
UC San Diego
UC San Diego Previously Published Works

Title
Markers of kidney function, genetic variation related to cognitive function, and cognitive 
performance in the UK Biobank

Permalink
https://escholarship.org/uc/item/7w71b95c

Journal
BMC Nephrology, 23(1)

ISSN
1471-2369

Authors
Richard, Erin L
McEvoy, Linda K
Deary, Ian J
et al.

Publication Date
2022-12-01

DOI
10.1186/s12882-022-02750-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w71b95c
https://escholarship.org/uc/item/7w71b95c#author
https://escholarship.org
http://www.cdlib.org/


Richard et al. BMC Nephrology          (2022) 23:159  
https://doi.org/10.1186/s12882-022-02750-6

RESEARCH

Markers of kidney function, genetic variation 
related to cognitive function, and cognitive 
performance in the UK Biobank
Erin L. Richard1,2, Linda K. McEvoy2,3, Ian J. Deary4, Gail Davies4, Steven Y. Cao2, Eyal Oren5, John E. Alcaraz5, 
Andrea Z. LaCroix2, Jan Bressler6 and Rany M. Salem2* 

Abstract 

Background: Chronic kidney disease has been linked to worse cognition. However, this association may be depend-
ent on the marker of kidney function used, and studies assessing modification by genetics are lacking. This study 
examined associations between multiple measures of kidney function and assessed effect modification by a poly-
genic score for general cognitive function.

Methods: In this cross-sectional study of up to 341,208 European ancestry participants from the UK Biobank study, 
we examined associations between albuminuria and estimated glomerular filtration rate based on creatinine (eGFR-
cre) or cystatin C (eGFRcys) with cognitive performance on tests of verbal-numeric reasoning, reaction time and visual 
memory. Adjustment for confounding factors was performed using multivariate regression and propensity-score 
matching. Interaction between kidney function markers and a polygenic risk score for general cognitive function was 
also assessed.

Results: Albuminuria was associated with worse performance on tasks of verbal-numeric reasoning 
(β(points) = -0.09, p < 0.001), reaction time (β(milliseconds) = 7.06, p < 0.001) and visual memory (β(log errors) = 0.013, 
p = 0.01). A polygenic score for cognitive function modified the association between albuminuria and verbal-numeric 
reasoning with significantly lower scores in those with albuminuria and a lower polygenic score (p = 0.009). Com-
pared to participants with eGFRcre ≥ 60 ml/min, those with eGFRcre < 60 ml/min had lower verbal-numeric reason-
ing scores and slower mean reaction times (verbal numeric reasoning β = -0.11, p < 0.001 and reaction time β = 6.08, 
p < 0.001 for eGFRcre < 60 vs eGFRcre ≥ 60). Associations were stronger using cystatin C-based eGFR than creatinine-
based eGFR (verbal numeric reasoning β = -0.21, p < 0.001 and reaction time β = 11.21, p < 0.001 for eGFRcys < 60 vs 
eGFRcys ≥ 60).

Conclusions: Increased urine albumin is associated with worse cognition, but this may depend on genetic risk. Cys-
tatin C-based eGFR may better predict cognitive performance than creatinine-based estimates.

Keywords: Cognitive aging, Glomerular filtration rate, Albuminuria, Polygenic score
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Background
According to the United Nations, older individu-
als (ages 65 and above) comprise the fastest grow-
ing segment of the global population [1]. Older age is 
a significant risk factor for cognitive decline and the 
global burden of dementia and cognitive impairment 
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is expected to rise exponentially as a result [2]. While 
cognitive decline is a natural consequence of aging, 
there is considerable variability in cognitive function 
decline with age [3]. Along with increasing age, cogni-
tion is also influenced by genetics [4, 5], lifestyle factors 
[6, 7] and chronic health conditions such as diabetes, 
hypertension, and kidney disease [8, 9].

Chronic kidney disease (CKD) is also increasing in 
prevalence. The global all-age prevalence of CKD has 
increased by almost 30% over the past few decades 
[10]. Impaired kidney function is typically detected by 
decreased estimated glomerular filtration rate (eGFR) 
or by albuminuria (the presence of albumin protein in 
the urine indicative of glomerular damage). There is a 
growing body of evidence supporting an association 
between albuminuria and decreased cognitive abil-
ity [11–13], but the relationship between eGFR and 
cognition has been mixed [14–16]. Of the latter stud-
ies, the majority use eGFR based on serum creatinine 
concentrations (eGFRcre) which is highly dependent on 
sex, age, and muscle mass [17]. Cystatin C based eGFR 
(eGFRcys) has received considerably less attention in 
epidemiological studies, likely due to the increased 
measurement cost relative to that of creatinine. How-
ever, being a ubiquitous small protein, cystatin C is less 
influenced by muscle mass and has been shown to be 
a better predictor of end-stage renal disease (ESRD) 
and cardiovascular events compared to creatinine [18, 
19]. Likewise, some studies suggest eGFRcys may be 
a relevant prognostic factor for worse cognition [20] 
and incident dementia [21], but studies that consider 
all three measures of kidney function are still lacking. 
Moreover, the extent to which these associations are 
modified by genetic predictors of cognitive function 
has not been sufficiently studied.

Genetic factors play a substantial role in determin-
ing individual differences in global cognitive ability with 
twin-based heritability estimates of over 50% [22]. The 
potential for genetics to modify the effects of environ-
mental exposures on cognitive function is also of grow-
ing interest [23]. For example, studies have shown that 
associations between cognitive decline and factors such 
as type 2 diabetes and social engagement were dependent 
on polygenic risk for Alzheimer’s disease [24, 25]. Like-
wise, between-individual cognitive differences related to 
kidney disease may be affected by genetic determinants 
of cognitive function. That is, genetic factors may confer 
a degree of resistance or susceptibility to the effects of 
kidney disease on the brain. We hypothesized that genet-
ics and impaired kidney function may jointly influence 
cognitive performance. Here we leveraged UK Biobank 
data to investigate the associations between eGFRcre, 
eGFRcys and albuminuria with cognitive performance 

and evaluated potential modification by a polygenic score 
for global cognitive function.

Methods
Study population
A cross-sectional study was performed using data from 
the UK Biobank (UKBB), a large prospective cohort that 
enrolled 502,617 participants aged 40–73  years from 
across the United Kingdom between 2006 and 2010. 
UKBB was designed and conducted with data sharing 
in mind, providing researchers access to genotypic and 
phenotypic data [26]. Details of enrollment procedures 
have been previously described [27]. Participants com-
pleted a detailed, computerized questionnaire at baseline 
that included a wide range of information pertaining to 
lifestyle and health characteristics. A series of cognitive 
function tests was administered via touchscreen at this 
time. Biospecimen samples were collected for the full 
cohort and stored for biochemical tests and genotyp-
ing. In addition, study data was linked to participants’ 
national health records for longitudinal follow-up.

Genotyping
The UKBB study was genotyped on the Affymetrix 
(now part of ThermoFisher Scientific) UK BiLEVE 
Axiom array (n = 49,950 participants) or the similar 
UKBB Axiom array (n = 438,427). To facilitate use of 
the UKBB resource by the research community, geno-
typing, quality control (QC) and genotype imputa-
tion were performed centrally by the primary UKBB 
investigators as described by Bycroft et al. [28]. Geno-
type imputation is a statistical technique that lev-
erages directly genotyped variants and a reference 
panel to infer ungenotyped variants. Prior to imputa-
tion, genetic data from the two arrays were combined 
and a QC procedure performed. Poor quality markers 
were identified using statistical tests for inconsisten-
cies of genotype calling across experimental factors, 
including batch effects, plate effects, departures from 
Hardy–Weinberg equilibrium, sex effects, array effects, 
and discordance across control replicates. Post quality 
control, genetic data is available for 488,377 subjects on 
805,426 genetic markers and 92,693,895 imputed vari-
ants. We carried out the following additional quality 
control and filtering steps. Individuals with the follow-
ing characteristics were excluded: extreme heterozy-
gosity or missingness (n = 968), individuals with sex 
chromosome aneuploidy (n = 651), individuals whose 
reported sex did not match genetically inferred sex 
(n = 186), and individuals with high levels of cryptic 
relatedness (n = 73). Principal components were then 
calculated for the remaining 486,387 participants using 
1000 Genomes as the reference population [29]. We 
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used the “aberrant” clustering package in R [30] with 
a lambda parameter of 8.2 to determine the European 
ancestry cluster. Subjects with self-report of non-Brit-
ish or non-European ancestry included in the European 
ancestry cluster were excluded, resulting in, 454,488 
participants with European ancestry. To avoid inflation 
in test statistics due to inclusion of related individuals, 
we used a custom script that implements a greedy algo-
rithm to determine the unrelated subset. Relatedness 
was first determined by UKBB using identity by state 
(IBS). The algorithm sequentially breaks related pairs 
to retain only unrelated individuals while preferen-
tially maximizing the number of individuals with a user 
defined characteristic. In this study we chose to maxi-
mize those with available verbal-numeric reasoning 
scores. We excluded those with approximately second 
degree or closer relatedness (pi-hat = 0.0884, n = 69,378 
removed). After additionally excluding those who had 
withdrawn consent at the time of this study, pregnant 
women (n = 119), individuals with probable type 1 
diabetes (n = 1,670) and participants missing data on 
kidney function exposures or covariates included in 
multivariate models there remained 118,146, 340,887 
and 341,208 participants for analyses with verbal-
numerical reasoning, reaction time, and visual memory 
scores, respectively.

Kidney function markers
Blood and spot urine samples were collected and ana-
lyzed at the initial assessment (2006–2010) at a central-
ized laboratory. Sampling, handling, and quality control 
of biochemical measures have been described in detail 
previously [31]. Briefly, serum creatinine (Field ID 
30700), urine creatinine (Field ID 30510) and urine albu-
min (Field ID 30500) were measured on a Beckman Coul-
ter AU5800 instrument. An enzymatic, IDMS-traceable 
method was used to measure serum and urine creati-
nine. Urine albumin was quantified using an immune-
turbidimetric method (Randox laboratories) with a lower 
limit of detection of 6.7  mg/L. Individuals with urine 
albumin concentrations below this limit were consid-
ered normoalbuminuric. The urine albumin to creatinine 
ratio (ACR) was calculated as  urine albumin in  milli-
grams divided by urine creatinine in millimole. Albumi-
nuria was defined as an ACR ≥ 2.5 mg/mmol for men and 
ACR ≥ 3.5 mg/mmol for women. Serum cystatin C (Field 
ID 30720) was measured on a Siemens ADVIA 1800 
instrument using an Immuno-turbidimetric assay. Esti-
mated GFR was calculated using creatinine (eGFRcre) or 
cystatin C (eGFRcys) by the CKD-EPI Eq. [32, 33]. Indi-
viduals with ESRD (n = 405) were not excluded from this 
analysis.

Cognitive function
Cognitive function was assessed using a battery of self-
administered, computerized tests that were specifically 
designed for the UKBB [34, 35]. The verbal-numeric 
memory, reaction time and visual memory tests were 
used in this analysis and are described briefly below:

Verbal‑numeric reasoning
This test was added part-way through the initial assess-
ment period and therefore was administered to a sub-
set (33%) of those who participated in the baseline visit 
(Field ID 20016). Characteristics of individuals with 
and without verbal-numeric reasoning scores is avail-
able in Table S1. This test included 13 logic/reasoning-
type questions. The score was the number of questions 
answered correctly within a two-minute time limit. 
The Cronbach alpha coefficient for this test, which is a 
measure of internal consistency, has been described as 
moderate (Cronbach’s alpha = 0.62) [36].

Reaction time
Similar to the card game “Snap”, participants were 
shown a series of card pairs with symbols on them and 
were instructed to press a large button as quickly as 
possible when the cards matched (Field ID 20023). The 
score was the mean time, in milliseconds (ms), to press 
the button across all test trials (N = 4) with a matching 
pair.

Visual memory
The “pairs-matching” test was used to assess episodic 
visual memory in the UKBB (Field ID 100030). Partici-
pants were briefly shown the positions of six card pairs 
and were then asked to match them from memory in 
as few attempts as possible. The score on this test was 
the number of errors made. Pairs matching scores were 
log(+ 1) transformed for analyses.

Covariates
Coronary heart disease (CHD), heart failure, and 
stroke were determined by self-report from a nurse-
administered verbal interview or by the presence of 
relevant inpatient diagnostic or procedural codes from 
the patient’s electronic health record prior to the time 
of enrollment (Table S2). Menopausal status (Field 
ID 2724), cancer history (Field ID 20001), hyper- and 
hypothyroidism (Field IDs 130701 and 130697) were 
self-reported by verbal interview. Type 2 diabetes melli-
tus (T2DM) was based on a combination of self-report, 
diabetic medication use, and lab values. Type 1 and type 
2 diabetes were first differentiated according to an algo-
rithm developed by Eastwood et  al. [37]. Individuals 
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identified by this algorithm and those with a random 
plasma glucose of 11.1 mmol/l or higher or an HbA1c 
of 48  mmol/mol or higher were considered as hav-
ing T2DM. ESRD (Field ID 42027) was determined by 
a predefined algorithm [38]. Participants self-reported 
use of any hormone replacement therapy, cholesterol 
lowering drugs or antihypertensive medications (Field 
IDs 6153 and 6177, yes/no). Smoking (Field ID 20116; 
never, previous, current) and alcohol consumption 
(Field ID 20117; never, previous, current) were also 
determined by self-report. Physical activity was based 
on metabolic equivalents (MET)-minutes per week 
(Field ID 22040) calculated based on walking, or mod-
erate or vigorous physical activity. Missing values of 
MET-minutes per week were imputed using the age and 
sex specific mean value. Body mass index (BMI; Field 
ID 21001) was measured by trained research staff and 
calculated as: weight (kg)/(height (m)2). Low density 
lipoprotein cholesterol (LDL-C; Field ID 30780) was 
measured using a direct homogeneous Beckman assay. 
Triglycerides (Field ID 30870) were measured by GPO-
POD using the AU5800 by Beckman Coulter.  Hyper-
tension was defined as  systolic blood pressure (Field 
IDs 93 and 4080) ≥ 140 mmHg or diastolic blood pres-
sure (Field IDs 94 and 4079) ≥ 90  mmHg, self-report 
of a past hypertension diagnosis (Field ID 6150) or 
use of  antihypertensive  medications. Townsend socio-
economic deprivation scores (Field ID 189) were based 
on postcode of residence with higher scores equating 
to higher levels of deprivation [39]. We used years of 
education as a continuous variable by mapping each of 
the educational qualifications (Field ID 6138) reported 
by UKBB participants to categories defined in the 1997 
International Standard Classification of Education 
(ISCED) and imputing the number of years of schooling 
as described by Okbay et al. [40]. Whole body fat-free 
mass (Field ID 23101) was measured using bioelectri-
cal impedance analysis with the Tanita BC418MA body 
composition analyzer (Tanita, Tokyo, Japan).

Polygenic score calculation
We derived a polygenic score for cognitive function 
(PGScog) based on summary statistics from a meta-
analysis of genome-wide association studies for gen-
eral cognitive function using data from the Cohorts for 
Heart and Aging Research in Genomic Epidemiology 
(CHARGE), and  the Cognitive Genomics Consortium 
(COGENT) consortia. Descriptive characteristics of the 
cohorts included in this meta-analysis are available in 
Supplementary Data 1. All individuals were of European 
ancestry. Phenotyping and genotyping methods including 
cohort-specific quality control procedures, imputation 
methods, and covariates have been described previously 

[4, 41]. To harmonize the cognitive function phenotype 
across cohorts, CHARGE and COGENT applied prin-
cipal component analysis to scores from multiple cogni-
tive tasks to extract a single measure of general cognitive 
function. Only cohorts with a minimum of three cogni-
tive tests were included. Meta-analysis was performed 
using the METAL package [42] with a sample-size 
weighted model. It should be noted that UK Biobank par-
ticipants were excluded from this meta-analysis to mini-
mize bias due to sample overlap. Lead single nucleotide 
polymorphisms (SNPs) (n = 108) associated with cogni-
tive ability at the p = 1 × 10e-5 level in the meta-analysis 
were used to construct the PGScog. Imputation quality 
scores (MACH r2 calculated by PLINK 2.0 [43]) exceeded 
0.80 for all SNPs. Summary statistics and imputation 
quality scores for each SNP are available as supplemen-
tary data 2. For each participant, PGScog was calculated 
as a weighted sum of the dosage of the effect allele mul-
tiplied by the parameter estimate associated with each 
individual SNP using a custom script in R. Allele dosage 
was used to incorporate genotype uncertainty. PGScog 
was standardized to a Z-score where higher values indi-
cate higher genetically-determined general cognitive 
ability.

Statistical analysis
We used multivariate linear regression to assess associa-
tions between measures of kidney function (albuminuria 
vs normoalbuminuria, eGFRcre < 60 vs eGFRcre ≥ 60, 
and eGFRcys < 60 vs eGFRcys ≥ 60, where eGFR ≥ 60 
reflects the normal range of kidney filtration) as predic-
tive variables and cognitive test scores as response vari-
ables. Potential effect modification by the polygenic score 
for general cognitive function, sex and age were assessed 
by adding two-way interaction terms with each of these 
variables and the kidney function exposure to the model. 
A three-way kidney function exposure by polygenic score 
by sex interaction was also evaluated. Formal interac-
tion tests were conducted using the polygenic score as 
a continuous Z-score. However, to illustrate interactions 
PGScog was divided into low (lowest quintile), medium 
(quintiles 2–4) and high (highest quintile) groups as done 
previously [44]. Interactions with a likelihood ratio test 
p-value < 0.05 were considered significant. Adjustment 
variables were chosen based on prior studies relating 
them to both the kidney function markers and cognitive 
function [45–47]. All models were adjusted for age, sex, 
education, physical activity, hypertension, T2DM status, 
BMI, antihypertensive and cholesterol lowering medica-
tions, the Townsend Deprivation Index, smoking, alco-
hol drinking, and country of birth (UK or non-UK). To 
examine the effects of comorbid cardiovascular disease 
on these associations, we repeated these analyses with 
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additional adjustment for coronary artery disease, stroke 
history and heart failure. In models testing for interaction 
with PGScog, we additionally adjusted for the first 10 
ancestry principal components to account for subtle pop-
ulation structure. Following the suggestion of Rothman 
et al. [48], we show uncorrected p-values and p < 0.05 was 
considered statistically significant. However, p-values 
below the Bonferroni adjusted significance threshold of 
0.0056 are indicated in the supplementary tables.

As an additional approach to covariate adjustment, 
we carried out analyses after matching on propensity 
scores for each kidney function exposure. Logistic regres-
sion was used to estimate the propensity for each kidney 
function exposure based on age, sex, education, physical 
activity, hypertension, T2DM status, BMI, antihyperten-
sive and cholesterol lowering medications, the Townsend 
Deprivation Index, smoking, alcohol drinking, and coun-
try of birth (UK or non-UK). We matched exposed to 
unexposed individuals at a 1:2 ratio using a greedy near-
est neighbor method with the MATCHIT package in 
R [49]. The overall quality of the matched sample was 
assessed by comparing the standardized mean differ-
ences of all covariates and by visual inspection of propen-
sity score distributions between unmatched and matched 
samples (Figures S1-3).

Sensitivity analyses
We repeated multivariate analyses under the follow-
ing conditions: 1. restricted to post-menopausal women 
adjusting for use of hormone replacement therapy 
(n = 60,869, 175,677, 175,847 for verbal-numeric reason-
ing, reaction time, and visual memory analyses, respec-
tively), 2. excluding individuals with a history of stroke 
(n = 116,382, 335,407, and 335,719), 3. excluding indi-
viduals with T2DM (n = 112,361, 324,310, and 324,612), 
4. adjusted for other measures of kidney function (i.e. 
associations between eGFRcys and cognitive perfor-
mance were adjusted for albuminuria) 5. adjusted for 
triglycerides and LDL-C, 6. models with eGFRcys were 
additionally adjusted for self-reported history of cancer, 
hyperthyroidism or hypothyroidism as these conditions 
can influence cystatin C concentrations, 7. adjusting for 
whole body fat-free mass as a surrogate for total muscle 
mass, and 8. adjusting for potential nonlinear effects of 
age by adding  age2 to the model. All analyses were carried 
out using R in Version 3.6.1.

Results
Summary characteristics of participants according to sex 
are displayed in Table 1. The population was 54% female, 
and the mean age was 56.7  years (median = 58  years). 
According to the criteria described in the methods, there 
were 17,006 (5%) individuals with albuminuria, 7,605 

(2.2%) with eGFRcre < 60  ml/min, and 14,986 (4.4%) 
with eGFRcys < 60  ml/min. A Venn diagram illustrating 
the overlap between the three kidney function mark-
ers shows few individuals fit all three criteria (n = 1175; 
supplemental figure S4). On average, participants had a 
mean verbal-numeric reasoning score of 6.17 (standard 
deviation (SD) = 2.10), a mean reaction time of 555  ms 
(SD = 113 ms), and a median of 4.11 (IQR = 3.26) incor-
rect answers on the visual memory task. Participant char-
acteristics by each kidney function exposure are shown in 
supplementary Tables S3-S5.

Albuminuria and cognitive function
Unstandardized beta estimates and 95% confidence inter-
vals (95% CI) for the association between kidney function 
biomarkers and cognitive test performance among all 
available subjects and propensity score matched subsets 
are reported in Fig.  1. In multivariate analyses using all 
available data, albuminuria was significantly associated 
with lower verbal reasoning scores (β(points) = -0.09, 
95% CI: -0.14 to -0.04, p < 0.001), slower reaction time 
(β(ms) = 7.06, 95% CI: 5.42 to 8.69, p < 0.001) and more 
visual memory errors (β(log errors) = 0.013, 95% CI: 
0.003 to 0.023, p = 0.01). Regression analysis in matched 
subsets revealed similar results, though the magnitude 
of the association between albuminuria and visual mem-
ory was slightly larger (β = 0.018, 95% CI: 0.006 to 0.029, 
p = 0.002). Results of multivariate analysis in all available 
subjects overall and stratified by sex are shown in Table 
S6. We found no significant interactions with sex or age. 
Beta estimates for verbal-numeric reasoning and visual 
memory were essentially unchanged after adjustment 
for cardiovascular disease factors (Table S7). However, 
the association between albuminuria and reaction time 
was slightly attenuated (β = 5.54, 95% CI: 3.03 to 8.05, 
p < 0.001).

eGFRcre and cognitive function
In the multivariate analyses using all available subjects, 
we found significant associations between eGFRcre cat-
egory and both verbal-numeric reasoning and reaction 
time scores (β(points) = -0.11, 95% CI: -0.18 to -0.03, 
p < 0.001 and β(ms) = 6.08, 95% CI: 3.66 to 8.49, p < 0.001, 
respectively; Fig.  1, Table S6). However, there was no 
significant difference in verbal-numeric reasoning score 
according to eGFRcre category in matched analysis. We 
detected a significant sex interaction whereby eGFRcre 
was associated with verbal-numeric reasoning in men 
(β(95%CI) = -0.18(-0.29 to -0.07), p = 0.002) but not in 
women (β(95%CI) = -0.05 (-0.15 to 0.05), p = 0.32, p for 
interaction = 0.01). Associations were slightly attenuated 
but remained significant after adjustment for cardiovas-
cular disease factors (Table S7). There was no significant 
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association between eGFRcre < 60 and visual memory 
score. Associations were not modified by age.

eGFRcys and cognitive function
Participants with eGFRcys < 60 performed signifi-
cantly worse on verbal-numeric reasoning and reaction 
time tests in analyses including all available subjects 
(β(points)(95%CI) = -0.21(-0.27 to -0.16), p < 0.001 and 
β(ms) = 11.21(9.44 to 12.99), p < 0.001, respectively, 
Fig.  1; Table S6). Matched analyses revealed similar 
results. There was a significant interaction between 
eGFRcys category and age for reaction time (p for inter-
action = 0.004). To illustrate this interaction, participants 
were categorized as younger than the median age of 
58 years or as 58 years or older. As shown in Figure S5, 

reaction time was significantly slower with eGFRcys < 60 
in both older and younger age groups, however the 
association was strongest in younger individuals (β(ms)
(95%CI) = 8.01(12.7 to 3.35), i.e. for those < 58  years 
vs ≥ 58 years).

Kidney function by PGScog interaction
PGScog was significantly associated with verbal-
numeric reasoning (β(points) (95%CI) for high-
est vs lowest quintile of PGScog = 0.30(0.26 to 0.35), 
p-value < 0.0001; variance explained = 0.26%), reac-
tion time (β(ms)(95%CI) = -2.18(-3.23 to -1.08), 
p-value < 0.001; variance explained = 0.01%) and vis-
ual memory (β(log errors)(95%CI) = -0.020 (-0.027 to 
-0.014), p-value < 0.001; variance explained = 0.01%) 

Table 1 Characteristics of study population overall and according to sex

Abbreviations: eGFRcre creatinine-based estimated glomerular filtration rate, eGFRcys cystatin C-based estimated glomerular filtration rate, LDL-C LDL-cholesterol, ms 
milliseconds

Values are shown as n (%) for categorical variables and mean (SD) for continuous variables

Albuminuria was defined as a urine albumin to creatinine ratio (ACR) ≥ 2.5 mg/mmol for men and ACR ≥ 3.5 mg/mmol for women

All characteristics are significantly different by sex except eGFRcre < 60 ml/min (p-value = 0.55)

All Participants Female Male
n = 341,208 n = 183,822 n = 157,386

Age (years) 56.69 (8.01) 56.50 (7.91) 56.91 (8.11)

Smoking status

  Current 34,882 (10.2%) 16,086 (8.8%) 18,796 (11.9%)

  Never 184,846 (54.2%) 108,045 (58.8%) 76,801 (48.8%)

  Past 121,480 (35.6%) 59,691 (32.5%) 61,789 (39.3%)

Some university education 193,791 (56.8%) 100,608 (54.7%) 93,183 (59.2%)

Alcohol drinking status

  Current 319,390 (93.6%) 169,577 (92.3%) 149,813 (95.2%)

  Never 10,307 (3.0%) 7,725 (4.2%) 2,582 (1.6%)

  Past 11,511 (3.4%) 6,520 (3.5%) 4,991 (3.2%)

Body mass index (kg/m2) 27.34 (4.73) 26.94 (5.11) 27.80 (4.20)

LDL-c (mmol/L) 3.57 (0.87) 3.64 (0.87) 3.49 (0.86)

Triglycerides (mmol/L) 1.75 (1.02) 1.55 (0.85) 1.98 (1.14)

Hypertension 188,082 (55.1%) 88,941 (48.4%) 99,141 (63.0%)

Type II diabetes 16,596 (4.9%) 6004 (3.3%) 10,592 (6.7%)

Coronary artery disease 12,044 (3.5%) 2569 (1.4%) 9,475 (6.0%)

History of stroke 5,489 (1.6%) 2264 (1.2%) 3,225 (2.0%)

Heart failure 947 (0.3%) 231 (0.1%) 716 (0.5%)

Cholesterol-lowering medication 57,130 (16.7%) 22,065 (12.0%) 35,065 (22.3%)

Antihypertensive medication 68,615 (20.1%) 30,859 (16.8%) 37,756 (24.0%)

Hormone replacement therapy NA 13,325 (7.5%) NA

Albuminuria 17,006 (5.0%) 6,886 (3.7%) 10,120 (6.4%)

eGFRcre < 60 ml/min 7,605 (2.2%) 4,071 (2.2%) 3,534 (2.2%)

eGFRcys < 60 ml/min 14,986 (4.4%) 7,882 (4.3%) 7,104 (4.5%)

Verbal-numeric reasoning score 6.17 (2.10) 6.07 (2.03) 6.32 (2.18)

Reaction time (ms) 555.14 (113.15) 563.14 (113.51) 545.80 (112.01)

Visual memory score (errors) 4.11 (3.26) 4.11 (3.18) 4.10 (3.35)
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in models adjusted for age, sex country of birth and 
principal components. Significant interaction effects 
were observed between albuminuria and the con-
tinuous PGScog score for verbal-numeric reasoning 
(p-value = 0.009 in fully adjusted models). We did not 
detect any significant interactions between PGScog 

and eGFRcre < 60 or eGFRcys < 60 and performance on 
any cognitive test. Table S8 shows the results of regres-
sion analyses for model 1 including: the main effects of 
albuminuria and PGScog adjusted for age, sex, country 
of birth, and principal components; model 2: model 
1 + the albuminuria by PGScog interaction term; model 
3: model 2 + education and Townsend deprivation 

Fig. 1 Adjusted beta estimates and 95% confidence intervals for association between kidney function and cognitive performance. Models using 
all data were adjusted for age, sex, education, Townsend deprivation index, country of birth, physical activity, hypertension, diabetes, alcohol 
use, smoking, body mass index, lipid lowering and antihypertensive drugs. Matched data based on 1:2 propensity score matching was based on 
the same covariate set as models using all data. Albuminuria was defined as ACR ≥ 2.5 mg/mmol for men and ACR ≥ 3.5 mg/mmol for women. 
Abbreviations: eGFRcre, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatin C-based estimated glomerular filtration rate
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score; model 4: model 3 + physical activity, hyperten-
sion, diabetes status, alcohol use, smoking status, body 
mass index, lipid lowering drugs, and antihyperten-
sive drugs; and model 5: model 4 +  age2. Associations 
between albuminuria and decreased verbal-numeric 
reasoning scores were stronger among individuals 
with a lower polygenic risk score for cognitive function 
(Fig. 2). Findings were not modified by age or sex.

Sensitivity analysis
After excluding individuals with diabetes or past stroke, 
effect estimates for associations between all kidney func-
tion measures and reaction time were slightly attenuated 
but remained significant (Tables S9 and S10). In contrast, 
the associations between albuminuria and visual memory 
were attenuated to the null. Results were consistent after 
adjustment for orthogonal measures of kidney function, 
LDL-C and triglycerides. Regression estimates for asso-
ciations in women were similar with and without restric-
tion to postmenopausal status and after adjustment for 
hormone replacement therapy. Associations between 

eGFRcys and cognitive ability were essentially unchanged 
after adjustment for self-reported history of cancer, 
hyperthyroidism, or hypothyroidism. Parameter esti-
mates were slightly attenuated with the additional adjust-
ment of  age2, but largely consistent with the primary 
analyses (Table S11). After adjustment for whole body 
fat-free mass, the magnitude of the association between 
eGFRcre < 60  and verbal-numeric reasoning was slightly 
larger, but results were otherwise similar (Table S12).

Discussion
In this study including between 118,146 and 341,208 par-
ticipants of the UKBB, markers of poor kidney function 
were associated with worse performance across multiple 
domains of cognitive function. Individuals with albumi-
nuria scored worse on all tested measures of cognitive 
function including verbal-numeric reasoning, reaction 
time and visual memory. We observed a potential PGS 
by environment interaction where participants with 
both albuminuria and a low polygenic score for cognitive 

Fig. 2 Predicted mean verbal-numeric reasoning score according to albuminuria status and cognitive function polygenic score category. For 
illustration, PGScog was divided into low (lowest quintile), medium (quintiles 2–4) and high (highest quintile) groups. Bars indicate 95% confidence 
interval. Abbreviations: PGScog, polygenic score for general cognitive function
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function had the lowest verbal-numeric reasoning scores. 
Performance on the reaction time test was worse in par-
ticipants with eGFRcre < 60, as was performance on 
the verbal-numeric reasoning test. eGFRcys was more 
strongly associated with cognitive ability than eGFRcre 
based on serum creatinine.

Due to the unique nature of the UK Biobank cognitive 
tests, the clinical significance of our findings is not clear. 
Based on cross-sectional age coefficients, differences in 
reaction time with eGFRcre < 60, eGFRcys < 60 and albu-
minuria are comparable to an additional 1.5, 2.7, and 
1.7 years of age, respectively (Figure S6a). A similar com-
parison would not be appropriate to interpret the verbal-
numerical reasoning scores as estimates did not differ 
greatly as a function of cross-sectional age (a decrease of 
0.01 per year of age) potentially due to age cohort effects 
[50]. However, differences in verbal-numeric reasoning 
with eGFRcre < 60, eGFRcys < 60 and albuminuria are 
comparable to 0.9, 1.6, and 0.8 fewer years of education, 
respectively (Figure S6b).

Our finding that albuminuria is associated with 
reduced cognitive performance is in agreement with 
prior studies [11, 12, 51, 52]. While the mechanism of 
this association is unclear, it may be related to increased 
vascular burden affecting both the kidney and the brain. 
Albuminuria is an early marker of generalized microvas-
cular dysfunction [53] and has a linear relationship with 
cardiovascular disease risk [54]. In addition, albuminu-
ria is associated with vascular dementia [55], stroke and 
subclinical cerebrovascular disease including white mat-
ter hyperintensities, microbleeds and enlarged perivas-
cular spaces [55, 56]. We observed persistent significant 
associations between albuminuria and cognitive function 
after adjustment for cardiovascular disease, suggesting 
that pathological mechanisms may be independent of 
overt cardiovascular disease. While these results support 
the hypothesis that this association is the result of con-
current microvascular pathology in the kidney and the 
brain, further research is needed to clarify the relation-
ship between the kidney damage marked by albuminuria 
and risk of cognitive decline.

Chronic kidney disease defined by creatinine-based 
eGFR has been linked with decreased cognitive ability, 
but the association has not been consistent [51, 57–60]. 
In this study, we found significant differences between 
eGFRcre category and cognitive performance. How-
ever, effect estimates were modest and may have limited 
clinical significance. The reason for the observed sex dif-
ference with regards to eGFRcre and verbal-numeric 
reasoning is unclear. In cross-sectional analysis, Cor-
nelis et  al. found greater age-related decreases in verbal 
numerical reasoning scores in men compared to women 
after covariate adjustment and attributed this to cohort 

effects [50]. This may obscure an association in older 
women who would be more likely to have lower eGFRcre 
but may have smaller age-related decreases in cognitive 
function compared to men in the same age group.

Cystatin C has received considerably less attention than 
creatinine in regard to cognitive health [14]. This study 
supports past research which suggests that serum cysta-
tin C and eGFRcys may be more strongly associated with 
cognitive performance compared to creatinine-based 
measurements [20, 61]. Cystatin C-based GFR has also 
been shown to be a stronger predictor of cardiovascular 
disease outcomes [18, 62] which may mediate this associ-
ation. Associations were essentially unchanged after con-
trolling for existing cardiovascular disease in this study. 
This does not preclude a potential role of subclinical car-
diovascular disease. On the other hand, reduced kidney 
function may also have direct neurodegenerative effects 
through inflammatory processes and accumulation of 
uremic toxins [46, 63]. This may be particularly relevant 
here as cystatin C has been related to systemic inflamma-
tion [64].

Interestingly, associations between eGFRcys cat-
egory and reaction time were somewhat attenuated in 
older individuals. Similar age effects have been seen in 
observational studies examining associations between 
eGFRcre and mortality and ESRD [65, 66]. In older par-
ticipants, the moderate-to-mild declines in kidney func-
tion observed here may have a proportionately smaller 
influence on cognitive function relative to other age-
related comorbidities. It should also be noted that this 
observation may in part be due to a selection bias in 
which healthier older adults chose to participate in the 
UKBB study.

To our knowledge, there has only been one previous 
study that explored gene by environment interaction 
in the context of kidney function and cognitive per-
formance [67]. Shin et  al. found significant interaction 
between microalbuminuria and the APOE epsilon4 allele 
in a Korean population, where albuminuria was more 
strongly associated with poor cognitive performance 
in APOE epsilon4 carriers vs. noncarriers. It should be 
noted that SNPs contributing to the APOE epsilon hap-
lotype were not used to construct PGScog, but one SNP 
(rs10414043) approximately 3  kb downstream of APOE 
was used in the score calculation. Taken together, the 
current study and that of Shin et al. suggest that a genetic 
susceptibility to poor cognitive performance and the 
presence of albuminuria may have synergistic adverse 
effects on brain function. Conversely, genetic factors may 
provide some resistance to the burden of microvascular 
disease on the brain. Whether the current association 
is mediated by gene variants that further exacerbate or 
attenuate the risk of microvascular dysfunction related 
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to albuminuria is a topic for further study. Albuminuria 
has both genetic and environmental components [68]. 
The environmental component can be targeted for inter-
vention to reduce cognitive risk. Similarly, stratification 
based on polygenic scores may allow clinicians to bet-
ter target individuals for more aggressive treatment and 
intervention strategies. It is unclear why this interaction 
was observed for the verbal-numeric reasoning test only, 
but this may be a consequence of the test’s higher genetic 
and observational correlations with global cognitive abil-
ity relative to the reaction time and visual memory tasks 
[35, 69].

The observational nature of this study limited our abil-
ity to draw causal inferences. An alternative study design 
such as Mendelian randomization (MR), which uses 
genetic variants as a proxy for the exposure of interest 
to minimize bias due to confounding and reverse causal-
ity, may help to determine the potential causal effects of 
these kidney function markers. Using genetic data from 
the UK Biobank, we recently carried out a one-sample 
MR study examining the causal effects of eGFRcys, 
eGFRcre and ACR levels on cognitive performance [70]. 
Although, the results did not support causal effects of 
eGFRcre or eGFRcys on cognitive function outcomes, 
there was suggestive evidence of a causal relationship 
between ACR and slower reaction time and worse visual 
memory. Interestingly, a two-sample MR study by Chen 
et  al. reported a significant causal association between 
ACR and decreased brain cortical thickness but found no 
such effect of eGFRcre on this outcome [71]. This lends 
support to a possible causal influence of albuminuria on 
cognitive function through alterations in brain structure. 
A significant limitation of these studies, however, is the 
difficulty in distinguishing genetic proxies that contribute 
to kidney function from those that are merely determi-
nants cystatin C expression or creatinine metabolism.

There are several strengths to our study. The large size 
of the study population allowed us to examine gene by 
environment interaction which typically requires con-
siderable sample size. We leveraged an alternate control 
selection approach to account for potential confound-
ing of kidney function and cognitive performance asso-
ciations through propensity-score matching without 
extensive loss of information due to inadequate match-
ing which may occur in smaller samples. In addition, the 
extensive biochemical data allowed comparison of multi-
ple measures of kidney function within one cohort.

Some limitations of our study should also be noted. 
Our analysis was restricted to participants of European 
ancestry which may limit generalizability to other eth-
nic groups. Additionally, given the voluntary nature 
of UKBB recruitment, the participants were generally 
healthier with higher socioeconomic levels than the 

general population [72]. It follows that the prevalence 
of CKD may also be comparatively lower in the UK 
Biobank population. However, the large overall sample 
size allowed for identification of an adequate number of 
individuals with kidney disease to characterize associa-
tions that may be applicable to broader populations. The 
cognitive tests in the UKBB were brief and were devel-
oped to be administered on a large scale and without 
supervision and may therefore not be sensitive to cogni-
tive differences. However, the tests used here have been 
shown to have substantial correlation with previously 
validated tests in an independent sample of individu-
als [35]. Finally, this was a cross-sectional study limiting 
our ability to assess temporality. Longitudinal follow-
up is required to better elucidate the temporal asso-
ciations between kidney function, potential mediators 
such as cardiovascular disease and subsequent cognitive 
impairment.

Conclusions
In summary, this study confirms prior associations 
between reduced kidney function and lower cognitive 
ability. We also show that the association between albu-
minuria and verbal-numeric reasoning may be modified 
by polygenic score for cognitive function, but results 
need to be replicated in independent cohorts.  Low eGFR 
was associated with worse cognitive performance,  and 
associations appeared stronger when GFR was estimated 
based on cystatin C rather than creatinine.
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