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Abstract: Commercially available wearable devices (wearables) show promise for continuous physio-
logical monitoring. Previous works have demonstrated that wearables can be used to detect the onset
of acute infectious diseases, particularly those characterized by fever. We aimed to evaluate whether
these devices could be used for the more general task of syndromic surveillance. We obtained wear-
able device data (Oura Ring) from 63,153 participants. We constructed a dataset using participants’
wearable device data and participants’ responses to daily online questionnaires. We included days
from the participants if they (1) completed the questionnaire, (2) reported not experiencing fever and
reported a self-collected body temperature below 38 ◦C (negative class), or reported experiencing
fever and reported a self-collected body temperature at or above 38 ◦C (positive class), and (3) wore
the wearable device the nights before and after that day. We used wearable device data (i.e., skin
temperature, heart rate, and sleep) from the nights before and after participants’ fever day to train a
tree-based classifier to detect self-reported fevers. We evaluated the performance of our model using a
five-fold cross-validation scheme. Sixteen thousand, seven hundred, and ninety-four participants pro-
vided at least one valid ground truth day; there were a total of 724 fever days (positive class examples)
from 463 participants and 342,430 non-fever days (negative class examples) from 16,687 participants.
Our model exhibited an area under the receiver operating characteristic curve (AUROC) of 0.85 and
an average precision (AP) of 0.25. At a sensitivity of 0.50, our calibrated model had a false positive
rate of 0.8%. Our results suggest that it might be possible to leverage data from these devices at a
public health level for live fever surveillance. Implementing these models could increase our ability
to detect disease prevalence and spread in real-time during infectious disease outbreaks.

Keywords: wearables; syndromic surveillance; illness detection

1. Introduction

Public health agencies commonly use syndromic surveillance (SS) to augment a va-
riety of traditional disease surveillance systems [1,2]. SS systems generally do not assess
laboratory-confirmed reports and instead rely on the presence of detectable symptoms;
cases are typically reported before the results of a laboratory test are available [1]. SS
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systems require a lower implementation burden relative to traditional surveillance systems
that rely on case reports, such as the National Notifiable Disease Surveillance System. SS
systems are, therefore, potentially (1) more scalable, (2) more sensitive, and (3) better able
to more rapidly identify outbreaks [3,4]. Systems using commercially available wearable
devices (wearables) to detect illness states exhibit many of the same strengths as SS. That
is, they are (1) scalable, as in 2019, approximately 30% of US consumers already used
wearables, which are relatively inexpensive [5]; (2) sensitive as wearable device physiologi-
cal data can be monitored in large, distributed, diverse populations, and can be used to
discern periods of relative health versus illness; and (3) rapid as wearable device data can
be analyzed in near real-time.

Many recent efforts propose machine learning classifiers for the within-individual
detection of specific, acute illnesses using wearable device data [6–15]. Other works
have investigated using wearables to monitor population-level changes corresponding to
influenza-like illnesses (ILI) [16,17]. Both within-individual detection and population-level
monitoring tasks are tractable because wearables measure physiological metrics that are
anomalous around acute illness onset. These anomalies can include increased heart rate
(HR), respiratory rate (RR), and temperature, and decreased heart rate variability (HRV)
and physical activity [13]. However, real-time SS systems hold the potential to detect such
aberrations that may signal the increased prevalence of a novel pathogen [2]. As such, we
sought to determine whether wearable device data could be used for generalized SS, and
we evaluated such feasibility by focusing on fever detection.

Fever is often a crucial component of the case definition for many SS systems across
conditions, including ILI, where the presence of fever is necessary but not sufficient for a
case to be considered an ILI event [18]. Moreover, fever is sometimes the only symptom
surveilled [19–21]. In this work, we explored changes in wearable-measured physiology
around the onset of self-reported fevers, proposed a classifier for detecting its onset, and
demonstrated the classifier’s performance in a broad population.

2. Materials and Methods

We previously reported on data collected for these analyses by Mason et al. [6]. Addi-
tional details on the recruitment and exclusion criteria of the initial cohort are outlined in
Mason et al.; however, we outline details relevant to the subset of participants used in these
analyses. The original cohort comprised 63,153 participants spanning 106 countries [22]
who completed online questionnaires and wore the Oura Ring Gen2, a commercially
available wearable device (Oura Health, Oulu, Finland) on a finger of their choosing.
Participants completed baseline, monthly, and daily online questionnaires; the daily ques-
tionnaire included a checklist to report the subjective experience of a number of symptoms.
These analyses focused on self-reported fever symptoms; participants could self-report the
symptom “Fever” since they last completed a daily questionnaire (“Have you experienced
any of the following symptoms since you last did this survey? (Please check all that apply.)”).
Participants were also asked to self-report the highest body temperature reading they had
taken during the last day by thermometry (“If you took your temperature in the last day, what
was the highest reading?”).

To select days that were more likely to be from a fever event, we considered any
day where a participant reported both (1) experiencing a self-reported fever and (2) a
self-reported temperature greater than or equal to 38 ◦C to be a fever day. Fever days with
wearable device data from at least seven nights over a fourteen-day baseline period and
the nights before and after the fever day were included in the dataset. Wearable device
data from the nights before and after fever days comprised positive class examples in the
training set and the test set. Negative class examples comprised days wherein participants
both (1) self-reported not experiencing fever and (2) self-reported a temperature lower than
38 ◦C (non-fever days). Non-fever days also had retrievable wearable device data from at
least seven nights over a fourteen-day baseline period and the nights before and after the
non-fever day.
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Participants wore the Oura Ring Gen2 (Oura Health Oy, Oulu, Finland). The Oura
Ring connects to the Oura App (available from the Google Play Store and the Apple App
Store) via Bluetooth. Users can wear the ring continuously in both wet and dry conditions.
The Oura Ring generates physiological metrics by aggregating data gathered from on-
device sensors. These high-resolution metrics are transformed into summary metrics
before their transmission to a smartphone app. The Oura Ring Gen2 uses a proprietary
algorithm to estimate when a user is at rest and when they have gone to bed. After the
Oura Ring determines that a user has gone to bed, the Oura Ring gathers a high-frequency
photoplethysmogram (PPG), which it uses to calculate interbeat intervals (IBI), which are
used in heart rate (HR), heart rate variability (HRV), and respiratory rate (RR). Both HR
and HRV measured by Oura have been externally validated to be highly accurate [23]. RR
has been validated internally by Oura and is claimed to be highly accurate compared to
a medical-grade ECG, with a mean error of 0.71 breaths per minute and a correlation of
0.96 [24]. The Oura Ring Gen2 assesses a user’s dermal (distal) temperature throughout the
day (i.e., not only when the user is in bed) using a negative temperature coefficient (NTC)
thermistor on the internal surface of the ring. The NTC thermistor has been internally
validated by Oura and has been shown to provide near-perfect agreement with a research-
grade sensor [25]. During sleep, the Oura Ring uses a proprietary algorithm to estimate
the stage of sleep a user is currently in. Sleep stages can be one of the following: awake,
REM, light (N1 or N2), or deep (N3). This algorithm has been externally validated and is
79% accurate for four-stage sleep stage classification [26]. Further details regarding these
sensors and the algorithms used to determine HR, HRV, RR, and sleep stages are provided
in Appendix A. High-resolution metrics are transformed into summary metrics before
transmission to a smartphone app. Oura further aggregates these summary metrics across
each period of detected sleep into a “sleep summary”. The dataset used in these analyses
comprises metrics (“sleep summary metrics”) from the longest sleep of the day (i.e., the
sleep summary with the greatest total time spent asleep). We included all sleep summary
metrics generated by Oura that were single, scalar, and physiologically interpretable values.
Sleep summaries also included metrics that we did not include, i.e., arrays of HR and HRV
across every 5 min of sleep, strings that specify the start and end of detected bedtimes,
or any of the metrics that are a proprietary combination of the metrics we included (i.e.,
so-called “sleep scores”). Table 1 lists each sleep summary metric included in these analyses,
along with detailed descriptions.

Table 1. Detailed descriptions of each wearable measured sleep summary feature.

Metric Unit of
Measurement Description

Heart rate Beats per minute The average heart rate registered during
the sleep period.

Lowest heart rate Beats per minute
The lowest heart rate (5 min sliding

average) registered during the
sleep period.

Heart rate variability Milliseconds The average HRV calculated using the
rMSSD method.

Respiratory rate Breaths per minute Average respiratory rate.

Respiratory rate variability Breaths per minute The average variability of respiratory rate
(STD) in the sleep period.

Temperature deviation Degrees Celsius Skin temperature deviation from the
user’s long-term temperature average.

Temperature trend deviation Degrees Celsius
Skin temperature deviation from

weighted three-day rolling
temperature average.
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Table 1. Cont.

Metric Unit of
Measurement Description

Onset latency Seconds
Detected latency from the time the user
entered their bed to the beginning of the

first five minutes of persistent sleep.

Time spent awake Seconds Total amount of awake time registered
during the sleep period.

Time spent in REM sleep Seconds Total amount of REM sleep registered
during the sleep period.

Time spent in light sleep Seconds Total amount of light (N1 or N2) sleep
registered during the sleep period.

Time spent in deep sleep Seconds Total amount of deep (N3) sleep
registered during the sleep period.

Time spent asleep Seconds Total amount of sleep registered during
the sleep period.

The input features to our model follow the standard format for a binary classification
task. Let D = {(x1, y1). . . (xn, yn)} be the training dataset. xj ∈ Rk and yj ∈ {0, 1}. xj is a vector

of size k = 35. Entries {1,. . ., 14} in xj
def
= zi,m are as follows:

zi,m =
Nighti,m − µ(−14→−28),m

σ(−14→−28),m

Here, the z-scored wearable device metrics from the night before (Night −1, Figure 1) are

from the ground truth day. Similarly, entries {15,. . ., 28} in xj
def
= zi,m are from the night after

(Night 0, Figure 1) the ground truth day. Entries {29,. . ., 35} in xj
def
= ∈ {0, 1} correspond to

one-hot-encoded Boolean features for the day of the week (Sunday through Monday) of
the ground truth day. In summary, the features are (1) z-scored sleep summary metrics
(xi,m) from the night before (NB) and the night after (NA) each fever or non-fever day and
(2) one-hot-encoded Boolean features for the day of the week (Sunday through Monday) of
the ground truth day. We included the day of the week as a feature, given the tendency for
human weekly rhythms (i.e., alcohol consumption [7]) to drive physiological changes that
manifest similarly to acute illnesses. It is yj = 0 if the jth example is from a non-fever day
and yj = 1 if the jth example is from a fever day. A schematic describing the normalization
procedure and instance selection process is shown in Figure 1.

In order to ensure applicability, we implemented a relatively simple, commonly
used ensemble classifier based on the standard implementation of a Histogram-Based
Gradient-Boosting Classification Tree from the sklearn Python (Open source) package v1.2.0
(sklearn.ensemble.HistGradientBoostingClassifier) with all hyper-parameters left at default.
Models of this variety are commonly used for physiological anomaly detection [8,10,27,28].
For training and testing, we followed a five-fold stratified cross-validation scheme with a
user split as previously outlined in Merill et al. [15], where each model was trained on data
from a subset of participants and tested on another subset. We stratified users based on
whether that user had a fever day.

Classifiers could be calibrated during training, which aligns a classifier’s predicted
class probabilities and the empirical likelihood of events occurring [29]. Predictions from
well-calibrated classifiers tend to more accurately reflect real-world outcomes. Impor-
tantly, this can allow practitioners to choose intervention thresholds based on a classifier’s
predictions, which can lead to more precise resource allocation and risk assessment [30].
We used logistic (sigmoid) regression with a two-fold split to calibrate our model using
the sklearn v1.2.0 implementation (sklearn.calibration.CalibratedClassifierCV). We used
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the Brier score to assess the extent to which our classifier was calibrated [31]. The Brier
score was calculated by taking the squared difference between the classifier’s predicted
probability and the corresponding outcome (0 for incorrect predictions and 1 for correct
ones). The Brier score was then the mean squared difference across all predictions. Brier
scores ranging from 0 to 1 and lower values indicate a more calibrated classifier. We used
the sklearn v1.2.0 implementation of the Brier score (sklearn.metrics.brier_score_loss).
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Figure 1. Instance selection and normalization procedure. At least 7 out of the 14 days in the range of
−28 to −14 relative to the ground truth day were retrievable. The mean (µ) and standard deviation
(σ) from these days were used to normalize z-score wearable device metrics. We depict an example
of a valid instance with its baseline period (−28 → −14) with retrievable data from 9 out of 14 nights
(nights without retrievable data are indicated by a white cross). This instance is based on sleep
summary features from the night before (night −1) and the night after (night 0) relative to the ground
truth day.

We examined the relative importance of each wearable and measured physiological
change in our classifier using permutation importance, which is a data-driven approach
that quantifies the weight that a tree-based classifier places on individual features [32].
Permutation importance is determined by evaluating how much a classifier’s performance
degrades after the systematic perturbation of a specific feature. Baseline classification
performance is established on the unperturbed dataset. Then, each individual feature
(i.e., the z-score and average HR from the night before a [non]-fever day) is randomly
permuted between examples (i.e., all [non]-fever days) in the dataset. This permutation
disrupts any relationship between the feature and the classification output. The change in
classification performance is determined after permutation. Features, when permuted, that
cause the largest drop in classification performance are the most important. We used the
sklearn v1.2.0 permutation importance (sklearn.inspection.permutation_importance) with
30 permutations per feature at each iteration of the five cross-validation.

The receiver operating characteristic (ROC) and Precision–Recall curves are often
used to visually assess binary classification performance [33]. The ROC illustrates the
relationship between a classifier’s true positive rate (i.e., recall, sensitivity) and false positive
rate (i.e., 1-specificity) across predicted probability threshold values. The ROC curve is
often used to examine the trade-off between correctly identifying positive instances and
incorrectly classifying negative instances as positive. The integration of the ROC yields the
area under the ROC (AUROC), which is commonly used to summarize the ROC. On the
other hand, the Precision–Recall curve (PRC) plots precision (i.e., positive predictive value)
against recall (i.e., true positive rate, sensitivity) across predicted probability threshold
values. The PRC can more accurately represent the performance on imbalanced datasets;
this method describes a classifier’s ability to correctly identify positive examples while
minimizing false positives. Average (i.e., mean) precision (AP) is frequently used to
summarize the PRC.

3. Results

Sixteen thousand, seven hundred, and ninety-four participants provided at least one
valid ground truth day; there were a total of 724 fever days (positive class examples) from
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463 participants and 342,430 non-fever days (negative class examples) from 16,687 partici-
pants. The mean self-reported body temperature was 38.45 (SD = 0.50) for fever days and
36.45 (SD = 0.42) for non-fever days. The distributions of self-reported body temperatures
can be found in Figure 2. Table 2 provides the characteristics of participants included in
these analyses. The average participant age was 47.2 years; 43.6% were women.
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Table 2. The number of individuals included in the training and test sets, including self-reported sex
assigned at birth, age, and race.

Dataset Composition

N 16,794
Sex, n (%) Female 7324 (43.6)

Male 9455 (56.3)
Other 15 (0.1)

Age, mean (SD) 47.2 (12.3)
Race, n (%) African American/Black 226 (1.4)

East Asian 685 (4.2)
Caucasian/White 14,120 (86.3)

Middle Eastern 94 (0.6)
Native American/Native Alaskan 27 (0.2)

Native Hawaiian or Other Pacific Islander 28 (0.2)
South Asian 162 (1.0)

Other 429 (2.6)
Prefer not to answer 596 (3.6)

Wearable-measured physiological changes in the nights before and after fever days
appear in Figure 3. Relative to individuals’ wearable-measured baseline physiology,
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wearable-measured physiology changed substantially on the nights before and after self-
reported fever days (Figure 3) and exhibited greater deviations in the subset of participants
(n = 103) with fever days in which self-reported temperatures were greater than 39 ◦C (red
lines, Figure 3). Across all participants with fever days, wearable measured physiology
changed the most on the nights before and after fever days (Nights −1 and 0, Figure 3).
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Figure 3. Z-score-normalized wearable metrics from individuals, aligned by self-reported fever day
(white hatched areas) and grouped by self-reported temperature on fever day. Individuals reporting
temperatures in the range of (38–39 ◦C) are in blue (n = 621), and (39+ ◦C) are in red (n = 103). Lines
represent the mean z-score normalized wearable metric across all participants in the respective group
for each night, and shaded regions are the 95% confidence interval of the mean.
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We depicted model performance following a five-fold cross-validation scheme in
Figure 4. The mean AUROC was 0.85 (Figure 4a), and the mean AP was 0.25 (Figure 4b).
Our model was well calibrated (Figure 4c) with a Brier score of 0.0018. When considering the
aggregated predictions on the test set of each cross-validation, the positive class predicted
that probabilities increased with increased self-reported body temperature (Figure 4d) and
were significantly correlated (Pearson’s r = 0.11, p < 0.001); at a sensitivity of 0.50, the false
positive rate was 0.8%.
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Figure 4. Performance of the fever detection classifier following a five-fold cross-validation scheme.
Shaded areas indicate a 95% confidence interval. (a) The mean Receiver Operator Characteristic curve
(ROC) across iterations. The mean area under the curve is 0.85. (b) The mean Precision–Recall curve
(PRC) across iterations. The average precision was 0.25. (c) The reliability plot (or calibration curve)
across iterations. The mean Brier score was 0.0018. (d) Box plots indicating the classifier predicted
probability, binned by self-reported body temperature.

We calculated the permutation importance at each iteration of the five cross-validations.
Permutation importance suggested that temperature deviation from the night before a
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fever day was the most important feature (Figure 5), followed by respiratory rate and the
time spent awake the night before the ground truth day.
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ground truth day; error bars: 95% confidence interval of the mean.

4. Discussion

We found support for the hypothesis that data from wearable devices can be used to
detect fevers with high accuracy on the night after the day an individual starts to experience
a fever. Specifically, we described wearable measured physiological changes around fever
onset (Figure 3) and developed features that were quite computationally tractable and had
direct physiological interpretations. Our classifier performed well (average AUROC = 0.85,
AP = 0.25) and could be tuned to a sensitivity of 0.50, where it exhibited a false positive
rate of 0.8%.

Over a large population, detection using wearable devices could provide important
new alerting functionality to SS efforts. Since our model inclusion criteria only required
retrievable wearable device data over a two-week baseline period, our model could make
predictions on any new device users after about a month of continuous wear time. We
calibrated our classifier so that higher predicted examples were more likely to be from a
fever day, and our classifier could show promise for a body temperature regression task;
the predicted probability increased proportionately to the self-reported body temperature
that described a fever. We posit that features with explicit physiological interpretations
allow better generalizability to heterogeneous populations than features learned by deep
neural networks using a similarly sized training set and believe this to be a key next step
following from this work.

Readers should interpret these results in light of our classifier implementation, per-
formance metrics selection, and definition of illness and non-illness periods. While our
classifier exhibited sensitive and specific fever onset detection using wearable-measured
physiological data in a diverse population, further testing should systematically compare
the current classifier implementations across a range of benchmark datasets to determine
which classifiers should be further evaluated for deployment. We chose a machine learning
architecture that was relatively simple and common to train our classifier; however, there is
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a wide diversity of approaches used to classify illness from wearable device data (for review,
see Mitratza and colleagues) [13]. Furthermore, certain binary classification performance
metrics (i.e., AUROC, accuracy) can lead to misleading notions of performance when used
on datasets that exhibit extreme class imbalance, as in these analyses where the number
of non-fever days far outnumber fever days. Such a class imbalance is common in illness
detection studies [27]. Accordingly, we attempted to report all metrics in a way that did
not overestimate the performance. A systematic comparison of illness detection classifiers
would require consistent definitions of illness and non-illness periods across benchmark
datasets, as well as the use of the same metrics to describe classifier performance across
these datasets.

This work also differs from other illness detection studies in both study design and
the wearable device used to gather data. We performed these analyses retrospectively, and
the performance should be verified in a prospective manner [27]. Furthermore, differences
in commercially available wearable device sensors (i.e., the ability to collect HRV, HR,
temperature, and other physiological metrics) have led to substantial differences in the
features used to train illness detection classifiers. We trained our classifier using data
from second-generation Oura Rings, which, at the time of data collection, were different
from most other wearable devices in that they included a temperature sensor, which
was not included in most other wearable devices of similar cost and market penetration
(i.e., Apple Watch and FitBit). Regardless of feature differences, data from wearable
devices without temperature sensors have been used to train many of the other previously
studied illness detection classifiers over the past decade [7,15]. However, many of the
most recent generations of wearable devices from Apple, FitBit, and Whoop now include
a temperature sensor. Future work should investigate if and how different sensors in
wearable devices create features that improve illness detection performance, particularly
because our results suggest that temperature sensor-based features are the most important
in our classifier (Figure 5). Measurements from sensors not traditionally included in
commercial wearable devices, such as those that monitor analytes in sweat [34] or exhaled
air [35], might be particularly important for improving the accuracy of these models.
Other efforts have engineered more complicated features, i.e., features based on deviations
from expected circadian rhythms [36]; here, we demonstrate an impressive performance
using nightly summary data. Researchers should systematically explore the effects of the
study design and wearable device features as they work toward developing standards of
real-world efficacy.

Our specific algorithmic implementation requires a minimum level of wearable device
compliance. Previous work based on the dataset we used here demonstrates that partici-
pants exhibit a high level of wearable device compliance (87.8% of nights) [37]. Another
survey-based study found that 72.58% of participants in their study wore their wearable
device “daily” or “almost daily” [5]. Future work could weigh certain metrics like recall
against the proportion of days wherein users provide enough data to produce variable
results in order to determine the efficacy of these models.

As with other health-screening applications, illness detection algorithms based on
wearable device data need to balance improving case detection with minimizing false
positives. Illness detection generalizability should also be carefully evaluated across classi-
fier implementations, the wearable devices used, and diverse populations. In particular,
researchers should address whether models generalize across geographic regions. Future
work should also examine whether the performance of illness detection models varies
temporally. Such temporal performance variability might be driven by seasonality in illness
prevalences. Once models exhibit a performance that can have a real-world impact, de-
velopments in wearable device data deidentification and data integration at public health
agencies will be crucial to developing systems for real-time illness monitoring. Data privacy
and deidentification are challenges that remain largely unaddressed for wearable device
data. Recent works further demonstrate how it might be possible to re-identify individuals
using de-identified wearable device data [38]. Furthermore, as of 2024, these data fall under



Sensors 2024, 24, 1818 11 of 14

the category of “personal health data” in the EU [39] and US [40], and these data are subject
to regulations that vary by jurisdiction. However, it is possible that the categorization of
these data might change in the future, along with the regulations they are subject to. Finally,
our efforts suggest that symptom screening classifiers that generalize across illnesses may
be a useful public health tool for real-time surveillance.
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Appendix A

Appendix A.1. Oura Ring Gen2 Sensor Specifications and Algorithm Descriptions

Many of the technical sensor specifications, signal-processing steps, and algorithms
that the Oura Ring Gen2 uses to calculate physiological metrics are proprietary; however,
certain details are publicly available. We summarize those details here.

Appendix A.1.1. Sensors

Temperature: The Oura Ring measures temperature with two negative temperature
coefficient (NTC) thermistors (non-calibrated, resolution of 0.07 degrees Celsius) located
palmar when the ring is worn as intended. Accelerometry: the Oura Ring includes a 50 Hz,
±2 g triaxial accelerometer [26]. Photoplesmogram: the photoplethysmogram consists
of a photodetector that, when the ring is worn as intended, is positioned in the palmar
middle of the finger with two 900 nm LEDs on either side of the photodetector. Raw
photoplethysmography (PPG) is sampled at 250 Hz [26,41].
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Appendix A.1.2. Heart Rate, Heart Rate Variability, and Respiratory Rate

The Oura Ring calculates heart rate (HR), heart rate variability (HRV), and respiratory
rate (RR) from inter-beat intervals (IBIs) during periods of sleep. IBIs are calculated using
raw PPG data processed using a real-time moving average filter [26,41]. The local maximum
and minimum values in these PPG data correspond to each heartbeat. The Oura Ring
also estimates the probability that each IBI is an artifact. The Oura Ring uses a median
filter to classify each IBI as either normal or abnormal; IBIs more than 16 bpm removed
from the median IBI in a moving window of length seven are marked as abnormal [26,41].
If any of the two IBIs before or after a particular IBI are abnormal, that IBI is marked as
abnormal. HR and HRV are calculated if at least 30% of the IBIs in a 5 min window are
normal according to these criteria [26,41]. The Oura Ring calculates HR using the mean
IBI and HRV as the root mean square of successive differences (rMSSD). RR is calculated
by finding peaks in IBI over the time period under analysis [26,41]. These metrics are
generated on-device, and the raw PPG is not continuously recorded or stored for analysis.

Appendix A.1.3. Sleep Stages

The Oura Ring calculates sleep stages using a machine-learning classifier and predicts
sleep stages on 30 s windows of data [26]. The Oura Ring assesses temperature at 10 s
intervals and samples less than 31 or more than 40 degrees Celsius are masked [26]. The
mean, min, max, and standard deviation are calculated on a rolling basis [26]. High
frequency accelerometry data are used to calculate the mean amplitude deviation (MAD)
in 5 s windows [26]. The MAD represents the average deviation from the mean vector
magnitude [26]. Within each 30 s window, the mean, max, and interquartile range (IQR) of
MADs in the 10–90th percentile of the window are calculated [26]. The difference in arm
angle was also calculated in each 5 s window and the mean, max, and IQR of arm angles
in the 10–90th percentile of the 30 s window are calculated [26]. Processed accelerometry
features are also calculated for each three individual axes [26]. High-resolution data are
processed using a 5th-order Butterworth bandpass filter (3 to 11 Hz) and taking their
absolute value [26]. The mean, max, and IQR of values in the 10–90th percentile within
each axis are calculated for each 30 s window [26]. High-quality IBIs are identified in the
same way they are identified for the calculation of HR, HRV, and RR in 5 min windows [26].
For each 30 s window, Oura calculates HR, HRV (rMSSD), and RR [26]. They also calculate
the following additional HRV metrics: SDNN, pNN50, frequency power in the LF and HF
bands, the main frequency peak in the LF and HF bands, total power, normalized power,
mean and coefficient of variation in the zero-crossing interval. Excluding accelerometer-
based features, each feature is normalized on a per-night basis using the 5–95 percentiles of
that feature [26]. Oura claims this accounts for inter-individual differences in features.
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