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Graphical Abstract

The nitrogenase superfamily comprises homologous enzyme systems that carry out fundamentally 

important processes, including the reduction of N2 and CO, and the biosynthesis of 

bacteriochlorophyll and coenzyme F430. This special issue provides a cross-disciplinary overview 

of the ongoing research in this highly diverse and unique research area of metalloprotein 

biochemistry.
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One can’t help but wonder if Hellriegel, Wilfarth and Beijerinck expected that their 

discovery of biological nitrogen fixation in the late 18th century[1–2] would capture the 

attention of generations of scientists from a wide range of disciplines in the next 140 years 

to come? The progress in this area, however, was very slow early on due to the lack of 

appropriate methods and techniques to tackle the questions related to the complex process, 

which forced many scientist to leave this field and seek topics more amenable to the 

approaches available at this time. It took only more than half a century until 1942, when 

Burris provided conclusive evidence that ammonia (NH3) represented the key intermediate 

formed from the reduction of the atmospheric dinitrogen (N2) in this process,[3] and that 

NH3 was eventually incorporated into the proteins in the bacterial cells to provide the source 

of the essential element nitrogen for the entire global food chain.[4] It took another half a 
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century until the intrinsic biochemical and structural beauty of nitrogenase, the complex 

metalloenzyme underlying the biological nitrogen fixation, truly unfolded.[5–12]

Driven by the realization that the Mo-dependent nitrogenase is a two-component system, and 

using proper anaerobic techniques to purify its iron (Fe) protein and molybdenum iron 

(MoFe) protein components, Thorneley and Lowe conducted a series of kinetic experiments 

of Mo-nitrogenase and postulated the classic mechanistic framework of N2 reduction by this 

nitrogenase.[5–8] Designated the Lowe-Thorneley model, this mechanistic proposal depicts 

the kinetics of the chemical transformations that occur on the Fe protein and MoFe protein 

components during nitrogenase catalysis, and the delivery of proton and electron equivalents 

to the catalytic MoFe protein component, where electrons and protons accumulate for the 

reduction of N2 (Figure 1). While this model has been updated over the years by others 

(most notably, by the team of Seefeldt, Hoffman and Dean[13]), it still represents the essence 

of how we think nitrogenase achieves its biological function today.

The other astonishing event in nitrogenase research occurred in 1992, when Douglas Rees 

reported the crystallographic analysis of the catalytic MoFe protein component of the Mo-

nitrogenase and provided the first structural depiction of its two unique metallocofactors: the 

P-cluster ([Fe8S7]) and the active site M-cluster [(R-homocitrate)MoFe7S9] (Figure 2).[10,11] 

Arguably the most complex metalloclusters found in nature, the P- and M-clusters are 

biologically important and chemically unprecedented. In particular, the structure of the M-

cluster is so unique that it took the nitrogenase community nearly two decades after the first 

structural depiction of the M-cluster to realize the presence of a carbide (C4−) atom in the 

center of this cluster, which led to an update of the stoichiometry of the M-cluster as [(R-

homocitrate)MoFe7S9C].[14–16] Both the M- and P-clusters have evaded chemical synthesis 

so far, although topologs of these clusters have been successfully synthesized by Dick Holm 

and others,[17] which provided crucial insights into the structure-function relationship of 

these unique metalloclusters.

Still, the nitrogenase storybook proved to be far from completion with the discovery of the 

alternative vanadium (V)- and iron (Fe)-only nitrogenases.[18–20] The V- and Fe-only 

nitrogenases share high degrees of sequence and structural homologies with the Mo-

nitrogenase.[21] However, other than the ability to reduce N2 to NH3, the alternative 

nitrogenases demonstrate the ability to reduce CO and/or CO2 to various hydrocarbons at 

considerably higher efficiencies than their classic, Mo counterpart.[22–25] While the 

physiological function of these reactions remain unclear, the observation of the capability of 

nitrogenase to convert CO to hydrocarbons, such as C3H8 and C4H10, is of significant 

importance, as it represents the first and the only biological process that mirrors the Fischer–

Tropsch reaction[26] that is used for the industrial production of synthetic fuel from CO.

The recent decades witnessed a whole new development of the nitrogenase field as the 

community started to realize the wide distribution of nitrogenase homologs among bacteria 

and archaea, include surprising microbial hosts unable to perform biological nitrogen 

fixation.[27] Recent biochemical and structural studies revealed the involvement of these 

nitrogenase homologs in the biosynthesis of bacteriochlorophyll and coenzyme F430,[28–31] 

thereby establishing a nitrogenase superfamily comprising several homologous enzymatic 
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systems in distinct phylogenetic clades (Figure 3).[32] An intriguing and complex class of 

metalloenzymes, the nitrogenase superfamily provides a whole new avenue for a highly 

diversified and cross-disciplinary research community.

The intention of this special issue is to provide a quick glimpse of this newly emerged field, 

showcasing the breadth of methods applied to the investigations of the individual members 

of the nitrogenase superfamily while highlighting the intrinsic correlation between the 

various members of this homologous group of enzymes:

Emphasizing on the genetic and evolutionary aspects of this research area, Steven 

Mansoorabadi provides an overview of the members of the nitrogenase superfamily,[33] 

Patricia Dos Santos gives a detailed account of alternative nitrogenases among microbes,[34] 

and Sanfeng Chen discusses the advances in transferring the prokaryotic nitrogen fixation 

genes into non-diazotrophic prokaryotic and eukaryotic hosts.[35]

The topic of nitrogenase mechanism is discussed by Ian Dance, who uses computational 

approaches to probe this intriguing process;[36] whereas Shelley Minteer and Jenny Yang 

provide the experimental insights into the reactivties of nitrogenase by applying 

electrochemistry to the reactions catalyzed by the nitrogenase enzyme[37] and its extracted 

cofactors.[38]

The topic of nitrogenase biosynthesis is discussed by Brian Hales, who transfers the 

knowledge of nitrogenase assembly to nitrogenase catalysis to further our mechanistic 

understanding of the nitrogenase enzyme.[39] Yilin Hu demonstrates how a nitrogenase 

hybrid containing an unnatural M-cluster variant can be used to modulate nitrogenase 

reactivity and provide insights into the mechanism of this enzyme.[40] Gunhild Layer and 

Jürgen Moser illustrate what chimeric systems comprising components of different members 

of this enzyme superfamily can help us gain a better understanding of their mechanistic 

properties,[41] and Yuichi Fujita reports an unexpected reactivity of an enzyme involved in 

the biosynthesis of bacteriochlorophyll.[42]

Last but not least, Holger Dobbek further expands our horizon in this research area by 

reviewing an astounding enzyme family that does not show sequence homology to the 

nitrogenase enzyme, but contains a double-cubane [Fe8S9] cluster with similar catalytic 

features to those of the nitrogenase clusters.[43] It seems to be just a matter of time for more 

unexpected members of the nitrogenase enzyme superfamily to surface, the investigation of 

which will keep us busy for at least another 140 years.
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Figure 1. 
The Lowe-Thorneley model of the Mo-nitrogenase. En depicts one αβ-dimer of the 

tetrameric MoFe protein component that has accumulated n electrons, with the resting-state 

MoFe protein designated as E0. The steps at which NH3 and H2 are released are indicated.
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Figure 2. 
Structures of the P-cluster (A) and the M-cluster (B) of the Mo-nitrogenase. Color code of 

atoms: Fe, orange; S, yellow; O, red; C, gray; Mo; cyan.
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Figure 3. 
Overview of the phylogenetic groups of the nitrogenase superfamily. Shown is a simplified 

schematic presentation of a phylogenetic tree comprising the Fe protein and MoFe protein 

homologs found in the available microbial genomes.[32]
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