test set.

ImageNet Along with considering MNIST and CIFAR, which are both relatively
small datasets, we also consider the ImageNet dataset. Instead of training our own
ImageNet model, we use the pre-trained Inception v3 network [124], which achieves
96% top-5 accuracy. Inception takes images as 299× 299× 3 dimensional vectors.

2.3 Our Approach

We now turn to our approach for constructing adversarial examples. To begin, we
rely on the initial formulation of adversarial examples [125] and formally define the
problem of finding an adversarial instance for an image x as follows:

minimize D(x, x+ δ)

such that C(x+ δ) = t

x+ δ ∈ [0, 1]n

where x is fixed, and the goal is to find δ that minimizes D(x, x + δ). That is, we
want to find some small change δ that we can make to an image x that will change

3This is compared to the state-of-the-art result of 95% [35, 122, 84]. However, in order to provide
the most accurate comparison to the original work, we feel it is important to reproduce their model
architectures.

15

its classification, but so that the result is still a valid image. Here D is some distance
metric; for us, it will be either L0, L2, or L∞ as discussed earlier.

We solve this problem by formulating it as an appropriate optimization instance that
can be solved by existing optimization algorithms. There are many possible ways to
do this; we explore the space of formulations and empirically identify which ones lead
to the most effective attacks.

2.3.1 Objective Function

The above formulation is difficult for existing algorithms to solve directly, as the
constraint C(x + δ) = t is highly non-linear. Therefore, we express it in a different
form that is better suited for optimization. We define an objective function f such
that C(x+ δ) = t if and only if f(x+ δ) ≤ 0. There are many possible choices for f :

f1(x′) = −lossF,t(x′) + 1

f2(x′) = (max
i 6=t

(F (x′)i)− F (x′)t)
+

f3(x′) = softplus(max
i 6=t

(F (x′)i)− F (x′)t)− log(2)

f4(x′) = (0.5− F (x′)t)
+

f5(x′) = − log(2F (x′)t − 2)

f6(x′) = (max
i 6=t

(Z(x′)i)− Z(x′)t)
+

f7(x′) = softplus(max
i 6=t

(Z(x′)i)− Z(x′)t)− log(2)

where s is the correct classification, (e)+ is short-hand for max(e, 0), softplus(x) =
log(1 + exp(x)), and lossF,s(x) is the cross entropy loss for x.

Notice that we have adjusted some of the above formula by adding a constant; we
have done this only so that the function respects our definition. This does not impact
the final result, as it just scales the minimization function.

Now, instead of formulating the problem as

minimize D(x, x+ δ)

such that f(x+ δ) ≤ 0

x+ δ ∈ [0, 1]n

we use the alternative formulation:

minimize D(x, x+ δ) + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n

16

Best Case Average Case Worst Case

Change of Clipped Projected Change of Clipped Projected Change of Clipped Projected
Variable Descent Descent Variable Descent Descent Variable Descent Descent

mean prob mean prob mean prob mean prob mean prob mean prob mean prob mean prob mean prob

f1 2.46 100% 2.93 100% 2.31 100% 4.35 100% 5.21 100% 4.11 100% 7.76 100% 9.48 100% 7.37 100%
f2 4.55 80% 3.97 83% 3.49 83% 3.22 44% 8.99 63% 15.06 74% 2.93 18% 10.22 40% 18.90 53%
f3 4.54 77% 4.07 81% 3.76 82% 3.47 44% 9.55 63% 15.84 74% 3.09 17% 11.91 41% 24.01 59%
f4 5.01 86% 6.52 100% 7.53 100% 4.03 55% 7.49 71% 7.60 71% 3.55 24% 4.25 35% 4.10 35%
f5 1.97 100% 2.20 100% 1.94 100% 3.58 100% 4.20 100% 3.47 100% 6.42 100% 7.86 100% 6.12 100%
f6 1.94 100% 2.18 100% 1.95 100% 3.47 100% 4.11 100% 3.41 100% 6.03 100% 7.50 100% 5.89 100%
f7 1.96 100% 2.21 100% 1.94 100% 3.53 100% 4.14 100% 3.43 100% 6.20 100% 7.57 100% 5.94 100%

Table 2.3: Evaluation of all combinations of one of the seven possible objective func-
tions with one of the three box constraint encodings. We show the average L2 dis-
tortion, the standard deviation, and the success probability (fraction of instances for
which an adversarial example can be found). Evaluated on 1000 random instances.
When the success is not 100%, mean is for successful attacks only.

where c > 0 is a suitably chosen constant. These two are equivalent, in the sense that
there exists c > 0 such that the optimal solution to the latter matches the optimal
solution to the former. After instantiating the distance metric D with an lp norm,
the problem becomes: given x, find δ that solves

minimize ‖δ‖p + c · f(x+ δ)

such that x+ δ ∈ [0, 1]n

Choosing the constant c.

Empirically, we have found that often the best way to choose c is to use the smallest
value of c for which the resulting solution x∗ has f(x∗) ≤ 0. This causes gradient
descent to minimize both of the terms simultaneously instead of picking only one to
optimize over first.

We verify this by running our f6 formulation (which we found most effective) for
values of c spaced uniformly (on a log scale) from c = 0.01 to c = 100 on the MNIST
dataset. We plot this line in Figure 2.1. 4

Further, we have found that if choose the smallest c such that f(x∗) ≤ 0, the solution
is within 5% of optimal 70% of the time, and within 30% of optimal 98% of the time,
where “optimal” refers to the solution found using the best value of c. Therefore, in
our implementations we use modified binary search to choose c.

4The corresponding figures for other objective functions are similar; we omit them for brevity.

17

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

0
2

4
6

8
1
0

M
e
a
n
 A

d
ve

rs
a
ri

a
l
E

x
a
m

p
le

 D
is

ta
n
c
e

1e−02 1e−01 1e+00 1e+01 1e+02

Constant c used

Figure 2.1: Sensitivity on the constant c. We plot the L2 distance of the adversarial
example computed by gradient descent as a function of c, for objective function f6.
When c < .1, the attack rarely succeeds. After c > 1, the attack becomes less
effective, but always succeeds.

18

2.3.2 Box constraints

To ensure the modification yields a valid image, we have a constraint on δ: we must
have 0 ≤ xi + δi ≤ 1 for all i. In the optimization literature, this is known as a
“box constraint.” Previous work uses a particular optimization algorithm, L-BFGS-
B, which supports box constraints natively.

We investigate three different methods of approaching this problem.

1. Projected gradient descent performs one step of standard gradient descent, and
then clips all the coordinates to be within the box.

This approach can work poorly for gradient descent approaches that have a
complicated update step (for example, those with momentum): when we clip
the actual xi, we unexpectedly change the input to the next iteration of the
algorithm.

2. Clipped gradient descent does not clip xi on each iteration; rather, it incorpo-
rates the clipping into the objective function to be minimized. In other words,
we replace f(x+ δ) with f(min(max(x+ δ, 0), 1)), with the min and max taken
component-wise.

While solving the main issue with projected gradient descent, clipping intro-
duces a new problem: the algorithm can get stuck in a flat spot where it has
increased some component xi to be substantially larger than the maximum al-
lowed. When this happens, the partial derivative becomes zero, so even if some
improvement is possible by later reducing xi, gradient descent has no way to
detect this.

3. Change of variables introduces a new variable w and instead of optimizing over
the variable δ defined above, we apply a change-of-variables and optimize over
w, setting

δi =
1

2
(tanh(wi) + 1)− xi.

Since −1 ≤ tanh(wi) ≤ 1, it follows that 0 ≤ xi + δi ≤ 1, so the solution will
automatically be valid. 5

We can think of this approach as a smoothing of clipped gradient descent that
eliminates the problem of getting stuck in extreme regions.

These methods allow us to use other optimization algorithms that don’t natively
support box constraints. We use the Adam [61] optimizer almost exclusively, as we

5Instead of scaling by 1
2 we scale by 1

2 + ε to avoid dividing by zero.

19

have found it to be the most effective at quickly finding adversarial examples. We
tried three solvers — standard gradient descent, gradient descent with momentum,
and Adam — and all three produced identical-quality solutions. However, Adam
converges substantially more quickly than the others.

2.3.3 Evaluation of approaches

For each possible objective function f(·) and method to enforce the box constraint,
we evaluate the quality of the adversarial examples found.

To choose the optimal c, we perform 20 iterations of binary search over c. For each
selected value of c, we run 10, 000 iterations of gradient descent with the Adam
optimizer. 6

The results of this analysis are in Table 2.3. We evaluate the quality of the adversarial
examples found on the MNIST and CIFAR datasets. The relative ordering of each
objective function is identical between the two datasets, so for brevity we report only
results for MNIST.

There is a factor of three difference in quality between the best objective function
and the worst. The choice of method for handling box constraints does not impact
the quality of results as significantly for the best minimization functions.

In fact, the worst performing objective function, cross entropy loss, is the approach
that was most suggested in the literature previously [125, 114].

Why are some loss functions better than others? When c = 0, gradient descent will
not make any move away from the initial image. However, a large c often causes the
initial steps of gradient descent to perform in an overly-greedy manner, only traveling
in the direction which can most easily reduce f and ignoring the D loss — thus causing
gradient descent to find sub-optimal solutions.

This means that for loss function f1 and f4, there is no good constant c that is
useful throughout the duration of the gradient descent search. Since the constant c
weights the relative importance of the distance term and the loss term, in order for
a fixed constant c to be useful, the relative value of these two terms should remain
approximately equal. This is not the case for these two loss functions.

To explain why this is the case, we will have to take a side discussion to analyze how
adversarial examples exist. Consider a valid input x and an adversarial example x′

6Adam converges to 95% of optimum within 1, 000 iterations 92% of the time. For completeness
we run it for 10, 000 iterations at each step.

20

on a network.

What does it look like as we linearly interpolate from x to x′? That is, let y =
αx+ (1− α)x′ for α ∈ [0, 1]. It turns out the value of Z(·)t is mostly linear from the
input to the adversarial example, and therefore the F (·)t is a logistic. We verify this
fact empirically by constructing adversarial examples on the first 1, 000 test images
on both the MNIST and CIFAR dataset with our approach, and find the Pearson
correlation coefficient r > .9.

Given this, consider loss function f4 (the argument for f1 is similar). In order for the
gradient descent attack to make any change initially, the constant c will have to be
large enough that

ε < c(f1(x+ ε)− f1(x))

or, as ε→ 0,
1/c < |∇f1(x)|

implying that c must be larger than the inverse of the gradient to make progress,
but the gradient of f1 is identical to F (·)t so will be tiny around the initial image,
meaning c will have to be extremely large.

However, as soon as we leave the immediate vicinity of the initial image, the gradient
of ∇f1(x + δ) increases at an exponential rate, making the large constant c cause
gradient descent to perform in an overly greedy manner.

We verify all of this theory empirically. When we run our attack trying constants
chosen from 10−10 to 1010 the average constant for loss function f4 was 106.

The average gradient of the loss function f1 around the valid image is 2−20 but 2−1

at the closest adversarial example. This means c is a million times larger than it has
to be, causing the loss function f4 and f1 to perform worse than any of the others.

2.3.4 Discretization

We model pixel intensities as a (continuous) real number in the range [0, 1]. How-
ever, in a valid image, each pixel intensity must be a (discrete) integer in the range
{0, 1, . . . , 255}. This additional requirement is not captured in our formulation. In
practice, we ignore the integrality constraints, solve the continuous optimization prob-
lem, and then round to the nearest integer: the intensity of the ith pixel becomes
b255(xi + δi)e.

This rounding will slightly degrade the quality of the adversarial example. If we need
to restore the attack quality, we perform greedy search on the lattice defined by the

21

discrete solutions by changing one pixel value at a time. This greedy search never
failed for any of our attacks.

Prior work has largely ignored the integrality constraints.7 For instance, when using
the fast gradient sign attack with ε = 0.1 (i.e., changing pixel values by 10%), dis-
cretization rarely affects the success rate of the attack. In contrast, in our work, we
are able to find attacks that make much smaller changes to the images, so discretiza-
tion effects cannot be ignored. We take care to always generate valid images; when
reporting the success rate of our attacks, they always are for attacks that include the
discretization post-processing.

2.4 Our Three Attacks

2.4.1 Our L2 Attack

Putting these ideas together, we obtain a method for finding adversarial examples
that will have low distortion in the L2 metric. Given x, we choose a target class t
(such that we have t 6= C∗(x)) and then search for w that solves

minimize ‖1

2
(tanh(w) + 1)− x‖2

2 + c · f(
1

2
(tanh(w) + 1)

with f defined as

f(x′) = max(max{Z(x′)i : i 6= t} − Z(x′)t,−κ).

This f is based on the best objective function found earlier, modified slightly so that
we can control the confidence with which the misclassification occurs by adjusting κ.
The parameter κ encourages the solver to find an adversarial instance x′ that will be
classified as class t with high confidence. We set κ = 0 for our attacks but we note
here that a side benefit of this formulation is it allows one to control for the desired
confidence. This is discussed further in Section 3.1.1.

Figure 2.2 shows this attack applied to our MNIST model for each source digit and
target digit. Almost all attacks are visually indistinguishable from the original digit.

No attack is visually distinguishable from the baseline image on CIFAR.

Multiple starting-point gradient descent. The main problem with gradient descent is
that its greedy search is not guaranteed to find the optimal solution and can become

7One exception: The JSMA attack [102] handles this by only setting the output value to either
0 or 255.

22

Target Classification (L2)
0 1 2 3 4 5 6 7 8 9

Ta
rg
et

C
la
ss
ifi
ca
ti
on

0
1

2
3

4
5

6
7

8
9

Figure 2.2: Our L2 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset with
that label.

23

stuck in a local minimum. To remedy this, we pick multiple random starting points
close to the original image and run gradient descent from each of those points for
a fixed number of iterations. We randomly sample points uniformly from the ball
of radius r, where r is the closest adversarial example found so far. Starting from
multiple starting points reduces the likelihood that gradient descent gets stuck in a
bad local minimum.

2.4.2 Our L0 Attack

The L0 distance metric is non-differentiable and therefore is ill-suited for standard
gradient descent. Instead, we use an iterative algorithm that, in each iteration, iden-
tifies some pixels that don’t have much effect on the classifier output and then fixes
those pixels, so their value will never be changed. The set of fixed pixels grows in
each iteration until we have, by process of elimination, identified a minimal (but
possibly not minimum) subset of pixels that can be modified to generate an adver-
sarial example. In each iteration, we use our L2 attack to identify which pixels are
unimportant.

In more detail, on each iteration, we call the L2 adversary, restricted to only modify
the pixels in the allowed set. Let δ be the solution returned from the L2 adversary on
input image x, so that x + δ is an adversarial example. We compute g = ∇f(x + δ)
(the gradient of the objective function, evaluated at the adversarial instance). We
then select the pixel i = arg mini gi · δi and fix i, i.e., remove i from the allowed set.8
The intuition is that gi · δi tells us how much reduction to f(·) we obtain from the
ith pixel of the image, when moving from x to x+ δ: gi tells us how much reduction
in f we obtain, per unit change to the ith pixel, and we multiply this by how much
the ith pixel has changed. This process repeats until the L2 adversary fails to find an
adversarial example.

There is one final detail required to achieve strong results: choosing a constant c to
use for the L2 adversary. To do this, we initially set c to a very low value (e.g., 10−4).
We then run our L2 adversary at this c-value. If it fails, we double c and try again,
until it is successful. We abort the search if c exceeds a fixed threshold (e.g., 1010).

JSMA grows a set — initially empty — of pixels that are allowed to be changed and
sets the pixels to maximize the total loss. In contrast, our attack shrinks the set of
pixels — initially containing every pixel — that are allowed to be changed.

Our algorithm is significantly more effective than JSMA (see Section 2.5 for an eval-
8Selecting the index i that minimizes δi is simpler, but it yields results with 1.5× higher L0

distortion.

24

uation). It is also efficient: we introduce optimizations that make it about as fast as
our L2 attack with a single starting point on MNIST and CIFAR; it is substantially
slower on ImageNet. Instead of starting gradient descent in each iteration from the
initial image, we start the gradient descent from the solution found on the previous
iteration (“warm-start”). This dramatically reduces the number of rounds of gradient
descent needed during each iteration, as the solution with k pixels held constant is
often very similar to the solution with k + 1 pixels held constant.

Figure 2.3 shows the L0 attack applied to one digit of each source class, targeting each
target class, on the MNIST dataset. The attacks are visually noticeable, implying
the L0 attack is more difficult than L2. Perhaps the worst case is that of a 7 being
made to classify as a 6; interestingly, this attack for L2 is one of the only visually
distinguishable attacks. Almost no differences are noticeable for CIFAR.

2.4.3 Our L∞ Attack

The L∞ distance metric is not fully differentiable and standard gradient descent does
not perform well for it. We experimented with naively optimizing

minimize c · f(x+ δ) + ‖δ‖∞

However, we found that gradient descent produces very poor results: the ‖δ‖∞ term
only penalizes the largest (in absolute value) entry in δ and has no impact on any of
the other. As such, gradient descent very quickly becomes stuck oscillating between
two suboptimal solutions. Consider a case where δi = 0.5 and δj = 0.5− ε. The L∞
norm will only penalize δi, not δj, and ∂

∂δj
‖δ‖∞ will be zero at this point. Thus, the

gradient imposes no penalty for increasing δj, even though it is already large. On
the next iteration we might move to a position where δj is slightly larger than δi, say
δi = 0.5 − ε′ and δj = 0.5 + ε′′, a mirror image of where we started. In other words,
gradient descent may oscillate back and forth across the line δi = δj = 0.5, making it
nearly impossible to make progress.

We resolve this issue using an iterative attack. We replace the L2 term in the ob-
jective function with a penalty for any terms that exceed τ (initially 1, decreasing in
each iteration). This prevents oscillation, as this loss term penalizes all large values
simultaneously. Specifically, in each iteration we solve

minimize c · f(x+ δ) + ·
∑
i

[
(δi − τ)+

]
After each iteration, if δi < τ for all i, we reduce τ by a factor of 0.9 and repeat;
otherwise, we terminate the search.

25

Target Classification (L0)
0 1 2 3 4 5 6 7 8 9

Ta
rg
et

C
la
ss
ifi
ca
ti
on

0
1

2
3

4
5

6
7

8
9

Figure 2.3: Our L0 adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset with
that label.

26

Best Case Average Case Worst Case

MNIST CIFAR MNIST CIFAR MNIST CIFAR
mean prob mean prob mean prob mean prob mean prob mean prob

Our L0 8.5 100% 5.9 100% 16 100% 13 100% 33 100% 24 100%
JSMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%
JSMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%

Our L2 1.36 100% 0.17 100% 1.76 100% 0.33 100% 2.60 100% 0.51 100%
Deepfool 2.11 100% 0.85 100% − - − - − - − -

Our L∞ 0.13 100% 0.0092 100% 0.16 100% 0.013 100% 0.23 100% 0.019 100%
Fast Gradient Sign 0.22 100% 0.015 99% 0.26 42% 0.029 51% − 0% 0.34 1%
Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 0.26 100% 0.023 100%

Table 2.4: Comparison of the three variants of targeted attack to previous work for
our MNIST and CIFAR models. When success rate is not 100%, the mean is only
over successes.

Again we must choose a good constant c to use for the L∞ adversary. We take the
same approach as we do for the L0 attack: initially set c to a very low value and run
the L∞ adversary at this c-value. If it fails, we double c and try again, until it is
successful. We abort the search if c exceeds a fixed threshold.

Using “warm-start” for gradient descent in each iteration, this algorithm is about as
fast as our L2 algorithm (with a single starting point).

Figure 2.4 shows the L∞ attack applied to one digit of each source class, targeting
each target class, on the MNSIT dataset. While most differences are not visually
noticeable, a few are. Again, the worst case is that of a 7 being made to classify as a
6.

No attack is visually distinguishable from the baseline image on CIFAR.

2.5 Attack Evaluation

We compare our targeted attacks to the best results previously reported in prior
publications, for each of the three distance metrics.

We re-implement Deepfool, fast gradient sign, and iterative gradient sign. For fast
gradient sign, we search over ε to find the smallest distance that generates an adver-
sarial example; failures is returned if no ε produces the target class. Our iterative
gradient sign method is similar: we search over ε (fixing α = 1

256
) and return the

smallest successful.

For JSMA we use the implementation in CleverHans [98] with only slight modification
(we improve performance by 50× with no impact on accuracy).

27

Target Classification (L∞)
0 1 2 3 4 5 6 7 8 9

Ta
rg
et

C
la
ss
ifi
ca
ti
on

0
1

2
3

4
5

6
7

8
9

Figure 2.4: Our L∞ adversary applied to the MNIST dataset performing a targeted
attack for every source/target pair. Each digit is the first image in the dataset with
that label.

28

Untargeted Average Case Least Likely

mean prob mean prob mean prob

Our L0 48 100% 410 100% 5200 100%
JSMA-Z - 0% - 0% - 0%
JSMA-F - 0% - 0% - 0%

Our L2 0.32 100% 0.96 100% 2.22 100%
Deepfool 0.91 100% - - - -

Our L∞ 0.004 100% 0.006 100% 0.01 100%
FGS 0.004 100% 0.064 2% - 0%
IGS 0.004 100% 0.01 99% 0.03 98%

Table 2.5: Comparison of the three variants of targeted attack to previous work for
the Inception v3 model on ImageNet. When success rate is not 100%, the mean is
only over successes.

JSMA is unable to run on ImageNet due to an inherent significant computational
cost: recall that JSMA performs search for a pair of pixels p, q that can be changed
together that make the target class more likely and other classes less likely. ImageNet
represents images as 299× 299× 3 vectors, so searching over all pairs of pixels would
require 236 work on each step of the calculation. If we remove the search over pairs
of pixels, the success of JSMA falls off dramatically. We therefore report it as failing
always on ImageNet.

We report success if the attack produced an adversarial example with the correct
target label, no matter how much change was required. Failure indicates the case
where the attack was entirely unable to succeed.

We evaluate on the first 1, 000 images in the test set on CIFAR and MNSIT. On Ima-
geNet, we report on 1, 000 images that were initially classified correctly by Inception
v3 9. On ImageNet we approximate the best-case and worst-case results by choosing
100 target classes (10%) at random.

The results are found in Table 2.4 for MNIST and CIFAR, and Table 2.5 for ImageNet.
10

For each distance metric, across all three datasets, our attacks find closer adversarial
9Otherwise the best-case attack results would appear to succeed extremely often artificially low

due to the relatively low top-1 accuracy
10The complete code to reproduce these tables and figures is available online at http://nicholas.

carlini.com/code/nn_robust_attacks.

http://nicholas.carlini.com/code/nn_robust_attacks
http://nicholas.carlini.com/code/nn_robust_attacks

29

Target Classification
0 1 2 3 4 5 6 7 8 9

D
is
ta
nc
e
M
et
ri
c

L
∞

L
2

L
0

Figure 2.5: Targeted attacks for each of the 10 MNIST digits where the starting image
is totally black for each of the three distance metrics.

examples than the previous state-of-the-art attacks, and our attacks never fail to find
an adversarial example. Our L0 and L2 attacks find adversarial examples with 2×
to 10× lower distortion than the best previously published attacks, and succeed with
100% probability. Our L∞ attacks are comparable in quality to prior work, but their
success rate is higher. Our L∞ attacks on ImageNet are so successful that we can
change the classification of an image to any desired label by only flipping the lowest
bit of each pixel, a change that would be impossible to detect visually.

As the learning task becomes increasingly more difficult, the previous attacks produce
worse results, due to the complexity of the model. In contrast, our attacks perform
even better as the task complexity increases. We have found JSMA is unable to find
targeted L0 adversarial examples on ImageNet, whereas ours is able to with 100%
success.

It is important to realize that the results between models are not directly comparable.
For example, even though a L0 adversary must change 10 times as many pixels to
switch an ImageNet classification compared to a MNIST classification, ImageNet has
114× as many pixels and so the fraction of pixels that must change is significantly
smaller.

Generating synthetic digits. With our targeted adversary, we can start from any
image we want and find adversarial examples of each given target. Using this, in
Figure 2.5 we show the minimum perturbation to an entirely-black image required to
make it classify as each digit, for each of the distance metrics.

30

Target Classification
0 1 2 3 4 5 6 7 8 9

D
is
ta
nc
e
M
et
ri
c

L
∞

L
2

L
0

Figure 2.6: Targeted attacks for each of the 10 MNIST digits where the starting image
is totally white for each of the three distance metrics.

This experiment was performed for the L0 task previously [102], however when mount-
ing their attack, “for classes 0, 2, 3 and 5 one can clearly recognize the target digit.”
With our more powerful attacks, none of the digits are recognizable. Figure 2.6
performs the same analysis starting from an all-white image.

Notice that the all-black image requires no change to become a digit 1 because it is
initially classified as a 1, and the all-white image requires no change to become a 8
because the initial image is already an 8.

Runtime Analysis. We believe there are two reasons why one may consider the run-
time performance of adversarial example generation algorithms important: first, to
understand if the performance would be prohibitive for an adversary to actually mount
the attacks, and second, to be used as an inner loop in adversarial re-training [34].

Comparing the exact runtime of attacks can be misleading. For example, we have
parallelized the implementation of our L2 adversary allowing it to run hundreds of
attacks simultaneously on a GPU, increasing performance from 10× to 100×. How-
ever, we did not parallelize our L0 or L∞ attacks. Similarly, our implementation of
fast gradient sign is parallelized, but JSMA is not. We therefore refrain from giving
exact performance numbers because we believe an unfair comparison is worse than
no comparison.

All of our attacks, and all previous attacks, are plenty efficient to be used by an
adversary. No attack takes longer than a few minutes to run on any given instance.

31

When compared to L0, our attacks are 2 × −10× slower than our optimized JSMA
algorithm (and significantly faster than the un-optimized version). Our attacks are
typically 10×−100× slower than previous attacks for L2 and L∞, with exception of
iterative gradient sign which we are 10× slower.

32

Chapter 3

Attack Application: Breaking
Defenses

Having developed a strong approach to constructing adversarial examples, we now
turn to applying this attack algorithm to various tasks.

3.1 Assorted Defenses

3.1.1 Distillation as a Defense

Distillation was initially proposed as an approach to reduce a large model (the
teacher) down to a smaller distilled model [45]. At a high level, distillation works by
first training the teacher model on the training set in a standard manner. Then, we
use the teacher to label each instance in the training set with soft labels (the output
vector from the teacher network). For example, while the hard label for an image of
a hand-written digit 7 will say it is classified as a seven, the soft labels might say it
has a 80% chance of being a seven and a 20% chance of being a one. Then, we train
the distilled model on the soft labels from the teacher, rather than on the hard labels
from the training set. Distillation can potentially increase accuracy on the test set as
well as the rate at which the smaller model learns to predict the hard labels [45, 82].

Defensive distillation uses distillation in order to increase the robustness of a neural
network, but with two significant changes. First, both the teacher model and the
distilled model are identical in size — defensive distillation does not result in smaller
models. Second, and more importantly, defensive distillation uses a large distillation
temperature (described below) to force the distilled model to become more confident

33

Best Case Average Case Worst Case

MNIST CIFAR MNIST CIFAR MNIST CIFAR
mean prob mean prob mean prob mean prob mean prob mean prob

Our L0 10 100% 7.4 100% 19 100% 15 100% 36 100% 29 100%

Our L2 1.7 100% 0.36 100% 2.2 100% 0.60 100% 2.9 100% 0.92 100%

Our L∞ 0.14 100% 0.002 100% 0.18 100% 0.023 100% 0.25 100% 0.038 100%

Table 3.1: Comparison of our attacks when applied to defensively distilled networks.
Compare to Table 2.4 for undistilled networks.

in its predictions.

Recall that, the softmax function is the last layer of a neural network. Defensive
distillation modifies the softmax function to also include a temperature constant T :

softmax(x, T)i =
exi/T∑
j e

xj/T

It is easy to see that softmax(x, T) = softmax(x/T, 1). Intuitively, increasing the
temperature causes a “softer” maximum, and decreasing it causes a “harder” maxi-
mum. As the limit of the temperature goes to 0, softmax approaches max; as the
limit goes to infinity, softmax(x) approaches a uniform distribution.

Defensive distillation proceeds in four steps:

1. Train a network, the teacher network, by setting the temperature of the softmax
to T during the training phase.

2. Compute soft labels by apply the teacher network to each instance in the train-
ing set, again evaluating the softmax at temperature T .

3. Train the distilled network (a network with the same shape as the teacher
network) on the soft labels, using softmax at temperature T .

4. Finally, when running the distilled network at test time (to classify new inputs),
use temperature 1.

Fragility of existing attacks

We briefly investigate the reason that existing attacks fail on distilled networks, and
find that existing attacks are very fragile and can easily fail to find adversarial exam-
ples even when they exist.

34

L-BFGS and Deepfool fail due to the fact that the gradient of F (·) is zero almost
always, which prohibits the use of the standard objective function.

When we train a distilled network at temperature T and then test it at temperature
1, we effectively cause the inputs to the softmax to become larger by a factor of T .
By minimizing the cross entropy during training, the output of the softmax is forced
to be close to 1.0 for the correct class and 0.0 for all others. Since Z(·) is divided
by T , the distilled network will learn to make the Z(·) values T times larger than
they otherwise would be. (Positive values are forced to become about T times larger;
negative values are multiplied by a factor of about T and thus become even more
negative.) Experimentally, we verified this fact: the mean value of the L1 norm of
Z(·) (the logits) on the undistilled network is 5.8 with standard deviation 6.4; on the
distilled network (with T = 100), the mean is 482 with standard deviation 457.

Because the values of Z(·) are 100 times larger, when we test at temperature 1,
the output of F becomes ε in all components except for the output class which has
confidence 1 − 9ε for some very small ε (for tasks with 10 classes). In fact, in most
cases, ε is so small that the 32-bit floating-point value is rounded to 0. For similar
reasons, the gradient is so small that it becomes 0 when expressed as a 32-bit floating-
point value.

This causes the L-BFGS minimization procedure to fail to make progress and termi-
nate. If instead we run L-BFGS with our stable objective function identified earlier,
rather than the objective function lossF,l(·) suggested by Szegedy et al. [125], L-BFGS
does not fail. An alternate approach to fixing the attack would be to set

F ′(x) = softmax(Z(x)/T)

where T is the distillation temperature chosen. Then minimizing lossF ′,l(·) will not
fail, as now the gradients do not vanish due to floating-point arithmetic rounding.
This clearly demonstrates the fragility of using the loss function as the objective to
minimize.

JSMA-F (whereby we mean the attack uses the output of the final layer F (·)) fails
for the same reason that L-BFGS fails: the output of the Z(·) layer is very large and
so softmax becomes essentially a hard maximum. This is the version of the attack
that Papernot et al. use to attack defensive distillation in their paper [103].

JSMA-Z (the attack that uses the logits) fails for a completely different reason. Recall
that in the Z(·) version of the attack, we use the input to the softmax for computing
the gradient instead of the final output of the network. This removes any potential
issues with the gradient vanishing, however this introduces new issues. This version
of the attack is introduced by Papernot et al. [102] but it is not used to attack

35

distillation; we provide here an analysis of why it fails.

Since this attack uses the Z values, it is important to realize the differences in relative
impact. If the smallest input to the softmax layer is −100, then, after the softmax
layer, the corresponding output becomes practically zero. If this input changes from
−100 to −90, the output will still be practically zero. However, if the largest input
to the softmax layer is 10, and it changes to 0, this will have a massive impact on the
softmax output.

Relating this to parameters used in their attack, α and β represent the size of the
change at the input to the softmax layer. It is perhaps surprising that JSMA-Z
works on un-distilled networks, as it treats all changes as being of equal importance,
regardless of how much they change the softmax output. If changing a single pixel
would increase the target class by 10, but also increase the least likely class by 15,
the attack will not increase that pixel.

Recall that distillation at temperature T causes the value of the logits to be T times
larger. In effect, this magnifies the sub-optimality noted above as logits that are
extremely unlikely but have slight variation can cause the attack to refuse to make
any changes.

Fast Gradient Sign fails at first for the same reason L-BFGS fails: the gradients are
almost always zero. However, something interesting happens if we attempt the same
division trick and divide the logits by T before feeding them to the softmax function:
distillation still remains effective [99]. We are unable to explain this phenomenon.

Applying Our Attacks

When we apply our attacks to defensively distilled networks, we find distillation
provides only marginal value. We re-implement defensive distillation on MNIST and
CIFAR-10 as described [103] using the same model we used for our evaluation above.
We train our distilled model with temperature T = 100, the value found to be most
effective [103].

Table 3.1 shows our attacks when applied to distillation. All of the previous attacks
fail to find adversarial examples. In contrast, our attack succeeds with 100% success
probability for each of the three distance metrics.

When compared to Table 2.4, distillation has added almost no value: our L0 and L2

attacks perform slightly worse, and our L∞ attack performs approximately equally.
All of our attacks succeed with 100% success.

36

Effect of Temperature

In the original work, increasing the temperature was found to consistently reduce
attack success rate. On MNIST, this goes from a 91% success rate at T = 1 to a 24%
success rate for T = 5 and finally 0.5% success at T = 100.

We re-implement this experiment with our improved attacks to understand how the
choice of temperature impacts robustness. We train models with the temperature
varied from t = 1 to t = 100.

When we re-run our implementation of JSMA, we observe the same effect: attack
success rapidly decreases. However, with our improved L2 attack, we see no effect of
temperature on the mean distance to adversarial examples: the correlation coefficient
is ρ = −0.05. This clearly demonstrates the fact that increasing the distillation
temperature does not increase the robustness of the neural network, it only causes
existing attacks to fail more often.

Transferability

Recent work has shown that an adversarial example for one model will often transfer
to be an adversarial on a different model, even if they are trained on different sets
of training data [125, 34], and even if they use entirely different algorithms (i.e.,
adversarial examples on neural networks transfer to random forests [100]).

Therefore, any defense that is able to provide robustness against adversarial examples
must somehow break this transferability property; otherwise, we could run our attack
algorithm on an easy-to-attack model, and then transfer those adversarial examples
to the hard-to-attack model.

Even though defensive distillation is not robust to our stronger attacks, we demon-
strate a second break of distillation by transferring attacks from a standard model to
a defensively distilled model.

We accomplish this by finding high-confidence adversarial examples, which we define
as adversarial examples that are strongly misclassified by the original model. Instead
of looking for an adversarial example that just barely changes the classification from
the source to the target, we want one where the target is much more likely than any
other label.

Recall the loss function defined earlier for L2 attacks:

f(x′) = max(max{Z(x′)i : i 6= t} − Z(x′)t,−κ).

37

●

●

●

●

● ●
● ● ●

●

●
●

●

●

●

●

●
●

●

●
●

0 20 40 60 80 100

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Distillation Temperature

M
e
a
n
 A

d
v
e
rs

a
ri

a
l
D

is
ta

n
c
e

Figure 3.1: Mean distance to targeted (with random target) adversarial examples
for different distillation temperatures on MNIST. Temperature is uncorrelated with
mean adversarial example distance.

The purpose of the parameter κ is to control the strength of adversarial examples:
the larger κ, the stronger the classification of the adversarial example. This allows us
to generate high-confidence adversarial examples by increasing κ.

We first investigate if our hypothesis is true that the stronger the classification on the
first model, the more likely it will transfer. We do this by varying κ from 0 to 40.

Our baseline experiment uses two models trained on MNIST as described in Sec-
tion 2.2, with each model trained on half of the training data. We find that the
transferability success rate increases linearly from κ = 0 to κ = 20 and then plateaus
at near-100% success for κ ≈ 20, so clearly increasing κ increases the probability of a
successful transferable attack.

38

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Value of k

P
ro

b
a
b
ili

ty
 A

d
v
e
rs

a
ri

a
l
E

x
a
m

p
le

 T
ra

n
s
fe

rs
,
B

a
s
e
lin

e

Untargetted

Targetted

Figure 3.2: Probability that adversarial examples transfer from one model to another,
for both targeted (the adversarial class remains the same) and untargeted (the image
is not the correct class).

We then run this same experiment only instead we train the second model with
defensive distillation, and find that adversarial examples do transfer. This gives us
another attack technique for finding adversarial examples on distilled networks.

However, interestingly, the transferability success rate between the unsecured model
and the distilled model only reaches 100% success at κ = 40, in comparison to the
previous approach that only required κ = 20.

We believe that this approach can be used in general to evaluate the robustness of
defenses, even if the defense is able to completely block flow of gradients to cause our
gradient-descent based approaches from succeeding.

39

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

Value of k

P
ro

b
a
b
ili

ty
 A

d
v
e
rs

a
ri

a
l
E

x
a
m

p
le

 T
ra

n
s
fe

rs
,
D

is
ti
lle

d

Untargetted

Targetted

Figure 3.3: Probability that adversarial examples transfer from the baseline model to
a model trained with defensive distillation at temperature 100.

3.1.2 MagNet

MagNet [83] was recently proposed as a defense to adversarial examples under the
grey box threat model: here, the adversary is aware that MagNet is being used to
secure a given classifier, as well as the parameters of the classifier, but is not aware
of the parameters of the defensive models. MagNet has two defense components:

1. The detector examines inputs and decides if they are adversarial or benign.
There can be multiple detectors, in which case if any report “adversarial” the
input is rejected.

2. The reformer takes inputs classified as benign by the detector(s) and reforms
them to remove any remaining minor adversarial nature to the instances. The

40

defender trains multiple reformers and selects one at random, to prevent the
adversary from learning its parameters.

The authors argue these defenses complement each other: the detector should be
able to detect any adversarial examples with large distortion and are far away from
the true data manifold. The reformer takes instances which are close to the data
manifold and maps them directly on to the manifold to remove any minor adversarial
perturbations that may not have been detected.

The specific instantiation of the detector and reformer suggested by the authors are
based on auto-encoders. Given an auto-encoder AE, to detect if an input is adver-
sarial, compare the mean squared error ‖x − AE(x)‖2 with a threshold τ chosen to
minimize the false positive rate. On CIFAR, the authors suggest one further detector:
compute the Jensen-Shannon divergence JSD(F (x)/T, F (AE(x))/T) with tempera-
ture T (set to 10 and 40), and report “adversarial” if the difference is greater than a
different threshold τ ′, also chosen to minimize the false positive rate.

Similarly, to reform an adversarial example run it through the auto-encoder and let
x ← AE(x): since the auto-encoder is trained to reconstruct typical instances, this
operation projects it back to the data manifold.

Break

We demonstrate MagNet is not robust by generating transferable adversarial exam-
ples with our L2 attack. To do this, we (as the adversary) train 32 local auto-encoders
to use as detectors and reformers (different than the 16 the defender will use). To gen-
erate adversarial examples, we modify the optimization formulation to the following,
where reformers are denoted Rj and the detectors Dj:

minimize ‖x′ − x‖2
2 + c · `c(x′) + d · `d(x′)

where the classifier loss function `c is defined as

`c(x
′) =

∑
j

max(max
i 6=t

Z(Rj(x
′))i − Z(Rj(x

′))t,−κ)

and the detector loss function `d is defined as

`d(x
′) =

∑
j

max(Dj(x
′)− τj, 0).

Here, c and d are chosen via binary search simultaneously. The threshold τj is chosen
such that 1% of validation images are detected as adversarial. (The true defender sets

41

Dataset Model Success Distortion (L2)

MNIST Unsecured 100% 1.64
MagNet 99% 2.25

CIFAR Unsecured 100% 0.30
MagNet 100% 0.45

Table 3.2: The success rate of our attack on MagNet. The last column shows the
mean distance to the nearest targeted adversarial example, across the first 1000 test
instances, with the target chosen uniformly at random from the incorrect classes.

their remote τ to reject only 0.1% of instances [83]: ours is more strict to help the
attack construct adversarial examples that fool the remote detectors more often.) We
set the confidence κ = 1 so that the adversarial examples are more likely to transfer.

We attack by performing 10000 iterations of gradient descent with a learning rate
of 10−2. We did not perform hyperparameter search (e.g., picking 32 auto-encoders,
κ = 1, τj = 0.01); improved search over these parameters would yield lower distortion
adversarial examples.

Figures 1 and 2 contain images of targeted adversarial examples on on the secured
network, and Table 3.2 the mean distortion required across the first 1000 instances
of the test set with targets chosen uniformly at random among the incorrect classes.

3.1.3 “Efficient Defenses against Adversarial Attack”

Efficient Defenses Against Adversarial Attacks [135] works by making two
modifications to standard neural networks. First, the authors propose use of the
Bounded ReLU activation function, defined as BReLU(x) = min(max(x, 0), 1) in-
stead of standard ReLU [93] which is unbounded above. Second, instead of training
on the standard training data {(xi, yi)}ni=1 they train on {(xi + Ni, yi)}ni=1 where
Ni ∼ N (0, σ2) is chosen fresh for each training instance. On MNIST, σ = 0.3; for
CIFAR, σ = 0.05. The authors claim that despite training on noise, it is successful
on the attacks presented in Chapter 2..

Break

We demonstrate this defense is not robust by generating adversarial examples with
our L2 attack. We do nothing more than apply the attack to the defended network.

42

Figure 3.4: MagNet targeted adversarial examples for each source/target pair of
images on MNIST. We achieve a 99% grey-box success (the 7 → 6 attack failed to
transfer).

Figure 3.5: MagNet targeted adversarial examples for each source/target pair of
images on CIFAR. We achieve a 100% grey-box success.

43

(a) (b) (c) (a) (b) (c)

Figure 3.6: Attacks on “Efficient Defenses...” on MNIST and CIFAR-10: (a) orig-
inal reference image; (b) adversarial example on the defense with only BReLU; (c)
adversarial example on the complete defense with Gaussian noise and BReLU.

Figure 3 contains images of adversarial examples on the secured network, and Ta-
ble 3.3 the mean distortion required across the first 1000 instances of the test set
with targets chosen at random among the incorrect classes.

On MNIST, the full defense increases mean distance to the nearest adversarial exam-
ple by 30%, and on CIFAR by 20%. This is in contrast with other forms of retraining,
such as adversarial retraining [77], which increase distortion by a significantly larger
amount. Interestingly, we find that BReLU provides some increase in distortion when
trained without Gaussian augmentation, but when trained with it, does not help.

3.1.4 APE-GAN

APE-GAN [117] works by constructing a pre-processing network G(·) trained to
project both normal instances and adversarial examples back to the data manifold
as done in MagNet. The network G is trained with a GAN instead of an auto-
encoder. Note that unlike a standard GAN which takes as input a noise vector and

44

Dataset Model Distortion (L2)

MNIST

Unsecured 2.04
BReLU 2.14
Gaussian Noise 2.66
Gaussian Noise + BReLU 2.58

CIFAR

Unsecured 0.56
BReLU 0.58
Gaussian Noise 0.66
Gaussian Noise + BReLU 0.67

Table 3.3: Neither adding Gaussian data augmentation during training nor using the
BReLU activation significantly increases robustness to adversarial examples on the
MNIST or CIFAR-10 datasets; success rate is always 100%.

must produce an output image, the generator in APE-GAN takes in an adversarial
example and must make it appear non-adversarial. During training, the authors train
on adversarial examples generated with the Fast Gradient Sign algorithm [34]; despite
this, the authors claim robustness on a wide range of attacks (including the attacks
presented in Chapter 2).

Break

We demonstrate APE-GAN is not robust by generating adversarial examples with
our L2 attack. We do nothing more than apply the attack to defended network. That
is, we change the loss function to account for the fact that the manifold-projection is
done before classification. Specifically, we let

`(x′) = max(max{Z(G(x′))i : i 6= t} − Z(G(x′))t, 0)

and solve the same minimization formulation.

Figure 4 contains images of adversarial examples on APE-GAN, and Table 3.4 the
mean distortion required across the first 1000 instances of the test set with targets
chosen at random among the incorrect classes.

Investigating APE-GAN’s Failure. Why are we able to fool APE-GAN?We com-
pare (a) the mean distance between the original inputs and the adversarial examples,
and (b) the mean distance between the original inputs and the recovered adversarial
examples. We find that the recovered adversarial examples are less similar to the

45

(a) (b) (c) (a) (b) (c)

Figure 3.7: Attacks on APE-GAN on MNIST and CIFAR-10: (a) original reference
image; (b) adversarial example on APE-GAN; (c) reconstructed adversarial example.

46

Dataset Model Success Distortion (L2)

MNIST Unsecured 100% 2.04
APE-GAN 100% 2.17

CIFAR Unsecured 100% 0.43
APE-GAN 100% 0.72

Table 3.4: APE-GAN does not significantly increase robustness to adversarial exam-
ples on the MNIST or CIFAR-10 datasets.

original than the adversarial examples. Specifically, the mean distortion between the
adversarial examples and the original instances is 4.3, whereas the mean distortion
between the recovered instances and original instances is 5.8.

This indicates that what our adversarial examples have done is fool the generator
G into giving reconstructions that are even less similar from the original than the
adversarial example. This effect can be observed in Figure 4: faint lines introduced
become more pronounced after reconstruction.

3.2 Detection Defenses

Next, we turn to the problem of breaking defenses that attempt to detect adversarial
examples. We consider the following defenses:

1. Grosse et al. [38] propose two schemes. The first uses a high-dimensional
statistical test (Maximum Mean Discrepancy) to detect adversarial examples.
The second trains the neural network with a new “adversarial” class.

2. Gong et al. [33] detect adversarial examples by building a second neural network
that detects adversarial examples from natural images.

3. Metzen et al [43] follow a similar approach, but train the detector on the inner
layers of the classifier.

4. Li et al. [70] propose two schemes. The first performs PCA on the internal
convolutional layers of the primary network and trains classifier to distinguish
between natural and adversarial data. The second scheme applies a mean-blur
to images before feeding them to the network.

5. Hendrycks & Gimpel [44] perform PCA on the pixels of an image and argue
adversarial examples place higher emphasis on larger components.

47

6. Feinman et al. [27] detect adversarial examples by keeping dropout [123] on
during evaluation; additionally, they construct a kernel density measure and
show that adversarial examples are drawn from a different distribution than
natural images.

7. Bhagoji et al. [10] show that adversarial images require use of more PCA
dimensions than natural images.

3.2.1 Attack Approach

In order to evaluate the robustness of each of the above defenses, we take three
approaches to target each of the three threat models introduced earlier.

Evaluate with a strong attack (Zero-Knowledge): In this step we generate
adversarial examples with our attack and check whether the defense can detect this
strong attack. This evaluation approach has the weakest threat model (the attacker
is not even aware the defense is in place), so any defense should trivially be able to
detect this attack. Failing this test implies that the second two tests will also fail.

Perform an adaptive, white-box attack (Perfect-Knowledge): The most
powerful threat model, we assume here the adversary has access to the detector and
can mount an adaptive attack. To perform this attack, we construct a new loss func-
tion, and generate adversarial examples that both fool the classifier and also evade
the detector.

The most difficult step in this attack is to construct a loss function that can be used
to generate adversarial examples. In some cases, such a loss function might not be
readily available. In other cases, one may exist, but it may not be well-suited to
performing gradient descent over. It is of critical importance to choose a good loss
function, and we describe how to construct such a loss function for each attack.

Construct a black-box attack (Limited-Knowledge): This attack is the most
difficult for the adversary. We assume the adversary knows what type of defense is in
place but does not know the detector’s paramaters. This evaluation is only interesting
if (a) the zero-knowledge attack failed to generate adversarial examples, and (b) the
perfect-knowledge attack succeeded. If the strong attack alone succeeded, when the
adversary was not aware of the defense, they could mount the same attack in this
black-box case. Conversely, if the white-box attack failed, then a black-box attack
will also fail (since the threat model is strictly harder).

48

In order to mount this attack, we rely on the transferability property: the attacker
trains a substitute model in the same way as the original model, but on a separate
training set (of similar size, and quality). The attacker can access substitute model’s
parameters, and performs a white-box attack on the substitute model. Finally, we
evaluate whether these adversarial examples transfer to the original model.

When the classifier and detector are separate models, we assume the adversary has
access to the classifier but not the detector (we are analyzing the increase in security
by using the detector).

If the detector and classifier are not separable (i.e., the classifier is trained to also act
as a detector), then to perform a fair evaluation, we compare the adversarial examples
generated with black-box access to the (unsecured) classifier to adversarial examples
generated with only black-box access to both the classifier and detector.

3.2.2 Secondary Classification Based Detection

We now turn to evaluating the ten defenses. The first category of detection schemes
we study build a second classifier which attempts to detect adversarial examples.
Three of the approaches take this direction.

For the remainder of this subsection, define F (·) to be the classification network and
D(·) to be the detection network. F (·) outputs a probability distribution over the 10
classes, and D : Rw·h·c → (−∞,∞) represent the logits of the likelihood the instance
is adversarial. That is, sigmoid(D(x)) : Rw·h·c → [0, 1] represents the probability the
instance is adversarial.

Adversarial Retraining

Grosse et al. [38] propose a variant on adversarial re-training. Instead of attempting
to classify the adversarial examples correctly (by adding adversarial examples to the
training set, with their correct labels), they introduce a new N + 1st class — solely
for adversarial examples — and train the network to detect adversarial examples.
Specifically, they propose the following procedure:

1. Train a model Fbase on the training data X0 = X .

2. Generate adversarial examples on model Fbase for each (xi, yi) ∈ X. Call these
examples x′i.

49

3. Let X1 = X0∪{(x′i, N+1) : i ∈ |X |} where N+1 is the new label for adversarial
examples.

4. Train a model Fsecured on the training data X1.

Gong et al. [33] construct a very similar defense technique. Instead of re-training the
model Fsecured completely, they construct a binary classifier D that simply learns to
partitions the instances x from x′ by training on the training set

X1 = {(xi, 1) : i ∈ |X |} ∪ {(x′i, 0) : i ∈ |X |}.

We re-implement these two defenses and find that adversarial retraining is able to
detect adversarial examples when generated with the fast gradient sign and JSMA
attacks with near-100% accuracy.

Zero-Knowledge Attack Evaluation. We train these two schemes on the entire
MNIST training set, using our attack to generate adversarial examples. In this way
we construct a model Fsecured and D.

We then construct adversarial examples for Fbase from each image in the test set
using our attack. Both approaches detect these previously unseen test adversarial
examples. Grosse et al. detects 98.5% of attacks as adversarial. Further, it classifies
half of the remaining 1.5% correctly. Gong et al. achieve 98% accuracy in detecting
adversarial examples.

Investigating further, we find that even if we train on adversarial examples generated
using an untargeted attack, both schemes can detect targeted adversarial examples.

Neither of these defenses claim robustness against CIFAR, however when we perform
this evaluation, we find to achieve a 70% detection rate requires a 40% false positive
rate. This alone can be seen as a failure of these approaches on CIFAR.

Perfect-Knowledge Attack Evaluation. Next, we evaluate these defenses as-
suming the adversary is aware of these defenses and parameters. That is, we directly
attack the defended model. Our experiments revealed that these defenses are ineffec-
tive and add almost no increase in robustness.

For Grosse’s defense, we use our attack on Fsecured to generate adversarial examples;
it succeeds 100% of the time. We computed the mean L2-distance from the original
sample to the adversarial example. Adversarial examples against Fbase are at average
L2 distance of 2.05 from the original sample; adversarial examples against Fsecured

50

have an average distance of 2.26. Thus the defense has not reduced the success rate
at generating adversarial examples, and has only increased the mean distortion by
10%.

Gong’s defense does not fare any better. To help construct adversarial examples that
will simultaneously fool Fbase and D, we define a new function G(·) that represents
the combination of the classifier (with logits ZF (·)) and detector (with logits ZD(·)).
In particular, we define

G(x)i =

{
ZF (x)i if i ≤ N

(ZD(x) + 1) ·max
j
ZF (x)j if i = N + 1

Effectively, G acts as a classifier on N +1 classes. It is constructed to have two useful
properties: if ZD(x) > 0 (i.e., if the detector classifies x as malicious) then we will
have

arg maxi(G(x)i) = N + 1

(where N is the new adversarial class), and if ZD(x) < 0 (i.e., if the detector classifies
x as natural) then we will have

arg maxi(G(x)i) = arg maxi(ZF (x)i).

Why did we choose this particular function G(·)? Recall from earlier that
when using a gradient-descent based attack algorithm, there is a constant c in the
loss function that trades off the relative importance of reducing the distance from the
natural instance vs. classifying the input as the target class. If the value of the loss
function changes by several orders of magnitude, no value of c will be optimal and
adversarial examples will be very hard to find. Therefore, we construct G so that it
is mostly linear.

Now we treat this function G as if it were a neural network, and feed it directly into
our attack algorithm instead of the function Z. It is easy to see that if an instance x′
is classified by G as label l ≤ N then both C(x′) = l and the detector classifies x′ as
natural (non-adversarial). This approach successfully generates adversarial examples
against Gong’s defense with 100% success. The mean L2 distortion of these adversarial
examples is 2.31, an improvement of about 10% over the unprotected scheme.

We therefore conclude neither of these schemes are effective on MNIST. While ad-
versarial examples are detectable with neural networks when not attempting to be
evasive, it is possible to construct evasive adversarial examples.

On CIFAR, the above attacks work in an identical manner and give very similar
results: the distortion is increased less than 5%.

51

Limited-Knowledge Attack Evaluation. For brevity, we only describe the at-
tack on Grosse’s scheme (Gong’s results are identical). We generate transferable
adversarial examples as described above. Instead of training one model on the com-
plete training set, we split the training set in half. We assume the first half is known
to the attacker and the second half is used by the defender to train their network.
Thus, we construct two models R1 and R2 each trained on half of the training data.
We treat R2 as the defender’s model (the target model for which we want to pro-
duce adversarial examples) and give the attacker white-box access to all parameters
of model R1. Then we apply our attack to each instance in the test set to generate
adversarial examples for R1, and we test whether they fool R2.

As a baseline, we applied this procedure to the unsecured model. The attack suc-
ceeded 98% of the time, with a mean L2 distortion of 5.1. Then, we generated two
secured models R1 and R2 implementing Grosse’s defense, and applied the same at-
tack. We observed a 98% success rate, with a mean L2 distortion of 5.3, which is
only 4% higher than the baseline. Therefore, we conclude that Grosse’s defense is
ineffective and can be attacked even by an attacker who does not the exact model
parameters of the secured model.

Examining Convolutional Layers

In contrast to the prior approach, which attempts to detect adversarial examples
based on the contents of the image itself, Metzen et al. [43] detect adversarial ex-
amples by looking at the inner convolutional layers of the network. They augment
the classification neural network with a detection neural network that takes its input
from various intermediate layers of the classification network. This detection network
is trained identically to Gong’s defense above. We refer interested readers to the orig-
inal paper for complete details on the detector setup [43]. This defense only argues
robustness against CIFAR, since it looks at the inner layers of a ResNet (which are
not usually used for MNIST).

We then train the detector by attaching it to the output of the first residual block as
done in [43]. We confirmed that their detector is able to detect adversarial examples
with 99% probability on simple attacks (fast gradient sign or JSMA).

Zero-Knowledge Attack Evaluation. We found training the detector to be very
difficult and highly sensitive; we experimented with different optimizers, hyper-parameters,
and initializers to reduce the effect of this.

For evaluation, we generate adversarial examples for each instance in the test set,
using our attack. The best detector we were able to train correctly obtains an 81%

52

true positive rate at 28% false positive rate. This is in stark contrast to the 99%
success at detecting simpler attacks, which highlights that weak attacks give a biased
view of defense robustness.

Similar to the prior defense (that also had a high false positive rate), this defense is
unable to perform well even when the adversary is not attempting to evade it.

Perfect-Knowledge Attack Evaluation. Our white-box attack completely de-
feats Metzen’s defense: it is able to produce adversarial examples that simultane-
ously are mis-classified by the original network and evade the detector. We generate
adversarial examples using our attack applied to the same function G(·) defined in
Section 3.2.2. The mean distance to adversarial examples increases from 0.169 L2

distortion on the unsecured model to 0.227 on the secured scheme, an improvement
of 34%. However, in absolute terms, the adversarial examples generated are still
indistinguishable from the original inputs.

Limited-Knowledge Attack Evaluation. To investigate if this defense is robust
to attacks in a black-box setting, we perform a standard transferability test as done
above. We split the training data in half, and train two detector models, one on each
half of the training data. Then, we attack the second detector given only white-box
access to the first detector.

On MNIST, we found that even low-confidence adversarial examples transfer 84%
of the time between the two detectors when the classifier network is known by the
adversary. By using high-confidence adversarial examples, the attack success rate can
be increased to 98% at the cost of increasing the mean distortion by a further 28%,
which is small enough that adversarial examples remain indistinguishable from the
original images.

3.2.3 Principal Component Analysis Detection

Principal Component Analysis (PCA) transforms a set of points in a n-dimensional
space to a new set of points in a k-dimensional space (k ≤ n) through a linear
transformation. We assume the reader is familiar with PCA for the remainder of this
section.

53

0 200 400 600 800
Component 1umber

10−18

10−14

10−10

10−6

10−2

0e
an

 A
bV

ol
ut

e
Va

lu
e

(lo
g

Vc
al

e)

Valid
AdverVarial

Figure 3.8: PCA on the MNIST dataset reveals a difference between natural images
and adversarial images, however this is caused by an artifact of MNIST: border pixels
on natural images are often 0 but slightly-positive on adversarial examples.

Input Image PCA

Hendrycks & Gimpel [44] use PCA to detect natural images from adversarial exam-
ples, finding that adversarial examples place a higher weight on the larger principal
components than natural images (and lower weight on the earlier principal compo-
nents).

Zero-Knowledge Attack Evaluation. We first reproduce their results by running
PCA on MNIST. To see if adversarial examples really do use larger principal compo-
nents more often, we compute how much each component is used. Let X1, . . . , Xn be
the training set instances. We define the score S(j) of the jth PCA component as

S(j) =
1

N

N∑
i=1

|PCA(Xi)j|.

We train a classification network on the training set and compute the component
scores S(1), . . . , S(784). Then, for each image in the test set, we find the nearest
adversarial example with our attack and we compute the component scores on these
adversarial examples. The results are plotted in Figure 3.8.

Our results agree with Hendrycks et. al [44]: there is no difference on the first princi-
pal components, but there is a substantial difference between natural and adversarial

54

instances on the later components. On the MNIST data set, their defense does detect
zero-knowledge attacks, if the attacker does not attempt to defeat the defense.

Looking Deeper. At first glance, this might lead us to believe that PCA is a
powerful and effective method for detecting adversarial examples. However, whenever
there are large abnormalities in the data, one must be careful to understand their
cause.

In this case, the reason for the difference is that there are pixels on the MNIST dataset
that are almost always set to 0. Since the MNIST dataset is constructed by taking
24x24 images and centering them (by center-of-mass) on a 28x28 grid, the majority
of the pixels on the boundary of natural images are zero. Because these border pixels
are essentially always zero for natural instances, the last principal components are
heavily concentrated on these border pixels. This explains why the last 74 principal
components (9.4% of the components) contribute less than 10−30 of the variance on
the training set.

In short, the detected difference between the natural and adversarial examples is
because the border pixels are nearly always zero for natural MNIST instances, whereas
typical adversarial examples have non-zero values on the border. While adversarial
examples are different from natural images on MNIST in this way, this is not an
intrinsic property of adversarial examples; it is instead due to an artifact of the
MNIST dataset. When we perform the above evaluation on CIFAR, there is no
detectable difference between adversarial examples and natural data. As a result, the
Hendrycks defense is not effective for CIFAR — it is specific to MNIST. Also, this
deeper understanding of why the defense works on MNIST suggests that adaptive
attacks might be able to avoid detection by simply leaving those pixels unchanged.

Perfect-Knowledge Attack Evaluation. We found that the Hendrycks defense
can be broken by a white-box attacker with knowledge of the defense. Details are
deferred to Section 3.2.3, where we break a strictly stronger defense. In particu-
lar, we found in our experiments that we can generate adversarial examples that are
restricted to change only the first k principal components (i.e., leave all later com-
ponents unchanged), and these adversarial examples that are not detected by the
Hendrycks defense.

Dimensionality Reduction

Bhagoji et al. [10] propose a defense based on dimensionality reduction: instead of
training a classifier on the original training data, they reduce the W · H · C = N -

55

0 200 400 600
Number of Principle Components

0.0

0.5

1.0

1.5

2.0

Me
an

 D
ist

an
ce

 to
 A

dv
er

sa
ria

l E
xa

mp
le Baseline (CNN)

PCA Model (CNN)
PCA Model (FC)

Figure 3.9: Performing dimensionality reduction increases the robustness of a 100-
100-10 fully-connected neural network, but is still less secure than just using an
unsecured CNN (the baseline). Dimensionality reduction does not help on a network
that is already convolutional.

dimensional input (e.g., 784 for MNIST) to a much smaller K-dimensional input (e.g.,
20) and train a classifier on this smaller input. The classifier uses a fully-connected
neural network: PCA loses spatial locality, so a convolutional network cannot be used
(we therefore consider only MNIST).

This defense restricts the attacker so they can only manipulate the first K compo-
nents: the classifier ignores other components. If adversarial examples rely on the
last principal components (as hypothesized), then restricting the attack to only the
first K principal components should dramatically increase the required distortion to
produce an adversarial example. We test this prediction empirically.

We reimplement their algorithm with their same model (a fully-connected network
with two hidden layers of 100 units). We train 26 models with different values of K,
ranging from 9 to 784 dimensions. Models with fewer than 25 dimensions have lower
accuracy; all models with more than 25 dimensions have 97% or higher accuracy.

Perfect-Knowledge Attack Evaluation. We evaluate Bhagoji’s defense by con-
structing targeted attacks against all 26 models we trained. We show the mean
distortion for each model in Figure 3.9. The most difficult model to attack uses only
the first 25 principal components; it is nearly 3× more robust than the model that

56

keeps all 784 principal components.

However, crucially, we find that even the model that keeps the first 25 principal
components is less robust than almost any standard, unsecured convolutional neural
network; an unprotected network achieves both higher accuracy (99.5% accuracy)
and better robustness to adversarial examples (measured by the mean distortion). In
summary, Bhagoji’s defense is not secure against white-box attacks.

Looking Deeper. Next, we show that this result is not an artifact of the network
architecture — it is not caused just because fully-connected network are less robust
than convolutional networks. We study a second algorithm that Bhagoji et al. present
but did not end up using, which combines PCA with a convolutional neural network
architecture. This allows us to perform an experiment where the network architecture
is held fixed, and the only change is whether dimensionality reduction is used or not.
In particular, instead of using the first K principal components as features for a fully-
connected network, they use PCA to map each image into the reduced-dimensionality
PCA space, and then immediately map it back to the image space. This effectively
projects the image into a reduced-dimension manifold. They train a convolutional
classifier on the projected images. This classifier achieves a higher accuracy (99%
when using at least 25 dimensions).

In our experiments we found that this approach is no more robust than an unsecured
convolutional network (applied to the original image), despite only using a limited
number of the principal components. We conclude that defenses based on limiting
the adversary to only the first principal components are not effective. It follows that
Hendrycks et. al ’s defense is broken as well, as the adversarial images generated in this
way change only the first K components and leave all later components unchanged.

Hidden Layer PCA

Li et al. [70] apply PCA to the values after inner convolutional layers of the neural
network, and use a cascade classifier to detect adversarial examples. Specifically,
they propose building a cascade classifier that accepts the input as natural only if
all classifiers Ci accept the input, but rejects it if any do. Each classifier Ci a linear
SVM that acts on the PCA of the ith convolutional layer of the network.

They evaluate their scheme on ImageNet. In the remainder of this section we demon-
strate their defense is not effective on MNIST and CIFAR; others have shown that
attacking an ImageNet classifier would be even easier [88].

57

Zero-Knowledge Attack Evaluation. Li et al. generated adversarial examples
with Szegedy et. al ’s L-BFGS algorithm [125] and found that the first linear SVM
achieved 80% true positive rate at 0% false positive rate – an ideal use-case for
a cascade classifier. We evaluated the effectiveness of their method at detecting
adversarial examples generated with our attack (when trained on adversarial examples
generated with our attack). For MNIST, their scheme only achieves a 62% true
positive rate at a 37% false positive rate (and 56% at 40% on CIFAR) on the first
layer of the cascade classifier. This results causes the cascade classifiers to have a
92% and 98% false positive rates on MNIST/CIFAR. We conclude that Li’s defense
is not effective against the our attack.

3.2.4 Distributional Detection

Next, we study two defenses that detect adversarial examples by comparing the dis-
tribution of natural images to the distribution of adversarial examples. They use
classical statistical methods to distinguish natural images from adversarial images.

Maximum Mean Discrepancy

Grosse et al. [38] consider a very powerful threat model: assume we are given two
sets of images S1 and S2, such that we know S1 contains only natural images, and we
know that S2 contains either all adversarial examples, or all natural images. They
ask the question: can we determine which of these two situations is the case?

To achieve this, they use the Maximum Mean Discrepancy (MMD) test [15, 37], a
statistical hypothesis test that answers the question “are these two sets drawn from
the same underlying distribution?”

The MMD is a theoretically useful technique that can be formally shown to always
detect a difference if one occurs. However, it is computationally infeasible to compute,
so a simple polynomial-time approximation is almost always used. In our experiments,
we use the same approximation used by Grosse et al. [37].

To test whether X1 and X2 are drawn from the same distribution, Grosse et al. use
Fisher’s permutation test [97] with the MMD test statistic. To do this, initially let
a = MMD(X1, X2). Then, shuffle the elements of X1 and X2 into two new sets
Y1 and Y2, and let b = MMD(Y1, Y2). If a < b then reject the null hypothesis, and
conclude they are drawn from different distributions. Repeat this process many times,
and repor the p-value as the fraction of times the null hypothesis is rejected.

As a first step, we verified that MMD correctly detects natural instances as being

58

natural. To do this, we assign X1 and X2 to be random samples from the test
set. The procedure above correctly fails to reject the null hypothesis (p > 0.05) in
distinguishing the two distributions.

Zero-Knowledge Attack Evaluation. We repeated this experiment, this time
producing targeted adversarial examples with our attack algorithm. Even when us-
ing a set of 100 images, MMD fails to reject the null hypothesis (p > 0.05). MMD also
fails to detect attacks on CIFAR, even with a set size as large as 10, 000 (which uses
every sample in the test set). Since MMD is one of the most powerful multidimen-
sional statistical tests, and even it is not effective, we argue that without significant
modification, statistical tests will not be able to detect adversarial examples.

Kernel Density Estimation

Feinman et al. [27] present a defense they call kernel density estimation. They use
a Gaussian Mixture Model to model outputs from the final hidden layer of a neural
network, and argue that adversarial examples belong to a different distribution than
that of natural images.

Specifically, given an instance x classified as label t, kernel density estimation esti-
mates the likelihood of x as

KDE(x) =
1

|Xt|
∑
s∈Xt

exp(
|F n−1(x)− F n−1(s)|2

σ2
)

where Xt is the set of training instances with label t and F n−1(x) is the output of
the final hidden layer on input x. The detector is therefore constructed by selecting
a threshold τ and reporting x as adversarial if KDE(x) < τ , otherwise reporting x
as natural.

The motivation behind this approach is that the later hidden layers of a neural net-
work have been shown to capture high-level semantic information about the input.
Therefore, using a simple classifier on this final layer will be more accurate than if it
were applied to the original input images, as the prior defense did.

Zero-Knowledge Attack Evaluation. Feinman’s defense is able to detect adver-
sarial examples generated with our attack on MNIST, but not on CIFAR. Looking
deeper, on CIFAR, for each image in the test set x and closest adversarial example x′,
we compare KDE(x′) to KDE(x). Surprisingly, we find that 80% of the time, the
adversarial example has a higher likelihood score than the original image.Therefore,

59

Feinman’s defense cannot work on CIFAR. In the remainder of this section, we show
how to break this defense on MNIST with increased distortion.

Perfect-Knowledge Attack Evaluation. To mount a white-box attack, we con-
struct a new minimization formulation that differs from the original only in that we
introduce a new loss term `2(x′) that penalizes being detected by the detector:

minimize ‖x− x′‖2
2 + c · (`(x′) + `2(x′))

where we define
`2(x′) = max(− log(KDE(x′))− ε, 0)

where ε controls the likelihood measure of the adversarial examples. In our attack,
we set ε to the median of − log(KDE(·)) on the training set, so that `2(x′) ≤ 0 if and
only if KDE(x′) is greater than half of the training instances KDE.

In practice, we mount this attack in two phases. First, we solve the original minimiza-
tion formulation to obtain an adversarial example x̂. Typically x̂ will be detected by
the detector, so in the second phase we modify it to no longer be detected: we use
this x̂ as the initial value of x′ in the above optimization problem and use gradient
descent to improve it. Performing this two-step optimization is useful to allow for
different constants c chosen for initially generating an adversarial example and for
making it not detected.

This approach is effective at generating adversarial examples for MNIST that are
not detected by Feinman’s defense. The mean distortion is 3.81, up from 2.05 on
an unsecured network. In order to implement this attack more efficiently, instead of
computing the KDE across all training instances during the inner optimization loop,
we randomly sample 100 instances (< 5% of the total) at first and use only those.
A distortion of 3.81 begins to allow humans to notice the adversarial nature of these
images (Figure 3.10).

We believe the reason this defense is so much more effective on MNIST than on
CIFAR because this defense is effectively a K-nearest-neighbor classifier with a neural
network feature extractor. In fact, prior work has shown that using an RBF kernel
SVM (essentially identical to what is done here) is effective at defending MNIST to
adversarial examples.

Limited-Knowledge Attack Evaluation. Again we only demonstrate the vul-
nerability on MNIST: the defense does not work on CIFAR. Note that our white-box
attack algorithm didn’t use the entire training set; it uses only a random sample of
100 instances from the training set (less than 5% of the training instances). This

60

Reference
Unsecured
Grosse
Gong
Metzen
Hendrycks
Bhagoji
Li
Grosse
Feinman
Feinman
Li

Figure 3.10: Summary of Results: adversarial examples on the MNIST and CIFAR
datasets for each defense we study. The first row corresponds to the original images.

hints that black-box attacks might succeed. This is indeed the case: we found that
when the defender uses the first 95% of the training data, and the last 5% of the
training data is left for the adversary (who uses it to form their own KDE estimator),
the attack still succeeds with equal distortion.

3.2.5 Normalization Detection

Dropout Randomization

Feinman et al. propose a second detection method called Bayesian neural network
uncertainty that measures the uncertainty of the neural network on the given input.
Instead of relying on the reported confidence of the network (which can easily be
controlled by an adversary), they add randomization to the network. The hope is
that a natural image will have the same (correct) label regardless of the random
values chosen, while adversarial examples won’t always be predicted with the same
label. Dropout [123] is used as the method of adding randomness.

To determine the uncertainty of the network on a given instance, we apply the ran-
domized network Fr (with dropout enabled) to the input L times. Then, the uncer-

61

tainty is defined as

U(x) =

(
1

L

L∑
i=1

‖Fr(x)‖

)
−

∥∥∥∥∥ 1

L

L∑
i=1

Fr(x)

∥∥∥∥∥
where we take ‖y‖ to mean yTy (the squared L2 norm). Notice that if the predictions
Fr(x) are the same every time, the uncertainty is 0. In other words, the uncertainty
is the sum of the variances of each component of the output, computed over the L
outputs from the randomized network.

To classify an input x as adversarial or natural, we pick a threshold τ and a number
of times to evaluate the network L and compute U(x). We have found the algorithm
is not sensitive to the choice of L as long as it is greater than 20 (and we pick L = 30
for the remainder of this section). We return “adversarial” if U(x) > τ and “natural”
otherwise.

When we run this detection scheme on the adversarial examples generated by the
FGS and JSMA attack algorithms on MNIST, it detects 96% of adversarial examples
with a false positive rate lower than 1% when τ = 0.02.

Zero-Knowledge Attack Evaluation. We generated adversarial examples with
our attack and find 75% of these adversarial examples are detected by this defense
on MNIST. Surprisingly, this defense is even more effective at detecting attacks on
CIFAR: it detects 95% of our adversarial examples.

Perfect-Knowledge Attack Evaluation. Our white-box attacks work by defining
an objective function that combines the model and detector. In an initial attempt,
we follow the approach taken to break the prior detection schemes, let

G(x)i =

{
Z(x)i if i ≤ N

(1 + U(x)− τ) ·max
i
Z(x)i if i = N + 1

(where N + 1 is the new adversarial class). This objective function is defined so that
if U(x) > τ (i.e., x is classified as adversarial by Feinman’s defense) then we will have

arg maxi(G(x)i) = N + 1,

and if U(x) < τ (i.e., x is classified as natural) then

arg maxi(G(x)i) = arg maxi(F (x)i).

We then attempt to generated adversarial examples by applying our attack to G(·).
However, this attack fails: the defense is still able to detect 60% of adversarial exam-
ples.

62

Looking Deeper. We investigate why this attack failed. Because values of the
function U(·) are computed by calling F (·) (and not Z(·)), there is no good constant
c that our algorithm can select. This causes gradient descent to perform poorly and
rarely returns successful adversarial examples.

Therefore, for this defense, we abandon the approach of constructing a single function
to optimize over and instead change the loss function ` used by the attack. Recall
that the typical loss function used (for a given network Z(·)) is

`Z(x′) = max(max{Z(x′)i : i 6= t} − Z(x′)t,−κ).

If every prediction Fr(x) of the randomized network produced a very similar result,
the uncertainty value U(x) would be very small.

We sample K different deterministic networks {Zj(·) : j ∈ [1, K]} each with different
randomness used during dropout. If we were able to have arg maxiZj(x)i = t for
every network j, for K big enough, it would be highly likely that Fr(x) would always
produce label t for any randomness. Thus, we construct a new loss function `′(x′) =∑K

j=1 `Zj
(x′) as the average of the loss functions on each fixed model Zj. Then we

use our attack with this revised loss function.

This approach successfully generates adversarial examples that fool the dropout de-
fense with 98% success. On MNIST, the mean l2 distortion is 3.68, up from the
baseline of 2.05. This is the largest distortion required by any of the defenses we
have evaluated; the distortion here is nearing the levels of human perceptibility (Fig-
ure 3.10). On CIFAR the distortion required again increases to 1.1, a factor of 5×
larger, but is still entirely imperceptible (Figure 3.10).

Limited-Knowledge Attack Evaluation. It turns out that adversarial examples
generated with the white-box approach transfer with high probability across models.
This is due to the fact that our white-box attack assumes we do not know the exact
randomization settings, and therefore construct adversarial examples that are effective
regardless of randomization. This is similar to the black-box threat model, where the
adversary does not have access to the model parameters.

However, to improve the rate of transferability, we again construct two models F (·)
and G(·) on different subsets of the training data. We provide the adversary access
to the parameters of F and use the white-box attack above to generate adversarial
examples for F ; we then test whether they fool G.

On MNIST, we find that adversarial examples generated with our algorithm transfer
to G with 90% success. We can increase the transfer rate to 98% at the cost of
increasing the mean distortion only 15%, to 4.23. While this 15% increase may seem

63

like a failure of this defense under the black-box threat model, we see this instead
as a success of defense under the white-box threat model. It has made constructing
adaptive white-box attacks nearly as hard as constructing black-box attacks.

In fact, we find that this is the reason why the CIFAR network has such a larger
increase in distortion: to obtain transferable cifar adversarial examples requires a
distortion of approximately 4× larger than non-transferable attacks. We consider
this the only defense we evaluate that is not completely broken (even though we still
can generate adversarial examples that are imperceptible on CIFAR).

Mean Blur

The second detection method proposed by Li et al. applies a 3 × 3 average filter
to blur the image before applying the classifier. The authors admit this defense is
“overly simplistic” but still argue it is effective at alleviating adversarial examples.
We confirm this simple defense can remove adversarial examples generated with fast
gradient sign, as they found in their paper.

Zero-Knowledge Attack Evaluation. When we use our attack, we find that this
defense effectively removes low-confidence adversarial examples: 80% of adversarial
examples (at a mean L2 distortion of 2.05) are no longer classified incorrectly.

This attack can even partially alleviate high-confidence adversarial examples. To
ensure they remain adversarial after blurring, we must increase the distortion by a
factor of 3×.

Perfect-Knowledge Attack Evaluation. Observe that taking the mean over ev-
ery 3 × 3 region on the image is the same as adding another convolutional layer to
the beginning of the neural network with one output channel that performs this cal-
culation. Given the network F , we define F ′(x) = F (blur(x)) and apply our attack
against F ′. When we do so, we find that the mean distance to adversarial examples
does not increase. Therefore, blurring is not an effective defense.

64

3.3 Lessons

3.3.1 Properties of adversarial examples

After examining these ten defenses, we now draw conclusions about the nature of the
space of adversarial examples and the ability to detect them with different approaches.

Randomization can increase required distortion. By far the most effective de-
fense technique, dropout randomization, made generating adversarial examples nearly
five times more difficult on CIFAR. In particular, it makes generating adversarial ex-
amples on the network as difficult as generating transferable adversarial examples, a
task known to be harder [100]. Additionally, if it were possible to find a way to elimi-
nate transferability, a randomization-based defense may be able to detect adversarial
examples. At this time, we believe this is the most promising direction of future work.

MNIST properties may not hold on CIFAR Most defenses that increased
the distortion on MNIST had a significantly lower distortion increase on CIFAR.
In particular, kernel density estimation, the most effective defense on MNIST, was
completely ineffective on CIFAR.

Detection neural networks can be bypassed. Across all of the defenses we
evaluate, the least effective schemes used another neural network (or more neural
network layers) to attempt to identify adversarial examples. Given that adversarial
examples can fool a single classifier, it makes sense that adversarial examples can fool
a classifier and detector.

Operating on raw pixel values is ineffective. Defenses that operated directly
on the pixel values were too simple to succeed. On MNIST, these defenses provided
reasonable robustness against weak attacks; however when evaluating on stronger
attacks, these defenses all failed. This should not be surprising: the reason neural
networks are used is that they are able to extract deep and meaningful features
from the input data. A simple linear detector is not effective at classification when
operating on raw pixel values, so it should not be surprising it does not work at
detecting adversarial examples. (This can be seen especially well on CIFAR, where
even weak attacks often succeed against defenses that operate on the input pixel
space.)

65

3.3.2 Recommendations for Defenses

We have several recommendations for how researchers proposing new defenses can
better evaluate their proposals. Many of these recommendations may appear to be
obvious, however most of the papers we evaluate do not follow any.

Evaluate using a strong attack. Evaluate proposed defenses using the strongest
attacks known. Do not use fast gradient sign or JSMA exclusively : most defenses that
detect these attacks fail against stronger attacks. In particular, Fast gradient sign
was not even designed to produce high-quality attacks: it was created to demonstrate
neural networks are highly linear. Using these algorithms as a first test is reasonable
first step, but is not sufficient. We recommend new schemes evaluate against strong
iterative attacks.

Demonstrate white-box attacks fail. It is not sufficient to show that a defense
can detect adversarial examples: one must also show that a adversary aware of the
defense can not generate attacks that evade detection. We show how to perform that
kind of evaluation: construct a differentiable function that is minimized when the
image fools the classifier and is treated as natural by the detector, and apply a strong
iterative attack (e.g., C&W’s attack) to this function.

Report false positive and true positive rates. When constructing a detection-
based defense, it is not enough to report the accuracy of the detector. A 60% accu-
racy can either be very useful (e.g., if it achieves a high true-positive rate at a 0%
false-positive rate) or entirely useless (e.g., if it detects most adversarial images as
adversarial at the cost of many natural images as adversarial). Instead, report both
the false positive and true positive rates. To allow for comparisons with other work,
we suggest reporting at least the true positive rate at 1% false positive rate; showing
a ROC curve would be even better.

Evaluate on more than MNIST We have found that defenses that only evalu-
ated on the MNIST dataset typically either (a) were unable to produce an accurate
classifier on CIFAR, (b) were entirely useless on CIFAR and were not able to detect
even the fast gradient sign attack, or (c) were even weaker against attack on CIFAR
than the other defenses we evaluated. Future schemes need to be evaluated on mul-
tiple data sets — evaluating their security solely on MNIST is not sufficient. While
we have found CIFAR to be a reasonable task for evaluating security, in the future

66

as defenses improve it may become necessary to evaluate on harder datasets (such as
ImageNet [25]).

Release source code. In order to allow others to build on their work, authors
should release the source code of their defenses. Not releasing source code only sets
back the research community and hinders future security analysis. Seven of the ten
we evaluate did not release their code (even after contacting the authors), requiring
us to reimplement the defenses before evaluation.

67

Chapter 4

Attack Application: Speech
Recognition

While image recognition has been the most popular domain for analyzing the security
of machine learning, it is by no means the only important domain. If we wish to
understand to what extent adversarial examples are a fundamental problem with
neural networks, and not just a fundamental problem with image recognition, we will
have to analyze other domains.

Image recognition can be seen as worst-case analysis for machine learning. The raw
image pixels are directly used as features of the machine learning algorithm with no (or
minimal) additional processing. Pixel values are uncorrelated and can be arbitrarily
changed.

We therefore analyze the security of a second domain with high internal correlation:
speech recognition. As discussed in Section 1.2.1, audio is represented as a sequence
of magnitudes which corresponds to the waveform to be played. This representation,
while exactly what is required to feed to a speaker, is difficult to analyze. Therefore,
almost all speech recognition systems operate on the frequency domain, instead of
raw audio samples.

In the space of speech recognition, an adversarial example corresponds to some audio
sound that a human would transcribe as one phrase, but a machine would transcribe
as a different phrase. Recent work on speech recognition is able to transcribe human
speech with a lower error rate than humans are able to. [132]

68

4.1 Preliminaries

Neural Networks & Speech Recognition We represent audio as aN -dimensional
vector ~x. Each element xi is a signed 16-bit value, sampled at 16KHz. To reduce the
input dimensionality, the Mel-Frequency Cepstrum (MFC) transform is often used as
a preprocessing step. The MFC splits the waveform into 50 frames per second, and
maps each frame to the frequency domain through an FFT.

Simple neural networks for classification take a single input and produce a single
output probability distribution over all possible output labels. However, in the case
of speech-to-text systems, there are exponentially many possible labels (i.e., there are
over 26N possible phrases of length N). This makes it computationally infeasible to
enumerate all possible phrases.

Therefore, speech recognition systems often use Recurrent Neural Networks (RNNs)
to map an audio waveform to a sequence of probability distributions over individual
characters, instead of over complete phrases An RNN is a function which maintains
a state vector with s0 = ~0, and

(si+1, y
i) = f(si, xi).

where input xi is one frame of input, and each output yi is a probability distribution
over which character was being spoken during that frame.

We use the DeepSpeech [41] speech-to-text system, which has recently been repro-
duced and made open source by Mozilla [90]. Internally, it consists of a preprocessing
layer which computes the MFC followed by a recurrent neural network using LSTMs
[46].

Connectionist Temporal ClassiïňĄcation (CTC) [36] is a method of training
a sequence-to-sequence neural network when the alignment between the input and
output sequences is not known. DeepSpeech uses CTC because the inputs are an
audio sample of a person speaking, and the unaligned transcribed sentences, where
the exact position of each word in the audio sample is not known.

We briefly summarize the key details and notation. We refer readers to [40] for an
excellent survey of CTC.

Let X be the input domain — a single frame of input — and Y be the range — the
characters a-z, space, and the special ε token (described below). Our neural network
f : XN → [0, 1]N ·|Y| takes a sequence of N frames x ∈ X and returns a probability
distribution over the output domain for each frame. We write f(~x)ij to mean that

69

the probability of frame xi ∈ X having label j ∈ Y . We use ~p to denote a phrase: a
sequence of characters 〈pi〉, where each pi ∈ Y .

While f(·) maps every frame to a probability distribution over the characters, this
does not directly give a probability distribution over all phrases. The probability of
a phrase is defined as a function of the probability of each character.

We begin with two short definitions. We say that a sequence π reduces to ~p if starting
with π and making the following two operations (in order) yields ~p:

1. Remove all sequentially duplicated tokens.

2. Remove all ε tokens.

For example, the sequence a a b ε ε b reduces to a b b.

Further, we say that π is an alignment of ~p with respect to ~y (formally: π ∈ Π(~p, ~y)) if
(a) π reduces to ~p, and (b) the length of π is equal to the length of ~y. The probability
of alignment π under ~y is the product of the likelihoods of each of its elements:

Pr(π|~y) =
∏
i

~yiπi

With these definitions, we can now define the probability of a given phrase ~p under
the distribution ~y = f(~x) as

Pr(~p|~y) =
∑

π∈Π(~p,~y)

Pr(π|~y) =
∑

π∈Π(~p,~y)

∏
i

~yiπi

As is usually done, the loss function used to train the network is the negative log
likelihood of the desired phrase:

CTC-Loss(f(~x), ~p) = − log Pr(~p|f(~x)).

Despite the exponential search space, this loss can be computed efficiently with dy-
namic programming [36].

Finally, to decode a vector ~y to a phrase ~p, we search for the phrase ~p that best aligns
to ~y.

C(~x) = arg max
~p

Pr(~p|f(~x)).

Because computing C(·) requires searching an exponential space, it is typically ap-
proximated in one of two ways.

70

• Greedy Decoding searches for the most likely alignment (which is easy to find)
and then reduces this alignment to obtain the transcribed phrase:

Cgreedy(~x) = reduce(arg max
π

Pr(π|f(~x)))

• Beam Search Decoding simultaneously evaluates the likelihood of multiple align-
ments π and then chooses the most likely phrase ~p under these alignments. We
refer the reader to [36] for a complete algorithm description.

Adversarial Examples. Evasion attacks have long been studied on machine learn-
ing classifiers [73, 7, 6], and are practical against many types of models [11].

When discussion neural networks, these evasion attacks are referred to as adversarial
examples [125]: for any input x, it is possible to construct a sample x′ that is similar
to x (according to some metric) but so that C(x) 6= C(x′) [11]. In the audio domain,
these untargeted adversarial example are usually not interesting: causing a speech-to-
text system to transcribe “test sentence” as the misspelled “test sentense” does little
to help an adversary.

Targeted Adversarial Examples are a more powerful attack: not only must the
classification of x and x′ differ, but the network must assign a specific label (chosen
by the adversary) to the instance x′. The purpose the following section is to show
that targeted adversarial examples are possible with only slight distortion on speech-
to-text systems.

4.2 Audio Adversarial Examples

Existing work on adversarial examples has focused largely on the space of images,
be it image classification [125], generative models on images [64], image segmentation
[2], face detection [115], or reinforcement learning by manipulating the images the RL
agent sees [8, 49]. In the discrete domain, there has been some study of adversarial
examples over text classification [53] and malware classification [39, 48].

There has been comparatively little study on the space of audio, where the most
common use is performing automatic speech recognition. In automatic speech recog-
nition, a neural network is given an audio waveform x and perform the speech-to-text
transform that gives the transcription y of the phrase being spoken (as used in, e.g.,
Apple Siri, Google Now, and Amazon Echo).

71

Constructing targeted adversarial examples on speech recognition has proven diffi-
cult. Hidden and inaudible voice commands [17, 136, 121] are targeted attacks, but
require synthesizing new audio and can not modify existing audio (analogous to the
observation that neural networks can make high confidence predictions for unrecog-
nizable images [96]). Other work has constructed standard untargeted adversarial
examples on different audio systems [59, 32]. The current state-of-the-art targeted
attack on automatic speech recognition is Houdini [22], which can only construct au-
dio adversarial examples targeting phonetically similar phrases, leading the authors
to state

targeted attacks seem to be much more challenging when dealing with
speech recognition systems than when we consider artificial visual systems.

Contributions. In this paper, we demonstrate that targeted adversarial examples
exist in the audio domain by attacking DeepSpeech [41], a state-of-the-art speech-to-
text transcription neural network. Figure 4.1 illustrates our attack: given any natural
waveform x, we are able to construct a perturbation δ that is nearly inaudible but so
that x+ δ is recognized as any desired phrase. We are able to achieve this by making
use of strong, iterative, optimization-based attacks based on the work of [19].

Our white-box attack is end-to-end, and operates directly on the raw samples that
are used as input to the classifier. This requires optimizing through the MFC pre-
processing transformation, which is has been proven to be difficult [17]. Our attack
works with 100% success, regardless of the desired transcription or initial source audio
sample.

By starting with an arbitrary waveform, such as music, we can embed speech into
audio that should not be recognized as speech; and by choosing silence as the target,
we can hide audio from a speech-to-text system.

Audio adversarial examples give a new domain to explore these intriguing properties
of neural networks. We hope others will build on our attacks to further study this field.
To facilitate future work, we make our code and dataset available1. Additionally, we
encourage the reader to listen to our audio adversarial examples.

4.2.1 Threat Model & Evaluation Benchmark

Threat Model. Given an audio waveform x, and target transcription y, our task
is to construct another audio waveform x′ = x + δ so that x and x′ sound similar

1http://nicholas.carlini.com/code/audio_adversarial_examples

http://nicholas.carlini.com/code/audio_adversarial_examples

72

Figure 4.1: Illustration of our attack: given any waveform, adding a small perturba-
tion makes the result transcribe as any desired target phrase.

(formalized below), but so that C(x′) = y. We report success only if the output of
the network matches exactly the target phrase (i.e., contains no misspellings or extra
characters).

We assume a white-box setting where the adversary has complete knowledge of the
model and its parameters. This is the threat model taken in most prior work [34]. Just
as later work in the space of images showed black-box attacks are possible [101, 51];
we expect that our attacks can be extended to black-box attacks. Additionally, we
assume our adversarial examples are directly classified without any noise introduced
(e.g., by playing them over-the-air and then recording them with a microphone).
Initial work on image-based adversarial examples also made this same assumption,
which was later shown unnecessary [66, 5].

Distortion Metric. How should we quantify the distortion introduced by a pertur-
bation δ? In the space of images, despite some debate [109], most of the community
has settled on lp metrics as discussed earlier, most often using l∞ [34, 77], the max-
imum amount any pixel has been changed. We follow this convention for our audio
attacks.

We measure distortion in Decibels (dB): a logarithmic scale that measures the relative
loudness of an audio sample:

dB(x) = max
i

20 · log10(xi).

To say that some signal is “10 dB” is only meaningful when comparing it relative to
some other reference point. In this section, we compare the dB level of the distortion

73

δ to the original waveform x. To make this explicit, we write

dBx(δ) = dB(δ)− dB(x).

Because the perturbation introduced is quieter than the original signal, the distortion
is a negative number, where smaller values indicate quieter distortions.

While this metric may not be a perfect measure of distortion, as long as the pertur-
bation is small enough, it will be imperceptible to humans. We encourage the reader
to listen to our adversarial examples to hear how similar they sound. Alternatively,
later, in Figure 4.2, we visualize two waveforms which transcribe to different phrases
overlaid.

Evaluation Benchmark. To evaluate the effectiveness of our attack, we construct
targeted audio adversarial examples on the first 100 test instances of the Mozilla
Common Voice dataset. For each sample, we target 10 different incorrect transcrip-
tions, chosen at random such that (a) the transcription is incorrect, and (b) it is
theoretically possible to reach that target.

4.2.2 An Initial Formulation

As is commonly done [11, 125], we formulate the problem of constructing an adver-
sarial example as an optimization problem: given a natural example x and any target
phrase t, we solve the formulation

minimize dBx(δ)

such that C(x+ δ) = t

x+ δ ∈ [−M,M]

Here M represents the maximum representable value (215 in our case). This constraint
can be handled by clipping the values of δ; for notational simplicity we omit it from
future formulation. Due to the non-linearity of the constraint C(x+ δ) = t, standard
gradient-descent techniques do not work well with this formulation.

Prior work [125] has resolved this through the reformulation

minimize dBx(δ) + c · `(x+ δ, t)

where the loss function `(·) is constructed so that `(x′, t) ≤ 0 ⇐⇒ C(x′) = t. The
parameter c trades off the relative importance of being adversarial and remaining
close to the original example.

74

Constructing a loss function `(·) with this property is much simpler in the domain
of images than in the domain of audio; on images, f(x′)y directly corresponds to the
probability of the input x′ having label y. In contrast, for audio, we use a second
decoding step to compute C(x′), and so constructing a loss function is nontrivial.

To begin, we use the CTC loss as the loss function: `(x′, t) = CTC-Loss(x′, t). For
this loss function, one direction of the implication holds true (i.e., `(x′, t) ≤ 0 =⇒
C(x′) = t) but the converse does not. Fortunately, this means that the resulting
solution will still be adversarial, it just may not be minimally perturbed.

The second difficulty we must address is that when using a l∞ distortion metric,
this optimization process will often oscillate around a solution without converging.
Therefore, instead we initially solve the formulation

minimize |δ|22 + c · `(x+ δ, t)

such that dBx(δ) ≤ τ

for some sufficiently large constant τ . Upon obtaining a partial solution δ∗ to the
above problem, we reduce τ and resume minimization, repeating until no solution
can be found.

To solve this formulation, we differentiate through the entire classifier to generate our
adversarial examples — starting from the audio sample, through the MFC, and neural
network, to the final loss. We solve the minimization problem over the complete
audio sample simultaneously. This is in contrast with prior work on hidden voice
commands [17], which were generated sequentially, one frame at a time. We solve the
minimization problem with the Adam [61] optimizer using a learning rate of 10, for
a maximum of 5, 000 iterations.

Evaluation. We are able to generate targeted adversarial examples with 100% suc-
cess for each of the source-target pairs with a mean perturbation of −31dB. For
comparison, this is roughly the difference between ambient noise in a quiet room and
a person talking [119]. We encourage the reader to listen to our audio adversarial
examples1. The 95% interval for distortion ranged from −15dB to −45dB.

The longer a phrase is, the more difficult it is to target: every extra character requires
approximately a 0.1dB increase in distortion. However, conversely, we observe that
the longer the initial source phrase is, the easier it is to make it target a given
transcription. These two effects roughly counteract each other (although we were not
able to measure this to a statistically significant degree of certainty).

Generating a single adversarial example requires approximately one hour of com-
pute time on commodity hardware (a single NVIDIA 1080Ti). However, due to the

75

massively parallel nature of GPUs, we are able to construct 10 adversarial examples
simultaneously, reducing the time for constructing any given adversarial example to
only a few minutes.2

4.2.3 Improved Loss Function

In Section 2.3.1, we demonstrate that the choice of loss function impacts the final
distortion of generated adversarial examples by a factor of 3 or more. We now show
the same holds in the audio domain, but to a lesser extent. While CTC loss is highly
useful for training the neural network, we show that a carefully designed loss function
allows generating better lower-distortion adversarial examples. For the remainder of
this section, we focus on generating adversarial examples that are only effective when
using greedy decoding.

In order to minimize the CTC loss (as done in § 4.2.2), an optimizer will make every
aspect of the transcribed phrase more similar to the target phrase. That is, if the
target phrase is “ABCD” and we are already decoding to “ABCX”, minimizing CTC
loss will still cause the “A” to be more “A”-like, despite the fact that the only important
change we require is for the “X” to be turned into a “D”.

This effect of making items classified more strongly as the desired label despite already
having that label led to the design of a more effective loss function:

`(y, t) = max

(
yt −max

t′ 6=t
yt′ , 0

)
.

Once the probability of item y is larger than any other item, the optimizer no longer
sees a reduction in loss by making it more strongly classified with that label.

We now adapt this loss function to the audio domain. Assume we were given an
alignment π that aligns the phrase ~p with the probabilities ~y. Then the loss of this
sequence is

L(~x, π) =
∑
i

`(f(~x)i, πi).

We make one further improvement on this loss function. The constant c used in the
minimization formulation determines the relative importance of being close to the
original symbol versus being adversarial. A larger value of c allows the optimizer to
place more emphasis on reducing `(·).

2Due to implementation difficulties, after constructing adversarial examples simultaneously, we
must fine-tune them individually afterwards.

76

In audio, consistent with prior work [17] we observe that certain characters are more
difficult for the transcription to recognize. When we choose only one constant c
for the complete phrase, it must be large enough so that we can make the most
difficult character be transcribed correctly. This forces c to be larger than necessary
for the easier-to-target segments. To resolve this issue, we instead use the following
formulation:

minimize |δ|22 +
∑
i

ci · Li(x+ δ, πi)

such that dBx(δ) < τ

where Li(~x, πi) = `(f(~x)i, πi). Computing the loss function requires choice of an
alignment π. If we were not concerned about runtime efficiency, in principle we could
try all alignments π ∈ Π(~p) and select the best one. However, this is computationally
prohibitive.

Instead, we use a two-step attack:

1. First, we let x0 be an adversarial example found using the CTC loss (following
§4.2.2). CTC loss explicitly constructs an alignment during decoding. We ex-
tract the alignment π that is induced by x0 (by computing π = arg maxi f(x0)i).
We fix this alignment π and use it as the target in the second step.

2. Next, holding the alignment π fixed, we generate a less-distorted adversarial
example x′ targeting the alignment π using the improved loss function above to
minimize |δ|22 +

∑
i ci · `i(x+ δ, π), starting gradient descent at the initial point

δ = x0 − x.

Evaluation. We repeat the evaluation from Section 4.2.2 (above), and generate
targeted adversarial examples for the first 100 instances of the Common Voice test
set. We are able to reduce the mean distortion from −31dB to −38dB. However,
the adversarial examples we generate are now only guaranteed to be effective against
a greedy decoder; against a beam-search decoder, the transcribed phrases are often
more similar to the target phrase than the original phrase, but do not perfectly match
the target.

Figure 4.2 shows two waveforms overlaid; the blue, thick line is the original waveform,
and the orange, thin line the modified adversarial waveform. This sample was chosen
randomly from among the training data, and corresponds to a distortion of −30dB.
Even visually, these two waveforms are nearly indistinguishable.

77

Figure 4.2: Original waveform (blue, thick line) with adversarial waveform (orange,
thin line) overlaid; it is nearly impossible to notice a difference. The audio waveform
was chosen randomly from the attacks generated and is 500 samples long.

4.2.4 Audio Information Density

Recall that the input waveform is converted into 50 frames per second of audio, and
DeepSpeech outputs one probability distribution of characters per frame. This places
the theoretical maximum density of audio at 50 characters per second. We are able
to generate adversarial examples that produce output at this maximum rate. Thus,
short audio clips can transcribe to a long textual phrase.

The loss function `(·) is simpler in this setting. The only alignment of ~p to ~y is
the assignment π = ~p. This means that the logit-based loss function can be applied
directly without first heuristically finding an alignment; any other alignment would
require omitting some character.

We perform this attack and find it is effective, although it requires a mean distortion
of −18dB.

4.2.5 Starting from Non-Speech

Not only are we able to construct adversarial examples that cause DeepSpeech to
transcribe the incorrect text for a person’s speech, we are also able to begin with
arbitrary non-speech audio sample and make that recognize as any target phrase.
No technical novelty on top of what was developed above is required to mount this
attack: we only let the initial audio waveform be non-speech.

To evaluate the effectiveness of this attack, we take five-second clips from classical
music (which contain no speech) and target phrases contained in the Common Voice
dataset. We have found that this attack requires more computational effort (we
perform 20, 000 iterations of gradient descent) and the total distortion is slightly
larger, with a mean of −20dB.

78

4.2.6 Targeting Silence

Finally, we find it is possible to hide speech by adding adversarial noise that causes
DeepSpeech to transcribe nothing. While performing this attack without modification
(by just targeting the empty phrase) is effective, we can slightly improve on this if we
define silence to be an arbitrary length sequence of only the space character repeated.
With this definition, to obtain silence, we should let

`(~x) =
∑
i

max

(
max
t∈{ε,“”}

f(~x)it − max
t′ 6∈{ε,“”}

f(~x)it′ , 0

)
.

We find that targeting silence is easier than targeting a specific phrase: with distortion
less than −45dB below the original signal, we can turn any phrase into silence.

This partially explains why it is easier to construct adversarial examples when starting
with longer audio waveforms than shorter ones: because the longer phrase contains
more sounds, the adversary can silence the ones that are not required and obtain a
subsequence that nearly matches the target. In contrast, for a shorter phrase, the
adversary must synthesize new characters that did not exist previously.

4.3 Audio Adversarial Example Properties

4.3.1 Evaluating Single-Step Methods

In contrast to prior work which views adversarial examples as “blind spots” of a neural
network, Goodfellow et al. [34] argue that adversarial examples are largely effective
due to the locally linear nature of neural networks.

The Fast Gradient Sign Method (FGSM) [34] demonstrates that this is true in the
space of images. FGSM takes a single step in the direction of the gradient of the loss
function. That is, given network F with loss function `, we compute the adversarial
example as

x′ ← x− ε · sign(∇x`(x, y)).

Intuitively, for each pixel in an image, this attack asks “in which direction should we
modify this pixel to minimize the loss?” and then taking a small step in that direction
for every pixel simultaneously. This attack can be applied directly to audio, changing
individual samples instead of pixels.

However, we find that this type of single-step attack is not effective on audio adversar-
ial examples: the inherent non-linearity introduced in computing the MFCCs, along

79

0 1000 2000 3000
L2 Distortion

0

50

100

150

200

250

CT
C

Lo
ss

Iterative Optimization
Fast Gradient Sign

Figure 4.3: CTC loss when interpolating between the original audio sample and the
adversarial example (blue, solid line), compared to traveling equally far in the direc-
tion suggested by the fast gradient sign method (orange, dashed line). Adversarial
examples exist far enough away from the original audio sample that solely relying on
the local linearity of neural networks is insufficient to construct targeted adversarial
examples.

80

with the depth of many rounds of LSTMs, introduces a large degree of non-linearity
in the output.

In Figure 4.3 we compare the value of the CTC loss when traveling in the direction of a
known adversarial example, compared to traveling in the fast gradient sign direction.
While initially (near the source audio sample), the fast gradient direction is more
effective at reducing the loss function, it quickly plateaus and does not decrease
afterwards. On the other hand, using iterative optimization-based attacks find a
direction that eventually leads to an adversarial example. (Only when the CTC loss
is below 10 does the phrase have the correct transcription.)

We do, however, observe that the FGSM can be used to produce untargeted audio ad-
versarial examples, that make a phrase misclassified (although optimization methods
again can do so with less distortion).

4.3.2 Robustness of Adversarial Examples

The minimally perturbed adversarial examples we construct in Section 4.2.2 can be
made non-adversarial by trivial modifications to the input. Here, we demonstrate
here that it is possible to construct adversarial examples robust to various forms of
noise.

Robustness to pointwise noise. Given an adversarial example x′, adding point-
wise random noise σ to x′ and returning C(x+ σ) will cause x′ to lose its adversarial
label, even if the distortion σ is small enough to allow normal examples to retain their
classification.

We generate a high confidence adversarial example x′ [11], and make use of Expecta-
tion over Transforms [5] to generate an adversarial example robust to this synthetic
noise at −30dB. The adversarial perturbation increases by approximately 10dB when
we do this.

Robustness to MP3 compression. Following [4], we make use of the straight-
through estimator [9] to construct adversarial examples robust to MP3 compression.
We generate an adversarial example x′ such that C(MP3(x′)) is classified as the target
label by computing gradients of the CTC-Loss assuming that the gradient of the MP3
compression is the identity function. While individual gradient steps are likely not
correct, in aggregate the gradients average out to become useful. This allows us to
generate adversarial examples with approximately 15dB larger distortion that remain
robust to MP3 compression.

81

4.4 Open Questions

Can these attacks be played over-the-air? Image-based adversarial examples
have been shown to be feasible in the physical world [66, 5]. In the audio space, both
hidden voice commands and Dolphin Attack’s inaudible voice commands are effective
over-the-air when played by a speaker and recorded by a microphone [17, 136].

The audio adversarial examples we construct above do not remain adversarial after
being played over-the-air, and therefore present a limited real-world threat; however,
just as the initial work on image-based adversarial examples did not consider the
physical channel and only later was it shown to be possible, we believe further work
will be able to produce audio adversarial examples that are effective over-the-air.

Do universal adversarial perturbations [86] exist? One surprising observation
is that on the space of images, it is possible to construct a single perturbation δ that
when applied to an arbitrary image x will make its classification incorrect. These
attacks would be powerful on audio, and would correspond to a perturbation that
could be played to cause any other waveform to recognize as a target phrase.

Are audio adversarial examples transferable? That is, given an audio sample
x, can we generate a single perturbation δ so that fi(x+δ) = y for multiple classifiers
fi? Transferability is believed to be a fundamental property of neural networks [100],
significantly complicates constructing robust defenses, and allows attackers to mount
black-box attacks [72]. Evaluating transferability on the audio domain is an important
direction for future work.

Which existing defenses can be applied audio? To the best of our knowl-
edge, all existing defenses to adversarial examples have only been evaluated on image
domains. If the defender’s objective is to produce a robust neural network, then it
should improve resistance to adversarial examples on all domains, not just on images.
Audio adversarial examples give another point of comparison.

82

Chapter 5

Malware Classification

Up until now, we have shown that neural networks appear to be especially vulnerable
to test time evasion attacks, allowing an attacker to deliberately modify an instance
to be misclassified by a neural network classifier.

While it may be acceptable to deploy easily evadable deep neural networks in some
domains, there are many security-critical domains where this is not the case. We
now turn to the case of malware classification, where a defender trains a model to
classify a given file sample as either malicious or benign. Because a malware classifier
is inherently designed to classify something constructed by an active adversary, it is
critical that it is robust against attack.

There are three key differences that differentiate malware classification from typical
classification on, e.g., images, audio, or text:

• Features of a malware sample have significant interdependence (e.g., if a loaded
library is removed, all other calls to that library must also be removed). In
contrast, features for image recognition or audio processing are independent
and uncorrelated (e.g., changing one pixel of an image does not mandate that
pixels in a different portion of the image be changed as well).

• Not all features are equally easily modified. While it may be trivial to insert a
new file access, removing a system call may be difficult if that functionality was
a necessary piece of the malicious behavior; inserting a valid code signature may
be nearly impossible. Again, this contrasts other domains where every feature
is equally easy to modify.

• There is no simple distance metric that captures similarity between malware
files. Whereas an image x′ is called adversarial with respect to an unmodified,

83

clean image x if ‖x′ − x‖p < ε for some metric ‖·‖ and distortion bound ε, no
such metric exists for malware, where changing any one feature may have a
dramatic impact on functionality.

For these reasons, in this chapter we focus on a restricted threat model that resolves
all three difficulties simultaneously that we call an insertion adversary. An insertion
adversary can not modify or remove any existing functionality, and can only insert
new functionality that acts as an effective no-op: for example, adding a new file
read is allowed; adding a file-deletion operation is not. Because no existing features
are modified, any feature interdependence can be ignored. Similarly, inserting new
functionality is often as trivial as inserting a few new instructions whose result is
ignored. Under this limited threat model, we design attacks that bring the true
positive rate of a state-of-the-art classifier to 0% (i.e., our attacks can make the
classifier recognize any malware file as benign).

We then turn to constructing defenses. Instead of attempting to take a standard
neural network—which is known to perform poorly under attack—and improve its
robustness (as prior work does) we propose making architectural changes to neural
networks to make neural networks provably robust to all attacks under our restricted
threat model.

Indeed, architecture design has been one of the most significant developments which
have allowed neural networks to succeed in other domains. Neural networks only
began to succeed for image recognition once Convolutional Neural Networks (CNNs)
[67] were developed, as they impose useful priors for images. Similarly, the design
of Long Short-Term Memory (LSTM) [46] neural networks for sequence classification
has proven esential.

Through careful design, on two different datasets we construct two different architec-
tures which are monotonic with respect to insertion. That is, if an adversary inserts
new functionality, our monotonic classifiers will only ever increase their maliciousness
score. Through several small-scale experiments, we validate that our classifiers are
able to learn to solve monotonic problems and are not overly constrained.

On our malware dataset, our unsecured, non-monotonic neural network classifiers far
out perform baseline classifiers, but are exceptionally fragile when attacked (e.g., most
malware sample need only insert 2 new benign file accesses to switch the classification
from malicious to benign). We prove and empirically verify our monotonic classifiers
are robust under a limited threat model, but find this monotonicity comes at a cost
of a 10 to 20 percentage point reduction in accuracy.

84

Study Domain Dataset Features Low FPR? Temporal Evasion Robustness
Size (≤5%) Splitting? Analysis? Proof?

Kephart et al., 1995 [58] Boot Sector 350 Static Yes - - -
Tesauro et al., 1996 [126] Boot Sector 300 Static Yes - - -
Dahl et al. 2013 [24] Malware 2,600,000 Static Yes - - -
Saxe and Berlin, 2015 [113] Malware 430,000 Static Yes Yes - -
Makandar and Patrot, 2015 [79] Malware 3,100 Static - - - -
Pascanu et al., 2015 [105] Malware 500,000 Dynamic Yes - - -
Grosse et al., 2016 [39] Android 120,000 Static Yes - Yes -
Kolosnjaji et al., 2016 [63] Malware 4,700 Dynamic - - - -
Kabanga et al., 2017 [55] Malware 9,500 Static - - - -
McLaughlin et al. [80] Android 21,00 Static Yes - - -
Wang et al., 2017 [128] Malware 26,000 Dynamic - - Yes -

Our Classifier Malware 5,300,000 Dynamic Yes Yes Yes Yes

Table 5.1: Survey of related work applying neural networks to malware classifica-
tion. Only one paper performs an evaluation using proper temporal splitting (see
Section 5.3.4), and only two perform any evasion analysis. This makes accuracy
comparisons with prior work exceptionally difficult, as the focus of this chapter is
robustness in the presence of evasion attacks.

5.1 Related Work

The area of malware classification has a long history. We refer the reader to Idika and
Mathur [50] for an excellent survey which performs a detailed study of 45 different clas-
sification techniques. They break malware detection down into two broad categories:
anomaly-based detection (which defines normal execution, and flags anything that
is abnormal), and signature-based detection (which explicitly identifies known-bad
behavior). Our work falls under the category of signature-based detection, because
we explicitly train a detector to look for differences between malicious samples and
benign samples. However, because we are applying neural networks, we do not need
to hand-engineer potential signatures: these will be discovered automatically through
the process of training the neural network.

Our work also directly follows an important line of work on adversarial machine learn-
ing, and specifically the line focused specifically on adversarial examples on neural
networks [125, 11] that we have studied previously in this dissertation.

We are motivated to design a novel provable defense architecture in large part due to
the failure of existing defenses to hold up to scrutiny.

We are not the first to combine these two areas of research and propose applying
neural networks to malware classification. In fact, as early as 1995, researchers had
already begun studying applying neural networks to detecting malware. These neural
networks were incredibly simple—containing just hundreds of neurons in only one or
two layers—but were effective at classifying simple boot sector malware.

However, as neural networks went out of favor, so too did attempts to apply them to
malware classification. Then, in 2013, Dahl et al. applied neural networks to classify

85

an incredibly large malware dataset, consisting of 2.6 million samples. Their classi-
fier was a simple architecture (a Multilayer Perceptron, which consists exclusively of
fully-connected layers) and was effective due to heavy pre-processing to reduce the
dimensionality of the input space. Since this, there have been several proposals to
apply neural networks to malware classification. Each has subtle differences between
their approach (using different styles of neural networks), objective, and domain (i.e.,
some classify typical desktop malware, whereas others target Android malware).

There are several significant differences that separate our work from prior work, and
make comparison to prior work difficult. We summarize these key differences between
our work and prior work in Table 5.1.

Dataset differences. Most obviously, the datasets used in prior papers often dif-
fers, in part due to the proprietary nature of malware datasets (indeed, our dataset
is also unfortunately non-public). Many of these studies collected known-malware
files, and then collect files which are clearly benign. In contrast, all of our files
are suspicious: our dataset consists exclusively of samples that were submitted to
VirusTotal by users who were uncertain of their maliciousness. The best commer-
cial anti-virus programs achieve lower than a 70% true positive rate at a 0.1% false
positive rate on our dataset. In contrast, many prior papers, on different datasets,
achieve over 99% accuracy at 0.1% false positive rate on their datasets , indicating
likely their dataset is much more simplistic. 1

High False Positive Rates. Four of the ten prior papers did not report false
positive rates or they were above 5%, too high to be useful. Due to a low base-rate,
malware classifiers must have a very low false-positive rate to be useful.

Temporally Inconsistent Analysis. Of the ten prior papers applying malware
classification to neural networks, only one performed a proper temporal evaluation
(see 5.3.4). On malware classification, it is critical that all malware used to evaluate
the classifier was written after the oldest training sample. Malware evolves with
the specific goal of becoming more difficult to detect. If we perform standard cross-
validation [1], it is likely that Version 2 of some malware sample will be a part of the
training set with Version 1 part of the test set. Partitioning data in a temporally-
consistent manner often results in a 20 to 30 percentage point reduction in accuracy:

1 For example, Saxe and Berlin [113], who otherwise perform the best evaluation evaluations,
only consider a sample benign if no AV vendor labels it as malicious, and only consider a sample
as malicious if at least 30% of AV vendors do. This means the hard samples–labeled as malware by
some but not most AV vendors—will be removed from the dataset, significantly biasing accuracy.

86

a classifier that achieves 95% accuracy when evaluated temporally-inconsistently will
only achieve a 75% accuracy when evaluated in a temporally consistent manner [56].

Evasion Analysis. A malware classifier that is easily evaded is not a useful mal-
ware classifier, as malicious actors will quickly work to evade any deployed detection
approach. Only two of the prior papers even discuss the possibility of an evasion at-
tack. As such, the other classifiers will often be highly brittle. In contrast, the entire
purpose of this chapter is to study the ability of an adversary to evade detection and
develop defenses that prevent this. We introduce powerful attacks that easily evade
our initial (non-robust) malware detectors, reducing true positive rate of our classifier
to zero with only simple, functionality-preserving operations.

Achieves Robustness. Of the prior work that even considers evasion attacks
against the classifier, none of it is effective at producing a robust classifier to the
types of potentially unbounded, but easily automated, attacks we consider here. Our
classifiers are designed to be provably robust against attacks: under the threat model
we outline, they can not be fooled.

5.2 Motivation: Neural Network Priors

Neural networks are often said to succeed due to their ability to learn from raw
features in a completely unsupervised manner without human knowledge [68]. This is
in contrast to many other approaches that require feature-engineering to achieve high
accuracy. While it is true that neural networks are able to learn from raw features,
this does not mean that no human knowledge is necessary to make neural networks
perform well. In fact, the opposite is true. Much of the success of neural networks
can be directly attributed to clever neural network architectural design decisions.

These design decisions are made by humans to impose priors that are believed to be
useful, and are the reason that neural networks have become effective over the last
several years (along with increasing computational power). Although there are many
examples of this (e.g., the attention mechanism [133], the ReLU [93] and SeLU [62]
activation functions, residual connections [42], and batch normalization [52]) we will
discuss the two most prominent examples of this:

• Convolutional Neural Networks (CNNs) [67] are perhaps the first instance
of designing a neural network’s architecture to match a problem domain. In the

87

domain of image classification, instead of processing the input image by throw-
ing out all spatial locality and feeding the pixels of an image as uncorrelated
floating point values, a convolutional neural network is specifically designed to
make use of spatial locality. Specifically, the input is represented as a two-
dimensional matrix and is operated on by a two-dimensional convolution. Per-
forming a convolution has many benefits aside from preserving spatial locatlity,
but most importantly it reduces the number of trainable weights and therefore
reduces over-fitting.

• Long Short-Term Memory (LSTM) Neural Networks [46] cells are, after
CNNs, the next most widely used example of architecture design. LSTMs are
a form of recurrent neural networks used to process a sequence of values. In-
stead of performing a fully-connected operation on the hidden state, a LSTM
implements multiple types of “gates” allowing the network to selectively forget
pieces of information it had learned previously. This functionality significantly
increases length of dependencies that a neural network can learn.

We draw inspiration from these approaches (and, specifically from LSTMs) to design
a classifier that through its architectural design is provably robust to attack.

5.3 Problem Domain

5.3.1 Dataset

We obtained a dataset of 5.3 million queries made to VirusTotal over a period of 30
months. VirusTotal extracts static features (e.g., the set of libraries that are loaded)
from each sample along with running them in a sandbox to extract dynamic features
(e.g., the set of files that are actually accessed).

For each query, VirusTotal runs up to 50 different antivirus products to determine
if the sample is malicious or benign. Consistent with prior work, we label a sample
as malicious if at least 5 of these products reported malicious [56]. After running
our evaluations, we re-ran our analysis using different thresholds for maliciousness
(from 4 to 10) and again consistent with prior work [56] found our results were not
significantly impacted.

Figure 5.1 shows a distribution of the data collection period. Roughly 45% of queries
were for files determined to be malicious, and 55% benign. These queries cover 1.1
million distinct samples.

88

2012-10-11
2013-02-04

2013-05-31
2013-09-23

2014-01-17
2014-05-13

2014-09-06

Active dates collecting samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cu
m

ul
at

iv
e

sa
m

pl
es

 c
ol

le
ct

ed

1e6
Benign Samples
Malicious Samples

Figure 5.1: Plot of malware collection timeline; the ratio of malware to benign files
is approximately evenly split, with cumulative growth rate nearly linear. Note the
Y-axis is in millions.

89

5.3.2 Feature Set

For the remainder of this chapter, we focus exclusively on two different sets of dynamic
features:

1. Files and registry keys accessed by the sample during execution. We track
if the file was opened for reading, writing, or deleting, but do not track how
much was read or written. We also drop all temporal locality (i.e., we do not
track if one file was accessed before or after another file).

2. System calls made by the sample during execution. This consists of 44 dif-
ferent Windows system calls that VirusTotal believes have security relevance,
along with whether or not they succeeded or failed.

5.3.3 Use Case

Because the features of our malware samples are dynamic, we must necessarily ex-
ecute the potential malware samples before deciding if they are in fact malicious.
We therefore target our classifier not as an antivirus tool that would execute on an
end-user device, but rather as an classifier that can assist antivirus developers in iden-
tifying new malware or in determining which samples might warrant manual analysis
from an expert.

5.3.4 Temporally Consistent Splitting

We must be very careful when creating training and testing data for malware clas-
sification. For most domains, this process is trivial: after a data collection period,
the data is labeled and is then randomly partitioned into a training and a testing set
arbitrarily. The accuracy on the test set will be representative of accuracy on new
(previously-unseen) data.

In malware classification, this is not the case. Malware is often highly derivative,
and evolves over time to evade prior detection approaches. For example, a malware
author may create version 1 of some malware, and later modify it to make a version
2 so that this new version evades more antivirus detectors and is therefore generally
harder to detect.

If we were to randomly partition the malware into training and testing sets, then it
would be highly likely that for some malware samples, we would be training on version

90

2, but testing on version 1. This would make our classifier appear to be significantly
more accurate than it otherwise could be in the real world.

Instead, the correct approach requires that we ensure that the oldest training sample is
strictly younger than the earliest testing sample. This mirrors the actual deployment
case of malware: at some time T , the classifier is trained using data up to time T but
not after it. Then, we will ask how well the classifier is expected to behave well when
looking at data after time T .

Previous work [56] demonstrated a 20 to 30 percentage point decrease in accuracy
when this proper temporal splitting is used over random cross validation, demonstrat-
ing its importance to accurately evaluate a malware classifier.

Unfortunately, almost no prior work evaluating neural networks on malware classifi-
cation makes this distinction, making comparison with prior work difficult.

5.3.5 Ground Truth

Given that malware is inherently difficult to obtain ground truth for, we follow the
approach of Kantchelian et al. [56] and make use of the fact that AV vendors typically
only get better at detecting a specific file as malware as time goes on (and usually
not worse). When a new sample is first seen, AV vendors initially may not be certain
whether or not it is malicious. However, over time, humans are able to design better
signatures that will detect samples not initially detected.

Therefore, we take the ground truth label for our malware to be the result of what the
AV vendors label it as one month after it was first seen. In line with prior work, we
consider a sample to be malicious if five or more of the classifiers label it as malware
at this time [56].

This allows us to include all samples, and not just those which are confidently pre-
dicted the same way by a majority of AV vendors. (If we do as one prior study did,
and remove all samples that are classified as malicious by between one and 30% of
vendors, our true positive rate goes up by roughly 10 percentage points at most low
false positive rates.)

5.3.6 Threat Model

An adversary would like to take a malicious sample, and modify it so that (a) the
sample is now classified as benign, but (b) the essential (malicious) behavior of the
sample remains the same.

91

In many other domains (such as image classification or speech recognition), an image
or audio waveform is called an adversarial example if a human would give it a different
label than a classifier. Because it is difficult to formalize “what a human would say”,
often times this is formalized by requiring that the distortion introduced is less than
some threshold ε under some distance metric. For example, we may require that at
most at most 20 pixels are changed, and rely on the fact that this (probably) does
not change how a human would classify the image. This is clearly a sub-set of what
actually is possible.

It is easier to formalize what is meant by an adversarial example on malware. As long
as the file is classified as benign and still performs the essential malicious behavior,
the adversary has succeeded. Exactly how much distortion has been introduced is
not important. Even if we did try to measure distortion under some distance metric,
even making one or two changes to a malware sample could completely change its
behavior (e.g., by removing a necessary system call).

Therefore, we propose a threat model and distortion metric that is an underapproxi-
mation of what a true attacker could achieve, just as the formalization used for images
(where we limit the distortion to be less than some threshold under `p-norm) is also an
under-approximation. However, arguing security against that limited threat model is
a useful first step towards the end goal of achieving robustness, under a more accurate
threat model of what could actually be achieved.

This motivates our threat model of an insertion adversary: given a malware sample,
an insertion adversary is only able to inject new functionality but can not remove or
modify any existing functionality. Clearly no adversary is in the real world limited
to this threat model: in practice a true adversary will be able to remove or re-write
components of their malware sample in order to evade detection. However, we believe
this threat model is interesting for two reasons:

1. An insertion adversary can fool standard neural networks. We show in
Section 5.4.1 that even this limited adversary can easily fool malware classifiers
that reach a high accuracy and reduce their accuracy to 0%, despite not being
allowed to remove or modify any existing functionality.

2. It is a necessary component of any complete classifier. Any classifier
which hopes to be robust in general must at least be robust against insertion
attacks. As such, considering an insertion adversary is a useful first step in
building a secure classifier.

While attacks that modify or remove existing functionality might not be easily au-
tomobile without breaking existing functionality, attacks that only require inserting
new functionality are clearly trivial to implement. Given any piece of malware, it is

92

Figure 5.2: A diagram of our file path classifier. Each file path is read by a LSTM
which labels each access as either malicious or benign. A merge operation then takes
the predictions and outputs a prediction for the resulting sample.

easy to in an automated manner insert new behavior that has no side-effect other
than to fool a classifier.

5.4 Case Study 1: File Access Classifier

We begin our study of robust classification with our first set of features: files ac-
cesses. This dataset consists of an unordered sequence of files and registry keys
that are accessed by the sample; for the file accesses, we are given the mode (e.g.,
read/write/delete).

5.4.1 Initial Construction & Evaluation

We begin by constructing a neural network based classifier that receives as input these
features and predicts whether or not the sample is malicious.

93

We treat each sample as a a collection of file or registry key access paths ~x where
each xi is represented directly as a raw sequence of bytes.

To classify a sample, we feed each file path xi to a one-layer LSTM with 256 hidden
units. We take the final state of the LSTM and apply a final linear layer to obtain a
real number g(xi) = yi.

Now that we have multiple independent “maliciousness” predictions, we merge these
predictions together by taking the mean. That is, the final prediction is to let

f(~x) = sigmoid
(

1

N

N∑
i=1

g(xi)

)
.

A diagram of this process is given in Figure 5.2.

Evaluation. We train this classifier on our dataset using 10 different temporal
splits. We train using AdaGrad with a learning rate of 0.001 and a batch size of 32
for 10 epochs. This process takes 8 hours on a single commodity GPU.

As an implementation detail, to exercise the massively data-parallel nature of GPUs,
we must require that all training examples access the same number of files and registry
keys. To work around this issue, we select a large constant N (e.g., 400 in our case)
and (a) for samples that access more than N files or registry keys, randomly sample
N without replacement, and (b) for samples that access fewer than N files or registry
keys, pad to N accesses with a special null path. Note that this step is only necessary
for performance, and we have found our heuristic approach here does not significantly
degrade accuracy compared to removing the padding operation (but is an order of
magnitude faster to train). We do not need to change the inference process, as that
is less computationally intensive.

We plot in Figure 5.3 the ROC curve of our classifier. We achieve a 55% true positive
rate at 1% false positive rate given only these extremely limited set of features. This
is in contrast to the 80% true positive rate of the anti-virus vendors surveyed in [56].

Robustness Analysis

We now turn to the question of evaluating the robustness of our trained classifier
in adversarial settings. In particular, we ask if it is easy for an adversary to cause
this classifier to misclassify a malware sample as benign. Initially, we assume the
adversary has complete knowledge of the model parameters and all internal state,
however we later relax this assumption.

94

10 3 10 2 10 1

False Positive Rate

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 5.3: ROC curve of the file path and registry key access classifier; note the
log-scaled x-axis.

Recall that we assume the highly limited setting of an adversary who can only insert
new functionality, and can not remove existing functionality. Concretely, under this
threat model for this domain, we allow the adversary to insert new file or registry key
accesses but not to modify or remove existing ones. We also use as a feature whether
any individual file access was opened for reading, writing, or deleting. We therefore
restrict our insertion adversary to only being allowed to open files for reading: not
writing or deleting. While it is true that we would be adding new functionality by
deleting a file, it is not guaranteed that this operation can be performed in arbitrary
settings.

Given this, there is only one reasonable attack method: insert as many benign accesses
as possible until the sample becomes classified as benign.

Highly-Benign Accesses. To achieve this, we generate what we call highly-benign
accesses: file or registry accesses that the classifier believes are indicative of benign
samples.

For a given file path classifier g : [0, 255]∗ → R, the most benign access is given by

x∗ = arg min
x∈[0,255]∗

g(x).

If we could perform this minimization process exactly, the optimal attack strategy
would be to insert the access x∗ in to the sample as many times as required.

95

However, identifying the most benign file access is a nontrivial optimization problem,
as the optimization is performed over a discrete space high-dimensional space. We
therefore approximate this problem and find “highly benign” accesses.

We approximate this minimization problem through greedy hill-climbing. Given an
initial file or registry access x0, we iteratively update

xi = arg min
x:D(xi−1,xi)=1

g(xi−1)

where we define D to be the edit distance between two strings. We terminate when
either (a) the number of iterations exceeds some threshold or (b) the greedy hill
climbing reaches a local minimum. This search procedure is clearly sub-optimal and
greedy, but we find it is effective in generating highly benign files.

This leaves only the question of how we should initialize x0 in our search. We initially
try setting x0 = “”, the empty string, however we find that greedy search quickly
gets stuck in a local minimum. Instead, we take all files accessed during execution,
and begin search from the top-100 most benign existing files or registry keys. This
significantly improves the quality of our highly-benign access.

Figure 5.4 gives a distribution over how inserting highly benign accesses affects the
true positive rate. An attacker who injects only three new file accesses can reduce the
true positive rate to below 10%, and by inserting 10 new accesses it can be brought
to 0%.

5.4.2 Improving Robustness with Existing Defenses

Before we design our own robust classifier, we ask: can state-of-the-art defense tech-
niques be applied to malware classification to address the problem of evasion attacks?
We evaluate two potential defenses that have seen success on other domains and find
they are not effective for malware classification.

Randomization-based defenses. One simple method which has been proposed
several times is to apply randomization [131] to the classifier, or to ensemble multi-
ple classifiers together and report the accuracy on one of those (randomly selected)
classifiers [83]. This prevents a malware developer from easily querying the classifier
in order to construct highly benign accesses. These approaches have shown limited
success on the image domain [4, 18] (where they were originally proposed) but we eval-
uate them here for completeness. We again find that these defenses are not effective
due to the transferability [125] property of adversarial examples.

96

0 2 4 6 8
Number of File Insertions

0.0

0.2

0.4

0.6

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 5.4: True positive rate of our malware classifier on the test set when each
sample adds a small number of benign accesses. The true positive rate of the classifier
falls below 10% with only three insertions.

This property, roughly stated, says that two classifiers (potentially using different
architectures) trained independently (potentially on different datasets taken from the
same underlying distribution) often learn the same decision boundaries. As such, sam-
ples that fool one classifier often also fool the other [100]. We find the transferability
property holds true on malware, as well. We train two classifiers (with slightly differ-
ent architectures) on two independent slices of our malware dataset (even numbered
samples are provided to the first classifier as training data, odd numbered samples to
the second). We then ask: are highly benign file paths on one classifier highly benign
on the other?

We find the answer to this question is yes. While there is some divergence between
the two classifiers decisions on individual files, when we evaluate the two classifiers
on the access paths seen in the test set, we find a Pearson correlation coefficient of
p = 0.89, indicating a highly-linear correlation. Moreover, if we add 5 new benign file
accesses that are classified as highly benign by our first classifier, the true positive
rate of our second classifier reaches below a 10% true positive rate.

Retraining-based defenses. The next style of defense we consider is retraining-
based defenses. This style of defense is among the earliest studied [34]. The process
of adversarial training [78] trains a classifier in repeated rounds. First, train an
unsecured classifier C0(·) on training data X0. Then, for each instance in the training

97

set, generate an adversarial example that fools the classifier, and add them to the
training to obtain an augmented set X1; the classifier is then retrained on this dataset
giving a classifier C1(·). This process is repeated for N rounds until a final classifier
CN(·) is obtained.

This process is believed to be one of the most effective methods for training robust
neural networks on the domain of images. However, we find this approach is not
effective on the malware domain for several reasons:

• Generating highly-benign accesses is a slow process, requiring multiple rounds
of optimization. Generating the adversarial training set alone for 1 epoch on
highly-benign accesses would take over 100 GPU-hours.

• We consider an alternative more efficient way to generate adversarial examples.
Instead of generating highly-benign accesses, we use the most-benign accesses
that are already found in the training data. Unfortunately, retraining with these
examples is not effective. We find the network quickly assigns these accesses a
score of 0 (i.e., neither malicious nor benign) and pushes other accesses to be
more benign, and the resulting network can still be attacked.

Even if retraining was significantly more effective and increased the number of file
insertions that would be required from 3 to 3000, this would still not be sufficient:
because adding new file accesses is essentially free for a malware developer, our evasion
attack could be easily automated and the true positive rate of the classifier reduced
to 0% with little effort.

5.4.3 Robust Classifier Design

Therefore, we instead design a new classifier to perform classification in a robust
manner. The basic underlying idea of our monotonic classifier is simple. Whereas the
prior classifier uses a RNN to output a maliciousness score, and takes the mean over
all maliciousness scores, the robust classifier looks only at top maliciousness scores
returned by the RNNs. It is intuitively simple to understand why this classifier is
robust: because the classifier only uses the most malicious scores, inserting a new
(less malicious) sample will not impact its classification.

In more detail, given the vector of file paths ~x, we run a recurrent neural network g(·)
over each sample to get a collection of maliciousness scores yi, one for each file path
xi.

We then sort the elements of yi to obtain a new ordered vector of elements zi that
satisfies i ≤ j =⇒ zi ≥ zj.

98

We then process ~z with a fully-connected neural network with non-negative weights
and monotonic activation functions. Because fully-connected networks operate on
fixed-size inputs, we take only the top K elements ~z1..K as input to this network.
In practice, we choose K = 20. We denote the fully-connected network h(~z). It is
defined by initially assigning

h0(~z) = ~z

and then letting
hi(~z) = σ(Aihi−1(~z) + bi)

so that finally h(~z) = hN(~z). Here, Ai are the weights (which we restrict to be non-
negative) and bi are the biases (which are unconstrained). We let σ be the ReLU
activation function [93].

Theorem 1 Given any sample represented as a vector of file access paths ~x, inserting
a new access x′ can not decrease the maliciousness score of the final classifier.

Proof (sketch). Given a collection of file access paths ~x so that yi = g(xi) and zi is a
sorted vector of the largest K entries in yi, the output of the neural network is given
by h(~z). There are two cases:

Case 1: If the inserted access path x′ had a maliciousness score y′ = g(x′) that was
not among the top-K, then it would not impact the output of h(·) because it would
not be included an input ~z to the function.

Case 2: If the sample x′ had a score y′ that was among the top-K, then y′ > zi for
some i. Call this new vector ~w consisting of inserting y′ into ~z at the correct position
and removing the new-lowest element, so that

wi =

zi if i < j

y′ if i = j

zi−1 if i > j

In particular, we have that component-wise wi ≥ zi for all i.

We now must prove that h(~w) ≥ h(~z). This is easy to see by induction on the number
of layers in the network h(·), starting from the last layer.

If h(·) has one layer, we must show ~w ≥ ~z implies h(~w) ≥ h(~z). We can show this by
observing

h(~w) = σ(A · ~w + b) ≥ σ(A · ~z + b) = h(~z)

where here A is a row-vector and b is a scalar because the final output of the network
h(·) is a single probability. Critically, this is only valid because A is non-negative.

99

Having proven the base case, we now prove the inductive case that hi(~w) ≥ hi(~z)
implies hi+1(~w) ≥ hi+1(~z). This step is true for a nearly identical reason. We have

hi(~w) ≥ hi(~z) =⇒
Ai+1hi(~w) ≥ Ai+1hi(~z) =⇒

Ai+1hi(~w) + bi+1 ≥ Ai+1hi(~z) + bi+1 =⇒
σ(Ai+1hi(~w) + bi+1) ≥ σ(Ai+1hi(~z) + bi+1) =⇒

hi+1(~w) ≥ hi+1(~z)

And we have proven that this classifier is monotonic.

We are left with one final difficulty: this approach relies on processing the K most
malicious files. What should we do if there are fewer than K file accesses? We observe
that there is only one possible correct choice: to pad the remaining (non-existent) file
accesses with the most-possible benign file access. Otherwise, a malware author could
potentially reduce the maliciousness of a sample that made fewer than K accesses by
inserting new, benign accesses.

In practice, we implement this by placing a cap on the output of the prediction
function h(·) and enforce that it never output a value smaller than −10, 000 and then
whenever a malware sample performs fewer than K accesses we pad the remaining
values with the value −10, 000.

5.4.4 Training

Training this monotonic classifier is more difficult than training the non-monotonic
classifier. Because the classifier only takes as input the top K values (we use 20) of
the 400 file accesses, there is no gradient signal for 95% of file paths, making training
difficult.

Worse still, for any random initialization, the file paths that are among the top-K
are chosen randomly. So even though there is a gradient signal acting on these top-K
values, there is no mechanism for selecting any one of the other file accesses to be
among the top-K.

We resolve this difficulty by pre-training on the non-monotonic classifier: we initially
train a non-monotonic classifier as described previously. We then remove the mean
operation, and replace it with our monotonic merge operation. We fine-tune the
weights of this classifier for another 5 epochs.

This process of training an easier-to-train classifier and using those weights for a

100

10 5 10 4 10 3 10 2 10 1 100

False Positive Rate

0.0

0.2

0.4

0.6

0.8

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 5.5: ROC curve of our robust, monotonic classifier. The true positive rate at
1% false positive rate is 33%.

different (harder-to-train) task is well studied in the domain of transfer learning, and
we leverage its effectiveness here.

During the process of training, we observe that the resulting classifier assigns almost
zero weight to the features numbered below 10, so that setting K greater than 10 does
not improve accuracy. Upon investigating this, we discover the reason for this is that
there are a sufficient number of malware samples that make only 10 accesses so that
we are forced to pad with the most-benign access. This in turn causes any classifier
which assigns any weight to this feature to label the malware sample as benign, and
so the classifier dynamically learns how many features to examine.

5.4.5 Evaluation

We evaluate our classifier identically to the non-monotonic classifier, and find it
achieves a 33% true positive rate at 1% false positive rate. While this is a signif-
icantly lower accuracy than the unsecured classifier, this classifier is provably robust
against attack.

To verify the theory behind our approach is sound, we empirically verify through
random sampling that inserting new file accesses never decreases the resulting mali-
ciousness score of the neural network.

101

5.5 Case Study 2: System Call Classifier

We now switch feature sets and instead move to the problem of classifying a sample
given access to the ordered sequence of system calls that it makes. The major differ-
ence between the system call classifier and the file access classifier is where we place
our domain knowledge.

In the file access classifier, we apply neural networks to constructing an embedding.
However, whereas file access paths can be seen as points from an extremely high
dimensional dimensional space (255N for a length N string), there are only a handful
of possible system calls (44, in our case). This makes the embedding procedure—
which accounted for nearly all of the effort in the file access classifier—trivial in the
case of the system call classification.

Because of this, we focus our effort on what to do with the sequence of values. With
the prior classifier, we either took the mean (in the non-monotonic case) or operated
on predictions with a fully-connected neural network. In contrast, for the classifier
we design in this section, we focus in detail on how to process a sequence of values in
a monotonic manner.

5.5.1 Initial Construction & Evaluation

Given the sequential nature of the data, as a baseline, we apply a standard recurrent
neural network to classify the sequence of system calls. We take the input as a
the sequence of system calls along with whether or not the call succeeded, and feed
this in to a Long Short-Term Memory (LSTM) neural network [46]. Specifically, we
construct a one-hot encoded input with 88 possible values (for the 44 different system
calls, each of which can either succeed or fail). We ignore all arguments to system
these calls; we expect accuracy could be significantly improved if we included these
arguments. To improve the efficiency of training, we pad each sequence to length 400
and train with mini-batch SGD (with a batch size of 32) for 10 epochs.

5.5.2 Evaluation.

Our model reaches an accuracy of 42% true positive rate at a 1% false positive rate.
Figure 5.6 shows the ROC curve of the classifier.

102

10 3 10 2 10 1

False Positive Rate

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 5.6: ROC curve of our non-robust system call classifier. The true positive rate
at 1% false positive rate is 42%.

Robustness Analysis

While the previous classifier has respectable accuracy given the simplicity of the
features available to it, we must now examine how it behaves in the presence of an
adversary.

We develop a simple, greedy attack algorithm that applies only insertions to modify
the sequence to a new sequence that is classified as benign. We observe that not all
system calls can be inserted in a manner that preserves functionality. We prevent
the adversary from inserting 10 of these2 that may not be possible to insert in all
situations without side effects. This leaves 34 system calls we allow the adversary to
insert.

To determine the system calls to insert, we take the initial sequence ~x = x0x1 . . . xn
and then from this construct new sequences ~xi,j by inserting the new system call j at
position i. Formally:

~xi,jk =

xk if k < i

j if k = i

xk−1 if k > i

2We do not allow the adversary to insert the ExitProcess, DeleteService, TerminateProcess,
RegDeleteKeyA, ExitWindowsEx, DeleteFileW, RegDeleteKeyW, DeleteService, RegDeleteKeyA,
or ReplaceFileW. Our robust classifier will still be robust even if these could be inserted.

103

Then, we choose the best (i, j) tuple as

(̂i, ĵ) = arg min
i,j

f(~xi,j)

and then greedily update
~x← ~xî,ĵ

and repeat as long as f(~xi,j) < f(~x).

This procedure results in a new sequence of system calls that is modified from the
original by only inserting new system calls.

Attack Evaluation. The above attack succeeds with 100% success with an average
of 23 system calls inserted. Note that this attack is not optimal — because system
calls are inserted in a greedy manner, there may exist adversarial sequences with fewer
insertions. However, even with this weak attack, the classifier we have constructed is
completely broken.

5.5.3 Robust Classifier Design

Just as we are able to build a file path classifier with provable robustness to inserting
new file accesses, we can also build a system call classifier with robustness to ad-
versarial examples under a limited threat model. We begin with some definitions to
make precise statements.

Definition 1 An input x is a subsequence of the input x′ (notationally, x ≺ x′) if
there is an increasing function g : N→ N so that xi = x′g(i) for all i < |x|

Observe that under this definition of subsequence, an adversary who is limited to
performing insertion operations can only transform a sequence of system calls x to a
new sequence of system calls x′ such that x ≺ x′.

Definition 2 We are given a classifier f(~x) = y taking a sequence of system calls
~x and returning a probability y that the sequence is from a malicious sample. This
classifier f(·) is monotonic with respect to insertion if for all inputs x ≺ x′ it satisfies
f(x) ≤ f(x′).

It is easy to see that a classifier is monotonic with respect to insertion if and only if it
is perfectly robust against to insertion attacks. Therefore, we reduce our problem of
constructing a classifier robust to insertion attacks to designing a monotonic classifier
(with respect to insertion).

104

Neural Network Design

As background, a recurrent neural network f(·) operates on a sequence of inputs ~x.
It maintains a state vector s beginning with

s0 = ~0

and updating
si = g(si−1, xi)

for each element xi in ~x and for some update function g(·). Finally, the last state is
processed and returned

f(x) = h(sn)

for some final projection layer h.

In a standard recurrent neural network, we use the update rule

g(s, x) = σ(As+Bx+ c)

for learned weights A, B, c and some nonlinearity σ. The projection final function is
often defined as a simple linear combination of the output values.

h(sn) = d · sn + e

Variants of RNNs (such as LSTMs or GRUs) differ in how they implement the update
function g(·), but all take this general structure.

Given that all recurrent neural networks use this same overall architecture, we make
use of it too. We are therefore tasked with designing the functions g(·) and h(·).

Recall that being monotonic requires that

x ≺ x′ =⇒ f(x) ≤ f(x′).

Let sn be the final hidden state when the function g operates recursively on input x
and let s′n be the final hidden state on x′.

Being monotonic therefore requires

x ≺ x′ =⇒ h(sn) ≤ h(s′n).

To simplify our monotonicity property, we further require h(·) itself is a monotonically
increasing function, our goal is

x ≺ x′ =⇒ sn ≤ s′n.

105

We achieve this by setting

si = si + max(g(si−1, xi), 0).

Concretely, we define
g(si−1, xi) = Asi−1 +Bxi + c.

This update rule ensures that for all time steps t < u we have sit ≤ siu. This is
a necessary, but not sufficient, condition for being monotonic. To address this, we
additionally require that Aij ≥ 0, i.e., every element of A must be non-negative. This
finally is sufficient to ensure monotonicity.

Theorem 2 This classifier is monotonic with respect to insertion: for any two inputs
x ≺ x′, we have that f(x) ≤ f(x′).

Proof. Assume we are given two inputs x and x′ where x ≺ x′, and further there
is only one element different between x and x′. We will prove that f(x) ≤ f(x′).
Inductively this guarantees the property for all x ≺ x′.

Let si be the hidden state of the monotonic RNN after processing the first i elements
of x, and s′i be the hidden state of x′.

Let j be the index of the position where x and x′ differ (i.e., x′j is the inserted item
so that x1..j−1 = x′1..j−1 and xj..n = x′j+1..n+1). Because the prefixes are identical we
have that

sj−1 = s′j−1.

We now unroll one iteration of the RNN

sj = sj−1 + max(A · sj−1 +B · xj + c, 0) ≥ sj−1 = s′j−1.

and it is easy to see that the new initial state is only larger. Because the states from
here are monotonically increasing, the property holds true.

5.5.4 Toy Problem Experiments

To validate the potential efficacy of our classifier, and to confirm we have not overly-
constrained its expressivity, we perform some toy experiments for simple classification
tasks.

106

Task 1: Item Membership. As a first simple test, we construct a length-100
sequence s of random integers between 1 and 100. We then choose one number r
(randomly) between 1 and 100 and train a classifier to answer “Does item r occur in
the sequence s?”

We then train three classifiers on this task: a standard Recurrent Neural Network
(RNN), a LSTM, and our monotonic classifier. We train using a batch size of 32
with RMSProp and perform grid search for the optimal learning rate between 0.1
and 0.0001. Initially, we observe that while the RNN and LSTM converge to 100%
accuracy, our monotonic classifier remains stuck at random guessing, achieving 63%
accuracy.

When we investigate why the classifier does not converge, we find it is due not to
vanishing gradients, but exploding gradients. To give the intuition behind why this
happens, observe that the update rule is essentially

si+1 = si + Asi

(if the matrix B and bais c were removed) which has a closed-form solution of

si = (A+ I)is0

and so if the matrix (A + I) has any eigenvalues greater than one in absolute value,
si will increase exponentially.

Traditional recurrent neural networks avoid this by either initializing the weight ma-
trix to be a Gaussian with small standard deviation centered around zero [31], or by
constructing the matrix so that all eigenvalues are equal to 1 or −1 (i.e., so that the
weight matrix is orthogonal) [112]. The first solution is not possible in our case be-
cause the entries Aij must be non-negative. The second solution is also not possible,
because the only way to make (A+ I) orthogonal so that Aij ≥ 0 would be to set A
identically to 0.

Theorem 3 If A+ I is orthogonal and Aij ≥ 0 for all i, j then Aij = 0 for all i, j.

Proof. It is easy to see this by contradiction. Assume that Ai′j′ > 0 for some i′, j′,
and that Aij ≥ 0 for all others.

Case 1: If i′ = j′ then let B = (I+A)(I+A)T . By definition of matrix multiplication

Bi′j′ =
∑
k

(I + A)i′k · (I + A)kj′

107

because each entry of A is non-negative we can conclude∑
k

(I + A)i′k · (I + A)kj′ ≥ (I + A)i′j′ · (I + A)i′j′

and further
(I + A)i′j′ · (I + A)i′j′ = (1 + Ai′j′) · (1 + Ai′j′) > 1

because Ai′j′ > 0. However this implies at least one entry along the diagonal of B is
not equal to 1. If (I+A) were orthogonal, then we must have that (I+A)(I+A)T = I
(by definition), but clearly B 6= I because at least one entry of B along the diagonal
is greater than 1.

Case 2: If instead i′ 6= j′ a similar argument holds. Let B = (I +A)(I +A)T . Again
let

Bi′j′ =
∑
k

(I + A)i′k · (I + A)kj′ ≥ (I + A)i′j′ · (I + A)i′j′ .

This time we observe

(I + A)i′j′ · (I + A)i′j′ = (0 + Ai′j′) · (0 + Ai′j′) > 0

again because Ai′j′ > 0. Our contradiction this time observes that Bi′j′ 6= Ii′j′ . There-
fore, in order to maintain orthogonality, we would require that A ≡ 0 to maintain an
orthogonal matrix.

This has dramatic implications for our construction: it suggests that any nontrivial
assignment of the weights A will result in a neural network whose hidden states
increase exponentially quickly.

Improved training approach. In order to train a monotonic classifier on longer
sequences, we must alter our training approach. Instead of training directly on the
complete sequence, we begin by training our classifier on a smaller problem with
shorter sequences. Then, once the classifier has converged to an initial solution and
no longer encounters exponentially increasing states (or, more correctly, still has
exponentially increasing states, but with a small enough constant that it does not
inhibit useful gradient signal), we slowly increase the sequence length and begin to
train it on longer sequences.

This approach is effective; we show the results of this experiment on this task in
Figure 5.7.

Task 2: Subsequence Membership. Next, we perform a slightly more difficult
task: subsequence membership. We fix a sequence q. Then, we train a classifier to

108

0
Steps

10 3

10 2

10 1

100

101

Lo
ss

Task 1
LSTM
RNN
MONOTONIC

Figure 5.7: Training curves of three architectures on the simple task of determining
single-item membership.

answer the question: given a sequence s, is q ≺ s? To train the monotonic RNN,
we begin with a short sequence s of length 20 and slowly increase its length until we
reach length 100. The training curve is shown in Figure 5.8. The monotonic RNN
reaches a lower loss than the RNN after 30, 000 iterations but does not reach the loss
of the LSTM until much later (over 100, 000 iterations).

Task 3: Consecutive Subsequence Membership. Finally, we attempt a task
that should be impossible to solve correctly: a consecutive version of the prior task.
Instead of requiring that q be a subsequence of s, we now test if q is a consecutive
subsequence of s. That is, there exists some i so that si,i+|q| = q.

A standard RNN and LSTM can solve this problem perfectly. However, expectedly,
our monotonic classifier can not: because consecutive subsequence classification is
non-monotonic with respect to insertion, the classifier can not encode the problem.

However, we did notice the accuracy of the classifier was better than random chance.
When we investigate why this is the case we observe that this classifier just learned
to perform a subsequence membership test. Because any (random) sequence s will
probably not have q as a subsequence, returning “true” when q is any subsequence
and “false” otherwise will reach better accuracy than random guessing.

109

0 10000 20000 30000
Steps

10 1

100

101

Lo
ss

Task 2
LSTM
RNN
MONOTONIC

Figure 5.8: Training curves of three architectures on the task of determining sub-
sequence membership.

5.5.5 Malware Evaluation

We now evaluate this classifier on the domain of malware classification. We find that
the difficulties of training a monotonic classifier on the toy tasks only increase in
difficulty for the malware task.

In the above simple tasks, we began by training our classifier on small sequences and
then gradually scaled it to larger sequences. This is not easy to do for malware: there
are no obvious “small sequences” to train on.

We experimented with a few approaches that were not effective which we briefly
examine here:

• Initially train on the samples that happen to be short. While this ap-
proach is conceptually simple, we found it was ineffective for at least two reasons.
First, there are not many short samples to begin with (and, as we found, there
are not enough to train an accurate classifier). However, more importantly, we
also discovered that training a non-monotonic LSTM on the short sequences
does not generalize to the long sequences: they are sufficiently different that
the classifier does not learn to classify the longer sequences correctly.

• Randomly sub-sample from the system call sequences. We can make
system call sequence shorter by randomly deleting some of the system calls

110

that it makes, to make a subsequence of arbitrary length. When we attempt
to train a classifier on this dataset, we do not succeed for a different reason:
the malicious behavior is usually only a small fraction of the total behavior of
a malware sample. By randomly sub-sampling the sequence system calls, we
often remove the only malicious behavior that could be detected.

• Use the non-monotonic LSTM to pick better sub-samples. Instead of
randomly sub-sampling the system call sequences, we could alternatively at-
tempt to use the LSTM from the non-monotonic classifier to predict which
substrings are the malicious sub-strings, and then not remove those. Unfortu-
nately, while this is feasible, the monotonic classifier is unable to learn from the
sequences: the LSTM picks up on substring membership, but the monotonic
classifier can only operate on subsequences. Therefore, attempting to train the
monotonic classifier on what worked for the LSTM was also ineffective.

How should we go about classifying the malware samples, then? Initially, we take
a simple approach to validate that the classifier is at least able to represent the
malware classification task. We validate this by manually setting the internal state
of the neural network.

To choose the internal hidden state, we initially (through classical methods) identify
sub-sequences that correspond to malware. For each file, we enumerate all subse-
quences of length up to 5 that occur most often in malware samples but do not occur
often in benign samples. Then, we build into the hidden state of the classifier the
weights which will make it a subsequence classifier. This approach is effective, and
accurately classifies the malware samples.

While effective, this approach is not completely satisfying. The reason that neural
networks are interesting is that they are able to discover features automatically. If
we are forced to initialize their state to perform subsequence membership by hand,
it is no longer satisfying. However, it does show that the architecture is expressive
enough to solve the task; the challenge is to find an effective training procedure.

In order to perform effective training, instead of directly initializing the internal
weights of the neural network based on the subsequences of malicious behavior, we
construct a new training set consisting of examples of the sub-sequences we want the
classifier to learn, and then train on these specifically crafted examples. This allows
the classifier to reach high accuracy on the specific sub-sequences we would like it to
learn, and hence classify the malware families with high accuracy.

Evaluation. Given this training approach, we now evaluate the accuracy of our
classifier. The major limiting factor in our evaluation is that this monotonic classifier

111

is only effective at identifying malware when there are subsequences that separate it
from benign samples. Because not all malware contains such subsequences, we limit
our evaluation to specific malware families.

Performing a “fair” evaluation for evaluating the effectiveness of classifying a single
family of malware is difficult. If we attempt to separate one family of malware from
benign files, our classifier reaches extremely high accuracy: by limiting ourself to only
one family of malware, it is much easier to construct a fingerprint of this one family
than a fingerprint for “something malicious”.

On the other hand, if we attempt to separate one family of malware from other
malicious samples, we have dataset problems. Each AntiVirus vendor has its own set
of family labels, and not all AntiVirus vendor agrees on when a sample is a member
of a given family. When separating one family of malware from the benign data, this
does not significantly impact results. However, when separating one family of malware
from other malware, it is important that the other malware is not mislabeled.

We therefore study the former problem—separating malware from one family from
the benign data—because it is well formed, even if it is easier than the original
classification task.

We train this classifier on the complete set of benign files and the malware from the
top 10 families by size (excluding generic catch-all families such “trojan” or various
“unidentified” families). We report the ROC curve for this classifier in Figure 5.9.
Observe that the accuracy is significantly higher on this task, largely because of the
reduced complexity of the dataset.

However, we believe that this experiment demonstrates the potential efficacy of a
monotonic classifier design.

Robustness Analysis. We finally empirically verify that the approach is effective
and is robust to evasion attack through insertions. Again, we randomly insert new
system calls and verify that indeed no insertion ever causes the classifier to decrease
its maliciousness score.

5.6 Conclusion & Future Work

We argue that neural networks, which appear fundamentally vulnerable to test-time
evasion attacks, can be applied to security-critical domains through carefully design-
ing architectures that are provably secure under some restricted threat model.

112

10 4 10 3 10 2 10 1

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 5.9: ROC curve of the monotonic classifier on a single malware family (aver-
aged over 10 different families).

113

Through considering the domain of malware classification, we find that while tradi-
tional neural networks can achieve high accuracy on difficult datasets, the attacks
we develop can automatically construct malware samples that behave identically but
remain undetected. We mount these attacks under the threat model of an insertion
adversary, who can only insert new functionality but can not remove or change any
existing functionality. Then, we demonstrate that two new architectures allow us to
develop robust classifiers that are not vulnerable to these insertion attacks.

We argue that in general, when necessary, neural networks can (and should) be de-
signed for robustness. We have found that it is feasible to achieve perfect, provable
robustness under restricted threat models. These significant security benefits come at
a cost, however. Training our architecturally robust classifiers is more computation-
ally expensive, more sensitive to initialization, and yields lower accuracy. We firmly
believe that in security-critical domains, this is a worthwhile tradeoff. We encourage
future work to follow in this direction designing classifiers that are provably robust
even if they achieve lower accuracy in settings where security is important.

5.7 Conclusion & Future Work

We argue that neural networks, which appear fundamentally vulnerable to test-time
evasion attacks, can be applied to security-critical domains through carefully design-
ing architectures that are provably secure under some restricted threat model.

Through considering the domain of malware classification, we find that while tradi-
tional neural networks can achieve high accuracy on difficult datasets, the attacks
we develop can automatically construct malware samples that behave identically but
remain undetected. We mount these attacks under the threat model of an insertion
adversary, who can only insert new functionality but can not remove or change any
existing functionality. Then, we demonstrate that two new architectures allow us to
develop robust classifiers that are not vulnerable to these insertion attacks.

We argue that in general, when necessary, neural networks can (and should) be de-
signed for robustness. We have found that it is feasible to achieve perfect, provable
robustness under restricted threat models. These significant security benefits come at
a cost, however. Training our architecturally robust classifiers is more computation-
ally expensive, more sensitive to initialization, and yields lower accuracy. We firmly
believe that in security-critical domains, this is a worthwhile tradeoff. We encourage
future work to follow in this direction designing classifiers that are provably robust
even if they achieve lower accuracy in settings where security is important.

114

Chapter 6

Conclusion

The existence of adversarial examples limits the areas in which deep learning can
be applied. It is therefore of utmost importance that we can effectively determine
whether or not a given model is vulnerable to evasion attacks. In this dissertation,
we propose applying powerful optimization-based methods to generate these adver-
sarial examples. By systematically evaluating many possible attack approaches, we
settle on one that can consistently find better adversarial examples than all existing
approaches. We use this evaluation as the basis of our L0, L2, and L∞ attacks.

Indeed, these same types of attack methods which are effective at generating adversar-
ial examples on image classifiers are also effective at generating adversarial examples
on speech recognition systems, further validating the generality of gradient-based
methods for generating adversarial examples.

Unlike standard machine-learning tasks, where achieving a higher accuracy on a single
benchmark is in itself a useful and interesting result, this is not sufficient for secure
machine learning. We must consider how an attacker might react to any proposed
defense, and evaluate whether the defense remains secure against an attacker who
knows how the defense works. In evaluating 14 different defenses, we find that ex-
isting defenses lack thorough security evaluations. Our evaluations of these defenses
expand on what is believed to be possible with constructing adversarial examples:
we have shown that, so far, there are no known intrinsic properties that differentiate
adversarial examples from regular inputs. We believe that constructing defenses to
adversarial examples is an important challenge that must be overcome before these
networks are used in potentially security-critical domains, and hope our attacks can
bring us closer towards this goal.

Despite all of of these flaws, we argue that neural networks can be applied to security-
critical domains through carefully designing architectures that are provably secure

115

under some restricted threat model.

Through considering the domain of malware classification, we find that while tradi-
tional neural networks can achieve high accuracy on difficult datasets, the attacks we
develop can automatically construct malware samples that behave identically but are
remain undetected. We mount these attacks under the threat model of an insertion
adversary, who can only insert new functionality but can not remove or change any
existing functionality. Then, we demonstrate that two new architectures allow us to
develop robust classifiers that are not vulnerable to these insertion attacks.

We argue that in general, when necessary, neural networks can (and should) be de-
signed for robustness. We have found that it is feasible to achieve perfect, provable
robustness under restricted threat models. These significant security benefits come
at a cost, however. Training our architecturally robust classifiers is more computa-
tionally expensive, more sensitive to initialization, and yields inferior accuracy. We
firmly believe that in security-critical domains, this is a worthwhile tradeoff.

We hope this dissertation will provide a useful starting point for both evaluating and
constructing neural networks robust in the presence of an adversary.

116

Bibliography

[1] Arlot, S., Celisse, A., et al. A survey of cross-validation procedures for model selection.
Statistics surveys 4 (2010), 40–79.

[2] Arnab, A., Miksik, O., and Torr, P. H. On the robustness of semantic segmentation
models to adversarial attacks. arXiv preprint arXiv:1711.09856 (2017).

[3] Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420
(2018).

[4] Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420
(2018).

[5] Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. Synthesizing robust adversarial
examples. arXiv preprint arXiv:1707.07397 (2017).

[6] Barreno, M., Nelson, B., Joseph, A. D., and Tygar, J. The security of machine
learning. Machine Learning 81, 2 (2010), 121–148.

[7] Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and Tygar, J. D. Can machine
learning be secure? In Proceedings of the 2006 ACM Symposium on Information, computer
and communications security (2006), ACM, pp. 16–25.

[8] Behzadan, V., and Munir, A. Vulnerability of deep reinforcement learning to policy
induction attacks. arXiv preprint arXiv:1701.04143 (2017).

[9] Bengio, Y., Léonard, N., and Courville, A. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432
(2013).

[10] Bhagoji, A. N., Cullina, D., and Mittal, P. Dimensionality reduction as a defense
against evasion attacks on machine learning classifiers. arXiv preprint arXiv:1704:02654
(2017).

[11] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto,
G., and Roli, F. Evasion attacks against machine learning at test time. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (2013), Springer,
pp. 387–402.

[12] Biggio, B., Nelson, B., and Laskov, P. Support vector machines under adversarial label
noise. ACML 20 (2011), 97–112.

117

[13] Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks against support vector ma-
chines. 29th International Conference on Machine Learning (2012).

[14] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

[15] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-P., Schölkopf, B., and
Smola, A. J. Integrating structured biological data by kernel maximum mean discrepancy.
Bioinformatics 22, 14 (2006), e49–e57.

[16] Bourzac, K. Bringing big neural networks to self-driving cars, smart-
phones, and drones. http://spectrum.ieee.org/computing/embedded-systems/
bringing-big-neural-networks-to-selfdriving-cars-smartphones-and-drones,
2016.

[17] Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Wagner,
D., and Zhou, W. Hidden voice commands. In 25th USENIX Security Symposium (USENIX
Security 16), Austin, TX (2016).

[18] Carlini, N., and Wagner, D. Magnet and "efficient defenses against adversarial attacks"
are not robust to adversarial examples. arXiv preprint arXiv:1711.08478 (2017).

[19] Carlini, N., and Wagner, D. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on (2017), IEEE, pp. 39–57.

[20] Cesare, S., and Xiang, Y. Classification of malware using structured control flow. In
Proceedings of the Eighth Australasian Symposium on Parallel and Distributed Computing-
Volume 107 (2010), Australian Computer Society, Inc., pp. 61–70.

[21] Christodorescu, M., and Jha, S. Static analysis of executables to detect malicious pat-
terns. Tech. rep., DTIC Document, 2006.

[22] Cisse, M., Adi, Y., Neverova, N., and Keshet, J. Houdini: Fooling deep structured
prediction models. arXiv preprint arXiv:1707.05373 (2017).

[23] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast and accurate deep network
learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015).

[24] Dahl, G. E., Stokes, J. W., Deng, L., and Yu, D. Large-scale malware classification
using random projections and neural networks. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (2013), IEEE, pp. 3422–3426.

[25] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on (2009), IEEE, pp. 248–255.

[26] Drucker, H., Wu, D., and Vapnik, V. N. Support vector machines for spam categoriza-
tion. IEEE Transactions on Neural networks 10, 5 (1999), 1048–1054.

[27] Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410 (2017).

[28] Firoiu, V., Whitney, W. F., and Tenenbaum, J. B. Beating the world’s best at super
smash bros. with deep reinforcement learning. arXiv preprint arXiv:1702.06230 (2017).

[29] Gandotra, E., Bansal, D., and Sofat, S. Malware analysis and classification: A survey.
Journal of Information Security 2014 (2014).

http://spectrum.ieee.org/computing/embedded-systems/bringing-big-neural-networks-to-selfdriving-cars-smartphones-and-drones
http://spectrum.ieee.org/computing/embedded-systems/bringing-big-neural-networks-to-selfdriving-cars-smartphones-and-drones

118

[30] Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., and Vázquez, E.
Anomaly-based network intrusion detection: Techniques, systems and challenges. computers
& security 28, 1 (2009), 18–28.

[31] Glorot, X., and Bengio, Y. Understanding the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics (2010), pp. 249–256.

[32] Gong, Y., and Poellabauer, C. Crafting adversarial examples for speech paralinguistics
applications. arXiv preprint arXiv:1711.03280 (2017).

[33] Gong, Z., Wang, W., and Ku, W.-S. Adversarial and clean data are not twins. arXiv
preprint arXiv:1704.04960 (2017).

[34] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014).

[35] Graham, B. Fractional max-pooling. arXiv preprint arXiv:1412.6071 (2014).

[36] Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Machine learning (2006), ACM, pp. 369–376.

[37] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. A
kernel two-sample test. Journal of Machine Learning Research 13, Mar (2012), 723–773.

[38] Grosse, K., Manoharan, P., Papernot, N., Backes, M., and McDaniel, P. On the
(statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017).

[39] Grosse, K., Papernot, N., Manoharan, P., Backes, M., and McDaniel, P. Adver-
sarial perturbations against deep neural networks for malware classification. arXiv preprint
arXiv:1606.04435 (2016).

[40] Hannun, A. Sequence modeling with ctc. Distill (2017). https://distill.pub/2017/ctc.

[41] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger,
R., Satheesh, S., Sengupta, S., Coates, A., et al. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567 (2014).

[42] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016),
pp. 770–778.

[43] Hendrik Metzen, J., Genewein, T., Fischer, V., and Bischoff, B. On detecting
adversarial perturbations. In International Conference on Learning Representations (2017).
arXiv preprint arXiv:1702.04267.

[44] Hendrycks, D., and Gimpel, K. Early methods for detecting adversarial images. In
International Conference on Learning Representations (Workshop Track) (2017).

[45] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015).

[46] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computation 9,
8 (1997), 1735–1780.

[47] Hu, W., Hu, W., and Maybank, S. Adaboost-based algorithm for network intrusion
detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38, 2
(2008), 577–583.

119

[48] Hu, W., and Tan, Y. Generating adversarial malware examples for black-box attacks based
on gan. arXiv preprint arXiv:1702.05983 (2017).

[49] Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and Abbeel, P. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284 (2017).

[50] Idika, N., and Mathur, A. P. A survey of malware detection techniques. Purdue University
48 (2007).

[51] Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. Query-efficient black-box adversarial
examples. arXiv preprint arXiv:1712.07113 (2017).

[52] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).

[53] Jia, R., and Liang, P. Adversarial examples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328 (2017).

[54] Jyothsna, V., Prasad, V. R., and Prasad, K. M. A review of anomaly based intrusion
detection systems. International Journal of Computer Applications 28, 7 (2011), 26–35.

[55] Kabanga, E. K., and Kim, C. H. Malware images classification using convolutional neural
network. Journal of Computer and Communications 6, 01 (2017), 153.

[56] Kantchelian, A., Tschantz, M. C., Afroz, S., Miller, B., Shankar, V., Bachwani,
R., Joseph, A. D., and Tygar, J. D. Better malware ground truth: Techniques for
weighting anti-virus vendor labels. In Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security (2015), ACM, pp. 45–56.

[57] Kearns, M., and Li, M. Learning in the presence of malicious errors. SIAM Journal on
Computing 22, 4 (1993), 807–837.

[58] Kephart, J. O., Sorkin, G. B., Arnold, W. C., Chess, D. M., Tesauro, G. J.,
White, S. R., and Watson, T. Biologically inspired defenses against computer viruses. In
IJCAI (1) (1995), pp. 985–996.

[59] Kereliuk, C., Sturm, B. L., and Larsen, J. Deep learning and music adversaries. IEEE
Transactions on Multimedia 17, 11 (2015), 2059–2071.

[60] Kinable, J., and Kostakis, O. Malware classification based on call graph clustering.
Journal in computer virology 7, 4 (2011), 233–245.

[61] Kingma, D., and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[62] Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems (2017), pp. 972–981.

[63] Kolosnjaji, B., Zarras, A., Webster, G., and Eckert, C. Deep learning for clas-
sification of malware system call sequences. In Australasian Joint Conference on Artificial
Intelligence (2016), Springer, pp. 137–149.

[64] Kos, J., Fischer, I., and Song, D. Adversarial examples for generative models. arXiv
preprint arXiv:1702.06832 (2017).

[65] Krizhevsky, A., and Hinton, G. Learning multiple layers of features from tiny images.

[66] Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533 (2016).

120

[67] LeCun, Y., Bengio, Y., et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks 3361, 10 (1995), 1995.

[68] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature 521, 7553 (2015), 436.

[69] LeCun, Y., Cortes, C., and Burges, C. J. The mnist database of handwritten digits,
1998.

[70] Li, X., and Li, F. Adversarial examples detection in deep networks with convolutional filter
statistics. arXiv preprint arXiv:1612.07767 (2016).

[71] Lippmann, R. P., and Cunningham, R. K. Improving intrusion detection performance
using keyword selection and neural networks. Computer Networks 34, 4 (2000), 597–603.

[72] Liu, Y., Chen, X., Liu, C., and Song, D. Delving into transferable adversarial examples
and black-box attacks. arXiv preprint arXiv:1611.02770 (2016).

[73] Lowd, D., and Meek, C. Adversarial learning. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining (2005), ACM, pp. 641–647.

[74] Lowd, D., and Meek, C. Good word attacks on statistical spam filters. In CEAS (2005).

[75] Ma, W., Duan, P., Liu, S., Gu, G., and Liu, J.-C. Shadow attacks: automatically
evading system-call-behavior based malware detection. Journal in Computer Virology 8, 1
(2012), 1–13.

[76] Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier nonlinearities improve neural
network acoustic models. In Proc. ICML (2013), vol. 30.

[77] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).

[78] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep
learning models resistant to adversarial attacks. International Conference on Learning Repre-
sentations (2018). accepted as poster.

[79] Makandar, A., and Patrot, A. Malware analysis and classification using artificial neural
network. In Trends in Automation, Communications and Computing Technology (I-TACT-
15), 2015 International Conference on (2015), IEEE, pp. 1–6.

[80] McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer,
S., Safaei, Y., Trickel, E., Zhao, Z., Doupe, A., et al. Deep android malware de-
tection. In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy (2017), ACM, pp. 301–308.

[81] Mei, S., and Zhu, X. Using machine teaching to identify optimal training-set attacks on
machine learners. In AAAI (2015), pp. 2871–2877.

[82] Melicher, W., Ur, B., Segreti, S. M., Komanduri, S., Bauer, L., Christin, N.,
and Cranor, L. F. Fast, lean and accurate: Modeling password guessability using neural
networks. In Proceedings of USENIX Security (2016).

[83] Meng, D., and Chen, H. MagNet: a two-pronged defense against adversarial examples. In
ACM Conference on Computer and Communications Security (CCS) (2017). arXiv preprint
arXiv:1705.09064.

[84] Mishkin, D., and Matas, J. All you need is a good init. arXiv preprint arXiv:1511.06422
(2015).

121

[85] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

[86] Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. Universal adversar-
ial perturbations. arXiv preprint arXiv:1610.08401 (2016).

[87] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deepfool: a simple and accurate
method to fool deep neural networks. arXiv preprint arXiv:1511.04599 (2015).

[88] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deepfool: a simple and accurate
method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 2574–2582.

[89] Moser, A., Kruegel, C., and Kirda, E. Limits of static analysis for malware detection. In
Computer security applications conference, 2007. ACSAC 2007. Twenty-third annual (2007),
IEEE, pp. 421–430.

[90] Mozilla. Project deepspeech. https://github.com/mozilla/DeepSpeech, 2017.

[91] Munroe, R. Tasks. https://xkcd.com/1425/, 2014.

[92] Murad, K., Shirazi, S. N.-u.-H., Zikria, Y. B., and Ikram, N. Evading virus detec-
tion using code obfuscation. In International Conference on Future Generation Information
Technology (2010), Springer, pp. 394–401.

[93] Nair, V., and Hinton, G. E. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10) (2010),
pp. 807–814.

[94] Nelson, B., Barreno, M., Chi, F. J., Joseph, A. D., Rubinstein, B. I., Saini, U.,
Sutton, C. A., Tygar, J. D., and Xia, K. Exploiting machine learning to subvert your
spam filter. LEET 8 (2008), 1–9.

[95] Nelson, B., and Joseph, A. D. Bounding an attackâĂŹs complexity for a simple learning
model. In Proc. of the First Workshop on Tackling Computer Systems Problems with Machine
Learning Techniques (SysML), Saint-Malo, France (2006).

[96] Nguyen, A., Yosinski, J., and Clune, J. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2015), pp. 427–436.

[97] Odén, A., and Wedel, H. Arguments for fisher’s permutation test. The Annals of Statistics
(1975), 518–520.

[98] Papernot, N., Carlini, N., Goodfellow, I., Feinman, R., Faghri, F., Matyasko, A.,
Hambardzumyan, K., Juang, Y.-L., Kurakin, A., Sheatsley, R., et al. cleverhans
v2. 0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768 (2016).

[99] Papernot, N., and McDaniel, P. On the effectiveness of defensive distillation. arXiv
preprint arXiv:1607.05113 (2016).

[100] Papernot, N., McDaniel, P., and Goodfellow, I. Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016).

[101] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
Practical black-box attacks against deep learning systems using adversarial examples. arXiv
preprint arXiv:1602.02697 (2016).

https://github.com/mozilla/DeepSpeech
https://xkcd.com/1425/

122

[102] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami, A.
The limitations of deep learning in adversarial settings. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P) (2016), IEEE, pp. 372–387.

[103] Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. Distillation as a defense
to adversarial perturbations against deep neural networks. IEEE Symposium on Security and
Privacy (2016).

[104] Park, Y., Reeves, D., Mulukutla, V., and Sundaravel, B. Fast malware classification
by automated behavioral graph matching. In Proceedings of the Sixth Annual Workshop on
Cyber Security and Information Intelligence Research (2010), ACM, p. 45.

[105] Pascanu, R., Stokes, J. W., Sanossian, H., Marinescu, M., and Thomas, A. Malware
classification with recurrent networks. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2015), IEEE, pp. 1916–1920.

[106] Perdisci, R., Dagon, D., Lee, W., Fogla, P., and Sharif, M. Misleading worm
signature generators using deliberate noise injection. In Security and Privacy, 2006 IEEE
Symposium on (2006), IEEE, pp. 15–pp.

[107] Petrov, S. Announcing syntaxnet: The worldâĂŹs most accurate parser goes open source.
Google Research Blog, May 12 (2016), 2016.

[108] Rieck, K., Holz, T., Willems, C., Düssel, P., and Laskov, P. Learning and clas-
sification of malware behavior. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (2008), Springer, pp. 108–125.

[109] Rozsa, A., Rudd, E. M., and Boult, T. E. Adversarial diversity and hard positive gen-
eration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (2016), pp. 25–32.

[110] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV)
115, 3 (2015), 211–252.

[111] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV)
115, 3 (2015), 211–252.

[112] Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120 (2013).

[113] Saxe, J., and Berlin, K. Deep neural network based malware detection using two dimen-
sional binary program features. In Malicious and Unwanted Software (MALWARE), 2015 10th
International Conference on (2015), IEEE, pp. 11–20.

[114] Shaham, U., Yamada, Y., and Negahban, S. Understanding adversarial training: Increas-
ing local stability of neural nets through robust optimization. arXiv preprint arXiv:1511.05432
(2015).

[115] Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (2016), ACM, pp. 1528–1540.

[116] Sharma, Y., and Chen, P.-Y. Attacking the madry defense model with L1-based adversarial
examples. arXiv preprint arXiv:1710.10733 (2017).

123

[117] Shen, S., Jin, G., Gao, K., and Zhang, Y. APE-GAN: Adversarial Perturbation Elimi-
nation with GAN. arXiv preprint arXiv:1707.05474 (2017).

[118] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
Mastering the game of Go with deep neural networks and tree search. Nature 529, 7587 (2016),
484–489.

[119] Smith, S. W., et al. The scientist and engineer’s guide to digital signal processing.

[120] Sommer, R., and Paxson, V. Outside the closed world: On using machine learning for
network intrusion detection. In Security and Privacy (SP), 2010 IEEE Symposium on (2010),
IEEE, pp. 305–316.

[121] Song, L., and Mittal, P. Inaudible voice commands. arXiv preprint arXiv:1708.07238
(2017).

[122] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 (2014).

[123] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research 15, 1 (2014), 1929–1958.

[124] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the
Inception architecture for computer vision. arXiv preprint arXiv:1512.00567 (2015).

[125] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
and Fergus, R. Intriguing properties of neural networks. ICLR (2013).

[126] Tesauro, G. J., Kephart, J. O., and Sorkin, G. B. Neural networks for computer virus
recognition. IEEE expert 11, 4 (1996), 5–6.

[127] Valiant, L. G. A theory of the learnable. Communications of the ACM 27, 11 (1984),
1134–1142.

[128] Wang, Q., Guo, W., Zhang, K., Ororbia II, A. G., Xing, X., Liu, X., and Giles,
C. L. Adversary resistant deep neural networks with an application to malware detection.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (2017), ACM, pp. 1145–1153.

[129] Warde-Farley, D., and Goodfellow, I. Adversarial perturbations of deep neural net-
works. Advanced Structured Prediction, T. Hazan, G. Papandreou, and D. Tarlow, Eds (2016).

[130] Wittel, G. L., and Wu, S. F. On attacking statistical spam filters. In CEAS (2004).

[131] Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. Mitigating adversarial effects
through randomization. International Conference on Learning Representations (2018). ac-
cepted as poster.

[132] Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D.,
and Zweig, G. Achieving human parity in conversational speech recognition. arXiv preprint
arXiv:1610.05256 (2016).

[133] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel,
R. S., and Bengio, Y. Show, attend and tell: Neural image caption generation with visual
attention. In ICML (2015), vol. 14, pp. 77–81.

[134] Xu, W., Qi, Y., and Evans, D. Automatically evading classifiers. In Proceedings of the
2016 Network and Distributed Systems Symposium (2016).

124

[135] Zantedeschi, V., Nicolae, M.-I., and Rawat, A. Efficient defenses against adversarial
attacks. arXiv preprint arXiv:1707.06728 (2017).

[136] Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., and Xu, W. Dolphinatack: Inaudible
voice commands. CCS (2017).

[137] Zhang, J., and Zulkernine, M. Anomaly based network intrusion detection with unsu-
pervised outlier detection. In Communications, 2006. ICC’06. IEEE International Conference
on (2006), vol. 5, IEEE, pp. 2388–2393.

[138] Zhang, J., Zulkernine, M., and Haque, A. Random-forests-based network intrusion de-
tection systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 38, 5 (2008), 649–659.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Neural Networks

	Related Work
	Evasion Attacks
	Adversarial Examples
	Finding Adversarial Examples
	L-BFGS
	Fast Gradient Sign
	JSMA
	Deepfool
	Defending Against Adversarial Examples
	Poisoning Attacks

	Evaluating the Robustness of Neural Networks
	Background
	Adversarial Examples
	Distance Metrics

	Experimental Setup
	Our Approach
	Objective Function
	Box constraints
	Evaluation of approaches
	Discretization

	Our Three Attacks
	Our L2 Attack
	Our L0 Attack
	Our L Attack

	Attack Evaluation

	Attack Application: Breaking Defenses
	Assorted Defenses
	Distillation as a Defense
	MagNet
	``Efficient Defenses against Adversarial Attack''
	APE-GAN

	Detection Defenses
	Attack Approach
	Secondary Classification Based Detection
	Principal Component Analysis Detection
	Distributional Detection
	Normalization Detection

	Lessons
	Properties of adversarial examples
	Recommendations for Defenses

	Attack Application: Speech Recognition
	Preliminaries
	Audio Adversarial Examples
	Threat Model & Evaluation Benchmark
	An Initial Formulation
	Improved Loss Function
	Audio Information Density
	Starting from Non-Speech
	Targeting Silence

	Audio Adversarial Example Properties
	Evaluating Single-Step Methods
	Robustness of Adversarial Examples

	Open Questions

	Malware Classification
	Related Work
	Motivation: Neural Network Priors
	Problem Domain
	Dataset
	Feature Set
	Use Case
	Temporally Consistent Splitting
	Ground Truth
	Threat Model

	Case Study 1: File Access Classifier
	Initial Construction & Evaluation
	Improving Robustness with Existing Defenses
	Robust Classifier Design
	Training
	Evaluation

	Case Study 2: System Call Classifier
	Initial Construction & Evaluation
	Evaluation.
	Robust Classifier Design
	Toy Problem Experiments
	Malware Evaluation

	Conclusion & Future Work
	Conclusion & Future Work

	Conclusion
	Bibliography

