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Abstract

Robust Coordination and Control of Networked Systems with Intermittent

Communication

by

Sean A. Phillips

Networked systems characterize many modern real-world interactions, ranging from the inter-

net and social media networks, to communication networks and power distribution networks, to

interconnected neuron and biological models. For such networks, agents in the network utilize

information from its neighbors to achieve a common task, however, in practical applications

the information available to each agent may not be continuously available. Moreover, such in-

formation may be subjected to environmental perturbations. Therefore, in this dissertation,

robust coordination and control algorithms are studied for networked systems when the cou-

pling between them are naturally intermittent. Namely, coordination in terms of synchronization

and desynchronization for different interconnected networked systems are analyzed. The inter-

mittency of the communication structure implies some impulsive instances in the dynamics,

therefore, for each case, a hybrid systems approach is utilized to model and analyze the dynam-

ics of such systems. Namely, results for set stability using Lyapunov stability and invariance

principles are utilized to study the dynamical properties of the coordination algorithms. This

dissertation is divided into two enveloping parts: 1) controller design for the synchronization of

continuous-time agents where the information transmitted between the agents is intermittent;

2) a dynamical study of desynchronization in impulse-coupled oscillators with some resulting

applications. More specifically, the first part considers a distributed controller design for the

case when each agent has linear time-invariant continuous-time dynamics, however, the com-

xii



munication triggering information transfer between agents occurs intermittently. For this case,

the robust exponential stability of the set characterizing synchronization in continuous linear

time-invariant systems when information from neighbors is received impulsively at isolated time

instances. The second part considers the case of a network of impulse-coupled oscillators. Im-

pulse coupled oscillators are systems which evolve continuously, until a threshold is reached, at

which point, releases an impulse and affects neighboring agents. Due to the oscillatory nature

of such systems, under certain parameters the times at which impulses occur separate in time,

this action is referred to as desynchronization. The set of points describing desynchronization is

characterized and recast as a set stabilization problem, it is shown that the desynchronization

set is robustly asymptotically stable. Utilizing recent results for impulse coupled oscillators,

applications to the study of dynamical behavior of spiking neurons and to frequency rendezvous

for communication systems are given. Numerical examples illustrating the results are presented

throughout.
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Chapter 1

Introduction

1.1 Motivation and Historical Relevance

One of the first descriptions of automatically driven devices comes in Aristotle’s ‘Poli-

tics’, wherein, he describes what household life could be like with autonomous processes, namely,

as written on the cover page of [1]:

“... if every instrument could accomplish its own work, obeying or anticipating the
will of others ... if the shuttle would weave and the pick touch the lyre with a hand
to guide them, chief workmen would not need servants, nor masters slaves.

However, there would not be any rigor in the development in a field called control theory until

much later. The first such article which is frequently attributed to the creation of the field

of control dates back to the late 19th century with J. C. Maxwell’s famous paper titled “On

governors” published in the Proceedings of the Royal Society in 1868, [2]. In this article, Maxwell

discusses the design of a governor (such devices, were used to regulate velocity in steam engines)

using a rigorous mathematical analysis.

The time between the industrial revolutions and World War I, control theory was

given a written language, namely, the language of mathematical analyses. With the Wright
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Brother’s monumental flight in 1903 the world of control theory continued to progress and

weave itself into a variety of applications. In the 1930’s, the number of applications of automatic

control increased into power distribution systems, stabilization of aircraft, telecommunication

amplifiers, petroleum production, and much more. Modern control theory is now one of the

most interdisciplinary areas of science, where engineering and mathematics are symbiotically

driven. Such techniques are now found in every major industry, from space based applications,

manufacturing automation, and even in mining and chemical processes.

From the inception of control theory, the control of a single (potentially large and

complex) system has seen a majority of attention. Under these modeling structures, numerous

methodologies were developed and applied to every aspect of modern life, such methods include,

proportional-integral-derivative (PID) control, adaptive control, robust control, optimal control,

model predictive control and hybrid control. Beginning in the 1970’s, the study of interconnected

networked systems has seen increased attention. Networked systems are typically considered as

multiple smaller systems (also called subsystems) interconnected together into a larger system.

The control of which has been separated into two distinct paradigms, a centralized approach

and a decentralized approach. In the centralized approach, the actions of each system within

the networked systems are governed via a monolithic centralized controller; however, this is

becoming a less viable due to the expensive mainframe maintenance. Therefore, the necessity

of a decentralized approach is needed.

Recently with the advent of inexpensive communication methods and the miniaturiza-

tion of electronics, the control algorithms can be designed in a distributed way for each system in

the network to accomplish a common task. Indeed, one motivation of coordination of networked

distributed systems is to achieve the same performance that monolithic classical control struc-

tures (which instructs agents from a centralized controller) yields, but over a distributed network

of agents. More specifically, instead of having a large centralized mainframe computer governing
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the actions of each agent, the designer designs the controller to allow the agents themselves to

govern their own actions. This distributed structure allows the designer to consider multiple

small inexpensive computers to distribute the computational effort to achieve the agents’ goals.

With the distribution of the control to the agents, an effort to coordinate their actions

is now a current discussion. Coordination in multiagent and networked systems is a rather broad

term which encompasses a variety of ideologies. However, it is generally defined as designing

control algorithms for agents to utilize available assets and make decisions in a distributed

fashion to complete a common task. As Boutilier discusses in [3], the solutions to such problems

are typically approached from three different perspectives: communication based; convention

based; and learning based. These three categories are explicitly defined as follows:

• Communication based: Agents communicate in order to determine task allocation.

Such an algorithm requires a common language, at least, to coordinate their actions.

Namely, the connected agents need to adhere to a structure of communication to articulate

their actions. In large systems of connected agents, such as the cases considered in this

work, there must be some form of communication in order to share information between

agents in the network; it would be impossible otherwise to effectively coordinate their

efforts.

• Convention based: Conventions are systems that are designed so that joint actions are

assured. Typically, a convention is a commonly-known rule which agents follow to coordi-

nate their actions. There are many real-world precedents for coordination by convention.

For example, traffic control is a typical model for such algorithms wherein traffic flow is

controlled via stop signals. An open-loop coordination design is another example of con-

vention based coordination, for instance, each agent knows that it must do a pre-specified

task; for instance, role-based structured control as implemented in many Robocup robotic
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soccer teams [4].

• Learning based: A coordinated policy might be learned. It may combine both of the

previous methods to achieve its task; namely, conventions may be learned through commu-

nications. There are many different ways of applying learning algorithms to coordination,

from learning to choose to between optimal protocols, to leaning to use simple commu-

nication techniques. However, such algorithms are difficult to setup, implement and may

have a high bandwidth consumption.

In this dissertation, two main enveloping topics are discussed. The first is a communica-

tion based approach to a consensus/synchronization of linear continuous-time equations where

communication between the agents is not continuous. More specifically, the agents can only

communicate at some unknown intermittent time instances. The second topic is on intercon-

nected impulse-coupled oscillators which are networked systems with state variables that evolve

continuously until a state dependent event triggers an instantaneous update of their state val-

ues. Specifically, the tendency for desynchronizing impulse-coupled oscillators separating their

impulses to occur with equal spacing in time is studied, this configuration is also referred to as

a splay-state configuration. Moreover, the communication structure of these impulse-coupled

oscillators lends itself into numerous applications studied here: networks of interconnected spik-

ing neurons and a frequency hopping rendezvous problem for cognitive radios. Insights into the

aforementioned problems are given in the following section.

1.2 Contributions

The main topics covered in this work utilize communication over the network to coor-

dinate their actions. The specific topics are introduced in the subsequent sections.
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1.2.1 Consensus and Synchronization in Networked Systems with In-

termittent Information

1.2.1.1 Motivation

The topics of consensus and synchronization in multiagent networked systems has

gained massive traction in recent years due to the wide range of applications science and engi-

neering. In general, consensus is defined on multiple agents connected together via a graph agree

to a common value. Synchronization, however, is also an agreement of states where each agent

has its own local dynamics. Consensus is seen in spiking neurons, formation control and flocking

maneuvers [5, 6, 7, 8], distributed sensor networks [9, 10], satellite constellation formation [11],

and in communication of computer network systems [12]. Synchronization is seen in spiking

neurons [13, 14], formation control and flocking maneuvers [5, 7], distributed sensor networks

[10], and satellite constellation formation [11], to name a few.

Some of the main challenges for designing protocols for consensus and synchronization

problems are:

• Impulsive communication events: Continuous communication between agents may not

occur continuously. Due to the computerized and digital controllers, the communication

structures occur at impulsive events. Moreover, such communications between agents

(especially, if the agents are dynamic) may not occur periodic (due to potential line of

sight or range issues).

• Asynchronous and heterogenous communication events at unknown times: the time in-

stances at which each agent receives information are not synchronized and do not neces-

sarily occur periodically. Namely, each agent may receive information from its neighbors at

different and unknown time instances. Furthermore, the amount of ordinary time elapsed
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between consecutive communication events for each agent is not constant and not prede-

fined beforehand; for example, one agent may receive information at a much faster “rate”

than others.

• Instability of nominal dynamics: each of the systems may not be stable, potentially leading

to unbounded trajectories in each system. In particular, the individual dynamics of the

agents to be synchronized could be such that their origin is marginally stable or unstable,

in which case the state trajectories of the agents need to converge to each other while

potentially escaping to infinity.

• Perturbations in the dynamics, parameters, and measurements: unknown dynamics in the

model makes it difficult to design an algorithm that guarantees exact synchronization.

Synchronization algorithms that are not robust to perturbations on the transmitted in-

formation and on the times at which such information arrives could prevent the state

trajectories of the agents to converge to nearby values.

1.2.1.2 Related Work

The wide applicability of consensus and synchronization in science and engineering has

promoted a rich set of theoretical results for a variety of class of dynamical systems using a

diverse set of tools. Consensus was initially proposed in [6] which proposed an algorithm that

utilized the graphical properties of the network to ensure global convergence to an average value

of the states initial conditions. The study of convergence and stability of synchronization come

through the use of systems theory tools such as Lyapunov functions [15, 16], contraction theory

[17], and incremental input-to-state stability [18, 19]. Results for asymptotic synchronization

with continuous coupling between agents exist in both the continuous-time domain and the

discrete-time domain; see, e.g., [20, 21, 22], where the latter is a detailed survey of coordina-
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tion and consensus for first-order integrator dynamics, in continuous-time and discrete-time. In

[20], both for continuous-time and discrete-time interconnected linear time-invariant systems a

dynamic control law is shown to guarantee that the solution of each agent converge to that of

an homogeneous system with the same dynamics. In [21], the author provides a brief survey on

the convergence to synchronization through Lyapunov and set convexity analysis. As pointed

out therein, a typical approach to guarantee that the interconnected agents converge to syn-

chronization is to leverage the properties of the graph structure inherent in the connection of

multiple agents. Namely, the approach is to use the properties of the graph Laplacian matrix to

show that every agent converges to the synchronization manifold. Typically only convergence

of the solutions to this manifold is discussed and stability is typically left out of the definitions

of asymptotic synchronization; see, e.g., [15, 20, 22].

Synchronization in continuous-time systems where communication coupling occurs at

discrete events is an emergent area of study. In [19], the authors study a case of synchronization

where agents have nonlinear continuous-time dynamics with continuous coupling and impulsive

perturbations. In [23], the authors use Lyapunov-like analysis to derive sufficient conditions

for the synchronization of continuously coupled nonlinear systems with impulsive resets on the

difference between neighboring agents. Similar to impulsive systems, synchronization in systems

where feedback controllers are designed as state-triggered discrete events appeared [24, 25].

In [24], a distributed event-triggered control strategy was developed to drive the outputs of

the agents in a network to synchronization. Through a Laplacian analysis on solutions of

the closed-loop system, an observer-based event policy was developed in [25] for a network of

linear time-invariant systems where communication is triggered when the distance between the

local state and its estimate is large than a threshold. Using a sample-and-hold self-triggered

controller policy, a practical synchronization result was established in [26] for the case of first-

order integrator dynamics. To the best of our knowledge, methods for the design of algorithms
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that guarantee synchronization of multi-agent systems with information arriving at impulsive,

asynchronous time instances are not available.

1.2.1.3 Contributions

This part deals with the problem of consensus of first-order integrator systems com-

municating at stochastically determined time instances over a network and the case of synchro-

nization when each agent is a higher dimensional linear time-invariant system. The problem

considered here consists of designing a control structure that guarantees the state of each agent

converges to a common value by only using intermittent information from their neighbors. To

solve this problem, a hybrid state-feedback protocol is designed which undergoes an instanta-

neous change in its internal states when new information is available, and evolves continuously

between such events. Due to the combination of continuous and impulsive dynamics, the hybrid

systems framework developed in [27, 28] is capable of modeling such interconnected systems,

the controller, and the network topologies as well as to design the protocols, for which, levy the

graphical properties and nature of the update laws to apply Lyapunov theorems for asymptotic

stability of sets for hybrid systems. Aside from asymptotic stability, when the communications

graph is strongly connected and weight balanced, the point to which the consensus states con-

verge to is determined. Through a Lyapunov based analysis, a diagonal-like set is shown to be

partially pointwise globally exponentially stable with respect to the agent’s states. Such a notion

is stronger than the typical notions of asymptotic stability due to the additional requirement

that each point in the set is Lyapunov stable; see e.g. [29] and [30] for similar non-partial state

notions. Furthermore, when information is asynchronously received by each agent, under certain

conditions, it is possible to guarantee that the consensus set is globally asymptotically stable

using a invariance principle with a Lyapunov-like function. Similarly, when the agents have

dynamics, synchronization is shown through recasting the problem as a set stability problem.
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Then, sufficient conditions for exponential stability are given. Moreover, in-depth robustness

analyses are presented, wherein several key robustness properties are established. In part, this

is enabled by the proposed hybrid controller which is designed to satisfy certain regularity

conditions that, under nominal conditions has uniform global asymptotic stability of the syn-

chronization set, guarantees robustness to small enough perturbations. Numerous examples are

presented to showcase the nominal and robustness results.

1.2.2 Desynchronization of Impulse-coupled oscillators

1.2.2.1 Motivation

Impulse-coupled oscillators are multi-agent systems with state variables consisting of

timers that evolve continuously until a state-dependent event triggers an instantaneous update

of their values. Networks of such oscillators have been employed to model the dynamics of a

wide range of biological and engineering systems. In fact, impulse-coupled oscillators have been

used to model groups of fireflies [31], spiking neurons [32, 33], muscle cells [34], wireless networks

[35], and sensor networks [36]. With synchronization being a property of particular interest, such

complex networks have been found to coordinate the values of their state variables by sharing

information only at the times the events/impulses occur [31, 37].

The opposite of synchronization is desynchronization. In simple words, desynchro-

nization in multi-agent systems is the notion that the agents’ periodic actions are separated

“as far apart” as possible in time. Desynchronization is similar to clustering or splay-state

configurations, and is sometimes referred in the literature as inhibited behavior [38, 39]. For

impulse-coupled oscillators, desynchronization is given as the behavior in which the separation

between all of the timers impulses is equal [40]. This behavior has been found to be present

in communication schemes in fish [41] and in networks of spiking neurons [42, 43]. Desynchro-
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nization of oscillators has recently been shown to be of importance in the understanding of

Parkinson’s disease [44, 45], in the design of algorithms that limit the amount of overlapping

data transfer and data loss in wireless digital networks [35], and in the design of round-robin

scheduling schemes for sensor networks [36].

Motivated by the applications mentioned above and the lack of a full understanding of

desynchronization in multi-agent systems, this chapter pertains to the study of the dynamical

properties of desynchronization in a network of impulse-coupled oscillators with an all-to-all

communication graph. The uniqueness of the approach emerges from the use of hybrid systems

tools, which not only conveniently capture the continuous and impulsive behavior in the networks

of interest, but also are suitable for analytical study of asymptotic stability and robustness to

perturbations.

1.2.2.2 Contributions

The dynamics of the proposed hybrid system capture the (linear) continuous evolution

of the states as well their impulsive/discontinuous behavior due to state triggered events. Anal-

ysis of the asymptotic behavior of the trajectories (or solutions) to these systems is performed

using the framework of hybrid systems introduced in [28, 27]. To this end, the study of desyn-

chronization is recast as a set stabilization problem. Unlike synchronization, for which the set

of points to stabilize is obvious, the complexity of desynchronization requires first to determine

such a collection of points, which is referred to as the desynchronization set. Then, an algorithm

to compute such set of points in the desynchronization set is proposed. Using Lyapunov stability

theory for hybrid systems, it is shown that the desynchronization set is asymptotically stable

by defining a Lyapunov-like function as the distance between the state and (an inflated version

of) the desynchronization set. In our context, asymptotic stability of the desynchronization set

implies that the distance between the state and the desynchronization set converges to zero
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as the amount of time and the number of jumps get large. Using the proposed Lyapunov-like

function and invoking an invariance principle, the basin of attraction is characterized and shown

to be the entire state space minus a set of measure zero, which turns out to actually be an exact

estimate of the basin of attraction. Furthermore, also exploiting the availability of a Lyapunov-

like function, the time for the solutions to reach a neighborhood of the desynchronization set

is analytically characterized. In particular, this characterization provides key insight for the

design of algorithms used in applications in which desynchronization is crucial, such as wireless

digital networks and sensor networks.

The asymptotic stability property of the desynchronization configuration is shown to

be robust to several types of perturbations. The perturbations studied here include a generic

perturbation in the form of an inflation of the dynamics of the proposed hybrid system model

of the network of interest and several kinds of perturbations on the timer rates. Using the tools

presented in [28, 27], the effect of such perturbations on the already established asymptotic

stability property of the desynchronization set are rigorously charactered. In particular, these

perturbations capture situations where the agents in the network are heterogeneous due to

having differing timer rates, threshold values, and update laws. Networks of impulse-coupled

oscillators under several classes of perturbations are simulated to exemplify the results.

1.3 Organization

In light of the contributions listed above, this dissertation is divided into two parts.

First, the main notions and modeling frameworks are introduced. Then, Part 1 includes the

results on synchronization and consensus of multiagent systems where information is communi-

cated intermittently over a graph. The second part of this dissertation presents the main results

on impulse-couple oscillators. The specific chapters of this work is given below:
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Chapter 2: Preliminaries

In this chapter, the hybrid systems framework, basic properties used throughout this

dissertation and main results utilized are given. Moreover, in this chapter, a brief introduction

into the graph theoretical notions are given.

Part I: Robust Decentralized Consensus and Synchronization through

Networks with Intermittent Communication

Chapter 3: A Hybrid Consensus Protocol for Pointwise-Exponential Stability

In this chapter, the problem of achieving consensus of the states of multiagent systems

is considered, where connected over a network in which communication events are triggered

intermittently. The solution proposed consists of a protocol design that, using intermittent

information obtained over the network, asymptotically drives the values of their states to agree-

ment, with stability, globally and with robustness to perturbations. More precisely, the protocol

jumps at the communication events and evolves continuously in-between such events. Then,

by recasting the consensus problem as a set stabilization problem, Lyapunov stability tools for

hybrid systems can be applied. Sufficient conditions for exponential stability of the consensus

set are given. Furthermore, under additional network structure requirements, this set is also

shown to be partially pointwise globally exponentially stable. Robustness of consensus to certain

classes of perturbations is also established.

Chapter 4: Decentralized Synchronization of Linear Time-Invariant Systems

In this chapter, the problem of synchronization of multiple linear time-invariant systems

connected over a network with both synchronous and asynchronous intermittently available

communication events is studied. To solve this problem, similar to the consensus problem,
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the controller utilizes information transmitted to it during discrete communication events and

exhibits continuous dynamics between such events. Due to the additional continuous and discrete

dynamics inherent to the interconnected networked systems and communication structure, the

hybrid systems framework in [28] is utilized to model and analyze the closed-loop system. The

problem of synchronization is then recast as a set stabilization problem and, by employing

Lyapunov stability tools for hybrid systems, sufficient conditions for asymptotic stability of

the synchronization set are provided. Furthermore, the stability property of synchronization is

robust to perturbations. Numerical examples illustrating the main results are included.

Chapter 5: Synchronization of General Hybrid Systems

In this chapter, a brief discussion on the synchronization of the states of a multiagent

networked system, each agent exhibits hybrid behavior. Namely, the state of each agent may

evolve continuously according to a differential inclusion, and, at times, jump discretely according

to a difference inclusion. A notion of asymptotic synchronization for a partition of the state

of the system. The definition of asymptotic synchronization imposes both Lyapunov stability

and attractivity on the difference between the agents’ states. Synchronization recast as a set

stability problem, for which tools for the study of asymptotic stability of sets for hybrid systems

are suitable.

Part II: Networks of Impulse-coupled Oscillators

Chapter 6: Desynchronization in Impulse-coupled Oscillators

In this chapter, the property of desynchronization in a completely connected network of

homogeneous impulse-coupled oscillators is studied. Each impulse-coupled oscillator is modeled

as a hybrid system with a single time state that self-resets to zero when it reaches a threshold,

at which event all other impulse-coupled oscillators adjust their timers following a common reset
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law. In this setting, desynchronization is considered as each impulse-coupled oscillator’s timer

having equal separation between successive resets. For the considered model, desynchronization

is shown to be an asymptotically stable property. For this purpose, desynchronization is recast

as a set stabilization problem and employ Lyapunov stability tools for hybrid systems. Fur-

thermore, several perturbation cases are considered showing that desynchronization is a robust

property. Perturbations on both the continuous and discrete dynamics are considered.

Chapter 7: Synchronization and Desynchronization in Interconnected Spiking Neu-

rons

Using the network of interconnected impulse-coupled oscillators in Chapter 6, a frame-

work for analysis for a population of n interconnected neurons. Several well-known neuron

models are studied with the framework, including both excitatory and inhibitory simplified

Hodgkin-Huxley, Hopf, and SNIPER models. For each model, the sets that the solutions to

each system converge to are characterized and, using Lyapunov stability tools for hybrid sys-

tems, stability properties for each case are established. Numerical simulation provide insight on

the results and capabilities of the proposed framework.

Chapter 8: Frequency Hopping Rendezvous

An algorithm to find, link and synchronize the actions of cognitive radios is consid-

ered, known as frequency hopping rendezvous. The algorithm is modeled as an impulse-coupled

oscillator, which updates its state when information arrives, however, if the agents are on differ-

ent channels it is not possible to receive information. Under such a communication constraint,

the impulse-coupled oscillators (almost globally) synchronize their channel selections. To es-

tablish this result, the interconnection of oscillators are modeled as a hybrid system and recent

Lyapunov stability tools are applied to. Numerical simulation are included to illustrate the
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results.

Chapter 9: Conclusion and Future Directions

A summary of the contributions and potential future directions are presented. A

complete list of publications can be found in the authors CV attached in Appendix A.
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Chapter 2

Preliminaries

2.1 Hybrid Systems

2.1.1 Autonomous Hybrid Systems

A hybrid system H has data (C, f,D,G) and is defined by

ξ̇ = f(ξ) ξ ∈ C,

ξ+ ∈ G(ξ) ξ ∈ D,
(2.1)

where ξ ∈ Rn is the state, f defines the flow map capturing the continuous dynamics and C

defines the flow set on which f is effective. The set-valued map G defines the jump map and

models the discrete behavior, while D defines the jump set, which is the set of points from where

jumps are allowed.

A solution to generic hybrid systems φ to H defined in (2.1) is parametrized by (t, j) ∈

R≥0 × N, where t denotes ordinary time and j denotes jump time. More specifically, solutions

are given by hybrid arcs on hybrid time domains defined below.

Definition 2.1.1 (hybrid time domain) A subset S ⊂ R≥0×N is a compact hybrid time domain
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if S =
⋃J−1

j=0 ([tj , tj+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . A subset

S ⊂ R≥0×N is a hybrid time domain if for all (T, J) ∈ S, S ∩ ([0, T ]× {0, 1, ...J}) is a compact

hybrid time domain.

Definition 2.1.2 (hybrid arc) A function x : domx→ R
n is a hybrid arc if domx is a hybrid

time domain and if for each j ∈ N, the function t 7→ x(t, j) is locally absolutely continuous.

Definition 2.1.3 (solution) A hybrid arc φ is a solution to the hybrid system H if φ(0, 0) ∈

C ∪D and:

(S1) For all j ∈ N and almost all t such that (t, j) ∈ domφ, the solution φ(t, j) ∈ C, φ̇(t, j) =

f(φ(t, j)).

(S2) For all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ, φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)).

A solution to H is called maximal if it cannot be extended, i.e., it is not a truncated version of

another solution. It is called complete if its domain is unbounded. A solution is Zeno if it is

complete and its domain is bounded in the t direction. A solution is precompact if it is complete

and bounded.

Next, we define several notions of stability for a closed set A ⊂ Rn for a hybrid system

H.

Definition 2.1.4 (global exponential stability) Let a hybrid system H be defined on Rn. Let

A ⊂ Rn be closed. The set A is said to be global exponential stability for H if there exist

κ, α > 0 such that every maximal solution φ to H is complete and satisfies

|φ(t, j)|A ≤ κe−α(t+j)|φ(0, 0)|A

for each (t, j) ∈ domφ
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Definition 2.1.5 (global asymptotic stability) Let H be a hybrid system in Rn. A compact set

is said to be

• stable for H if for every ε > 0 there exists δ > 0 such that every solution φ toH |φ(0, 0)|A ≤

δ satisfies |φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• locally attractive for H if there exists µ > 0 such that every solution φ to H with

|φ(0, 0)|A ≤ µ is bounded and, if φ is complete, then it also satisfies limt+j→∞ |φ(t, j)|A =

0;

• locally asymptotically stable for H if it is both stable and locally attractive for H.

Note that attractivity can be considered to be global if local attractivity can be satisfied for

every µ > 0.

Definition 2.1.6 (uniform global asymptotic stability) Let a hybrid system H be defined on Rn.

Let A ⊂ Rn be closed. The set A is said to be

• uniformly globally stable (UGS) for H if there exists a class-K∞ function α such that any

solution φ to H satisfies |φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ dom φ;

• uniformly globally attractive (UGA) for H if for each ε > 0 and r > 0 there exists T > 0

such that, every maximal solution φ to H is complete and if |φ(0, 0)|A ≤ r, (t, j) ∈ dom φ

and t+ j ≥ T then |φ(t, j)|A ≤ ε;

• uniformly globally asymptotically stable (UGAS) for H if it is both uniformly globally stable

and uniformly globally attractive. �

Definition 2.1.7 (partial pointwise global exponential stability) Consider a hybrid system H

with state ξ = (p, q) ∈ Rn. The closed set A ⊂ Rr × Rn−r where r ∈ N and 0 < r ≤ n is

partially pointwise global exponentially stable with respect to the state component p for H if
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1) every maximal solution φ to H is complete and has a limit belonging to A;

2) A is globally exponentially stable for H, namely, for each φ ∈ SH there exist κ, α > 0 such

that |φ(t, j)|A ≤ κe−α(t+j)|φ(0, 0)|A for all (t, j) ∈ domφ; and

3) for each p∗ ∈ Rr such that there exists q ∈ Rn−r satisfying (p∗, q) ∈ A, it follows that for

each ε > 0 there exists δ > 0 such that every solution φ = (φp, φq) to H with φp(0, 0) ∈

p∗ + δB satisfies |φp(t, j)− p∗| ≤ ε for all (t, j) ∈ domφ. �

The asymptotic version of the notion in Definition 3.3.12 can be found in [46].

To apply some results for hybrid systems, the data (C, f,D,G) of the hybrid system

may have to satisfy some mild regularity conditions known as the hybrid basic conditions.

Definition 2.1.8 (Hybrid Basic Conditions) A hybrid system H = (C, f,D,G) is said to

satisfy the hybrid basic conditions if

(a) the sets C and D are closed;

(b) the function f : Rn → Rn is continuous;

(c) the set valued mapping G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative

to D, and D ⊂ domG.

A set-valued mapping G : Rn ⇒ Rn is outer semicontinuous if its graph {(x, y) : x ∈

Rn, y ∈ G(x)} is closed. In terms of set convergence, G is outer semicontinuous if and only if,

for each x ∈ Rn and each sequence xi → x, the outer limit lim supi→∞G(xi) is contained in

G(x). The mapping G is locally bounded on a set D if, for each compact set K ⊂ D, G(K) is

bounded.

For the analysis of robustness to noise, an exogenous signal m defining measurement

noise will play the role of an input u. A mapping m is admissible if domm is a hybrid time

domain and, for each j ∈ N, the function t 7→ m(t, j) for all t ∈ Ij is measurable.
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Similar to continuous-time and discrete-time systems, a Lyapunov function candidate

typically denoted by V : Rn → R≥0 may be found to ensure asymptotic stability of a set A for

a hybrid system H. We define a Lyapunov function candidate V as follows.

Definition 2.1.9 (Lyapunov function candidate) Given the hybrid system H with data (C, f,D,G)

and the compact set A ⊂ Rn, the function V : domV → R is a Lyapunov function candidate

for (H,A) if

i) V is continuous and nonnegative on (C ∪D) \ A ⊂ domV ,

ii) V is continuously differentiable on an open set O satisfying C \ A ⊂ O ⊂ domV , and

iii) lim{x→A, x∈domV ∩(C∪D)} V (x) = 0.

Conditions i) and iii) hold when domV contains A ∪ C ∪ D, V is continuous and nonnegative

on its domain, and V (z) = 0 for all x ∈ A.

There exist numerous sufficient condition notions to guarantee UGAS of a closed set

A. Two such results utilized in this work are as follows.

Theorem 2.1.10 [[27, Theorem 23]] Consider a hybrid system H = (C, f,D,G) satisfying the

Basic Assumptions and a compact set A ⊂ R
n satisfying G(D ∩ A) ⊂ A. If there exists a

Lyapunov function candidate V for (H,A) that is positive on (C ∪D) \ A and satisfies

〈∇V (x), f(x)〉 ≤ 0 for all x ∈ C \ A,

V (g)− V (x) ≤ 0 for all x ∈ D \ A, g ∈ G(x) \ A

then the set A is stable. If, furthermore, there exists a compact neighborhood K of A such that,

for each µ > 0, no complete solution to H remains in LV (µ)∩K, then the set A is asymptotically
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stable. In this case, the basin of attraction contains every compact set contained in K that is

forward invariant.

Theorem 2.1.11 Consider a hybrid system H with state ξ ∈ Rn and let A ⊂ Rn be closed.

Suppose V is a Lyapunov function candidate for H and there exist α1, α2 ∈ K∞, and a continuous

ρ ∈ PD such that

α1(|ξ|A) ≤ V (x) ≤ α2(|ξ|A) ∀ξ ∈ C ∪D ∪G(D) (2.2)

〈∇V (ξ), f(ξ)〉 ≤ −ρ(|ξ|A) ∀ξ ∈ C (2.3)

V (g)− V (ξ) ≤ 0 ∀ξ ∈ D, g ∈ G(x) (2.4)

and every maximal solution to H is complete. If, for each r > 0, there exists γr ∈ K∞,

Nr ≥ 0 such that for every solution φ to H, |φ(0, 0)|A ∈ (0, r], (, j) ∈ domφ, t + j ≥ T implies

t ≥ γr(T )−Nr, then A is uniformly globally asymptotically stable.

2.1.2 Hybrid Systems with Inputs

Building on the autonomous hybrid systems, such systems can also be defined with

inputs, [47]. Namely, in compact form with state ξ and input u (or disturbance), a hybrid

system H is given by

ξ̇ = f(ξ, u) (ξ, u) ∈ C,

ξ+ ∈ G(ξ, u) (ξ, u) ∈ D.
(2.5)

Similar to (2.5), a solution to (2.1) is given by a solution pair (φ, u) with domφ = φu(=

dom(φ, u)) that satisfies the dynamics therein with the property that, for each j ∈ N, t 7→ φ(t, j)

is absolutely continuous and t 7→ u(t, j) is Lebesgue measureable and locally essentially bounded

on {t : (t, j) ∈ dom(φ, u)}. We use the following input-to-state stability notion.
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Definition 2.1.12 ([47, Definition 2.1]) Given a compact set A, the hybrid system with state

z, and input u given by (2.5) is input-to-state stable (ISS) with respect to A if there exist β ∈ KL

and γ ∈ K such that, for each φ(0, 0) ∈ R
n, every solution pair (φ, u) satisfies

|φ(t, j)|A ≤ max{β(|φ(0, 0)|A, t+ j), γ(|u|∞)} (2.6)

for each (t, j) ∈ domφ.

The L∞ norm of (t, j) 7→ u(t, j) is given by

||u||(t, j) := max

{
ess sup

(t′,j′)∈domu\R(u),t′+j′≤t+j

|u(t′, j′)|, sup
(t′,j′)∈R(u),t′+j′≤t+j

}
(2.7)

where R captures the jump points in the domain of the signal u, i.e., R(u) = {(t, j∈ domu :

(t, j + 1∈ domu}; see [47, Definition 2.1] for details.

We also consider perturbed hybrid systems and present results on the nominal robust-

ness, we refer the reader to [28] for details on such systems.

2.2 Graph Theory

A directed graph (digraph) is defined as Γ = (V , E ,G). The set of nodes of the digraph

are indexed by the elements of V = {1, 2, . . . , N} and the edges are pairs in the set E ⊂ V × V .

Each edge directly links two different nodes, i.e., an edge from i to k, denoted by (i, k), implies

that agent i can send information to agent k. The adjacency matrix of the digraph Γ is denoted

by G = (gik) ∈ RN×N , where gik = 1 if (i, k) ∈ E , and gik = 0 otherwise. The in-degree and

out-degree of agent i are defined by din(i) =
∑N

k=1 gki and dout(i) =
∑N

k=1 gik. The largest

(smallest) in-degree in the digraph is given by d = maxi∈V din(i) (d = mini∈V din(i)). The

in-degree matrix D is the diagonal matrix with entries Dii = din(i) for all i ∈ V . The Laplacian

matrix of the digraph Γ, denoted by L, is defined as L = D−G. The Laplacian has the property
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that L1N = 0. The set of indices corresponding to the neighbors that can send information to

the i-th agent is denoted by N (i) := {k ∈ V : (k, i) ∈ E}.

In this article, we will make varying assumptions on the complexity of the underlying

graph structure corresponding to the network. For self-containedness, we summarize the needed

notions and results from the literature.

Definition 2.2.1 A directed graph is said to be

• weight balanced if, at each node i ∈ V, the out-degree and in-degree are equal; i.e., for

each i ∈ V, dout(i) = din(i);

• complete if every pair of distinct vertices is connected by a unique edge; that is gik = 1 for

each i, k ∈ V, i 6= k;

• strongly connected if and only if any two distinct nodes of the graph can be connected via

a path that traverses the directed edges of the digraph. �

• undirected if the adjacency matrix is symmetric, i.e., gik = gki for all i, k ∈ V.

Lemma 2.2.2 ([48]) Consider an n × n symmetric matrix A = {aik} satisfying
∑n

i=1 aik = 0

for each k ∈ {1, 2, . . . , n}. The following statements hold:

(i) There exists an orthogonal matrix U such that

U⊤AU =



0 0

0 ⋆


 (2.8)

where ⋆ represents any nonsingular matrix with an appropriate dimension and 0 represents

any zero matrix with an appropriate dimension.

(ii) The matrix A has a zero eigenvalue with eigenvector 1n ∈ Rn.
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Let the digraph be strongly connected and λ1 ≤ λ2 ≤ · · · ≤ λN be the eigenvalues

of L.1 Then, λ1 = 0 is a simple eigenvalue of L associated with the eigenvector 1N ; L is

positive semi-definite and, therefore, there exists an orthonormal matrix Ψ ∈ R
N×N such that

ΨLΨ⊤ = diag(λ1, λ2, . . . , λN ).

If the digraph is symmetric, let Ψ̃ = (ψ2, ψ3, . . . , ψN ) ∈ RN×N−1 with ψi = (ψi1, ψi2, . . . , ψiN )

being the orthonormal eigenvector corresponding to the nonzero eigenvalue λi, i ∈ {2, 3, . . . , N},

which satisfies
∑N

k=1 ψik = 0. Moreover, Ψ̃ satisfies the following:

Ψ̃Ψ̃⊤ =
1

N




N − 1 −1 . . . −1

−1 N − 1 . . . −1
...

...
. . .

...

−1 −1 . . . N − 1




=: U (2.9)

Ψ̃⊤Ψ̃ = I, U2 = U , Λ := Ψ̃⊤LΨ̃ = diag(λ2, λ3, . . . , λN ). Note that Ψ̃ has smaller dimension

than Ψ, namely, Ψ̃ does not contain the eigenvector associated to the zero eigenvalue of the

Laplacian.

1See [48] for more information on algebraic graph theory.
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Part I

Synchronization and Consensus

in Networks with Intermittent

Communication
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Chapter 3

A Hybrid Consensus Protocol for

Pointwise Exponential Stability

3.1 Introduction

This chapter deals with the problem of consensus of first-order integrator systems

communicating at stochastically determined time instances over a network. The consensus

problem studied here consists of designing a protocol guaranteeing that the state of each agent

converges to a common value by only using intermittent information from their neighbors. To

solve this problem, we design hybrid state-feedback protocols that undergo an instantaneous

change in their states when new information is available, and evolves continuously between such

events. Due to the combination of continuous and impulsive dynamics, we use hybrid systems

theory to model the interconnected systems, the controller, and the network topologies as well

as to design the protocols, for which, we apply a Lyapunov theorem for asymptotic stability

of sets for hybrid systems. Aside from asymptotic stability, we specify the point to which the

consensus states converge to and, when the communications graph is strongly connected and
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weight balanced, write it as a function of their initial conditions. We show that a diagonal-like

set is, in fact, partially pointwise globally exponentially stable, which is a stronger notion than

typical notions of asymptotic stability due to the additional requirement that each point in the

set is Lyapunov stable; see e.g. [29] and [30] for similar notions. Furthermore, we show that the

consensus condition is robust to a class of perturbations on the information. Finally, we give

some brief insight into modeling and an asymptotic stability result for the case when information

may arrive at asynchronous events for each agent.

The remainder of this chapter is organized as follows. Section 3.2 introduces the con-

sensus problem, impulsive network model, and the control structure. In Section 3.3, a hybrid

protocol and the main results for the case of synchronous communication are presented.

3.2 Consensus using Intermittent Information

In this article, we consider a network of N agents, each of which has scalar integrator

dynamics given by

ẋi = ui ∈ R i ∈ V := {1, 2, . . . , N} (3.1)

and exchanges information over a digraph Γ = (V , E ,G), where xi is the state and ui is the

control input of the i-th agent. Our goal is to design a control protocol (or feedback controller)

assigning the input ui to drive the solutions of each agent to a common constant value, i.e., reach

consensus. In particular, we are interested in the following asymptotic convergence property of

the states xi converging to each other. Such a property is typically referred to as static consensus;

see [6, 7].

Definition 3.2.1 (static consensus) Given the agents in (3.1) over a digraph Γ, a control

protocol ui is said to solve the consensus problem if every resulting maximal solution with u =
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(u1, u2, . . . , uN ) is complete and t 7→ (x1(t), x2(t), . . . , xN (t)) satisfies

lim
t→∞

|xi(t)− xk(t)| = 0

for each i, k ∈ V, i 6= k. �

Under certain connectivity assumptions, when each agent can communicate to its neigh-

bors continuously, the distributed control law given by

ui = −γ
∑

k∈N (i)

(xi − xk) (3.2)

drives each agent in (3.1) to the average of the agents’ initial conditions, [10]. The closed-loop

interconnection of (3.1) with (3.2) can be written in compact form as

ẋ = −γLx

where x = (x1, x2, . . . , xN ) is the state and L is the Laplacian matrix of Γ. However, we are

interested in the case when communication between agents occur at possibly nonperiodic isolated

time instances, i.e., intermittently. For such a case, the control law in (3.2) is not an appropriate

choice since the neighboring states, xk, to the i-th agent are not available when communication

has not occurred. Next, we outline the specific intermittent communication scheme we consider

in this paper.

We allow the state of each system to be available to its neighors only at isolated

time instances. Each i-th agent accesses the state information from its k-th neighbors at time

instances t ∈ {tis}∞s=1, where s ∈ N \ {0} is the communication event index. The sequence

of times {tis}∞s=1 may not necessarily be known to the agents, however, it must satisfy some

constraints. Namely, given positive numbers T2 ≥ T1, we assume that the time elapsed between

28



such communication events for each i-th system satisfies

T i
1 ≤ tis+1 − tis ≤ T i

2 ∀ s ∈ {1, 2, . . . }

ti1 ≤ T i
2

(3.3)

where the positive scalars T i
1 and T i

2 define the lower and upper bounds, respectively, of the

time allowed to elapse between consecutive transmission instances to agent i. Note that, for

each i ∈ V , the bounds T i
1 and T i

2 are assumed to be known, independently determined and

uncorrelated, but not necessarily the same for each agent. Due to the nonperiodic arrival of

information and impulsive dynamics, classical analysis tools (for continuous-time or discrete-

time systems) do not apply to the design of the proposed controller. This motivates us to design

the proposed controller by recasting the interconnected systems, the impulsive network, and

such a control protocol in a hybrid system framework; specifically, the one given in [28].

Remark 3.2.2 From the communication time law in (3.3), it is possible that such times are

stochastically driven. Namely, the sequences of time governing communications between the

agents {tis}∞s=1 satisfying (3.3) can be governed by a bounded random variable. For example, a

continuous uniform random variable Ωi can be used where Ωi takes values in the interval [T i
1, T

i
2]

and tis+1 − tis = Ωi for each agent index i ∈ V and integer s > 1.

In Section 3.3, we present sufficient conditions for the asymptotic convergence to synchroniza-

tion for each agent when communication between agents occur asynchronously across the edges

between them, namely, the scenario described above. Before that, in the next section, we present

sufficient conditions for partial pointwise global exponential stability of the synchronization con-

figuration when all agents communicate synchronously. Namely, the next section considers the

case when the sequence of times {tis}∞s=1 satisfying (3.3) are equal for each i ∈ V , i.e., there

exists positive scalars T1 and T2 satisfying T1 ≤ T2 such that the sequence of times {ts}∞s=1

satisfies ts+1 − ts ∈ [T1, T2] for each s and t1 ≤ T2.
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3.3 Pointwise Asymptotic Stability through Synchronous

Communication

3.3.1 Hybrid Modeling

We propose a hybrid control algorithm for the consensus of agents with dynamics

given by (3.1) over networks where information is synchronously transmitted between the agents

satisfying (3.3). Namely, this section considers the sequence of times {tis}∞s=1 satisfying (3.3) to

be equal for each i ∈ V . Namely, there exists positive scalars T1 and T2 satisfying 0 < T1 ≤ T2

such that the sequence of times {ts}s=1 satisfies ts+1 − ts ∈ [T1, T2] and t1 ≤ T2. To this end, a

hybrid timer can be used to trigger the transmission between the agents in the network; namely,

we consider a decreasing timer with state τ ∈ [0, T2] that when reaching zero resets to a point

in the interval [T1, T2]. More specifically, the timer τ can be defined by the following hybrid

system

τ̇ = −1 τ ∈ [0, T2]

τ+ ∈ [T1, T2] τ = 0

(3.4)

For the i-th agent, the proposed control protocol assigns a value to ui based on the

measured output of the neighboring agents obtained at the isolated communication events.

Protocol 3.3.1 Given parameter T2 of the network, the i-th hybrid controller has state ηi with

the following dynamics:

ui = ηi

η̇i = hηi τ ∈ [0, T2]

η+i = −γ
∑

k∈N (i)

(xi − xk) τ = 0

(3.5)

where h ∈ R and γ > 0 is the controller gain parameter.
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Using Protocol 3.3.1, we consider the interconnected state-feedback networked system

resulting from the agent dynamics in (3.1) and a nonperiodic decreasing timer to model the

communication times. We denote such interconnection as H. The state of H is given by

ξ = (x, η, τ) ∈ RN × RN × [0, T2] =: X , where x = (x1, x2, . . . , xN ) and η = (η1, η2, . . . , ηN )

comprise the agents’ system states and controller states, respectively. By combining the agents’

continuous dynamics in (3.1), the timer’s hybrid dynamics in (3.4), and the protocol in (3.5),

we arrive to the hybrid system H given by

ξ̇ =




η

hη

−1



=: f(ξ) ξ ∈ C := X ,

ξ+ ∈




x

−γLx

[T1, T2]



=: G(ξ) ξ ∈ D := R

N × R
N × {0}.

(3.6)

3.3.2 Properties of maximal solutions

A solution φ to a general hybrid system H in (2.1) is parametrized by (t, j) ∈ R≥0×N,

where t denotes ordinary time and j denotes jump time. The domain dom φ ⊂ R≥0 × N

is a hybrid time domain if for every (T, J) ∈ dom φ, the set dom φ ∩ ([0, T ] × {0, 1, . . . , J})

can be written as the union of sets
⋃J

j=0(Ij × {j}), where Ij := [tj , tj+1] for a time sequence

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj ’s with j > 0 define the time instants when the state of

the hybrid system jumps and j counts the number of jumps. The set SH contains all maximal

solutions to H, and the set SH(ξ0) contains all maximal solutions to H from ξ0. A solution to H

is called maximal if it cannot be extended, i.e., it is not a truncated version of another solution.

It is called complete if its domain is unbounded. A solution is Zeno if it is complete and its

domain is bounded in the t direction. A solution is precompact if it is complete and bounded.
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With the definition of solutions above, we have the following results.

Lemma 3.3.2 Let 0 < T1 ≤ T2 be given for all i ∈ V. Every maximal solution φ ∈ SH satisfies

the following:

1. φ is complete, i.e., domφ is unbounded.

2. for each (t, j) ∈ domφ,

(j − 1)T1 ≤ t ≤ (j + 1)T2 (3.7)

for all j ≥ 1.

Proof Given the hybrid system H with 0 < T1 ≤ T2, we first show completeness of solutions.

Note that for any ξ ∈ C \ D, we have that the tangent cone1 TC(ξ) ∩ f(ξ) 6= ∅. Moreover,

when ξ ∈ C ∩ D, solutions cannot be extended via flow. Due to the fact that the flow map is

linear, finite escape time during flows is impossible. Lastly, it is straightforward to check that

G(D) ⊂ C ∪D. Therefore, by [28, Proposition 6.10], every maximal solution to H is complete.

Next, we will show item 2). Due to the dynamics of τ , the jump times satisfy (3.3).

Therefore, it is straight forward to see that for every (t, j) ∈ domφ, (j − 1)T1 ≤ t ≤ (j + 1)T2.

�

Our goal is to show that Protocol 3.3.1 not only guarantees the static consensus prop-

erty in Definition 3.2.1 with an exponential decay rate, but also renders Lyapunov stable the

set of points such that xi = xk for all i, k ∈ V . To this end, we define the set to exponentially

stabilize as

A := {ξ ∈ X : xi = xk, ηi = 0 ∀i, k ∈ V , τ ∈ [0, T2]}. (3.8)

1The tangent cone to a set S ⊂ Rn at a point x ∈ RN , is the set of all vectors w ∈ RN for which there exists
xi ∈ S, τi > 0 with xi → x, τi ց 0, and w = limi→∞

xi−x

τi
; see [28, Definition 5.12] for more information.
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3.3.3 Coordinate change

We establish exponential stability by changing to coordinates obtained through a key

property of the Laplacian matrix. More precisely, let Γ be a strongly connected digraph. The

associated Laplacian L is such that there exists a nonsingular matrix U = [v1, U1] such that

U⊤LU =



0 0

0 L̄


, which is a diagonal matrix containing the eigenvalues of L, where L̄ is a

diagonal matrix with diagonal elements (λ2, λ3, . . . , λN ) with λi’s being the positive eigenvalues

of L. Then, we change the coordinates ξ of H to the new coordinates χ defined using x̄ = U⊤x

and η̄ = U⊤η. By applying the transformation to both sides of the continuous dynamics of the

state x and η of H in (3.6), we have

˙̄x = U⊤ẋ = U⊤η = η̄

˙̄η = U⊤η̇ = 0.

(3.9)

During jumps, the difference equations of the states x and η of H in (3.6) become

x̄+ = U⊤x+ = U⊤x = x̄

η̄+ = −γU⊤Lx = −γU⊤LUx̄ = −γ



0 0

0 L̄


 x̄

Then, the new coordinates denoted by χ are defined by collecting the scalar states x̄1 and η̄1

into z̄1 = (x̄1, η̄1) and the remaining states of x̄ and η̄ into z̄2 = (x̄2, x̄3, . . . , x̄N , η̄2, η̄3, . . . , η̄N ),

so as to write χ as χ = (z̄1, z̄2, τ) ∈ X . The new coordinates lead to a hybrid system denoted
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as H̃ with the following data:

f̃(χ) :=




Af1z̄1

Af2z̄2

−1




∀χ ∈ C̃ := X

G̃(χ) :=




Ag1z̄1

Ag2z̄2

[T1, T2]




∀χ ∈ D̃ := {χ ∈ X : τ = 0}

(3.10)

where

Af1 =



0 1

0 h


 , Ag1 =



1 0

0 0


 ,

Af2 =



0 I

0 hI


 , Ag2 =




I 0

−γL̄ 0




(3.11)

and γ > 0. Moreover, in the new coordinates, the set to stabilize for the hybrid system H̃ in

(3.10) is defined as

Ã := {(z̄1, z̄2, τ) ∈ X : z̄1 = (x∗, 0), x∗ ∈ R, z̄2 = 0}. (3.12)

3.3.4 Basic properties and equivalencies of H and H̃

Lemma 3.3.3 The hybrid systems H and H̃ satisfy the hybrid basic conditions.

Proof The jump and flow sets of both systems are closed. The flow maps f̃ and f are continuous.

The jump map G̃ is outer semicontinuous since its graph {(x, y) : x ∈ D̃, y ∈ G̃(x)} since the

interval [T1, T2] is closed. Furthermore, G̃ is bounded and nonempty for each x ∈ D̃. Similar

arguments show the same property for G. �

Next, we show that global exponential stability of Ã for H̃ is a necessary and sufficient
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condition for global exponential stability of A for H.

Lemma 3.3.4 Given 0 < T1 ≤ T2 and a strongly connected digraph, the set Ã is GES for the

hybrid system H̃ if and only if A is GES for the hybrid system H.

Proof First, we show the necessity of the claim. Pick a point z∗ = (x̄∗1, η̄
∗
1 , x̄

∗, η̄∗) ∈ R2N ,

such that (z∗, τ∗) ∈ Ã. Then, there exists x∗ ∈ R such that z∗ = (x∗, 0,0N−1,0N−1). In

light of the properties of Laplacian matrices in Section 2.1 and with the assumption that the

digraph is strongly connected, it follows that zero is a simple eigenvalue of the Laplacian with

associated eigenvector v1 = 1√
N
1N . Then, there exists a nonsingular matrix U = [v1 U1] such

that U⊤LU =



0 0

0 L


 which leads to the coordinate change x̄ = U⊤x and η̄ = U⊤η. From z∗

above, premultiplying the aforementioned expressions by U leads to

x = U

[
x̄∗1 x̄∗⊤

]⊤
= [v1 U1]

[
x∗ 0⊤

N−1

]⊤
= x∗1N , (3.13)

and

η = U

[
η̄∗1 η̄∗⊤

]⊤
= [v1 U1]

[
0 0⊤

N−1

]⊤
= 0N . (3.14)

Since x = x∗1N corresponds to xi = x∗ for each i ∈ V , we have xi = xk for each i, k ∈ V . There-

fore, since τ∗ does not change among the two coordinates, the point (x, η, τ) = (x∗1N ,0N , τ)

belongs to the set A.

To show sufficiency, pick a point z̃ = (x̃, η̃) ∈ R2N such that z̃, τ̃ ) ∈ A. For a point

to be in A then it must satisfy x̃i = x̃k = x̃∗ and ηi = 0 for each i, k ∈ V for some x̃∗ ∈ R.

Then, we have that z̃ = (x∗1N ,0N). Then, in light of the equivalences (3.13), (3.14) we

have that x∗U⊤1N =

[
x∗ 0⊤

N−1

]⊤
, and naturally η̄ = U0N = 0N . Therefore, the point

(x∗, 0,0N−1,0N−1) belongs to Ã.

It remains to show the equivalence of A being globally exponentially stable for the
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hybrid system H and Ã being globally exponentially stable for H̃. This is no more than utilizing

Definition 2.1.4 and the change of coordinates x̄ = U⊤x and η̄ = U⊤η. Then, it is clear that

if a solution to H is bounded by an exponential function then a change of coordinates would

result in a similar exponential bound for a solution to H̃. The reverse direction can be proved

similarly. �

In this section, we consider the exponential stability of the set Ã for the hybrid system H̃.

Inspired by [49] and using Lemma 3.3.4, we have the following stability result for H.

Proposition 3.3.5 Let T1 and T2 be two positive scalars satisfying T1 ≤ T2. Let the digraph be

strongly connected. The set Ã is globally exponentially stable for the hybrid system H̃ if there

exist scalars γ > 0 and h ∈ R, and a positive definite symmetric matrix P satisfying

A⊤
g2 exp(A

⊤
f2ν)P exp(Af2ν)Ag2 − P < 0 (3.15)

for all ν ∈ [T1, T2]. Namely, every solution φ to H̃ satisfies

|φ(t, j)|Ã ≤ exp

(
R

2

)√
α2

α1
exp

(
−α
2
(t+ j)

)
|φ(0, 0)|Ã (3.16)

for all (t, j) ∈ domφ where α ∈
(
0, |λd|

1+T2

]
, R ∈

[
T2|λd|
1+T2

,∞
)
, β can be chosen arbitrarily small

such that λd = ln
(
1− β

α2

)
< 0, and

α1 = min
s∈[0,T2]

{exp(2hs), λmin

(
exp(A⊤

f2s)P exp(Af2s)
)}

α2 = max
s∈[0,T2]

{exp(2hs), λmax

(
exp(A⊤

f2s)P exp(Af2s)
)}
.

(3.17)

Proof Consider the condidate Lyapunov function

V (χ) = V1(χ) + V2(χ) (3.18)

where V1(χ) = exp(2hτ)η̄21 , and V2(χ) = z̄⊤2 exp(A⊤
f2τ)P exp(Af2τ)z̄2 where the matrix P is

symmetric and positive definite; i.e., P = P⊤ > 0. Note that, for each χ ∈ Ã, V (χ) = 0 and
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V (χ) > 0 for each χ ∈ (C̃ ∪ D̃)\ Ã. From the definition of Ã, we have |χ|2Ã reduces to η̄21 + z̄
⊤
2 z̄2.

Then, it follows that V satisfies

α1|χ|2Ã ≤ V (χ) ≤ α2|χ|2Ã (3.19)

for all χ ∈ X where α1 and α2 are defined in (3.17).

Then, for each χ ∈ C̃, we have that

〈∇V1(χ), f̃(χ)〉 = 2h exp(2hτ)η̄21 − 2h exp(2hτ)η̄21 = 0

and

〈∇V2(χ), f̃(χ)〉 = 2z̄⊤2 A
⊤
f2 exp(A

⊤
f2τ)P exp(Af2τ)z̄2 − 2z̄⊤2 A

⊤
f2 exp(A

⊤
f2τ)P exp(Af2τ)z̄2 = 0

where we use the fact that the matrices Af2 and exp(Af2τ) commutes. Then, we have that V

satisfies

〈∇V (χ), f̃(χ)〉 = 〈∇V1(χ), f̃(χ)〉 + 〈∇V2(χ), f̃(χ)〉 = 0. (3.20)

For each χ ∈ D̃ (i.e., τ = 0), after the jump there exists a scalar ν ∈ [T1, T2] to which τ is

updated to, at such points the states η̄1 and z̄2 are updated to 0 and Ag2z̄2, respectively. For

each χ ∈ D̃, g ∈ G̃(χ), the update in η̄1 at jumps to zero leads to V1(g) − V1(χ) = −η̄21 ≤ 0

which implies that at such points V is given by

V (g)− V (χ) = V1(g) + V2(g)− V1(χ)− V2(χ) ≤ V2(g)− V2(χ).

It follows that, for each χ ∈ D̃, g ∈ G̃(χ), we have

V2(g)− V2(χ) ≤ z̄⊤2 Ag2 exp(A
⊤
f2ν)P exp(Af2ν)Ag2z̄2 − z̄⊤2 P z̄2

≤ − β

α2
V (χ),
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where we used the definition of β in (3.17) and the bounds in (4.19). Then, we define λd =

ln(1− β/α2) which is assumed to be negative since β can be chosen to be arbitrarily small and

positive. Then, V (g) ≤ exp(λd)V (χ) for each χ ∈ D̃, g ∈ G̃(χ).

With a little more abuse of notation, consider a maximal solution φ = (φ1, φ2, φτ )

to H̃ where φ1 and φ2 correspond to states z̄1 and z̄2, respectively. As shown in the proof of

[28, Proposition 3.29], direct integration of (t, j) 7→ V (φ(t, j)) over domφ leads to V (φ(t, j)) ≤

exp(λdj)V (φ(0, 0)) for each (t, j) ∈ domφ.

Pick α ∈
(
0, |λd|

1+T2

]
and R ∈

[
T2|λd|
1+T2

,∞
)
. In light of Lemma 3.3.2, it follows that

λdj ≤ R − α(t + j) for all (t, j) ∈ domφ which leads to (3.16). Furthermore, since all maximal

solutions are complete, we have that the set Ã is GES for the system H̃ in (3.10) and from

Lemma 3.3.4 A in (3.8) is GES for H in (3.6). �

Corollary 3.3.6 Let T1 and T2 be two positive scalars satisfying T1 ≤ T2 be given and the

digraph be completely connected. If there exist scalars γ > 0 and h ∈ R, and a positive definite

symmetric matrix P satisfying

Ã⊤
g exp(Ã⊤

f ν)P exp(Ãfν)Ãg − P < 0

for all ν ∈ [T1, T2] where

Ãf =



0 1

0 h


 , Ãg =




1 0

−γN 0


 , (3.21)

then the set Ã is globally exponentially stable for H̃.

Proof Using the change of coordinates in (3.9), the result follows from the proof of Proposi-

tion 3.3.5, where, for a completely connected network L̄ = NIN−1. �

Remark 3.3.7 Proposition 3.3.5 holds under a weaker condition of existence of a spanning tree
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in the directed graph. Namely, a spanning tree exists if there exists a root agent in the graph

such that all other agents are a child of the root. The root agent is commonly referred to as a

leader, while its children are called followers.

Remark 3.3.8 The condition (3.15) may be difficult to satisfy numerically. In fact, these

conditions are not convex in γ, h and P , and need to be verified for infinitely many values of ν.

In [50], the authors use a polytopic embedding strategy to arrive to a linear matrix inequality in

which one needs to find some matrices Xi such that the exponential matrix is an element in the

convex hull of the Xi matrices. Those results can be adapted to our setting. �

Condition (3.15) has a form that is similar to the discrete Lyapunov equation A⊤PA−

P < 0. Namely, if there exists a P = P⊤ > 0 matrix such that A⊤PA − P < 0 is satisfied,

then the eigenvalues of A are contained within the unit circle. Using this principle, the following

result gives a sufficient condition to satisfy the matrix inequality in (3.15).

Proposition 3.3.9 Given 0 < T1 ≤ T2 and a strongly connected digraph Γ, there exists γ > 0

and h ∈ R satisfying

∣∣∣∣
λNγ(exp(hT2)− 1)

h
− 1

∣∣∣∣ < 1 (3.22)

where λN is the largest eigenvalue of L, if and only if there exists P = P⊤ > 0 such that (3.15)

holds.

Proof Since P is positive definite and satisfies (3.15), then the spectral radius2. Due to the

form of Af2 and Ag2, it follows that

exp(Af2ν)Ag2 =



I − γ(exp(hν)−1)

h L̄ 0

− γ exp(hν)
h L̄ 0


 =: Ã (3.23)

2The spectral radius of a matrix M is max{|λ1|, |λ2|, . . . , |λN |} of exp(Af2ν)Ag2 is less than 1 for each
ν ∈ [0, T ], where λi is the i-th eigenvalue of M .
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which is a block diagonal matrix. Due the form of Ã, its associated eigenvalues are {0} with a

multiplicity of N−1 and the eigenvalues of the (1, 1) block therein. Note that since Γ is strongly

connected, the eigenvalues λi of the Laplacian are such that 0 = λ1 < λ2 < λ3 < · · · < λN and

the diagonal matrix L̄ = diag(λ2, λ2, . . . , λN ). Therefore, the (1, 1) block of Ã is diagonal which

implies that the eigenvalues of this block matrix of Ã are µi−1 = γ(exp(hτ)−1)
h λi − 1 for each

i ∈ {2, . . . , N}. Therefore, we have that

max
i∈{2,...,N}

|µi−1| ≤
∣∣∣∣
λiγ(exp(hν) − 1)

h
− 1

∣∣∣∣ (3.24)

≤
∣∣∣∣
λNγ(exp(hT2)− 1)

h
− 1

∣∣∣∣ < 1 (3.25)

from (3.23) which concludes the proof. �

Remark 3.3.10 Moreover, if h = 0, and the digraph Γ = (V , E ,G) is strongly connected, if

one picks γ such that γ < 2/(λNT2), then it is guaranteed that there exists a positive definite

symmetric matrix P such that condition (3.15) is satisfied. �

3.3.5 Consensus Convergent Point

The following result characterizes the point to which solutions to H converge to.

Proposition 3.3.11 Let the scalars T1 and T2 satisfy 0 < T1 ≤ T2 and let the digraph Γ be

strongly connected and weight balanced. If γ and h are chosen such that A is GES for H, then

every solution φ = (φx, φη, φτ ) ∈ SH(φ(0, 0)) is complete and each i-th component of φx and φη,

denoted as φxi
and φηi

for all i ∈ V, respectively, satisfies limt+j→∞ φη(t, j) = 0 and

lim
t+j→∞

φxi
=

1

N

N∑

i=1

(φxi
(0, 0) + φτ (0, 0)φηi

(0, 0)) (3.26)
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when h = 0, and when h 6= 0 it follows that

lim
t+j→∞

φxi
=

1

N

N∑

i=1

(
φxi

(0, 0) +
exp(hφτ (0, 0))− 1

h
φηi

(0, 0)

)
. (3.27)

Proof Let δx = 1
N

∑
i∈V xi and δη =

∑
i∈V

1
N ηi be the average of the system states and

controller states, respectively. For every τ ∈ [0, T2], the dynamics of (δx, δη, τ) is given by

δ̇x = δη, (3.28)

δ̇η = hδη, (3.29)

τ̇ = −1. (3.30)

Since the digraph is weight balanced, we have din(i) = dout(i) for each i ∈ V . At jumps, when

τ = 0, we have that δ+x = δx and δη is updated as follows:

δ+η =
1

N

∑

i∈V


−γ

∑

k∈N (i)

(xi − xk)


 (3.31)

= − γ
N

∑

i∈V



∑

k∈N (i)

(xi − xk)


 = 0 (3.32)

where we use the property of the strong connectivity and weight-balanced graph. Therefore,

after the first jump δx remains constant and δη is reset to and stays at zero. Now, take a solution

φ = (φx, φη, φτ ) ∈ SH(φx(0, 0), φη(0, 0), φτ (0, 0)) to H. First, consider the case when h = 0.

It follows that during flows for each component of φx and φη, denoted as φxi
and φηi

for each

i ∈ V , by direct integration of the xi component is given as φxi
(t, 0) = φxi

(0, 0) + φηi
(0, 0)t for

each t ∈ [0, t1], where t1 = φτ (0, 0). Due to the fact that the average value δx does not change

after the first jump, we have that

δx(φτ (0, 0), 0) =
1

N

∑

i∈V
φxi

(φτ (0, 0), 0) (3.33)

=
1

N

∑

i∈V
(φxi

(0, 0) + φηi
(0, 0)φτ (0, 0)) (3.34)
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is also the average point for each (t, j) ∈ domφ such that j ≥ 1. Furthermore, due to

Lemma 3.3.4 and the Lyapunov analysis in the proof of Proposition 3.3.5, we know that A

is GES for H. Since δx is constant for all j ≥ 1 and solutions to H converge to A exponentially,

then we have that

lim
t+j→∞

φxi
(t, j) =

1

N

∑

i∈V
(φxi

(0, 0) + φηi
(0, 0)φτ (0, 0)) (3.35)

for each i ∈ V . Furthermore, at such points on A, φη = 0N which leads to the fact that

limt+j→∞ φη(t, j) = 0N . For the case when h 6= 0, we have that direct integration of the

continuous dynamics of (xi, ηi) leads to φxi
= φxi

(0, 0) + 1
h (exp(ht) − 1)φηi

(0, 0) for each t ∈

[0, t1]. Then, by following similar approach above, it follows that

lim
t+j→∞

φxi(t, j)=

(
1

N

N∑

i=1

(
φxi(0, 0) +

exp(hφτ (0, 0)) − 1

h
φηi(0, 0)

))

for each i ∈ V which concludes the proof. �

3.3.6 Partial pointwise exponential stability for H

Using the previous results, we can now give sufficient conditions for the set A to be

partially pointwise globally exponentially stable with respect to (x, η) forH. Namely, in addition

to the set A begin exponentially attractive, each point in A is pointwise stable. The notion of

partial pointwise exponential stability is given as follows.

Definition 3.3.12 (partial pointwise global exponential stability) Consider a hybrid system H

with state ξ = (p, q) ∈ Rn. The closed set A ⊂ Rr×Rn−r where r ∈ N and 0 < r ≤ n is partially

pointwise global exponentially stable with respect to the state component p for H if

1) every maximal solution φ to H is complete and has a limit belonging to A;

2) A is exponentially attractive for H, namely, for each φ ∈ SH there exist κ, α > 0 such that
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|φ(t, j)|A ≤ κe−α(t+j)|φ(0, 0)|A for all (t, j) ∈ domφ; and

3) for each p∗ ∈ Rr such that there exists q ∈ Rn−r satisfying (p∗, q) ∈ A, it follows that for

each ε > 0 there exists δ > 0 such that every solution φ = (φp, φq) to H with φp(0, 0) ∈

p∗ + δB satisfies |φp(t, j)− p∗| ≤ ε for all (t, j) ∈ domφ. �

Along with global exponential stability of A established in Proposition 3.3.5, partial

pointwise global exponential stability requires that each point in the diagonal-like set A is stable

with respect to (x, η).

Theorem 3.3.13 Given 0 < T1 ≤ T2 and a weight balanced digraph Γ = (V , E ,G), suppose

there exist scalars h ∈ R and γ > 0 and a positive definite symmetric matrix P such that (3.15)

in Proposition 3.3.5 holds. Then, the set A is partially pointwise globally exponentially stable

with respect to (x, η) for the hybrid system H.

Proof Items 1 and 2 in Definition 3.3.12 are satisfied according to Lemma 3.3.2 and Theo-

rem 3.3.5, respectively. It remains to show item 3. Denote x̃ = x − x∗1 and χ̃ = (x̃, η, τ). We

have

˙̃χ =




η

hη

−1




χ̃ ∈ X ,

χ̃+ ∈




x̃

−γLx̃

[T1, T2]




χ̃ ∈ {χ̃ ∈ X : τ = 0}.

(3.36)

In these coordinates, the set to stabilize is Ã = {0N}×{0N}× [T1, T2]. Pick a function
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V (χ̃) = χ̃ exp(A⊤
f τ )P exp(Afτ )χ̃ where Af =



0 I

0 hI


 and P = P⊤ > 0. Note that

α1|χ̃|2Ã ≤ V (χ̃) ≤ α2|χ̃|2Ã (3.37)

where α1 = minτ∈[0,T2] λmin(exp(A
⊤
f τ)P exp(Af τ)) and α2 = maxτ∈[0,T2] λmax(exp(A

⊤
f τ )P exp(Afτ )).

During flows, we have

〈∇V (χ̃), (η, hη,−1)〉 = 0 (3.38)

for all χ̃ ∈ C. Furthermore, for each χ̃ ∈ D, g ∈ (x̃,−γLx̃, [T1, T2]) we have that

V (g)− V (χ̃) ≤ 0, (3.39)

namely, that V (g) ≤ V (χ̃). Pick a solution φ̃ = (φ̃x, φ̃η, φ̃τ ) to H in (3.36). It follows from (3.38)

and (3.39) that V (φ̃(t, j)) ≤ V (φ̃(0, 0)) for all (t, j) ∈ domφ. It follows (3.37) that α1|φ̃(t, j)|2Ã ≤

V (φ̃(t, j)) ≤ V (φ̃(0, 0)) ≤ α2|φ̃(0, 0)|2Ã. This implies that on the original coordinates, a solution

φ = (φx, φη, φτ ) to H in (3.6) is such that φx(t, j) = φ̃x(t, j) − x∗ for all (t, j) domφ (note that

domφ = dom φ̃, φ̃η = φη and φ̃τ = φτ ) implying that

∣∣∣∣∣∣∣∣∣∣∣∣




φx(t, j)− x∗

φη(t, j)

φτ (t, j)




∣∣∣∣∣∣∣∣∣∣∣∣
A

= |φ(t, j)|Ã ≤
√
α2

α1
|φ(0, 0)|A

=

√
α2

α1

∣∣∣∣∣∣∣∣∣∣∣∣




φx(0, 0)− x∗

φη(0, 0)

φτ (0, 0)




∣∣∣∣∣∣∣∣∣∣∣∣
A

.
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Pick ǫ =
√

α2

α1
δ. This implies that for

∣∣∣∣∣∣∣∣∣∣∣∣




φx(0, 0)− x∗

φη(0, 0)

φτ (0, 0)




∣∣∣∣∣∣∣∣∣∣∣∣
A

< δ the solution is such that

∣∣∣∣∣∣∣∣∣∣∣∣




φx(t, j)− x∗

φη(t, j)

φτ (t, j)




∣∣∣∣∣∣∣∣∣∣∣∣
A

≤
√
α2

α1

∣∣∣∣∣∣∣∣∣∣∣∣




φx(0, 0)− x∗

φη(0, 0)

φτ (0, 0)




∣∣∣∣∣∣∣∣∣∣∣∣
A

<

√
α2

α1
δ = ǫ

for all (t, j) ∈ domφ which concludes the proof. �

3.3.7 Robustness to Perturbations on Communication Noise

In a realistic setting, the information transmitted is affected by communication or

channel noise. In this section, we consider the systems under the effect of communication noise

mi when agent i sends out information. Specifically, if the k-th agent receives information of the

i-th agent perturbed by mi ∈ R, i ∈ V , we have that when communication occurs, the output

of each agent is given by yi = xi +mi. In such a case, the controller from Protocol 3.3.1 with

h ≡ 0 becomes

η̇i = 0 τ ∈ [0, T2]

η+i = −γ
∑

k∈N (i)

(yi − yk) τ = 0

which, different than (3.5), leads to an update law with communication noise given by

η+i = −γ
∑

k∈N (i)

(xi − xk)− γ
∑

k∈N (i)

(mi −mk).

Then, by taking the stack of ηi for each i ∈ V , i.e., η = (η1, η2, . . . , ηN ), we have that

η+ = −γLx− γLm,
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where m = (m1,m2, . . . ,mN).

Using the change of coordinates involving U , as in Section 3.3.1, namely,

x̄ = U⊤x η̄ = U⊤η m̄ = U⊤m

it follows that at jumps the update of the new state η̄ is given by

η̄+ = (0,−γL̄x̄− γL̄m̄)).

Note that the first component of η̄+ does not depend on the communication noise. Defining

the perturbed error hybrid system as H̃m and with states χ = (z̄1, z̄2, τ), z̄1 = (x̄1, η̄1), and

z̄2 = (x̄2, x̄3, . . . , x̄N , η̄2, η̄3, . . . , η̄N ). Then, the data of H̃m is given by

Fm(χ) =(Af1z̄1, Af2z̄2,−1) ∀χ ∈ Cm := X

Gm(χ, m̄) =


Ãgz̄1, Āg z̄ −




0

γL̄


 m̄,−1




∀χ ∈ Dm := {χ ∈ X : τ = 0}

(3.40)

Then, using the change of coordinates as in Section 3.3.1, we can show that global exponential

stability of A in (3.12) for H̃m in (3.10) is robust to communication noise.

Theorem 3.3.14 Let 0 < T1 ≤ T2 be given. Suppose the digraph Γ = (E ,V ,G) is strongly

connected. If there exists γ > 0 and a positive definite symmetric matrix P such that (3.15)

holds for all ν ∈ [T1, T2], then the hybrid system H̃m with input m̄ is ISS with respect to A as

in (3.12).

Proof Consider the same Lyapunov function form the proof of Theorem 3.3.5, i.e., V (χ) =

V1(χ) + V2(χ) as in (3.18). For the hybrid system defined by the states z̄, the perturbation

does not appear on the flow map. Therefore, the analysis on flows apply from the proof of

46



Theorem 3.3.5, namely, for each χ ∈ Cm

〈∇V (χ), Fm(χ)〉 = 0. (3.41)

When τ = 0, a jump occurs mapping τ to some point ν ∈ [T1, T2]. Defining Bg =

[
0 γL̄⊤

]⊤
,

the state z̄ is updated by Gm(χ, m̄) in (3.40) to Āg z̄ − Bgm̄. At jumps, we have that, for each

χ ∈ Dm and g ∈ Gm(χ, m̄), the change in V is given by

V (g)− V (χ) = V1(g)− V1(χ) + V2(g)− V2(χ)

≤ z̄⊤2 Ā⊤
g2e

Ā⊤
f2νPeĀf2νĀg2z̄ − 2m̄B⊤

f2e
Ā⊤

f2νPeĀf2νAg2z̄2

+ m̄B⊤
f2e

Ā⊤
f2νPeĀf2νBf2m̄− z̄⊤2 P z̄2

Following the steps in the proof of Theorem 3.3.5, from (3.15), there exists a scalar β > 0 such

that z̄⊤2 (Ā
⊤
g2e

Ā⊤
f2νPeĀf2νĀg2 − P )z̄2 < −βz̄⊤2 z̄2. Furthermore, the second term can be decom-

posed using Young’s inequality 2a⊤b ≤ ca⊤a + 1
c b

⊤b. Let a = z̄ and b = m̄B⊤
f e

Ā⊤
f νPeĀfνĀg,

and c = β/2. Then, we have that

V (g)− V (χ) ≤ −β
2
z̄⊤z + µγ2λ2Nm̄

⊤m̄ (3.42)

where λN is the maximum eigenvalue of L̄, γ > 0 and κ = λ2N |P |( 2β + |P |)maxν∈[T1,T2] |eĀfν |.

Then, from (3.41) and (3.42), we have that

V (g) ≤ eθV (χ) + γ2κ|m̄|2 (3.43)

for all χ ∈ D̃, g ∈ G̃(χ, m̄) where θ = ln(1 − β/α2) and α2 is defined in (3.17). Therefore,

given any maximal solution pair (φ, m̄) to H in (3.40), we have that during flows V (φ(t, 0)) =

V (φ(0, 0)) for all t ∈ [0, t1] and with jumps of the solution given by (3.43), V over any maximal
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solution is given by

V (φ(t, j)) ≤ eθjV (φ(0, 0)) + κγ2
j−1∑

i=0

eσ(j−1−i)|m(ti+1, i+ 1|2

for all (t, j) ∈ domφ, with j ≥ 1.

Furthermore, with θ negative as in the proof of Theorem 3.3.5, for each (t, j) ∈ domφ

such that j ≥ 1, we have V (φ(t, j)) ≤ eθjV (φ(0, 0)) + κe−θγ2

e−θ−1
|m|2(t,j). By following similar

arguments as in Theorem 3.3.5, we have

|φ(t, j)|2A ≤
α2

α1
eθj|φ(0, 0)|2A +

κe−θγ2

(e−θ − 1)α1
|m̄|2(j,t)

≤ α2

α1
e−α(t+j)eR|φ(0, 0)|2A +

κe−θγ2

(e−θ − 1)α1
|m̄|2(j,t)

where α ∈
(
0, λd

1+T2

]
and R =

[
T2λd

1+T2
,∞
)
which leads to

|φ(t, j)|A =max

{√
2
α2

α1
e−

α(t+j)
2 e

R
2 |φ(0, 0)|Ã,

√

2
κe−θ

(e−θ − 1)α1
γ|m̄|(j,t)

}

which concludes the proof. �

Remark 3.3.15 From Lemma 3.3.3, H and H̃ satisfy the hybrid basic conditions. Due to the

fact that all maximal solutions to these hybrid systems are complete, [28, Proposition 6.14]

implies that solutions with perturbed initial conditions stay close to the unperturbed solutions.

More precisely, for every τ ′ > 0, ε′ ≥ 0 and compact set K, there exists δ > 0 such that for

every maximal solution φδ ∈ SH(K + δB) there exists a solution φ to H with φ(0, 0) ∈ K such

that φδ and φ are (τ ′, ε′)-close.3 In particular, given an unperturbed initial condition φ(0, 0)

for φδ(0, 0) ∈ φ(0, 0) + δ where δ ∈ [−δ′x, δ′x] × [−δ′η, δ′η] × [−δ′τ , δ′τ ] to H̃ with data in (3.10)

where φδ = (φδx, φδη, φδτ ), φ = (φx, φη, ητ ) and δ = (δx, δη, δτ ) is bounded, then by using

Proposition 3.3.11 it follows that when h = 0 the limit point φxi
of the perturbed solutions are

3Given τ ′, ε′ > 0, two hybrid arcs φ1 and φ2 are (τ ′, ε′)-close if the following is satisfied: for all (t, j) ∈ domφ1

with t + j ≤ τ ′ there exists s such that (s, j) ∈ domφ2, |t − s| < ε′, and |φ1(t, j) − φ2(s, j)| < ε′; for all
(t, j) ∈ domφ2 with t+ j ≤ τ ′ there exists s such that (s, j) ∈ domφ1, |t− s| < ε′, and |φ2(t, j)− φ1(s, j)| < ε′.
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given by

lim
t+j→∞

φxi
=

1

N

N∑

i=1

(φxi
(0, 0) + φτ (0, 0)φηi

(0, 0)) (3.44)

+
1

N

N∑

i=1

(
φδxi

(0, 0) + φτ (0, 0)φδηi
(0, 0) + φδτ

(
φηi

+ φδηi
))

(3.45)

and when h 6= 0 it follows that the limit point of the perturbed solution is given by

lim
t+j→∞

φxi
=

1

N

N∑

i=1

(
φxi

(0, 0) + φδxi
(0, 0) (3.46)

+
1

h
exp(h(φτ (0, 0) + φδτ (0, 0)))−1(φηi

+ φδηi )(0, 0)
)
. (3.47)

In the next section, we will look at the case when information is transmitted between each agent

asynchronously.

3.4 Numerical Examples

Example 3.4.1 Consider five agents with dynamics as in (3.1) over the strongly connected

graph with adjacency matrix

G =




0 1 1 0 1

1 0 1 0 0

1 0 0 1 0

0 0 1 0 1

1 0 1 1 0




. (3.48)
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Figure 3.1: (top) The x and τ components of a solution φ = (φx, φη, φτ ) to H with G in (3.48)

using Protocol 3.3.1 which satisfies Proposition 3.3.5. (bottom) Note that since V2(χ) for H̃
deceases to zero with respect to flow time, it indicates that the solution reaches consensus.

Let T1 = 0.5 and T2 = 1.5. Then, it can be found that the parameters

P ≈




35.48 0 0 0 −1.26 0 0 0

0 26.69 0 0 0 4.06 0 0

0 0 19.20 0 0 0 3.25 0

0 0 0 26.69 0 0 0 4.06

−1.26 0 0 0 1.69 0 0 0

0 4.06 0 0 0 9.19 0 0

0 0 3.25 0 0 0 12.13 0

0 0 0 4.06 0 0 0 9.18




and γ = 0.3 satisfy condition (3.15). Figure 3.1 shows the xi components i ∈ {1, 2, 3, 4, 5} of a

solution φ = (φx, φη, φτ ) from initial conditions given by φx(0, 0) = (1,−1, 2,−2, 0), φη(0, 0) =

(0,−3, 1,−4,−1), and φτ (0, 0) = 0.2 as well as the the function V2(χ) below Proposition 3.3.5

evaluated along φ projected onto the ordinary time domain.4 △
4Code at https://github.com/HybridSystemsLab/ConsSyncTimes
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3.5 Summary

We showed that hybrid consensus protocols are viable algorithms for the consensus of

first order systems with stochastically determined communication events over a general graph.

Using a hybrid systems framework, we defined the communication events between the systems

using a hybrid decreasing timer. Recasting consensus as a set stability problem, we took ad-

vantage of several properties of the graph structure and employed a Lyapunov based approach

to certify that this set is partially pointwise globally exponentially stable. We further showed

that global exponential stability of the consensus set is robust to communication noise. Lastly,

we presented a protocol for reaching state consensus where agents receive local updates asyn-

chronously. The results in this paper can be used to design large-scale networked systems that

communicate at stochastic time instants over general communication graphs.
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Chapter 4

Decentralized Synchronization of Linear

Time-invariant Systems

4.1 Introduction

In this chapter, the consensus work in the pervious chapter is further developed where

each agent has some internal linear dynamics. Namely, the problem of robustly synchronizing

(in terms of both exponential attractivity and stability) N > 1 continuous-time agents with

linear dynamics (under nominal conditions) from intermittent measurements of functions of

their outputs over a network is considered. Each agent has dynamics given by the following

differential equation modeling the evolution of the state of the i-th agent:

ẋi = Axi +Bui +∆i(xi, t) (4.1)

where A ∈ Rn×n is the nominal system matrix, B ∈ Rn×p is the input matrix, ui is the control

input, ∆i : R
n × R≥0 → Rn models unknown and possibly heterogeneous dynamics, and t ≥ 0

denotes ordinary time. The i-th agent in the network measures its local information yi and
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received information from its neighbors yk at times t ∈ {tis}∞s=1. Moreover, at such event times,

the output of each agent is given by

yi = Hxi + ϕi(xi, t) (4.2)

where H is the output matrix and ϕi is an unknown function modeling communication noise.

The event times tis are independently defined for each agent (as the index i denotes); the only

restriction imposed on communication times is that they must satisfy

tis+1 − tis ∈ [T i
1, T

i
2] ∀s ∈ {1, 2, . . .}

ti1 ≤ T i
2

(4.3)

where, for each i ∈ V , the positive scalars T i
1 and T i

2 satisfy T i
2 ≥ T i

1 and define the lower and

upper bounds on the communication rate, respectively. Namely, these parameters (which are

known but may be different for each agent) govern the amount of time allowed to elapse between

consecutive communication events. The parameter T i
2 is often referred to as the maximum

allowable time interval (MATI).

Motivated by the challenges outlined in Section 1.2.1, a distributed hybrid controller

is proposed. Such a controller is capable of asymptotically synchronizing the state of each

agent over the network, with stability and robustness, by only exchanging information among

neighbors at independent communication events tis. In the nominal case, the algorithm proposed

here guarantees global exponential stability of the set characterizing synchronization, called the

synchronization set, and when projected to the state space of all agents, the synchronization set

is the set of points x = (x1, x2, . . . , xN ) such that

x1 = x2 = · · · = xN .

Moreover, in the presence of small enough general perturbations, the proposed algorithm guar-
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antees that the stability properties are preserved, semiglobally and practically. Under the per-

turbation effect of measurement noise, we also show that the system is input-to-state stable (in

the hybrid sense).

The distributed hybrid controller has state variables which have hybrid dynamics; i.e.,

the internal states are updated both continuously and, at times, are impulsively updated. In

general terms, the continuous dynamics of the controller state are given by a differential equation

of the form

η̇i = fci(yi, ηi), (4.4)

when no new information is available, while when new information arrives, the internal states

are updated according to

η+i =

N∑

k=1

gikG
k
ci(ηi, ηk, yi, yk) (4.5)

where V := {1, 2, . . . , N} defines the set of all agents; gik models the connection between agents

i and k, namely, gik = 1 if the k-th agent can share information to agent i and gik = 0

otherwise; the map fci defines the continuous evolution of the controller state and the map

Gk
ci defines the impulsive update law when new information is collected from each connected

agent. Then, ηi is injected into the continuous-time dynamics of the i-th agent’s input ui and,

at communication events, updates its internal state impulsively. Following the hybrid systems

framework in [51], the interconnected closed-loop model containing continuous dynamics of each

agent, the communication events, and the distributed hybrid controller is modeled as a closed-

loop hybrid model in Section 4.2.1.

The main contribution of this work lay on the establishment of sufficient conditions for

nominal and robust synchronization over networks with intermittent information availability.

In fact, the proposed design conditions guarantee the states of each agent converge to synchro-
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nization with an exponential rate when information is only available at, possibly, asynchronous

and non-periodic time instance. Precisely, as shown in Section 4.2.3 through an appropriate

choice in coordinates we utilize Lyapunov arguments for hybrid systems to establish sufficient

conditions that assure global exponential stability of the synchronization set. An in-depth ro-

bustness analysis and design procedure are presented in Section 4.2.5, wherein we establish

several key robustness properties. In part, this is enabled by the proposed hybrid controller

which is designed to satisfy certain regularity conditions that, under nominal conditions has

uniform global asymptotic stability of the synchronization set, guarantees robustness to small

enough perturbations. In Section 4.2.5.1, we provide results on robustness with respect to per-

turbations emerging from unmodeled dynamics, skewed clocks, as well as communication noise.

In Section 4.2.5.2, results on robustness in the form of an input-to-state stability (ISS) property

with respect to communication noise is provided, for which an explicit ISS bound is given.

In Section 4.3, numerical simulations to illustrate our results are provided. Wherein,

the results are exemplified using the case of asynchronous update times where the dynamics of

the agents have harmonic oscillator dynamics under different scenarios. Robustness to commu-

nication noise and packet dropout are also considered.

4.2 Robust Global Synchronization with Intermittent In-

formation

4.2.1 Hybrid Modeling

Consider N agents with dynamics in (4.1) that are connected via a directed graph. Due

to the impulsive nature of the communication structure outlined in (4.3), we define a decreasing

timer to model such a communication scheme. Namely, for each i ∈ V , let τi ∈ [0, T i
2] be a timer
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state that decreases with respect to continuous time and, upon reaching zero, is reset to a point

within the interval [T i
1, T

i
2] and allows agent i to receive information from its connected agents.

Namely, τi has the following hybrid dynamics:

τ̇i = −1 τi ∈ [0, T i
2],

τ+i ∈ [T i
1, T

i
2] τi = 0.

(4.6)

This hybrid system generates any possible sequence of time instances {tis}∞s=1 at which events

occur and satisfy (4.3). Note that T i
1 and T i

2 may not be the same for each i ∈ V , therefore, the

interval which communication can occur may be vastly different.1

Consider the following definitions of the maps in (4.4) and (4.5), which yield the par-

ticular hybrid dynamics2 for ηi therein. The map fci : R
n × Rp → Rp is defined as

fci(xi, ηi) = Eηi ∀i ∈ V (4.7)

and the map Gk
ci : R

n × Rn × Rm × Rm ⇒ Rp as

Gk
ci(ηi, ηk, yi, yk) = K(yi − yk)

= KH(xi − xk) +K(ϕi(xi)− ϕk(xk)) (4.8)

for each i, k ∈ V . The constants E and K define the tuning parameters of the control algorithm.

For simplicity, for the remainder of this section, we will assume that ∆ ≡ 0 and ϕi ≡ 0 for

all i ∈ V , and consider the nominal case, i.e., perfect knowledge of the plant dynamics and its

output maps. The scenario when these perturbations are nonzero is addressed in Section 4.2.5.

Without such perturbations and with the map (4.8), the impulsive dynamics of ηi in (4.5) are

1For instance, consider the case of N = 2 with T 2
1 = T 1

1 and T 2
2 = 2T 1

2 . At jumps, the timer states τ1 and τ2
are reset by τ1 ∈ [T 1

1 , T
1
2 ] when τ1 = 0 and τ+2 ∈ [T 1

1 , 2T
1
2 ] when τ2 = 0; i.e., τ1 could potentially jump twice as

fast as τ2.
2Other choices of the maps fci and Gk

ci might be possible to obtain different dynamics of the variable ηi.
Although not pursued in this paper, one can potentially choose sliding mode-like dynamics as in [52].
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given by

η+i = KH
∑

k∈N (i)

(xi − xk). (4.9)

For the design of our algorithm for synchronization under intermittent information, we employ

the change in coordinates3

θi = KH
∑

k∈N (i)

(xi − xk)− ηi. (4.10)

which leads to

θ = (L ⊗KH)x− η (4.11)

where x = (x1, x2, . . . , xN ), θ = (θ1, θ2, . . . , θN), η = (η1, η2, . . . , ηN ), and L is the Laplacian

matrix given by the directed graph Γ of the network. Let ξ = (z, τ) ∈ X := R(n+p)N × T where

z = (x, θ), τ = (τ1, τ2, . . . , τN ), and T = [0, T 1
2 ]× [0, T 2

2 ]× · · · × [0, TN
2 ]. Then, a hybrid system

H is defined as the collection of all agents with dynamics in (4.1) and controller states (4.4) and

(4.5) with data (C, f,D,G) such that, for every ξ ∈ C := X , we have that

ξ̇ = (Afz,−1N) =: f(ξ). (4.12)

The state matrix Af is given by

Af =




A1 −B̃

K̃A1 − ẼK̃ Ẽ − K̃B̃




where A1 = I ⊗A+ B̃K̃, B̃ = I ⊗B, K̃ = L ⊗KH , and Ẽ = I ⊗ E.4 When τi = 0, a jump of

3This change of coordinates was also found useful for the design of observers under intermittent information
in [49, 53]. Therein, the authors proposed a continuous-time observer design to estimate the state of an LTI
plant when its output is available only at intermittent time instances. The observer designed therein uses a
memory state (akin to the hybrid controller in this work) that is reset when new measurements are available.
Using a similar change of coordinates, sufficient conditions for asymptotic stability of the zero estimation error
are derived. These results were extended to the network case in [54].

4Through the change of variables in (4.11), the z = (x, θ) components of the flow dynamics in (4.12) are given
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the i-th agent occurs: the components θ and τ are mapped via θ+i = 0 and τ+i ∈ [T i
1, T

i
2] while

xi remains constant; moreover, for each k ∈ V \ {i} the state components xk, θk and τk are held

constant. Specifically, for each ξ ∈ D := ∪i∈VDi where Di := {ξ ∈ X : τi = 0}, we have that

ξ+ ∈ G(ξ) := {Gi(ξ) : ξ ∈ Di, i ∈ V} (4.13)

where

Gi(ξ) =




x

(θ1, θ2, . . . , θi−1, 0, θi+1, . . . , θN )

(τ1, τ2, . . . , τi−1, [T
i
1, T

i
2], τi+1, . . . , τN )



.

Lemma 4.2.1 Given positive scalars T i
1 and T i

2 such that T i
1 ≤ T i

2, the hybrid system H =

(C, f,D,G) with satisfies the hybrid basic conditions.

Proof By construction, the sets C and D are closed. The flow map f in (4.12) is continuous.

The jump map G is outer semicontinuous since its graph is closed; moreover, it is locally bounded

on D.5 �

Remark 4.2.2 Note that satisfying the hybrid basic conditions implies that the hybrid system

H is well-posed and that asymptotic stability of a compact set as defined in [51, Definition 3.3]

is robust to small enough perturbations. See Section 4.2.5.1 for more information on specific

robustness results as a consequence of the hybrid basic conditions.

4.2.2 Properties of Maximal Solutions to H

As mentioned in Section 2.1, solutions to a general hybrid system H can evolve contin-

uously and/or discretely according to the differential and difference equations/inclusions (and

by ẋ = (I⊗A)x+(I⊗B)η = (I⊗A)x+(I⊗B)(K̃x−θ) = A1x−B̃θ and θ̇ = K̃ẋ− η̇ = K̃(A1x−B̃θ)−Ẽ(K̃x−θ).
5The graph of a set-valued mapping G : Rn → Rn is defined as gph G = {(x, y) : x ∈ Rn, y ∈ G(x)}.
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the sets where those apply) that describe the hybrid dynamics. The following properties of the

domain of maximal solutions are established by exploiting the fact that a timer variable being

zero is the only trigger of jumps in the system.

Lemma 4.2.3 ([55, Lemma 3.5]) Let 0 < T i
1 ≤ T i

2 be given for all i ∈ V. Every maximal

solution φ ∈ SH satisfies the following:

1. φ is complete; i.e., domφ is unbounded;

2. for each (t, j) ∈ domφ,
(

j
N − 1

)
T ≤ t ≤ j

N T , where T := mini∈V T i
1 and T := maxi∈V T i

2;

3. for all j ∈ {1, 2, 3, . . .} such that (t(j+1)N , (j + 1)N), (tjN , jN) ∈ domφ, t(j+1)N − tjN ∈

[T , T ].

4.2.3 Sufficient Conditions for Synchronization

In this section, we consider the following notion of asymptotic synchronization for

hybrid system H.

Definition 4.2.4 Consider the hybrid system H in (2.1) with state ξ = (ξ1, ξ2, . . . , ξN ) where,

for each i ∈ V, ξi is partitioned as ξi = (pi, qi), where pi ∈ Rr and qi ∈ Rn−r for each i ∈ V

with integers n, r satisfying 1 ≤ r ≤ n. The hybrid system H is said to have

• stable synchronization with respect to p if for every ε > 0, there exists δ > 0 such that

every maximal solution φ = (φ1, φ2, . . . , φN ) to H, where φi = (φi,p, φi,q) from |φi(0, 0)−

φk(0, 0)| ≤ δ for each i, k ∈ V implies |φi,p(t, j) − φk,p(t, j)| ≤ ε for all i, k ∈ V and

(t, j) ∈ domφ.

• globally attractive synchronization with respect to p if every maximal solution to H is

complete, and for each i, k ∈ V, lim(t,j)∈domφ
t+j→∞

|φi,p(t, j)− φk,p(t, j)| = 0
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• global asymptotic synchronization with respect to p if it has both stable synchronization

and global attractive synchronization with respect to p.

Remark 4.2.5 If r = n, then Definition 4.2.4 can be considered to be a full-state synchroniza-

tion notion, while if r < n, it can be considered to be a partial state synchronization notion.

Note that stable synchronization with respect to p requires solutions φi for each i ∈ V to start

close to each other, while only the components φi,p, i ∈ V remain close to each other over their

solution domain of definition. Similarly, global attractive synchronization with respect to p only

requires that the Euclidean distance between each φi approaches zero, while the other components

are left unconstrained. Also, note that boundedness of the solution is not required.

It is worth noting that the hybrid systems framework in [28] covers both purely continuous-time

and purely discrete-time systems. Namely, continuous-time systems can be modeled in this

framework by letting D be empty and G be any arbitrary function, and likewise, discrete-time

systems are recovered by letting C be empty and f be any arbitrary function. In the following

example, we showcase the notions in Definition 4.2.4 for the case of continuous-time systems for

the synchronization of agents with integrator dynamics.

Example 4.2.6 Consider the case of four completely connected agents, i.e., V := {1, 2, 3, 4}

and gik = 1 for each i, k ∈ V such that i 6= k. Each agent has integrator dynamics ẋi = ui and

is controlled by ui = −γ
∑4

k=1(xi−xk) where γ > 0. Integrating the fully interconnected system

ẋ = −γLx from φ(0, 0) leads to the complete solution φ = (φ1, φ2, φ3, φ4) with domain domφ =

R≥0×{0} given by φi(t, 0) =
1
4 (φi(0, 0)(3 exp(−4γt)+1)−∑r∈V\{i} φr(0, 0)(exp(−4γt)−1)) for

each i ∈ V and each t ≥ 0. Stable synchronization can be seen by picking δ ∈ (0, ε) for any given

ε > 0. For each i, k ∈ V such that i 6= k, it follows that |φi(t, 0)−φk(t, 0)| = exp(−4γt)|φi(0, 0)−

φk(0, 0)| ≤ exp(−4γt)δ < ǫ. Moreover, from the derivation above, attractive synchronization is
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guaranteed, for each i, k ∈ V, by noting that limt→∞ |φi(t, 0)−φk(t, 0)| = 0. Due to the fact that

this system exhibits both stable synchronization and global attractive synchronization, it globally

asymptotically synchronizes. △

Remark 4.2.7 There are several notions of synchronization in the literature. A widely used

notion of synchronization considers only attractive synchronization in the sense of limits; see,

e.g., [20, 22, 23, 15]. Another common notion of synchronization is given as the convergence

of all agents to a common solution, namely, that there exists a solution φs such that, for each

i ∈ V, φi converges to φs; see, e.g., [56, 25].

Asymptotic synchronization as defined in Definition 4.2.4 can be reformulated as a set

stability problem. In light of the partial notion of synchronization, our goal is to stabilize the set

of points ξ such that each component of x and θ are synchronized. In particular, given a complete

solution φ = (φx, φθ, φτ ) to the hybrid system H, we want limt+j→∞ |φxi
(t, j) − φxk

(t, j)| = 0

and limt+j→∞ |φθi(t, j) − φθk(t, j)| = 0 for each i, k ∈ V where φx = (φx1 , φx2 , . . . , φxN
) and

φθ = (φθ1 , φθ2 , . . . , φθN ). To obtain such a property by solving a set stability problem, we define

the synchronization set as

A = {ξ = (z, τ) ∈ X : x1 = x2 = · · · = xN , θ1 = θ2 = · · · = θN}, (4.14)

for the hybrid system H where X = RN(n+p) × T as defined in Section 4.2.1.

We consider the following global exponential stability notion of closed sets A for general

hybrid systems H, see [57] for more information.

Definition 4.2.8 Let A ⊂ Rn be closed. The set A is said to be globally exponentially stable for

the hybrid system H if every maximal solution to H is complete and there exist strictly positive

scalars κ and r such that for each solution φ to H, |φ(t, j)|A ≤ κ exp(−r(t+ j))|φ(0, 0)|A for all

(t, j) ∈ domφ.
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Next, we establish a sufficient condition that guarantees the synchronization property

via stability analysis of A in (4.14). We establish such a result by using a Lyapunov function. An

appropriate choice of V must satisfy V (ξ) = 0 for each ξ ∈ A, while for any ξ ∈ X \A, V (ξ) > 0.

To simplify notation, we introduce the average of the timers of H given by τ̄ = 1
N

∑N
i=1 τi.

Inspired by [58], consider the following Lyapunov function candidate as

V (ξ) = z⊤Ψ̄R(τ)Ψ̄⊤z, (4.15)

where Ψ̄ = diag(Ψ̃ ⊗ In, Ψ̃ ⊗ Ip) with Ψ̃ defined in Section 2.2, R(τ) = diag(P,Q exp(στ̄ )),

P = diag(P2, P3, . . . , PN ), Q = diag(Q2, Q3, . . . , QN), Pi = P⊤
i > 0, and Qi = Q⊤

i > 0 for each

i ∈ {2, 3, . . . , N}. The Lyapunov function V in (8.6) satisfies [28, Definition 3.16], which makes

it a suitable Lyapunov function candidate for asymptotic stability of A in (4.14). The following

result shows that, under certain conditions, for each ξ ∈ C, V decreases during flows, however,

at jumps, may have a nonnegative change. Our previous work on distributed estimation with

intermittent communication in [55] uses a similar construction of a Lyapunov function. However,

such a Lyapunov function decreases during flows and has a non-positive change during jumps.

To guarantee exponential stability of the synchronization set, the result [28, Proposition 3.29]

is exploited, namely, [28, Proposition 3.29] uses a balancing condition between jumps and flows

to guarantee that solutions converge to the desired set with an exponential rate.

Theorem 4.2.9 Given 0 < T i
1 ≤ T i

2 for each i ∈ V and an undirected connected graph Γ, the

set A is globally exponentially stable for the hybrid system H with data in (4.12) and (4.13) if

there exist scalars σ > 0, ε ∈ (0, 1), matrices K ∈ Rn×p and E ∈ Rp×p, and positive definite

symmetric matrices Pi, Qi for each i ∈ {2, 3, . . . , N}, satisfying

M(ν) =



He(PĀ) −PB̄ + exp(σν)(K̄Ā− ĒK̄)⊤Q

⋆ He(exp(σν)Q(Ē − K̄B̄ − σ
2 I))


 < 0 (4.16)
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for each ν ∈ [0, T ], where Ā = I ⊗ A + Λ ⊗ BKH, B̄ = I ⊗ B, Ē = I ⊗ E, K̄ = Λ ⊗ KH,

Λ = diagλ2, λ3, . . . , λN where λi are the nonzero eigenvalues of L, and

(1− ε)T − α2σT

β
> 0. (4.17)

where T := mini∈V T i
1, T := maxi∈V T i

2,

β = − max
ν∈[0,T ]

λ̄(M(ν))

α2 = max{λ(P ), λ(Q) exp(σT )}.

Moreover, every φ ∈ SH satisfies

|φ(t, j)|A ≤ κ exp (−r(t+ j)) |φ(0, 0)|A (4.18)

for all (t, j) ∈ domφ, where κ =
√

α2

α1
exp

(
β(1−ε)T

2α2

)
and r = β

2α2N
min

{
εN, (1− ε)T − α2σT

β

}
,

and α1 = min{λ(P ), λ(Q)}.

Proof Consider the Lyapunov function V in (8.6). Note that, due to the definition of Ψ̄, the

distance of ξ to the set A is equivalent to the distance of Ψ̄⊤z to the origin due to the domain

of the timer states. More specifically, |ξ|2A = |Ψ̄z|2. Furthermore, from V it follows that

α1|ξ|2A ≤ V (ξ) ≤ α2|ξ|2A (4.19)

where α1 and α2 are given below (4.16).6 During flows, the change in V is given by 〈∇V (ξ), f(ξ)〉

for each ξ ∈ C. To compute such inner product, define R̃(τ) = diag(0, Q exp(στ̄ )) and note that

6Note that λ(·) and λ(·) are the maximum and minimum eigenvalues, respectively.
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˙̄τ = −1. Then, it follows that

〈∇V (ξ), f(ξ)〉 = 2z⊤Ψ̄R(τ)Ψ̄⊤Afz − σz⊤Ψ̄R̃(τ)Ψ̄⊤z

= 2z⊤Ψ̄R(τ)Ψ̄⊤Af (I + Ψ̄Ψ̄⊤ − Ψ̄Ψ̄⊤)z − σz⊤Ψ̄R̃(τ)Ψ̄⊤z

= 2z⊤Ψ̄R(τ)Ψ̄⊤Af Ψ̄Ψ̄⊤z + 2z⊤Ψ̄R(τ)Ψ̄⊤Af (I − Ψ̄Ψ̄⊤)z − σz⊤Ψ̄R̃(τ)Ψ̄⊤z

(4.20)

where we use the property that ż⊤Ψ̄R(τ)Ψ̄⊤z = z⊤Ψ̄R(τ)Ψ̄⊤ż. Recall from Section 2.2 that

ΨΨ⊤ = U , UL = LU and Ψ⊤1 = 0N−1×N , which leads to

Ψ̄R(τ)Ψ̄⊤Af (I − Ψ̄Ψ̄⊤) = Ψ̄P Ψ̄⊤Af (I ⊗ I − U ⊗ I)

= Ψ̄R(τ)Ψ̄⊤(I ⊗ I − U ⊗ I)Af

= Ψ̄R(τ)(Ψ̄⊤ − Ψ̄⊤Ψ̄Ψ̄⊤)Af

= Ψ̄R(τ)(Ψ̄⊤ − Ψ̄⊤)Af = 0

which reduces (4.20) to

〈∇V (ξ), f(ξ)〉 = z⊤Ψ̄R(τ)Ψ̄⊤Af Ψ̄Ψ̄⊤z + z⊤Ψ̄Ψ̄⊤A⊤
f Ψ̄R(τ)Ψ̄

⊤z − σz⊤Ψ̄R̃(τ)Ψ̄⊤z

= z⊤Ψ̄(R(τ)Ψ̄⊤Af Ψ̄ + Ψ̄⊤A⊤
f Ψ̄R(τ)− σR̃(τ))Ψ̄⊤z.

(4.21)

Due to the definition of Ψ̃LΨ̃⊤ = Λ = diag(λ2, λ3, . . . , λN ), we have that

Ψ̄⊤A⊤
f Ψ̄ =




Ā −B̄

K̄Ā− ĒK̄ Ē − K̄B̄


 =: Āf

where Ā = I ⊗ A + Λ ⊗ BKH , B̄ = I ⊗ B, Ē = I ⊗ E, and K̄ = Λ ⊗ KH . Therefore, from

(4.21), it follows that

〈∇V (ξ), f(ξ)〉 = z⊤Ψ̄(R(τ)Āf + Ā⊤
f R(τ) − σR̃(τ))Ψ̄⊤zz⊤Ψ̄M(τ)Ψ̄⊤z
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where M is defined in (4.16). From (4.16) it follows that

〈∇V (ξ), f(ξ)〉 = z⊤Ψ̄M(τ)Ψ̄⊤z ≤ −β|ξ|2A ≤ −
β

α2
V (ξ) (4.22)

where β = −maxν∈T λ(M(ν)) and α2 is defined in (4.17).

Next, we consider the case ξ ∈ D and g ∈ G(ξ). In particular, if there exists at least

one component of τ , say, the i-th component, such that τi = 0. From the definition of G in

(4.13), x is updated by its identity, θ+i = 0 and τ+i ∈ [T i
1, T

i
2]. Moreover, for each k ∈ V \ {i},

the k-th component of θ is updated by its identity, i.e., θ+k = θk. Therefore, it follows that

during jumps we have that (θ+)⊤θ+ ≤ θ⊤θ due to the i-th component being updated to zero

when τi = 0. Likewise, after the jump of the i-th timer τi, we have that τ+i is reset to a point

ν ∈ [T i
1, T

i
2]. It follows that exp(στ̄+) = exp(στ̄ ) exp(σ ν

N ). Then, the function V after a jump

is given by

V (g) ≤ exp

(
σ
T

N

)
V (ξ). (4.23)

V (g)− V (ξ) = (z+)⊤Ψ̄R(τ+)Ψ̄⊤z+ − z⊤Ψ̄R(τ)Ψ̄⊤z

= x⊤(Ψ̃⊤ ⊗ In)P (Ψ̃⊤ ⊗ In)⊤x− x⊤(Ψ̃ ⊗ In)P (Ψ̃⊤ ⊗ In)x

+ exp(στ̄+)(θ+)⊤(Ψ̃ ⊗ Ip)Q(Ψ̃⊤ ⊗ Ip)θ+ − exp(στ̄ )θ⊤(Ψ̃⊗ Ip)Q(Ψ̃⊤ ⊗ Ip)θ

≤ exp(στ̄+)(θ+)⊤(Ψ̃⊗ Ip)Q(Ψ̃⊤ ⊗ Ip)θ+ − exp(στ̄ )θ⊤(Ψ̃⊗ Ip)Q(Ψ̃⊤ ⊗ Ip)θ

≤
(
exp

(
σ
ν

N

)
− 1
)
exp(στ̄ )θ⊤(Ψ̃⊗ Ip)Q(Ψ̃⊤ ⊗ Ip)θ

≤
(
exp

(
σ
T

N

)
− 1

)
V (ξ).

(4.24)

due to τ̄ ≤ T . Note that the quantity exp(σ T
N )− 1 may be positive.

Next, we evaluate V over a solution to ensure that the distance of the solution φ to the
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set A converges to zero in the limit as t + j approaches infinity. Pick φ ∈ SH and any (t, j) ∈

domφ. Let 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tj+1 ≤ t satisfy domφ
⋃

([0, tj+1]× {0, 1, 2, . . . , j}) =

⋃j
s=0([ts, ts+1]×{s}) for each s ∈ {0, 1, 2, . . . , j} and almost all r ∈ [ts, ts+1], φ(r, s) ∈ C. Then,

(4.22) implies that, for each s ∈ {0, 1, 2, . . . , j} and for almost all r ∈ [ts, ts+1],

d

dr
V (φ(r, s)) ≤ − β

α2
V (φ(r, s)). (4.25)

Integrating both sides of this inequality yields

V (φ(ts+1, s)) ≤ exp

(
− β

α2
(ts+1 − ts)

)
V (φ(ts, s)) (4.26)

for each s ∈ {0, 1, . . . , j}. Similarly, for each s ∈ {1, 2, . . . , j}, φ(ts, s− 1) ∈ D, and using (4.24),

we get

V (φ(ts, s)) ≤ exp

(
σ
T

N

)
V (φ(ts, s− 1)). (4.27)

It follows, from the previous two inequalities, for each (t, j) ∈ domφ,

V (φ(t, j)) ≤ exp

(
− β

α2
t+ σ

T

N
j

)
V (φ(0, 0)) (4.28)

By virtue of (4.19) and Lemma 4.2.3, it follows that (4.28) becomes

|φ(t, j)|A ≤
√
α2

α1
exp

(
β(1− ε)T

2α2

)
exp

(
− βε

2α2
t+

(
σT

2N
− β(1 − ε)T

2α2N

)
j

)
|φ(0, 0)|A

where we used the property that there exists ε ∈ (0, 1) such that t = εt + (1 − ε)t ≥ εt + (1 −

ε)
(

j
N − 1

)
T . Moreover, from (4.17), and due to every maximal solution to H being complete,

it follows that the bound on |φ(t, j)|A implies that A is globally exponentially stable for the

hybrid system H. �

Remark 4.2.10 The matrix inequality in (4.16) comes from the asymptotic stability analysis

in the proposed new coordinates ξ = (x, θ, τ), namely, the analysis during flows; see (4.22). This
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approach introduces some conservativeness as the reset of θi to zero when τi = 0 is not being

exploited. This is due to the multiplication of θ by Ψ̃⊗ Ip in V . In fact, it is not straightforward

to ensure a nonpositive change in V during jumps. If such a change could be guaranteed, then

the conditions in Theorem 4.2.9 could be relaxed. Though it exists due to converse theorems, at

this time we do not have a Lyapunov function that satisfies the decreasing properties on both

jumps and flows.

Note that the matrix in (4.1) must be satisfied for an infinite number of points, i.e.,

ν ∈ [0, T ]. Moreover, it can be noted that (4.16) may be a large matrix in general, which could

make finding feasible solutions difficult. It turns out that (4.16) can be decomposed into N − 1

matrices due to the fact that each block in the matrix is block diagonal. This leads to the

following result.

Proposition 4.2.11 Let 0 < T i
1 ≤ T i

2 be given for all i ∈ V. Inequality (4.16) holds if there

exist a scalar σ > 0 and matrices Pi = P⊤
i > 0 and Qi = Q⊤

i > 0 for each i ∈ {2, 3, . . . , N}

satisfying M i(0) < 0 and M i(T ) < 0 where

M i(ν) :=



He(PĀi) −PB + exp(σν)(K̄iĀi − EK̄i)Qi

⋆ He(exp(σν)Qi(E − K̄iB − σ
2 I))


 (4.29)

for each λi ∈ λ(L) \ {0}, where Āi = A+ λiBKH and Ki = λiKH.

Proof By definitions of P , Q, Λ and the He operator, the matrix in (4.16) is a block diagonal

matrix. Therefore, we can rearrangeM in (4.16) as the diagonal of N − 1 sub-matrices M(ν) =

diag(M2(ν),M 3(ν), . . . ,MN (ν)) where, for each i ∈ {2, 3, . . . , N}, Mi is given by (4.29). Given

ν ∈ [0, T ] and σ > 0, define the function r : [0, T ] → [0, 1] as r(ν) = exp(σν)−exp(σT )

1−exp(σT )
for each

ν ∈ [0, T ]. Then, it can be verified that for any ν ∈ [0, T ] exp(σν) = r(ν) + (1− r(ν)) exp(σT ).

Therefore, for each ν ∈ [0, T ], the matrixM i in (4.29) can be rewritten asM i(ν) = r(ν)M i(0)+
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(1− r(ν))M i(T ). By assumption M i(0) < 0 and M i(T ) < 0, for each i ∈ {2, . . . , N}, and hence

(4.16) holds for each ν ∈ [0, T ]. �

Remark 4.2.12 Note that conditions M i(0) < 0 and M i(T ) < 0 are nonconvex in P , Q, K,

E, and σ. At this time, there is no clear way to reduce the matrices in the conditions into a

convex form. In fact, the matrices are bilinear in these variables; therefore, to solve (4.29) one

should use a BMI solver such as YALMIP and BMILAB.

Remark 4.2.13 For the case of synchronous communication, a single timer τ ∈ [0, T2] can be

used to trigger the communication between all agents. Then, through the change of coordinates

in (4.10) and following the approach in the proof of Theorem 4.2.9, it can be shown that if

parameters, gains, and matrices exist such that (4.16) is satisfied for all τ ∈ [0, T2] then the re-

sulting hybrid system with a single timer has the corresponding synchronization set exponentially

stable.

4.2.4 Time to Synchronize

Due to its properties along solutions shown in Theorem 4.2.9, the proposed Lyapunov

function can be further exploited to provide a bound on the time to converge to a neighborhood

about the synchronization set A. As expected, this time depends on the initial distance to the

set A and the parameters of the hybrid system.

Proposition 4.2.14 Given 0 < T i
1 ≤ T i

2 for each i ∈ V and an undirected connected graph Γ,

if there exist scalars σ > 0 and ε ∈ (0, 1), matrices K ∈ Rn×p and E ∈ Rp×p, and positive

definite symmetric matrices Pi, Qi for each i ∈ {2, 3, . . . , N}, (4.16) and (4.17), then for each

c0 > c1 > 0 every maximal solution φ to H with initial condition7 φ(0, 0) ∈ X ∩ LV (c0) is such

7A sublevel set of V , denoted as LV (µ), is given by LV (µ) := {x ∈ X : V (x) ≤ µ}.
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that φ(t, j) ∈ LV (c1) for each (t, j) ∈ domφ, t+j ≥ r̄, where r̄ = (NT +1)Ω+1, Ω =
ln
(

c1
c0

)
−σ T

N

−β
α2

+σT
T

,

and T , T , β and α2 are given below (4.17).

Proof Let φ0 = φ(0, 0) and pick a maximal solution φ ∈ SH(φ0). From the proof of Theo-

rem 4.2.9, we have that, for each (t, j) ∈ domφ, (4.28) holds. Namely, for each (t, j) ∈ domφ,

V satisfies V (φ(t, j)) ≤ exp
(
− β

α2
t+ σ T

N j
)
V (φ0). We want to find (T, J) ∈ domφ such that

V (φ(T, J)) ≤ c1 when φ(0, 0) ∈ LV (c0). Considering the worst case for V (φ0), it follows

that c1 ≤ exp
(
− β

α2
T + σ T

N J
)
c0 which implies that ln

(
c1
c0

)
≤ − β

α2
T + σ T

N J . Then, from

Lemma 4.2.3, we have that for (T, J) ∈ domφ, it follows that J ≤ N
(

T
T + 1

)
which implies

that T ≤ Ω where Ω =
ln
(

c1
c0

)
−σ T

N

−β
α2

+σT
T

. Then, after t+ j ≥ T + J , the solution is at least c1 close

to the set A. Defining r̄ = T + J , we have that r̄ =
(

N
T + 1

)
Ω+ 1. �

4.2.4.1 Sufficient Conditions for Asymptotic Synchronization under Synchronous

Communication

In this section, we consider the case of synchronization when communication times

are synchronized for each agent. Namely, we consider agents with the dynamics in (4.1) and

output in (4.2), whose inputs are assigned by a controller governed by ηi given by the flow and

jump dynamics in (4.4) and (4.5), respectively. We propose two different designs of the maps

defining the controllers. Moreover, we consider the case when the sequence of communication

times {tis}∞s=1 governed by (4.3) are equal for each i ∈ V where T1 and T2 are now the bounds

on the intervals between communication time. Following the timer construction in (4.6), we use

a single timer τ ∈ [0, T2] with dynamics

τ̇ = −1 τ ∈ [0, T2],

τ+ ∈ [T1, T2] τ = 0.

(4.30)
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Consider the controller with state ηi having continuous dynamics given by

η̇i = hiηi (4.31)

when τ ∈ [0, T2] and discrete dynamics given by

η+i = K

N∑

i=1

gik(yi − yk) (4.32)

when τ = 0. With some abuse of notation, using the coordinate change θi in (4.10), we define the

state of the resulting hybrid system, denoted by Hs, as ξ = (z, τ), where z = (x, θ). Then, the

resulting dynamics from given by interconnecting agents given by (4.1) with controller dynamics

(4.7) and (4.8) is given by

ξ̇ = (Af z,−1) τ ∈ [0, T2]

ξ+ ∈ (Agz, [T1, T2]) τ = 0

(4.33)

where

Af =




A1 −B̃

K̃A1 − ẼK̃ Ẽ − K̃B̃


 Ag =



I 0

0 0




A1 = I ⊗A+ B̃K̃, B̃ = I ⊗B, K̃ = L ⊗KH , and Ẽ = I ⊗ E.

Then, using the Lyapunov function V in (8.6), we have the following sufficient condi-

tions for exponential stability of the synchronization set

As := {(x, θ, τ) ∈ R
N(n+p) × [0, T2] : x1 = x2 = · · · = xN , θ1 = θ2 = · · · = θN}. (4.34)

associated to Hs.

Proposition 4.2.15 Given 0 < T1 ≤ T2 and an undirected connected graph Γ. The set A in

(4.14) is globally exponentially stable for the hybrid system Hs in (4.62) if there exist scalars

σ > 0 and ε ∈ (0, 1), matrices K ∈ Rn×p and E ∈ Rp×p and positive definite symmetric
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matrices Pi, Qi for each i ∈ {2, 3, . . . , N}, satisfying M̄(0) < 0 and M̄(T2) < 0 where M̄ is

given in (4.29). Moreover, every maximal solution φ to the hybrid system from φ(0, 0) in (4.62)

satisfies

|φ(t, j)|A ≤ κs exp (−r(t+ j)) |φ(0, 0)|A (4.35)

for all (t, j) ∈ domφ, where κs =
√

α2

α1
exp

(
βT1

2α2(T1+1)

)
, r = β

2α2

T1

T1+1 , and α1, α2, and β are

given below (4.17).

Proof Consider the Lyapunov function V given by

V (ξ) = z⊤Ψ̄R(τ)Ψ̄⊤z (4.36)

where R = diag(P,Q exp(στ)), P = diag(P2, P3, . . . , PN ) and Q = diag(Q2, Q3, . . . , QN ). It

follows that (4.19) holds for the set As. Moreover, for each τ ∈ [0, T2] the change in V is

equivalent to (4.22) using similar arguments as in the proof of Theorem 4.2.9. During jumps,

i.e., when τ = 0, the jump map G updates each state as follows: τ+ ∈ [T1, T2] ,and x
+ = x, and

θ+ = 0, which implies that the difference in V at jumps is given by

V (G(ξ)) − V (ξ) = −θ(Φ̃⊗ Ip)Q(Φ̃⊤ ⊗ Ip)θ ≤ 0. (4.37)

Following the proof of Theorem 4.2.4, integrating both sides of (4.25) yields (4.26). From (4.37),

we have that V (φ(ts, s)) ≤ V (φ(ts, s−1)). By combining (4.26) with V during jumps with (4.19),

we have that

|φ(t, j)|A ≤
√
α2

α1
exp

(
− β

2α2
t

)
|φ(0, 0)|A

which results in (4.35), where we use the property that, for each (t, j) domφ, t ≥ (j − 1)T1

and t = εt + (1 − ε)t ≥ εt + (1 − ε)T1(j − 1), where ε = T1

T1+1 . Due to the fact that every

maximal solution to H is complete, it follows that the bound on |φ(t, j)|A implies that A is
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globally exponentially stable for the hybrid system Hs defined in (4.62). Due to M i(0) < 0 and

M i(T ) < 0, the steps in Proposition 4.2.11 can be applied to conclude the proof. �

Now, we consider a sample-and-hold controller which yields an alternative design con-

dition than in Proposition 4.2.15. The functions fci and G
k
ci are now given by

fci(xi, ηi) = 0 (4.38)

for all (xi, ηi) ∈ Rn × Rp, and by

Gk
ci(ηi, ηk, yi, yk) =

1

dini
Ki(yi − yk). (4.39)

for all (ηi, ηk, yi, yk) ∈ Rn × Rn × Rm × Rm.

Now, we consider the change of coordinates εi, where εi defines the local relative error

of the i-th system. Namely, εi =
1

di
in

∑
k∈Ji

(xi − xk). Note that at jumps, i.e., when τ = 0,

ε+i = εi and η
+
i = KiHεi. Let ξ = (z, τ), z = (z1, z2, . . . , zN ), and zi = (εi, ηi). Then, the new

coordinates lead to a closed loop hybrid system, denoted as Hε, with the following data

fε(ξ) =



Āfz

−1


 ∀ξ ∈ Cε := R

N(n+p) × [0, T2]

Gε(ξ) =




Āgz

[T1, T2]


 ∀ξ ∈ Dε := R

N(n+p) × {0}

(4.40)

where the matrices Āf = I ⊗ Af − (G⊤D−1
in ) ⊗ Bf , Āg = diag(Ag1, Ag2, . . . , AgN , Din =

diag(din1 , d
in
2 , . . . , d

in
N ), Af =



A B

0 0


 , Bf =



0 B

0 0


, and Agi =




I 0

KiH 0


.

Moreover, due to the change in coordinates, to stabilize the set of points is given by

Aε := {0} × [0, T2] (4.41)

which is compact. Next, we present sufficient conditions for exponential synchronization of the
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set Aε for the hybrid system with data as in (4.40).

Theorem 4.2.16 Let T1 and T2 be positive scalars such that T1 ≤ T2 and the digraph Γ be

strongly connected. If there exist a nonnegative scalar σ, a positive definite symmetric matrix

P ∈ RN(n+p)×N(n+p), and matrices Ki ∈ Rp×n for each i ∈ V such that

exp(σν)Ā⊤
g exp(Ā⊤

f ν)P exp(Āfν)Āg − P < 0 (4.42)

for all ν ∈ [T1, T2], then the set Aε in (4.41) is globally exponentially stable for Hε in (4.40).

Moreover, every φ ∈ Hε is such that

|φ(t, j)|Aε
≤
√
α2

α1
exp (−min {σ,−λd} (t+ j)) |φ(0, 0)|Aε

(4.43)

for every (t, j) ∈ domφ where ε ∈ (0, 1), λd = ln(1− β
α2

), with β > 0 small enough, and

α1 = λ

(
min

τ∈[0,T2]
exp(Ā⊤

f τ )P exp(Āfτ )

)

α2 = exp(σT2)λ

(
max

τ∈[0,T2]
exp(Ā⊤

f τ)P exp(Āf τ)

) (4.44)

Proof Consider the Lyapunov function

V (ξ) = exp(στ )z⊤ exp(Ā⊤
f τ )P exp(Āfτ )z (4.45)

with P positive definite and σ nonnegative. Note that V is bounded by

α1|z|2Aε
≤ V (ξ) ≤ α2|z|2Aε

(4.46)

where α1 and α2 are given below (4.43).

During flows, for each ξ ∈ C, we have that the change in V is given by 〈∇V (ξ), f(ξ)〉 =
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−V (ξ), namely,

〈∇V (ξ), F (ξ)〉 = 2 exp((στ )z⊤ exp(Ā⊤
f τ )P exp(Āf τ )z − σ exp(στ )z⊤ exp(Ā⊤

f τ )P exp(Āfτ )z

+ exp(στ )z⊤ exp(Ā⊤
f τ )(Ā

⊤
f P + PĀf ) exp(Āf τ)z

= −σ exp(στ )z⊤ exp(Ā⊤
f τ )P exp(Āfτ )z = −σV (ξ). (4.47)

Next, we consider the case of ξ ∈ D, for such a case, we have that τ = 0 and is mapped to a

point ν in the interval [T1, T2]; likewise, the state z is mapped to Āgz. In light of (4.42), there

exists small enough β > 0 such that, for each ξ ∈ D, g ∈ G(ξ), the change in V is given by

V (g)− V (ξ) ≤ −βz⊤z = −β|z|Aε
≤ − β

α2
V (ξ). (4.48)

First, pick a maximal solution, φ to H with data as in (4.40), without loss of generality, from

φ(0, 0) ∈ C. From direct integration of the change in V during flows, we have

V (φ(tj+1, j)) = exp(−σ(tj+1 − tj))V (φ(tj , j)) (4.49)

where (tj+1, j), (tj , j) ∈ domφ. The change in V during jumps leads to

V (φ(tj , j + 1)) ≤ exp(λd)V (φ(tj , j)) (4.50)

where λd = ln(1 − β
α2

) < 0 due to β being small. Then by combines (4.49) and (4.50), the

function V over any maximal solution φ is given by

V (φ(t, j)) ≤ V (φ(0, 0)) exp(−σt+ λdj)

≤ V (φ(0, 0)) exp(−min(σ,−λd)(t+ j))

with σ,−λd > 0 for every (t, j) ∈ domφ. From (4.46), we obtain the expression in (4.43) which

implies that the set Aε is GES for the hybrid system H with data as in (4.40). �

Remark 4.2.17 Note that condition (4.42) is akin to the discrete Lyapunov equation with sys-
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tem matrix H(ν) = eσν/2eĀfνĀg which implies that condition (4.42) is satisfied if, for each

ν ∈ [T1, T2], the eigenvalues of H(ν) are contained with the unit circle.

Remark 4.2.18 Typically written in the literature, a directed tree is a directed graph, where

every node, except a single root node, has exactly one parent. A directed spanning tree is a

directed tree formed by graph edges that connect all the nodes of the graph [48]. Theorem 4.2.16

may be extended to the case when only a directed spanning tree is required, similar to that in

[59, 60]. However, such a notion for an undirected graph is a subset of connected graphs, namely,

a spanning tree for an undirected graph is connected, but not the reverse.

Remark 4.2.19 Proposition 4.2.15 and Theorem 4.2.16 require different matrix inequalities to

be satisfied for exponential stability of the synchronization sets in their respective coordinates.

The expression (4.42) in Proposition 4.2.15 is akin to a continuous-time Lyapunov condition,

and, as mentioned in Remark 4.2.17, the expression (4.42) in Theorem 4.2.16 is similar to that

of a discrete-time Lyapunov condition. However, due to the change in coordinates it is not an-

alytically clear which one is tighter. To shed some light on this issue, Example 4.3.2 compares,

under reasonable assumptions, how the gains K and E that can be chosen to satisfy both con-

ditions. Moreover, in that example, we compare the convergence speed to the synchronization

set.

4.2.5 Robustness of Synchronization

In this section, we consider the effect of general perturbations and unmodeled dynamics

on the agents in the network. In such a setting, the perturbed model of each agent is given

in (4.1) and the output generated by each agent is given by (4.2), where the functions ∆i :

Rn × R≥0 → Rn and ϕi : R
n → Rp are unknown functions that may capture the unmodeled
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dynamics, as well as, the disturbances and communication noise, respectively. In particular, due

to the disturbances on the output, the values of yk transmitted to agent i at communication

times t = ts from agent k (where k ∈ N (i)) may be affected by some communication channel

noise, specifically, yk(ts) = Hxk(ts) + ϕk(xk(ts), ts).

Adding the perturbations to (4.7) and (4.8), we have that the continuous dynamics of

the distributed controllers do not change, but the discrete dynamics become

η+i = KH
∑

k∈N (i)

(xi − xk) +Kϕ̃i(x, t) (4.51)

where ϕ̃i(x, t) =
∑

k∈N (i)(ϕi(xi, t) − ϕk(xk, t)). For simplicity, hence forth we will drop the

arguments of some of the perturbations. We will consider the model in the θ coordinates in

Section 4.2.1 for the study of robustness. Then, following the definition of θi in (4.10), the

resulting perturbed hybrid system H̃ has data (C, f̃ ,D, G̃) and state ξ = (z, τ) ∈ X , z = (x, θ).

The perturbed data is given by

f̃(ξ) = f(ξ) + (∆(x, t), K̃∆(x, t), 0) ∀ξ ∈ C (4.52)

where ∆(t, x) = (∆1(x1, t),∆2(x1, t), . . . ,∆N (x1, t)) and K̃ = (L ⊗ KH). Moreover, when

ξ ∈ D,

G̃(ξ, ϕ) := {G̃i(ξ, δ) : ξ ∈ D̃i, i ∈ V} ∀ξ ∈ D (4.53)

and

G̃(ξ, ϕ) :=




x

(θ1, θ2, . . . , θi−1,−Kϕ̃i, θi+1, . . . , θN )

(τ1, τ2, . . . , τi−1, [T
i
1, T

i
2], τi+1, . . . , τN )



. (4.54)

In the following sections, we will discuss the robustness of the hybrid system H̃ to

different classes of perturbations. In particular, we will discuss its robustness to general pertur-
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bations on compact set via the hybrid basic conditions and input-to-state stability relative to

the synchronization set A.

4.2.5.1 General Robustness on Compact Sets

In this section, we focus on the generic robustness property to small perturbations. To

apply standard robustness results for hybrid systems, the set that is asymptotically stable must

be compact. Note that the set A given by (4.14) is unbounded: the points x1 = x2 = · · · = xN

and θ1 = θ2 = · · · = θN can be any value in Rn and Rp, respectively. Therefore, we restrict

the state space to the compact set S × T . While this set restricts the state space of the hybrid

system, it can easily be considered to be arbitrarily large. The price to pay is that, due to the

fact that the state space is now bounded, it is not guaranteed that maximal solutions to the

hybrid system are complete. We consider the hybrid system H̃ = (C, f̃ ,D, G̃) as in Section 4.2.1

with flow and jumps sets given by C̃ = C ∩ (S × T ) and D̃ = D ∩ (S × T ) where S ⊂ R
N(n+p)

is compact. Moreover, the set of interest is given by Ã = A ∩ (S × T ). We have the following

result.

Theorem 4.2.20 Let 0 < T i
1 ≤ T i

2 be given for all i ∈ V. Suppose that the hybrid system satis-

fies the conditions in Theorem 4.2.9 for the unperturbed hybrid system H with data in (4.12) and

(4.13). Then, there exists β ∈ KL such that, for every compact set S ⊂ RN(n+p) and ε > 0, there

exists ρ⋆ ≥ 0 such that if max{∆̄, ϕ̄} ≤ ρ⋆ where ∆̄ = sup(x,t)∈X∩(S×T )×R≥0
|∆(x, t)| and ϕ̄ =

sup(x,t)∈X∩(S×T )×R≥0
|ϕ̃(x, t)| then, every φ ∈ SH̃(S × T ) satisfies |φ(t, j)|Ã ≤ β(|φ(0, 0)|Ã, t+

j) + ε for all (t, j) ∈ domφ.

Proof Consider the hybrid system H̃ and a continuous function ρ : RnN × R
pN × T → R≥0,
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the ρ-perturbation of H̃, denoted H̃ρ, is the hybrid system





ξ ∈ C̃ρ ξ̇ ∈ Fρ(ξ)

ξ ∈ D̃ρ ξ+ ∈ Gρ(ξ)

(4.55)

where

C̃ρ = {ξ ∈ C̃ ∪ D̃ : (ξ + ρ(ξ)B) ∩ C̃ 6= 0}

Fρ(ξ) = conf((ξ + ρ(ξ)B) ∩ C = +ρ(ξ)B ∀ξ ∈ C̃ ∩ D̃

D̃ρ = {ξ ∈ C̃ ∪ D̃ : (ξ + ρ(ξ)B) ∩ D̃ 6= 0}

Gρ(ξ) = {v ∈ C̃ ∩ D̃ : v ∈ g + ρ(g)B, g ∈ G(ξ + ρ(ξ)) ∩ D̃}

∀ξ ∈ C̃ ∩ D̃

Since the set A is GES for H, it is also UGAS for H. Since ρ is continuous and H satisfies

the hybrid basic conditions, by [28, Theorem 6.8], H̃ρ is nominally well-posed and, moreover,

by [28, Proposition 6.28] is well-posed. Then, [28, Theorem 7.20] implies that A is semiglobally

practically robustly KL pre-asymptotically stable for H̃. Namely, for every compact set S×T ⊂

RN(n+p)×T and every ε > 0, there exists ρ̃ ∈ (0, 1) such that every maximal solution φ to Hρ̃ρ

from S×T satisfies |φ(t, j)|A∩(S×T ) ≤ β(|φ(0, 0)|A∩(S×T ), t+ j)+ ε for all (t, j) ∈ domφ. Then,

the result follows by picking ρ∗ > 0 such that max{1, |K̃|, |K|}ρ∗ ≤ ρ̃ and relating solutions to

H̃ and solutions to Hρ̃ρ. �

4.2.5.2 Robustness to Communication Noise

In this section, we consider the hybrid system H in Section 4.2.5 when communication

noise is present. Namely, ϕi reduces to a function mi(t) = ϕ̃i(xi, t) for all t ∈ R≥0 and i ∈ V .

We have the following result.

Theorem 4.2.21 Given 0 < T i
1 ≤ T i

2 for each i ∈ V and an undirected connected graph Γ, if
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there exist scalars σ > 0, ε ∈ (0, 1) and matrices K ∈ Rn×p and H ∈ Rp×p, and positive definite

symmetric matrices Pi, Qi for each i ∈ {2, 3, . . . , N}, satisfying (4.16) for each ν ∈ [0, T ] and

(4.17) holds, then the set A is input-to-state stable for the hybrid system H̃ in (4.52) and (4.53)

with respect to communication noise m = (m1,m2, . . . ,mN ). More specifically, for each φ ∈ SH̃

and for any (t, j) ∈ domφ,

|φ(t, j)|A ≤ max {κ exp (−r(t+ j)) |φ(0, 0)|A, γm|m|∞} (4.56)

where T , T , α2, and β are given below (4.17) and κ, r, α1, are given below (4.18), b =

exp(σT/N)λ(Q), γm = NS
√

α1

α2
exp(σT )b|K|2 and S = exp(−ǫ)

exp(−ǫ)−1 where ǫ ∈
(
0, α2σT

β − (1− ε)T
)
.

Proof Consider the Lyapunov function candidate V : X → R≥0 given by (8.6). It follows that

V satisfies (4.19) for all ξ ∈ C∪D where α1 and α2 are given in the Proof of Theorem 4.2.9. Note

that communication noise only occurs upon communication events, when ξ ∈ D. Therefore, for

each ξ ∈ C, we have that

〈∇V (ξ), f̃ (ξ)〉 ≤ −β|ξ|2A ≤ −
β

α2
V (ξ) (4.57)

and β = −λ(M(ν)) for each ν ∈ [0, T ] where M is given by (4.16). Moreover, at jumps, we have

that the state is updated by (4.54), with mi(t) = ϕ̃i(x, t). It follows that for each ξ ∈ D and

g ∈ G(ξ), that there exists at least one timer reseting, i.e., τi = 0, after the jump it follows that

τ+i = ν where ν ∈ [T i
1, T

i
2] and θi = −Kmi. Then, if follows that

V (g) ≤ exp

(
σT

N

)
V (ξ) + b|K|2|m|2 (4.58)

where b = exp(σT/N)λ(Q) and we use the fact that exp(στ̄+) = exp(στ̄ ) exp(σν/N).

Now pick φ ∈ SH, or any (t, j) ∈ domφ and let 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tj+1 ≤ t satisfy

domφ ∪ ([0, tj+1]× {0, 1, . . . , j}) = ∪js=0([ts, ts+1]× {s}). For each s ∈ {0, 1, . . . , j} and almost

all r ∈ [ts, ts+1], φ(r, s) ∈ C. Then, integrating both sides of (4.57) implies that for each s ∈
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{0, 1, . . . , j} and for almost all r ∈ [ts, ts+1], we have that V (φ(r, s)) ≤ exp
(
− β

α2

)
V (φ(ts, s)).

Similarly, for each s ∈ {1, 2, . . . , j}, φ(ts, s− 1) ∈ D, and using (4.58), we get

V (φ(ts, s− 1)) ≤ exp

(
σT

N

)
V (φ(ts, s− 1) + b|K|2|m|2.

By using the previous two expressions, it follows that for each (t, j) ∈ domφ

V (φ(t, j)) ≤ exp

(
σT

N
j − β

α2
t

)
V (φ(0, 0))

+ b|m|2∞
j∑

k=1

(
exp

(
σT

N
k

)
exp

(
− β

α2
(t− tk)

))
.

and that the right summation of the above expression can be reduced. First, note that for t ≥ tj ,

then it follows that

j∑

k=1

exp

(
σT

N
k

)
exp

(
− β

α2
(t− tk)

)
≤

j∑

k=1

exp

(
σT

N
k

)
exp

(
− β

α2
(tj − tk)

)
.

Due to the increasing sequence of times t1 ≤ t2 ≤ · · · ≤ tj , there must exist an integer j̃ which de-

fines the maximummultiple ofN , i.e., j̃ = ⌊ j
N ⌋. Then, the expression

∑j
k=1

(
exp

(
σT
N k
)
exp

(
− β

α2
(tj − tk)

))

can be grouped into a double sum as follows:

j∑

k=1

(
exp

σT

N
k − β

α2
(tj − tk)

)
=

j̃−1∑

s=0

N∑

k=1

exp

(
σT

N
(sN + k)− β

α2
(tj − tsN+k)

)

+

j∑

k=j̃N+1

exp

(
σT

N
k − β

α2
(tj − tk)

)

Note that for each s ∈ {0, . . . , j̃ − 1}, it follows that

max
tsN+k,k∈{1,...,N−1}

N∑

k=1

exp

(
σT

N
(sN + k)− β

α2
(tj − tsN+k)

)

=

N∑

k=1

exp

(
− β

α2
(tj − t(s+1)N ) + σT (s+ 1)

)

= N exp

(
− β

α2
(tj − t(s+1)N ) + σT (s+ 1)

)

which corresponds to the maximizer satisfying tsN+k = t(s+1)N for all k ∈ {1, . . . , N − 1}.
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Therefore, it follows that

sup
φ∈SH

(tj ,j)∈domφ

j∑

k=1

exp

(
σT

N
k − β

α2
(tj − tk)

)

≤ sup
φ∈SH

(tj ,j)∈domφ

j̃−1∑

s=1

max
tsN+k

k∈{1,...,N−1}

N∑

k=1

exp

(
σT

N
(sN + k)− β

α2
(tj − tsN+k)

)

+ sup
φ∈SH

(tj ,j)∈domφ

j∑

k=j̃N+1

exp

(
σT

N
k − β

α2
(tj − tk)

)

≤ sup
φ∈SH

(tj ,j)∈domφ

j̃−1∑

k=1

N exp

(
− β

α2
(tj̃N − t(s+1)N ) + σT (s+ 1)

)
+N exp(σT )

where we use the property that j− j̃N < N . By item 3 in Lemma 4.2.3, we have that t(j+1)N −

tjN ∈ [T , T ] for all j ≥ 0 such that (t(j+1)N , (j+1)N), (tjN , jN) ∈ domφ which implies that for

each s ∈ {0, 1, . . . , j̃ − 1} tj̃N − tsN ∈ [(j̃ − s)T ), (j̃ − s)T ]. Therefore,

sup
φ∈SH

(tj ,j)∈domφ

j∑

k=1

exp

(
σT

N
k − β

α2
(tj − tk)

)

≤ N exp(σT )

j̃∑

s=1

exp

((
− β

α2
T + σT

)
s

)
+N exp(σT )

= N exp(σT )

j̃∑

s=0

exp

((
− β

α2
T + σT

)
s

)

Then, it follows that

V (φ(t, j)) ≤ exp

(
− β

α2
t+

σT

N
j

)

+N exp(σT )b|K|2|m|2∞
j̃∑

s=0

exp

((
− β

α2
T + σT

)
s

)

where j̃ = ⌊ j
N ⌋. Note that by the continuity of (4.17), there exists small positive scalar ǫ such

that − β
α2
T + σT ≤ −ǫ. Note that for each n ∈ N, we have that

n∑

s=0

exp (−ǫs) ≤ exp(−ǫ)
exp(−ǫ)− 1

=: S. (4.59)
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Then, it follows from (4.19), we have (4.56). We can conclude the proof using similar arguments

as in the proof of Theorem 4.2.9. �

4.2.5.3 Synchronous Communication Case

In this section, we consider the hybrid system Hε in Section 4.2.4.1 when communica-

tion noise is present. Namely, we define a function mi(t) = ϕi(xi, t) for all t ∈ R≥0 and i ∈ V .

In such a case, the update law (4.5) results in

η+i =
Ki

dini

∑

k∈N (i)

H(xi − xk)−
Ki

dini

∑

k∈N (i)

(mi −mk). (4.60)

during jumps, i.e., when τ = 0.

This leads to a hybrid system H̃ε with data (Cε, fε, Dε, G̃ε) with G̃ε given by G̃ε(ξ) =

Gε(ξ)+



Bgm̄

0


∀Dε where where Cε, fε,Dε and G̃ε are given in (4.30), andBg = diag







0

K1


 ,




0

K2


 , . . . ,




0

KN





,

m̄ = (m̄1, m̄2, . . . , m̄N) and M i =
∑

k∈V\{i}(mi −mk).

Theorem 4.2.22 Let T1 and T2 be two positive scalars such that T1 ≤ T2 and the digraph Γ

be strongly connected. If there exist a positive scalar σ, a symmetric positive definite matrix

P ∈ R(n+p)×(n+p) and matrices Ki ∈ Rp×n for each i ∈ V satisfying (4.42), then the hybrid

system H is ISS with respect to m̄ = (m̄1, m̄2, . . . , m̄N ) relative to the set Aε in (4.41). Moreover,

given a solution φ from φ(0, 0), we have that for each (t, j) ∈ domφ,

|φ(t, j)|A ≤ max






√
2
α2

α1
e

R
2 e−

r(t+j)
2 |φ(0, 0)|A,

√
ρe−θ

e−θ − 1
|K||m̄|∞






where θ = ln
(
1− β

2α2

)
, α1 and α2 are given by (4.44), r ∈

(
0, θ

1+T2

]
and R ∈

[
T2|σ|
1+T2

,∞
)
.

Proof Consider the Lyapunov function in (4.45). Note that (4.46) holds where α1 and α2 are

given in (4.44). Since measurement noise is not preset during flows, we have that (4.47) holds for

all ξ ∈ Cm. We must consider the change in V (ξ) = eστz⊤eA
⊤
f τPeAfτz during jumps, namely,
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V (g)− V (ξ) for each ξ ∈ D, g ∈ Gm(ξ). It follows that

V (g)− V (ξ) = eσν(Agz +Bgm̄)⊤eA
⊤
f νPeAfν(Agz +Bgm̄)− z⊤Pz

= eσνz⊤A⊤
g e

A⊤
f νPeAfνAgz + eσνm̄⊤B⊤

g e
A⊤

f νPeAfνBgm̄

+ 2eσνz⊤A⊤
g e

A⊤
f νPeAfνBgm̃− z⊤Pz

From condition (4.42), there exists small enough β > 0 such that z⊤i (e
σνA⊤

g e
A⊤

f νPeAfνAg −

P )zi ≤ −βz⊤i zi for each ν ∈ [T1, T2]. Furthermore, by Young’s Inequality 2a⊤b ≤ ǫa⊤a+ 1
ǫ b

⊤b

for every ǫ > 0. Choosing a = zi, b = eσνA⊤
g e

A⊤
f νPeA

⊤
f νKgm̃i and ǫ =

β
2 , we have that

V (g)− V (ξ) = z⊤(A⊤
g e

A⊤
f νPeAfνAg − P )z + 2eσνz⊤A⊤

g e
A⊤

f νPeAfνBgm̄

+ eσνm̄⊤B⊤
g e

A⊤
f νPeAfνBgm̄

≤ −β
2
z⊤z + eσνm̄⊤B⊤

g e
A⊤

f νPeAfνBgm̄+
2

β
eσνm̄⊤B⊤

g e
A⊤

f νPPeAfνBgm̄

≤ −β
2
z⊤z + eσνm̄⊤B⊤

g e
A⊤

f νP

(
1 +

2

β
P

)
eAfνBgm̄

≤ −β
2
z⊤z + eσνρmax

i∈V
|Bg|2m̄⊤m̄

≤ − β

2α2
V (ξ) + ρ|Bg|2|m̄|2

where ρ = eσT2 |P |
(

2
β |P |+ 1

)
maxν∈[T1,T2]

∣∣eAfν
∣∣2 and we used the fact that from (4.42),

|e σ
2 νeAfνAg| < 1 for each ν ∈ [T1, T2].

Following the steps of the proof of [49, Theorem 2], it follows that solutions are bounded

by

|φ(t, j)|A ≤ max






√
2
α2

α1
e

R
2 e−

r(t+j)
2 |φ(0, 0)|A,

√
ρe−θ

e−θ − 1
|K||m̄|∞






where θ = ln(1 − β
2α2

), r ∈
(
0, θ

1+T2

]
and R ∈

[
T2|σ|
1+T2

,∞
)
for all (t, j) ∈ domφ. Thus, by [47],

we have that the hybrid system H̃ε is ISS with respect to m̄ and relative to the set A in (4.41).

�
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4.2.6 Robustness to Information Loss

At each communication event, a packet containing a measurement yk is received by

agent i. In this section, we study the robustness of the exponential stability of the set A in

(4.14) to the loss of such information, i.e., the situation when some of such data packets are

lost. We assume the following properties on the packets.

Assumption 4.2.23 A Bernoulli random variable bk indicates whether the packet with is suc-

cessfully received. If it is received successfully, then bk = 1; otherwise bk = 0. For each k ∈ V,

bk is identically and independently distributed with P (bk = 1) = dr and P (bk = 0) = 1 − dr

where dr ∈ (0, 1).

This assumption is a common way to model packet losses in large-scale networks [61]. In

Example 4.3.6, we consider the case of the proposed controller designed for exponential stability

of the synchronization set, wherein, the communication between agents is subjected to such

information loss.

However, if we can upper bound the number of packets lost in the network. Then, we

can utilize the previous notions to design a controller that maintains stability of the synchro-

nization set in spite of the dropouts. Then, the number of consecutive packets lost is less than

p∗ ∈ N then we can robustify the controller designed by Proposition 4.2.15 as follows.

Corollary 4.2.24 Let 0 < T1 ≤ T2, an undirected connected graph Γ and p∗ ∈ N. The syn-

chronization set As in (4.34) is GES for Hs in (4.62) if there exist scalar σ > 0, and ma-

trices Pi = P⊤
i > 0 and Qi = Q⊤

i > 0 for each i ∈ {2, 3, . . . , N} such that M i(0) < 0 and

M i(T2(p
∗ + 1)) < 0 where

M i(ν) :=



He(PĀi) −PB + exp(σν)(K̄iĀi − EK̄i)Qi

⋆ He(exp(σν)Qi, E − K̄iB − σ
2 I)


 (4.61)
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for each λi ∈ λ(L) \ {0} where Āi = A+ λiBKH, and Ki = λiKH.

Proof Due to the number of packet dropouts being upper bounded by p∗ ∈ N, the interval

between two successfully received packets is between T1 to T2+p
∗T2, where p∗T2 is the additional

maximum intervals of time. Therefore, we can model the packet dropouts by a timer given by






τ̇p∗ = −1 τp∗ ∈ [0, T2(1 + p∗)]

τ+p∗ ∈ [T1, T2(1 + p∗)] τp∗ = 0.

Namely, if there are p∗ possible packet dropouts, then the dynamics τp∗ effectively model any

possible sequence of times in (4.3) where T2 therein, with a little abuse of notation, can be

replaced with T2(1 + p∗). Therefore, the hybrid system Hs can be defined using τp∗ , namely,

HSs with state ξ = (x, θ, τp∗) and dynamics





ξ̇ = (Af z,−1) τ ∈ [0, T2(1 + p∗)]

ξ+ ∈ (Agz, [T1, T2(1 + p∗)]) τ = 0

(4.62)

Following the proof of Proposition 4.2.15 concludes the result. Namely, consider V in (4.36)

where there exists α1, α2 > 0 satisfying α1|ξ|As
≤ V (ξ) ≤ α2|ξ|As

. During flows, when τ ∈

[0, T2(1+p
∗)], and in light of (4.61), the function 〈∇V (ξ), f(ξ)〉 ≤ β|ξ|As

. Moreover, by applying

Proposition 4.2.11, with M i(0) < 0 and M i < 0, implies that For each ξ ∈ D, g ∈ G(ξ), the

change in V satisfies V +(g)− V (ξ) ≤ 0. Looking at the change in V over a typical solution �

85



4.3 Numerical Examples

4.3.1 Synchronization under Nominal Conditions

Example 4.3.1 Given T i
2 = 0.7 and T i

1 = 0.9 for each i ∈ V, we apply Theorem 4.2.9 to a

network of six harmonic oscillators, where each agent has dynamics given by

ẍi + xi = ui. (4.63)

We consider the case where each agent is connected only to two neighbors in a cycle graph.

Moreover, the output of each agent is both position x1 and velocity x2 information, i.e, H = I.

In state space form, we have an LTI system of the form in (4.1) with state matrices A =


0 1

−1 0


 , B =



0

1


 and an adjacency matrix given by

G =




0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0




. (4.64)
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Figure 4.1: Numerical solutions of 6 interconnected linear oscillators communicating over a ring
graph.

It can be shown that the following parameters K = −
[
0.15 0.15

]
, E = −1, σ = 0.9 and Pi

and Qi such that

P2 = P3 =



0.1173 −0.0025

⋆ 0.1132


 Q2 = Q3 = 0.2162

P4 = P5 =



0.1144 0.0092

⋆ 0.0963


 Q4 = Q5 = 0.2097

P6 =



0.1116 −0.0134

⋆ 0.0897


 Q5 = 0.2023

satisfy the conditions in (4.16) and (4.17).8 In Figure 4.1, a numerical solution φ = (φx, φη, φτ )

to the hybrid system H with the above parameters from initial conditions φx(0, 0) = (−5, 1,−2,−3, 5, 0, 0, 0,−18,−7,−

φη = (0.5, 0, 10,−2, 5,−10) and φτ (0, 0) = (0.25, 0.5, 0.86, 0.87, 0.14, 0.1) is shown.

The convergence to the synchronization set A is exponential in nature, and is guar-

8Code at github.com/HybridSystemsLab/LTIAsyncSync
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K E Theorem 4.2.9 t∗

−
[
0.1 0.1

]
−0.5 X 165.38

−
[
0.15 0.15

]
−1 X 120.2

−
[
0.5 0.5

]
−1.8 × 30.1

−
[
0.6 0.6

]
−0.1 × 27.05[

0.15 −0.6
]
−0.1 × 30.66

Table 4.1: Comparison of convergence times for different gains K and E for the hybrid system
H with asynchronous communication in Section 4.2.1. The X indicates that the conditions are
satisfied, and the × indicates that the conditions are not satisfied but solutions converge to the
synchronization set.

anteed by the sufficient condition in Proposition 4.2.14. In Table 4.1, we compare the con-

vergence time (in flow time, t) of solutions to H with different gains K and E in (4.7) and

(4.8), respectively. Note the conditions in Theorem 4.2.9 are not necessary and it may be pos-

sible that gains can be found so that solutions still converge to the synchronization set. In

Table 4.1, we indicate whether it is possible to satisfy the conditions in Theorem 4.2.9 for the

gains chosen by placing a X if the conditions are satisfied and by placing a × if it is not

possible to satisfy the conditions for the selected gain. Moreover, in Table 4.1, we compare

convergence times of solutions to the set A for different parameter choices. More specifically,

we consider a solution φ such that |φ(0, 0)|A ≈ 50 and find the time it takes for the solu-

tion to converge to and stay in a neighborhood near A in (4.14), i.e., we find t∗ such that

t∗ = {T ∈ R≥0 : |φ(t, j)|A ≤ 0.1 ∀(t, j) ∈ domφ s.t. t ≥ T }. Due to the nonuniqueness of

solutions H in (4.12) and (4.13) when the network parameters are such that T i
1 6= T i

2, Table 4.1

provides an average t∗ over 100 solutions. △

In the next example, we consider the case of synchronization for three agents where communi-

cation occurs simultaneously, namely, the system outlined in Section 4.2.4.1 is employed.

Example 4.3.2 Consider the case of a network of three harmonic oscillators in (4.3.1) con-
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Figure 4.2: A numerical solution of the first component of the state φxi
for each i ∈ {1, 2, 3}

where φxi
= (φxi1 , φxi2) and φτ for Example 4.3.2. (top and middle, respectively) The Lyapunov

function V in (4.45) evaluated along the solution to Hε decreases to zero, indicating that the
solution synchronizes over hybrid time. (bottom)

nected on a strongly connected graph with adjacency matrix G =




0 1 1

1 0 1

1 0 0




with network pa-

rameters T1 = 0.13 and T2 = 0.35. By applying Theorem 4.2.16 to this network, it follows that

for parameters K1 =

[
−0.4 −1

]
, K2 =

[
−0.5 −0.2

]
, K3 =

[
−0.2 −0.15

]
, σ = 0.1 and P
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can be found to

P ≈




65.6 16.0 3.0 −8.6 8.1

16.0 52.3 5.0 −13.2 −2.6

3.0 5.0 11.0 −1.4 −0.4

−8.6 −13.2 −1.4 67.3 2.4

8.1 −2.5 −0.4 2.4 41.4

−1.1 −1.8 −4.8 6.5 1.0

−10.0 −3.8 −0.6 −26.5 2.5

2.1 −5.6 −0.2 −7.6 −17.3

−1.8 −3.1 −6.1 −5.0 −0.5

−1.1 −10.0 2.1 −1.8

−1.8 −3.8 −5.6 −3.1

−4.8 −0.6 −0.2 −6.1

6.5 −26.5 −7.6 −5.0

1.0 2.6 −17.3 −0.5

14.9 −2.3 −1.0 −10.1

−2.3 14.7 1.6 2.9

−1.0 1.6 10.1 1.3

−10.1 2.9 1.2 16.3




(4.65)

satisfy condition (4.42). Figure 4.2 shows a numerical solution φ = (φx, φη, φτ ) for the hybrid

system H from φx(0, 0) = (−1, 0, 1, 0, 0.5, 0), φη(0, 0) = (1, 2,−1) and φτ (0, 0) = 0.1. In this

figure, a plot of the first component of each xi = (xi1, xi2) over flow time, the solution corre-

sponding to the τ component and the Lyapunov function in (4.45) evaluated along the solution

(in error coordinates). Note that the function V tends to zero exponentially over time, indicating

that the solutions converge to synchronization. 9 △

In the next example, we study the convergence time for the case when there is a single timer.

Example 4.3.3 Consider the system in (4.63) with network in (4.64) for the case of a single

timer where T1 = 0.7 and T2 = 0.9. In Table 4.2 and due to the nonuniqueness of solutions, we

give the average time to converge to a neighborhood close to the synchronization set for the gains

chosen, similar to Example 4.3.1. More specifically, this table characterizes the time to converge

t∗ to and stay within a neighborhood of the set A. Moreover, Table 4.2 shows the tightness of

the sufficient conditions provided in Proposition 4.2.15. △

A small-world network is a type of sparse network known to model real-world settings such

as the world wide web, electric power girds, and networks of brain neurons. In particular, a

9Code at https://github.com/HybridSystemsLab/LTISyncStrong
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K E Proposition 4.2.15 t∗}
-
[
0.1 0.1

]
0 X 181.87

-
[
0.15 0.15

]
0 X 119.36

-
[
0.2 0.2

]
0 X 90.69

-
[
0.3 0.3

]
0 X 59.62

-
[
0.5 0.5

]
0 × 33.70

Table 4.2: Comparison of convergence times and results for different choices of gains K and E
for the hybrid system Hε with synchronous communication. The X indicates that the conditions
are satisfied, and the × indicates that the conditions are not satisfied but solutions converge to
the synchronization set.

small-world network is a graph structure in which most agents are, on average, a short geodesic

distance10 from any other node. In the following example, we use the random graph generator

in [62] to generate the interconnection between 100 agents.

Example 4.3.4 In this example, we consider the case of a network of 100 agents with dynamics

as in (4.63) with T i
1 = 0.7 and T i

2 = 0.9 for each i ∈ V. We generated a random graph

using the small world generator in [62] for N = 100, the average degree k = 3 and special

restructuring parameter β = 0.1. The resulting graph structure is depicted in the upper left of

Figure 4.3. Furthermore, we use the parameters in Example 4.3.1, namely, K = −[0.15, 0.15]

and E = −1. The solutions φ = (φx, φη, φτ ) were initialized randomly inside a bounded region,

namely, φxi
(0, 0) ∈ [−5, 5]2, φηi

(0, 0) ∈ [−5, 5] and φτi(0, 0) ∈ T for each i ∈ V11 The plots in

the upper right section of Figure 4.3 show the evolution of the first component of the plant state

x1i for each i ∈ V. It can be seen that solutions asymptotically converge to synchronization as

time progresses: in fact, the bottom plot shows that, indeed, the error converges to zero. △
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Figure 4.3: (left) Randomly generated undirected small-world network containing 100 agents.
(upper right) The first component of the states of each agent in the network. Note that over time
all agents converge to synchrony. (bottom right) The norm of the relative error over ordinary
time converges to zero.
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Figure 4.4: When communication noise is present, solutions converge to a neighborhood about
the synchronization set as indicated by the norm of the relative error converging to an average
value of 0.1147.
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4.3.2 Synchronization under Perturbations and Information Loss

Example 4.3.5 In this example, we consider the case of H with measurement noise. Let the

system be given by the dynamics in Example 4.3.1 connected by a network with adjacency matrix

in (4.64) where T i
1 = 0.7 and T i

2 = 0.9 for each i ∈ V. Let the output yi in (4.2) be given by

a constant bias, i.e., ϕi(xi, t) ≡ mi for each i ∈ V, where m1 = (0.1, 0.1), m2 = (−0.1,−0.1),

m3 = (0, 0), m4 = (0.2, 0.2), m5 = (−0.15,−0.15), and m6 = (0.3, 0.3). Moreover, let

K = −
[
0.15 0.15

]
and E = −1, which, as was shown in Example 4.3.1, satisfy Theorem 4.2.9

therefore the resulting hybrid system H with data given by (4.12) and (4.13) has A exponentially

stable. In Figure 4.4, we show a numerical solution to the hybrid system from the initial condi-

tions in Example 4.3.1. In this figure, it can be seen that solutions converge to a neighborhood

around the synchronization set A. Namely, it can be seen that after the transient period, the

norm of the relative error |ε| of the solution converges to an average value of 0.1147 for this

case. △

Example 4.3.6 At each communication event, a packet containing a measurement yk is received

by agent i. In this example, we study the robustness of the exponential stability of the set

A in (4.14) to the loss of such information, i.e., the situation when some data packets are

lost. We assume that the packet arrival is given by Bernoulli random variables. Namely, a

Bernoulli random variable bk indicates whether the packet is successfully received. If it is received

successfully, then bk = 1; otherwise bk = 0. For each k ∈ V, bk is identically and independently

distributed with P (bk = 1) = dr and P (bk = 0) = 1− dr, where dr ∈ (0, 1).

Consider the system in Example 4.3.1 with a graph as in (4.64). Under the same

initial conditions as in Example 4.3.1, Figure 4.5 shows the norm of the average relative error

10A geodesic distance is defined by the minimum number of edges traversed to get from the starting node to
the end node.

11Code at github.com/HybridSystemsLab/LTISyncSmallWorld
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Figure 4.5: The norm of the average relative error εi for 10 averaged trajectories for each dropout
rate dr = {0, 0.2, 0.4, 0.6, 0.8, 1}

|ε| over the average of 10 trajectories projected onto the t domain for each dropout rate dr ∈

{0, 0.2, 0.4, 0.6, 0.8, 1}. Note that for larger dropout rates, the convergence degrades. Moreover,

for dropout rate larger than dr = 0.6, the norm of the relative error ε does not appear to converge

to zero. △

4.4 Summary

The problem of synchronization of multiple continuous-time linear time-invariant sys-

tems connected over an intermittent network was studied. Communications across the network

occurs at isolated time events, which, using the hybrid systems framework was modeled using

a decreasing timer. Recasting synchronization as a set stability problem, we took advantage of

several properties of the graph structure and employed a Lyapunov based approach to certify

exponential stability of the synchronization set. Then, in part, as a consequence of the reg-

ularity of the hybrid systems data and the aforementioned stability properties, robustness to

communication noise, and unmodeled dynamics was characterized in terms of semi-global prac-

tical stability. When communication noise was affecting the dynamics, the Lyapunov function

candidate chosen certified ISS stability for the synchronization set and relative to such noise.
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Chapter 5

On Synchronization in General Hybrid

Systems

5.1 Introduction

Due to its broad applications, synchronization of dynamical systems has received a sig-

nificant amount of attention recently. Specifically, synchronization is a key property to study in

spiking neurons and control of chaotic systems [63, 64], formation control and flocking maneuvers

[7], and many others applications.

Synchronization of networked systems has been studied using different approaches and

methodologies. Namely, synchronization in both continuous and discrete-time domains has

been investigated in [20, 65], and for both linear and nonlinear systems [66]. The network

structure in such systems is typically studied using graph theory. Graph theory provides a solid

understanding of the connectivity of the network and its effect on the individual dynamics of

the systems [67]. On the other hand, the study of stability and attractivity of synchronization is

typically done using systems theory tools, like Lyapunov functions [15], contraction theory [17],
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and incremental input-to-state stability [18], for instance. To the best of our knowledge, there

is a distinct lack in the synchronization literature for the case where each agent may contain

states that evolve both continuously and discretely.

In this chapter, the synchronization of multi-agent hybrid systems is considered. The

agents considered here are allowed to have states that evolve continuously and, at times, dis-

cretely. A general framework for the study of synchronization in interconnected hybrid systems

is presented to allow for complex interactions between the agents in the network. Namely, the

interconnected model presented allows for states that evolve continuously and, at times, jump;

such actions allow information to be transferred across a network to affect the states of a neigh-

boring agent. For such general models, asymptotic synchronization notions for hybrid systems

are presented, these notions require both stable and convergent behavior (in the uniform and

nonuniform sense). Using tools for analysis of asymptotic stability of set in hybrid systems, we

present results for asymptotic synchronization of interconnected hybrid systems. Namely, this

chapter is meant to begin the discussion on the implications of asymptotic stability of a set to

the asymptotic synchronization.

The remainder of this paper is organized as follows. Section 5.2 introduces the class

of interconnected hybrid systems considered, the notion of asymptotic synchronization, and the

main results.

5.2 Interconnected Agents with Hybrid Dynamics

5.2.1 Hybrid Modeling and General Properties

Consider a network of N agents connected through a graph. For each i ∈ V :=

{1, 2, . . . , N}, the i-th agent is modeled as a hybrid inclusion in (2.1). Let xi ∈ Rn be the state

of each agent, ui ∈ Rp the input to each agent, and yi ∈ Rm the output, which is given by
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yi = h(xi). The output yi may be measured by the agent itself and its neighbors. Moreover, we

define the information available to each i-th agent, denoted as ỹi, as a sequence collecting all

neighboring outputs yk, where k ∈ N (i) ∪ {i}, namely, we define ỹi = {yk}k∈Ni∪{i} ∈ R
m(di+1).

Then, each i-th agent may evolve continuously by

ẋi ∈ F̃ (xi, ui) (5.1)

for every xi ∈ C̃, where C̃ is a subset of Rn. Furthermore, when the state xi is in a set D̃ ⊂ Rn a

self-induced jump in the state of the i-th agent may occur such jump is modeled by the difference

inclusion

x+i ∈ G̃in(xi, ui) (5.2)

Such an event may trigger an abrupt change in the state of its neighbors, in which, for each

i, k ∈ V i 6= k, we have

x+k ∈ (1 − gik)xk + gikGex(xk, uk) =: G̃ik
ex(xk, uk). (5.3)

where gik is the adjacency matrix. Note that when there is a connection between agents i and

k the element in the adjacency matrix is gik = 1 which leads to G̃ik
ex(xk, uk) = Gex(xk, uk).

Moreover, when there is no connection between such agents, we have that gik = 0 which results

in the lack of communication between agents implying that G̃ik
ex(xk, uk) = xk; specifically, there

is no change in the state of agent k induced by the jumps of agent i.

We consider state-feedback laws for the control of each agent; the dynamic case can

be treated similarly. We define static output feedback controllers by κic : R
m(di+1) → Rp during

the continuous evolution of the state. Depending on the scenario, events due to measurements

of information from the neighbors and self-induced jumps may only be available to the agents

at different time instances. When there is an instantaneous change in xi due to a self-induced
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update, i.e., xi ∈ D̃, we denote the feedback controller by κid,in : Rm → Rp, which depends

on the measured yi only. When a neighboring system jumps, i.e., when xk ∈ D̃, k ∈ N (i), we

denote the controller by κid,ex : Rm → R
p which depends on the measured yk which jumped.

A complete model of the network can be obtained by, stacking the agents’ states with

dynamics as in (5.1)-(5.3). The resulting interconnected hybrid system, denoted H, with state

x = (x1, x2, . . . , xN ) is given by

ẋ ∈ (F̃ (x1, κ
1
c(ỹ1)), F̃ (x2, κ

2
c(ỹ2)), . . . , F̃ (xN , κ

N
c (ỹN )))=:F (x)

x ∈ C := C̃ × C̃ × · · · × C̃

x+∈{G̃i(x) :xi ∈ D̃, i ∈ V} =: G(x)

x ∈ D :={x∈RNn :∃i ∈ V , s.t. xi ∈ D̃}.

(5.4)

The jump map G̃i updates the i-th entry of the full state x, via G̃in when xi ∈ D̃, and maps all

other k ∈ V \ {i} components by G̃ik
ex, namely,

G̃i(x) := (G̃i1
ex(x1, κ

1
d,ex(yi)), . . . , G̃in(xi, κ

i
d,in(yi)),

. . . , G̃iN
ex (xN , κ

N
d,ex(yi))).

(5.5)

Note that when multiple components of x are in D̃ then G is the union of more than one jump

map G̃i.

Remark 5.2.1 Due to the structure of H, this framework covers the cases of synchronization

and consensus protocols for both continuous-time systems and discrete time systems. For exam-

ple, using the above hybrid model, a purely continuous-time model can be recovered by considering

D̃ = ∅ and with G̃in, G̃ex arbitrary, and, likewise, a discrete-time model can be obtained using

H by letting C̃ = ∅ and with F̃ arbitrary.
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5.2.2 Partial Synchronization Notions

We introduce an asymptotic synchronization notion that requires both the synchro-

nization error between the components of solutions on hybrid time domains to converge to zero,

as well as stable behavior. We call this notion asymptotic synchronization and we define it as

follows:

Definition 5.2.2 (asymptotic synchronization for H) Consider the hybrid system H in

(5.4). For each i ∈ V, xi = (pi, qi), where pi ∈ Rr and qi ∈ Rn−r with integers n ≥ r ≥ 1. The

hybrid system H is said to have

• stable synchronization with respect to p if for every ε > 0 there exists δ > 0 such that,

every solution φ = (φ1, φ2, . . . , φN ) to H where φi = (φpi , φ
q
i ) is such that

|φi(0, 0)− φk(0, 0)|≤δ =⇒





|φpi (t, j)−φpk(t, j)| ≤ ε

∀(t, j) ∈ domφ

for all i, k ∈ V.

• locally attractive synchronization with respect to p if there exists µ > 0 such that every

maximal solution φ to H is complete and |φi(0, 0)− φk(0, 0)| ≤ µ implies

lim
(t,j)∈domφ
t+j→∞

|φpi (t, j)− φpk(t, j)| = 0. (5.6)

for all i, k ∈ V.

• global attractive synchronization with respect to p if every maximal solution φ to H is

complete and satisfies (5.6) for all i, k ∈ V.

• local asymptotic synchronization with respect to p if it has both stable and local attractive

synchronization with respect to p.
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• global asymptotic synchronization with respect to p if it has both stable and global attractive

synchronization with respect to p. �

Next, we define synchronization in the uniform sense.

Definition 5.2.3 (uniform global asymptotic synchronization for H): Consider the hybrid sys-

tem H in (5.4). For each i ∈ V, let xi = (pi, qi), where pi ∈ Rr and qi ∈ Rn−r with integers

n ≥ r ≥ 1. The hybrid system H is said to have

• uniform stable synchronization with respect to p if there exists a class-K∞ function α

such that any solution φ = (φ1, φ2, . . . , φN ) to H where φi = (φpi , φ
q
i ) satisfies |φpi (t, j) −

φpk(t, j)| ≤ α(|φi(0, 0)− φk(0, 0)|) for all (t, j) ∈ domφ and for all i, k ∈ V.

• uniform global attractive synchronization with respect to p if every maximal solution to H

is complete and for each ε > 0 and r > 0 there exists T > 0 such that for any solution φ

to H with |φi(0, 0) − φk(0, 0)| ≤ r, for each i, k ∈ V, (t, j) ∈ domφ satisfying t + j ≥ T

imply |φpi (t, j)− φpk(t, j)| ≤ ε for each i, k ∈ V.

• uniform global asymptotic synchronization if it has both uniform stable and uniform global

attractive synchronization.

Remark 5.2.4 If r = n, then the notions in Definitions 5.2.2 and 5.2.3 can be considered as

full-state notions, while if r < n it can be considered to be a partial state notions. Note that stable

synchronization requires solutions φi, for each i ∈ V, to start close; while, only the components

φpi , i ∈ V remain close over their solution domain. Similarly, local attractive synchronization

with respect to p only requires the distance between each φpi to approach zero, while the other

component is left unconstrained.
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5.2.3 Results for Partial Synchronization

Our first observation is that stable synchronization with respect to p in a hybrid system

leads to uniqueness in the p components of solutions to H.

Lemma 5.2.5 If the hybrid system H as in (5.4) has stable synchronization with respect to p,

then the p component in the t direction1 of every maximal solution φ = (φ1, φ2, . . . , φN ) from

φ(0, 0) ∈ A, with A as in (5.7), is unique.

Proof We proceed by contradiction. Assume H has stable synchronization with respect to p

and consider two maximal solutions φi = (φi,1, φi,2, . . . , φi,N ), φi,k = (φpi,k, φ
q
i,k) where φ1(0, 0) =

φ2(0, 0) ∈ A . Suppose that the projections of the p components of these solutions in the t direc-

tion are not unique, namely, there exists t∗ > 0 such that φpt,1(t
∗) 6= φpt,2(t

∗) and (t∗, j) ∈ domφi.

Pick ε > 0 such that ε < |φpt,1(t∗) − φpt,2(t∗)|. Then, using this ε in the stable synchronization

notion, no matter how small δ > 0 is chosen, we have that solutions from φ1(0, 0) = φ2(0, 0) sat-

isfy |φpt,1(t)− φpt,2(t)| > ε when t = t∗, which contracts the definition of stable synchronization.

�

Next, we recast synchronization as a set stabilization problem with xi = (pi, qi) for each i ∈ V .

We define the synchronization set as

A = {x = (x1, x2, . . . , xN ) ∈ R
Nn : p1 = p2 = . . . = pN} (5.7)

Note that when r = n, the synchronization set A reduces to the diagonal set {x ∈ RnN : x1 =

x2 = . . . = xN}.

By using the properties of solutions φ for the hybrid system H in (5.4), we levy the fact

that given a solution, the distance of φ to the setA results in |φ(t, j)|2A =
∑N

i=1 |φp(t, j)−φ̄p(t, j)|
1The projection of the p component in the t direction is defined as t 7→ φp(t) := limhց0,(t+h,j)∈dom φ φp(t+

h, j).
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where φ̄p is the average value of φpk for each k ∈ V , i.e., φ̄p =
∑N

k=1 φ
p
k. Using this equivalence

and the triangle inequality with the definition of global asymptotic stability in Definition [28,

Definition 7.1] leads to the implication that H has global asymptotic synchronization. Next, we

present our sufficient conditions for global asymptotic synchronization with respect to p for H.

Theorem 5.2.6 Given a hybrid system H as in (5.4) with data (C,F,D,G), if the set A in

(5.7) is globally asymptotically stable for H, then H has global asymptotic synchronization with

respect to p.

Proof Given a solution φ to the interconnected hybrid system H in (5.4), we partition φ as

(φ1, φ2, . . . , φN ), where each i-th component corresponds to the i-th component of x in (5.4).

Let φi = (φpi , φ
q
i ) and φp = (φp1, φ

p
2, . . . , φ

p
N ) be the stack of φpi components of the solution.

Then, by virtue of the definition of the distance to the set A it follows that

|φ|2A =

∣∣∣∣∣φ
p − 1

N

N∑

i=1

φpk1

∣∣∣∣∣

2

= |(Π⊗ I)φp|2

= (φp)⊤(Π⊗ Ir)⊤(Π⊗ Ir)φp

=

N∑

i=1

∣∣∣∣∣φ
p
i −

1

N

N∑

k=1

φpk

∣∣∣∣∣

2

=

N∑

i=1

∣∣φpi − φ̄p
∣∣2

(5.8)

where φ̄p = 1
N

∑N
k=1 φ

p
k. First, we show that A being stable for H implies that H has stable

synchronization. Given ε > 0, pick δ > 0 such that |φ(0, 0)|A ≤ δ implies |φ(t, j)|A ≤
√
ε for all

(t, j) ∈ domφ and |φi(0, 0)− φk(0, 0)| ≤ δ. Therefore, by virtue of (5.8), it follows that

|φpi (t, j)−φpk(t, j)|2= |φ
p
i (t, j)− φpk(t, j) + φ̄p(t, j)− φ̄p(t, j)|2

≤|φpi (t, j)− φ̄p(t, j)|2+|φpk(t, j)− φ̄p(t, j)|2

≤
N∑

i=1

∣∣φpi (t, j)− φ̄p(t, j)
∣∣2 = |φ(t, j)|2A ≤ ε

for all (t, j) ∈ domφ and hence H has stable synchronization. Next, we show that H has globally
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attractive synchronization. Assume that A is globally attractive for H, then for any complete

solution to H, if follows that

lim
(t,j)∈domφ
t+j→∞

|φ(t, j)|A = 0

which implies that

lim
(t,j)∈domφ
t+j→∞

N∑

i=1

∣∣φpi (t, j)− φ̄p(t, j)
∣∣ = 0.

It follows that, for each i, k ∈ V ,

lim
(t,j)∈domφ
t+j→∞

|φpi (t, j)− φpk(t, j)| = 0, (5.9)

implying that H has globally attractive synchronization. Due to the fact that H has both stable

and attractive synchronization it follows that H has global asymptotic synchronization. �

Remark 5.2.7 The local case of the result in Theorem 5.2.6 can be considered similarly, specif-

ically, if the hybrid system H has the set A locally asymptotically stable then H has local asymp-

totic synchronization with respect to p.

The next result establishes the sufficient conditions for uniform global attractive synchronization

with respect to p.

Theorem 5.2.8 Given a hybrid system H as in (5.4) with data (C,F,D,G), if the set A in

(5.7) is uniformly globally attractive for H, then H has uniform global attractive synchronization

with respect to p.

Proof Let A being uniformly globally attractive for H implies that H has uniform global

attractive synchronization. Given ε > 0 and r > 0, let |φ(0, 0)|A < r and |φi(0, 0)−φk(0, 0)| < r

for each i, k ∈ V then there exists T > 0 such that for t+ j ≥ T , implies |φ(t, j)|A ≤ ε. It follows
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that,

|φpi (t, j)− φpk(t, j)|2 = |φpi (t, j)− φpk(t, j) + φ̄p(t, j)− φ̄p(t, j)|2

≤ |φpi (t, j)− φ̄p(t, j)|2 + |φpk(t, j)− φ̄p(t, j)|2

≤
N∑

i=1

∣∣φpi (t, j)− φ̄p(t, j)
∣∣2 ≤ ε

which implies that H has uniform global synchronization with respect to p. �

Remark 5.2.9 Note that we cannot achieve uniform stable synchronization for the hybrid sys-

tem H from uniform global asymptotic stability of the synchronization set A for H. At this

time, it is not evident how to recover the K∞ function in terms of the synchronization error

on the right-hand side of the inequality in the definition of uniform stable synchronization in

Definition 5.2.3.

Our final result establishes a KL characterization for uniform global asymptotic synchronization.

Theorem 5.2.10 A hybrid system H as in (5.4) has uniform global asymptotic synchronization

with respect to p if and only if there exists a function β ∈ KL such that any maximal solution

φ = (φ1, φ2, . . . , φN ) where φi = (φpi , φ
q
i ), satisfies

|φpi (t, j)− φpk(t, j)| ≤ β(|φi(0, 0)− φk(0, 0)|, t+ j) (5.10)

for all (t, j) ∈ domφ and for all i, k ∈ V.

Proof The sufficient direction is immediate by definition of class-KL functions. To show ne-

cessity, assume H has uniform global asymptotic synchronization with respect to p. Define a
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function β0 : R≥0 × R≥0 ⇒ [−∞,∞) by

β0(r, s) = sup{|φpi (t, j)− φqi (t, j)| : φ ∈ SH(φ(0, 0)),

|φi(0, 0)− φk(0, 0)| < r, t+ j ≥ s, i, k ∈ V}

(5.11)

which implies that the bound

|φpi (t, j)− φpk(t, j)| ≤ β0(|φi(0, 0)− φk(0, 0), t+ j)

for all (t, j) ∈ domφ and i, k ∈ V holds for all solutions to φ to H. The definition further implies

that β0(r, s) is nondecreasing in r and nonincreasing in s. One also has β0(r, s) ≤ α(r) for

all r, s ≥ 0, where α comes from the definition of uniform stable synchronization. Now define

β : R≥0 × R≥0 → R≥0 by

β(r, s) = max{0, β0(r, s)}.

Then, β(r, s) is non decreasing in r and nonincreasing in s, limr→0+ β(r, s) = 0 for each s ∈

R≥0 since β(r, s), and the bound in (5.10) holds for each solution φ. Finally, uniform global

asymptotic attractivity of A implies that lims→∞ β(r, s) = 0 for each r ≥ 0. Hence, β is a

class-KL function. �

Remark 5.2.11 With global asymptotic stability, synchronization can be studied using (nonuni-

form and uniform) asymptotic stability tools for hybrid systems. Namely, sufficient conditions

for such notions can be formulated in terms of an appropriately defined Lyapunov function

V : Rn → R satisfying the conditions in [28, Definition 3.16] for A. Such conditions re-

quire V to satisfy a bound of the form 〈∇V (x), f〉 < 0 for all x ∈ C \ A and f ∈ F (x), and

V (g)−V (x) < 0 for all x ∈ D \A and g ∈ G(x). Then, integration of V over a solution φ leads

to a strict decrease in V for all points in the flow and jump set, respectively. At times, however,
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strict inequalities might be hard to obtain. For such cases, when the system H in (5.4) satisfies

the hybrid basic conditions, we get stability and, via the invariance principle in [28, Theorem

8.2], if every maximal solution is complete to H converges to the largest weakly invariant subset

where V does not change. Furthermore, at times, V may not necessarily decrease during flows

but strictly decreases at jumps, or vice versa, in which case we can utilize the relaxed conditions

in [28, Proposition 3.24, Proposition 3.27, Proposition 3.29, and Proposition 3.30].

5.3 Summary

In this chapter, a brief discussion of asymptotic synchronization for generic intercon-

nected agents with hybrid dynamics is presented. This chapter presents both uniform and

nonuniform notions of partial state asymptotic synchronization in the sense of both stable and

attractive synchronization which leads to an asymptotic synchronization property. Sufficient

conditions for synchronization through the stability of a synchronization set were presented

Lyapunov based tools for hybrid systems to certify asymptotic synchronization for two applica-

tions.
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Part II

Impulse-Coupled Oscillators
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Chapter 6

Desynchronization in Impulse-Coupled

Oscillators

6.1 Introduction

Impulse-coupled oscillators are multi-agent systems with state variables consisting of

timers that evolve continuously until a state-dependent event triggers an instantaneous update

of their values. Networks of such oscillators have been employed to model the dynamics of a

wide range of biological and engineering systems. In fact, impulse-coupled oscillators have been

used to model groups of fireflies [31], spiking neurons [32, 33], muscle cells [34], wireless networks

[35], and sensor networks [36]. With synchronization being a property of particular interest, such

complex networks have been found to coordinate the values of their state variables by sharing

information only at the times the events/impulses occur [31, 37].

The opposite of synchronization is desynchronization. In simple words, desynchroniza-

tion in such systems is the notion that the agents’ event times are separated “as far apart”

as possible in time. Desynchronization is similar to phase-shifting or splay-state configurations,
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and is sometimes referred in the literature as an inhibited behavior [38, 39]. For impulse-coupled

oscillators, desynchronization is given as the behavior in which the separation between all of the

timers impulses is equal [40]. This behavior has been found to be present in communication

schemes in fish [41] and in networks of spiking neurons [42, 43]. Desynchronization of oscillators

has recently been shown to be of importance in the understanding of Parkinson’s disease [44, 45],

in the design of algorithms that limit the amount of overlapping data transfer and data loss in

wireless digital networks [35], and in the design of round-robin scheduling schemes for sensor

networks [36].

Motivated by the applications mentioned above and the lack of a full understanding

of desynchronization in multi-agent systems, this paper pertains to the study of the dynamical

properties of desynchronization in a network of impulse-coupled oscillators with a completely

connected communication graph. The uniqueness of the approach emerges from the use of hybrid

systems tools, which not only conveniently capture the continuous and impulsive behavior in

the networks of interest, but also are suitable for analytical study of asymptotic stability and

robustness to perturbations.

More precisely, the dynamics of the proposed hybrid system capture the (linear) contin-

uous evolution of the states as well their impulsive/discontinuous behavior due to state triggered

events. Analysis of the asymptotic behavior of the trajectories (or solutions) to these systems

is performed using the framework of hybrid systems introduced in [28, 27]. To this end, we

recast the study of desynchronization as a set stabilization problem. Unlike synchronization,

for which the set of points to stabilize is obvious, the complexity of desynchronization requires

first to determine such a collection of points, which we refer to as the desynchronization set. We

propose an algorithm to compute such set of points. Then, using Lyapunov stability theory for

hybrid systems, we prove that the desynchronization set is asymptotically stable by defining a

Lyapunov-like function as the distance between the state and (an inflated version of) the desyn-

109



chronization set. In our context, asymptotic stability of the desynchronization set implies that

the distance between the state and the desynchronization set converges to zero as the amount

of time and the number of jumps get large. Using the proposed Lyapunov-like function and

invoking an invariance principle, the basin of attraction is characterized and shown to be the

entire state space minus a set of measure zero, which turns out to actually be an exact esti-

mate of the basin of attraction. Furthermore, also exploiting the availability of a Lyapunov-like

function, we analytically characterize the time for the solutions to reach a neighborhood of the

desynchronization set. In particular, this characterization provides key insight for the design of

algorithms used in applications in which desynchronization is crucial, such as wireless digital

networks and sensor networks.

The asymptotic stability property of the desynchronization configuration is shown to

be robust to several types of perturbations. The perturbations studied here include a generic

perturbation in the form of an inflation of the dynamics of the proposed hybrid system model

of the network of interest and several kinds of perturbations on the timer rates. Using the

tools presented in [28, 27], we analytically characterize the effect of these perturbations on the

already established asymptotic stability property of the desynchronization set. In particular,

these perturbations capture situations where the agents in the network are heterogeneous due

to having differing timer rates, threshold values, and update laws. To verify the analytical re-

sults, we simulate networks of impulse-coupled oscillators under several classes of perturbations.

Specifically, we show numerical results when perturbations affect the update laws and the timer

rates.

The remainder of this paper is organized as follows. Section 6.2 is devoted to hybrid

modeling of networks of impulse-coupled oscillators. Section 6.3.1 introduces an algorithm to

determine the desynchronization set. Section 6.3.2 presents the stability results while the time

to convergence is characterized in Section 6.3.3. The robustness results are in Section 6.3.4.
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Section 6.4 presents numerical results illustrating our results. Final remarks are given in Sec-

tion 6.5.

6.2 Hybrid System Model of Impulse-Coupled Oscillators

6.2.1 Mathematical Model

In this paper, we consider a model of N impulse-coupled oscillators. Each impulse-

coupled oscillator has a continuous state (τi for the i-th oscillator) defining its internal timer.

Once the timer of any oscillator reaches a threshold (τ̄ ), it triggers an impulse and is reset to

zero. At such an event, all the other impulse-coupled oscillators rescale their timer by a factor

given by (1+ε) times the value of their timer, where ε ∈ (−1, 0).1 Figure 6.1 shows a trajectory

of two impulse-coupled oscillators with states τ1 and τ2. In this figure, the dark red circles

indicate when a timer state has reached the threshold and, thus, resets to zero. The light green

circles indicate when an oscillator is externally reset and, hence, decreases its timer by (1 + ε)

times its current state.

According to this outline of the model, the dynamics of the impulse-coupled oscillators

involve impulses and timer resets, which are treated as true discrete events and instantaneous

updates, while the smooth evolution of the timers before/after these events define the continuous

dynamics. We follow the hybrid formalism of [28, 27], where a hybrid system is given by four

objects (C, f,D,G) defining its data.

A hybrid system capturing the dynamics of the impulse-coupled oscillators is denoted

as HN := (C, f,D,G) and can be written in the compact form

HN : τ ∈ R
N






τ̇ = f(τ) τ ∈ C

τ+ ∈ G(τ) τ ∈ D
, (6.1)

1Cf. the model for synchronization in [31] where ε > 0.
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τ1
τ2

τ̄

τ1, τ2

∆t0 ∆t1 ∆t2 ∆t3 ∆t4 ∆t5

(ε+ 1)τ1
(ε+ 1)τ2

t [seconds]

Figure 6.1: An example of two impulse-coupled oscillators reaching desynchronization (as ∆ti
converges to a constant.) The internal resets (dark red circles) map the timers to zero. The
external resets (light green circles) map the timers to a fraction (1 + ε) of their current value.

where N ∈ N \ {0, 1} is the number of impulse-coupled oscillators. The state of HN is given by

τ := [τ1 τ2 . . . τN ]
⊤ ∈ PN := [0, τ̄ ]N .

The flow and jump sets are defined to constrain the evolution of the timers. The flow set is

defined by

C := PN , (6.2)

where I := {1, 2, . . . , N} and τ̄ > 0 is the threshold. During flows, an internal clock gradually

increases based on the homogeneous rate, ω. Then, the flow map is defined as

f(τ) := ω1 ∀τ ∈ C

with ω > 0 defining the natural frequency of each impulse-coupled oscillator. The impulsive

events are captured by a jump set D and a jump map G. Jumps occur when the state is in the

jump set D defined as

D := {τ ∈ PN : ∃i ∈ I s.t. τi = τ̄} . (6.3)
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From such points, the i-th timer is reset to zero and forces a jump of all other timers. Such

discrete dynamics are captured by the following jump map: for each τ ∈ D define G(τ) =

[g1(τ) g2(τ) . . . gN(τ)]
⊤
, where, for each i ∈ I,

gi(τ) =





0 if τi = τ̄ , τr < τ̄ ∀r ∈ I \ {i}

{0, τi(1 + ε)} if τi = τ̄ ∃r ∈ I \ {i} s.t. τr = τ̄

(1 + ε)τi if τi < τ̄ ∃r ∈ I \ {i} s.t. τr = τ̄

(6.4)

with parameters ε ∈ (−1, 0) and τ̄ > 0; for τ ∈ D, gi is not empty. When a jump is triggered, the

state τi jumps according to the i-th component of the jump map gi. When a state reaches the

threshold τ̄ , it is reset to zero only when all other states are less than that threshold; otherwise,

if multiple timers reach the threshold simultaneously, the jump map is set valued to indicate

that either gi(τ) = 0 or gi(τ) = (1 + ε)τi is possible. This is to ensure that the jump map

satisfies the regularity conditions outlined in Section 8.2.2.2

6.2.2 Basic Properties of HN

6.2.2.1 Hybrid Basic Conditions

First, note that the hybrid system HN satisfies the hybrid basic conditions as in Defi-

nition 2.1.8.

Lemma 6.2.1 HN satisfies the hybrid basic conditions.

Proof Condition (a) is satisfied since C and D are closed. The function f is constant and

therefore continuous on C, satisfying (b). With G as in (6.4), the graph of each gi outer

2In [38], a more general flow map and a jump map incrementing τi by ε > 0 are considered.
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semicontinious since its graph given by

gph(gi) = {(x, y) : y ∈ gi(x), x ∈ D}

= {(x, y) : y = 0, xi = τ̄ , xr ≤ τ̄ ∀r 6= i, x ∈ D} ∪ {(x, y) : y = (1 + ε)xi, xi ≤ τ̄ ∃xr = τ̄ , x ∈ D}

is closed. Then the set-valued mapping G is outer semicontinuous. By definition, G is bounded

and nonempty for each τ ∈ D, and hence it satisfies (c). �

Note that satisfying the hybrid basic conditions implies that HN is well-posed [28,

Theorem 6.30], which, with asymptotic stability of a compact set, gives robustness to vanishing

state disturbances; see [28, 27]. Section 6.3.4 considers different types of perturbations that HN

can withstand.

6.2.2.2 Solutions to HN

Namely, due to the nature of the flow and jump map, the solutions exhibit natural

tendencies outlined in the following results.

Lemma 6.2.2 From every point in C ∪D, there exists a solution and every maximal solution

to HN is complete and bounded.

Proof The result follows from Proposition 2.10 in [28] using the following properties. For each

point such that τ ∈ C, the components of the flow map f are positive and induce solutions

that flow towards D. For each τ ∈ D, the jump map satisfies G(τ) ⊂ C. Since it is impossible

for solutions with initial conditions τ(0, 0) ∈ C ∪D to escape C ∪D, all maximal solutions are

complete and bounded. �

Due to the jump map G, if the elements of the solution are initially equal (denote this

set as S := {τ ∈ PN : ∃i, r ∈ I, i 6= r, τi = τr}) it is possible for them to remain equal for all

time. Furthermore, it is also possible for solutions to be initialized on the jump set such that

114



one element is at the threshold and another is equal to zero then after the jump they will be

equal, e.g. let τ1 = τ̄ , τ2 = 0 then τ+1 = τ+2 = 0. We denote this set as G := {τ ∈ D \ S : ∃i, r ∈

I, i 6= r, τi = 0, τr = τ̄}. The next result considers solutions initialized on the set X := S ∪ G.

Lemma 6.2.3 For each τ(0, 0) ∈ XN , there exists a solution τ to HN from τ(0, 0) such that,

for some M ∈ {0, 1}, τ(t, j) ∈ S for all t+ j ≥M , (t, j) ∈ dom τ .

Proof Consider a solution τ to the hybrid system HN with initial condition τ(0, 0) ∈ S. Due

to the flow map for each state being equal, τ remains in S during flows. Furthermore, at points

τ ∈ S ∩ D, the jump map G is set valued by the definition of gi in (6.4). From these points,

G(τ)∩S 6= ∅. In fact, for each τ(0, 0) ∈ S, there exists at least one solution such that τ(t, j) ∈ S

for all t+j ≥ 0, with (t, j) ∈ dom τ . Consider the case of solutions initialized at τ(0, 0) ∈ G (Note

that τ(0, 0) ∈ D). It follows that for some r ∈ I, τr(0, 0) = τ̄ and gr(τ(0, 0)) = 0. Therefore,

after the initial jump, we have that G(τ(0, 0)) ∩ S 6= ∅, by which using previous arguments

implies that τ(t, j) ∈ S for all t+ j ≥ 1. �

Furthermore, there is a distinct ordering to the jumps. If τ is such that τi 6= τr for all

i 6= r then the ordering of each τi is preserved after N jumps. More specifically, we have the

following result.

Lemma 6.2.4 For every solution τ to HN with τ(0, 0) /∈ X , if at (tj , j) ∈ dom τ we have

0 ≤ τi1(tj , j) < τi2(tj , j) < ... < τiN (tj , j) ≤ τ̄ for some sequence of non-repeated elements

{im}Nm=1 of I (that is, a reordering of the elements of the set I = {1, 2, . . . , N}) then, after N

jumps, it follows that 0 ≤ τi1(tj+N , j +N) < τi2 (tj+N , j +N) < ... < τiN (tj+N , j +N) ≤ τ̄ .

Proof Let τ be a solution to HN from PN \ X . There exists a sequence ik of distinct elements

with ik ∈ I for each k ∈ I, such that 0 ≤ τi1(t, j) < τi2(t, j) < . . . < τiN (t, j) ≤ τ̄ over

[t0, t1]×{0}. After the jump at (t, j) = (t1, 0) we have 0 = τiN (t, j+1) < τi1 (t, j+1) < τi2 (t, j+
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1) < . . . < τiN−1(t, j+1) < τ̄ . Continuing this way for each jump, it follows that after N−1 more

jumps, the solution is such that 0 ≤ τi1(tN , j +N) < τi2(tN , j +N) < . . . < τiN (tN , j +N) ≤ τ̄

and the order at time (t, j) is preserved. �

Using these properties of solutions toHN , the next section defines the set to which these solutions

converge and establishes its stability properties.

6.3 Dynamical Properties of HN

The set of points from where the attractivity property holds called the basin of at-

traction and excludes all points where the system trajectories may never converge to A. In

fact, it will be established in Section 6.3.2 that the basin of attraction for asymptotic stability

of desynchronization of HN does not include any point τ such that any two or more timers

are equal or become equal after a jump, which is the set XN defined in Lemma 6.2.3. For

this purpose, a Lyapunov-like function be constructed in Section 6.3.2 to show that a compact

set denoted A, defining the desynchronization condition, is asymptotically stable and weakly

globally asymptotically stable.

6.3.1 Construction of the set A for HN

In this section, we identify the set of points corresponding to the impulse-coupled

oscillators being desynchronized, namely, we define the desynchronization set. We define desyn-

chronization as the behavior in which the separation between all of the timers’ impulses is equal

(and nonzero), see Figure 6.1. More specifically desynchronization is defined as follows:

Definition 6.3.1 A solution τ to HN is desynchronized if there exists ∆ > 0 and a sequence

of non-repeated elements {im}Nm=1 of I (that is, a reordering of the elements of the set I =
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{1, 2, . . . , N}) such that limj→∞(timj −t
im+1

j ) = ∆ for all m ∈ {1, 2, . . . , N−1} and limj→∞(tNj −

ti1j ) = ∆, where {timj }∞j=0 is the sequence of jump times of the state τim .

In fact, this separation between impulses leads to an ordered sequence of impulse times

with equal separation. The desynchronization set A for the hybrid system HN captures such

a behavior and is parameterized by ε, the threshold τ̄ , and the number of impulse-coupled

oscillators N .

To define this set, first we provide some basic intuition about the dynamics of HN when

desynchronized. The set A must be forward invariant and such that trajectories staying in it

satisfy the property in Definition 6.3.1. Due to the definition of the flow map f , there exist sets

in the form of “lines” ℓk, each of them in the direction 1, which is the direction of the flow map,

intersecting the jump set at a point which, for the k-th line, we denote as τ̃k. We define the

desynchronization set as the union of sets ℓk collecting points τ = τ̃k + 1s ∈ PN parameterized

by s ∈ R.

To identify τ̃k, consider a point τ̃k ∈ D \X with components satisfying τ̃k1 = τ̄ > τ̃k2 >

τ̃k3 > ... > τ̃kN . Due to Definition 6.3.1, it must be true that the difference between jump times

are constant. This means that there must be some correlation between ∆ and the difference

between, in this case, τk1 and τk2 . Moreover, there must be a correlation between τk1 and all

other states at jumps. It follows that this point belongs to A only if the distance between the

expiring timer (τ̃k1 ) and each of its other components (τ̃ki , i ∈ I \ {1}) is equal to the distance

between the value after the jump of the timer expiring next (τ̃k2
+) and the value after the jump

of its other components (τ̃ki
+, i ∈ I \ {2}), respectively. This property ensures that, when in

the desynchronization set, the relative distance between the leading timer and each of the other

timers is equal, before and after jumps. More precisely,

τ̃k1 − τ̃ki = τ̃k2
+ − τ̃knext(i)+ ∀ i ∈ I \ {1}, (6.5)
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where τ̃k+ = G(τ̃k) and next(i) = i + 1 if i + 1 ≤ N and 1 otherwise.3 Since X contains

all points such that at least two or more timers are the same, we can consider the case when

one component of τ̃k is equal to τ̄ at a time. For each such case, we have (N − 1)! possible

permutations of the other components and N possible timer components equal to τ̄ , leading to

N ! total possible sets ℓk.

To illustrate computation of τ̃k in (6.5) and the construction of A, consider the case

of N = 2 and τ̃11 = τ̄ > τ̃12 . For i = 2, (6.5) becomes

τ̄ − τ̃12 = τ̃12 (ε+ 1)

which leads to τ̃12 = τ̄
ε+2 . It follows that τ̃

1 = [τ̄ , τ̄
ε+2 ]

⊤. Similarly for τ̃12 = τ̄ > τ̃11 , we get from

(6.5) the equation τ̄ − τ̃11 = τ̃12 (ε + 1), which implies τ̃2 = [ τ̄
ε+2 , τ̄ ]

⊤. A glimpse at the case for

N = 3 with τ̃11 = τ̄ > τ̃12 > τ̃13 indicates that (6.5) leads to

τ̄ − τ̃12 = τ̃12 (1 + ε)− τ̃13 (1 + ε), τ̄ − τ̃13 = τ̃12 (1 + ε)− 0.

The solution to these equations is τ̃1 = [τ̄ , τ̄ (ε+ 2)/(ε2 + 3ε+ 3), τ̄ /(ε2 + 3ε+ 3)]⊤.

For the N case, the algorithm above results in the system of equations Γτs = b, where

Γ =




1 0 0 0 . . . 0

0 (2 + ε) −(1 + ε) 0 . . . 0

0 (1 + ε) 1 −(1 + ε)
. . .

...

0 (1 + ε) 0 1
. . . 0

...
...

... 0
. . . −(1 + ε)

0 (1 + ε) 0 0 . . . 1




(6.6)

and b = τ̄1, where τs is the state τ̃
k sorted into decreasing order. For example, if τ̃k is such that

τ̃k2 = τ̄ > τ̃k1 > τ̃k3 , then τs is given as [τ̃k2 , τ̃
k
1 , τ̃

k
3 ]

⊤. It can be shown that for any ε ∈ (−1, 0),
3Note that G is single valued at each τ̃k /∈ X .
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a solution τs exists (see Lemma 6.2.2). Then, τs needs to be unsorted and becomes τ̃k in the

definition of the set ℓk.

The solution to Γτs = b is the result of a single case of τ ∈ D \X . As indicated above,

to get a full definition of the set A, the N ! sets ℓk should be computed. For arbitrary N , the

set A is given as a collection of sets ℓk given by

A =
N !⋃

k=1

ℓk, (6.7)

where, for each k ∈ {1, 2, . . . , N !}, ℓk := {τ : τ = τ̃k + 1s ∈ PN , s ∈ R}.

6.3.2 Lyapunov Stability

Lyapunov theory for hybrid systems is employed to show that the set of points A is

asymptotically stable. Our candidate Lyapunov-like function, which is defined below and uses

the distance function, is built by observing that there exist points where the distance to A may

increase during flows. This is due to the sets ℓk being a subset PN . To avoid this issue, we

define

Ã =
N !⋃

k=1

ℓ̃k ⊃ A

where ℓ̃k is the extension of ℓk given by

ℓ̃k =
{
τ ∈ R

N : τ = τ̃k + 1s, s ∈ R
}
. (6.8)

Then, with this extended version ofA, the proposed candidate Lyapunov-like function for asymp-

totic stability of A for HN is given by the locally Lipschitz function

V (τ) = min{|τ |ℓ̃1 , |τ |ℓ̃2 , . . . , |τ |ℓ̃k , . . . , |τ |ℓ̃N !} ∀ τ ∈ PN \ X (6.9)
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where, for some k, |τ |ℓ̃k is the distance between the point τ and the set ℓ̃k.
4 The following

theorem establishes asymptotic stability ofA forHN . We show that the change in V during flows

is zero and that at jumps we have a strict decrease of V ; namely, V (G(τ)) − V (τ) = −|ε|V (τ).

A key step in the proof is in using [28, Theorem 8.2] on a restricted version of HN .

Theorem 6.3.2 For every N ∈ N, N > 1, τ̄ > 0, ω > 0, and ε ∈ (−1, 0), the hybrid system HN

is such that the compact set A is

1. asymptotically stable with basin of attraction given by BA := PN \ X .

2. Furthermore, A weakly globally asymptotically stable.

Proof Let the set XN,v define the v-inflation of XN (defined in Lemma 6.2.3), that is, the open

set5 XN,v := {τ ∈ RN : |τ |X < v}, where v ∈ (0, v∗) and v∗ = minx∈X ,y∈Ã |x − y|. Given any

v ∈ (0, v∗), we now consider a restricted hybrid system H̃N = (f, C̃, G, D̃), where C̃ := C \XN,v

and D̃ := D \ XN,v, which are closed. We establish that Ã is an asymptotically stable set for

H̃N .

Note that the continuous function V , given by (6.9), is defined as the minimum distance

from τ to Ã, where Ã is the union of N ! sets ℓ̃k in (6.8). To determine the change of V during

flows6, we consider the relationship between the flow map and the sets ℓ̃k. The inner product

between a vector pointing in the direction of the set ℓ̃k and the flow map on C̃ satisfies

1⊤f(τ) = 1⊤(ω1) = ωN = |1||ω1| = |1||f(τ)| cos θ

, which is only true if θ is zero. Therefore, the direction of the flow map and of the vector

defining ℓ̃k are parallel, implying that the distance to the set Ã is constant during flows.

4The set ℓ̃k can be described as a straight line in Rn passing through a point τ̃k and with slope 1. Then,
|τ |

ℓ̃k
can be written as the general point-to-line distance |(τ̃k − τ)− 1/N((τ̃k − τ)⊤1)1|.

5The set XN,v is open since every point τ ∈ Xv is an interior point of XN,.
6Its derivative can be computed using Clarke’s generalized gradient [68].
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The change in V during jumps is given by V (G(τ))−V (τ) for τ ∈ D̃\Ã. Due to the fact

that we can rearrange the components of τ ∈ PN \ XN , without loss of generality, we consider

a single jump condition, namely, we consider τ such that τ̄ = τ1 > τ2 > . . . > τN−1 > τN .

Using the formulation in Section 6.3.1 and [69, Lemma A.1], the elements of the vector τ̃k

associated with ℓ̃k for this case of τ are given by τ̃ki =
∑N−i

p=0 (ε+1)p

∑N−1
p=0 (ε+1)p

τ̄ , which by [69, Lemma A.2]

is equal to (ε+1)N−i+1−1
(ε+1)N−1 τ̄ . After the jump, G(τ) is single valued and is such that its elements

are ordered as follows: g2(τ) > g3(τ) > . . . > gN (τ) > g1(τ) = 0. Specifically, the jump map is

G(τ) = [0, (1 + ε)τ2, . . . , (1 + ε)τN ]⊤. Then, the formulation in Section 6.3.1 and Lemma 6.2.2

leads to a case of τ̃k denoted as τ̃k
′

. By [69, Lemma A.2], the elements of the vector τ̃k
′

are

given by τ̃k
′

1 = ε
(ε+1)N−1 τ̄ and τ̃k

′

i = (ε+1)N−i+2−1
(ε+1)N−1 τ̄ for i > 1. Due to the ordering of τ and

G(τ), τ̃k
′

is a one-element shifted (to the right) version of τ̃k.

From the definition of τ̃k above, V at τ reduces to

V (τ) = |τ |ℓ̃k =

∣∣∣∣(τ̃
k − τ)− 1

N
((τ̃k − τ)⊤1)1

∣∣∣∣

for some k. Note that

(τ̃k − τ)⊤1 =

N∑

i=1

τ̃ki −
N∑

i=1

τi

reduces to
∑N

i=2 τ̃
k
i −

∑N
i=2 τi since τ1 = τ̃k1 = τ̄ . Using [69, Lemma A.2] and [69, Lemma A.3],

it follows that

N∑

i=2

τ̃ki =

∑N
i=2

∑N−i
p=0 (ε+ 1)p

∑N−1
p=0 (ε+ 1)p

τ̄ =
((ε+ 1)N − 1)−Nε
ε((ε+ 1)N − 1)

τ̄ .

Then, the first element of the vector inside the norm in the expression of V (τ) is given as

(τ̃k1 − τ1)−
1

N

(
((ε+ 1)N − 1)−Nε
ε((ε+ 1)N − 1)

τ̄ −
N∑

i=2

τi

)
= − ((ε+ 1)N − 1)−Nε

εN((ε+ 1)N − 1)
τ̄ +

1

N

N∑

i=2

τi,
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while the elements with m ∈ {2, 3, . . . , N} are given by

(τ̃km − τm)− 1

N

(
((ε+ 1)N − 1)−Nε
ε((ε+ 1)N − 1)

τ̄ −
N∑

i=2

τi

)

=

(
(ε+ 1)N−m+1 − 1

(ε+ 1)N − 1
τ̄ − τm

)
− 1

N

(
((ε+ 1)N − 1)−Nε
ε((ε+ 1)N − 1)

τ̄ −
N∑

i=2

τi

)

=
εN(ε+ 1)N−m+1 − ((ε+ 1)N − 1)

εN((ε+ 1)N − 1)
τ̄ − N − 1

N
τm +

1

N

N∑

i=2,i6=m

τi.

After the jump at τ , since G(τ) is single valued, V (G(τ)) is given by

|G(τ)|ℓ̃k′
=

∣∣∣∣(τ̃
k′ −G(τ)) − 1

N
((τ̃k

′ −G(τ))⊤1)1
∣∣∣∣ .

Note that (τ̃k
′ −G(τ))⊤1 =

∑N
i=1 τ̃

k′

i −
∑N

i=1 gi(τ) reduces to
∑N

i=1 τ̃
k′

i −
∑N

i=2(1 + ε)τi, since

g1(τ) = 0 and gi(τ) = (1 + ε)τi for i > 1. Using [69, Lemma A.2] and [69, Lemma A.3], it

follows that

N∑

i=1

τ̃k
′

i =

∑N
i=1

∑N−i
p=0 (ε+ 1)p

∑N−1
p=0 (ε+ 1)p

τ̄ =
(ε+ 1)((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄

which leads to

(τ̃k
′ −G(τ))⊤1 =

(ε+ 1)((ε+ 1)N − 1)−Nε
ε((ε+ 1)N − 1)

τ̄ −
N∑

i=2

(1 + ε)τi.

The first element inside the norm in V (G(τ)) is given by

(τ̃k
′

1 − g1(τ)) −
1

N

(
(ε+ 1)((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄ −

N∑

i=2

(1 + ε)τi

)

=
ε

(ε+ 1)N − 1
τ̄ − (ε+ 1)((ε+ 1)N − 1)−Nε

εN((ε+ 1)N − 1)
τ̄ +

1

N

N∑

i=2

(1 + ε)τi

= (1 + ε)

(
− ((ε+ 1)N − 1)−Nε

εN((ε+ 1)N − 1)
τ̄ +

1

N

N∑

i=2

τi

)
.
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For each element m > 1, it follows that

(τ̃k
′

m − gm(τ)) − 1

N

(
(ε+ 1)((ε+ 1)N − 1)−Nε

ε((ε+ 1)N − 1)
τ̄ −

N∑

i=2

(1 + ε)τi

)

=
(ε+ 1)N−m+2 − 1

(ε+ 1)N − 1
τ̄ − (1 + ε)

N − 1

N
τm

− (ε+ 1)((ε+ 1)N − 1)−Nε
εN((ε+ 1)N − 1)

τ̄ +
1

N

N∑

i=2,i6=m

(1 + ε)τi

= (1 + ε)

(
εN(ε+ 1)N−m+1 − ((ε+ 1)N − 1)

εN((ε+ 1)N − 1)
τ̄

−N − 1

N
τm +

1

N

N∑

i=2,i6=m

τi



 .

Combining the expressions for each of the elements inside the norm of V (G(τ)), it follows that

V (G(τ)) = (1 + ε)V (τ).

Then, the change during jumps is given by V (G(τ))−V (τ) = εV (τ) where ε ∈ (−1, 0).

With the property of V during flows established above, the change of V along solutions is

bounded during flows and jumps by the nonpositive functions uC̃ and uD̃, respectively, defined

as follows: uC̃(z) = 0 for each z ∈ C̃ and uC̃(z) = −∞ otherwise; uD̃(z) = εV (z) for each

z ∈ D̃ and uD̃(z) = −∞ otherwise. Using Lemma 6.2.1, the fact that C̃ and D̃ are closed,

and the fact that every maximal solution to H̃ is bounded and complete, by [28, Theorem 8.2],

every maximal solution to H̃N approaches the largest weakly invariant subset of LV (r
′) ∩ C̃ ∩

[Lu
C̃
(0) ∪ (Lu

D̃
(0) ∩ G(Lu

C̃
(0)))] = LV (r

′) ∩ C̃ for r′ ∈ V (C̃). Since every maximal solution

jumps an infinite number of times, the largest invariant set is given for r′ = 0 due to the

fact that V (G(τ)) − V (τ) = εV (τ) < 0 if r′ > 0. Then, the largest invariant set is given by

LV (0) ∩ C̃ = Ã ∩ C̃ which is identically equal to A. Hence, the set A is attractive. Stability

is guaranteed from the fact that V is nonincreasing during flows and strictly decreasing during

jumps. Then, the set Ã is asymptotically stable for the hybrid system H̃N . We have that A

is (strongly) forward invariant and from Theorem 6.3.3 we know that A is uniformly attractive
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from a neighborhood of itself. Then by Proposition 7.5 in [28], it follows that A is asymptotically

stable.

Due to the set of solutions to H̃N coinciding with the set of solutions to HN from

PN \ XN,v, the set A is asymptotically stable for HN with basin of attraction BA = PN \ XN,v.

Since v is arbitrary, it follows that the basin of attraction is equal to PN \ XN .

For all τ ∈ XN , the jump map G is set valued by definition of gi in (6.4). From these

points there exist solutions to HN that jump out of X . In fact, consider the case τ ∈ XN . We

have that τi = τr for some i, r ∈ I. Then, after the jump it follows that gi(τ) ∈ {0, (1 + ε)τ̄}

and gr(τ) ∈ {0, (1+ ε)τ̄}, and there exist gi and gr such that gi = gr or gi 6= gr. Since for every

point in XN there exists a solution that converges to A and also a solution that stays in XN ,

XN is weakly forward invariant.7 �

6.3.3 Characterization of Time of Convergence

In this section, we characterize the time to converge to a neighborhood of A. The

proposed (upper bound) of the time to converge depends on the initial distance to the set Ã

and the parameters of the hybrid system (ε, τ̄ ).

Theorem 6.3.3 For every N ∈ N, N > 1, and every c1, c2 such that c > c2 > c1 > 0 with

c = maxx∈X |x|Ã, every maximal solution to HN with initial condition τ(0, 0) ∈ (PN \X )∩L̃V (c2)

is such that τ(t, j) ∈ L̃V (c1) for each (t, j) ∈ dom τ, t+ j ≥M, where M =
(
τ̄
ω + 1

) log
c2
c1

log 1
1+ε

and

L̃V (µ) := {τ ∈ C ∪D : V (τ) ≤ µ}.

Proof Let τ0 = τ(0, 0) and pick a maximal solution τ to HN from τ0. At every jump time

7For example, consider the case N = 2. If τ(0, 0) = [τ̄ , τ̄ ]⊤ ∈ D, then there are nonunique solutions due to the
jump map begin set valued. It follows that after the jump, each τi can be mapped to any point in {0, τi(1+ ε)},
which leads to any of the following four options of the states (τ1, τ2) after such a jump: (0, 0), (0, τ̄(1+ε)), (τ̄ (1+
ε), 0) or (τ̄ (1 + ε), τ̄(1 + ε)). If the state is mapped to either (0, 0) or (τ̄(1 + ε), τ̄(1 + ε)), then it remains in X2.
Conversely, if any of the other options are chosen, then (τ1, τ2) leaves X2 and converges to A asymptotically.
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Figure 6.2: Time to converge (over τ̄ +1) as a function of ε ∈ [−0.9,−0.1], with c2 = 0.99τ̄ and
c1 ∈ {0.5τ̄ , 0.3τ̄ , 0.1τ̄ , 0.05τ̄}

(tj , j) ∈ dom τ , define ḡ1 = τ(t1, 1), ḡ2 = τ(t2, 2), . . . , ḡJ = τ(tJ , J), for some J ∈ N. From The-

orem 6.3.2, we have that there is no change in the Lyapunov function during flows. Furthermore,

we have that for each τ ∈ D \A the difference V (G(τ))−V (τ) = εV (τ) with ε ∈ (−1, 0). Since,

for every j, τ(tj , j) ∈ D, we have V (ḡ1)− V (τ0) = εV (τ0), which implies V (ḡ1) = (1 + ε)V (τ0).

At the next jump, we have V (ḡ2) = (1+ε)V (ḡ1) = (1+ε)2V (τ0). Proceeding in this way, after J

jumps we have V (ḡJ) = (1+ ε)V (gJ−1) = (1+ ε)JV (τ0). From V (ḡJ) = (1+ ε)JV (τ0), we want

to find J so that V (ḡJ) ≤ c1 when V (τ0) ≤ c2. Considering the worst cast for V (τ0), we want

(1 + ε)Jc2 ≤ c1, which implies c2
c1
≤
(

1
1+ε

)J
, and therefore J =

⌈
log

c2
c1

log 1
1+ε

⌉
> 0. For each j, the

time between jumps satisfies t1− t0 ≤ τ̄
ω , t2− t1 ≤ τ̄

ω , . . . , tj− tj−1 ≤ τ̄
ω . Then, we have that after

J jumps,
∑J

j=1 tj − tj−1 ≤ J τ̄
ω . With t0 = 0, the expression reduces to tJ ≤ J τ̄

ω =

⌈
log

c2
c1

log 1
1+ε

⌉
τ̄
ω .

Then, after t+ j ≥ tJ + J , the solution is at least c1 close to the set Ã. Defining M = tJ + J ,

we then have M =
(
τ̄
ω + 1

) log
c2
c1

log 1
1+ε

. �

Figure 6.2 shows the time to converge (divided by τ̄
ω + 1) versus ε with constant

c2 = 0.99τ̄ and varying values of c1. As the figure indicates, the time to converge decreases

as |ε| increases, which confirms the intuition that the larger the jump the faster oscillators

desynchronize.
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6.3.4 Robustness Analysis

Lemma 6.2.1 establishes that the hybrid model ofN impulse-coupled oscillators satisfies

the hybrid basic conditions. In light of this property, the asymptotic stability property of A

for HN is preserved under certain perturbations; i.e., asymptotic stability is robust [28]. In the

next sections, we consider a perturbed version of HN and present robust stability results. In

particular, we consider generic perturbations to HN , and two different cases of perturbations

only on the timer rates to allow for heterogeneous timers.

6.3.4.1 Robustness to Generic Perturbations

We start by revisiting the definition of perturbed hybrid systems in [28].

Definition 6.3.4 (perturbed hybrid system [28, Definition 6.27]) Given a hybrid system

H and a function ρ : RN → R≥0, the ρ-perturbation of H, denoted Hρ, is the hybrid system





x ∈ Cρ ẋ ∈ Fρ(x)

x ∈ Dρ x+ ∈ Gρ(x)

where

Cρ = {x ∈ R
n : (x+ ρ(x)B) ∩ C 6= ∅},

Fρ(x) = conF ((x+ ρ(x)B) ∩ C) + ρ(x)B ∀x ∈ R
n,

Dρ = {x ∈ R
n : (x+ ρ(x)B) ∩D 6= ∅},

Gρ(x) = {v ∈ R
n : v ∈ g + ρ(g)B, g ∈ G((x + ρ(x)B) ∩D)} ∀x ∈ R

n.

Using this definition, we can deduce a generic perturbed hybrid system modeling N impulse-

coupled oscillators. Then, for the hybrid system HN , we denote HN,ρ as the ρ-perturbation

of HN . Given the perturbation function ρ : RN → R≥0, the perturbed flow map is given by

Fρ(τ) = ω1+ ρ(τ)B for all τ ∈ Cρ, where the perturbed flow set Cρ is given by Cρ = {τ ∈ RN :
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(τ + ρ(τ)B) ∩ PN 6= ∅}. For example, if N = 2 and ρ(τ) = ρ̄ > 0 for all τ ∈ RN , which would

correspond to constant perturbations on the lower value and threshold, then Cρ = C + ρB.

The perturbed jump map and jump set are defined as Dρ = {τ ∈ R
N : (τ + ρ(τ)B) ∩D 6= ∅},

Gρ = [g1,ρ(τ), . . . , gN,ρ(τ)]
⊤, where gi,ρ is the i-th component of Gρ. The following result

establishes that the hybrid system HN is robust to small perturbations.

Theorem 6.3.5 (robustness of asymptotic stability) If ρ : RN → R≥0 is continuous and positive

on RN \ A, then A is semiglobally practically robustly KL asymptotically stable with basin of

attraction BA = PN \ X , i.e., for every compact set K ⊂ BA and every α > 0, there exists δ ∈

(0, 1) such that every maximal solution τ to HN,δρ from K satisfies |τ(t, j)|A ≤ β(|τ(0, 0)|A, t+

j) + α for all (t, j) ∈ dom τ .

Proof From Lemma 6.2.1, the hybrid system HN satisfies the hybrid basic conditions. There-

fore, by [28, Theorem 6.8]HN is nominally well-posed and, moreover, by [28, Proposition 6.28] is

well-posed. From the proof of Theorem 6.3.2, we know that the set A is an asymptotically stable

compact set for the hybrid systemHN with basin of attraction BA. Since by Lemma 6.2.2, every

maximal solution is complete, then [28, Theorem 7.20] implies that A is semiglobally practically

robustly KL asymptotically stable. �

Section 6.4.2.1 showcases several simulations of HN with ρ-perturbations on the jump map.

6.3.4.2 Robustness to Heterogeneous Timer Rates

We consider the case when the continuous dynamic rates are perturbed in the form of

d

dt
|τ(t, j)|Ã = c(t, j)

for a given solution τ . For example, consider the perturbation of the flow map given by

f(τ) = ω1+∆ω (6.10)
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where ∆ω ∈ Rn is a constant defining a perturbation from the natural frequencies of the impulse-

coupled oscillators. Then for some k, during flows, along a solution τ such that over [tj , tj+1]×{j}

satisfies V (τ(t, j)) = |τ(t, j)|ℓ̃k , it follows that c reduces to c(t, j) =

(
r⊤ℓk

(τ(t,j))( 1
N

1−I)

|τ(t,j)|ℓk

)
∆ω.8

Furthermore, the norm of the hybrid arc c can be bounded by a constant c̄ given by

c̄ =

∣∣∣∣
(

1

N
1− I

)
∆ω

∣∣∣∣ . (6.11)

Building from this example, the following result provides properties of the distance to Ã from

solutions τ to HN under generic perturbations on f (not necessarily as in (6.10)).

Theorem 6.3.6 Suppose that the perturbation on the flow map of HN is such that a per-

turbed solution τ satisfies, for each j such that {t : (t, j) ∈ dom τ} has more than one point,

d
dt |τ(t, j)|Ã = c(t, j) for all t ∈ {t : (t, j) ∈ dom τ} and τ(t, j) ∈ PN \ X for all (t, j) ∈ dom τ ,

for some hybrid arc c with dom c = dom τ . Then, the following hold:

• The asymptotic value of |τ(t, j)|Ã satisfies

lim
t+j→∞

|τ(t, j)|Ã ≤ lim
t+j→∞

j∑

i=0

(1 + ε)j−i

∫ ti+1

ti

c(t, j)dt (6.12)

• If there exists c̄ > 0 such that |c(t, j)| ≤ c̄ for each (t, j) ∈ dom τ then

lim
t+j→∞

|τ(t, j)|Ã ≤
c̄τ̄

|ε|ω . (6.13)

• If j̃ : R≥0 → N is a function that chooses the appropriate minimum j such that (t, j) ∈
8Let rℓk (τ) be the vector defined by the minimum distance from τ to the line ℓk. Then, it follows that

V (τ) = (r⊤ℓk
(τ)rℓk (τ))

1
2 . To determine its change during flows, note that on C \ (X ∪ A) the gradient is

given by ∇V (τ) = ∂
∂τ

(
r⊤ℓk

(τ)rℓk (τ)
) 1

2
=

(
r⊤ℓk

(τ) ∂
∂τ

rℓk
(τ)

)

|τ |ℓk
where each j-th entry of ∂

∂τ
rℓk (τ) is given by

∂
∂τ

rjℓk
(τ) = ∂

∂τ

(
(τ̃j

k − τj)−
1
N

∑N
i=1(τ̃i

k − τi)
⊤
)

=
[

1
N
, 1
N
, . . . , 1

N
,−1 + 1

N
, 1
N
, . . . , 1

N

]
– the term −1 + 1

N

corresponds to the j-th element of the vector. It follows that ∂
∂τ

rℓk (τ) = 1
N
1 − I. Then, for each τ ∈ C \ X ,

〈∇V (τ), f(τ)〉 =

(
r⊤ℓk

(τ)( 1
N

1−I)

|τ |ℓk

)
f(τ).
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dom τ for each time t and t 7→ c(t, j̃(t)) is absolutely integrable, i.e., ∃B such that

∫ ∞

0

|c(t, j̃(t))|dt ≤ B, (6.14)

then

lim
t+j→∞

|τ(t, j)|Ã ≤
B

ε
. (6.15)

Proof Consider a maximal solution τ to HN with initial condition τ(0, 0) ∈ PN \X . This proof

uses the function V from the proof of Theorem 6.3.2. With V equal to the distance from τ to

the set Ã, then, for each τ ∈ D \ X , we have that V (G(τ)) − V (τ) = εV (τ). Using the fact

that V (τ) = |τ |Ã and the fact that, G along the solution is single valued, it follows that |τ |Ã

after a jump can be equivalently written as |τ(tj , j+1)|Ã = (1+ε)|τ(tj , j)|Ã. By assumption, in

between jumps, the distance to the set Ã is such that d
dt |τ(t, j)|Ã = c(t, j), which implies that

at tj+1 the distance to the desynchronization set is given by

|τ(tj+1, j)|Ã =

∫ tj+1

tj

c(s, j)ds+ |τ(tj , j)|Ã.

It follows that

|τ(t1, 0)|Ã =

∫ t1

0

c(s, 0)ds+ |τ(0, 0)|Ã

|τ(t1, 1)|Ã = (1 + ε)

(∫ t1

0

c(s, 0)ds+ |τ(0, 0)|Ã
)

= (1 + ε)

∫ t1

0

c(s, 0)ds+ (1 + ε)|τ(0, 0)|Ã

|τ(t2, 1)|Ã =

∫ t2

t1

c(s, 1)ds+ (1 + ε)

∫ t1

0

c(s, 0)ds+ (1 + ε)|τ(0, 0)|Ã

|τ(t2, 2)|Ã = (1 + ε)

(∫ t2

t1

c(s, 1)ds+ (1 + ε)

∫ t1

0

c(s, 0)ds+ (1 + ε)|τ(0, 0)|Ã
)
.

Then, proceeding in this way, we obtain

|τ(tj , j)|Ã = (1 + ε)j |τ(0, 0)|Ã +

j−1∑

i=0

(1 + ε)j−i

∫ ti+1

ti

c(s, i)ds.
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For the case of generic tj+1 ≥ t ≥ tj , we have that

|τ(t, j)|Ã = (1 + ε)j |τ(0, 0)|Ã +

j∑

i=0

(1 + ε)j−i

∫ t

ti

c(s, i)ds.

Since, we know that as either t or j goes to infinity, j or t go to infinity as well, respectively.

The expression reduces to limt+j→∞ |τ(t, j)|Ã = limj→∞(1+ε)j |τ(0, 0)|Ã+limt+j→∞
∑j

i=0(1+

ε)j−i
∫ t

ti
c(s, i)ds = limt+j→∞

∑j
i=0(1+ε)

j−i
∫ t

ti
c(s, i)ds. If c(t, j) ≤ c̄, it follows that limt+j→∞ |τ(t, j)|Ã =

limt+j→∞
∑j

i=0(1 + ε)j−i
∫ t

ti
c(s, i)ds ≤ c̄τ̄

|ε|ω .

Lastly, since this hybrid system has the property that for any maximal solution τ with

(t, j) ∈ dom τ , if t approaches∞ then the parameter j also approaches∞, the expression given

by limt+j→∞ |τ(t, j)|Ã can be simplified. To do this, we know that the series
∑j

i=0(1 + ε)j−i =

(1+ε)j+1−1
ε approaches 1

|ε| as j → ∞. Since 1 + ε > 0 for ε ∈ (−1, 0), the series is absolutely

convergent and its partial sum sj =
∑j

i=0(1 + ε)j−i is such that {sj}∞j=m is a nondecreasing

sequence (for each m). This implies that sj ≤ 1/|ε| for all j and for each m. Then, it follows

that (1 + ε)j−i ≤ 1
|ε| for every j, i ∈ N. Since the expression is a function of j only and, for

complete solutions, t is such that as t→∞, then j →∞, we obtain

lim
t+j→∞

j∑

i=0

(1 + ε)j−i

∫ t

ti

c(s, i)ds = lim
j→∞

j∑

i=0

(1 + ε)j−i

∫ t

ti

c(s, i)ds

≤ lim
j→∞

j∑

i=0

(1 + ε)j−i

∫ t

ti

|c(s, i)|ds

≤
( ∞∑

i=0

(1 + ε)j−i

)∫ ∞

0

|c(s, i)|ds

≤ 1

|ε|

∫ ∞

0

|c(s, j̃(s))|ds.

�
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(a) Solutions to H2 with τ(0, 0) ∈ A
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(b) Solutions to H3 with τ(0, 0) ∈ A3

Figure 6.3: Solutions to HN with N ∈ {2, 3} that are initially in the set A.

6.4 Numerical Analysis

This section presents numerical results obtained from simulating HN . First, results

on the nominal case of HN given by (6.1) are presented. Then, under specific perturbations,

the results for HN are considered. The Hybrid Equations (HyEQ) Toolbox in [70] was used to

compute the trajectories.

6.4.1 Nominal Case

The possible solutions to the hybrid system HN fall into four categories: always desyn-

chronized, asymptotically desynchronized, never desynchronized, and initially synchronized.

The following simulation results show the evolution of solutions for each category. The pa-

rameters used in these simulations are τ̄ = 1 and ε = −0.2.

6.4.1.1 Always desynchronized (N ∈ {2, 3})

A solution toHN that has initial condition τ(0, 0) ∈ A stays desynchronized. Figure 6.3

shows the evolution of such a solution for systems H2 and H3. Furthermore, as also shown in

the figures, for these same solutions, the Lyapunov function is initially zero and stays equal to
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(a) Solutions to H2 with c2 = 0.24 and
τ(0, 0) = [0, 0.1]⊤ ∈ P2 \ X2.
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(b) Solutions to H3 with c2 = 0.32 and

τ(0, 0) = [0, 0.1, 0.2]⊤ ∈ P3 \ X3.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

τ i

t [seconds]

(c) A solutions to H7 with randomly chosen
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(d) A solution to H10 with randomly chosen
initial conditions τ(0, 0) ∈ P10 \ X10.

Figure 6.4: Solutions to HN that asymptotically converge to the desynchronization set A for
N ∈ {2, 3, 7, 10}.

zero as hybrid time goes on.

6.4.1.2 Asymptotically desynchronized (N ∈ {2, 3, 7, 10})

A solution of HN that starts in PN \ (X ∪A) asymptotically converges to A, as Theo-

rem 6.3.3 indicates. Figure 6.4(a) and Figure 6.4(b) show solutions to bothH2 andH3 converging

to their respective desynchronization sets.

For H2, if τ(0, 0) = [0, 0.1]⊤, then the initial sublevel set is L̃V (c2) with c2 = 0.24.

Using Theorem 6.3.3, the time to converge to the sublevel set L̃V (c1) with c1 = 0.1 leads to

M = 7.84. Figure 6.4(a) shows a solution to the system for 10 seconds of flow time. From the

figure, it can be seen that V (τ(t, j)) ≈ 0.1 at (t, j) = (3, 4). Then, the property guaranteed

by Theorem 6.3.3, namely, V (τ(t, j)) ≤ c1 for each (t, j) such that t + j ≥ M , is satisfied.

Figure 6.4(b), shows a solution and the distance of this solution to A. Notice that the initial
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(a) Solutions to H2 with τ(0, 0) ∈ X2.
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(b) Solutions to H3 with τ(0, 0) ∈ X3.

Figure 6.5: Solutions toHN initialized in XN is outside the basin of attraction BA and, therefore,
never converge to the set A

sub level set is L̃V (c2) with c2 = 0.32. From Theorem 6.3.3 it follows that the time to converge to

L̃V (c1) with c1 = 0.1 is given byM = 10.14, which is actually already satisfied at (t, j) = (2.2, 4).

Figure 6.4 show solutions to HN that asymptotically desynchronize for N ∈ {7, 10}.

6.4.1.3 Always Synchronized

When the impulse-coupled oscillators start from an initial condition τ(0, 0) ∈ XN , a

solution remains in XN . Since XN is weakly forward invariant, there exist solutions τ(t, j) ∈ XN

for all (t, j) ∈ dom τ . For such solutions it can be seen that V remains constant, seen Figure 6.5

for the case of H2 and H3.

6.4.1.4 Initially Synchronized

As mentioned in the proof of Theorem 6.3.2, there exist solutions that are initialized

in X and eventually become desynchronized. This is due to the set-valuedness of the jump map

at such points. Figure 6.6 shows two different solutions to H2 and H3 from the same initial

conditions τ(0, 0) = [0, 0, 0]⊤. Furthermore, notice that, for each (t, j), the that Lyapunov

function along solutions does not decrease to zero until all states are non-equal. Recall that
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(a) Solutions to H2 with τ(0, 0) ∈ X2. Notice
that the solution jumps out of X2 at (t, j) =
(3, 3) and the function V begins to decrease
after that jump.
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(b) Solutions to H3 with τ(0, 0) ∈ X3. At
hybrid time (t, j) = (1, 0) the timer state τ1
jumps away from the other two and begin
to desynchronize. At approximately (t, j) =
(4.5, 8), all of the states are not equal and V
begins to decrease.

Figure 6.6: Solutions to HN for N ∈ {2, 3} that initially evolve in X and eventually become
desynchronized due to the set-valuedness of the jump map.

from the analysis in Section 6.3.2, when states are equal, the issued solutions are outside of the

basin of attraction.

6.4.2 Perturbed Case

In this section, we present numerical results to validate the statements in Section 6.3.4.

6.4.2.1 Simulations of HN with perturbed jumps

In this section, we consider a class of perturbations on the jump map and jump set.

• Perturbation of the threshold in the jump set: We replace the jump set D by

Dρ := {τ : ∃i ∈ I s.t. τi = τ̄ + ρi} where ρi ∈ [0, ρ̄i], ρ̄i > 0 for each i ∈ I. To avoid maximal

solutions that are not complete, the flow set C is replaced by Cρ := [0, τ̄ + ρ1] × [0, τ̄ + ρ2] ×
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Figure 6.7: Solutions to the hybrid system with perturbed threshold, namely, with Dρ = {τ :
∃i ∈ {1, 2} s.t. τi = τ̄ + ρi} for ρ1 = ρ2 = 0.2.

. . .× [0, τ̄ + ρN ]. Furthermore, the components of the jump map are also replaced by

gρi
(τ) =





0 if τi = τ̄ + ρi, τr < τ̄ + ρj ∀j ∈ I \ {i}

{0, τi(1 + ε)} if τi = τ̄ + ρi ∃j ∈ I \ {i} s.t. τr = τ̄ + ρj

(1 + ε)τi if τi < τ̄ + ρi ∃j ∈ I \ {i} s.t. τr = τ̄ + ρj

. (6.16)

This case of perturbations is an example of Theorem 6.3.5 with ρ affecting only the jump map.

The trajectories of the perturbed version of HN will converge to a region around the set Ã.

Simulations are presented in Figures 6.7 and 6.8 for N = 2, ω = 1, τ̄ = 3, and ε = −0.3.

Figure 6.7 shows numerical results for the case when each ρi are equal, i.e., ρ1 =

ρ2 = 0.02. Figure 6.7(a) shows a solution (solid blue) to the perturbed H2 with initial condition

τ(0, 0) = [1.6, 2.1]⊤ (blue asterisk) on the (τ1, τ2)-plane with C (black dashed line), the perturbed

flow set Cρ (red dashed line), and the desynchronization set A (solid green line). From this

figure, notice that the solution extends beyond the set C and resets at τi = 3+0.2. The solution

converges to a region near the desynchronization set, as Theorem 6.3.5 guarantees. To further

clarify the response of H2 to this type of perturbation, Figure 6.7(b) shows the distance to the

135



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t [seconds]

|τ |Ã
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(b) Distance to the set Ã for 15 so-
lutions with random initial conditions
τ(0, 0) ∈ [0, τ̄ + ρ1]× [0, τ̄ + ρ2] with
ρ1 = 0.02 and ρ2 = 0.01.

Figure 6.8: Numerical simulations of the perturbed version of H2 with jump set given by Dρ =
{τ : ∃i ∈ {1, 2} s.t. τi = τ̄ + ρi} for different values of ρi.

set Ã for 10 solutions with randomly chosen initial conditions τ(0, 0) ∈ Cρ. Notice that for the

initial conditions chosen, all solutions converge to a distance of approximately 0.08 by t ≈ 28

seconds.

Figure 6.8 shows the numerical results for the case when each ρi are not equal, i.e.,

ρ1 6= ρ2. Figure 6.8(a) shows 10 solutions from random initial conditions τ(0, 0) ∈ Cρ with

ρ1 = 0.5 and ρ2 = 0.4. For this case, the solutions converge to a region near Ã, in that,

|τ(t, j)|Ã ≤ 0.22 after approximately 0.28 seconds of flow time. Figure 6.8(b) shows 15 solutions

when ρ1 = 0.02 and ρ2 = 0.01. For this set of simulations, the solutions converge to a distance

of approximately 0.04 around Ã after approximately 26 seconds of flow time. These simulations

validate Theorem 6.3.5 with ρ affecting only the jump map, verifying that the smaller the size

of the perturbation the smaller the steady-state value of the distance to Ã.

• Perturbations on the reset component of the jump map: Under the effect

of the perturbations considered in this case, instead of reseting τi to zero, the perturbed jump

resets τi to a value ρi ∈ R≥0, for each i ∈ I. The perturbed hybrid system has the following

data:

f(τ) = ω1 ∀τ ∈ Cρ := C
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and

Gρ(τ) = [gρ1(τ), . . . , gρ1(τ)]
⊤ ∀τ ∈ Dρ = D

where, for each i ∈ I, the perturbed jump map is given by

gi(τ) =






ρi if τi = τ̄ , τr < τ̄ ∀j ∈ I \ {i}

{ρi, τi(1 + ε)} if τi = τ̄ ∃j ∈ I \ {i} s.t. τr = τ̄

(1 + ε)τi if τi < τ̄ ∃j ∈ I \ {i} s.t. τr = τ̄

. (6.17)

This case of perturbations exemplifies Theorem 6.3.5 with ρ affecting only the jump

map of HN . Figures 6.9 and 6.10 show several simulations to this perturbation of HN . All of

the simulations in this section use parameters ω = 1, τ̄ = 3, ε = −0.3, and N = 2.

The first case of the perturbed jump map Gρ considered is for ρ1 = ρ2 = 0.02. Fig-

ure 6.9(a) shows a solution to the perturbed H2 from the initial condition τ(0, 0) = [2.4, 2.3]⊤

on the (τ1, τ2)-plane. Notice that for τ ∈ D such that τi = τ̄ the jump map resets τi to ρi (red

dashed line) and not to 0 as in the unperturbed case. The solution for this case approaches a

region around Ã, as Theorem 6.3.5 guarantees. Figure 6.9(b) shows the distance to the set Ã

over time for 10 solutions of the perturbed system H2 with initial conditions τ(0, 0) ∈ P2 \ X2.

This figure shows that solutions approach a distance of about 0.12 after 25 seconds.

Now, consider the case where ρ1 6= ρ2. Figure 6.10 shows the distance to Ã for two

sets of solutions with different values for ρ1 and ρ2. More specifically, Figure 6.10(a) shows the

case of ρ1 = 0.15 and ρ2 = 0.25. For this case, it can be seen that the solutions converge after

≈ 28 seconds of flow time and, after that time, satisfy |τ(t, j)|Ã ≤ 0.25. Figure 6.10(b) shows

the case of ρ1 = 0.02 and ρ2 = 0.01. For this case, this figure shows that, after ≈ 28 seconds

of flow time, the solutions satisfy |τ(t, j)|Ã ≤ 0.04. These simulations validate Theorem 6.3.5

with ρ affecting only the jump map, verifying that the smaller the size of the perturbation the
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(a) Solution to H2 on the (τ1, τ2)-plane with
initial condition τ(0, 0) = [2.4, 2.3]⊤.
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that converges to a steady state value of ap-
proximately 0.12 at about 25 seconds

Figure 6.9: Solutions to the hybrid system H2 with the perturbed jump in (6.17) map with
ρ1 = ρ2 = 0.2.
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(a) Distance to the set Ã for 10 solutions with
random initial conditions τ(0, 0) ∈ C with
ρ1 = 0.15 and ρ2 = 0.25.
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(b) Distance to the set Ã for 10 solutions with
random initial conditions τ(0, 0) ∈ C with
ρ1 = 0.02 and ρ2 = 0.01.

Figure 6.10: Solutions to the hybrid system H2 with the perturbed jump map with ρ1 6= ρ2.

smaller the steady-state value of the distance to Ã.

• Perturbations on the “bump” component of the jump map: In this case, the

component (1+ε)τi of the jump map is perturbed, namely, we use τ+i = (1+ε)τi+ρi(τi), where

ρi : R≥0 → PN \ X is a continuous function. The perturbed jump map Gρ has components gρi

that are given as gi in (6.4) but with τi(1 + ε) + ρi(τi) replacing τi(1 + ε).

Consider the case ρi(τi) = ρ̃iτi with ρ̃i ∈ (0, |ε|) and let ε̃i = ε+ ρ̃i ∈ (−1, 0). Then τ+i

reduces to τ+i = (1 + ε̃i)τi and the jump map gρi is given by (6.4) with ε̃i in place of ε. This

type of perturbation is used to verify Theorem 6.3.5 with ρ affecting only the “bump” portion
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(a) Solution H2 on the (τ1, τ2)-plane with ini-
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Figure 6.11: Solutions to the hybrid system with perturbed “bump” on the jump map, with
ρ̃1 = ρ̃2 = 0.1.
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(a) Distance to the set Ã for 10 solutions with
random initial conditions τ(0, 0) ∈ C with
ρ̃1 = 0.15 and ρ̃2 = 0.1.
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Figure 6.12: Numerical simulations of the perturbed version of H2 with the perturbed “bump”
on the jump map with ρ̃1 6= ρ̃2.

of the jump map. Figures 6.11 and 6.12 show simulations to HN with the parameters ω = 1,

τ̄ = 3, ε = −0.3, and N = 2.

Consider the case of H2 with Gρ when ρ̃1 = ρ̃2 = 0.1, leading to ε̃1 = ε̃2 = 0.2.

Figure 6.11 shows a solution on the (τ1, τ2)-plane for this case with initial condition τ(0, 0) =

[0.1, 0.2]⊤. Notice that the solution approaches a region around A (green line), as Theorem 6.3.5

guarantees. Figure 6.11(b) shows the distance to the set Ã over time for 10 solutions with initial

conditions τ(0, 0) ∈ C. It shows that solutions approach a distance to Ã of ≈ 0.09 after ≈ 40

seconds of flow time.
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Next, the case of Gρ with ε̃1 6= ε̃2 is considered. Figure 6.12(a) shows the distance to Ã

for 10 solutions with perturbations given by ρ̃1 = 0.15 and ρ̃2 = 0.1. For this case, the distance

to Ã satisfies |τ(t, j)|Ã ≤ 0.3 after ≈ 40 seconds of flow time. Figure 6.12(b) shows simulation

results with ρ̃1 = 0.02 and ρ̃2 = 0.01. Notice that the smaller the value of the perturbation

is, the closer the solutions get to the set Ã. For this case, after ≈ 30 seconds of flow time,

the distance to Ã satisfies |τ(t, j)|Ã ≤ 0.06. These simulations validate Theorem 6.3.5 with ρ

affecting only the jump map, verifying that the smaller the size of the perturbation the smaller

the steady-state value of the distance to Ã would be.

6.4.2.2 Perturbations on the Flow Map

This section considers a class of perturbations on the flow map, namely, the case when

there exists a function (t, j) 7→ c(t, j) such that c(t, j) ≤ c̄ with c̄ as in (6.11). Then, from

Theorem 6.3.6 with (6.10), we know that

lim
t+j→∞

|τ(t, j)|Ã ≤
∣∣∣
c̄τ̄

εω

∣∣∣ ≤
∣∣∣∣∣

∣∣( 1
N 1− I)∆ω

∣∣ τ̄
εω

∣∣∣∣∣ . (6.18)

Figure 6.13 shows a simulation so as to verify this property. The parameters of this

simulation are N = 2, ω = 1, ε = −0.3, τ̄ = 4, and ∆ω = [0.120, 0.134]⊤. It follows from (6.11)

that c = 0.0105. Then, from (6.13), it follows that limt+j→∞ |τ(t, j)|Ã ≤ 0.1047. Specifically,

Figure 6.13(a) shows a solution on the (τ1, τ2)-plane of the perturbed hybrid system H2 with

initial condition τ(0, 0) = [0, 0.01]⊤. This figure shows the solution (blue line) converging to

a region around Ã (between dash-dotted lines about A in green). Figure 6.13(b) shows the

distance to the set Ã of 10 solutions with initial conditions τ(0, 0) ∈ C with a dashed line

denoting the upper bound on the distance in (6.18). Notice that all solutions are within this

bound after approximately 15 seconds of flow time and stay within this region afterwards.
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Figure 6.13: Solutions to the hybrid system H2 with perturbed flow map given by the cases
covered in Section 6.4.2.2. Figures (a) and (b) show solutions given by the flow perturbation

∆ω = [0.120, 0.134]
⊤

given in Section 6.4.2.2. Note that these figures have a dashed black line

denoting the calculated distance from Ã in (6.18).

6.5 Summary

We have shown that desynchronization in a class of impulse-coupled oscillators is an

asymptotically stable and robust property. These properties are established within a solid

framework for modeling and analysis of hybrid systems, which is amenable for the study of

synchronization and desynchronization in other impulse-coupled oscillators in the literature.

The main difficulty in applying these tools lies on the construction of a Lyapunov-like quantity

certifying asymptotic stability. As we show here, invariance principles can be exploited to relax

the conditions that those functions have to satisfy, so as to characterize convergence, stability,

and robustness in the class of systems under study. Future directions of research include the

study of nonlinear reset maps, such as those capturing the phase-response curve of spiking

neurons, as well as impulse-coupled oscillators connected via general graphs.
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Chapter 7

Synchronization and Desynchronization

in Interconnected Neurons

7.1 Introduction

Neuron models are commonly regarded as a typical non-smooth/impulsive system.

The literature proposes many different frameworks for analysis of such systems, including com-

partmental models [71], phase plane models [72, 73], integrate-and-fire and impulsive differential

equations [73, 74, 75], and large populations of interconnected neurons (neuron population mod-

els) [76, 73, 33]. Furthermore, being a natural process, these interconnections between neurons

are inherently noisy [77, 78]. Unfortunately, there is a distinct lack of systematic methods for

analysis of robustness of such interconnections.

Due to the impulsive nature of spiking neurons, hybrid systems provide a very promis-

ing platform for their study. This chapter models spiking neurons as hybrid systems and studies

their dynamical properties in terms of asymptotic stability and robustness. The proposed hy-

brid framework captures the continuous evolution of the phase dynamics of the neurons as well
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as their spiking/discontinuous behavior due to internal and external stimuli. The study of the

asymptotic stability properties of these systems is performed using the tools in [27, 28].

This paper is organized as follows. In Section 7.2 we introduce the general framework

and specific models under consideration then, in Section 7.3.1, we characterize the sets where

solutions converge for several well-known neuron models. In particular, within the proposed

framework, we consider the simplified Hodgkin-Huxley model [73, 79]; an inhibitory version of

the Hodgkin-Huxley model; a “saddle-node on a periodic orbit” model, known as the SNIPER

model [72]; and the Hopf model proposed in [80]. In Sections 7.3.2 - 7.3.5, details of the stability

analysis for the case of two neurons and for each one of the phase response curves associated

with the models just listed are given.

7.2 A Framework For Analysis for Spiking Neurons

7.2.1 Introduction to Neuron Models

A single neuron can be expressed by the general N -order, conductance based model

given by

ẋ = I(x) + Ig(x, t), (7.1)

where x = (v, w) ∈ RN , v ∈ R is the voltage difference across the membrane, w is the (N − 1)-

dimensional vector comprising the gating variables, I is the baseline vector field, and Ig is the

stimulus effect; see, e.g., [73, 72, 81].

Using changes variables/parameters and model reduction techniques as in [73, 76, 82]),

the evolution of the phase of the single neuron can be captured by the first order differential
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equation

dθ

dt
= ω + z(θ)Iθ(t), (7.2)

with the natural frequency ω = 2π
T > 0. The period T is the time between the spiking and

reset events of the singular neuron model in (7.1), while z is the phase response curve (PRC)

characterizing the neurons sensitivity to the given stimulus, which is captured by Iθ. PRCs can

be calculated from experimental, numerical, and analytical studies [81, 39].

7.2.2 Hybrid Modeling

Due to its impulsive nature, the neuron model presented in Section 7.2.1 can be modeled

as a hybrid system. Specifically, the phase angle θ will flow continuously according to the natural

frequency and jump when the neuron spiking condition is met. Utilizing the formulation of

hybrid systems in [27, 28], we propose a hybrid system for modeling neurons given by H with

data as in (C, f,D,G) with state θ = [θ1, . . . , θn]
⊤ ∈ [0, 2π]n. For each i ∈ n, θi ∈ [0, 2π] denotes

the phase of each i-th neuron.

The continuous dynamics of each neuron are represented by a natural frequency ωi,

i.e., θ̇i = ωi, which leads to f(θ) := [ω1, . . . , ωn]
⊤. From the neuron model (7.2), the natural

frequency is related to the spiking period T , in that, when the phase angle reaches 2π, the neuron

activates the PRC. Then, the flow set is given by C := [0, 2π]n while jumps occur when θ is in

the jump set given by D := {θ ∈ C : ∃ i s.t. θi = 2π}. Lastly, as previously described, each

neuron jumps impulsively once any i-th neuron reaches a full period, i.e., θi = 2π from some

i. At such an event, the neuron resets itself to zero and induces a reset on all other neurons

by instantaneously changing their phase angles according to the PRC, namely, θi is reset to

γ(θi) = θi + hz(θi), where h > 0 is the synapse coupling strength. In this way, the jump map is
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given as G(θ) = [g(γ(θi)), . . . , g(γ(θn))]
⊤ +Gu(θ), where

g(s) =






0 if s > 2π or s ≤ 0

{0, s} if s = 2π

s if s < 2π and s > 0

(7.3)

and Gu : Rn ⇒ Rn is a set-valued map representing an external stimuli. Note that g is set

valued when the state is such that, after the jump, it is exactly 2π. By defining it set valued,

(rather than just discontinuous) robust stability results for hybrid systems can be applied.

This general framework for neurons can be used to study the stability of different PRCs

(synchronizing and desynchronizing) as well as their robustness. In our study of dynamical

properties of neurons, we consider the following PRCs:

1. Simplified Hodgkin-Huxley model: z(θ) = − sin(θ);

2. Inhibited simplified Hodgkin-Huxley model: z(θ) = sin(θ);

3. SNIPER model: z(θ) = 1− cos(θ);

4. Hopf model: z(θ) = − sin(θ − θ0).

7.2.3 Basic Properties of H

To apply the stability analysis tools for hybrid systems outlined in [28], the hybrid

system H must satisfy certain conditions, namely, the hybrid basic conditions.

Lemma 7.2.1 Let z be continuous and Gu be outer semicontinuous. Then, the hybrid system

H with data (C, f,D,G) defined in Section 7.2.2 satisfies the hybrid basic conditions.

Proof Since both sets C and D are closed by construction, the condition (a) is satisfied. Con-

dition (b) is satisfied since the flow set f is constant and thus continuous. Each i-th element of
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the jump map G is given as g(θi + hiz(θi)), where z is continuous, each hi is constant and G
u

is outer semicontinuous. Since, a vector with outer semicontinuous elements is outer semicon-

tinuous and the sum of two outer semicontinuous set-valued map is also outer semicontinuous,

it suffices to show that g is outer semicontinuous. To check the outer semicontinuity of g,

gph(g) = {(x, y) : x ∈ R, y ∈ g(x)} = {(x, y) : y = x, x ∈ [0, 2π]}

∪ {(x, y) : y = 0, x ∈ [x, 0] ∨ x ∈ [2π, x]},

is closed as long as x and x exist, for every z in this paper, this is the case. Furthermore,

since G(θ) is non empty and bounded for every θ ∈ D then (c) is satisfied and H with data

(C, f,D,G) defined in Section 7.2.2 satisfies the hybrid basic conditions. �

With these conditions being satisfied, asymptotic stability of a compact set automatically implies

that it is robust to vanishing state disturbances as well as other types of small perturbations

[28].

7.3 Stability Analysis of Synchronization and Desynchro-

nization with Zero Inputs

7.3.1 Proposed Approach

Our goal is to characterize the set of points, denoted A, that, for each of the considered

PRC cases, is asymptotically stable. Asymptotic stability for hybrid systems is defined as the

property of a set being both and attractive [27, 28] as defined in Section 2.1.

The basin of attraction for asymptotic stability, denoted BA, is the set of points where

the attractivity property holds. It excludes points from where solutions may never converge to

A. We denote this set as X . Since, in this paper, we will analyze neuron model with PRCs, and

146



each case is inherently different, we will characterize this specific set for each case.

For example, for the study of synchronization in neuron models, the set A for n = 2 is

given by the points in the jump set and away from A where |θ1 − θ2| remains constant before

and after the jump. Namely, it is defined by the values of θ satisfying

|θ1 − θ2| = |θ+1 − θ+2 |. (7.4)

To solve (7.4), let h1 = h2 = h, θ ∈ D \ A with θ1 = 2π and θ2 = θ∗ such that θ∗ + hz(θ∗) ∈

(0, 2π). After the jump, θ+1 = 0 and θ+2 = θ∗ + hz(θ∗). Then

|2π − θ∗| = |0− (θ∗ + hz(θ∗))| =⇒ 2π − 2θ∗ = hz(θ∗). (7.5)

Similar results hold if θ1 = θ∗ and θ2 = 2π. Then, the set X is given by X := {θ ∈ [0, 2π]2 :

|θ1 − θ2| = 2π − θ∗, 2π − 2θ∗ = hz(θ∗)}.

The approach in this paper is to employ Lyapunov stability results for hybrid systems

in [27, 28] to establish that the set A is asymptotically stable for the hybrid system H. To

establish this property, a definition of a Lyapunov function candidate for hybrid systems and

sufficient conditions for asymptotic stability are needed. Sufficient conditions for asymptotic

stability in terms of Lyapunov functions can be found in [28, 27].

7.3.2 Simplified Hodgkin-Huxley (HH) Model (n = 2)

From [73], the simplified Hodgkin-Huxley model has a PRC function z given by z(θ) =

− sin(θ). The associated neuron model with n = 2, ω1 = ω2 = ω > 0, h ∈ (0, π) and no external

147



stimuli (Gu = 0) can is given as follows

HHH :=





C := [0, 2π]× [0, 2π]

f(θ) = [ω, ω]⊤ ∀θ ∈ C

D := {(θ1, θ2) ∈ C : ∃i ∈ {1, 2} s.t. θi = 2π}

G(θ) = [g(γ(θ1)), g(γ(θ2))]
⊤ ∀θ ∈ D

(7.6)

and the PRC given by z(θ) = − sin(θ). The function g in the jump map G is defined as in

(7.3) with γ(θi) = θi − h sin(θi), for each i ∈ {1, 2}. Note that when θ ∈ D is such that

θi + h sin(θi) = 2π, the function g(θi + h sin(θi)) is set valued.

The simplified Hodgkin-Huxley model is known to synchronize the phases of the neu-

rons, i.e., |θ1 − θ2| approaches zero. For this system, the set to be stabilized is denoted AHH .

It is defined as AHH = {(θ1, θ2) ∈ [0, 2π]2 : |θ1 − θ2| = 0} and represents a synchronization

condition. To determine the set of points (X in Section 7.3) from where solutions to HHH never

converge to AHH , we follow the computation to arrive to (7.5). With z(θ) = − sin(θ), (7.5)

becomes 2π = 2θ∗ − h sin θ∗. The only solution to this expression is θ∗ = π, for any h ∈ (0, π).

Then, the set XHH for HHH is defined by XHH := {(θ1, θ2) : |θ1 − θ2| = π}.

Now, to establish that AHH is asymptotically stable, consider the function defined on

C as in (7.6) as

VHH(θ) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}. (7.7)

This function satisfies the conditions for it to be a candidate Lyapunov function on (C∪D)\XHH

(see Definition 2.1.9). In fact, it is continuous everywhere, continuously differentiable away from

XHH , positive for all θ ∈ (C ∪ D) \ (AHH ∪ XHH), and VHH(θ) = 0 for all θ ∈ AHH . In fact,

we have the following result.

Lemma 7.3.1 The function VHH in (7.7) is a Lyapunov function candidate for HHH on {θ ∈
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[0, 2π]2 : V (θ) < π}.

Proof To be a Lyapunov candidate, the function V in (7.7) must satisfy the conditions given in

Definition 2.1.9. Both |θ1 − θ2| and 2π− |θ1 − θ2| are continuous and nonnegative, |θ1 − θ2| ≥ 0

by definition, and 2π − |θ1 − θ2| ≥ 0 for θ ∈ [0, 2π]2. It follows that, VHH is nonnegative

and continuous since the minimum of two nonnegative continuous functions is also nonnegative

and continuous, satisfying condition i). For θ ∈ A it follows that θ1 = θ2 leads to VHH =

min{|θ1 − θ2|, 2π − |θ1 − θ2|} = min{0, 2π} = 0, thus condition iii) is satisfied. Lastly, we must

satisfy condition ii). Note that on θ ∈ [0, 2π]2 \ A, VHH is not continuously differentiable on

XHH . It follows that, VHH is a Lyapunov function for HHH if we exclude the set XHH from the

analysis. At these points θ ∈ XHH , the function V (θ) = π. It follows that VHH is a Lyapunov

function for HHH if we exclude these points such that {θ ∈ [0, 2π]2 : V (θ) < π}. �

It can be shown that for θ ∈ C, we have V̇ = 0 while, for points θ ∈ D \ (XHH ∪AHH), we have

that V (G(θ)) − V (θ) < 0. These properties lead to the following result.

Theorem 7.3.2 The hybrid system (7.6) with z(θ) = − sin(θ) has the set AHH asymptotically

stable with the basin of attraction given by (C ∪D) \ XHH .

Proof From Lemma 7.3.1, VHH is a Lyapunov function for HHH on the set {θ ∈ [0, 2π]2 :

V (θ) < π}. To use the results of hybrid systems, we must satisfy the hybrid basic conditions

and simply removing XHH removes the property of having closed sets C and D. To alleviate

this and regain the hybrid basic conditions, this analysis will consider a hybrid system H̃HH

augmented by v ∈ (0, π) with data (C̃, f, D̃, G) such that C̃ = C ∩Kv and D̃ = D ∩Kv with

Kv = {θ ∈ [0, 2π]2 : V (θ) ≤ v}. We have that the sets C̃ and D̃ are closed and the rest of the

properties for the basic assumptions.

The remaining of this proof will follow from the sufficient conditions presented in
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Figure 7.1: A solution θ to the simplified Hodgkin-Huxley hybrid system HHH with θ(0, 0) =
[0, 3.1]⊤. Note that solutions become synchronized (θ1(t, j) = θ2(t, j)) and V (θ(t, j)) = 0 at
(t, j) = (7.5, 9).

[27, Theorem 23]. First, note that |θ|AHH
= 1√

2
|θ1 − θ2| for each θ ∈ C̃ ∪ D̃. For each

θ ∈ C̃ the Lyapunov function VHH must satisfy the condition 〈∇VHH (θ), f(θ)〉 ≤ 0. Since

∇VHH = α[1 − 1]⊤ where α ∈ {−1, 1} and f(θ) = ω1 for all θ ∈ C̃, the inner product is given

by 〈∇VHH (θ), f(θ)〉 = αω − αω = 0 for each θ ∈ C̃. Without loss in generality due to the

symmetry of the problem, we can consider the case of θ ∈ D̃ such that θ1 = 2π and θ2 is free

and extend the results to the case when θ2 = 2π and θ1 is free. Each case of θ2 is considered as

follows.

• Consider the case of θ ∈ D̃ such that

θ1 = 2π, θ2 ∈ {θ2 ∈ (π, 2π) : θ2 − h sin(θ2) < 2π}

for which VHH(θ) = 2π−θ2. After the jump, we have and after the jump θ+ = G(θ) given

by θ+1 = 2π and θ+2 = θ2 − h sin(θ2) and V is given byt

VHH(θ+) = min{|0− θ2 + h sin θ2|, 2π − |0− θ2 + h sin θ2|}

= min{| − θ2 + h sin θ2|, 2π − | − θ2 + h sin θ2|}
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Since h ∈ (0, π), we have θ2 − h sin θ2 > 0. Then, VHH(θ+) = min{θ2− h sin θ2, 2π− (θ2−

h sin θ2)}. If θ2−h sin θ2 > π, then VHH(θ+) = 2π−(θ2−h sin θ2) and VHH(θ+)−VHH(θ) =

2π−(θ2−h sin θ2)−(2π−θ2) = −h| sin θ2| which is negative since sinθ2 < 0 for θ2 ∈ (π, 2π).

Furthermore, consider the case that θ2 − h sin θ2 < π. Since θ2 ∈ (π, 2π), this case is not

possible.

• Next consider the case of θ ∈ D̃ such that

θ1 = 2π, θ2 ∈ {θ2 ∈ (π, 2π) : θ2 − h sin(θ2) > 2π}

then VHH (θ) = 2π − θ2 as before . Although, after the jump we have g2(θ2) = 0 and

VHH(θ+) = min{|θ+1 − θ+2 )|, 2π− |θ+1 − θ+2 |} = 0. Then for this case of θ1 and θ2, we have

that VHH (θ+)− VHH(θ) = −VHH(θ).

• Consider the case of θ ∈ D̃ such that θ+ is set valued, for example let

θ1 = 2π θ2 ∈ {θ2 ∈ (π, 2π) : θ2 − h sin(θ2) = 2π}.

which leads to VHH(θ) = 2π− θ2 as before. After the jump, we have that θ2 is set valued,

that is θ+2 = {0, 2π}. This results in

VHH(θ+) = min{|0− {0, 2π}|, 2π− |0− {0, 2}|}

= min {{0, 2π}, 2π − {0, 2π}}

= min {{0, 2π}, {2π, 0}}

which, for either choice of θ+2 , we have that VHH(θ+) = 0. It follows that VHH(θ+) −

VHH(θ) = −VHH(θ) is negative since θ2 ∈ (π, 2π).

• Consider the other case of θ ∈ D̃ such that

θ1 = 2π, θ2 ∈ {θ2 ∈ (0, π) : θ2 − h sin(θ2) > 0}
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which implies

VHH(θ) = min{|2π − θ2|, 2π − |2π − θ2|}

= min{2π − θ2, θ2}

= θ2.

After the jump, it follows that

VHH(θ+) = = min{|0− g2(θ2)|, 2π − |0− g2(θ2)|}

= min{| − (θ2 − h sin θ2)|, 2π − | − (θ2 − h sin θ2)|}

= min{θ2 − h sin θ2, 2π − (θ2 − h sin θ2)}

= θ2 − h sin θ2

since h sin θ2 > 0 for θ2 ∈ (0, π). This implies that

VHH(θ+)− VHH(θ) = θ − h sin θ2 − θ2 = −h sin θ2 = −h| sin θ2|

which is negative for h ∈ (0, π) and θ2 ∈ (0, π).

• Lastly, consider the case when θ1 = 2π, and θ2 ∈ {θ2 ∈ (0, π) : θ2 − h sin(θ2) ≤ 0}. Then

it follows that VHH(θ) = θ2 as before and VHH(θ+) = 0 since θ+2 = 0. Then difference is

given by VHH(θ+)− VHH (θ) = −VHH(θ) and the system is in AHH after this jump.

From the above analysis, we have that the difference of VHH for different cases of θ ∈ D̃ is given

by

∆VHH(θ) =





−h| sin θ2| if θi = 2π and θj ∈ {θj ∈ (0, 2π) : θ+j ∈ (0, 2π)}

−VHH(θ) otherwise

. (7.8)

Furthermore, complete solutions that only flow are impossible. In fact, all complete

solutions have at least 2π/ω time between jumps. Since every maximal solution to H̃HH is
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Figure 7.2: A solution θ to the simplified Inverse Hodgkin-Huxley hybrid system HIHH with
θ(0, 0) = [0, 0.1]⊤.

complete it follows that from [27, Theorem 23] the set AHH is asymptotically stable for H̃HH .

Since v ∈ (0, v∗) used in the definition of H̃HH is arbitrary, and the set Kv is compact and

forward invariant, the basin of attraction of AHH for the system HHH contains the set {θ ∈

[0, 2π]2 : VHH(θ) < π}. In fact, if there exists i 6= j, (i, j) ∈ {1, 2} and consider the case

θi = 2π and θj = π, then it follows that VHH (θ) = π, VHH(G(θ)) = π − sinπ confirming that

VHH(G(θ)) − VHH(θ) = 0. Then any solution that starts in XHH will stay in this set, since

VHH(θ+) = VHH (θ) for these points. It follows that AHH is asymptotically stable for HHH on

the basin of attraction {θ ∈ [0, 2π]2 : VHH (θ) < π}. �

Figure 7.1 is a solution to HHH with h = 0.9 and initial condition θ(0, 0) = [0, 3.1]⊤;

this solution starts just outside of the set XHH .

7.3.3 Inhibited Simplified Hodgkin-Huxley (IHH) Model (n = 2)

In this section, we consider the inhibited simplified Hodgkin-Huxley model. The PRC

for this case is given by z(θ) = sin(θ). The positive sign on the sine function of the PRC has an

inhibitory effect (compared to the excitatory response of the case in Section 7.3.2): after every
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jump, the distance between the phases grows until they are a maximum distance apart. The

resulting hybrid system is denoted as HIHH , which has the same data as in (7.6) except that

γ(θi) = θi + h sin(θi) with h ∈ (0, π).

The set XIHH is given by the points θ such that θ1 = θ2 and the points from where there

could be a jump to θ1 = θ2. This set is given by XIHH := {θ ∈ C : θ1 = θ2} ∪ {(0, 2π), (0, 2π)}.

We define the set A for HIHH as AIHH := ℓ1∪ℓ2 where ℓ1 := {θ ∈ R2 : θ = θ̃1+1s, s ∈

R} and ℓ2 := {θ ∈ R2 : θ = θ̃2 + 1s, s ∈ R} with θ̃1 =




2π

π


 and θ̃2 =




π

2π


. The sets ℓi

represent lines in R2. Following [83], a Lyapunov function VIHH can be defined as the distance

from θ to the set AIHH . More specifically, VIHH(θ) = d(θ,AIHH ) for each θ ∈ [0, 2π]2 \ XIHH .

The expression of the function VIHH can be further reduced to the minimum distance to each

set ℓi, namely VIHH (θ) = min{d(θ, ℓ1), d(θ, ℓ2)} while the distance d(θ, ℓi) can be rewritten as

d(θ, ℓi) =
∣∣∣(θ − θ̃i)− 1

2 ((θ − θ̃i)⊤1)1
∣∣∣ , where θ̃i is defined for each ℓi as above. We have the

following result.

Lemma 7.3.3 The function VIHH is a Lyapunov function candidate for HIHH on {θ ∈ [0, 2π]2 :

V (θ) < π√
2
}.

Proof To show that VIHH is a Lyapunov candidate function, each condition in Definition 2.1.9

must be satisfied. Condition i) is satisfied, since the minimum of two continuous nonnegative

functions is continuous and nonnegative every on (C ∪ D) \ A. The function VIHH is not

continuously differentiable everywhere on (C ∪ D) \ XIHH , in fact for the case of θ ∈ XIHH

it follows that V (θ) = π√
2
. Then condition ii) is satisfied if we consider the case of θ ∈ {θ ∈

[0, 2π]2 : V (θ) < π√
2
}. Lastly, condition iii) is satisfied by the definition of the distance functions,

if θ ∈ AIHH there exists i ∈ {1, 2} such that θ ∈ ℓi and d(θ, ℓi) = 0. �

Similar to HHH , we can use a Lyapunov stability argument to show the stability of AIHH for
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HIHH . The proof of this theorem follows closely that of the one for HHH , in that, during flows

we have that V̇ = 0 everywhere, during jumps the difference is strictly decreasing for every point

in the basin of attraction, i.e., V (G(θ)) − V (θ) < 0 for each θ ∈ D \ (XIHH ∪AIHH).

Theorem 7.3.4 The hybrid system HIHH with the PRC z(θ) = sin(θ) has the set AIHH asymp-

totically stable with basin of attraction (C ∪D) \ XIHH .

Proof This proof follows similarly to the proof of Theorem 7.3.2 with the Lyapunov function

as in (7.7) and sets AIHH and XIHH . Note that the function VIHH(θ) = min{d(θ, ℓi), d(θ, ℓ2)}

is continuously differentiable on the open set S \ AIHH , where S =
{
θ ∈ R2 : V (θ) < π√

2

}
. We

then define v ∈ (0, π), and Kv = {x ∈ [0, 2π]2 : V (θ) ≤ v}. As in Theorem 7.3.2, we define a

hybrid system with flow and jump set constrained by Kv, namely HIHH with data (C̃, f, D̃, G).

During flows, 〈∇V (θ), f(θ)〉 = 0 for every θ ∈ C̃ due to the definition of f being perpendicular

to the gradient of V . During jumps, the difference V (θ+) − V (θ) must be computed for every

θ ∈ D̃. Without loss of generality we consider the isolated case of θ1 = 2π and θ2 ∈ (0, 2π)

and extend it to the case of θ1 ∈ (0, 2π) and θ2 = 2π. For the case of points during jumps

it follows that due to the symmetry of the problem we can consider a single case of the jump

set and extend this case to all cases of the jump set. For this analysis, we will use the case of

θ ∈ D where θ1 = 2π and θ2 < 2π which implies that after the jump G(θ) leads to θ+1 = 0,

θ+2 = θ2 + h sin(θ2), respectively. Before the jump, the function V (θ) for this case of θ ∈ D̃ is

given by V (θ) = min(d(θ, ℓ1), d(θ, ℓ2)) = d(θ, ℓ1) using the point θ̃1 ∈ [2π, π]⊤, the distance θ to

ℓ1 reduces to the following expression such that

V (θ) =

∣∣∣∣∣∣∣∣




θ2
2 − π

2

− θ2
2 + π

2




∣∣∣∣∣∣∣∣
=

1√
2
|θ2 − π|
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and after the jump it follows that

V (G(θ)) =

∣∣∣∣∣∣∣∣



−π

2 + θ2
2 + h sin(θ2)

2

π
2 − θ2

2 −
h sin(θ2)

2




∣∣∣∣∣∣∣∣
=

1√
2
|θ2 + h sin(θ2)− π|

and the difference V (G(θ)) − V (θ) leads to

V (G(θ)) − V (θ) =

∣∣∣∣∣∣∣∣



−π

2 + θ2
2 + h sin(θ2)

2

π
2 − θ2

2 −
h sin(θ2)

2




∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣




θ2
2 − π

2

− θ2
2 + π

2




∣∣∣∣∣∣∣∣

=
1√
2
(|θ2 + h sin(θ2)− π| − |θ2 − π|)

consider the case of θ2 ∈ (0, π) then V (G(θ)) − V (θ) = − 1√
2
h sin(θ2) = − h√

2
| sin(θ2)| for

h ∈ (0, π) and sin(θ2) > 0 for θ2 ∈ (0, π). Furthermore, for the case of θ2 ∈ (π, 2π), it

follows that V (G(θ)) − V (θ) = h sin(θ2) = − h√
2
| sin(θ2)| implies asymptotic stability for every

point θ ∈ [0, 2π]2 \ X for the H̃IHH system. It follows that from [27, Theorem 23], that

AIHH is asymptotically stable for the system H̃IHH . Furthermore, complete solutions that

only flow are impossible. Since v ∈ (0, π) used in the definition H̃IHH is arbitrary, and the set

Kv is compact and forward invariant, the basin of attraction of AIHH for the system HIHH

contains S. Furthermore, solutions initialized in XIHH never converge toAIHH . In fact, consider

θ ∈ D ∩ XIHH such that θ = [2π, π]⊤. For this case, note that V (θ+) = V (θ). It then follows

that S is the basin of attraction for AIHH . �

Figure 7.2 shows a solution to HIHH with h = 1 and θ(0, 0) = [0, 0.1]⊤, and the values

of the corresponding Lyapunov function along the solutions.

7.3.4 SNIPER (S) Model (n = 2)

The SNIPER model has the PRC given by z(θ) = (1 − cos(θ)). The resulting hybrid

system with this PRC is denoted as HS . It has the same data as in (7.6) except that γ(θi) =
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Figure 7.3: A solution to HS that never converges to AS with z(θ) = 1 − cos(θ), h = π/8, and
initial condition θ(0, 0) = [0, 2π − θ∗]⊤ ∈ X .

θi + h(1− cos(θi)) with h > 0. The solutions to the SNIPER system converge to the set

AS := {(θ1, θ2) ∈ [0, 2π]2 : |θ1 − θ2| = 0} (7.9)

which represents a synchronization condition. To determine the set of points (X in Section 7.3)

from where solutions to HS never converge to AS , we follow the computation to (7.5), leading

to

2π − 2θ∗ = h(1− cos(θ∗)), (7.10)

which is an implicit expression on θ∗. As h increases, the right-hand side of (7.10) increases,

and θ∗ decreases. It follows that for h > 0, we have θ∗ ∈ (0, π) and from (7.10), we obtain

XS := {(θ1, θ2) ∈ [0, 2π]2 : |θ1 − θ2| = 2π − θ∗,

2π− 2θ∗ = h(1− cos(θ∗))}. Figure 7.3 shows a specific example of a solution to HS with initial

conditions θ(0, 0) = [0, 3.52] ∈ X , andh = π/8.
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Figure 7.4: The (θ1, θ2)-plane for the hybrid system HS with h = 2.67.

To prove that AS is asymptotically stable for HS , define the sets Si as

S1 = {(θ1, θ2) ∈ [0, 2π]2 : θ2 − θ1 > 2π − θ∗} (7.11)

S2 = {(θ1, θ2) ∈ [0, 2π]2 : 0 < θ2 − θ1 < 2π − θ∗} (7.12)

S3 = {(θ1, θ2) ∈ [0, 2π]2 : 0 < θ1 − θ2 < 2π − θ∗} (7.13)

S4 = {(θ1, θ2) ∈ [0, 2π]2 : θ1 − θ2 > 2π − θ∗}. (7.14)

Figure 7.4 indicates each of the sets Si, AS and XS . Note that solutions to HS that do not jump

into AS will jump between two Si sets cyclicly. More precisely, we have the following result.

Lemma 7.3.5 Given the sets S1, S2, S3, and S4 in (7.11)-(7.14), if θ ∈ D ∩ Si and θ+ ∈

G(θ) \ (AS ∪ XS), then:

(1) If θ ∈ S1, then θ
+ ∈ S3;

(2) If θ ∈ S2, then θ
+ ∈ S4;

(3) If θ ∈ S3, then θ
+ ∈ S1;

(4) If θ ∈ S4, then θ
+ ∈ S2.

Proof This proof is split in to 4 cases of θ ∈ D. For each case there exist i, j ∈ {1, 2}, i 6= j such

that θi = 2π and θj ∈ (0, θ∗) ∨ (θ∗, 2π). After the jump, θ+ = G(θ) where we have that θ+i = 0
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and θj is left to be characterized. The following analysis will characterize the range of θ+j for

each case of θ on the sets given in (7.11) - (7.14) using the expression defining θ∗ in (7.10).

1. Consider, θ ∈ D ∩ S1, it follows that θ2 = 2π, θ1 ∈ (0, θ∗). After the jump, we have

that θ+2 = 0 and θ+1 = θ1 + (1 − cos(θ1)). Along the range of θ1 it follows that θ+1 ∈

(0 + (1 − cos(0)), θ∗ + (1 − cos(θ∗)) = (0, θ∗ + (1 − cos(θ∗)). From (7.10), we have that

θ+1 ∈ (0, 2π − θ∗) which leads to θ+ ∈ S3.

2. Consider, θ ∈ D ∩ S2, it follows that θ2 = 2π, θ1 ∈ (θ∗, 2π). After the jump, we have

that θ+2 = 0 and θ+1 = θ1 + (1 − cos(θ1)). Along the range of θ1, it follows that θ+1 ∈

(θ∗ + (1 − cos(θ∗)), 2π + (1 − cos(2π))) = (θ∗ + (1 − cos(θ∗)), 2π). From (7.10), we have

that θ+1 ∈ (2π − θ∗, 2π) which leads to θ+ ∈ S4.

3. These last two cases follow exactly like the first two. In fact, for the case of θ ∈ D ∩ S3 it

follows that θ1 = 2π and θ2 ∈ (θ∗, 2π). After the jump, θ+1 = 0 and θ2 ∈ (2π− θ∗, 2π) and

θ+ ∈ S1.

4. For the case of θ ∈ D ∩ S4 it follows that θ1 = 2π and θ2 ∈ (0, θ∗) leads to θ+1 = 0 and

θ2 ∈ (0, 2π − θ∗). For this case, we have that θ+ ∈ S2

�

Using a trajectory-based approach, we establish that AS is attractive for HS .

Theorem 7.3.6 The hybrid system HS with h satisfying cos(θo − h(1 − cos(θo)) > cos(θo) for

all θo ∈ (0, 2π− θ∗), where θ∗ satisfies (7.10), is such that the set AS is attractive with basin of

attraction (C ∪D) \ XS .

Proof From Lemma 7.3.5, it follows that all solutions evolve cyclically. In that, any solution

that hits a point θ ∈ S1 ∩ D gets mapped to S3 since G(θ) ⊂ S3. Likewise, any solution that
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hits a point θ ∈ S3 ∩D gets mapped to S1 since G(θ) ⊂ S1. Similarly, any solution that hits a

point θ ∈ S2 ∩D gets mapped to S4 and any solution that hits a points θ ∈ S4 ∩D, get mapped

to S2.

Note that if θo is the value of the state after a jump at (tj , j) ∈ dom θ we have that

the solution from that point flows (for t > tj) and is given by θ(t, j) = ω(t − tj) + θo. Let

θ : dom θ → [0, 2π]2 be a solution to HS and let {(0, 0), (t1, 0), (t1, 1), (t2, 1), (t2, 2), . . .} ∈ dom θ.

Then, at the jump times, the solutions evolve as follows:

θ(0, 0) = (0, θo2) (7.15)

θ(t1, 0) = (2π − θo2, 2π) (7.16)

θ(t1, 1) = (2π − θo2 + h(1− cos(2π − θo2)), 0) (7.17)

= (2π − θo2 + h(1− cos(θo2)), 0) (7.18)

θ(t2, 1) = (2π, 2π − (2π − θo2 + h(1− cos(θo2)))) (7.19)

= (2π, θo2 − h(1− cos(θo2)))) (7.20)

θ(t2, 2) = (0, θo2 − h(1− cos(θo2)) + h(1 − cos(θo2 − h(1− cos(θo2))))) (7.21)

Without loss of generality, consider θ̃0 ∈ S2. After a full cycle, the solution reaches S2, which

leads to

θ+0 = (0, θ̃0 − h(1− cos(θ̃0)) + h(1− cos(θ̃0 − h(1− cos(θ̃0)))).

Note that the distance to the set AS can be defined as V (θ) := |θ1 − θ2|, satisfying V (θ) = 0

for each θ ∈ AS , V > 0 for θ /∈ AS and is continuously differentiable on the open set R2 \ XS .

Furthermore, V̇ (θ) = 0 for every θ ∈ C ∪D. During jumps, we have that the difference at the
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initial point in S2 and after the full cycle is given by

V (θ̃+0 )− V (θ̃0) = |0− (θ̃0 − h(1− cos(θ̃0)) + h(1− cos(θ̃0 − h(1− cos(θ̃0)))))| − |0− θ̃0|

(7.22)

= θ̃0 − h(1− cos(θ̃0)) + h(1− cos(θ̃0 − h(1− cos(θ̃0))))− θ̃0 (7.23)

= −h(1− cos(θ̃0)) + h(1− cos(θ̃0 − h(1− cos(θ̃0)))). (7.24)

When the condition

cos(θ̃0 − h(1 − cos(θ̃0))) > cos(θ̃0) (7.25)

holds, we have V (θ̃+0 )− V (θ̃0) < 0 for every θ0 ∈ S2.

Furthermore, following the above full cycle analysis for solutions starting in S4 and

making a full cycle yields the same result as (7.24) with θ̃0 ∈ (2π − θ∗, 2π) but has a difference

given by V (θ̃+0 )− V (θ̃0) > 0 with the condition (7.25). This leads to solutions jumping further

from AS , but closer to the point {2π, 0}.

Due to the symmetry of HS , it follows that every solution to HS starting away from

XS has a distance V that decreases to zero after the full loop S2 → S4 → S2 and has distance V

that increases to {0, 2π} after a full loop S4 → S2 → S4. This suggests that every solution can

only converge to the set AS ∪ {(0, 2π), (2π, 0)}. On the other hand, since every solution to HS

is complete and bounded, by [84, Lemma 3.3], its ω-limit set is weakly invariant. Note that the

set AS is strongly forward invariant, but it is not weakly backward invariant. In fact, the points

{(0, 2π), (2π, 0)} ⊂ D get mapped to G(θ) = (0, 0) ∈ AS and once in AS solutions cannot reach

{(0, 2π), (2π, 0)}. The largest weakly invariant set in AS ∪ {(0, 2π), (2π, 0)} is AS . This shows

that AS is attractive for HS . �

Remark 7.3.7 It can be determined numerically, that the condition in Theorem 7.3.6 holds for
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h ∈ (0, 2.67). However, simulations show that solutions converge to AS for larger values of h.

In fact, since h proportionally affects the size of the ‘impulse,’ the larger the value of h is the

sooner solutions converge to AS.

7.3.5 Hopf (H) Model (n = 2)

The Hopf model has a PRC given by z(θi) = − sin(θi − θ0), where θ0 ∈ (−π
2 ,

π
2 )

and h ∈ (0, π), see, e.g., [85]. This PRC is similar to that of HHH with a phase shift θ0.

The resulting hybrid system is denoted HH . It has the same data as in (7.6) except that

γi(θi) = θi+h sin(θi− θ0). For the range of θ0 ∈ (−π
2 ,

π
2 ), solutions to this system approach the

set AH := {(θ1, θ2) ∈ [0, 2π]2 : |θ1 − θ2| = 0}. To determine the set from where solutions never

converge to the set AH , namely to determine the set XH , from the computation in (7.5) with z

given above, we obtain

2π − 2θ∗ = −h sin(θ∗ − θ0) (7.26)

which is an implicit equation parameterized by both h and θ0. Then, the set XH is defined by

XH := {(θ1, θ2) : |θ1 − θ2| = 2π − θ∗, 2π − 2θ∗ = −h sin(θ∗ − θ0)}.

The function γ in the jump map can be rewritten as γ(θi) = θi − h sin(θi) cos(θ0) +

h cos(θi) sin(θ0). If we let ρ(θi, θ0) = h cos(θi) sin(θ0) and h̃ = h cos(θ0) then γ can be rewritten

as

γ(θi) = θi − h̃ sin(θi) + ρ(θi, θ0) (7.27)

We can now consider the offset θ0 as a perturbation of the jump map in the simplified Hodgkin-

Huxley model in Section 7.3.2. This perturbation satisfies |ρ(θi, θ0)| ≤ h| sin(θ0)| for all θi ∈

[0, 2π]. In this way, HHH can be considered to be the unperturbed version of HH . Since HHH

satisfies the hybrid basic conditions from Lemma 7.2.1 and with AHH being asymptotically
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stable for HHH , then using [28, Theorem 7.20], we have the following result.

Theorem 7.3.8 The hybrid system HH has the set AH practically asymptotically stable in the

parameter θ0 ∈ (−π
2 ,

π
2 ), i.e., for each ε > 0 there exists θ∗0 > 0 and a KL function β such

that, for each |θ0| ∈ [0, θ∗0), every solution θ to HH from [0, 2π]2 \ XH satisfies |θ(t, j)|AH
≤

β(|θ(t, j)|AH
, t+ j) + ε for all (t, j) ∈ dom θ.

Proof Since HHH is well-posed and AHH is an asymptotically stable, compact set from Theo-

rem 7.3.2 on [0, 2π] \ XHH . Since AH = AHH and ρ is given by (7.27), from [28, Lemma 7.20],

that AH is semiglobally practically stable. Given ε > 0 there exists a maximum size of the

perturbation function ρ, which leads to a maximum value θ∗0 > 0 for |θ0|, i.e. |θ0| ∈ [0, θ∗0). Fur-

thermore, with parameters θ0 and ε satisfying the said conditions, there exists a KL function β

such that for any solution φH from [0, 2π]\XH we have |φH(t, j)|AH
≤ β(|φH(t, j)|AH

, t+ j)+ε.

for all (t, j) ∈ domφH . �

Figure 7.5 shows numerical results for large values of θ0. The red regions correspond to

points from where solutions converge toAH (dashed cyan line), while the blue regions correspond

to the points from where solutions “get stuck” due to the dynamics of the jump map. Moreover,

the figure shows that as |θ0| increases the blue regions get larger.

7.4 Summary

A framework for modeling and analyzing groups of spiking neurons was introduced.

Within the hybrid system framework, several well-known neuron models were studied, including

the excitatory and inhibitory Hodgkin-Huxley model, the saddle-point node on a periodic orbit

model (SNIPER), and the Hopf model. For each model, we characterized the sets to which their

respective solutions converge. Using Lyapunov stability tools for hybrid systems, asymptotic
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Figure 7.5: Numerical solutions to HH with initial conditions θ(0, 0) ∈ [0, 2π]2. The red regions
correspond to the points that converge to AH (dashed cyan) while the blue region corresponds
to the points that “get stuck” near AH due to the offset θ0.

stability properties were established for each system for the case of n = 2. The introduction of

an external stimulation in the Hodgkin-Huxley neuron model is paramount in achieving global

asymptotic stability. Since the data of the hybrid systems satisfies certain regularity properties,

the stability of these systems is robust to small perturbations.
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Chapter 8

Frequency Hopping Rendezvous

8.1 Introduction

In this chapter, synchronization properties of pulse-coupled oscillators communicat-

ing over two bidirectional channels is considered. Bidirectional communication channels allow

for both transmission and reception of information on the same channel. These channels are

available to each oscillator. In such a setting, the packets transmitted by each oscillator on

the currently chosen channel generate an event in the other oscillator only if they are on same

communication channel.

The study of this problem stems from the control of networked reconfigurable systems,

in particular, cognitive radio systems in space applications, in which system parameters, such

as communication channel, transmission power, and direction of transmission or reception, can

be updated in real time to react to a changing environment. In space applications, two-agent

communication scenarios are key as they capture the scenario consisting of a ground station

establishing a link with a satellite. Cognitive radio is a form of software defined radio. It is an

agile communication system capable of dynamically changing its protocols with the rapid changes
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of the environment, due to (but not limited to) adversarial jammers, managing communication

with a primary user, and rendezvousing with other users in a decentralized network. In this

context, the impulsive oscillators represent agents or radios that, through dynamic selection of

the communication channel parameters, synchronize channel access with minimal information

using feedback-based protocols. This feature could be advantageous in preventing adversaries

from disrupting agent-to-agent communication since no pre-specified channel selection is made.

In fact, traditional algorithms for establishing communication between nodes rely on a fixed

channel selection sequence, such as the so-called frequency hopping algorithm which assigns to

each agent a frequency-hopping pattern specifying the sequence (or code) of frequencies at which

transmission is allowed [86]; see related work in [87], [88] and [89]. Compared with such works,

a key feature of the algorithm emerging from the impulsive synchronization problem studied in

this paper is that it does not require pilot tones on a pre-specified channel and that the channel

selection patterns are determined in real time and based on feedback control.

The approach taken in this paper consists of modeling the pulse-coupled oscillators as

a hybrid dynamical system, with continuous dynamics capturing the evolution of the oscilla-

tor’s state in between impulses and discrete dynamics modeling self- and externally-triggered

impulses. The resulting hybrid system contains continuous states, which are timers correspond-

ing to the oscillator’s variables, and discrete states, which are variables denoting the channel

selected by each oscillator. Synchronization is recast as a compact set stabilization problem.

Asymptotic stability of this set implies that the difference between the states of the oscillators

and of the logic variables representing the selected channels converge to zero. Analysis is per-

formed using the framework of hybrid systems and tools to assert asymptotic stability in [28, 27].

We construct a Lyapunov function to show synchronization for the case of two oscillators on

two channels. Performance and robustness to loss of information are characterized numerically.

Simulations show that synchronization is reached from initial conditions in a basin of attraction
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containing almost every point in the state space. Experimental results validate the findings in

a realistic environment.

The remainder of this paper is organized as follows. Section 8.2 is devoted to modeling.

Section 8.3 presents the main tools for analysis as well as the main result. Numerical simulations

are presented in Section 8.4. Experimental results are presented in Section 8.5.

8.2 Modeling Impulsive Oscillators with Channel Depen-

dency

The pulse-coupled oscillator system of study consists of oscillators defining the agents

with continuous states given by timers (τ1, τ2) and discrete states (q1, q2) denoting the current

channel selection. These states are discretely updated when they reach a threshold and are

externally reset when information is received. Information arrives to each agents from pre-

defined channels. The agents can listen to one channel at a time.

Consider the case of two agents communicating over two channels via the following

mechanism:

A) Each agent listens on the currently selected channel until its timer expires. Under such

an event, the agent transmits a signal (or packet) on the current channel, resets its timer

to zero, and switches to the other channel. Figure 8.1(a) shows that situation for a single

pulse-coupled oscillator.

B) If an agent receives a packet while listening on the currently chosen channel, its timer is

reset via an update law that reduces the listening time on that channel for the receiving

agent. Figure 8.1(b) demonstrates the interaction between two pulse-coupled oscillators.

This mechanism can be thought as a control algorithm. It is inspired by synchronization
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Figure 8.1: (a) Trajectories (τ1, q1) of a single pulse-coupled oscillator over two channels. (b)
Trajectories (τ1, q1) and (τ2, q2) of two pulse-coupled oscillators over two channels.

of biological systems in [34, 31], where agents can “listen” all the time. In fact, the main

difference between the mechanism above and the synchronization mechanism studied in [31] is

that here there is a constraint on data reception, which depends on the channel currently chosen

by the agents and does not guarantee that information sent is always received. In the case of a

common channel and no information loss, the agents will synchronize as in the work of [31].

8.2.1 Hybrid Modeling

From the outline in A) and B) above a two agent/two channel mechanism can be

modeled as a hybrid system in (6.1). We denote it as H2,2. For each i ∈ {1, 2}, the i-th agent

has a timer state τi and a channel state qi ∈ Q := {1, 2}. The timer state takes value in the set

[0, 2τ̄ ], where τ̄ > 0 is a parameter defining the threshold for jumps. Then, the state of the two

agent/two channel system is given by x = (τ1, q1, τ2, q2) ∈ P where PP := [0, 2τ̄ ]×Q×[0, 2τ̄]×Q.

The flow and jump sets are defined to constrain the evolution of the timers (τ1, τ2) and

the channel state (q1, q2). For example, when agent 1 is listening to channel one, that is, q1 = 1,

the timer τ1 takes value in the set [0, τ̄ ], while when agent 1 is listening to channel two, q1 = 2,

and τ1 takes value in [τ̄ , 2τ̄ ]. Then, flows are allowed when each of the agent’s timers are within
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the range corresponding to the current channel on which they are listening. This is captured

via the flow set

C := {x ∈ P : (τ1, q1) ∈ C1, (τ2, q2) ∈ C2}, (8.1)

where, for each i ∈ Q,

Ci := {(τi, qi) ∈ [0, 2τ̄ ]×Q : (qi − 1)τ̄ ≤ τi ≤ qiτ̄}.

During flows, the timers count ordinary time and the channel state remains constant, i.e.,

f(x) :=

[
1 0 1 0

]⊤
∀ x ∈ C. (8.2)

The discrete events described in A) and B) above are modeled by a jump set D and a jump

map G. The events or jumps are triggered when a timer expires, i.e., the jump set D captures

timer resets and packet reception events. These events correspond to either timer reaching its

threshold. More precisely:

D := {x ∈ C : (τ1, q1) ∈ D1} ∪ {x ∈ C : (τ2, q2) ∈ D2}, (8.3)

where Di := {(τi, qi) ∈ [0, 2τ̄ ] × Q : τi = qiτ̄}. In such a case, the agent whose timer expired

transmits a packet on its current channel and changes channel by updating its channel state and

timer state appropriately. If the other agent is in the same channel, then its timer is incremented

by a timer advance constant, ε ∈ (0, 2τ̄ ], as to reduce the listening time on that channel. This
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is captured via the jump map

G(x) =





g1(x) if τ1 = q1τ̄ , τ2 < q2τ̄ , q1 = q2

g2(x) if τ1 < q1τ̄ , τ2 = q2τ̄ , q1 = q2

g3(x) if τ1 = q1τ̄ , τ2 < q2τ̄ , q1 6= q2

g4(x) if τ1 < q1τ̄ , τ2 = q2τ̄ , q1 6= q2

g5(x) if τ1 = q1τ̄ , τ2 = q2τ̄ , q1 = q2

g6(x) if τ1 = q1τ̄ , τ2 = q2τ̄ , q1 6= q2.

∀ x ∈ D (8.4)

The first case (g1) of G corresponds to the case when agent 1’s timer reaches a threshold, which

means that it is about to transmit a packet, agent 2’s timer is not at a threshold, which means

that it is listening, while both agents are on the same channel. In this way, g1 is defined as

g1(x) =




(2− q1)τ̄

3− q1

n2(x)



, n2(x) =








τ2 + ε

q2


 if τ2 + ε < q2τ̄



(2 − q2)τ̄

3− q2


 if τ2 + ε > q2τ̄







τ2 + ε

q2


 ,



(2 − q2)τ̄

3− q2








if τ2 + ε = q2τ̄

,

The function n2 describes how agent 2 reacts to incoming information, allowing for timer re-

setting and channel switching if the jump pushes the timer past the threshold. More precisely,

if the new value of the timer τ2, which after the reset is τ2 + ε, is below the current threshold,

then update τ2 to τ2 + ε, but if it is above the current threshold, then reset it as if it expired

and switch channels. When τ2 + ε = q2τ̄ then the jump set is within a set of values and will do

either.

The definition of the function g2 in G is as g1, but with reverse roles. More precisely,
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it is given as

g2(x) =




n1(x)

(2− q2)τ̄

3− q2



, n1(x) =








τ1 + ε

q1


 if τ1 + ε < q1τ̄



(2 − q1)τ̄

3− q1


 if τ1 + ε > q1τ̄







τ1 + ε

q1


 ,



(2 − q1)τ̄

3− q1








if τ1 + ε = q1τ̄

.

Functions g3 and g4 capture the cases when the agents are in different channels. They are given

by

g3(x) =




(2 − q1)τ̄

3− q1

τ2

q2




, g4(x) =




τ1

q1

(2− q2)τ̄

3− q2




.

When both agents reach their threshold at the same time neither are listening, so they both

change channels and reset their timers. Functions g5 and g6 correspond to such a case, where

g5 corresponds to the case that the agents are in the same channel while g6 to the case when

they are not. Then

g5(x) = g6(x) =




(2 − q1)τ̄

3− q1

(2 − q2)τ̄

3− q2




.
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8.2.2 Basic Properties of H2,2

To apply analysis tools for hybrid systems, which will be presented in Section 8.3, the

data of the hybrid system H2,2 must satisfy the hybrid basic conditions given in Definition 2.1.8.

Lemma 8.2.1 The data of H2,2 satisfies the Hybrid Basic Conditions in Definition 2.1.8.

Proof The function f is continuous since it is constant. The sets C and D are closed by design.

The set valued map G is satisfies A3. Since x is such that τ2 = τ̄ − ε, q2 = 1, which is where

g1 is set valued for all xi converging to x limxi→x g1(x
i) ∈ g1(x) This follows by the fact that

g1(x
i) is either given by ((2− q1)τ̄ , 3− q1, τ2+ ε, q2) or ((2− q1)τ̄ , 3− q1, (2− q2)τ̄ , 3− q2). which

define the two points in g1(x). It follows that a similar proof can be performed for g2. �

8.3 Synchronization Properties of the Hybrid System Model

for Two Impulsive Oscillators with Channel Depen-

dency

The goal of this section is to show that solutions x = (τ1, q1, τ2, q2) (with some abuse

of notation) to H2,2 are such that

τ1(t, j)− τ2(t, j)→ 0 and q1(t, j)− q2(t, j)→ 0

as t+ j → ∞, and that if the initial conditions τ1(0, 0), q1(0, 0) and τ2(0, 0), q2(0, 0) are close,

then the solutions stay close. In other words, our goal is to show that the compact set

A := {x ∈ C ∪D : τ1 = τ2, q1 = q2} (8.5)
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is asymptotically stable for the hybrid system H2,2. Due to the evolution of the timers being

periodic when in A, asymptotic stability of A is a synchronization property for the agent timers.

The set of points from where the attractivity property holds is the basin of attraction, denoted

as B.

A Lyapunov function as defined in Definition 2.1.9 is employed to show that the com-

pact set in (8.5) is asymptotically stable. For a function V to be considered a Lyapunov candidate

it must meet the following requirements. The following result from [27, Theorem 23] states the

conditions on V for asymptotic stability of a compact set. Below, a level set LV (µ) refers to the

set of all points in C ∪D such that V (x) = µ, i.e., LV (µ) := {x ∈ C ∪D : V (x) = µ}.

8.3.1 Asymptotic Stability Analysis of H2,2

The overall goal of this section is to determine the stability and attractivity properties

of the set of points (8.5). We consider the function V : R4 → R given by

V (x) = (1 − ρ(x))V1(x) + ρ(x)V2(x) ∀x ∈ C ∪D, (8.6)

where V1 is a piecewise function given by

V1(x) =





1
ε (τ1 − τ2)

2
+ ε

4 if |τ1 − τ2| ≤ ε
2

1
ε (τ1 − τ2 − 2τ̄)

2
+ ε

4 if τ1 − τ2 ≥ 2τ̄ − ε
2

1
ε (τ1 − τ2 + 2τ̄)

2
+ ε

4 if τ1 − τ2 ≤ −2τ̄ + ε
2

V2(x) if |τ1 − τ2| ∈
(
ε
2 , 2τ̄ − ε

2

)

,

where ε ∈ (0, 2τ̄ ], V2 is given by

V2(x) = min{|τ1 − τ2|, 2τ̄ − |τ1 − τ2|},
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and, ρ is a C1 function satisfying

ρ(x) =





0 if q1 6= q2, q1, q2 ∈ {1, 2}

1 if q1 = q2 ∈ {1, 2}

and, for all x ∈ C,

∇τ1ρ(x) = 0 and ∇τ2ρ(x) = 0.

For points not in C ∪ D, the Lyapunov function V is given by any positive and continuous

function that is continuously differentiable (almost everywhere). Furthermore, it can be verified

that the Lyapunov function satisfies the conditions in Definition 2.1.9, namely, we have the

following result.

Lemma 8.3.1 The function V : R4 → R given in (8.6) is a Lyapunov function candidate for

(H̃2,2,A), where A is the compact set

A = {x ∈ C ∪D : τ1 = τ2, q1 = q2}.

Proof We prove that properties i)-iii) in Definition 2.1.9 hold for V in (8.6) when domV = R4.

I ) We first show that V is continuous on (C ∪ D), and hence on (C̃ ∪ D̃). For parameters

τ̄ and ε such that τ̄ ≥ ε
2 , continuity of V follows directly from the evaluation of the

continuous functions

V1a(x) := 1
ε (τ1 − τ2)

2
+ ε

4 ,

V1b(x) := 1
ε (τ1 − τ2 − 2τ̄)

2
+ ε

4 ,

V1c(x) := 1
ε (τ1 − τ2 + 2τ̄)2 + ε

4 ,

V2a(x) := |τ1 − τ2|,

V2b(x) := 2τ̄ − |τ1 − τ2|

(8.7)

at the boundaries of the pieces on which V is defined. To show that V is nonnegative on
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(C ∪D), note that V1a, V1b, V1c, and V2a are always nonnegative. The function V2b is also

nonnegative on C∪D. Then, since all of the functions defining V are nonnegative on (C∪

D), V is also nonnegative on that set. Then, in particular, property i) in Definition 2.1.9

holds.

II ) We show that V is continuously differentiable on

O := {x ∈ P : 0 < V (x) < τ̄}

= {x ∈ P : |τ1 − τ2| 6= τ̄ , |τ1 − τ2| 6= 2τ̄ ,

|τ1 − τ2| 6= 0},

which satisfies C̃ \ A ⊂ O ⊂ R4. Note that the functions V1a, V1b, V1c, V2a, V2b are C1 on

this set (the points at which V2a, V2b are non-differentiable do not belong to this set). The

points (τ1, q1, τ2, q2) at which the definition of V switches between pieces are: for q1 6= q2,

(τ1− τ2) = ± ε
2 , (τ1− τ2) = ±(2τ̄ − ε

2 ) or |τ1− τ2| = τ̄ ; for q1 = q2, |τ1− τ2| = τ̄ or τ1 = τ2.

The latter points (for q1 = q2) do not belong to O. For points with q1 6= q2, we have that

the gradients evaluated at the boundary points of the respective functions coincide, from

where differentiability of V follows.

III ) The property lim{x→A, x∈C̃∪D̃} V (x) = 0 follows from the continuity of V shown in I) and

the fact that V (A) = 0. In fact, for each x ∈ A we have q1 = q2, then V (x) = V2(x), and

for such points we have

V2(x) = min{|τ1 − τ1|, 2τ̄ − |τ1 − τ1|} = min{0, 2τ̄} = 0.

�
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Lemma 8.3.2 The function V given as in (8.6) satisfies

V (x) > 0 ∀ x ∈ (C ∪D) \ A.

Proof Since by item i) of Definition 2.1.9, we have that V is nonnegative on (C ∪ D) \ A, we

show that V (x) 6= 0 on such set. If q1 = q2 then V (x) = V2(x). The function V2 is zero when

τ1 = τ2, which is in A, or when |τ1 − τ2| = 2τ̄ . The latter case is outside C ∪D. Therefore, if

q1 = q2 then V (x) > 0. If q1 6= q2 then V (x) = V1(x), which depends on V1a, V1b, V1c, V2a, V2b.

By construction, since V1a, V1b, V1c are lower bounded by ε
4 , V is positive on the set (C ∪D)\A.

�

Then, by Lemma 8.3.1 and Lemma 8.3.2, function V in (8.6) is a Lyapunov function candidate

for (H2,2,A). Next, note that G(A) ⊂ A since for each x ∈ A, the jump map satisfies

G(x) = g5(x) =




(2− q1)τ̄

3− q1

(2− q2)τ̄

3− q2




=




(2− q1)τ̄

3− q1

(2− q1)τ̄

3− q1




∈ A.

It follows that to establish that A is asymptotically stable, we have to check that

〈∇V (x), f〉 ≤ 0 for all x ∈ C̃ \ A, f ∈ F (x), (8.8)

V (g)− V (x) ≤ 0 for all x ∈ D̃ \ A, g ∈ G(x) \ A (8.9)

according to Theorem 2.1.10. This analysis will be divided into the following lemmas to establish

the flow and jumps conditions for asymptotic stability in Theorem 2.1.10.

Lemma 8.3.3 For all x ∈ C̃, with V in (8.6),

〈∇V (x), F (x)〉 = 0.
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Proof Consider the possibilities of the candidate function (8.6) on C̃ \A. For points x ∈ C̃ \A

such that q1 6= q2, we have V (x) = V1(x). When V1(x) 6= V2(x) then 〈∇V (x), F (x)〉 can fall into

the following three possibilities:

〈∇V1a(x), F (x)〉 =
[
2
ε (τ1 − τ2) 0 − 2

ε (τ1 − τ2) 0
]




1

0

1

0




= 0 if |τ1 − τ2| ≤ ε
2

〈∇V1b(x), F (x)〉 =
[
2
ε (τ1 − τ2 − 2τ̄) 0 − 2

ε (τ1 − τ2 − 2τ̄ ) 0
]




1

0

1

0




= 0 if τ1 − τ2 ≤ 2τ̄ − ε
2

〈∇V1c(x), F (x)〉 =
[
2
ε (τ1 − τ2 + 2τ̄) 0 − 2

ε (τ1 − τ2 + 2τ̄ ) 0
]




1

0

1

0




= 0 if τ1 − τ2 ≤ −2τ̄ + ε
2 .

For points x ∈ C̃ such that q1 = q2, then we have V (x) = V2(x). If τ1 > τ2, then the possible
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expressions of 〈∇V (x), F (x)〉 are

〈∇V2a(x), F (x)〉 = [1 0 − 1 0]




1

0

1

0




= 0 if τ1 − τ2 < 2τ̄ − τ1 + τ2

〈∇V2b(x), F (x)〉 = [−1 0 1 0]




1

0

1

0




= 0 if τ1 − τ2 > 2τ̄ − τ1 + τ2 ;

if τ1 < τ2, then

〈∇V2a(x), F (x)〉 = [−1 0 1 0]




1

0

1

0




= 0 if τ2 − τ1 < 2τ̄ − τ2 + τ1

〈∇V2b(x), F (x)〉 = [1 0 − 1 0]




1

0

1

0




= 0 if τ2 − τ1 > 2τ̄ − τ2 + τ1 .

So, we have that (8.8) holds. �

Using symmetry between g1, g2 and g3, g4, and without loss of generality on D̃, we

can consider τ1 = q1τ̄ and (τ2, q2) such that (τ1, q1, τ2, q2) ∈ C̃ ∪ D̃. Then, the set D̃ will be
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split accordingly to evaluate all possibilities of the jump map outside of x ∈ g5, g6. We will not

consider the cases when x ∈ g5, g6. This is because when x ∈ g5 then by definition τ1 = τ2

and q1 = q2 which means that these points are when x ∈ A. Next looking at when x ∈ g6 the

conditions τ1 = q1τ̄ , τ2 = q2τ̄ and q1 6= q2 are outside the basin of attraction for H̃2,2 because

|τ1 − τ2| = τ̄ .

Lemma 8.3.4 For all x ∈ Da := {x ∈ D̃ : |τ1 − τ2| < τ̄, q1 = q2},

max
g∈G(x)

V (g)− V (x) =






V2a(g)− V2a(x) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
0, τ̄ − 3ε

2

]

V1a(g)− V2a(x) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
τ̄ − 3ε

2 , τ̄ − ε
]

V2b(g)− V2a(x) if q1 = 2, τ1 = 2τ̄ , τ2 ∈
[
τ̄ , 2τ̄ − 3ε

2

]

V1c(g)− V2a(x) if q1 = 2, τ1 = 2τ̄ , τ2 ∈
[
2τ̄ − 3ε

2 , 2τ̄ − ε
]

Proof Since |τ1 − τ2| < τ̄ for all x ∈ Da, it follows from the definition of V in (8.6) and its

components in (8.7) that

V (x) = V2(x) = V2a(x). (8.10)

Note, that since x ∈ Da with the conditions above, x can only jump via g1 given in (8.4). There

are three options for the value of x after the jump, which we denote x+. These possibilities are
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captured by the following functions:

g11(x) =




(2− q1)τ̄

3− q1

τ2 + ε

q2




if τ2 + ε < q2τ̄ , g12(x) =




(2− q1)τ̄

3− q1

(2− q2)τ̄

3− q2




if τ2 + ε > q2τ̄

g13(x) ∈ {g11(x), g12(x)} if τ2 + ε = q2τ̄

Note that, for every such x where τ2 + ε > q2τ̄ , the jump is such that x+ = g12(x) ∈ A.

Furthermore, when x is such that τ2 + ε = q2τ̄ , then x
+ can be either g11 or g12. If x is such

that g13 = g12 then, according to (8.9), g13 does not need to be evaluated since g12(x) ∈ A.

Now, analyzing the other situation, when x+ = g11, we have

x+ =




(2 − q1)τ̄

3− q1

τ2 + ε

q2




.

Using the definition of V in (8.6), the possible values of V at x+ = g11(x) are analyzed for the

cases when q1 = 1 and when q1 = 2.

• When q1 = 1, we have

τ1 = τ̄ , q2 = 1, τ2 ∈ [0, τ̄ − ε) . (8.11)

It follows that

q+1 = 2, τ+1 = τ̄ , q+2 = 1, τ+2 ∈ [ε, τ̄ ). (8.12)
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Since, τ+1 − τ+2 ∈ (0, τ̄ − ε] with q+1 6= q+2 , it follows that V (x+) = V1(x
+). From the

piecewise definition of the function V1, for |τ+1 − τ+2 | ≤ ε
2 we have V1(x

+) = V1a(x
+).

Then using τ+2 = τ2 + ε

|τ+1 − τ+2 | ≤ ε
2

τ̄ − τ2 − ε ≤ ε
2

=⇒ τ2 ≥ τ̄ − 3ε
2 .

It follows that

V (x+) = V1(x
+) = V1a(x

+) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
τ̄ − 3ε

2
, τ̄ − ε

)
(8.13)

Now consider the case |τ+1 − τ+2 | > ε
2 , x ∈ Da. Then the function V1(x

+) = V2(x
+). Using

the fact that τ+2 = τ2 + ε,

|τ+1 − τ+2 | = |τ̄ − τ2 − ε| < |τ̄ − ε|.

It follows that V (x+) is given by

V (x+) = V1(x
+) = V2a(x

+) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
0, τ̄ − 3ε

2

]
. (8.14)

• When q1 = 2, we have

τ1 = 2τ̄ , q2 = 2, τ2 ∈ [τ̄ , 2τ̄ − ε) .

If follows that

q+1 = 1, τ+1 = 0, q+2 = 2, τ+2 ∈ [τ̄ + ε, 2τ̄)

Since τ+1 − τ+2 ∈ (−2τ̄ ,−τ̄ − ε] and q+1 6= q+2 , it follows that V (x+) = V1(x
+). From the

piecewise definition of the function V1, for τ
+
1 − τ+2 ≤ −2τ̄ + ε

2 we have V1(x
+) = V1c(x

+).
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Then using τ+1 = 0 and τ+2 = τ2 + ε,

τ+1 − τ+2 ≤ −2τ̄ + ε
2

0− τ2 − ε ≤ −2τ̄ + ε
2

=⇒ τ2 ≥ 2τ̄ − 3ε
2 .

It follows that

V (x+) = V1(x
+) = V1c(x

+) if q1 = 2, τ1 = 2τ̄ , τ2 ∈
[
2τ̄ − 3ε

2
, 2τ̄ − ε

)
(8.15)

Similar to the previous analysis, if we take the case when τ+1 −τ+2 ≥ −2τ̄+ ε
2 , then V1 = V2.

Using the fact that τ+2 = τ2 + ε then,

|τ+1 − τ+2 | = |0− τ2 − ε| > 2τ̄ − |0− τ2 − ε|

It follows that

V (x+) = V1(x
+) = V2b(x

+) if q1 = 2, τ1 = 2τ̄ , τ2 ∈
[
τ̄ , 2τ̄ − 3ε

2

]
. (8.16)

�

Lemma 8.3.5 For every x ∈ Da

max
g∈G(x)

V (g)− V (x) ≤ −ε

Proof Now, we determine all of the possible differences V (x+)− V (x) as in (8.9). Using V (x)

as in (8.10), we consider V (x+) = V1a(x
+) as in (8.13). We have

V (x) = |τ1 − τ2| ,

V (x+) = 1
ε

(
τ+1 − τ+2

)2
+ ε

4 .

Since τ1 = τ̄ and τ2 ∈
[
τ̄ − 3ε

2 , τ̄ − ε
)
, then τ+1 = τ̄ and τ+2 ∈

[
τ̄ − ε

2 , τ̄
)
. Then, using these
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conditions:

V (x+)− V (x) = 1
ε

(
τ+1 − τ+2

)2
+ ε

4 − |τ1 − τ2| 1ε
(
τ̄ − τ+2

)2
+ ε

4 − |τ̄ + τ2|

≤ 1
ε

(
τ̄ −

(
τ̄ − ε

2

))2
+ ε

4 − |τ̄ + τ̄ − 3ε
2 | ≤ 1

ε

(
ε
2

)2
+ ε

4 − 3ε
2 ≤ −ε .

(8.17)

Next, we consider V (x+)− V (x) with V (x+) as in (8.14) and V (x) as in (8.10), then it follows

that V (x) = |τ1 − τ2| and V (x+) = |τ+1 − τ+2 |, respectively. Since τ1 = τ̄ and τ2 ∈
[
0, τ̄ − 3ε

2

]
,

then τ+1 = τ̄ and τ+2 = τ2 + ε. Using these conditions, we get

V (x+)− V (x) = |τ+1 − τ+2 | − |τ1 − τ2| = τ̄ − τ2 − ε− τ̄ + τ2 = −ε. (8.18)

Next, V (x+)−V (x) will be evaluated with V (x+) = V1c(x
+) as in (8.15) and V (x) as in (8.10):

V (x) = |τ1 − τ2|

V (x+) = 1
ε

(
τ+1 − τ+2 + 2τ̄

)2
+ ε

4 .

Since τ1 = 2τ̄ and τ2 ∈
[
2τ̄ − 3ε

2 , 2τ̄ − ε
)
, then τ+1 = 0 and τ+2 ∈

[
2τ̄ − ε

2 , 2τ̄
)
. Then, using these

conditions:

V (x+)− V (x) = 1
ε

(
τ+1 − τ+2 + 2τ̄

)2
+ ε

4 − |τ1 + τ2|

= 1
ε

(
0− τ+2 + 2τ̄

)2
+ ε

4 − |2τ̄ + τ2|

≤ 1
ε

(
−
(
2τ̄ − ε

2

)
+ 2τ̄

)2
+ ε

4 − |2τ̄ +
(
2τ̄ − 3ε

2

)
|

≤ 1
ε

(
ε
2

)2
+ ε

4 − 3ε
2 ≤ −ε.

(8.19)

Lastly, for x ∈ Da, we consider V (x+) − V (x) with V (x+) as in (8.16) and V (x) as in (8.10),

then it follows that V (x) = |τ1 − τ2| and V (x+) = 2τ̄ − |τ+1 − τ+2 |, respectively. Since τ1 = 2τ̄

and τ2 ∈
[
τ̄ , 2τ̄ − 3ε

2

]
, then τ+1 = 0 and τ+2 ∈

[
τ̄ + ε, 2τ̄ − ε

2

]
. Then, using these conditions, we

get

V (x+)− V (x) = 2τ̄ − |τ+1 − τ+2 | − |τ1 − τ2|

≤ 2τ̄ − (τ̄ + ε)− 2τ̄ − τ̄ ≤ −2τ̄ − ε.
(8.20)

�
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Lemma 8.3.6 For all x ∈ Db := {x ∈ D̃ : |τ1 − τ2| > τ̄ , q1 6= q2},

max
g∈G(x)

V (g)− V (x) =





V2a(g)− V1b(x) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
0, ε2
]

V2a(g)− V2b(x) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
ε
2 , τ̄
]

Proof First consider the point when q1 = 1, then τ1 = τ̄ , q2 = 2 and τ2 ∈ (τ̄ , 2τ̄). Such points

do not belong to the set Db due to |τ1 − τ2| < τ̄ . Next we evaluate the point when q1 = 2,

τ1 = 2τ̄ , q2 = 1, τ2 ∈ (0, τ̄) .

It follows that

q+1 = 1, τ+1 = 0, q+2 = 1, τ+2 = τ2.

Since τ1 − τ2 ∈ (τ̄ , 2τ̄) and q1 6= q2, it follows that V (x) = V1(x). From the piecewise definition

of the function V1, for τ1 − τ2 ≥ 2τ̄ − ε
2 we have V1(x) = V1b(x). Then, we get

τ1 − τ2 ≥ 2τ̄ − ε
2

2τ̄ − τ2 ≥ 2τ̄ − ε
2

=⇒ τ2 ≤ ε
2 .

It follows that

V (x) = V1(x) = V1b(x) if τ1 = 2τ̄ , τ2 ∈
(
0,
ε

2

]
(8.21)

When we consider τ1 − τ2 ≤ 2τ̄ − ε
2 , the piecewise definition of V1 results in V1(x) = V2(x) and

since

|τ1 − τ2| > 2τ̄ − |τ1 − τ2|
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it follows that

V (x) = V1(x) = V2b(x) if τ1 = 2τ̄ , τ2 ∈
[ε
2
, τ̄
)
. (8.22)

The only option for this jump is

x+ = g3(x) =




(2 − q1)τ̄

3− q1

τ2

q2




=




0

1

τ2

1




.

Since, τ+1 − τ+2 ∈ (−τ̄ , 0) and q1 = q2, we have

V (x+) = V2(x
+) = V2a(x

+) . (8.23)

�

Lemma 8.3.7 For every x ∈ Db

max
g∈G(x)

V (g)− V (x) ≤ 0.

Proof For each x ∈ Db, since q1 6= q2 we have V (x) = V1(x). Since the function V1 is piecewise,

condition (8.9) must be evaluated for each piece. Taking V (x) as in (8.21) and V (x+) as in

(8.23), it follows that

V (x) = 1
ε (τ1 − τ2 − 2τ̄)

2
+ ε

4

V (x+) = |τ+1 − τ+2 |.

Since τ1 = 2τ̄ and τ2 ∈
(
0, ε2
]
, then τ+1 = 0 and τ+2 = τ2 ∈

(
0, ε2

]
. Then, using these conditions,
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we obtain

V (x+)− V (x) = |τ+1 − τ+2 | −
(

1
ε (τ1 − τ2 − 2τ̄)

2
+ ε

4

)

= |0− τ+2 | − 1
ε (2τ̄ − τ2 − 2τ̄)

2 − ε
4

= − 1
ετ

2
2 + τ2 − ε

4

= − 1
ε

(
τ2 − ε

2

)2

≤ 0.

Note that V (x+)−V (x) is maximum when τ2 = ε
2 . Next, evaluating (8.9) with V (x) as in (8.22)

and V (x+) as in (8.23), we obtain

V (x) = 2τ̄ − |τ1 − τ2|

V (x+) = |τ+1 − τ+2 |.

Since τ1 = 2τ̄ and τ2 ∈
[
ε
2 , τ̄
)
, then τ+1 = 0 and τ+2 = τ2. Using these conditions, we obtain

V (x+)− V (x) = |τ+1 − τ+2 | − (2τ̄ − |τ1 − τ2|)

= |0− τ2| − (2τ̄ − |2τ̄ − τ2|)

= τ2 − 2τ̄ + 2τ̄ − τ2

= 0.

�

Lemma 8.3.8 For all x ∈ Dc := {x ∈ D̃ : |τ1 − τ2| < τ̄ , q1 6= q2}

max
g∈G(x)

V (g)− V (x) =





V2a(g)− V1a(x) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
τ̄ , τ̄ + ε

2

]

V2a(g)− V2b(x) if q1 = 1, τ1 = τ̄ , τ2 ∈
[
τ̄ + ε

2 , 2τ̄
]

Proof When q1 = 1 then,

τ1 = τ̄ , q2 = 2, τ2 ∈ (τ̄ , 2τ̄) .
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It follows that

q+1 = 2, τ+1 = τ̄ , q+2 = 2, τ+2 = τ2 ∈ (τ̄ , 2τ̄) .

Since |τ1 − τ2| = τ2 − τ1 ∈ (0, τ̄) and q1 6= q2, then, it follows that V (x) = V1(x). From the

piecewise definition of the function V1, for |τ1 − τ2| ≤ ε
2 we have V1(x) = V1a(x) leading to the

following bound on τ2:

|τ1 − τ2| ≤ ε
2

τ2 − τ̄ ≤ ε
2

=⇒ τ2 ≤ τ̄ + ε
2 .

It follows that

V (x) = V1(x) = V1a(x) if τ1 = τ̄ , τ2 ∈
(
τ̄ , τ̄ +

ε

2

]
(8.24)

Looking at the case|τ1 − τ2| ≥ ε
2 leads to τ2 ≥ τ̄ + ε

2 . Then by the piecewise definition of V in

(8.6), V1 = V2. Since,

|τ1 − τ2| < 2τ̄ − |τ1 − τ2|,

it follows that

V (x) = V1(x) = V2a(x) if τ1 = τ̄ , τ2 ∈
[
τ̄ +

ε

2
, 2τ̄
)
. (8.25)

Since q1 6= q2, τ1 = τ̄ and τ2 ∈ (τ̄ , 2τ̄), the jump map used when x ∈ Dc is g3. Then,

x+ = g3(x) =




(2− q1)τ̄

3− q1

τ2

q2




=




τ̄

2

τ2

2



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Since |τ+1 − τ+2 | = |τ1 − τ2| ∈ (0, τ̄) we have

V (x+) = V2(x
+) = V2a(x

+) . (8.26)

If q1 = 2, then τ1 = 2τ̄ . Since q1 6= q2, then q2 = 1 making τ2 ∈ (0, τ̄ ) which defines a point that

is not in the set Dc. �

Lemma 8.3.9 For every x ∈ Dc

max
g∈G(x)

V (g)− V (x) ≤ 0

Proof For each x ∈ Dc, since q1 6= q2 we have V (x) = V1(x). The function V1 is piecewise

and (8.9) must be evaluated for each piece. Taking V (x) as in (8.24) and V (x+) as in (8.26), it

follows that

V (x) = 1
ε (τ1 − τ2)

2 + ε
4

V (x+) = |τ+1 − τ+2 |

Since τ1 = τ̄ and τ2 ∈
(
τ̄ , τ̄ + ε

2

]
, then τ+1 = τ̄ and τ+2 = τ2 ∈

(
τ̄ , τ̄ + ε

2

]
. Then

V (x+)− V (x) = |τ+1 − τ+2 | −
(

1
ε (τ1 − τ2)

2
+ ε

4

)

= |τ̄ − τ2| −
(

1
ε (τ̄ − τ2)

2 + ε
4

)

= τ2 − τ̄ −
(

1
ε (τ̄ − τ2)

2
+ ε

4

)

Defining z = τ2 − τ̄ , then the solution to z − 1
εz

2 + ε
4 = (z − ε

2 )
2 = 0 is z1,2 = ε

2 . This implies

that V (x+)− V (x) is maximum when τ2 = τ̄ + ε
2 . Then it follows that

V (x+)− V (x) ≤ 0
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Lastly, evaluating (8.9) when V (x) is as in (8.25) and V (x+) is as in (8.26):

V (x) = |τ1 − τ2|

V (x+) = |τ+1 − τ+2 | .

Since τ1 = τ+1 and τ2 = τ+2 , then

V (x) = V (x+)

=⇒ V (x+)− V (x) = 0 .

It follows that (8.9) holds. �

Using τ̄ = 1 and ε = 0.3, Figure 8.2 shows V when q1 = q2, and q1 6= q2. Note that

when q1 = q2, we have V (x) = V2(x), while when q1 6= q2, we have V (x) = V1(x). This function

was constructed in this way to eliminate points where V (x) = 0 outside of the compact set A,

which are points belonging to the blue lines in Figure 8.3. The function is not differentiable at

these points and at points τ2 = τ1 ± τ̄ . The latter points, which are denoted by the green lines

in Figure 8.3, will need to be removed from the basin of attraction.

The following stability result for H2,2 can be established using the Lyapunov function

in (8.6) and Theorem 2.1.10.

Theorem 8.3.10 (Timer synchronization with limited information) For every τ̄ > 0 and ε ∈

(0, 2τ̄ ], the hybrid system H2,2 is such that A is asymptotically stable with basin of attraction

containing every sublevel set LV (µ) with µ ∈ [0, τ̄).

Proof Stability of A for H2,2 comes from the results in Lemma 8.3.3 - lem:jumpsDc2. To show

attractivity, assume that there exists a solution φ = (τ1, q1, τ2, q2) that always stays in the level

set

LV (µ) = {x : V (x) = µ}. (8.27)
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(x
)

(a) q1 = q2

τ2
τ1

V
(x
)

(b) q1 6= q2

Figure 8.2: A plot of the Lyapunov function V in (8.6) for each x in C ∪D

When φ(t, j) ∈ Da, φ(t, j) jumps out of the level set immediately since, due to Lemma 8.3.5, we

have V (φ(t, j+1)) ≤ V (φ(t, j))−ε. When φ(t, j) ∈ Db∪Dc, we have V (φ(t, j+1))−V (φ(t, j)) ≤ 0

and the solution can evolve according to the following cases:

1. When φ(t1, 0) ∈ Db and V is as in (8.21), if the solution stays in the µ level-set of V , we

must have

V (φ(t1, 0)) = V1b(φ(t1, 0)) = 1
ε (τ1(t1, 0)− τ2(t1, 0)− 2τ̄)

2
+ ε

4 = µ

V (φ(t1, 1)) = V2a(φ(t1, 1)) = |τ1(t1, 1)− τ2(t1, 1)| = µ .

190



Then, we must have

1
ε (τ1(t1, 0)− τ2(t1, 0)− 2τ̄)

2
+ ε

4 = |τ1(t1, 1)− τ2(t1, 1)|

1
ε (2τ̄ − τ2(t1, 0)− 2τ̄)

2
+ ε

4 = |0− τ2(t1, 1)|

1
ετ

2
2 (t1, 0) +

ε
4 = τ2(t1, 1)

.

Since τ2(t1, 0) = τ2(t1, 1),

τ22 (t1, 0)− ετ2(t1, 0) + ε2

4 = 0

=⇒ τ2(t1, 0) = ε
2 .

Along flows, the solution, φ(t, 1) stays in the level set LV (µ) for each t ∈ [t1, t2]. The next

jump occurs when (t2, 1) ∈ domφ is such that

τ2(t2, 1) = τ̄ , q2(t2, 1) = 1, τ1(t2, 1) = τ̄ − ε

2
, q1(t2, 1) = 1

and the new values after the next jump are

τ2(t2, 2) = τ̄ , q2(t2, 2) = 2, τ1(t2, 2) = τ̄ , q1(t2, 2) = 2 .

For this jump we have τ1(t2, 2) = τ2(t2, 2) and q1(t2, 2) = q2(t2, 2). In fact, after the jump,

solution φ(t2, 2) leaves LV (µ) and reaches LV (0).

2. When φ(t1, 0) ∈ Db and V is as in (8.22), if the solution stays in the µ level set of V we

must have:

V (φ(t1, 0)) = V2b(φ(t1, 0)) = 2τ̄ − |τ1(t1, 0)− τ2(t1, 0)| = µ

V (φ(t1, 1)) = V2a(φ(t1, 1)) = |τ1(t1, 1)− τ2(t1, 1)| = µ
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Then, we must have

2τ̄ − |τ1(t1, 0)− τ2(t1, 0)| = |τ1(t1, 1)− τ2(t1, 1)|

2τ̄ − (2τ̄ − τ2(t1, 0)) = τ2(t1, 1)− 0

τ2(t1, 0) = τ2(t1, 1).

For all values of τ2(t1, 0) = τ2(t1, 1) ∈ (0, τ̄), the solution satisfies φ(t1, 1) ∈ LV (µ). Then,

as in the previous case, the next jump at φ(t2, 1) is analyzed. This jump has the following

properties:

τ2(t2, 1) = τ̄ , q2(t2, 1) = 1, τ1(t2, 1) ∈
(
0, τ̄ − ε

2

]
, q1(t2, 1) = 1

τ2(t2, 2) = τ̄ , q2(t2, 2) = 2,



τ1(t2, 2)

q1(t2, 2)


 ∈




(ε, τ̄ )

1



⋃



τ̄

2




This jumps has several possibilities.

• For τ1(t2, 1) ≥ τ̄ − ǫ, the system jumps according to g12 after which the solution

reaches the level set LV (0), and hence, leaves LV (µ).

• From Lemma 8.3.5, with τ1(t2, 1) ∈
[
τ̄ − 3ε

2 , τ̄ − ε
)
, then this leads to the following:

V (φ(t2, 1)) = V2a(φ(t2, 1)) = |τ1(t2, 1)− τ2(t2, 1)| = µ

V (φ(t2, 2)) = V1a(φ(t2, 2)) =
1
ε (τ1(t2, 2)− τ2(t2, 2))

2
+ ε

2 = µ .

Then, we must have

|τ1(t2, 1)− τ2(t2, 1)| =
1

ε
(τ1(t2, 2)− τ2(t2, 2))2 +

ε

2

|τ1(t2, 1)− τ̄ | =
1

ε
(τ1(t2, 2)− τ̄ )2 +

ε

2

τ̄ − τ1(t2, 1) =
1

ε
(τ1(t2, 1) + ε− τ̄ )2 + ε

2
← τ1(t2, 2) = τ1(t2, 1) + ε

=⇒ τ1(t2, 1) ∈
{
τ̄ − 5ε

2
, τ̄ − ε

2

}
(8.28)
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Since τ1(t2, 1) ∈
[
τ̄ − 3ε

2 , τ̄ − ε
)
and (8.28) cannot be simultaneously satisfied, the

solution φ(t2, 1) leaves the level set LV (µ) for any µ > 0.

• For τ1(t2, 1) ∈
(
0, τ̄ − 3ε

2

]
, then from Lemma 8.3.5

V (φ(t2, 1)) = V2a(φ(t2, 1)) = |τ1(t2, 1)− τ2(t2, 1)| = µ

V (φ(t2, 2)) = V2a(φ(t2, 2)) = |τ1(t2, 2)− τ2(t2, 2)| = µ

Then,

|τ1(t2, 1)− τ2(t2, 1)| = |τ1(t2, 2)− τ2(t2, 2)|

τ̄ − τ1(t2, 1)− ε = τ̄ − τ1(t2, 1) ← τ1(t2, 2) = τ1(t2, 1) + ε

−ε 6= 0

which shows that, for every µ > 0, it is not possible to remain in LV (µ) after such a

jump.

3. When φ(t1, 0) ∈ Dc and V is as in (8.24), to determine if the solution stays in LV (µ),

consider

V (φ(t1, 0)) = V1a(φ(t1, 0)) =
1
ε (τ1(t1, 0)− τ2(t1, 0))2 + ε

4 = µ

V (φ(t1, 1)) = V2a(φ(t1, 1)) = |τ1(t1, 1)− τ2(t1, 1)| = µ .

Then, we obtain

1
ε (τ1(t1, 0)− τ2(t1, 0))2 + ε

4 = |τ1(t1, 1)− τ2(t1, 1)|

1
ε (τ̄ − τ2(t1, 0))2 + ε

4 = |τ̄ − τ2(t1, 1)| ← using τ2(t1, 0) = τ2(t1, 1), τ1(t1, 0) = τ1(t1, 1) = τ̄

1
ε (τ̄ − τ2(t1, 0))2 + ε

4 = τ2(t1, 0)− τ̄ ← using τ2(t1, 0) > τ̄.

Solving for τ2(t1, 0), we get

τ2(t1, 0) = τ̄ + ε
2 .

Letting the solution, φ(t, 1), flow until the next jump, when τ2(t2, 1) = 2τ̄ we have
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τ1(t2, 1) = 2τ̄ − ε
2 . Then, the system jumps according to g2 since τ1 + ε > q1τ̄ , after

which the solution reaches LV (0) and hence leaves LV (µ).

4. When φ(t1, 0) ∈ Dc and V is as in (8.25), to determine if the solution φ(t1, 0) stays in

LV (µ) note that,

V (φ(t1, 0)) = V2a(φ(t1, 0)) = |τ1(t1, 0)− τ2(t1, 0)| = µ

V (φ(t1, 1)) = V2a(φ(t1, 1)) = |τ1(t1, 1)− τ2(t1, 1)| = µ.

Then, we get

|τ1(t1, 0)− τ2(t1, 0)| = |τ1(t1, 1)− τ2(t1, 1)|

τ2(t1, 0)− τ̄ = τ2(t1, 0)− τ̄ ← using τ2(t1, 0) = τ2(t1, 1), τ1(t1, 0) = τ̄ .

Since this equality is true for every τ2(t1, 0), we allow the system to flow until τ2(t2, 1) = 2τ̄ ,

then τ1(t2, 1) ∈
(
τ̄ , 2τ̄ − ε

2

]
with q1(t2, 1) = 2. The solution, φ(t2, 1) after the jump leads

to,

q2(t2, 2) = 1, τ2(t2, 2) = 0,



τ1(t2, 2)

q1(t2, 2)


 ∈




(τ̄ + ε, 2τ̄)

2



⋃



0

1


 .

This allows for the following possibilities we will investigate case by case:

• For τ1(t2, 1) ∈
[
2τ̄ − ε, 2τ̄ − ε

2

]
we have τ1(t2, 2) = 0 because the jump is mapped

to g2 with τ1 + ε < q1τ̄ . Then, the solution φ(t2, 2) reaches the level set LV (0) and

hence leaves LV (µ).

• For τ1(t2, 1) ∈ (2τ̄ − 3ε
2 , 2τ̄ − ε), we have

V (φ(t2, 1)) = V2a(φ(t2, 1)) = |τ1(t2, 1)− τ2(t2, 1)| = µ

V (φ(t2, 2)) = V1c(φ(t2, 2)) =
1
ε (τ1(t2, 2)− τ2(t2, 2) + 2τ̄ )

2 − ε
4 = µ.
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It follows that,

|τ1(t2, 1)− τ2(t2, 1)| =
1

ε
(τ1(t2, 2)− τ2(t2, 2) + 2τ̄)2 − ε

4

2τ̄ − τ1(t2, 1) =
1

ε
(τ1(t2, 2)− 2τ̄)2 +

ε

4

2τ̄ − τ1(t2, 1) =
1

ε
(τ1(t2, 1) + ε− 2τ̄)2 +

ε

4
← using τ1(t2, 2) = τ1(t2, 1) + ε

τ1(t2, 1) ∈
{
2τ̄ − 5ε

2
, 2τ̄ − ε

2

}
(8.29)

Since τ1(t2, 1) ∈ (2τ̄ − 3ε
2 , 2τ̄ − ε) and (8.29) cannot be simultaneously satisfied, the

solution φ(t2, 1) leaves the µ-level set, LV (µ) for any µ > 0.

• For τ1(t2, 1) ∈ (τ̄ , 2τ̄ − 3ε
2 ), we have

V (φ(t2, 1)) = V2a(φ(t2, 1)) = |τ1(t2, 1)− τ2(t2, 1)| = µ

V (φ(t2, 2)) = V2a(φ(t2, 2)) = |τ1(t2, 2)− τ2(t2, 2)| = µ,

which leads to the following:

|τ1(t2, 1)− τ2(t2, 1)| = |τ1(t2, 2)− τ2(t2, 2)|

2τ̄ − τ1(t2, 1) = τ1(t2, 2)

2τ̄ − τ1(t2, 1) = τ1(t2, 1) + ε ← τ1(t2, 2) = τ1(t2, 1) + ε

τ1(t2, 1) = τ̄ − ε
2

Since, τ1(t2, 1) = τ̄ − ε
2 and τ1(t2, 1) ∈ (τ̄ , 2τ̄ − 3ε

2 ) cannot be simultaneously satisfied

then V2a(t2, 1) = µ and V2a(t2, 2) = µ cannot not be true for any µ > 0.

This analysis proves that the conditions for asymptotic stability presented in Theorem

2.1.10 are satisfied for the Lyapunov function (8.6). In fact, Lemma 8.3.3 establishes (8.8),

Lemmas 8.3.7, 8.3.8 and 8.3.9 establishes that the condition in (8.9) is satisfied. Then, the

attractivity condition was established for v ∈ (0, v∗), where LV (v) includes every x such that

|τ1−τ2| 6= τ̄ . Then, the set A in (8.5) is asymptotically stable for the system H̃2,2 = (C̃, F, D̃, G).
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Figure 8.3: The flow set (red), the jump set (solid black), and basin of attraction with µ-level
sets LV (τ̄) (in blue) and LV (0) (in green) for each pair (q1.q2)

Remark 8.3.11 For initial conditions in {C ∪ D : |τ1 − τ2| = τ̄ , q1 6= q2} solutions x(t, j)

stay in the level set V (φ(t, j)) = τ̄ . Note the green lines in Figure 8.3. For such solutions, the

state does not converge to A because both agents jump simultaneously but on opposite channels,

and thus missing the information transmitted. This point is corroborated by a Lyapunov local

maximum at these states. Solutions from all other initial conditions in C ∪ D approach the

synchronization condition defined by A.
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8.4 Numerical Analysis

8.4.1 Numerical Simulation of H2,2

Solutions to H2,2 fall into three categories: always synchronized, asymptotically syn-

chronized, and desynchronized. The simulations below show the evolution of these solution

types. The parameters used are τ̄ = 1, ε = 0.05.

• Always synchronized A solution that starts in the set A will always stay synchronized,

that is, A is forward invariant. Figure 8.4(a) shows the evolution of such a solution. The

top figure shows the timer value and the bottom figure shows the channel of the agents.

• Asymptotically synchronized A solution that starts close to A reaches synchronization

rapidly. The initial condition for the simulation is such that |τ1 − τ2| < ε, so after one

jump the two timers are the same. When the two timers start close to the set of points

from where synchronization is not possible, the time needed to reach synchronization is

much larger. The simulation in Figure 8.4(b) shows that the solution starts far from A but

still converges. The initial conditions for these simulations are τ1(0, 0) = 0.3, q1(0, 0) = 1,

and τ2(0, 0) = 1.31, q2(0, 0) = 2.

• Desynchronized When the agents start from an initial condition satisfying |τ1(0, 0) −

τ2(0, 0)| = τ̄ and q1(0, 0) 6= q2(0, 0), they stay desynchronized. The initial conditions

τ1(0, 0) = 1.5, τ2(0, 0) = .5, q1(0, 0) = 2 and q2(0, 0) = 1 are used for the simulation in

Figure 8.4(c). It shows that each agent has an offset leading to continually miss the other

agent’s transmission since they switch to opposite channels at every jump.
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(a) A solution to H2,2 that is always synchronized.
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(b) A solution to H2,2 that asymptotically synchronizes after
several transitions.
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(c) A solution to H2,2 that never synchronizes.

8.4.2 Performance Analysis: Time to synchronize

The timer advance constant, ε, affects the rate at which the agents synchronize. In

fact, the amount that the timers advance when a packet is received is governed by ε. If ε≪ τ̄ ,

when a packet is received, the algorithm increments the timers by a small amount. If ε ≥ τ̄ and

a packet is received, the algorithm will automatically switch channels.
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Figure 8.4 shows the time for convergence to synchronization with respect to the timer

advance constant, ε, and as a function of the initial conditions in (8.1) and (8.3) (away from

LV (τ̄ )). A definite trend of time to convergence with respect to the value of ε: Time to conver-

gence decreases as ε increases.
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(d) ε = 0.1
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(h) ε = 0.4
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Figure 8.4: Time to converge to A, i.e., time to synchronize timers and channel selections, for
ε = 0.1, 0.2, 0.3, 0.4, 0.7, 1

A plot of the time to converge to synchronization with respect the timer advance con-

stant, ε, can be determined by choosing a potential worse case scenario. For initial condition

x(0, 0) = [1.2, 2, 0, 1]⊤, Figure 8.5 shows time to synchronization as a function of ε. The de-

creasing trend present in Figure 8.5 indicates that as the timer advance constant is increased

the time to convergence is decreased.
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Figure 8.5: Time to synchronize as a function of the timer advance constant, ε, with x(0,0) =
[1.2,2,0,1]

8.4.3 Robustness analysis to interference

The discussion in Section 8.4.2 indicates that for larger ε, the system will synchronize

faster. However, ε large may compromise the robustness to adversarial attack or environmental

interference. To determine the robustness of the algorithm, two sets of simulations were per-

formed. To model environmental interference, pseudo-random times for injection of interfering

packets were generated. At these time instances, a packet was injected into agent 2’s correct

channel, forcing it to reset and advance its timer by ε. Figure 8.6 also shows the number of

injected packets versus the percentage of time on the same channel with the parameter ε equal

to .3 and 1. Polynomial curve fittings were numerical generated to express the downward trend

as the number of packets increase. The figure shows that the effect of the interfering packets is

more significant for large ε. In fact, the agents stay on the same channel longer (for the same

number of interfering packets) when ε is smaller.
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Figure 8.6: Percentage of time on the same channel versus number of interfering packets.

8.5 Experimental Results

The mechanism in the hybrid system H2,2 was implemented by using two Explorer16

demo boards with ZeroG wireless modules, both manufactured by Microchip, on a IEEE 802.11

network of two routers defining two unique SSIDs, the setup is shown in Figure 8.7. The

SSIDs were configured to be uniquely named and set on different channels to simulate frequency

hopping.

Figure 8.7: Test bed for experimentation with pulse-coupled oscillators Explorer16 demo boards
with ZeroG wireless modules (bottom), wireless routers (top).
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The boards run identical C code and are provided with SSID and IP information to

identify the unique SSIDs (the channels) The states τ1 and τ2 are implemented via embedded

clocks available within the microcontrollers. The conditions for transmissions and state resets in

the jump sets are implemented as logic via if/else statements. Information is transmitted using

UDP protocol. The following C code snippet summarizes the main operation modes (Run and

Reset) of the implementation.

case Run: // Normal run mode

// Check if packet has been received

if (ReceiveSignal){

ReceiveSignal = FALSE; // clear the flag

tau += EPS; // increment state tau

if (tau = taubar*qi){

// reset state tau due to being >= threshold

Mode = Reset;

}

else{

// otherwise continue running

Mode = Run;

}

}

else if (tau = taubar*qi){

// check if state tau expired

SendSignal = TRUE;

// set flags to send packet
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Mode = Reset;

}

else{

// set flag to run mode

Mode = Run;

}

break;

case UDP_SendSignal: // Send packet

// Check if packet has been sent

if (! UDPIsPutReady(UDP_SOCKET)){

Mode = Run;

}

// Send packet

UDPPut(current_channel^0xFF);

UDPFlush();

Mode = Run;

break;

Continuous increment of the variable tau is performed by the internal timer in each board.

Figure 8.8 shows experimental data with parameters ε = 0.2 and τ̄ = 30. The first board is

initialized with timer τ1 equal zero at channel 1 (solid plots) while the second board is turned on

about ten seconds later and initialized with timer τ2 equal to zero at channel 2 (dashed plots).

The oscillators reach approximate synchronization at around 300 sec. The obtained experimental

results suggest that the algorithm implemented in H2,2 is robust to quantization and delays,
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which are unavoidably present in the hardware implementation.
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Figure 8.8: Experimental data obtained with the test bed in Figure 8.7.

8.6 Summary

A frequency hopping rendezvous algorithm was introduced for dynamic cognitive radio

communication. More specifically, a hybrid synchronization algorithm proposed and modeled

with two states for each agent; a channel state and a timer state, wherein, the agents used the

timer state to trigger a jump between channels. Then, the synchronization problem was recast

as a set stabilization problem and synchronization of a class of two impulsive oscillators was

shown through Lyapunov analysis in a hybrid framework. For almost every point in the space

of the timers, the oscillators synchronize. Lost packets do not effect the asymptotic stability

property, but leads to slower convergence than when there is no channel constraints.
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Part III

Final Remarks
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Chapter 9

Conclusion and Future Directions

In this thesis, several problems of coordination of multiagent systems connected over a

networks was addressed. Two main enveloping concepts were considered. The first addresses the

control design of distributed controller to converge agents’ states to each other when information

between the agents are intermittent. The second one looks at the desynchronization of impulse-

coupled oscillators.

To synchronize the state of connected agents, a typical approach is to define a con-

troller for each agent which takes the difference between the agents state and the state of all

connected agents a multiply it by a constant gain. However, when communication is intermit-

tent, the challenge lays into how to design the gains of the controller when the time between

communication events are bounded. We define a first-order controller which updates impulsively

when information arrives into each agent. Then, the consensus/synchronization configuration

was recast into a set stabilization problem. Depending on the specific scenario under considera-

tion, a Lyapunov based analysis was used to certify an asymptotic stability properties. Namely,

when each agent has no internal dynamics, the consensus set was determined to be pointwise

asymptotically stable. When the agent has linear time-invariant dynamics, we determine the

206



conditions which certify exponential stability for the synchronization set.

There are numerous potential extensions to this work. With a slight modification of

the synchronization set and control algorithm, a formation problem could be considered, where

each agent want to maintain pre-specified distance away from its neighbors. Since actuators and

communication may occur at differing times, an observer-based controller could be developed

to drive the agents to synchronization. Another interesting avenue lays in the development of

an event-triggered communication to drive the times at which communication occurs and uses

the controllers developed to drive the agents to synchronization.

Synchronization of general hybrid systems is still an open problem. Namely, when

each agent may contain both continuous and discrete dynamics, what properties do the agents

need to satisfy to certify synchronization of the agents’ states. Both uniform and nonuniform

notions of partial state synchronization were given. It was shown that if a synchronization set

was determined to be asymptotically stable then asymptotic synchronization could be certified.

Through some graphical properties of the networks of the agents, it may be possible to certify

synchronization for general hybrid systems. This may be done through contraction or incremen-

tal stability based analysis for hybrid systems to show that synchronization may be achieved

with out the need of development of a Lyapunov function.

In a class of impulse-coupled oscillators, an asymptotically stable and robust prop-

erty was shown. Moreover, a solid framework for modeling and analysis of hybrid systems

was developed. Using Lyapunov stability and invariance principle, a desynchronization-like set

was shown to be asymptotically stable. Moreover, we apply the techniques developed under

desynchronization and apply it to both interconnection of neurons and to a frequency hopping

rendezvous problem. Under the interconnection of neurons, the update of the phases of each

neuron was updated by a nonlinear update law. In the frequency hopping rendezvous problem,

the agents used an auxiliary channel state to indicate if communication was possible. Both cases
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could be extended to consider a larger network of agents and channels. The difficulty lays in

the development of a Lyapunov function to certify that the respective sets are asymptotically

stable.
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