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Memory in Chains:
Modeling Primacy and Recency Effects in Memory for Order

Erik M. Altmann (altmann@gmu.edu)
Human Factors & Applied Cognition

George Mason University
Fairfax, VA 22030

Abstract
Memory for order is fundamental in everyday cognition,
supporting basic processes like causal inference. However,
theories of order memory are narrower, if anything, than
theories of memory generally.  The memory-in-chains (MIC)
model improves on existing theories by explaining a family of
order memory effects, by explaining more processes, and by
making strong predictions. This paper examines the MIC
model’s explanation of primacy and recency effects, and the
prediction that primacy should dominate recency. This
prediction is supported by existing data sets, suggesting that
Estes’s (1997) perturbation model, dominant among theories
of order memory, is incorrect. Fits to data are presented and
compared with fits of other models.

Introduction
When EgyptAir Flight 990 crashed off the coast of
Massachusetts last year, the co-pilot had been recorded
commending his life to God shortly before the plane went
down. Did he do this because he had decided to crash the
plane? Or did he do this because the plane was already
crashing? The correct causal inference depends on knowing
more than the key events — it also depends on knowing the
order  in which they occurred. If there were a living
eyewitness, that person’s memory for order would be
immensely valuable, assuming it were correct. A theory that
would help to predict the accuracy of order memory would
thus be important in many applied domains.

Despite the importance of order memory, current theories
are, if anything, narrower than is typical of memory theories
generally. For one thing, they are only descriptive, in that
they reproduce empirical phenomena once the analyst has
encoded the appropriate underlying memory representation.
For example, a widely cited model of order memory is the
perturbation model (Estes, 1997). This model takes as input
an array of items indexed by the dimension along which
order confusion can occur (in the example above, time).
Every so often, two cells in this array have some chance of
swapping with one another. Over time, elements drift away
from their original position, producing an “uncertainty
gradient”. However, the assumption that memory is
organized as an array suggests that memory is an immense
multi-dimensional array, with a dimension for each different
kind of confusion. A representation this complex would
place a heavy burden on the encoding process that creates it,
and yet the perturbation model fails to address encoding at
all. Two other models of order memory, the primacy model
(Henson, Norris, Page, & Baddeley, 1996; Page & Norris,
1998) and the partial matching model (Anderson & Matessa,
1997), fail to address the encoding question, as well.

This paper presents a model of order memory that not
only explains the underlying encoding processes, but also
fits existing data better than the other models cited above.1

The memory-in-chains (MIC) model accounts for a family
of effects, but the focus here is on the theoretical prediction
that primacy should dominate recency in memory for order.

Encoding Memory for Order
The model presented here is built on the ACT-R/PM
cognitive theory, which combines perceptual-motor
constraints (Byrne, 1998) with an analysis of memory as
adapted to the structure of the environment (Anderson,
1990). The three theoretical mechanisms underlying the
MIC model are a dual-code representation of attended
objects, associative learning, and noisy communication
between cognition and attention.

Dual-Code Representation
The main assumption shaping the representation of items in
the MIC model is that cognition and attention are different
processes that must communicate.2 This assumption is
fleshed out by what we know about the functional roles of
the two processes. For example, we know that cognition can
program attention in a top-down manner, and we know that
attention communicates relatively low-level information to
cognition for complex processing.

This analytical framework allows us to specify generic
processes involved in processing sequential stimuli. For a
given stimulus, cognition must first tell attention to attend to
the stimulus. Then, attention must send the attended object
back to cognition for further task-related processing. Thus,
processing one stimulus requires two acts of communication
— one to direct attention and one to receive the contents of
the attended location.

In terms of representation, this communication model
implies that processing a single stimulus involves two
codes. One code, representing the item’s location or
position, is passed from cognition to attention. Another code
representing the item’s semantic or post-categorical identity,
is passed back from attention. This need for two codes per
item converges with broad support in the literature for dual-

                                                            
1 Executable and documented code for the model is available at

http://hfac.gmu.edu/people/altmann/nairne-rpm.txt
2 I use “attention” here to mean attention to external stimuli, and

will use “the focus of mental attention” to refer to ACT-R’s
internal goal focus. The latter maps roughly to the task-related
contents of the central executive (reviewed in Baddeley, 1992).



code representations (e.g., Logan, 1996; Paivio, 1971;
Whiteman, Nairne, & Serra, 1994).

The communication model is illustrated in Figure 1A,
which shows codes for three hypothetical items (X, Y, and
Z). Time moves from left to right, and arrows mark the
sequence in which codes appear in the focus of mental
attention within cognition. (This interpretation of the arrows
is elaborated below.) To process stimulus X, cognition
sends a location code (XL) to attention, from which it
receives an object code (XO). This is followed by whatever
further task-related processing (not shown in the figure)
might be required of the stimulus. The cycle then repeats for
the next stimulus, Y.

An additional constraint on the model is that the channel
through which cognition and attention communicate is the
memory system itself. That is, when cognition sends a
message to attention, it places a location code in memory for
attention to retrieve. Similarly, attention sends a message
back by placing an object code in memory for cognition to
retrieve. This implementation of the communication channel
is specified by the underlying theory, ACT-R/PM, but the
tight functional integration of communication and memory
can be traced to the earliest information-processing models
of the cognitive system (e.g., Broadbent, 1958). The general
implication is that functional descriptions of memory can
also serve as functional descriptions of communication
within the cognitive system as a whole. Two specific
implications for the MIC model, concerning associative
learning and noisy communication, are addressed in the next
two subsections.

Associative Learning
Evidence suggests that associative links between temporally
proximal codes are acquired incidentally by the cognitive
system (e.g., Altmann & John, 1999; Crowder, 1976;
Hasher & Zacks, 1979; Mandler & Mandler, 1964; Nairne,
1983). Like other unified cognitive theories, ACT-R
contains an associative learning mechanism to explain and
predict the corresponding behavioral phenomena (Anderson
& Lebiere, 1998). Associative learning in ACT-R creates a
link between two codes if one (the target) is retrieved from
memory while the other (the cue) is already in the focus of
mental attention within the cognitive system. As in Soar
(Newell, 1990), this association is a new, permanent
element of long-term memory. In the future, if the cue again
enters the focus of mental attention it will prime (spread
activation to) the target, increasing the chance that the target
will be the next item retrieved to the focus of attention.
Associative links therefore allow chained retrieval, in which
each retrieved item cues retrieval of the next item.

Applied to the memory-based communication protocol
described above, associative learning produces a linked
structure in which location codes are interleaved with object
codes. Figure 1A illustrates such a structure after the model
has studied and encoded the three hypothetical items (X, Y,
and Z) introduced earlier. An important assumption in the
model, based on standard associationist principles, is that
each code remains in the focus of attention long enough to
still be there when the next code is retrieved. The
consequence is that the first code becomes the cue for the

second code, and the associative-learning mechanism links
the two codes permanently in memory. In Figure 1 (and
later figures), links created by associative learning are
represented by arrows.

Noisy Communication
If communication between cognition and attention were free
of noise, then, subject to associative learning, it would
produce a memory structure that allowed perfect sequential
retrieval of items (Figure 1A). However, a memory system
without noise would be unrealistic, and indeed sub-optimal
(Anderson & Lebiere, 1998). In ACT-R as in other theories,
items in memory have activation levels that determine their
availability — items high in activation are less vulnerable to
interference from other items. Noise in the memory system
is expressed as transient fluctuations in individual activation
levels, introducing the possibility of memory-retrieval error.

In the MIC model, noise can critically affect
communication between attention and cognition at study
time and produce incorrect links between codes. For each
item processed, two memory retrievals are involved, one of
a location code and one of an object code. Both retrievals
are subject to activation noise. Specifically, when attention
attempts to retrieve the location code most recently placed
in memory, it may retrieve an old location code instead.
Similarly, when cognition attempts to retrieve the object
code most recently placed in memory, it may retrieve an old
object code instead.3 In terms of an everyday example,
suppose that a newcomer is being introduced to a number of
people, one at a time but perhaps too rapidly. While looking
at the current person, the newcomer might “fall behind” and
retrieve a previous, incorrect name. The result of such an

                                                            
3 I assume that errors occur within a code type only, and that a

retrieval attempt always produces an item. These assumptions
imply, for example, that an attempt to retrieve a location code will
always produce a location code, though it may produce the wrong
location code.
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Figure 1:  Memory representations encoded by
the MIC model after studying items X, Y, and Z.
An item has a location code (subscript L) and an
object code (subscript 0). Panel A: Error-free
representation. Panel B: Representation with two
branches (incorrect links), in dashed ink, caused
by noisy processing at study time.



error would be that the newcomer might associate the wrong
name with the wrong face. This kind of associative error is
what the MIC model can encode at study time when there is
noisy communication between attention and cognition.

Associative learning implies that a retrieval error during
encoding produces an incorrect link in memory. I will refer
to an incorrect link as a branch, because it branches off the
correct temporal path through the codes of the list. The
creation of a branch is illustrated in Figure 1B. There, a
retrieval error occurs as YL is in the focus of mental
attention and cognition tries to retrieve YO. This code was
just placed in memory by attention, but due to noise in
activation levels, XO is transiently more active and hence is
retrieved instead. This incorrect retrieval causes an
association to be encoded between YL and XO. This branch,
shown as a dashed arrow, means that X could be mistakenly
placed in Y’s position at test time, producing an order error.
This possibility is explored below in a discussion of the
model’s order-reconstruction process.

A second branch is also created in the scenario in Figure
3. When the model is presented with Z, it correctly retrieves
ZL, but XO is still in the focus of mental attention (because
of the retrieval error that occurred while processing Y).
Therefore, associative learning creates a branch from XO to
ZL, bypassing YO. This branch, however, need not produce
an order error at test time, a possibility I also explore below.

A critical constraint on the communication model is the
near-miss constraint, which is that incorrect codes
temporally proximal to the correct code are more likely to
intrude (and cause a branch). This constraint follows
directly from the dynamics of activation in ACT-R. A
code’s activation depends on the lag since it was last
retrieved — the longer the lag, the lower the activation.
Therefore, a presented item will be more active than its
predecessor (more precisely, the item’s codes will be more
active than its predecessor’s codes), because the lag since
presentation is smaller. The implication is that most
branches created at study will be like those in Figure 1B –
near misses, rather than far misses. This explains the
uncertainty gradient, as I describe next.

Reconstructing Memory for Order
In order-memory experiments, items themselves are usually
shown at test as well as at study — participants are asked
simply to reconstruct their original order. Because items and
positions are available at test, an assumption I represent in
the model is that people randomly choose an initial item or
position to start the reconstruction process. This assumption
means that the model can take many paths through the
representation in Figure 1B. In particular, one of these paths
produces a positional swap of the kind that underlies
uncertainty gradients (Nairne, 1992), and a second path
produces a correct reconstruction.

The model will make an order error if the first cue it uses
is location code YL. This code was linked incorrectly to XO

at encoding time, because of a retrieval error then. The
result now is that the model will infer that XO was the object
that originally appeared in location YL, producing an order
error. Next, the model might use XO as a cue for which
location to focus on next, in which case it would focus on

location ZL. Using ZL as a cue, the model would most likely
retrieve ZO, which is correct. Thus, of two items placed, one
was placed incorrectly and one correctly. The environment
now indicates one remaining position and one remaining
item. (Participants are typically instructed in the one-to-one
nature of the reconstruction task, namely that every item
maps to one position, with no items or positions left over.)
The model will therefore infer that object YO occurred at
location XL. That is, the model will have swapped the order
of the neighboring items X and Y. This is precisely the swap
assumed (but not explained) by the perturbation model
(Estes, 1997; Nairne, 1992).

Despite the encoding error, the structure in Figure 1B can
also produce a correct reconstruction. If the model begins
with location code XL, for example, then it will most likely
retrieve XO, which is correct. Used as a cue, XO will then
prime two location codes, YL and ZL. Suppose, first, that ZL

is retrieved. Used as a cue, ZL will likely retrieve ZO, which
is correct. At this point, because only one item and one
position remain, the model can place YO  at YL, and the
reconstruction will be correct. Suppose, instead, that when
XO is the cue, YL is retrieved. Used as a cue, YL will likely
retrieve XO, but this is now a dead end — XO has been
placed already. The model might now decide to place XO

elsewhere, but it might also decide simply to abandon YL as
a cue and use ZL instead. This would also produce a correct
reconstruction.

How Primacy and Recency Arise
A standard empirical finding is that items at either end of a
list are remembered more accurately than items in the
middle. To explain these primacy and recency effects in
order memory, we first need to revisit how the model
generates order errors from an incorrect representation like
the one in Figure 1B. Suppose, again, that the model
initially focuses on YL at test time (essentially asking itself,
“What item was in the second location?”). This cue will
prime retrieval of XO, causing the model to place X second
instead of first. In contrast, given the correct representation
of Figure 1A, YL would correctly prime YO. Thus, the
frequency of branches, in aggregate data, is an important
factor in determining the frequency of order errors. This
relationship between branches and order errors means that
we can examine branching patterns in the representation
created at study time to predict error patterns at test time.

Primacy and recency effects arise in the MIC model
because branch frequency is higher for middle items than
for end items. Support for this claim comes from analyzing
the interaction of branch frequency, branch length, and the
distribution of branch lengths across a list. The notion of
branch length is illustrated in Figure 2. Panel A shows two
branches out of YL. Each branch is of length 1, meaning that
the code at the head of the branch is temporally off by one
from the correct code. Panel B shows two branches out of
ZL. One branch is of length 1, but the other is of length 2
because the code at the head of the branch is off by two
from the correct code.

Two important points are illustrated in Figure 2. First,
branch frequency varies inversely with branch length. That
is, in aggregate data, branches to nearby codes are more



frequent than branches to far-away codes. This relationship
follows directly from the near-miss constraint at encoding
time: Temporally near codes are more likely than
temporally remote codes to intrude on communications
between cognition and attention and thereby cause branches.
In Figure 2, branch frequency is indicated by the size of the
“F” label. The branch of length 2 has a smaller F, meaning
that it occurs less frequently in aggregate data.

The second point is that branch lengths are distributed
unevenly across a list: Middle items have more short
branches than end items. This distribution is also illustrated
in Figure 2. Panel A shows all possible branches out of a
middle code, where by “all possible” I mean that there is
one branch to each possible incorrect code in the list.
Similarly, Panel B shows all possible branches out of an end
code. The middle code in Panel A has two short branches,
whereas the end code in Panel B has only one. Because
short branches are more frequent in aggregate data, the
middle code will produce more order errors at test time.

In sum, primacy and recency effects in the MIC model
reflect error patterns during encoding, in that middle items
suffer branches more frequently than end items. At test,
these extra branches produce more order errors.

Prediction: Primacy Dominates Recency
Models of order memory make conflicting predictions about
the relationship between primacy and recency. The
perturbation model, for example, predicts that primacy and
recency should be symmetrical. In contrast, the primacy
model was constructed to account for the common result
that primacy is greater than recency (Henson et al., 1996).

The MIC model predicts that primacy should be greater
than recency, an effect I refer to as primacy dominance.
This prediction is a logical consequence of interactions
between the task and constraints on the cognitive system (as
specified by ACT-R/PM). In contrast, the primacy model
(Henson et al., 1996; Page & Norris, 1998) accounts for
primacy dominance with ad hoc mechanisms that are not
constrained by task structure or independent theory.

Primacy dominance in the MIC model is a consequence
of three interacting constraints. The first constraint is
sequential processing at study — participants see one item
at a time. The second constraint is related to branch
direction. Every branch has a direction in that it points
either forward or backward in time. A forward branch points
to a code newer than the correct one (in Figure 3, from XL to
YO). A backward branch points to a code older than the
correct one (in Figure 3, from XO to XL instead of to YL). As
I elaborate below, branch direction interacts with sequential
processing to make forward branches less likely to be taken
at test time as the model is reconstructing order. The third
constraint is the distribution of branch directions across a
list. The early (not-recent) end of the list systematically
involves more forward branches than the late (recent) end.
Because forward branches are less likely to be taken at test
time, early items suffer fewer order errors.

To see why forward branches are less likely to be taken at
test time than backward branches, we need to consider the
contingent nature in which forward branches are encoded at
study. The encoding of forward and backward branches is
illustrated in Figure 3. In that scenario, the model correctly
processes XL and transitions to XO (creating link 1). A
retrieval error then occurs — with XO still in the focus of
attention, the model retrieves XL instead of YL. This creates
a backward branch from XO to XL (link 2). The next step
(assuming no further retrieval errors) creates a forward
branch from XL to YO (link 3). Thus, one retrieval error has
produced two branches, one backward and one forward.

Two important points are illustrated in Figure 3. First,
link 3 (the forward branch) is contingent on link 1 (the
correct link). That is, a forward branch can only occur if a
correct link out of the same code already exists. This
contingency simply reflects sequential processing – X is
already linked into the chain when Y is processed. The
effect of this contingency is that at test time, if the model
uses XL as a cue, link 3 and link 1 prime competing targets.
Thus the potential for taking a forward branch (link 3) is
mitigated by the existence of the correct alternative (link 1).
(By “taking a branch” I mean that the code at the tail end
successfully primes the code at the head end, causing the
latter code to be retrieved next.) The second important point
in Figure 3 is that no such contingency accompanies a
backward branch. Link 2 is the only link leading from XO.
At test time, if the model uses XO as a cue, the backward
branch will prime only XL, with no correct alternative. Thus,
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Figure 2:  Middle codes have greater branch
frequency than end codes. Panel A: A middle code
with two short branches. Panel B: An end code
with one short branch (bigger F) and one long
branch (smaller F).
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Figure 3:  Forward branches are contingent on
correct links, but backward branches are not.
(1) Cognition retrieves XO, creating a correct
link. (2) Cognition retrieves XL instead of YL,
creating a backward branch. (3) Cognition
retrieves YO, creating a forward branch.
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backward branches are more likely than forward branches to
be taken at test time, in the sense that they prime only
incorrect target codes. Put another way, backward branches
have a higher effective branch frequency than forward
branches. If a given forward branch and a given backward
branch have the same frequency over multiple trials, the
backward branch will be taken more often, making it
effectively more frequent.

The third constraint leading to primacy dominance is that
forward and backward branches are distributed unevenly
across a list. Both kinds of branch occur with equal
frequency overall, because a single retrieval error at study
produces one branch in each direction. However, earlier
items have more forward branches than later items. In the
extreme cases, the first item can have only forward
branches, and the last item can have only backward
branches. Thus, earlier items have a lower effective branch
frequency. That is, branches from earlier items, though as
frequent as branches from late items, are effectively less
frequent because they are less likely to be taken during
order reconstruction.4

In sum, primacy dominates recency as a natural
consequence of task structure interacting with cognitive
constraints. Sequential processing makes forward branches
contingent on correct links, and because forward branches
are more frequent for early items, these items suffer fewer
order errors. In graphical terms, the serial position curve in
order memory is rotated slightly clockwise.

Comparing Model to Data
To test whether the model reproduces the serial position
effects predicted by the analysis above, I simulated data
from Nairne (1992). In that study, memory for order was
tested implicitly. Participants were asked to give
pleasantness ratings of words, with words presented in lists
of five for three seconds a word. In a between-subjects
manipulation, participants were given a surprise order-
reconstruction test after 30 seconds of distraction, after 4
hours, or after 24 hours.

                                                            
4 Specifically, the first item has a lower effective branch

frequency than the last item, the second item has a lower one than
the second-last, and so on.

Data from Nairne (1992) are shown in Figure 4, fit to data
from the MIC model. In all three conditions, primacy
appears to dominate recency, and the model captures this
pattern, accounting for 93% of the variance over 15 data
points (RMSE = 4.2%). The close fit of the MIC model to
complex data is strong support for its assumptions.

Moreover, the fit of the MIC model improves slightly on
that of the perturbation and partial-matching models of the
same data. The partial matching model, which fits better
than the perturbation model (Anderson & Matessa, 1997),
accounts for 90% of the variance over the same 15 data
points (RMSE = 5.0%).5 These fits are close, but Figure 5
shows that in all three conditions the model under-predicts
primacy and over-predicts recency. This mis-alignment is
systematic, according to the MIC model, because the partial
matching model (like the perturbation model) mistakenly
predicts that primacy and recency should be the same.

Many important details about the MIC model are omitted
here. For example, only 15 data points, or those for correct
responses, are shown in Figure 4; the total number of points
fit by the model is 75. In addition, I have not described the
time parameter that causes the model’s serial position curve
to shift downwards with longer retention intervals. These
issues will be addressed in a subsequent report.

Discussion
The MIC model explains a family of phenomena in memory
for order. This paper has described how the model explains
primacy and recency effects — why they occur, and how
they are related. Primacy and recency effects occur because
middle items suffer more branches (incorrect links) than end
items and thus are more vulnerable to order errors. In
addition, primacy should dominate recency because early
items suffer fewer backward branches than early items.
Backward branches cause more order errors than forward
branches, offsetting the benefits of recency and rotating the
                                                            

5 The 15 data points given here are a subset of the 75 data points
found in Nairne (1997). Fits of the perturbation and partial
matching models to the complete data set are given in Anderson
and Matessa (1997). The fit of the partial matching model to the 15
data points used here was determined by running the model
available on the Web at http://act.psy.cmu.edu.

Figure 5: Accuracy data for order memory
(Nairne, 1992) and fits of the partial-matching
(PM) model.
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bowed serial-position curve slightly clockwise. In addition
to these serial position effects, the MIC model also explains
positional uncertainty (Altmann, 2000), and thus is a step
toward an integrated and executable theory of memory for
serial order.

The MIC model is important for several reasons. First, it
extends an existing cognitive theory to incorporate an
additional set of effects. The model inherits a representation,
a learning mechanism, and a communication channel from
ACT-R/PM. The model’s explanations follow directly from
the integration of these mechanisms, illustrating (again) the
explanatory power of unified theories (Newell, 1973; 1990).

Second, the MIC model goes beyond existing models of
order memory to explain study-time processes as well as
test-time processes. Of existing models, the perturbation
model is the best known, and has been advanced as a
generalized model of memory loss and distortion (Estes,
1997). However, the perturbation model has nothing to say
about how memory for order is encoded at study time,
begging the question of how the information-rich, array-like
memory representation input to the perturbation model
comes about in the first place.

Third, the MIC model is behaviorally distinguishable
from the perturbation and partial-matching models. Both
models predict that primacy and recency should be
symmetrical, but several data sets suggest otherwise. The
primacy model (Henson et al., 1996; Page & Norris, 1998)
accommodates this primacy dominance, but like the others
fails to explain how order information is encoded in the first
place. The MIC model, in which primacy dominance is a
logical consequence of the underlying memory theory, may
also be the most accurate and complete explanation, as well.

Rigorously testing the prediction of primacy dominance
will be the next important step in this research. Because this
prediction flows from architecture-level premises (about
representation, learning, and cognitive noise), primacy
dominance should be found pervasively in empirical studies.
A second important step will be to extend the model to
account for the “sawtooth” pattern arising when confusable
and non-confusable items are interleaved (Henson et al.,
1996). Finally, order memory is a strong constraint on
memory theory generally. As we build toward unified
theories of cognition, it will be important to integrate order
memory with related models (e.g., Anderson & Matessa,
1997; Burgess & Hitch, 1999) and with the rich theoretical
history of serial learning (see, for example, Crowder, 1976).
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