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Abstract 

We propose two agent-based models of group foraging for 
two perceptual conditions.  These models exhibit complex 
group-level behavior using only a simple rule set with a 
homogeneous group of agents. The models are shown to 
replicate results from Goldstone and Ashpole (2004), and we 
describe a series of simulations that test the sources of the 
resource undermatching often found in group foraging 
experiments.  After testing the effects of travel costs, the 
number of agents, and uniform variance food distributions, we 
conclude that many group foraging studies have overlooked 
the interplay of spatial constraints with food rates in causing 
undermatching.     

Introduction 
The ideal free distribution (IFD) model (Fretwell & Lucas, 
1970) predicts that a group of foragers will distribute to 
resource patches in proportion to the relative resources 
available at each patch.  In an environment where one 
resource pool holds 80% of the resources while a second 
pool holds the remaining 20% of resources, the IFD predicts 
that a group of foragers will optimally distribute themselves 
to the resource pools, with 80% of the foragers in the first 
pool and 20% in the second pool. In predicting this optimal 
distribution, the model assumes the foragers have both 
freedom of movement and ‘perfect’ of the locations, 
amounts, and appearance rates of all the resources, thereby 
allowing the foragers to correctly value the resources and 
optimally distribute as a group.  However, in experiments 
with two patch options, many studies report systematic 
undermatching in which fewer than expected foragers attend 
the more profitable patch while more than expected foragers 
attend the less profitable patch.  Godin and Keenleyside 
(1984) found undermatching in cichlid fish, with the largest 
degree of undermatching occurring in the condition with the 
largest rate difference between resource pools.  Gillis and 
Kramer (1987) obtained similar results for large populations 
(120 and 240) of zebrafish distributing between three 
resource pools, although they did not find significant 
deviations for small populations (30 and 60).   
   Whereas Godin and Keenleyside concluded that 
differential competitive abilities had broken the IFD 
assumption of equal payoff for each animal at a pool, Gillis 
and Kramer concluded that high population density broke 
the IFD assumption of perfect information.  Despite the 

difference in emphasis, both studies seem to agree that 
perceptual limitations – whether due to individual ability or 
occlusion from high density – led to decreased available 
information about the pools and subsequently 
undermatching.  However, other studies (Harper, 1982; 
Kennedy & Gray, 1993) cite competitive differences among 
organisms and travel costs between locations as critical 
factors in producing undermatching.  Baum and Kraft 
(1998) consistently found undermatching in a group of 30 
pigeons distributing between two resource patches, although 
the degree of undermatching varied as a factor of resource 
distributions and travel constraints, and they were unable to 
detect whether competitive abilities varied.  In a meta-
analysis of undermatching in animal foraging studies, 
Kennedy and Gray (1993) conclude that information 
regarding the “relative and absolute resource availability, 
number of animals, perceptual abilities of animals, 
competitive interactions, competitive abilities of animals, 
and the effects of travel between sites” may all lead to 
undermatching and violate the IFD. 
   In the present article, we describe two agent-based models 
that capture several phenomena of group foraging across 
perceptual and resource conditions.  These models show that 
complex group-level behaviors can emerge from simple 
agent behaviors.  Furthermore, the models allow us to test 
changes in dynamic group behavior as a result of 
environmental manipulations, and give rise to a novel 
explanation of undermatching in group foraging.      

Agent-Based Models 
Goldstone and Ashpole (2004) recently examined dynamic 
group foraging behavior among humans by using an 
experimental networked Java platform to create a common 
virtual world (an 80 x 80 grid) across computers.  
Participants sat at their respective computer monitors and 
foraged for resources in real time by using the computers’ 
arrow keys to move up, down, left, and right in order to step 
on a food pellet and thereby consume it. We will briefly 
describe the experimental manipulations because the 
Goldstone and Ashpole foraging environment and data serve 
as the basis for our subsequent agent models.  
   In the Goldstone and Ashpole foraging experiments, 
participants engaged in 6 five-minute sessions, consisting of   
all permutations of two perceptual conditions and three 

1872



resource conditions, and all participants experienced the 
same conditions in a given session. In the “visible” 
perceptual condition, a participant could see himself or 
herself as a yellow dot in the virtual world, and other 
participants were visible as blue dots while available food 
pellets were represented as green dots.  In the “invisible” 
perceptual condition, a participant could see himself or 
herself as a yellow dot in the virtual world, but no other 
participants or food were visible in the world.  A new food 
pellet was dropped in one of two resource pools every 4/N 
seconds (where N is the number of participants), and there 
were three distribution conditions that probabilistically 
determined which pool received the pellet: 50/50, 65/35, 
and 80/20.  For example, in the 65/35 distribution condition, 
65% of food arrived at one pool while 35% arrived at the 
other pool.  At each pool, new pellets were dropped 
according to a Gaussian distribution with a mean at the 
pool’s center and a variance of 5 units horizontally and 
vertically.  Food release was constrained so that only one 
pellet could occupy a cell at a given time, and resource pool 
locations changed from session to session. In the invisible 
perceptual condition, a pellet appeared on the screen for two 
seconds for the participant who stepped on it, and therefore, 
participants could gradually ascertain the locations of the 
resources by exploring the world and occasionally obtaining 
pellets. 
   Goldstone and Ashpole discuss three results: 
undermatching, systematic cycles of population migration 
between pools, and high variance of participants’ locations 
relative to food locations.  Although our agent-based models 
capture all of these phenomena using the same parameter 
values, we are most concerned with the undermatching for 
the present article.  Goldstone and Ashpole found 
significant undermatching at the 80/20 and 65/35 
distribution levels, with more pronounced undermatching in 
the more extreme 80/20 conditions. Since individuals do not 
directly interfere with each other, competitive interference 
can be removed as a possible explanation of the 
phenomenon.  Furthermore, since undermatching occurs 
even in the visible conditions, where ‘perfect’ knowledge is 
available, straightforward accounts in terms of perceptual 
constraints can be removed as explanations.  Our agent-
based models seek to reproduce these results while testing 
the other undermatching alternatives – different competitive 
abilities, travel costs, and the number of foragers – from 
Kennedy and Gray’s (1993) meta-analysis.  

Visible Model 
An agent-based model should have minimal representational 
requirements while also being sufficiently robust to handle 
changes in the empirical environment, such as a sudden 
increase in food rates or number of participants.  Gallistel 
(1990) has argued that a strong set of internal 
representations are necessary in any reasonable treatment of 
the IFD, but Magnuson (1998) proposed a relatively 
successful simple foraging model that utilized two rules: 
move to the nearest piece of food, and stay at a piece of 

food for a number of time steps proportional to the 
magnitude of the food.  In a favorable environment, these 
rules lead to resource matching; however, such ‘favorable’ 
environments are very constrained and very rare.  Our 
visible model offers a compromise between the Gallistel and 
Magnuson approaches.  Whereas Magnuson’s goal was 
simply to demonstrate the feasibility of group matching with 
simple rules, we propose an enhanced rule set in hopes of 
building a bridge between low-level agent behaviors and a 
collection of high-level group phenomena. 

In our model, each agent is randomly assigned a location 
on the 80 x 80 grid-world at the beginning of the 
experiment.  As in Goldstone and Ashpole (2004), food is 
dropped at a rate of 4/N seconds, and for all simulations 
reported in this article, N is set to 20 agents, corresponding 
to the average number of participants in the Goldstone and 
Ashpole experiment.  Agents move every 100 milliseconds, 
and a movement consists of choosing an available food 
pellet and moving one grid unit towards the chosen pellet.  
The interesting aspects of the model lie in the parameters for 
action selection.  During a time step, each agent judges the 
value of every available piece of food relative to the agent.  
Four factors determine a pellet’s worth: 1. Euclidean 
distance from the agent to the pellet, 2. Euclidean distance 
from the pellet to the agent’s sustained goal, 3. Food density 
in the local area of the pellet, and 4. Agent density in the 
local area of the pellet.  Each factor is multiplied by a free 
parameter, yielding Equation 1 on the following page. 

Individual factors can have varying importance depending 
on the current environment, but as a rule set, they produce 
robust, complex behavior.  In particular, Euclidean distance 
captures the notion that animals will tend to approach the 
food nearest to them, since it is easiest to obtain and 
requires the least energy expenditure.  The sustained goal 
factor (goal bias) makes an agent more likely to continue 
towards the previous goal pellet, thereby promoting inertia 
and countering a tendency for behavioral synchrony and 
generally unrealistic switching behavior found in 
Magnuson’s agents.  The food density factor addresses 
another shortcoming of the Magnuson model.  Magnuson’s 
agents were unable to differentiate between two resource 
pools with vastly different resource densities, despite the 
improved reward rate that can be obtained by such a 
distinction.  In our model, if there are two unequally 
rewarding resource pools and an equal number of agents at 
each pool, food density will bias agents to leave the less 
plentiful pool in favor of the more plentiful pool. Finally, 
agent density is similar to food density, but it captures the 
idea that agents do indeed know the locations of other 
foragers in the visible condition, and they may want to 
avoid regions with high densities of competitors.  In contrast 
to the food density factor, if two resource pools have equal 
available resources but different numbers of agents, agents 
in the dense pool should be encouraged to migrate to the 
other pool.   

In addition to these factors, the model also incorporates           
the softmax action selection algorithm (Equation 2) to 
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probabilistically choose a pellet, given each pellet’s relative 
value to the agent calculated in Equation 1.  Although we 
have tried to make the expression generic to also 
accommodate the invisible model, we should point out that 
the denominator in Equation 2 only sums over pellets 
currently on the gridworld. In the softmax equation, K is a 
constant that shifts action selction to be more exploratory or 
more exploitative.  When K is large, even highly valued 
pellets become small values and thereby indistinguishable, 
leading to uniform random movement choices.  When K is 
small, differences between the pellet values are exaggerated 
by exponentiation, and the probability of choosing the 
highest valued pellet approaches 1 as K approaches 0.  
Together, the Euclidean measures and softmax action 
selection create a degree of agent independence while 
maintaining the essential dependence on resource and agent 
distributions for choosing where to move. 

Invisible Model 
For the invisible condition of Goldstone and Ashpole 
(2004), participants only saw a food pellet if they happened 
to step on it, so the perceptual factors from the visible model 
do not apply.  Instead, foraging performance seems to rely 
on some form of memory, leading foragers to continue 
exploring regions where they have been rewarded in the 
past.  Harley (1981) proposed a ‘relative payoff sum’ rule in 
which an agent’s probability of choosing an option is equal 
to the proportion of past rewards from that option relative to 
the sum of past rewards from all options.  Harley also 
included prior expectations and a memory decay factor in 
his model, and he successfully conducted computer 
simulations showing that a group could achieve IFD with 
the rule.  Regelmann (1984) subsequently extended Harley’s 
model to allow for competitive differences between 
individuals.   
   Our invisible model is somewhat similar to Harley and 
Regelmann’s models, but in addition to component 
differences, it has several key differences in intent.  First, 
we are very concerned with maintaining the spatial 
representation – i.e. foragers in a gridworld – rather than the 
discrete patch choices used by Harley, Regelmann, and 
many other modelers.  Indeed, our results will show that the 
spatial nature of foraging is a critical aspect overlooked by 
many models.  Furthermore, whereas Harley sought to show 
that IFD could be achieved with a simple rule, and 
Regelmann sought to show that deviations in competitive 

abilities could affect the IFD, we are showing why 
undermatching should be expected more generally, and why 
Kennedy and Gray’s (1993) meta-analysis found such a 
preponderance of undermatching in group foraging studies.  
Finally, although not discussed in detail in this article, our 
model also captures other emergent group-level phenomena 
such as population oscillations using the identical parameter 
values.   
   In our invisible model, each agent has memory for all cells 
in the 80 x 80 gridworld.  At the beginning of a session, 
every cell in an agent’s memory is initialized to a constant 
value.  Thus, every cell looks equally attractive for action 
selection purposes.  During a time step, each agent chooses 
a cell by estimating every cell’s value and then using the 
softmax algorithm (Equation 2) to assign a movement 
probability to each cell.  Whereas the visible model’s agents 
decide between pellets by using current perceptual 
information, the invisible model’s agents rely on their 
interaction histories with the environment.  In particular, if 
an agent steps on a cell and receives a pellet, the cell’s value 
receives a large boost in the agent’s memory, and the 
neighboring cells are also boosted to a lesser extent.  This 
neighborhood assumption leads to quicker learning, and its 
ecological validity arises from two phenomena: perceptual 
discrimination and generalization.  On one hand, human 
foragers may not be making fine perceptual discriminations 
between cells, especially given the sheer number of cells.  
Thus, a forager may be rewarded at a location but not make 
a clear distinction between the rewarding cell and the 
rewarding cell’s neighbors.  Generalization, on the other 
hand, implies a more purposeful credit attribution to similar 
options.  If one cell provides a reward, its neighbors may be 
likely to provide rewards too, because there is often 
underlying order in the environment. In any case, the 
boosted values in an agent’s memory increase the 
probability of choosing those cells in the future.  When an 
agent steps on a cell without receiving a pellet, however, a 
penalty is assessed to the cell and its neighbors.  For both 
rewards and penalties, we set the relative strength of a 
neighbor’s reward or penalty as an inverse function of its 
distance from the current cell.  By exploring the 
environment and obtaining a history of rewards and 
penalties, each agent constructs a dynamic representation of 
the resource patches in the environment. Finally, much like 
the visible model, when an agent chooses a cell, a goal bias 
boosts the cell’s value for the next action selection step, 

Equation 1: 
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thereby promoting probabilistic inertia towards a cell until it 
is reached.  Equation 3 shows the additive calculation an 
agent makes for each cell, and the cell values are then input 
to the softmax algorithm to obtain selection probabilities.   

Model Results 

Undermatching 
Figure 1 shows the matching results for the visible and 
invisible models at the three resource distribution levels of 
Goldstone and Ashpole (2004).  The graphs show the 
proportion of agents in each pool (within a 25 unit radius of 
a pool’s center) at a given time, after normalizing to exclude 
agents outside both pools. Each graph shows the averaged 
results from 30 trials, with 20 agents per trial.  Importantly, 
although the parameter values are different for the two 
models, the same parameter values are used for all resource 
distribution levels of a model and for all subsequent 
manipulations discussed in this article.  Our model results 
prior to normalization also match Goldstone and Ashpole’s 
results prior to normalization.  The matching results show 
that our agent-based models have captured the 
undermatching reported by Goldstone and Ashpole, and in 
fact our model results also show significantly more 
undermatching at the extreme 80/20 distribution levels.  The 
same trials also exhibited the respective levels of population 
oscillations found by Goldstone and Ashpole, as well as 
high variance of agents’ locations relative to resource 
locations and a comparable amount of switching between 
pools.  We use these additional measures to confirm that the 

models appear robust and reliable across several measures 
of group behavior, and we can now discuss additional 
simulations designed to discover the source of 
undermatching.  Note that given Kennedy and Gray’s 
(1993) meta-analysis and our earlier analysis of the 
Goldstone and Ashpole results, competitive abilities, travel 
costs, and the number of foragers could all be causes of 
undermatching.  However, we can already eliminate 
competitive abilities as the explanation since the agents in 
our models share the same attributes.   

Travel Costs 
Travel costs between resource pools are sometimes used to 
explain undermatching (Baum & Kraft, 1998) due to the 
fact that foragers switch less frequently when the pools are 
farther apart, and therefore foragers obtain less information 
about the resources and make worse decisions.  In order to 
test this explanation while trying to avoid possible 
confounds from changing the world size, we ran several 
simulations with agents starting inside the pools instead of 
random locations around the world.  Figure 2 shows the 
matching results, averaged over 30 trials, from the visible 
model at the 80/20 distribution level, and results were 
similar for the invisible model and other distribution levels.  
Note that these experiments show less undermatching than 
Figure 1, but this is due to a more restrictive definition of 
being in a pool.  For these simulations, we wanted to guard 
against possible matching biases caused by the pools’ 
respective locations in the gridworld, so we placed the pools 
in diagonally opposite corners and restricted the pool 
definitions (20 units from the center) to avoid intersection 

Figure 1: Matching results for the visible and invisible models 
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with the edges of the gridworld.  In the left graph of Figure 
2, we started all agents at random locations inside the 80% 
pool.  In the middle graph, we started all agents at random 
locations inside the 20% pool, and in the right graph, we 
started 80% of agents inside the 80% resource pool and 20% 
of agents inside the 20% resource pool.  Interestingly, all of 
these experiments result in the same undermatching 
asymptote despite differences in initial foraging behaviors.  
In addition, a more powerful observation can be made by 
examining the data prior to normalization.  The 20% pool 
always has approximately 20% of agents, and 
undermatching arises because some agents leave the 80% 
pool and are outside both pools.  The cost of switching does 
not seem to drive behavior.  Of course, another argument 
against travel costs comes from the fact that Goldstone and 
Ashpole found undermatching in the visible conditions, 
despite participants constantly seeing the number of food 
pellets at each resource pool and thereby having relatively 
good information.  Although we suspect that travel costs do 
indeed contribute to undermatching in many foraging 
situations, there appears to be another factor leading agents 
to selectively leave the plentiful pool and undermatch. 

Number of Agents 
We examined the effects of different numbers of foragers by 
running visible and invisible simulations at the 80/20 
distribution level with 10, 20, and 30 agents, respectively.  
Once again, agents began in random locations, but here the 
food rate was held constant across conditions, with food 
dropped every 4/20 seconds (200 milliseconds).  The 
constant food rate allowed us to gauge the effects due to the 
number of agents. 
   Figure 3 shows the matching results, averaged over 30 
trials, for 10, 20, and 30 agents.  These graphs are taken 
from the visible model, but the invisible model results are 
similar.  Post-hoc ANOVA results indicate that 10 agents 
show significantly less (p<.001) undermatching than the 20 
agents condition, and 20 agents showed significantly less 
(p<.001) undermatching than the 30 agents condition.  
Interestingly, none of the conditions are significantly 
different with respect to the 20% pool.  Instead, the greater 
undermatching with respect to the large resource pool leads 
to more agents outside the pools.  Thus, the number of 
agents -- or, equivalently, changes in food rate given a fixed 

number of agents -- does affect undermatching, but it is 
unclear why the effects take place. 

Spatial Constraints 
Our novel explanation for undermatching contends that the 
spatial environment of foraging critically determines how 
well foragers can distribute to the resources.  Imagine a 
forager with a finite speed covering a finite territory.  Now 
introduce five more foragers to that territory.  As you add 
foragers, the reward rate for each forager correspondingly 
decreases.  In the context of the Goldstone and Ashpole 
visible condition, a relatively small number of foragers can 
cover the two resource pools and easily pick up food soon 
after it is dropped every 4/N seconds, since the food rate is 
not high enough to tax their foraging abilities.  The 
Gaussian food distribution enhances this effect, because 
only a few foragers are needed to pick up the majority of the 
food near the Gaussian centers, while a few additional 
foragers can dart to the food dropped on the peripheries. By 
this argument, most of the foragers are actually unnecessary, 
although they can certainly compete for resources.  Thus, 
undermatching arises because only a limited number of 
foragers are required to pick up the available food in a given 
amount of time, and excess foragers simply increase indirect 
competition.   
   In the Goldstone and Ashpole experiments, both resource 
pools have equal variances, so the 20% pool can occupy as 
much space as the 80% pool.  Although more food is 
dropped in the 80% pool, the spatial distribution means that 
there does not need to be an equal increase in the number of 
foragers to pick up that food.  These considerations seem to 
be absent from the literature, and that may be due to the 
preponderance of models that treat foraging and probability 
matching as discrete choices between options, rather than 
often occurring in spatially instantiated situations.  
Furthermore, even empirical studies overlook this interplay 
of food rate, number of foragers, and spatial constraints.  In 
Baum and Kraft’s (1998) study of 30 pigeons distributing 
between two resource pools, the authors seem to 
erroneously conclude that food rate is unimportant.  
However, it appears that the authors did not use a 
sufficiently high feeding rate.  Thus, a relatively small 
number of pigeons could eat the food regardless of the rate, 
because the rate never exceeded a few pigeons’ capacities.  
As a result, pigeon distributions did not significantly change 

Figure 2: Agent starting locations Figure 3: Number of Agents 
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because the rate increase did not correspondingly increase 
information.   

Uniform Variances 
Given the preceding argument for undermatching, we 
should expect significantly less undermatching if Goldstone 
and Ashpole had used uniform variance food distributions 
rather than Gaussian distributions, because the Gaussian 
distribution allows a lucky few to collect all the food at the 
center, greatly decreasing the distinguishing information 
between pools and requiring fewer foragers.  Using our 
visible and invisible models, we conducted simulations with 
uniform variance food distributions.  Figure 4 shows results 
from the visible model.  The first number in each graph 
indicates the radius (for simplification, a centered square 
was used) of food droppings in the 80% pool, and the 
second number indicates the radius of food droppings for 
the 20% pool.  Thus, the “16 vs. 8” condition creates an 
80% pool that is four times larger than the 20% pool, so the 
probabilistic food distribution is reflected by pool size.   
   The graphs clearly support our undermatching 
explanation.  When the pool variances are identical (8 vs. 8), 
the agents distribute themselves in approximately matching 
proportions.  In these cases, food rate is the only factor that 
distinguishes between the two pools.  In the 16 vs. 8 
condition, the rarely observed phenomenon of overmatching 
occurs, and the explanation lies in the fact that the densities 
of the pools are equal, but the coverage times are unequal 
because the food rate is low.  As each new piece of food is 
grabbed relatively quickly, foragers begin to converge as 
they chase new pellets.  This convergence, along with the 
large pool size, can gradually increase the time it takes to 
reach a new pellet on a far side of the pool, and therefore the 
new pellet looks more attractive to migrators switching 
pools.  Meanwhile, agents in the 20% pool have less area to 
cover and fewer pieces of food, so the pick-up time remains 
comparatively low.  Finally, the reverse condition (8 vs. 16) 
leads to dramatic undermatching for similar reasons.  The 
pick-up time in the 20% pool increases as agents converge, 
then new pellets dropped far away from the group attract 
additional foragers to switch from the 80% pool.   

Conclusion 
We have shown that agent-based models can produce 
complex group-level foraging behavior, and we have argued 

for a novel explanation of undermatching: spatial 
constraints.  We hesitate to use a single phrase for this 
phenomenon, because the effects truly arise from the 
interplay of spatial considerations with the food rate and the 
number of foragers.  In our simulations, we showed that 
food distribution variances had a particularly large effect for 
this experimental set-up, but we suspect that other spatial 
issues – such as rugged terrain allowing different movement 
speeds – can lead to undermatching for similar reasons.  In 
essence, we conclude that seemingly small changes in 
environmental parameters can have large effects on group 
foraging behavior due to the interaction effects of complex 
systems. 

Acknowledgments 
Support was provided by an NSF Graduate Research 
Fellowship to MER.  

References  
Baum, W.M., & Kraft, J.R. (1998).  Group choice: 

Competition, travel, and the ideal free distribution.  
Journal of the Experimental Analysis of Behavior, 69, 
227-245. 

Estes, W.K., & Straughan, J.H. (1954). Analysis of a verbal 
conditioning situation in terms of statistical learning 
theory.  Journal of Experimental Psychology, 47, 225. 

Fretwell, S.D., & Lucas, H.J. (1970). Ideal free distribution.  
Acta Biotheory, 19, 16-21. 

Gallistel, C.R. (1990).  The,organization of learning, 
Cambridge, MA: MIT Press. 

Gillis, D.M., & Kramer, D.L. (1987). Ideal interference 
distributions: Population density and patch use by 
zebrafish. Animal Behavior, 35, 1875-1882. 

Godin, M.J., & Keenleyside, M.H.A. (1984). Foraging on 
patchily distributed prey by a cichlid fish (Teleosti, 
Chiclideae): A test of the ideal free distribution theory. 
Animal Behavior, 32, 120-131.  

Goldstone, R.L., & Ashpole, B.C. (2004). Human foraging 
behavior in a virtual environment. Psychonomic Bulletin 
& Review, 11, 508-514.  

Harley, C.B. (1981). Learning the evolutionarily stable 
strategy. Journal of Theoretical Biology, 89, 611-633. 

Harper, D.G.C. (1982). Competitive foraging in mallards: 
Ideal free ducks. Animal Behavior, 30, 575-584.  

Kennedy, M., & Gray, R.D. (1993). Can ecological theory 
predict the distribution of foraging animals? A critical 
analysis of experiments on the ideal free distribution.  
Oikos, 68, 158-166.  

Magnuson, J.S. (1997). Does complex behavior require 
complex representations?  Proceedings of the Nineteenth 
Annual Conference of the Cognitive Science Society, (pp. 
472-477). Mahwah, NJ: Lawrence Erlbaum Associates. 

Regelmann, K. (1984). Competitive resource sharing: A 
simulation model. Animal Behavior, 32, 226-232. 

Figure 4: Uniform Variance 

1877




