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Abstract 

The objective of this proposal was to develop a database that integrates various elements-traffic 
simulation packages, data sets, and computational tools. The difficulty in integration was felt to be 
the incompatibility of data structures, formats, and software. 

It was proposed to design, build and test a software environment with an open architecture that 
would facilitate a synergistic use of these software elements. The core of this environment was to be 
an object-oriented commercial database system that would be sufficiently general to support many 
software elements, and which would guide new software development. 

The deliverables of this project were: 

0 A specification of an object hierarchy implemented in C++, and a graphical user interface to 
facilitate object specification; 

0 An interface to SmartPath so that simulation configurations and simulation runs can be stored 
in the database; 

0 An interface to the 1-880 database, developed in the Freeway Service Patrol project; 

0 Additional facilities to be determined after consultation with other PATH researchers. 

Work done under this project resulted in the system called SmartDB, implemented on top of the 
commercial object-oriented database management system, Versant. SmartDB includes a graphical 
user interface. SmartDB is documented in the PhD thesis included as Appendix, and in several 
papers. 

A basic version of SmartPath is implemented in SmartDB. However, implementation of the complete 
version was abandoned, since SmartPath itself was being reimplemented as SmartAHS, built on top 
of the hybrid system simulation language SHIFT. 

The 1-880 data set meanwhile was stored as flat files, with many additional data processing features, 
and made accessible through the World Wide Web. Since that facility was being widely used, and 
did not require users to install Versant, it was futile to provide an interface to it from SmartDB. 

Testing with SmartDB revealed major limitations in Versant, which the manufacturer was unable 
to overcome. These limitations severely weakened the performance of SmartDB, and further devel- 
opment of SmartDB was stopped. Instead, the experience gained with SmartDB was used in the 
design of the highly successful simulation language SHIFT. 



1 Executive Summary 

The period of performance of MOUs 169, 217 is November 1994-December 1997. This project 
initially was assigned the number MOU 169; its continuation was assigned the number MOU 217. 
The originally approved funding was subsequently significantly reduced so the project cost was 
lower than planned. In addition, part of the research was supported by a grant from the U S .  Army 
Research Office. 

Problem statement Empirical research in transportion is hampered by the inability to integrate 
traffic simulation packages, empirical data sets, and computational tools. It is difficult, for example, 
to link or effectively compare different simulation packages, to combine say loop detector data with 
geographical information systems, or to use standard statistical data analysis tools on loop detector 
data sets. This difficulty in part is due to an incompatibility of data structures, formats, software. 
At the bottom of this incompatibility is the lack of a common semantic model. 

The objective of this project was to overcome this difficulty. We proposed to design, build and test 
a software environment with an open architecture that would facilitate a synergistic use of these 
software elements. The core of this environment was to be an object-oriented commercial database 
system that would be sufficiently general to support many software elements, and which would guide 
new software development. 

The deliverables of this project were: 

1. A specification of an object hierarchy implemented in C++, and a graphical user interface to 
facilitate object specification; 

2. An interface to SmartPath so that simulation configurations and simulation runs can be stored 
in the database: 

3. An interface to the 1-880 database, developed in the Freeway Service Patrol project. 

4. Additional facilities to be determined after consultation with other PATH researchers. 

Work done under this project resulted in the following products: 

0 Design and building of SmartDB, implemented on top of the commercial object-oriented 
database management system, Versant, and including a graphical user interface. 

This addresses the first deliverable. SmartDB is fully documented in the thesis [l], “Object Man- 
agement Systems,” which is also available as Path Research Report UCB-ITS-PRR-95-19. 

0 Implementation of a basic version of SmartPath in SmartDB. This implementation is called 
SmartAHS. 

This addresses the second deliverable. Appendix 1 provides a detailed discussion of this implemen- 
tation [3]. The full implementation of SmartPath was abandoned, because SmartPath itself was 
being reimplemented as a library of the SHIFT simulation language, also called SmartAHS. 
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0 Development of a new approach for developing large-scale object-oriented software systems, 
called Object Management Systems (OMS). 

This indirectly addresses the third deliverable. A detailed discussion is provided in Appendix 2 
[2]. During the course of this project, the 1-880 database was implemented as flat files, with many 
additional data processing features, and made accessible through the World Wide Web. Since that 
facility was being widely used, and did not require users to install Versant, it was futile to provide 
an interface to it from SmartDB. 

0 Design guidelines for SHIFT 

Testing with SmartDB revealed major limitations in Versant, which the manufacturer was unable to 
overcome. These limitations weakened the performance of SmartDB. Discussions with other PATH 
researchers in terms of their simulation and data needs revealed a weakness in the design of the 
SmartDB object hierarchy: the objects were too closely tied to SmartPath and other vehicle-oriented 
simulations and data sets. In other words, the object hierarchy in SmartDB was not sufficiently ab- 
stract. These limitations motivated the development of (1) Object Management Systems-these are 
model-based applications used to simulate, evaluat,e, and control large-scale physical environments 
such as highway networks; and (2) SHIFT, an object-oriented simulation language for dynamically 
varying networks of hybrid systems. 
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2 Discussion 

This project resulted from a response to the PATH RFP calling for development of a “system 
for acquiring, storing, recovering, communicating with, and processing IVHS-related databases in 
California,” that would accommodate dat,abases of different structure and type, that would be 
easy to use, and would ensure security. As we pointed out in our proposal the RFP posed a 
very stiff requirement, and it was difficult to imagine how such a system could be developed even 
with PATH’S entire budget. (For purposes of comparison, the first phase of the Sequoia project, 
which had a similar goal for weather-related databases in California, cost $10 million.) Of course, 
“accommodation” of different databases could mean something very modest: a shell around different 
databases that make them appear “similar,” but this is not much help. 

The goal of the proposal which led to MOUs 169 and 217, was more modest. It was to demostrate 
that some of the objectives of the RFP could be met by a well-designed object-oriented environment 
that can integrate various traffic related data sets, highway configurations, simulation models, and 
computational tools. 

These goals have been realized through the development of an approach, called Object Mangement 
Systems, an implementation of that approach, called SmartDB, and its elaboration to the IVHS 
context called SmartAHS. 

SmartDB has two main elements. The first is a an object hierarchy model for highways, vehicles, 
sensors and communicating devices. The second is an implementation of that hierarchy in the 
Versant database management system. Another element is a graphical user interface implemented 
in TKL-TK. 

In this section we provide a critical assessment of this work. Detailed description of the work is 
provided in Appendix 1, 2 and in [l]. 

2.1 Object management systems (OMS) 

In our formulation, OMS are object,-oriented software systems for simulating, evaluating and control- 
ling large-scale physical environments like transportation networks and power distribution systems. 
The usefulness of OMS depends on three factors: 

0 Data and process models used to describe the physical environment; 

Software tools used to implement these models; and 

0 Software engineering process followed to realize OMS. 

Data models are the data structures used to represent the instantaneous description or the ‘state’ 
of the physical environment or system. Process models represent changes in the state or the system 
‘behavior’ over time. 

Software tools associated with data and process models range from a programminglanguage, database 
engine, modeling tools, and application development utilities. 
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Finally, the software engineering process determines the life cycle of an OMS: the generation, modi- 
fication, documentation, and maintenance of the system. We will not discuss this factor any further. 

The most popular data model is provided by relational databases. Because it has been followed for 
a long time, approaches based on the relational model can make use of a mature set of tools. The 
relational model has well-defined mathematical semantics which give the foundation for database 
operations (join, projection, etc.) and storage algorithms. The simplicity of the relational model 
permits the implementation of relational databases as flat, fixed-format tables and a powerful Struc- 
tured Query Language (SQL) for database operations. 

The relational model does not support complex process models such as finite state machines or differ- 
ential equations that may be the natural way to describe the evolution of the physical environment. 
The process model in such cases will be described by some standard programming language. 

Object-oriented approaches are prompted by this disjunction between data and process models 
forced by relational models. These approaches permit a much richer set of abstract data structures 
whose semantics simultaneously support data and process models. However, the generality of the 
model itself has precluded the development of a standardized set of widely applicable tools, and the 
databases themselves have failed to converge to a standard query language like SQL. Object-oriented 
databases are of two types: those tied closely to the relational model (e.g., Postgres) and those tied 
to programming languages such as C++. The former provide enhanced relational databases with 
an object interface, while the latter provide programming languages with persistent objects. 

The OMS approach is motivated by applications involving management systems used to control the 
behavior of heterogeneous, dynamic and distributed physical environments (remember that systems 
of automated vehicles and highways is one important application). The OMS Object Model is the 
chief theoretical construct underlying OMS, and SmartDB is an implementation of this model. 

The OMS object is based on object-oriented modeling and dynamical systems theory. The principal 
features of the OMS object are: state, methods, transitions and constraints. 

An object’s attributes are its state, inputs and outputs. These terms are have a meaning similar to 
that in dynamical system theory. The system as a whole is a collection of objects, and the state of 
the system (in the strict sense of dynamical systems theory) is the state of its objects and the state 
of their input-output interconnections. 

The methods of an object are memoryless (reentrant) functions from its state and input to a new 
state and output. Thus methods can encode or describe the system dynamics: finite state machines 
or differential equations, deterministic or stochastic. A method may create or delete objects, and it 
can change input-output connections. Finally, a method specifies its triggering inputs and outputs, 
i.e., the conditions under which a method is executed. 

State transitions are activated by triggering a subset of inputs. All object methods triggered by these 
inputs are executed. (Remember that the triggering conditions are specified within each object.) 
The resulting outputs which may become inputs because of input-output interconnections, may 
trigger other transitions. The executions sequence of transitions may not be unique and it may not 
terminate. If an execution sequence satisfies system constraints, then the system at the end of the 
sequence is committed, otherwise the triggering input is discarded. 

Constraints may be placed on: values of thc state, inputs and outputs of individual objects; estab- 
lishment of connections between objects; relationships between objects; and pre- and post-execution 
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state constraints of  method execution. 

The OMS object provides a very powerful construct that can be used to model all the physical 
systems in which we are interested. 

2.2 SmartDB 

SmartDB is a software implementation of the OMS Object model. It provides several additional 
features: 

0 It implements a relationship object and provides specific relationships such as input-output, 
containment, views, agent-manager, client-server, and process layers. A process is a collection 
of objects that are executed at a common time- or event-granularity. (For instance, time-driven 
objects, used to model difference or differential equations, may be collected in one process.) 

0 It implements commonly used objects such as events, sensors, actuators] schedulers. 

0 It implements the OMS engine which executes the model dynamics. The engine provides an 
interface for creating and deleting objects, executing transitions, etc. 

0 It provides system architecture tools for data distribution, process distribution, object migra- 
tion, packaging objects into process layers, etc. 

The SmartDB implementation uses the C++ programming language, Versant Object Database, 
TCL/TK user interface toolkit, and the UNIX operating system. 

2.3 SmartAHS 

SmartAHS is an extension of SmartDB, with a family of objects and processes that are used to 
describe automated vehicles and highway systems. SmartAHS is described in detail in Appendix 1. 
SmartAHS allows the configuration of different highway, traffic, and control schemes. All possible 
highway and traffic configurations can be represented using a set of building blocks. Vehicles are 
specified in a similar manner as a collection of building blocks such as engines, brakes, throttle and 
steering mechanisms. 

The SmartAHS semantic model is inherited from the SmartDB semantics. Each SmartAHS object 
is described using the following characteristics: static properties such as length; dynamic properties 
such as speed; inputs and outputs; state evolution beha,vior; monitors to record behavior; sensors; 
communication devices. 

SmartAHS has an open architecture which simplifies integration with other simulation environments. 
The simulation objects such as vehicles] highways, sensors, etc. are placed in the object-oriented 
database Versant. The database provides an open interface for integration with other simulation 
packages. The physical system model, the control layers, and the monitor agents are organized in 
different process layers based on their frequency of access to this database. The process coordinator 
schedules the different layers for execution. 
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2.4 Conclusion 

The products of this MOU in some ways went beyond wl1a.t we had proposed and in some ways fell 
short of our objectives. 

The implementation of SmartDB is a strong validation of our object-oriented approach. The rapid 
implementation of SmartAHS as an extension of SmartDB proves that SmartDB provides a very 
powerful modeling framework. The graphical user interface helps in the design of applications and 
in running simulations. 

Two shortcomings have become evident. First, the implementation of SmartDB objects as C++ 
objects permits the full flexibility of C++. This flexibility is, however, also a shortcoming in that it 
enforces no discipline on the applications designer. For expert programmers this is not a problem. 
But in the hands of non-experts, there will be a lack of structure which would prevent re-usability 
of objects. To some extent this is evident in SmartAHS. This lesson was absorbed in the design of 
SHIFT. 

Unlike SmartDB, SHIFT is a programming language, with a strict syntax, and a clear semantics 
based on the mathematical framework of hybrid systems. As reimplemented on top of SHIFT, 
SmartAHS comprises a set of types (SHIFT notion of objects) such as highways, vehicles, etc. 
Because it is a full-fledged language, the compiler provides various error checks that assist the 
programmer. The success of SHIFT derives in no small part from the success and limitations of 
SmartDB. 

The second and more limiting weakness comes from Versant, the object-oriented commercialdatabase 
system used by SmartDB for persistent data storage. We had selected Versant after a careful search 
of all commercial systems. (Versant was also the choice of JHK in its recommendation for the 
Caltrans District 4 TMC.) However, Versant proved unable to support the large scale updating of 
objects that a simulation requires. A promised distributed version of Versant did not materialize] 
making it impossible to migrate objects and processes. 

Ultimately] our hope of developing a system that would combine both storage of data (eg.] from 
loop detectors) and simulation runs remains unmet . 
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Abstract 
SmartAHS is a software framework for the uniform specification, simulation, and objective evaluation 

of Intelligent Vehicle Highway System (IVHS) alternatives. This paper illustrates the use of the object- 
oriented paradigm in its design, implementation and use. Objective comparison of proposed highway 
automation alternatives is achieved, when all control architectures are specified in SmartAHS. 

The framework implementation is decomposed into three layers. A core set of entities, called SmartDb, 
implement the base classes of the framework, the scheduling mechanism, and a special syntax for a 
state machine formalism. The second layer, SmartAHS customizes these classes and implements entities 
specific to highway automation. The control and communication engineers are the users of SmartAHS; 
they further customize it to implement specific simulation applications such as SmartPATH. The users 
of the applications are system analysts and system planners. 

We discuss the design and implementation of SmartDb and SmartAHS and give a use-case example 
of a subset of SmartPATH. 

keywords: simulation] evaluation, highway automation, object-oriented, framework. 

1 Introduction 
Intelligent Vehicles and Highway Systems (IVHS) is a comprehensive program initiated by the U.S. Govern- 
ment under the Intermodal Surface Transportation Efficiency Act of 1991 to improve safety, reduce conges- 
tion] enhance mobility, minimize environmental impact, save energy, and promote economic productivity in 
the transportation system. 

The IVHS strategic plan [l] requires modeling and simulation in the following areas: urban traffic net- 
work models, traffic system models, vehicle-road models, driver-vehicle models, traffic models with dynamic 
traffic assignment, driving scenario simulation, and advanced vehicle control systems (AVCS) architecture 
simulation. 

It is important to distinguish the actual control and communication design of an automation strategy 
from its simulation and evaluation. This paper describes SmartAHS, a software framework for the uniform 
specification, simulation, and objective evaluation of Intelligent Vehicle Highway System (IVHS) alternatives 
and illustrates how the object-oriented paradigm is used in its design, implementation and use. Objective 
comparison of proposed alternatives is achieved, when all control architectures are specified in this framework. 

The concepts for SmartAHS have emerged from the SmartPath project at the California PATH Labora- 
tory at the University of California] Berkeley [a]. SmartAHS implements SmartPath concepts in an object 
oriented, distributed] and open architecture. 

"This research was supported as part of the California PATH program of the University of California, in cooperation with 
the State of California Business, Transportation, and Housing Agency, Department of Transportation, and the Army Research 
Office under contract DAAH04-94-9-0026. 
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The salient concepts in SmartAHS are: 1) layered control architecture, 2) combined discrete and contin- 
uous dynamical systems, known as hybrid systems, 3) object oriented simulation of hybrid systems, and 4) 
distributed and open architecture of the simulation framework. 

SmartAHS uses the object oriented approach [3] to construct a logical model of the physical components 
and their control agents. The objects in the logical model have semantic content corresponding to their 
characteristics, inter-relationships, constraints, and behaviors. 

SmartAHS’s object oriented approach allows the configuration of different highway, traffic, and control 
schemes. All possible highway and traffic configurations can be represented using a set of building blocks: 
zones, segments, junctions, sources, sinks, sections, entries, and exits. The rules for containment and con- 
nection of these building blocks are specified using a context-free grammar. 

Traffic patterns can be generated internally in SmartAHS, or SmartAHS can interface with traffic simu- 
lation packages such as MitSim [4] and NetSim [5]. 

The vehicles are specified in a similar manner as a collection of building blocks-physical components 
such as engines, brakes, and steering, control components such as sensors and actuators, and communications 
components such as transmitters and receivers. 

In the semantic model each object is described uniformly using the following characteristics: static prop- 
erties such as length, width, and weight; dynamic properties such as vehicle speed and lane density; inputs 
and outputs; state evolution behavior, control behavior, monitor behavior for observing state evolution, e.g., 
a gas tank agent that monitors the amount of carbon-monoxide produced; sensors for providing information 
about the environment, e.g., distance to vehicle in front; and transmitters and receivers for communicating 
with neighboring objects. 

This description can be summarized by noting that each object represents a dynamical system with state, 
state evolution, interface, inputs, and outputs. Such a summary representation is shown in Figure 1. 

Outputs c Inputs 

Figure 1: Simplified IVHS Object 

SmartAHS has an open architecture which simplifies integration with other simulation environments. 
The simulation objects such as vehicles, highways, sensors, and others are placed in an object oriented 
database (OODB). The database provides an open interface for integration with other simulation packages. 
The physical system model, the control layers, and the monitor agents are organized in different “scheduling 
layers” based on their frequency of access to this database. The process coordinator schedules the different 
layers for execution. 

Section 2 provides a background in the object-oriented paradigm. Section 3 summarizes the requirements 
of the framework. Section 4 discusses the design and implementation of the framework. Section 5 summarizes 
SmartAHS functional modules. Section 6 gives a use-case example. Section 7 summarizes performance 
results. Conclusions are provided in Section 8. 

2 Background 
The SmartAHS framework is developed as an Objecl Management System (OMS) [6, 71. 

the behavior of heterogeneous, dynamic, and distributed physical environments. 

abstract object model. 

OMS focus on an important class of applications, namely management systems that are used to control 

OMS start with basic software tools such as programming languages and databases and develop an 
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This model is then customized for specific application domains. Domain customization starts with the 
object model and uses it to specify the relevant components of the physical environment: objects, their inter- 
relationships, constraints, behavior, observation and control channels, event propagation, control strategies, 
and user interfaces. System architecture determines the optimal partitioning of the deployed system with re- 
spect to distributed processing, distributed databasing, process and object migration strategies, concurrency 
control, and versioning. 

Finally, application programmers fill in the details of object behaviors and control and coordination 
strategies keeping in mind the system constraints and implement end-user applications ’. 

The OMS process provides significant overlap between the different stages of the software life-cycle. 
Each stage successively refines the output of the previous stage. The domain cnstomization and system 
architecture stages deliver a customization of the OMS object model along with an application architecture. 
The application developers deliver the final system. The object model provides an integrated environment 
and reduces project management overhead. The risk of a “disconnect” between domain experts and system 
experts is absent. The staffing profile is fairly even throughout the project. 

OMS relies on the existence of object-oriented languages and databases and the abstractions they pro- 
vide. In this section we briefly highlight some of the main features of the object-oriented methodology and 
programming language characteristics that make our design viable. 

2.1 Semantic Modeling 
Wegner [ B ]  defines three categories of modeling paradigms: 

0 Object-Based Modeling: The modeling paradigm that requires all elements of interest to be objects 
with clearly defined interfaces; 

0 Class-Based Modeling: The modeling paradigm that requires all objects to belong to classes. Classes 
are used as templates for objects; 

0 Object-Oriented Modeling: The modeling paradigm that categorizes the classes into a inheritance 

As we move from object to class-based modeling a distinction between Meta-Data and Data emerges. 
Meta-data, i.e, classes, serve as a template that define how data looks like. Instances of classes, i.e., the 
data, are the realization of meta-data. 

As we move to object-oriented modeling, the distinction between the meta-data and data becomes weaker. 
After all, meta-data is also data of a given form; so cla.sses can be considered to be instances of a Meta- 
Class. However, most object-oriented programming language implementations still impose a separation 
between meta-data and data. In the remainder of this thesis we observe this separation and assume that the 
meta-data remain static as data is instantiated and manipulated. 

hierarchy. 

2.2 Object-Oriented Paradigm 
Extensive treatments of the 00 paradigm can be found in several books, we discuss the main characteristics. 

2.2.1 Entities and Instances 

00 methodology makes it possible to encapsulate the characteristics and behavior of physical components 
as logical software objects. This organization provides natural boundaries for modularity. The logical 
counterpart of a particular component type is called a class or an entity; it contains attributes and methods. 
Each occurrence of this type of component is then represented by an instance of this class. 

This organization is particularly useful in control and simulation software, where the software system 
structure has to mimic the underlying physical system. Once a mapping between physical elements and 
their logical counterparts is established, research for control strategies can proceed without regard to the 
peculiarities of the physical objects themselves. Furthermore the system can be scaled just by creating more 
instances. 

‘Naturally, these stages are followed by the system test, release, and maintenance stages. 

3 



2.2.2 Inheritance 

Classes are used to categorize similar instances. Inheritance provides a way of categorizing classes and 
organizes them in a hierarchy of increasing specialization. 

Inheritance provides a useful set of scoping rules that matches the “common sense” thinking in real world. 
It supports modularity and reuse of meta-data. 

A class which has direct instances is called a concrete class, otherwise it is an abstract class. A subclass or 
a child inherits from a superclass or a parent. A superclass is sometimes called a base class. Classes without 
subclasses are leaf classes. 

Inheritance is a mechanism of incremental refinement. Many flavors of inheritance exist. Under monotonic 
inheritance] every subclass must inherit each and every attribute and method specified for its superclasses and 
may not cancel any of them. As part of inheritance a subclass may add attributes and methods; specialize 
the domains of superclass attributes; specialize the domains of method return values; and specialize the 
method behaviors. 

2.2.3 Polymorphism 

Functional polymorphism is the ability to use classes and their children interchangeably. Every car, truck, 
and bus is a vehicle. (Clearly the converse is false.) This gives us the ability to implement other software 
classes that know about the vehicle class only. These other softwa,re classes then do not have to be modified 
or extended, if we add the “semi” and the “taxicab to the subclasses of vehicle. 

One question remains. Assume the vehicle class provides a generic “move” method that given a jerk, 
computes a displacement. Assume vehicle subclasses specialize this method based on their specific dynamics. 
Assume a given object, say a “scheduler” in charge of moving vehicles, knows only about vehicles and invokes 
the move method on a vehicle, which happens to be a truck. Will the displacement be that of a vehicle or 
of a truck? 

The answer points to the difference between dynamic and static type checking. If the implementation 
language provides dynamic type checking (also called dynamic binding), it will at the time of this action 
seamlessly determine that this particular vehicle is a truck and invoke the truck’s move method. 

Another form of polymorphism is the signature polymorphism, also called overloading. The syntax and 
sequence of arguments supplied to a function together constitute the signature of a function. Given two 
methods with the same name, signature polymorphism refers to invoking the correct method based on the 
argument list. 

2.3 Existing Formalisms 
Many formalisms exist for specifying hybrid systems [9, lo]. These formalisms are not suitable for large 
scale simulation. Many other notational techniques exist [11, 12,  131. These formalisms are better suited for 
systems with static object relationships. In our framework relationships such as “front vehicle” are dynamic, 
i.e they refer to different vehicles based on the configuration of vehicles on the highway. 

Software frameworks [14] have gained popularity in the last decade since they greatly simplify implemen- 
tation of applications for specific domains. Many simulation frameworks exist [15, 161. 

3 Framework Requirements 

In this Section we list the functional, modeling] and software system requirements that drove the design and 
implementation of SmartAHS. 

3.1 Problem Summary 

We first provide a summary of one proposed control architecture. 
In the layered control architecture proposed by Varaiya and Shladover [17, 181, vehicles perform simple 

maneuvers such as merging into platoons, splitting from platoons, following the leader, changing lanes, and 
entry and exit. A vehicle executes complex end-to-end trajectories by performing a sequence of such simple 
maneuvers. Efficient transportation throughput is achieved by tuning traffic parameters such as platoon 
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size and vehicle speed. The control strategies for such behavior a,re hierarchically organized in four layers: 
regulation layer, coordination layer, link layer, and network layer. These layers are shown in Figure 2. 

+ [.et,,,,l 
Roadside 
system 

routing table traffic info. 

t 

t 
I link I 

planning & 

1 messages I I 
Vehicle 

+ maneuver 
complete 

Neighbor Vehicle Neighbor 

Figure 2: Layered Control Architecture 

The physical layer represents the dynamics of vehicles. Given a maneuver to perform, the vehicle follows 
a control strategy that regulates its dynamical behavior to a trajectory that realizes that maneuver. Such 
control strategies constitute the regulation layer. The maneuver to be followed by a vehicle at a given time 
is determined by coordinating with other vehicles in the neighborhood. The control strategies used for 
such coordination constitute the coordination layer. The control strategies adapt their behavior based on 
information about highway traffic conditions. The traffic conditions on highway segments are monitored and 
controlled by road-side control elements, organized in the link layer. Finally, information from individual 
highway segments is aggregated, and end-to-end routing a.nd congestion control is accomplished in the 
network layer. 

The framework must allows the specification of this and other layered control architectures. 

3.2 Targeted Users 

The simulation framework must address the needs of several categories of users. These are control and 
communication engineers who will design, implement, a,nd test individual control and communication com- 
ponents; system analysts who will test and evaluate automation strategies; and system planners who will 
select t,he automation strategy for deployment based on evaluation results. 

3.3 Functional Requirements 

The framework has to provide constructs to represent the following entities or operations. 

0 Ability to represent arbitrary highways; 

0 Ability to represent incoming and outgoing traffic patterns; 

0 Ability to create vehicles consisting of many components; 

0 Ability to create roadside controllers consisting of many components; 

0 Ability to have different types of vehicles on the highway; 

0 Ability to represent inter-vehicle and vehicle-to-roadside communication; 
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0 Ability to detect and to create accidents; 

0 Ability to collect arbitrary statistics; 

3.4 Software Engineering Requirements 

Modularity, good performance, scalability, openness, and robustness are desirable characteristics for any 
software system. In this application these requirements a.ppear in the following form: 

0 Ability to associate physical and logical representations: Modularity; 

The framework models numerous physical components. Since the “components” have to be inter- 
changeable, their implementation, i.e., software encoding, must be self-contained. 

Each such “logical” component will be deployed as a “physical” component as the IVHS system ma- 
tures. This modularity will also facilitate model validation and deployment. 

0 Ability to add new components to the system with minimal code rewrite: Openness, Modularity, 
Robustness; 

New vehicle and roadside components will he added to the framework as work progresses. The incor- 
poration of such new components should require minimal rewrite of any other existing software. 

0 Ability to collect arbitrary statistics during simulation: Openness, Modularity; 

As part of evaluation support, the framework should be able to truce the behavior of any subset of 
objects for future review and replay. The framework should provide an open interface to interact with 
other statistics and data processing packages. 

0 Ability to run simulations with acceptable performance: Performance; 

For most purposes the simulation does not have to be real-time. Indeed, no architecture can guarantee 
an upper bound on the simulation time of a given object, since this time greatly depends on the amount 
of detail in the object model. The simulation framework, however, does impose a lower bound on the 
simulation performance due to time taken to perform bookkeeping operations. 

- Ability to adjust simulation granularity: Modularity, Openness; 
The framework should allow the users t,o specify different levels of physical models to adjust model 
granularity. The framework is intended for micro-simulation, however, simulating detailed engine 
dynamics during flow calculations in a 500 mile highway is not very productive. The framework 
should also allow the user to adjust the granularity of time evolution. Time increments for vehicle 
position updates, or statistics collection should be variable. 

0 Ability to  simulate up to  100.000 vehicles: Performance; 
Not every simulation run will encompass 100.000 vehicles. But, system level simulation runs must be 
capable of supporting large number of vehicles. 

0 Ability to specify system behavior in .a st,raightforward language: Ease-of-use; 

The behavior descriptions have time and event driven components. Suitable languages are needed to 
express time and event driven behavior. 

4 SmartAHS Design and Implementation 
No existing simulation tools satisfy all the criteria summarized in Section 3. After some deliberation SunSparc 
stations were selected as the hardware platform, Unix as the operating system, C++ as the programming 
language, Versant as the OODB, and Tcl/Tk as the graphics package for the framework implementation. 

The framework implementation is decomposed into three layers. A core set of entities, called SmartDb, 
implement the base classes of the framework, the scheduling mechanism, and a special syntax for a state 
machine formalism. The second layer, SmartAHS customizes these classes and implements entities specific 
to highway automation. The control and communication engineers are the users of SmartAHS; they further 



customize it to implement specific simulation applications such as SmartPATH. The users of the simulations 
are system analysts and system planners. 

In this section we present the classes in SmartDb and SmartAHS. 

4.1 SmartDb and SmartAHS Data Model 
We first discuss the class and containment hierarchies of the entities. For each class we discuss the basic 
functionality and omit most details for simplicity. For a more detailed discussion of the classes the user is 
referred to [19]. 

In the figures instantiable classes are represented by ovals, abstract classes are represented by rectangles. 
In the class hierarchy diagrams, inheritance is indicated by an arrow from parent to child class. Since the 
containment hierarchy is a one-to-many relationship, in the containment hierarchy diagrams, cardinality is 
indicated on the containee's side only. 

4.1.1 Base Classes 

The inheritance hierarchy for base classes is described in Figure 3 .  

Stated 
Ob'ect 

b 

4 ............. 4 4 ............. 4 4 ............. 4 4 ............. 4 4 ............. 4 
4 ............. 4 

Figure 3: Base Class Inheritance Hierarchy 

Two abstract base classes FrameworkObject and S t a t e d o b j e c t  are used as the base class of all SmartAHS 
classes. The base classes S t a t e ,  Inpu t ,  and Output encapsulate the corresponding attributes of objects. 

FrameworkObject is the base class of the simulation framework. It defines some basic methods that 
apply to all framework classes. Most subclasses are expected to specialize these methods and implement 
specific behaviors. 

S t a t e d o b j e c t  captures the relation between an object and its S t a t e .  The static parts of an object are 
given by its specialization of S t a t e d o b j e c t .  The dynamic part, i.e. state information that evolves during 
the simulation is given in a separate class S t a t e .  

We make an explicit distinction between static and dynamic attributes. The static attributes are part of 
the class, the dynamic attributes are in a separate class. This separation facilitates the recording of state 
history. 

The use of the base classes in the time and event driven scheduling is illustrated in the next Section. 

4.1.2 Highway Ent i t ies  

The description of highway networks is decomposed into smaller building blocks. The highway network is 
divided into Zones; each zone contains multiple highway Segments interconnected using Junct ions .  The high- 
way segments are terminated using traffic Sources and Sinks. The highway segments consist of Sect ions ,  
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Entrys,  and Exi ts .  Junctions and sections are divided into Lanes. Lanes can have curvature. The full 
implementation and specification of highway entities are part of SmartAHS. 

The highway entities are organized in the inheritance hierarchy described in Figure 4. Note that 
Lanecontainer ,  Generator ,  Absorber, and Junc t ion  are introduced as abstract base classes. 

The Smartobject  class is discussed in Section 4.1.5. 

r 

l - , l  Smartobject 

rh i 

Figure 4: Class Hierarchy for Highway Entities 

The containment hierarchy for these entities is given in Figure 5. Since the containment hierarchy is a 
one to many relationship, cardinality is indicated on the containee’s side only. 

Zone 

I..n 

Segment 

Container 

Lane 

Figure 5: Containment Hierarchy for Highway Entities 

Finally a number of binary relationships specify how instances of highway classes can be connected 
to create highway networks. We illustrate these relationships with examples and omit the details of the 
relationship rules. A Lanecontainer  may be related one or zero Lanecontainers through its prevLC1 
relationship. The reciprocal of this particular relationship is nextLC1. A Lanecontainer  may be related 
to one or zero Lanecontainer’s through its nextLC1 relationship. Similarly, a Lane may be related to 
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one or zero Lanes through its prevLane relationship. Again the reciprocal of this particular relationship is 
nextlane.  A Junc t l to2  has two next relationships nextLC1 and nextLC2. 

A highway network consists of multiple Zones; the Zones provide the basis for distributed simulation. 
However, for simplicity in this paper, we assume that the highway network consists of a single Zone. 

Most highway entities have little behavior of their own and are used to create highway networks only. 
Their behavior is derived from the automation devices they are configured with. 

A number of highway entity methods are used by scheduling objects to create and move the Vehicles 
along the highway. These methods are discussed in Section 4.2. 

4.1.3 Vehicles 

SmartAHS provides Vehicle as an abstract base class. It defines the input and output attributes of a Vehicle 
and maintains its position within the highway. Application developers are expected to inherit from Vehicle 
and specialize it according to automation strategy. 

Vehicle has a number of static state attributes such as length ,  width, o r i g i n  and des t ina t ion .  
Vehic les ta te  inherits from State. It contains basic continuous and discrete state information about 
Vehicles. Vehicle subclasses may use this class directly or subclass it further to add other attributes. 
Within a vehicle, automation devices can read and write Vehicles ta te  values. Between two Vehicles 
access is limited to Sensors only. 

The Vehic les ta te  maintains the current and the last continuous state attributes. The current values 
are set by appropriate control devices within the Vehicle. The last values are used as outputs to other 
automation devices within the Vehicle or to Sensors in other Vehicles. The current values are copied to 
last values at the end of each physical layer transition. 

A Vehicle’s position on the highway is maintained by SmartAHSas discussed in Section 4.2.2. In 
particular the Lane method MoveVehiclesInLane() sets the absDist ,  curr lane ,  and c e l l I d  attributes of 
the Vehicle. 

4.1.4 Automation Devices 

Sensors, Controllers, Receivers, Transmitters, and Monitors are added to vehicles and to the roadside for 
automation and evaluation. These five entities are called automation devices. SmartAHS provides them only 
as abstract base classes. Application developers are expected to inherit from these classes and to specialize 
them. The specializations of these classes interact with other objects through their inputs and outputs only. 
Their evolution is managed by the time and event driven scheduling objects. 

Longitudinal and lateral Sensors provide information a.bout the environment such as distance and speed 
to the Vehicle in front, or to the left. Transmitters and Receivers are used for communicating with 
other objects. Example Control objects are regulators that determine speed, and coordinators that select 
maneuvers to perform. Monitors are read-only entities that collect statistics. 

SmartAHS provides a number of default sensor, transmitter, and receiver implementations such as 
Vehiclesensor,  ReceiverProxy, InVehTransmitter and OutVehTransmitter. These classes model ideal 
devices. 

4.1.5 Smartobject 

Automation devices are either on the roadside or in a Vehicle. We formalize this relationship with the 
abstract entity Smartobject. Smartobject and its containees are depicted in Figure 6. 

The automation devices are specialized based un the a,utomation strategy and based on the type of 
Smartobject they are contained in. Application developers specify the particular relations among automa- 
tion devices contained in a given Smartobject. 

4.1.6 Traffic Entities 

Entities used to create traffic and vehicles are called traffic entities. SmartAHS provides them only as 
abstract base classes. 

SmartAHS defines the input and output attributes of Traffic Entities and their methods. Application 
developers are expected to inherit from them and specialize these methods. 
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Figure 6: The Smartobject and its containees. 

Vehicles are created and deleted in the Generator and Absorber objects based on incoming and outgoing 
traffic patterns. The traffic entities Factory, InTraff ic, and OutTraff ic are used to implement this 
functionality. 

InTraff ics are responsible for generating incoming traffic patterns, OutTraff ics are responsible for 
generating outgoing traffic patterns. These objtcts may in fact provide gateways to other urban traffic 
simulation packages for more detailed traffic modeling. Factory objects have the knowledge to create various 
types of Vehicles. The location of these entities in the inheritance and containment hierarchy is given in 
Figure 7. 

Statedobject 

OutTraffic 

Factmy 

Figure 7: Inheritance and Containment Hierarchy for Traffic Entities 

4.2 SmartDb Process Model 
In this section we discuss the dynamic aspects of the simulation and the scheduling objects that govern 
evolution. 

4.2.1 Creation and Deletion 

The highway network, the highway automation devices, and the traffic patterns are created as part of the 
simulation setup and remain static during a simulation run. 

For Vehicles each control strategy is required to provide its own Factory that knows how to create the 
proper Vehicle types. During the simulation run, various types of Vehicles are created by Factory entities 
in Generator objects based on incoming traffic patterns. Vehicles leave the highway at Absorber objects 
based on outgoing traffic patterns. 

4.2.2 Relationship Evolution 

In SmartAHS all relations among highway entities and all relations among the objects within a Vehicle are 
set at creation time and remain static during a simulation run. The Vehicle has a static relationship with 
the Entry/Source where it enters the highway and with its Exit/Sinl< destination. These relationships are 
initialized at creation time. 

All relationships based on the location of Vehicles are dynamic. Vehicle position and the containment 
relationship between a Vehicle and its Lane are maintained by SmartAHS. The Vehicle Engine computes 
the movement of the Vehicle given its speed, acceleration, and jerk. The Lane object is responsible for 
updating the position of a Vehicle in the Lane. In particular a cellArray is used in each lane to create a 
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partitioning with 5 meter long cells. This partitioning serves as a hash table when computing the ranges of 
sensor and communication devices. 

All other inter-vehicle relations are derived using Sensors. Sensors are also used to identify the receiver 
ids of objects in the sensing range. 

Packets are used for event driven communication. SmartAHS maintains the relationships of Packets, 
i.e., it implements Packet delivery. 

4.2.3 Time Scale of Evolution 

In SmartAHS, object state evolution is driven by passage of time or by occurrence of events. SmartAHS 
provides scheduling for time and event driven objects. 

A global clock is used to define the simulation time. 
Each time driven object specifies the time step for its state evolution as a multiple of the global clock step 

and implements a method that updates its state by one time step. Rapidly evolving objects such as engines 
change their state more frequently, while more passive objeck such as roadside link controllers change their 
state at  larger time steps. Time driven objects are capable of creating events. 

Event driven objects exercise their behavior only when events are delivered to them. Events are generated 
by objects as output messages and are communicated to the addressed objects as input messages. SmartAHS 
objects communicate using their transmitters and receivers. Events and Messages are delivered at  increments 
of the global clock time step. As such, event delivery is not instantaneous, but happens within a finite time 
interval. 

Time and Event driven simulation is implemented in three tears. 
The top tear contains a ProcessCoordinator which is in charge of managing the execution of the the 

process Layers and the global clock BigBen (objects in the middle tier). In a simulation run, the process 
coordinator executes the process layers according to their time step, which in turn execute the simulation of 
the objects they are responsible for. The bottom tier consists of the highway Zone and all of its containees. 

The global clock represents the passage of time and defines the smallest time step of the system. All 
evolution takes place at  discrete advancements of this clock. The clock value is accessible to all objects in the 
system. The clock also provides a timer service. Objects can send an event to the clock to register a timeout 
request. This request specifies the number of time clicks after which the timer expires, and a message to 
be delivered when it does. When scheduled for execution, the clock delivers timeout events as part of its 
behavior. 

The process layers simulates collections of objects that evolve at the same time step or that respond 
to the same collection of events. The process layers themselves can be time or event driven. The process 
coordinator schedules the execution of time driven process layers based on their time step and schedules the 
execution of event driven process layers if any events are raised against them by an object. If event driven 
objects are put in a time driven process layer, event delivery for these objects takes place only when the 
corresponding process layer is executed. 

The inheritance hierarchy of scheduling entities is given in Figure 8. Their containment hierarchy is given 
in Figure 9. 

Example 
The process architecture that would implement the hyered architecture proposed by Varaiya [17] is shown 

The physical layer is time driven and maintains the position of the vehicles on the highway. 
The regulation layer is time driven. It conhins event driven regulation supervisors and time driven 

maneuver objects. The supervisors switch between maneuvers based on incoming messages from the coordi- 
nation layer; the maneuvers control the behavior of the throttle, braking, and steering actions and generate 
the vehicle displacement. 

The coordination layer is time driven. It contains event driven coordination objects. Coordination objects 
in different vehicles exchange messages to determine the maneuver a vehicle should execute. These decisions 
are communicated to regulation layer supervisors through messages. 

The link layer is time driven. It contains time driven link objects that set traffic parameters such as 
target speed and average platoon size in highway sections. 

The network layer is event driven. It is executed only if an accident occurs. Upon an accident it 
reconfigures the routing tables. 

in Figure 10. 
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Figure 9: Containment Hierarchy for Scheduling Entities 

4.2.4 Behavior Descriptions 

The FrameworkObject class provides a number of virtual methods that are used to abstract object behavior. 
The WakeUp(Message* message) method is used to deliver a timeout identified by message to an object. 
The ProcessEvent (int event) method is used to deliver the event to this object. 
The ProcessMsg(Message* message) method is used to deliver message to the object. 
The Run() method is used to advance an object’s state by one time step. Objects with time driven 

behavior must provide two copies of their state variables. At a given time step the “current” (output) values 
of all instances are used to compute the “next” (state) va.lues. Once the “next” values are computed in all 
instances they are copied into “current” values. 

FrameworkObject subclasses must specialize these methods to implement the appropriate time or event 
driven behavior. 

SmartAHS also provides a special notation for specifying a dynamic network of hybrid automata. A 
discussion of this formalism can be found in [20]. Automata specified in this notation are translated into 
C++ code. The framework provides a library of classes for their run-time simulation. 

4.2.5 Implementa t ion  of Scheduling Objects  

The scheduling objects rely on inheritance and polymorphism since they invoke methods on base classes 
only. 

In SmartAHS the ProcessCoordinator manages the execution of process Layer objects. Arbitrary 
number of process Layers register with the ProcessCoordinator and specify the period with which they 
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Figure 10: SmartPATH Process Architecture. 

want to be scheduled. If a process Layer wants to be scheduled on an event driven basis, it sets its period 
to infinity'. 

The ProcessCoordinator loops through its Layers and executes their Go( )  method according to their 
period. After every loop, it checks if there are any Events requesting the scheduling of event driven Layers. 

SmartAHS provides three abstract classes Traverser ,  EventDriver, and Hybrid that subclass Layer. 
All Layers contain a BigBen. They increment the BigBen when scheduled and ask it to deliver all 

outstanding timeouts. 
In its specialized G o ( )  method, the Traverser  traverses the Zone from Sinks to Sources. The traverser 

defines a number of virtual methods that abstract operations on Lanecontainers. For each Lanecontainer 
along the traversal, it invokes these virtual methods in a particular sequence. These methods are intended 
for specialization by the Traverser  subclasses to invoke the time driven evolution methods (Run()) of the 
objects which the subclass is responsible for simulating and are within the Lanecontainer. 

The EventDrivers contain a PacketBox and deliver all Packets in the PacketBox when their specialized 
G o ( )  method is invoked. Note that the delivery of a Packet may result in more Packets being placed into 
the PacketBox in response to the delivered Packets. 

The Hybrids exercise both time and event driven behavior. 
In a simulation, objects communicate with Events or Messages. The base class Packet captures the 

common features of Events and Messages. 
The creator of a Packet has the responsibility to set the Receiver of the Packet. It passes the Packet 

to its Transmit ter ,  which in turn puts it in an appropriate PacketBox. 
Each PacketBox is in a process layer. When the process layer is scheduled for execution each Packet 

is delivered to the specified Receiver. This ensures that within an event driven process layer only objects 
with an outstanding Packet exercise any behavior. 

The BigBen class provides a timer that delivers Packets after a specified time interval. To register a 
timeout request with a BigBen, an object specifies a Packet a.nd the number of time clicks after which the 
Packet should be delivered. 

Each BigBen is contained in a process layer or in the process coordinator. When a BigBen is advanced 
by a time step by its container, it is also asked LO deliver all Packets that correspond to timeout requests 
that expire at that time. 

The class hierarchy for these classes is given in Figure 11. 

5 SmartAHS Modules and Their Use 
In this section we describe the various functional modules of SmartAHS and their use in the specification 
and evaluation of control hierarchies. 

21n implementation, infinity is just a very large number. 
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Figure 11: Class Hierarchy for Event Management Entities 

5.1 SmartAHS functional Modules 
The steps for simulation setup are summarized in Figure 12. These steps are: 

1. Highway specification 
The highway network is created as part of the simulation setup and remains static during a simulation 
run. The highway creation mechanism of SmartAHS is designed as an independent module. A graphical 
object editor (GOE) is used to create highways. 
The GOE provides a meta-data definition language for the specification of instantiable classes, their 
possible relationships, and their attributes. The GOE interprets the meta-data and allows the user to 
create and connect instances and to set at+ri!xt>es, i.e., define the data, according to the meta-data 
specification. 

2.  Traffic Pattern Specification 
Traffic entities are used to specify incoming and outgoing traffic patterns. An independent module is 
used to select specific traffic entities for each simulation run. 

3.  Roadside Automation Device Specification 
Different automation strategies will choose different configurations of automation devices on the high- 
way. An independent module is used to configure a highway network with automation devices. 

4. Vehicle Automation Device Specification 
Different automation strategies will choose different collfigurations of automation devices in the Ve- 
hicles. Application developer are expected to provide Factory entities that have the capability of 
creating vehicles with the appropriate configuration. 
The use of Factorys is discussed in Section 6. 

5. Specification of Simulation Granularity 
The time step of each simulation, the degree of monitoring and evaluation, and the set of objects 
simulated in detail may vary for each simulation. A special module is used to configure the scheduling 
objects and to specify the simulation granularity. 

6. Specification of Simulation Parameters 
Traffic entities and automation devices may provide parametric interfaces. A special module is used 
to set these parameters before each simulation run. 

5.2 Customizing SmartAHS 
Figure 13 describes how application developers extend SmartAHS objects and how specialized classes become 
part of the simulation setup. The details of application development are discussed in section 6. 
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Figure 12: SmartAHS Specification Sequence for Simulation Setup 

5.3 Collecting Statistics 
The evaluation of system performance is achieved by monitor olljects that collect statistical data. In most 
cases monitor objects need to record state histories for future statistical processing. 

During a SmartAHS simulation, the evolution of an object results in a change in its state, input, and 
output attributes only. Since state, input, and output attributes are implemented as independent classes, 
an object’s history can be recorded by versioning the state, input, and output instances. The object itself 
then can provide the necessary bookkeeping constructs to version, save, and restore their history. These 
bookkeeping constructs are implemented within base classes. Here we summarize the key features: 

0 The global clock is used to index the state history of objects; 

0 If an object takes several transitions at the same time stamp, a secondary index is used to label them; 

0 State history of objects is recorded only if their logging is turned on; 

0 Logging can be turned on through the grhphical interface. The parametric interface can be used to 
turn logging on at object instantiation time; 

0 Objects keep track of the intervals during which their logging was turned on, i.e, their state was 
recorded; 

0 Time driven objects record their state at every time click a.t which their state changes; 

0 Event driven entities record their state at  every transition; 

0 Monitor objects have the ability to specify the frequency with which to save their history. 
The recorded history is saved within the OODB and is accessible to any application. 
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Figure 13: Integrating Specialized Classes During Simulation Setup 

5.4 Graphical Debugger 
SmartAHS provides a graphical debugger which enables the user to view the evolution of the system. In 
particular it provides the following functionality: 

0 provides access to objects by name; 

0 displays object attributes in numerical or graphical format; 

0 allows users to set error levels of objects. Objects with higher error level print more detailed informa- 
tion; 

0 allows users to set the logging level of objects. Turning the logging on results in recording the state 
history of an object; 

0 allows users to stop and start the simulation; 

0 replays the recorded history of objects. 

The replayer has five buttons: 1) Play; 2) Stop; 3) Step forward one time click; 4) Step backward one 

The overall architecture of the graphical debugger is illustrated in Figure 14. 
The G U I  layer acts as a proxy to the graphical debugger process (GDP). It maintains the list of objects 

currently displayed by the GDP. When the G U I  layer is scheduled, it “packs” all information regarding the 
objects currently displayed and sends it to the GDP. The GDP has the responsibility to “unpack” this 
information and to display it on the screen. As the user specifies new requests through the display, such as 
retrieving an object by name, stopping the simulation etjc, the GDP propagates these requests to the G U I  
layer. The G U I  layer processes these requests when scheduled. 

The GUI layer recognizes SmartDb objects only. The methods it invokes on objects are restricted to 
SetErrorLevel() , SetLogLevel( ) , and Pack( 1. Each class implements a specialized Pack method3. Poly- 

time click; and 5) Go to time. The last button takes an argument specifying the global clock time stamp. 

3This method is code-generated from the class header file. 
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Figure 14: Graphical Debugger Architecture 

morphism ensures that proper SmartAHS or SmartPATH object methods are invoked. 

6 Use Case Example of SmartAHS 
In this section we give examples of Control, Monitor, and Traverser subclasses. In particular we create 
the Myvehicle that is capable of performing merge, lead, and follow maneuvers. 

6.1 A Specialized Vehicle 
The Myvehicle class is composed of many components. 

The class hierarchy for Myvehicle components is given in Figure 15. The Myvehicle containment 
hierarchy is given in Figure 16. 

The Vehicle constructor is given in Table 1. Here Link<type> is a C++ template for an overloaded 
pointer. The keyword Persistent in the instantiation indicates that the instances are to be stored in the 
database. 

The Vehicle creation takes place in two stages. First all objects in the containment hierarchy are 
instantiated and their container-containee relationship is set. Then all other relationships of these objects 

17 



MyVehicle::MyVehicle(char* name) 

Link<VehicleSensor> vehSensor = new Persistent Vehiclesensor(); 
InsertSensor(vehSensor, 0, TRUE); 

Link<InVehTransmitter> inXmitter = new Persistent InVehTransmitterO; 
InsertTransmitter(inXmitter, 0, TRUE); 
Link<OutVehTransmitter> outxmitter = new Persistent OutVehTransmitter(); 
InsertTransmitter(outXmitter, I ,  TRUE); 

ReceiverProxy* coordRcvr = new Persistent ReceiverProxy(); 
InsertReceiver(coordRcvr, 0, TRUE); 
ReceiverProxy* regRcvr = new Persistent ReceiverProxy(); 
InsertReceiver(regRcvr, I ,  TRUE); 

CoordControl* coordContro1 = new Persistent CoordControl(); 
InsertControl(coordContro1, 0, TRUE); 
Regcontrol* regcontrol = new Persistent Regcontrol(); 
InsertControl(regContro1, 0, TRUE); 

Camera* camera = new Persistent Camera(); 
InsertMonitor(camera, 0, TRUE); 

myBigBen = ProcessCoordinator::GetBigBen("GLOBALBIGBEN"); 

coordControl->Connect(); 
regControl->Connect(); 
camera->Connect (1 ; 

{ 

1 

Table 1: The Myvehicle Constructor 
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Figure 16: Containment Hierarchy for Myvehicle components 

are established. This two-stage creation is necessary, since a relationship between two objects can only be 
established after they both have been instantiated. 

The Myvehicle constructor instantiates and properly inserts automation devices into the Myvehicle. 
The Insert methods set the container-containment relationship. These objects’ constructors have the re- 
sponsibility of recursively instantiating their containees. 

After all containees are instantiated, the Myvehicle constructor Connects its containees. The Connect 
method of each object has the responsibility of establishing its relationships, and the relationships of its 
containees. 

The Myvehicle uses the default Sensor, Transmitter and Receivers provided by SmartAHS. 
The CoordControl and Regcontrol classes consists of state machines and specialize the Control class. 

The constructors of these classes instantiate the respective state machines and establish their initial relation- 
ships. The state machines are specified in the special state machine syntax and code generated into C++ 
classes. The user need not perform any customizations for them since they react to events, messages and 
timeouts, a behavior that is implemented by base classes. 

The CoordControl class is event driven, and all of its behavior is given by its state machines that 
determine what maneuver to execute. The Regcontrol has a number of state machines each capable of 
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executing a different maneuver. This layer is time and event driven. For time driven behavior, it specializes 
the Run method to deliver a click Event to the active maneuver state machine. 

Finally, the Camera object models a camera mounted on the front hood of a vehicle. It captures informa- 
tion about the Vehicles ahead in its Camerastate. Most of Camera behavior is implemented by its parent, 
Monitor. Camera only specializes the Run method to invoke the Update method of Camerastate. The Update 
method of Camerastate uses the Camera’s static relationships to derive the current Camerastate values. 

6.2 Constructing a Scheduler 
The simulation uses four Layers. The Physical layer is used to update the position of a Vehicle on the 
highway. The Regulation layer is used to generate the displacement of a Vehicle. The Coordination 
layer is used to implement the coordination control layer. The GUI layer is used to communicate with the 
graphical debugger. 

The Physical layer is used as provided by SmartAHS. 
The Regulation layer subclasses the Hybrid class. It contains the PacketBox for the Regcontrol state 

machines. The Regulation layer also specializes Traverser methods, to invoke the Run method of each 
Regcontrol object. 

The Coordination class does not provide any specialized methods. It only sets the name of the 
EventDriver to “Coordination”. 

The GUI class directly inherits from the Layer class and specializes the Go method to execute the appro- 
priate graphical debugger code. 

6.3 Creating A Simulation 
We follow the steps outlined in Section 5 

A highway layout is created using the GOE. This layout is saved to a C++ file and compiled to executable 
format. The executable is run to place the highway into the database. 

An InTraf f ic subclass is created that generates a Myvehicle every n time clicks, where n is a configurable 
parameter. A Factory subclass is created that instantiates a myvehicle. These objects are inserted into 
the highway. 

No roadside automation devices are used for this simulation. 
The Vehicle and scheduling object specializations were discussed above. A separate executable creates 

the scheduler objects and commits them to the simulation database. 
The controllers used in this simulation do not use any parameters. The Physical and Regulation layers 

are run at every time click. The Coordination and GUI layers are run every fourth time click. The time 
click step size is set to 0.1 seconds. The integration time step is set to 0.05 seconds. This information is 
specified in the simulation parameters file. 

The GUI debugger does not require any particular configuration. 
The executable that runs the simulation establishes a connection to the simulation database and retrieves 

the ProcessCoordinator. It takes in an argument that specifies how many times the Go() method of 
the ProcessCoordinator should be invoked. It Commits the simulation state to the database at specified 
intervals. 

7 Performance Results 
In this section we provide performance results for several simulation runs. The simulations were run on a 
SparclO workstation with 64Meg of memory. 

Figures 17, 18, and 19 plot the amount of time taken for one second of highway simulation versus the 
number of vehicles simulated. The graphs have two curves; the first plots the total elapsed time, the second 
plots the time taken up by the regulation layer. 

The simulation is started with a 2km long empty highway a.nd a new vehicle is created every 2 seconds. 
The 2km highway accommodates 500 vehicles. Hence, the curves level off after 500 vehicles. 

Vehicle positions on the highway are updated every 0.1 seconds. The integration time step is set at 0.005 
seconds. The elapsed time is measured every 4 seconds of simulation time. 
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The first scenario, in Figure 17, uses the physical and regulation layers only. The vehicles enter the 
highway, remain single agents, traverse the highway, and eventually leave the simulation. The regulation 
layer determines the vehicle displacements through integration, the physical layer moves the vehicles on the 
highway based on these displacements. 

Total Elapsed Time 

c 

t t 

7 1 1 Total Time 
Regulation Time 
. ... . . . . . . . . .. . .. . .. . . . . . . . . . . . . . 

Number of Vehicles 

Figure 17: Single Agent Vehicles Moving On Highway 

About 98.5% of simulation time is taken up by the integration routines in the regulation layer and the 
two curves are barely distinguishable. The plot indicates that about 32 vehicles can be simulated in real 
time. 

The second scenario, Figure 18, introduces the coordination layer. The coordination layer is scheduled 
twice a second. Vehicles enter the highway, try to merge with other vehicles, traverse the highway in platoons, 
and eventually leave the simulation. About 88% of elapsed time is taken up by the regulation layer. Platoons 
of size 2 are created. Since the displacement for a follower vehicle in  a platoon is based on the leader vehicle’s 
displacement, less time is taken up in integration routines. As a result, about 55 vehicles are simulated in 
real time. 

The third scenario, Figure 19, provides a measure for the framework simulation overhead. Only the 
physical and regulation layers are used. Instead of calculating the vehicle displacement through integration, 
the displacement is hard-coded to 2m. Still, the regulation layer takes up 75% of the total elapsed time. 
Framework bookkeeping, such as, creating vehicles, removing vehicles, traversing objects, maintaining the 
vehicle positions within a lane, etc. is limited to 25%. 

Finally, Figure 20 displays the memory use of the simulation. The resident and total sizes of the program 
are plotted against the number of vehicles in the simulation. 

8 Conclusions 
We have discussed the use of the object-oriented paradigm in the implementation of a simulation framework 
for the uniform specification, simulation, and evaluation of highway automation architectures. 

The framework was developed in C++. Recently we developed a new language called SHIFT that is 
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Figure 18: 2-Vehicle Platoons Moving On Highway 

more suitable for hybrid system specification and simulation. Currently we are reimpelmenting SmartAHS 
in SHIFT. 
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Abstract 
We describe a new approach for developing large-scale object-oriented software systems, which 

we call Object Management Systems (OMS).  OMS are model-based distributed applications used for 
managing complex physical environments. The management functions supported by OMS are con- 
figuration, fault, performance, accounting, access and security, resource, and planning management. 

The OMS Tool Set consists of a semantic data and process model called the OMS Object Model; 
the SmartDB software platform that implements this object model and provides formalisms, tools, 
and interfaces for modeling, synthesizing, optimizing, and verifying application specifications and 
implementing them in an open and distributed architecture; customized extensions of SmartDB- 
SmartNet, Smartpower, and SmartAHS-for telecommunications, power distribution, and auto- 
mated highway systems application domains; and the OMS Software Engineering process. 

Use of the OMS Tool Set significantly alters the software engineering life-cycle of large-scale 
projects, reducing their risk, budget, and schedule. The OMS-based development process consists of 
three stages: domain customization, system architecture, and application programming. Each stage 
produces software specifications and implementations integrated around the OMS Tool Set. 

The OMS approach achieves integrated models, tools, and processes by focusing on a specific, but 
large, class of applications and by following a model-based approach to system development. We 
believe that the OMS approach meets an important need of today's software industry by providing 
standardized application-level development tools for object-oriented databases and software systems. 

1 Introduction 

Object Management Systems (OMS) are object-oriented software systems for simulating, evaluating, 
and controlling large-scale physical environments. Examples of such environments are transportation 
networks, telecommunications networks, power distribution networks, air traffic control, and manage- 
ment information systems. These environments are heterogeneous, dynamic, and distributed. 

OMS provide the  following functions.' 

Configuration Munugernent- 
the  ability t o  specify and control the  configuration of the physical environment; 

Fault Management- 
t he  ability t o  detect faults and significant events in the physical environment, t o  respond t o  them 
with graceful degradation of system performance, and t o  recover from them; 

*This research was supported as part of the California PATH program of the University of California, in cooperation 
with the State of California Business, Transportation, and Housing Agency, Department of Transportation, and the Army 
Research Office under contract DAAH04-94-9-0026. 

'These functions are based on the OS1 NM/Forum functional categories for network management[l2]. 
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Performance Manugement- 
the  ability t o  track, optimize, and fine-tune the physical system performance; 

Accounting Munugement- 
the  ability t o  account for physical system usage and charge the  users according t o  pricing policies; 

Access and Security Munugement- 
the  ability t o  specify and control users’ 
environment; 

Resource Munugement- 
the  ability t o  provide an inventory of all 
tenance schedules; 

access t o  the  physical system in a multi-user operating 

physical system resources and t o  administer their main- 

Planning Munugement 
the  ability to specify, simulate, and evaluate alternative physical system configurations and control 
policies. 

Three technological factors have a profound impact on the  success and usefulness of such manage- 
ment systems for complex physical environments: 

0 T h e  d a t a  and process models used for describing the  physical environment; 

0 T h e  software tools used for implementing these models; and 

0 T h e  software engineering processes followed t o  realize the  system. 

The  d a t a  and process models capture the  domain expertise required for describing and managing the  
physical environment. Typical modeling approaches use relational databases for d a t a  modeling and 
programming languages for process modeling. In complex application domains, the  object-oriented 
approach is gaining popularity due t o  its superior modeling power. While the  relational model only 
describes system sta te ,  the  object model has the  potential for describing both system s ta te  (or data)  
and system behavior (or the  processes), in an integrated manner.:! Yet this potential is rarely exploited 
in practice, and the  object model is often used only for d a t a  description. 

Because it  has been followed for a long time, the approach based on relational databases and 
programming languages provides a mature set of software tools. Typically, relational databases provide 
an  end-to-end development platform which includes the core database engine, modeling tools such as 
form and report generators, and application development utilities. Further, the  relational model has a 
powerful Structured Query Language (SQL) with a sound mathematical basis [6]. A standardized set 
of tools with a wide applicability is possible in this approach because of the  structural  simplicity of 
the  relational model consisting solely of a collection of flat, fixed-format tables. The  popularity of this 
approach in today’s applications can be attributed to the  existence of these tools. 

T h e  role of tools in an  object-oriented approach is even more significant since the  object model is 
semantically richer than the  relational model. However, the  generality of the  model itself has precluded 
the  development of a standardized set of widely applicable tools, and the  object databases have failed 
t o  converge t o  a standard query language such as SQL [ l G ,  11. The  emerging object databases are of 
two types: those tied closely t o  the  relational model and those tied closely t o  programming languages. 
The  former provide enhanced relational databases with an  object interface, while the  latter provide 
programming languages with persistent objects. -\nother class of tools common today are translators 

2Refer to the object-oriented methodologies described by Booch [ 3 ] ,  Coad [5], Rumbaugh [13], and Shlaer and Mellor 
~ 5 1 .  
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between objects on the  program side and relational tuples on the storage side. While these tools are 
useful, application-level tools tha t  implement semantic d a t a  and process models are sorely needed. 

With respect t o  software engineering processes, today’s typical project life-cycles consist of the 
following stages: requirements analysis, functional specification, system architecture, prototype devel- 
opment,  system design, implementation, integration, test ,  release, and maintenance. The  stages up t o  
prototype development are often treated as the first phase of the project and the  subsequent stages up 
t o  system test  are treated as its second phase. Most often, the output  of the first phase is a design 
document and the  output  of the  second phase is the software system. A strictly waterfall approach 
[2] t o  software development treats  these as sequential stages. In some object-oriented methodologies 
the  stages within a phase and even the phases themselves are repeated cyclically t o  obtain the  final 
software system. 

While the  software industry has gained a fair amount of expertise in managing and delivering 
such projects, this phased approach has inherent risks which must be analyzed carefully. Ensuring 
coordination between the  large number of project stages leads t o  management overhead. There are no 
streamlined mechanisms t o  ensure tha t  what is implemented is what was designed. Poor coordination 
can lead t o  a “disconnect” between the  domain experts involved in the first phase and the system experts 
involved in the  second phase. Finally, the staffing profile of the project is typically back-loaded, leaving 
little control over slipping schedules during the project’s second phase. 

In section 2 we show how our oMs-based approach addresses these project technology and man- 
agement concerns. In section 3 we apply the  OMS approach t o  the automated highway systems trans- 
portation project. 

2 The OMS Approach 

Standardized tools and processes can emerge if a model-based approach is adopted for the  development 
of software systems. For example, the  relational model enabled the development of standardized tools 
such as SQL by restricting s ta te  descriptions t o  a tabular format. Naturally, such a restriction of 
modeling power constrains the  class of applications t o  which these tools and processes can be applied. 

In the OMS approach, we focus on an important class of applications, namely management systems 
tha t  are used t o  control the behavior of heterogeneous, dynamic, and distributed physical environments. 
For this class of applications, we develop the OMS Object Model, a powerful semantic d a t a  and process 
model. We implement this model as the  SmartDB software platform and customize it for specific 
application domains- SmartAHS for automated highway systems, SmartNet for network management, 
and Smartpower for power distribution management. Figure 1 shows these components, collectively 
known as the  OMS Tool Set. 

The  OMS software engineering process consists of the following stages: 

0 Domain Customization; 

0 System Architecture; and 

0 Application Programming. 

Domain customization s tar ts  with SmartDB (or one of the customized SmartDB platforms) and uses 
it  t o  specify the  relevant components of the physical environment: objects, their interrelationships, 
constraints, behavior, observation and control channels, event propagation, control strategies, and user 
interfaces. System architecture uses SmartDB t o  determine the optimal partitioning of the  deployed 
system with respect t o  distributed processing, distributed databasing, process and object migration 
strategies, concurrency control, and versioning. Applica,tion programming fills in the  details of object 
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Figure 1: The OMS Tool Set 

behaviors and control and coordination strategies keeping i n  mind the system constraints. These stages 
are followed by the  system test ,  release, and maintenance stages. 

The  OMS process provides significant overlap between the different stages of the  software life-cycle. 
The  first two stages deliver a customization of the OMS object model along with an application ar- 
chitecture, all in software. Each stage successively refines the output  of the  previous stage using the 
OMS Tool Set. This integrated environment reduces project management overhead, and the  risk of a 
“disconnect)’ between domain experts and system experts is absent. The  staffing profile is fairly even 
throughout the  project. 

We reemphasize tha t  the OMS approach achieves integrated models, tools, and processes by focusing 
on a specific, but  large, class of applications such as transportation networks, telecommunications 
networks, power distribution, air traffic control, and management information systems, and by following 
a model-based approach t o  systems development. 

2.1 The OMS Object Model 

The  OMS object model is derived from two streams of theoretical development: object-oriented modeling 
and mathematical systems theory. We give a brief description of the model features. 

2.1.1 State 

An object’s at tr ibutes describe its s ta te ,  inputs, and outputs. The system is a collection of objects, and 
its s t a t e  can be thought of as the s ta te  of individual objects along with their input-output intercon- 
nections. T h e  system as a whole has inputs and outputs  corresponding t o  the  free inputs and outputs  
of objects in it. 

2.1.2 Methods 

The  methods of an object are memoryless (or reentrant) maps from its s ta te  and input t o  a new 
s t a t e  and new outputs .  Methods can encode object behaviors using different kinds of deterministic, 
nondeterministic, or stochastic dynamical models such as finite s ta te  machines or differential equations. 
In addition, a method can specify new objects to be created, existing objects t o  be deleted, new input- 
ou tput  connections t o  be made, and existing input-output connections t o  be removed. 

Each method also specifies its triggering inputs and triggered outputs. 
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Figure 2: (a) A Sample OMS. (b) Triggering Input. (c) S ta te  Transition. 

2.1.3 State Transitions 

The  system is activated by triggering some subset of its inputs. All object methods triggered by these 
inputs are executed. The  outputs  of these executed methods themselves trigger other methods, which 
are then executed, and so on. 

We require, and impose conditions t o  ensure, t ha t  this method execution sequence is unique (i.e., 
there are no race conditions or indeterminacies) and tha t  it is finite (i.e., it terminates). 

If such an execution sequence satisfies all system constraints, then the  system s ta te  at the  end of the 
sequence is committed; otherwise it  is rolled back t o  the beginning of the  sequence and the triggering 
input is discarded. 

2.1.4 Constraints 

Constraints of four types are defined: 

State construints- 
constraints on the values of the state,  inputs, and outputs  of an individual object; 

Connection construints- 
constraints on establishment of input-output connections between objects; 

Relationship constraints- 
s t a t e  constraints expressed over several objects tha t  are related through relationships; and 

Behavior construints- 
s ta te  constraints tha t  must be satisfied before and after the execution of a single method of an 
object. 

Figure 1-a shows a sample OMS with three interconnected objects. Figure 1-b shows a triggering 
input applied t o  the  OMS and the method tha t  it triggers. Figure 1-c shows the effect of the  s ta te  
transition caused by this triggering input: creating a new object and connecting it t o  existing objects 
through input-output relationships, and computing the triggered output  of the  system. 

Note the  resemblance of this OMS d a t a  and process model t o  integrated circuit diagrams, output  
feedback control systems, Petri nets, and neural networks. 

2.1.5 Distribution 

Because of the  restrictions imposed on the  s ta te  transitions, the expressive power of a stand-alone OMS 

is less than  tha t  of recursively enumerable languages. This is so by design: formal tools are available for 



synthesis, verification, simulation, and testing in the case of regular languages and some context free 
and context sensitive languages [8, 111. The  restricted expressive power of a stand-alone OMS enables 
us t o  exploit such tools. 

However, a combination of two or more interacting OMS can be used t o  obtain the full expressive 
power of recursively enumerable languages. Such a combination can be used t o  realize distributed and 
hierarchical system architectures. For example, we use a hierarchy of three OMS t o  implement time- 
and event-driven scheduling (see [lo]). In addition t o  providing full expressive power, distributed and 
hierarchical systems can be used t o  enhance modularity and control complexity of the  implemented 
systems. 

2.2 SmartDB 

SmartDB is a software implementation of the OMS Object Model. In addition t o  the  implementation 
of this model, SmartDB provides several additional features: 

0 It  implements a relationship object and provides specific and useful relationships such as input- 
output ,  containment, views, agent-manager, client-server, and process layers; (A process layer is 
a collection of objects scheduled for execution a t  a common time- or event-granularity. Process 
layers are used t o  build layered or hierarchical system architectures.) 

0 It  implements commonly used objects such as events, sensors, actuators, schedulers, and users; 

0 It  implements the  OMS Engine-the machinery tha t  executes the model dynamics. T h e  OMS 

Engine provides an interface for creating and deleting objects, connecting and disconnecting 
them, triggering methods, executing s ta te  transitions, checking constraints, propagating event 
notifications, and providing event- and time-based scheduling; and 

0 It  provides system architecture tools for da t a  distribution, process distribution, object migration, 
process migration, packaging objects into process layers based on their scheduling requirements, 
versioning, concurrency control, backup and restore, schema evolution, and other utilities. 

In addition t o  these modeling tools, SmartDB provides database interfaces and programming mecha- 
nisms tha t  simplify OMS implementation tasks. 

2.2.1 Assumed Capabilities 

SmartDB is middleware built on top  of a persistent storage medium. 
I t  requires the following capabilities: persistent storage, schema generation, implicit retrieval, pred- 

icated queries, commit and rollback, and backup and restore. 
The  following features are desired but not essential: versioning, d a t a  distribution with location 

transparency, object migration, directory services, and concurrency control with locking and deadlock 
detection. 

T h e  following features are useful but not essential: backup and restore, utilities for forms and 

If the desired or useful features are available in the database management system, SmartDB func- 
reports, and on-line schema evolution. 

tionality can be enhanced accordingly. 
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2.2.2 Customized Extensions 

We have customized Smar tDB t o  form the  SmartAHS and Smar tPath  platforms for highway system 
simulation and evaluation. Smar tDB can also be customized for telecommunications networks and 
power distribution management. We describe briefly the  features of these Smar tDB extensions. 

SmartA HS- 
Highway objects: lane segment, highway section, entry, exit, and zone. Vehicle objects: vehicle, 
engine, brakes, steering, sensors, transmitters, and receivers. Process layers: physical, regulation, 
coordination, link, and network. Da ta  and processing distribution based on zones. (See section 
3 for further details.) 

SmartNet- 
Links: channels, facilities, circuits, packets, and services. Network elements: equipment, func- 
tions, modules, multiplexors, buffers, switches, terminals, and users. Process layers (following 
the  OSI reference model): physical, d a t a  link, network, transport ,  session, presentation, and ap- 
plication; D a t a  and processing distribution based on geographical regions. Sensors and actuators 
based on S N MP  and OSI NM/FORUM protocols [ l a ,  41. 

SmartPower- 
Links: three phase, two phase, and single phase high voltage, medium voltage, and low voltage 
transmission lines. Nodes: generators, transformers (XX,  X Y ,  YX,  YY),  loads, serial capacitors, 
parallel capacitors, and switches (1-2, 2-1). 

3 The AHS Application 

The  concepts and tools for OMS have emerged from research on the  Automated Highway Systems 
project at the  University of California at Berkeley [17, 141. The  AHS project at UC-Berkeley is part  
of a comprehensive program initiated by the  1J.S. government under the  Intermodal Surface Trans- 
portation Efficiency Act of 1991 t o  improve safety and reduce congestion in the  surface transportation 
system. UC-Berkeley’s PATH program is a partner in a nine-member consortium along with General 
Motors, Bechtel, Parsons Brinckerhoff, Martin Marietta, Delco, Hughes, Caltrans, and Carnegie Mel- 
lon University. T h e  consortium is funded in part  by the  U.S. Department of Transportation and it  is 
responsible for designing, evaluating, and demonstrating a prototype AHS.  The  SmartAHS platform 
and the  associated Smar tPath  simulator are important tools used by the  consortium for designing, 
evaluating, and deploying AHS. 

There is also substantial related activity in Europe under the  PROMETHEUS3 and the   DRIVE^ 
projects, and in Japan under the  RACS’, AMTICS‘ and V I C S ~  projects. 

The  PATH program at UC-Berkeley has proposed a hierarchical control architecture t h a t  yields up 
t o  a four-fold increase in transportation capacity while enhancing safety. The  architecture proposes 
a strategy of platooning several vehicles as they travel along the highway. The  separation of vehicles 
within a platoon is small (2m) while separation of platoons from each other is large (60m). The  
movement of vehicles is realized through simple maneuvers-join, split, lane change, entry, and exit- 
t h a t  are  coordinated. 

3Program for European Traffic with Highest Efficiency and Unprecedented Safety 
4Dedicated Road Infrastructure for Vehicle Safety in Europe 
5Road/Automobile Communication System 
‘Advanced Mobile Traffic Information and Communication System 
7Vehicle Information and Communication System 
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T h e  automation strategy of the  PATH AHS architecture is organized in a control hierarchy with the  
following layers: 

Physical Layer- 
the  automated vehicles and highways; 

Regulation Layer- 
control and observation subsystems responsible for safe execution of simple maneuvers such as 
join, split, lane change, entry, and exit; 

Coordination Layer- 
communication protocols that vehicles and highway segments follow t o  coordinate their maneuvers 
for achieving high capacity in a safe manner; 

Link Layer- 
control strategies tha t  the  highway seglllents follow i n  order t o  maximize throughput; and 

Network Layer- 
end-to-end routing so tha t  vehicles reach their destinations without causing congestion. 

To avoid single-point failures and to  provide maximum flexibility, the  design proposes distributed 
multi-agent control strategies. Each vehicle and each highway segment is responsible for i ts own 
control. However, these agents must coordinate with each other t o  produce the  desired behavior of 
high throughput and safety. 

3.1 Evaluation using SmartAHS 

SmartAHS is used t o  capture different AHS designs and benchmark scenarios and t o  generate perfor- 
mance metrics through micro-simulation of the  designs. The  Smar tPath  OMS is obtained when the  
PATH AHS architecture described above is implemented in SmartAHS [9, 71. 

SmartAHS provides generic objects for modeling highway configuration, vehicles, control and com- 
munication agents, and performance monitors. SmartAHS also provides a scheduler t h a t  simulates 
time- and event-driven object behaviors. The  scheduler is configurable and it  can simulate objects 
at different time scales. Vehicle movement, for example, may be scheduled every lOOms and roadside 
controllers every 15s. 

Smar tPa th  consists of specialized objects and their behaviors given in terms of dynamical system 
models such as differential equations, finite s ta te  machines, fluid flows, and queueing networks, and 
it  also specifies sensors, actuators, transmitters, receivers, control and communication policies, and 
operating rules. The  Smar tPath  simulation setup consists of seven specifications: highway configura- 
tion, travel demand,  weather conditions, highway automation devices, vehicle automation devices, and 
the  simulation scheduling policy. (Automation devices consist of sensors, actuators, communications 
devices, and control agents.) Simulation runs are used t o  collect design performance metrics such as 
safety, productivity, comfort, and environmental impact, generated by monitoring the  system s ta te  
during the  simulation runs. SmartAHS can be used t o  optimize design performance with respect t o  
these metrics by tuning design parameters dynamically. 

Smar tPath  simulation performance depends on the  time-granularity of the  simulation. If the  inte- 
gration routines used t o  calculate vehicle displacement are set t o  5-50ms s tep size, and vehicle position 
on the  highway is updated every looms, 50 vehicles can be simulated in real-time on a Sun Sparc 
10 workstation. (The integration step-size is dynamically adjusted by SmartAHS based on vehicle 
displacement.) Simulation profiles indicate tha t  80% of the  simulation time is spent on time-driven 
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simulation of the  differential equations tha t  model vehicle dynamics. Implementing these on a vector 
parallel processing system is expected t o  speed up t,he simulation significantly. 

A distributed processing version of Smar tPath  is under implementation for problem scales as large 
as 100,000 vehicles over 1000 miles of highways. 

3.2 Deployment using SmartAHS 

Once an AHS design is simulated, evaluated, and optimized, SmartAHS can be used with hardware 
emulators as well as actual hardware components instead of software sensors and actuators. This aids 
model validation and robustness testing of the  control laws. For full deployment, the  regulation layer 
control algorithms can be deployed in vehicles and the link and network layer control algorithms can 
be deployed on the  roadside. In this environment, SmartAHS acts as a distributed operating system 
for command and control of the  deployed AHS. 

4 Conclusion 

Object Management Systems are a new approach for developing large-scale object-oriented software 
systems. OMS are model-based distributed applications used for managing complex physical environ- 
ments. The  management functions supported by OMS are configuration management, fault  manage- 
ment, performance management, accounting management, access and security management, resource 
management, and planning management. 

The  OMS Tool Set consists of a semantic d a t a  and process model called the  OMS object model, 
the  Smar tDB software platform, customized extensions of SmartDB-SmartNet, Smartpower, and 
SmartAHS-for specific application domains, and the  OMS Software Engineering process. 

The  oMs-based development process consists of three stages: domain customization, system ar- 
chitecture, and application programming. Each stage produces specifications and implementations in 
software integrated around the  OMS Tool Set. This software development life-cycle reduces project risk, 
budget, and schedule. 

The  current implementation of SmartDB uses the  css programming language, Versant Object 
Database,  TCL/TK user interface tool kit, and the  U N I X  operating system. In future releases of 
SmartDB, we expect t o  encapsulate platform dependencies and provide independence from specific 
database or graphical user interface platforms. The  SmartDB and SmartAHS platforms together 
represent about fifteen person-years of effort, and the Smar tPath  platform represents another fifteen 
person-years of effort. The  SmartAHS platform is being used for highway systems evaluation by the  
nine-member National Automated Highway Systems Consortium including General Motors, Hughes, 
Martin Marietta,  Delco, and other industry, university, and government partners. 
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