
Lawrence Berkeley National Laboratory
LBL Publications

Title
A Generic Surface Sampler for Monte Carlo Simulations

Permalink
https://escholarship.org/uc/item/7vp2t2v4

Authors
Detwiler, J.A.
Henning, R.
Johnson, R.A.
et al.

Publication Date
2008-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vp2t2v4
https://escholarship.org/uc/item/7vp2t2v4#author
https://escholarship.org
http://www.cdlib.org/

A Generic Surface Sampler for Monte
Carlo Simulations

J. A. Detwiler, R. Henning, R. A. Johnson, M.
G. Marino

This work was supported by the Director, Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231.

DISCLAIMER

 This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the United
States Government nor any agency thereof, nor The Regents of the University of California, nor
any of their employees, makes any warranty, express or implied, or assumes any legal
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by its trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or The
Regents of the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof or
The Regents of the University of California.

A Generic Surface Sampler for Monte Carlo Simulations

J. A. Detwiler1,3, R. Henning1,2, R. A. Johnson3, M. G. Marino3

1 Lawrence Berkeley National Laboratory, Berkeley, California
2 University of North Carolina, Chapel Hill, North Carolina and

3 University of Washington, Seattle, Washington
(Dated: February 20, 2008)

We present an implementation of a Monte Carlo algorithm that generates points randomly and
uniformly on a set of arbitrary surfaces. The algorithm is completely general and only requires
the geometry modeling software to provide the intersection points of an arbitrary line with the
surface being sampled. We demonstrate the algorithm using the Geant4 Monte Carlo simulation
toolkit. The efficiency of the sampling algorithm is discussed, along with various options in the
implementation and example applications.

INTRODUCTION

The uniform, random sampling of arbitrarily shaped
surfaces is of importance in several scientific and techno-
logical applications. For example, generic surface sam-
pling can be used to create and test more realistic com-
puter graphics models [1]. In medical imaging, such sam-
pling can be used to generate a uniform distribution of
target points over the surface of tumors [2]. Surface sam-
pling has also been used to study oxygen production in
forests [3]. In low-background radiation detection, the
application for which the algorithm presented here was
developed, the simulation of radioactive contaminants
on various detector surfaces is important for quantify-
ing backgrounds and their impact on detector sensitiv-
ity. This algorithm was successfully implemented into
the Geant4-based [4] simulation toolkit, MaGe [5], being
jointly developed by the GERDA [6] and Majorana [7]
collaborations to simulate germanium detector arrays.

Several algorithms exist to perform such generic sur-
face sampling (see, for example, Refs. [1] - [3]). Unfor-
tunately, some of these methods (such as the retiling of
polygonal surfaces) are algorithmically complex and com-
putationally intensive. Other algorithms require the sur-
faces to be represented as differentiable functions. Deriv-
ing such a function for each surface-of-interest can be a
computationally intensive task, particularly for complex
geometries. Finally, to the authors’ knowledge, little is
available in the form of free, open-source code for plug-
and-play usage.

We have developed a Monte Carlo algorithm that only
requires the geometry modeling software to be able to
find the intersection points between an arbitrary line and
the surfaces of the volumes to be sampled. The algorithm
generates a random set of rays that impinge on the sur-
faces of interest that are isotropic in direction and uni-
form in space. The intersection points, provided by the
geometry modeling software, are sampled again to pro-
vide the final set of random and uniform surface points.

We demonstrate this generic surface sampling rou-
tine using the C++-based Geant4 Monte Carlo simula-
tion toolkit [4]. Geant 4 is used extensively in high-

energy, nuclear and medical physics to simulate the in-
teractions of radiation with matter. In Geant4, arbitrary
geometries can be constructed by arranging collections
of nested solid volumes and boolean combinations (in-
tersections, additions, or subtractions) of those volumes
in specified positions and orientations relative to each
other. The available basic solids include fundamental
solids such as spheres, cylinders, and polyhedra, as well as
more generic and complex boundary-representation vol-
umes. Our sampler relies on the fact that each Geant4
volume class provides a function that finds the intersec-
tion points between the volume’s surface and an arbitrary
line, if such an intersection exists. Each volume class also
defines a function that returns a bounding radius for the
volume in question, which is used to constrain the pa-
rameter space of lines sampled.

SAMPLING ALGORITHM

The principle of the sampling algorithm is based upon
uniformly sampling the volume within a sphere. When
the user selects a volume or set of volumes whose surfaces
are to be sampled, the radius R of a bounding sphere
which wholly contains the volume(s) must be determined.
In the case of multiple disjoint volumes, a “mother” vol-
ume that encompasses all the volumes to be sampled
must be used. In practice, the radius of this bounding
sphere is determined by querying the geometry model-
ing software. To generate a uniform, isotropic flux of
rays within this bounding sphere, first a random isotropic
point r on the sphere is generated, where r = RΩ̂ and
Ω̂ is the randomly generated direction. A disk, also of
radius R, is defined tangential to the bounding sphere,
with its center at position r. Figure 1 shows the position
of this disk and the bounding sphere for a sampling trial
of an arbitrary example volume. The starting point for
another ray ρ is generated on the interior of the disk at
point r + b, where b has polar coordinates (b, α) in the
coordinate system of the disk. The “impact parameter”
b is generated with a uniform distribution in b2 between 0
and R, and the angle α is generated uniformly between 0

ar
X

iv
:0

80
2.

29
60

v1
 [

nu
cl

-e
x]

 2
0

Fe
b

20
08

2

FIG. 1: An schematic of the bounding sphere (shown with a
section missing for illustrative purposes), tangent disk, and
ray ρ for a sampling trial of an arbitrary example volume.
ρ originates at r + b and continues in the −Ω̂ direction, in
this case intersecting the enclosed volume twice. The deter-
mination of the various rays and angles is described in the
text.

and 2π. The direction of ρ is taken to be −Ω̂, normal to
the circle and hence pointing into the bounding sphere.
The uniformity and isotropy of the rays produced in this
manner will be discussed in the next section.

Once ρ has been generated, the geometry modeling
software is queried to find the intersection points of the
ray with all surfaces among the volumes-of-interest. If no
such intersections exist, another ray is generated with a
new direction and starting point. If N intersections are
found, a random integer n is generated between one and
the maximum number of intersections possible for the
given geometry (Nmax), which is input by the user [10].
If n > N the ray is discarded, and the algorithm starts
over. Otherwise, one of the N intersections is chosen at
random. The set of intersection points chosen in this way
is the output of the algorithm.

ALGORITHM PROPERTIES

In the following, it is assumed that we have a random
number generator that can generate a sequence of real
numbers uniformly distributed between 0 and 1, with the
standard requirement of randomness [8]. Additionally,
all vectors, volumes and surfaces are assumed to lie in
3-dimensional Euclidean space.

We first show that the flux of rays generated as de-
scribed above is uniform and isotropic within the bound-
ing sphere of the surfaces-of-interest. For every point

x in the interior of a sphere of radius R, and for every
direction Ω̂ from x, there exists one and only one line
passing through x that is normal to the plane tangent
to the sphere at r = RΩ̂. The set of all intersections
with this tangent plane of rays in direction Ω̂ originat-
ing from all points x interior to the sphere fill a disk of
radius R centered at r. Since the direction Ω̂ is chosen
isotropically, and since the starting point on the disk b
is chosen uniformly across the surface of the disk, then
the probability for a ray to pass within a small area ∆A
centered at x with surface normal pointing in direction
Ω̂ is independent of x (uniform), and is independent of
direction Ω̂ (isotropic). Symbolically, we write the nor-
malized vector flux of rays as φ(x, Ω̂) = Ω̂/4π2R2, which
is independent of x. The randomness of this flux is guar-
anteed as long as a new direction Ω̂ and disk position b
are chosen for each ray.

The uniformity and randomness of the set of intersec-
tion points generated by the uniform isotropic flux of
rays can be demonstrated as follows. First, divide the
surfaces-of-interest into an large number of surface ele-
ments ∆A(x), where the direction points normal to the
surface at point x, and the magnitude ∆A is indepen-
dent of x (∆A(x) = ∆An̂(x)). ∆A is taken to be small
enough that each surface element may be approximated
to be flat [11]. The probability for a surface element to
be hit by a ray from our generated vector flux φ(x, Ω̂) is∫ 4π

0

|φ(x,Ω) ·∆A(x)| dΩ =
∫ 4π

0

∣∣∣∣ ∆A
4π2R2

Ω̂ · n̂(x)
∣∣∣∣ dΩ

=
∆A

4π2R2

∫ 4π

0

|cos θ| dΩ

=
∆A

2πR2

which is independent of x. This implies that all surface
elements are hit with constant probability. Thus the set
of intersections of all rays with the surfaces-of-interest
gives a uniform sampling of those surfaces.

The randomness of initial flux of rays implies that the
set of intersection points generated by one ray is statis-
tically independent from those of other rays. However,
intersection points of a single ray are not statistically in-
dependent from each other, as they all lie along a single
line. For a truly random sampling, at most one intersec-
tion point can be chosen from each ray. Note that if a
single point were chosen at random and kept for each ray
with intersections, those points which lie along rays with
fewer intersections would be sampled more often than
those points lying along lines with more intersections,
ruining the uniformity of the distribution. In essence,
rays with N intersections would effectively be given a
1/N weighting. For this reason, the point selection is
weighted by N/Nmax, and uniformity is retained.

The efficiency of the above method, in terms of the

3

number of surface points generated per geometrical calcu-
lation, can be poor when the volumes-of-interest sparsely
fill the bounding sphere. If the volumes are disjoint, ef-
ficiency can be recovered by considering distant volumes
independently. Poor efficiency for volumes having needle-
like or planar geometries, with one dimension much larger
or smaller than the other dimensions, can be remedied by
considering bounding surface other than a sphere, for ex-
ample a wide plane or a narrow cylinder. In such cases
care must be taken to ensure the generated flux of rays
is (at least approximately) uniform and isoptropic. We
did not consider such cases in this paper.

The step in which rays with fewer intersections are
preferentially discarded also imposes an efficiency reduc-
tion by a factor of roughly N̄/Nmax, where N̄ is the av-
erage number of intersections per ray. This reduction
can be significant for geometries with many aligned, re-
peated volumes, as well as for geometries with regions
containing many small components. In such cases it may
be prudent to simply keep all intersection points of all
rays. The resulting set of points, taken as a whole, will
still distribute with uniform surface density, and with
much higher efficiency, albeit at the cost of introducing
correlations among some consecutive points. For many
applications, though, such correlations are irrelevant.

GEANT4 IMPLEMENTATION

We implemented this algorithm within the Geant4
framework by deriving classes from the “user ac-
tion” base classes G4VUserPrimaryGeneratorAction and
G4UserSteppingAction. At runtime the user inputs a list
of volume names whose surfaces are to be sampled, which
are sent to the generator action class. After geometry ini-
tialization, the class queries the G4PhysicalVolumeStore
to find the smallest volume which contains all volumes-
of-interest as daughter volumes (this volume may it-
self be a volume-of-interest). The G4VSolid corre-
sponding to that mother volume is extracted from its
G4LogicalVolume. A bounding radius for the surfaces-of-
interest is then obtained by calling

G4VSolid::GetExtent().GetExtentRadius();

The class then sets the primary particle to be a
“geantino”, an imaginary neutral, massless utility “par-
ticle” within the Geant4 framework which undergoes no
interactions, and only travels in straight lines. Geantinos
are commonly used for debugging purposes and to map
out geometries. The geantino’s position and direction
are selected by our algorithm to give a uniform, isotropic
flux of geantinos throughout the interior of the bound-
ing sphere. The energy of the geantino can be any value
greater than 0. The choice of geantinos delegates all ge-
ometrical calculations to Geant4.

The stepping action class checks at each step whether
the geantino is entering or exiting a volume of interest.
Each such entrance or exit point is added to a list of sur-
face intersections. At the end of the event, one of these
surface intersections can be chosen at random, or all sur-
face intersections can be kept if efficiency requirements
outweigh the necessity for truly uncorrelated sampling.
The set of surface intersections generated in this way
uniformly sample the surfaces of interest, and may be
saved to disk or used for further processing in the pro-
gram (e.g. as the vertex for the next event).

EXAMPLE APPLICATION AND VERIFICATION

Such an implementation of our generic surface sam-
pling algorithm was added to MaGe [5], a Geant4-
based Monte Carlo simulation toolkit optimized for low-
background germanium detector simulations. The out-
put vertices are written to a ROOT [9] file, which can
then be used in simulations involving surface physics, for
example α-particle backgrounds from natural U and Th
decay chain isotopes in settled dust, or from Rn decay
chain daughters plated out on detector surfaces.

Figure 2 demonstrates the usage of the surface sam-
pler on the 57-detector array design for the Majorana
experiment [7]. Figure 2(a) shows a rendering of a 3-Ge-
crystal string assembly, complete with detector supports
and electronic connections and components. 19 such
strings are arranged in a hexagonal close-pack pattern,
suspended from a Cu cold plate, and housed in a cylindri-
cal low-background cryostat made of electroformed Cu.
An imaging of the full simulated geometry (minus the
surrounding cryostat) by our surface sampling algorithm
is shown in Figure 2(b), as viewed from one side. We
also show more detailed samplings of two specific detector
components in Figures 2(c) and 2(d). Figure 2(c) plots
the output of the algorithm for one close-ended coaxial
high-purity germanium detector crystal. The detector is
represented by a boolean combination of basic volumes.
The body is modeled as two cylinders OR’d with a torus
to form the rounded top face. A third, smaller-radius
cylinder OR’d with a sphere at one end is subtracted
from the body to form the coaxial well along the detec-
tor’s vertical axis. Figure 2(d) shows a surface sampling
of one of the plastic trays on which the Ge crystals rest
in the string assembly. A rendering of the simulated tray
design is shown to the upper right of the surface sampling
for comparison.

We ran a high statistics simulation to test the behavior
of the surface sampler and verify that the surface density
of sampled points is independent of surface shape and
orientation. To this end, we sampled a portion of the
Majorana 57-detector array design. We chose to sam-
ple the inner surface of the enclosing cylindrical cryostat,
the cold plate from which all the crystals hang, two crys-

4

(a) Rendering of a 3-Ge-crystal “string” assembly.
The entire assembly is about 30 cm in length.

(b) Horizontal view of 19 strings hanging from a Cu
coldplate, imaged with our surface sampling

algorithm.

(c) Surface sampling of a close-ended coaxial
high-purity germanium detector crystal.

(d) Surface sampling of a crystal support tray. A
rendering of the simulated geometry is shown in the

upper right corner.

FIG. 2: Demonstration of the uniform surface sampling on various volumes in the Majorana 57-crystal array design. The
2-dimensional projection of 3-dimensional points leads to regions with apparent higher or lower sampling densities, for example
at the edges of the displayed geometries. See Table I for an analytic verification of the sampler.

tal detectors, and a single “contact ring” (a thin plas-
tic ring that clamps leads against the crystal surface to
make electrical connections to the detector) surrounding
one of the crystals. The inner cryostat surface and the
cold plate are both simple cylinders. The contact ring
is an annulus, and the detectors are as described above.
All surfaces were sampled simultaneously, so the surface
density of sampled points should be the same for all five
components. The ratio of points on a volume’s surface
to total number of sampled points in the run were tabu-
lated from the output ROOT file. These ratios were then
compared with analytical calculations of the surface area
ratio for each volume to the total surface area of all sam-
pled volumes. The results are shown in Table I. In all
cases, the ratios agree within the sampled statistics.

TABLE I: A comparison of analytically calculated surface
area ratios to the fractions of sampled points landing on each
surface of a number of volumes sampled simulataneously us-
ing our generic surface sampling algorithm. In all cases, the
ratios agree within the statistics of the simulation.

Analytic [%] Sampled [%]

Cryostat 69.544 69.577 ± 0.042

Cold Plate 25.906 25.881 ± 0.026

Detector 1 2.173 2.171 ± 0.007

Detector 2 2.173 2.167 ± 0.007

Contact Ring 0.202 0.203 ± 0.002

CONCLUDING REMARKS

We have developed a generic surface sampling algo-
rithm that distributes vertices uniformly and randomly
over sets of arbitrary surfaces. Such an algorithm has po-

5

tential application in many scientific and technical fields.
Our implementation within the Geant4 Monte Carlo sim-
ulation toolkit and the MaGe simulation framework for
germanium detector-based systems is of particular use to
nuclear and particle physicists. It may be used, for exam-
ple, to study surface α backgrounds, a key background
in many low-background calorimetry-based experiments
in these fields.

ACKNOWLEDGMENTS

This work was sponsored in part by the US Depart-
ment of Energy under Grant nos. DE-FG02-97ER41020
and DE-AC02-05CH11231. This research used the Par-
allel Distributed Systems Facility at the National En-
ergy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of
Energy under Contract no. DE-AC02-05CH11231. The
authors would like to thank D. Y. Sebe for assistance with
some of the figures. In addition, the authors acknowledge
the MaGe group of the GERDA and Majorana collab-
orations for important comments and insight.

[1] G. Turk, ACM SIGGRAPH Computer Graphics 26,
p. 55-64 (1992).

[2] J. Williamson, Physics in Medicine and Biology 32,
p. 1311-1319 (1987).

[3] G. Melfi and G. Schoier, Atti della XLII Riunione della
Societa Italiana di Statistica, CLEUP, p. 173-176 (2004).

[4] J. Allison et al., IEEE Transactions on Nuclear Science
53, p. 270, (2006).

[5] M. Bauer et al., Journal of Physics, Conf. Series 39,
p. 362 (2006).

[6] I. Abt et al., GERDA Collaboration, Proposal to the
LNGS, Avail. http://www.mpi-hd.mpg.de/ge76/ (21 Jan
2008)

[7] C.E. Aalseth et al., Nuclear Physics B (Proc. Suppl.)
138, p. 217 (2005).

[8] D. E. Knuth, The Art of Computer Programming: Vol.
2: Seminumerical Algorithms, Addison-Wesley, Reading,
MA (1981).

[9] R. Brun and F. Rademakers, Nucl. Inst. & Meth. in Phys.
Res. A 389 (1997) 81-86. See also http://root.cern.ch/.

[10] A guess will suffice for the value of Nmax, it merely needs
to match or exceed the greatest number of intersections
encountered in the ouput set of sampled points. If the al-
gorithm encounters more surfaces than Nmax, a warning
can be generated and the user can rerun with a larger
value of Nmax.

[11] This is equivalent to requiring that the sampled surfaces
be differentiable. Within the Geant4 framework, this im-
plies a requirement that the radius-of-curvature for any
surface be much greater than the tolerance parameter,
which sets the distance within which a point is consid-
ered to be “on” a volume’s surface. This parameter has a
default value of 1 pm, but can be tuned by the user to be

as low as ∼1 fm for typical meter-sized or smaller geome-
tries, at which point one is limited by numerical round-off
of the 64-bit double-precision floating point data type
used to define volume dimensions. The assumption of
flatness of the surface elements also neglects infinitely
sharp corners, which are unphysical.

http://www.mpi-hd.mpg.de/ge76/
http://root.cern.ch/

	LBNLReportSubmissionTemplate.pdf
	0802.2960v1.pdf
	Introduction
	Sampling Algorithm
	Algorithm Properties
	Geant4 Implementation
	Example Application and Verification
	Concluding Remarks
	Acknowledgments
	References

