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Abstract

Robust Optimization of Generalized Eigenvalue Problem for Positive Semi-definite
Matrices

by

Jiaming Wang

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

In this paper, we propose novel algorithms for solving the worst-case robust opti-
mization of the generalized eigenvalue problem with positive semi-definite constraint,
a highly non-convex problem that has eluded traditional optimization solvers. We
consider the rank-one case and the general-rank case saparately. For the rank-one
case, we first present a relaxation of the KKT system, transforming the problem
into a more tractable nonlinear system of equations. We then prove the tightness
of the relaxation at the optimal point and introduce two algorithms for solving the
relaxed system of equations. Our approach is the first to guarantee finding the global
optimal solution for the problem at hand. For the general-rank case, we first solve
the KKT system with one variable fixed. We then describe an algorithm searching
for the variable. We then showed that our algorithm converges to a stationary point
of the problem. We showcase the potential applications of our algorithms in robust
adaptive beamforming and semi-supervised Fisher discriminant analysis. This work
contributes significantly to the field by providing a globally optimal solution to a
highly non-convex problem with broad applicability in various disciplines.
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Chapter 1

Introduction and Background

1.1 Generalized Eigenvalue Optimization

Generalized Eigenvalue Problem

Eigenvalue and generalized eigenvalue problems are fundamental problems in numer-
ical analysis, with broad applications across various disciplines, including computer
science, economics, engineering, physics, and statistics. In an eigenvalue problem, we
solve the leading eigenvectors of a matrix, which serve as essential indicators of the
most significant and informative directions inherent to that matrix. On the other
hand, in a generalized eigenvalue problem, the directions of the leading generalized
eigenvectors are influenced by a pair of matrices A and B. More specifically, the
generalized eigenvalue problem[6] is to find generalized eigenvalues λ and generalized
eigenvectors x ̸= 0 such that

Ax = λB x (1.1)

or in the general-rank case,
AX = BXΛ (1.2)

Note that the eigenvalue problem is a special case of generalized eigenvalue problem
when B = I.
When the matrices A and B are symmetric positive semi-definite, the generalized
eigenvalue problems (1.1),(1.2) are closely related to the following generalized eigen-
value optimization:

max
x̸=0

xT Ax

xT B x
(1.3)
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or in the general-rank case,
max
X ̸=0

Tr(XTAX)

s.t. XTBX = I
(1.4)

This is also called Rayleigh-quotient optimization. The optimal values and solution
vectors of (1.4) are the leading generalized eigenvalues and generalized eigenvectors of
(1.1),(1.2) respectively. Details about the relationship between generalized eigenvalue
problem and generalized eigenvalue optimization can be found in section 2.

Adaptive Beamforming

One of the applications of generalized eigenvalue problem is adaptive beamforming.
Adaptive beamforming is an advanced signal processing technique used primarily in
sensor arrays for directional signal transmission or reception. This method dynam-
ically adjusts the phases and amplitudes of the signals in the array in such a way
that it effectively ’shapes’ the beam pattern, enhancing the signal quality in certain
directions while suppressing interference from others. The directionality of the beam
can be altered based on the desired application, whether it’s radar, sonar, wireless
communication, or medical imaging. It relies on the concept of spatial filtering, which
uses the spatial signatures of signals, such as their direction of arrival, to distinguish
between the signals of interest and the unwanted noise or interference. Thus, adap-
tive beamforming enhances system performance by improving signal clarity, reducing
noise, and increasing signal-to-noise ratio.Adaptive beamforming has found numer-
ous applications in radar[32],[22],[26],[3], sonar[18],[2], seismology[24], microphone
array[43] speech processing, and wireless communications[31],[40]. Mathematically,
adaptive beamforming solves the following optimization problem:

max
w ̸=0

wHRsw

wHRi+nw
(1.5)

where w ∈ Cn×1 is the complex vector of beamformer weights, and Rs and Ri+n are
the signal and interference-plus-noise covariance matrices respectively. The defini-
tions and properties of these two matrices can be found in section 5. The problem
(1.5) is a complex version of the generalized eigenvalue optimization problem (1.3).

Fisher Discriminant Analysis

Another application of generalized eigenvalue problem is Fisher discriminant analy-
sis. Fisher Discriminant Analysis (FDA), also known as Linear Discriminant Anal-
ysis (LDA), is a statistical technique used in pattern recognition, machine learning,
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and data classification. The method reduces the dimensionality of a dataset while
preserving as much of the class discriminatory information as possible[39][28]. The
FDA operates by projecting high-dimensional data onto a line and then performs
the classification in this lower-dimensional space. The line is chosen to maximize the
between-class scatter and minimize the within-class scatter, which enhances class
separation. This means that similar data points (belonging to the same class) are
grouped closer together, while different data points (belonging to different classes)
are situated further apart. Therefore, FDA is a powerful tool for feature extraction,
improving the efficiency and accuracy of classification tasks, and is widely used in
fields such as image recognition and bioinformatics. LDA can easily be extended
from binary cases to multi-class scenarios[39]. Mathematically, Fisher discriminant
analysis solves the following optimization problem:

max
w ̸=0

wTSbw

wTSw
(1.6)

or in the general-rank case:

max
W ̸=0

Tr((W TSW )−1W TSbW ) (1.7)

where w ∈ Rn×1 and W ∈ Rn×k are the projection directions and projection sub-
spaces, respectively. Sb is the between-class scatters, and S is the within-class scat-
ters. The definitions and properties of these two matrices can be found in section
6. The problems (1.6) and (1.7) are generalized eigenvalue optimization problems
(1.3),(1.4).

1.2 Robust Optimization

General Robust Optimization

New challenges arise when there is data or parameter uncertainty. In recent years,
researchers proposed the concept of robust optimization to solve the general prob-
lem of data uncertainty in optimization. The main development phase of the robust
counterpart methodology in convex optimization was initialized and significantly
driven by the work of Ben-Tal and Nemirovski [11], [9], [10] and also independently
by the work of El-Ghaoui and Lebret [20]. These approaches are based on convex
optimization techniques [14] and make intensive use of the concept of duality in
convex programming, which helps us to transform an important class of min-max
optimization problems into tractable convex optimization problems. Here, a com-
monly proposed assumption is that the uncertainty set is ellipsoidal, which means
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that for a vector a, if we believe that the data is uncertain, we can assume that the
true vector lies in the following set:

U = {â+Ru | ∥u∥2 ≤ 1}

For example, a linear program (LP)

min
x

cTx

s.t. ax ≤ b
(1.8)

with uncertain data a can be formulated as

min
x

max
a∈U

cTx

s.t. ax ≤ b
(1.9)

This is called the robust counterpart of problem (1.8), which is a min-max optimiza-
tion problem. This can be transformed into the following second order cone program
(SOCP)[20]:

min
x

cTx

s.t. âx+ ∥RTx∥2 ≤ b
(1.10)

Similarly, an uncertain SOCP can – at least if the uncertainty set has a particularly
structured ellipsoidal format – again be written as an SOCP. Note that the field of
research addressing robust convex optimization problems has expanded during the
last years and is still in progress, as reported in [7], [12]. For an extensive overview
on robust optimization from the convex perspective, we refer to the text book by
Ben-Tal, El-Ghaoui, and Nemirovski [8].

Robust Generalized Eigenvalue Optimization

The idea of robust optimization motivates the following robust counterpart of gen-
eralized eigenvalue problem:

max
x ̸=0

min
A∈SA,B∈SB

xT Ax

xT B x
(1.11)

or in the general-rank case,

max
X ̸=0

min
A∈SA,B∈SB

Tr((XTBX)−1XTAX) (1.12)
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where SA, SB are the uncertainty sets to be determined.
The idea of robust optimization was first applied to the generalized eigenvalue prob-
lem (1.11) in 2003 in the context of robust adaptive beamforming [41]. In [41], the
uncertainty set SA, SB are chosen to be:

SA = {A+∆A | ∥∆A∥ ≤ ϵA}

SB = {B +∆B | ∥∆B∥ ≤ ϵB}

In this case, the robust counterpart of the problem (1.11) is:

max
x ̸=0

min
∥∆A∥≤ϵA,∥∆B∥≤ϵB

xT (A+∆A)x

xT (B +∆B)x
(1.13)

This max-min optimization problem can be transformed into a generalized eigenvalue
optimization problem[41]:

max
x ̸=0

xT (A− ϵAI)x

xT (B + ϵBI)x
(1.14)

Details about the derivation and discussion can be found in section 3.
Although the robust generalized eigenvalue problem formulated in [41] has a straight-
forward closed-form solution, it is excessively conservative, as the worst-case matrix
A,B could be indefinite or even negative definite. Consequently, less conserva-
tive approaches were introduced in [15],[42], incorporating an additional positive
semi-definite (PSD) constraint on the worst-case signal covariance matrix. This is
achieved by introducing a matrix decomposition of the positive semi-definite matrix
and putting the error term into both of the matrices obtained from the decomposi-
tion. In [15],[42], the uncertainty set are chosen to be:

S̃A = {(Ã+∆Ã)(Ã+∆Ã)T | ∥∆Ã∥ ≤ ϵA} (1.15)

SB = {B +∆B | ∥∆B∥ ≤ ϵB}

where A = ÃT Ã
In this case, the robust counterpart of the problem (1.11) is:

max
x

min
∥∆Ã∥≤ϵA,∥∆B∥≤ϵB

∥(Ã+∆Ã)x∥22
xT (B +∆B)x

(1.16)

This max-min optimization problem is highly non-convex and details about the
derivation and discussion can be found in section 3.
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Robust Adaptive Beamforming

It is widely recognized that adaptive beamforming methods’ performance signifi-
cantly declines when the desired signal is included in the training data, even with mi-
nor discrepancies in the knowledge of the desired signal covariance matrix[41],[22],[17],[34].
Such mismatches between the assumed and actual source covariance matrices can
arise due to factors like antenna element displacement, changing environments, or
imperfections in the propagation medium, among others. The primary objective of
any robust adaptive beamforming (RAB) approach is to ensure resilience against
these types of mismatches.
Numerous methods for robust adaptive beamforming have been proposed. One large
class of methods are designed for signal look direction mismatches. One of the most
popular approach in this class is the linearly constrained minimum variance (LCMV)
beamformer[38]:

min
w ̸=0

wHRi+nw

s.t. wHaia
H
i w = 1, i = 1, . . . , k

(1.17)

where ai are presumed signal candidates. Other methods in this class include signal
blocking-based algorithms[22] and Bayesian beamformer[29], etc. These methods
perform well against signal look direction mismatches but are less effective against
other mismatches, including calibration errors, unknown sensor coupling, wavefront
mismodeling, distortions, source spreading, and both coherent and incoherent local
scattering[1], indicating limitations in their applicability.
Another large class of methods are designed to be robust against more general types
of mismatches. One of the most popular approach in this class is diagonal loading[5]:

max
w ̸=0

wHRsw

wH(Ri+n + λI)w
(1.18)

We simply add a multiple of identity matrix to B and solve for the adaptive beam-
forming problem with the modified matrices. Diagonal loading is known to be very
sensitive to the choice of the paramter λ. Other methods in this class include the
eigenspace-based beamformer[17], covariance matrix tapper (CMT) approach[27],
and the aforementioned robust optimization approach[41], etc. As discussed in the
previous section, robust optimization approach is to solve the following robust coun-
terpart:

max
w ̸=0

min
Rs∈S1,Ri+n∈S2

wHRsw

wHRi+nw
(1.19)

where S1, S2 are uncertainty sets. For an extensive overview on robust adaptive
beamforming, we refer to the book by Ayman Elnashar [19].
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Semi-supervised Linear Discriminant Analysis

LDA has been shown to perform well compared to other supervised dimensionality
reduction methods in experiments[33]. However, LDA requires instance-label pairs,
which can be restrictive for large training datasets. In recent years, semi-supervised
methods have been developed to use unlabeled data to support classification or re-
gression tasks when labeled data is limited. When we have label information, like
in classification tasks, LDA can perform much better than PCA[36]. However, when
there aren’t enough training samples compared to the number of dimensions, we
might not accurately estimate each group’s mean vector and covariance matrix. In
this situation, we can’t guarantee good results on test samples. A possible solution is
learning from both labeled and unlabeled data, which is also called semi-supervised
learning. Several approaches have been proposed, most of which are based on trans-
ductive learning[16][33][44]. This approach makes sense because, in real life, we
often have only some labeled data and a large amount of unlabeled data. In [16], a
semi-supervised dimensionality reduction algorithm called Semi-supervised Discrim-
inant Analysis (SDA) is proposed. SDA aims to find a projection which respects the
discriminant structure inferred from the labeled data points, as well as the intrin-
sic geometrical structure inferred from both labeled and unlabeled data points. In
our work, we connect robust generalized eigenvalue problem (1.11),(1.12) and lin-
ear discriminant analysis and provide a novel algorithm for semi-supervised linear
discriminant analysis. Details can be found in section 6.

1.3 Related Algorithms

To solve the generalized eigenvalue problem (1.1)

Ax = λB x

LAPACK [4] provides fast and accurate implementations. The corresponding gener-
alized eigenvalue optimization (1.3) can then be solved. In the context of adaptive
beamforming, solving for (1.3) directly is known as the Minimum Variance Distor-
tionless Response (MVDR) algorithm.
As discussed earlier, the robust generalized eigenvalue problem (1.16)

max
x

min
∥∆Ã∥≤ϵA,∥∆B∥≤ϵB

∥(Ã+∆Ã)x∥22
xT (B +∆B)x

is highly non convex and eludes traditional optimization solvers. Researchers have
been solving this problem by developing algorithms to solve its convex approxima-
tions.
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In [15], researhcers first transformed the problem (1.16) to:

min
X ̸=0

Tr((B + ϵBI)X)

s.t. Tr(ÃT ÃX)− ϵ2ATr(X)− 1 ≥ 2ϵA
√

Tr(X)

X ≥ 0

rank(X) = 1

(1.20)

where X = xxH is a matrix, and this is a non-convex problem due to the rank
constraint. Researchers then used a series of Semi-definite program (SDP) to ap-
proximate the non-convex problem.
In [42], researchers derived closed form solutions to two convex modifications of the
problem (1.16):

xopt
1 = P((B + ϵBI)

−1(ÃT Ã− ϵ2AI)) (1.21)

xopt
2 = P((B + ϵBI)

−1(ÃT Ã− 2

√
λmax(ÃT Ã)ηI + ϵ2AI)) (1.22)

where P(·) denotes the leading eigenvector operator. The benefit of approximating
with this closed form solution is that the efficiency of the method is as good as the
original adaptive beamforming problem and thus the robust formulation does not
incur additional computational cost.
In [30], researchers rewrote the problem as the minimization of a one-dimensional
optimal value function and then further converted it to a convex SDP problem. They
showed that their algorithm converges to the global optimal under certain conditions.
Recently, [23] proposed a new SOCP based algorithm to approximate the solution
to the robust generalized eigenvalue problem, which avoids solving semi-definite pro-
gram and is therefore faster.
The main drawback of the methods in [15],[42] is that they only provide a subop-
timal solution, potentially leaving a significant gap to the global optimal solution.
For instance, the method in [15] iteratively finds a suboptimal solution, but there
is no guarantee of convergence. A closed-form approximate suboptimal solution is
proposed in [42]; however, this solution might also be far from the global optimal
one. These limitations prompt the exploration of new, efficient strategies to solve
the aforementioned non-convex problem in a globally optimal manner.

1.4 Structure of the Thesis

The rest of the paper is organized as follows. Generalized eigenvalue problem is in-
troduced in Chapter 2. The rank-one case robust generalized eigenvalue problem is
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discussed in Chapter 3. The general-rank case robust generalized eigenvalue prob-
lem is discussed in Chapter 4. Applications and numerical experiments are shown
in Chapter 5 and 6 for robust adaptive beamforming and semi-supervised linear
discriminant analysis, respectively.
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Chapter 2

Generalized Eigenvalue Problem

In this chapter, we first introduce eigenvalue problem and generalized eigenvalue
problem. And then we formulate them as different forms of optimization problems.
Finally, we introduce several applications of generalized eigenvalue problems. This
chapter is mostly from a tutorial paper[21] of this topic.

2.1 Eigenvalue Problem

The eigenvalue problem[25] of a matrix A is to find eigenvalues λ and eigenvectors
x such that

Ax = λx (2.1)

Or in matrix form, it is
AX = XΛ (2.2)

where X consists of columns of eigenvectors and Λ is a diagonal matrix of eigenvalues
When A is symmetric, X is orthogonal matrix and all diagonals of Λ are real numbers.
Furthermore, when A is positive definite, diagonals of Λ are positive real numbers.

2.2 Generalized Eigenvalue Problem

The generalized eigenvalue problem[6] of two matrices A and B is to find generalized
eigenvalues λ and generalized eigenvectors x such that

Ax = λBx (2.3)

Or in matrix form, it is
AX = BXΛ (2.4)
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where X consists of columns of eigenvectors and Λ is a diagonal matrix of eigenvalues
The generalized eigenvalue problem is usually denoted by a pair of matrices (A,B),
which is also called ’pencil’[6]. It is obvious that eigenvalue problem is a special case
of generalized eigenvalue problem when B = I.

2.3 Eigenvalue Optimization

Symmetric eigenvalue problem is closely related to some specific optimization prob-
lems. [21] summarizes five forms of eigenvalue optimization. Here we discuss three
of them which are relevant to following chapters.

Formulation 1

Consider the optimization problem:

max
x

xTAx

s.t. xTx = 1
(2.5)

The Lagrangian is
L(x, λ) = xTAx− λ(xTx− 1) (2.6)

The optimality condition ∇L(x, λ) = 0 is{
Ax = λx

xTx = 1
(2.7)

This is exactly the eigenvalue problem for matrix A. In other words, solving for the
KKT system (or optimality conditions) is equivalent of solving for the eigenvalue
problem. Multiplying the first equation of the system by xT , we have xTAx =
λxTx = λ. Therefore, solving for the original optimization problem is equivalent of
solving for the largest eigenvalue of matrix A.

Formulation 2

Consider the optimization problem:

max
x

xTAx

xTx
(2.8)

It is easy to see that this formulation is equivalent to the previous optimization form.
Therefore, this problem is also equivalent to the corresponding eigenvalue problem.



CHAPTER 2. GENERALIZED EIGENVALUE PROBLEM 12

Formulation 3

Consider the optimization problem:

max
X

Tr(XTAX)

s.t. XTX = I
(2.9)

where the decision variable X ∈ Rn×k is a matrix.
The Lagrangian[14] is

L(X,Λ) = Tr(XTAX)− Tr(ΛT (XTX − I)) (2.10)

From matrix calculus, we know that

∂Tr(XTAX)

∂X
= 2AX (2.11)

The optimality condition ∇L(X,Λ) = 0 is{
AX = XΛ

XTX = I
(2.12)

This is exactly the eigenvalue problem for matrix A. In other words, solving for the
KKT system (or optimality conditions) is equivalent of solving for the eigenvalue
problem. Multiplying the first equation of the system by XT , we have XTAX =
XTXΛ = Λ and Tr(XTAX) = Tr(Λ) = Σk

i=1λi. Therefore, solving for the original
optimization problem is equivalent of solving for the k largest eigenvalue of matrix
A. It is easy to see that formulation 1 is a special case of this optimization form
when k = 1.

2.4 Generalized Eigenvalue Optimization

Similarly, symmetric generalized eigenvalue problem is closely related to some spe-
cific optimization problems. [21] summarizes five forms of generalized eigenvalue
optimization. Here we discuss three of them which are relevant to following chap-
ters.

Formulation 1

Consider the optimization problem:

max
x

xTAx

s.t. xTBx = 1
(2.13)
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The Lagrangian is
L(x, λ) = xTAx− λ(xTBx− 1) (2.14)

The optimality condition ∇L(x, λ) = 0 is{
Ax = λBx

xTBx = 1
(2.15)

Note that the direction of x only depends on the first equation and the second
equation is just for determining the scale of x. Therefore, this is exactly the gen-
eralized eigenvalue problem for matrix pair (A,B). In other words, solving for the
KKT system (or optimality conditions) is equivalent of solving for the generalized
eigenvalue problem. Multiplying the first equation of the system by xT , we have
xTAx = λxTBx = λ. Therefore, solving for the original optimization problem is
equivalent of solving for the largest generalized eigenvalue of (A,B).

Formulation 2

Consider the optimization problem:

max
x

xTAx

xTBx
(2.16)

It is easy to see that this formulation is equivalent to the previous optimization form.
Therefore, this problem is also equivalent to the corresponding generalized eigenvalue
problem.

Formulation 3

Consider the optimization problem:

max
X

Tr(XTAX)

s.t. XTBX = I
(2.17)

where the decision variable X ∈ Rn×k is a matrix.
The Lagrangian[14] is

L(X,Λ) = Tr(XTAX)− Tr(ΛT (XTBX − I)) (2.18)

The optimality condition ∇L(X,Λ) = 0 is{
AX = BXΛ

XTBX = I
(2.19)
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Though not obvious, the column span of X only depends on the first equation and
the second equation is just for determining the scale of columns of X. Therefore this
is exactly the generalized eigenvalue problem for matrix pair (A,B). In other words,
solving for the KKT system (or optimality conditions) is equivalent of solving for
the generalized eigenvalue problem. Multiplying the first equation of the system by
XT , we have XTAX = XTBXΛ = Λ and Tr(XTAX) = Tr(Λ) = Σk

i=1λi. Therefore,
solving for the original optimization problem is equivalent of solving for the k largest
generalized eigenvalue of (A,B). It is easy to see that formulation 1 is a special case
of this optimization form when k = 1.

2.5 Examples

[21] introduces several examples of eigenvalue optimization and generalized eigen-
value optimization. We briefly introduce two of them. We also introduce one more
example which is also relevant.

Kernel Supervised Principle Component Analysis

Kernel supervised PCA (SPCA) solves the following optimization:

max
Θ

Tr(ΘT (KxHKyHKx)Θ)

s.t. ΘTKxΘ = I
(2.20)

where Kx and Ky are the kernel matrices over the training data and the labels, re-
spectively, and H = I − 1

n
11T is the centering matrix. The goal is to find the kernel

SPCA subspace denoted by Θ.

As discussed, the optimality condition is:{
(KxHKyHKx)X = KxΘΛ

ΘTKxΘ = I
(2.21)

which is a generalized eigenvalue problem.

Fisher Discriminant Analysis

Fisher Discriminant Analysis, or linear discriminant analysis (LDA), solves the fol-
lowing optimization:

max
X

Tr(XTSbX)

s.t. XTSwX = I
(2.22)
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where Sb and Sw are the between-class covariance matrix and the within-class co-
variance matrix, respectively. The goal is to find the projection subspace denoted by
X for dimension reduction. The mathematical definitions of Sb and Sw are:

Sb =
1

N
ΣN

i=1(µi − µ)(µi − µ)T (2.23)

Sw =
1

N
ΣN

i=1Si (2.24)

where µi and Si are the mean vector and the class-specific covariance matrix of the
ith class of data points.

As discussed, the optimality condition is:{
SbX = SwXΛ

XTSwX = I
(2.25)

which is a generalized eigenvalue problem.

Adaptive Beamforming

Adaptive beamforming solves the following optimization problem:

max
w

wHRsw

wHRi+nw
(2.26)

where w is the vector of beamformer weights, and Rs and Ri+n are the signal and
interference-plus-noise covariance matrices respectively. The goal is to find the beam-
former weight w such that the signal-to-interference-plus-noise ratio(SINR) is maxi-
mized.

As discussed, the optimality condition is:{
Rsw = λRi+nw

wHRi+nw = 1
(2.27)

which is a generalized eigenvalue problem.
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Chapter 3

Robust GEP: Rank 1

3.1 Formulations

In this section, we study different formulations of robust generalized eigenvalue prob-
lem for positive semi-definite matrices. The key difference is how we model data
uncertainty in positive semi-definite matrices. For a general matrix A, if we believe
that the data is uncertain, we can assume that the true matrix lies in the following
set:

SA = {A+∆A | ∥∆A∥ ≤ ϵ}
However, matrices in SA are not necessarily positive semi-definite even when A is
positive semi-definite. In the cases where the true matrix is known to be positive
semi-definite and A = ÃÃT , we can assume that the true matrix lies in the following
set:

S̃A = {(Ã+∆Ã)(Ã+∆Ã)T | ∥∆Ã∥ ≤ ϵ} (3.1)

Matrices in S̃A are always positive semi-definite , so this set well describes positive
semi-definite matrices that are close to A. Note that S̃A is not dependent on the
decomposition A = ÃÃT .

Proposition 1. The set S̃A defined in (3.1) is independent of the decomposition
A = ÃÃT

Proof. Suppose A = Ã1Ã
T
1 = Ã2Ã

T
2 , then we have

(ÃT
1 Ã1)Ã

T
1 = (ÃT

1 Ã2)Ã
T
2

Since Ã1 is assumed to be full rank, ÃT
1 Ã1 is invertible and

ÃT
1 = (ÃT

1 Ã1)
−1(ÃT

1 Ã2)Ã
T
2
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Let Q = (ÃT
1 Ã1)

−1(ÃT
1 Ã2), then

QQT = (ÃT
1 Ã1)

−1(ÃT
1 Ã2)(Ã

T
1 Ã2)

T (ÃT
1 Ã1)

−T = I

so Q is orthogonal.
Now for any element u in S̃A1 = {(Ã1 + ∆Ã1)(Ã1 + ∆Ã1)

T | ∥∆Ã1∥ ≤ ϵ} defined
based on Ã1, it can be written as

u = (Ã1 +∆Ã1)(Ã1 +∆Ã1)
T

= (Ã2Q+∆Ã1)(Ã2Q+∆Ã1)
T

= (Ã2 +∆Ã1Q
−1)QQT (Ã2 +∆Ã1Q

−1)T

= (Ã2 +∆Ã1Q
−1)(Ã2 +∆Ã1Q

−1)T

Since ∥∆Ã1Q
−1∥ = ∥∆Ã1∥ ≤ ϵ, u ∈ S̃A2 = {(Ã2 +∆Ã2)(Ã2 +∆Ã2)

T | ∥∆Ã2∥ ≤ ϵ}
defined based on Ã2. So S̃A1 ⊆ S̃A2 . By symmetry, S̃A1 = S̃A2

From section 2, we know that the leading generalized eigenvector can be defined
as a solution to the following optimization problem:

max
x

xTAx

xTBx

Depending on how we model data uncertainty in positive definite matrices, we have
three different robust formulations.

Formulation 1

When we use the first type of uncertainty set for both A and B, we can formulate
the robust optimization problem as:

max
x

min
∥∆A∥≤ϵA,∥∆B∥≤ϵB

xT (A+∆A)x

xT (B +∆B)x
(3.2)

Since A and B are positive definite, when ϵA and ϵB are small enough, both numerator
and denominator are positive, so the problem is equivalent to the following:

max
x

min∥∆A∥≤ϵA xT (A+∆A)x

max∥∆B∥≤ϵB xT (B +∆B)x
(3.3)

Then we need to solve these two subproblems
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Lemma 1. The optimal value for min∥∆A∥≤ϵA xT (A+∆A)x is xT (A− ϵAI)x and the
optimal value for max∥∆B∥≤ϵB xT (B +∆B)x is xT (B + ϵBI)x

Proof. We can always choose ∆A = −ϵAxx
T and ∆B = ϵBxx

T , where ∥∆A∥ = ϵA
and ∥∆B∥ = ϵB, and then

xT (A+∆A)x = xT (A− ϵAI)x

xT (B +∆B)x = xT (B + ϵBI)x

On the other hand,

xT∆Ax ≥ −∥xT∥2∥∆A∥2∥x∥2 ≥ −ϵAx
Tx

xT∆Bx ≤ ∥xT∥2∥∆B∥2∥x∥2 ≤ ϵBx
Tx

This completes the proof.

Then the problem becomes

max
x

xT (A− ϵAI)x

xT (B + ϵBI)x
(3.4)

Now we can solve this optimization problem directly. This is nothing but a general-
ized eigenvalue problem of (A− ϵAI, B + ϵBI)

Formulation 2

When we use the first type of uncertainty set for B and the second type of uncertainty
set for A, we can formulate the robust optimization problem as:

max
x

min
∥∆Ã∥≤ϵA,∥∆B∥≤ϵB

∥(Ã+∆Ã)x∥22
xT (B +∆B)x

(3.5)

Again, since both numerator and denominator are positive, the problem is equivalent
to the following:

max
x

min∥∆Ã∥≤ϵA
∥(Ã+∆Ã)x∥22

max∥∆B∥≤ϵB xT (B +∆B)x
(3.6)

Then we need to solve these two subproblems

Lemma 2. The optimal value for min∥∆Ã∥≤ϵA
∥(Ã+∆Ã)x∥2 is ∥Ãx∥2 − ϵA∥x∥2



CHAPTER 3. ROBUST GEP: RANK 1 19

Proof. When ∥Ãx∥2 ≤ ϵA∥x∥2, we can choose

∆Ã = −ÃxxT

∥x∥22
where

∥∆Ã∥ =
∥ÃxxT∥2
∥x∥22

≤ ∥Ãx∥2∥xT∥2
∥x∥22

=
∥Ãx∥2
∥x∥2

≤ ϵA

Then

∥(Ã+∆Ã)x∥ = ∥(Ã− ÃxxT

∥x∥22
)x∥ = ∥Ãx− ÃxxTx

∥x∥22
∥ = ∥Ãx− Ãx∥ = 0

When ∥Ãx∥2 > ϵA∥x∥2, we can choose

∆Ã = − ϵAÃxx
T

∥Ãx∥2∥x∥2
where

∥∆Ã∥ = ϵA
∥ÃxxT∥2
∥Ãx∥2∥x∥2

≤ ϵA
∥Ãx∥2∥xT∥2
∥Ãx∥2∥x∥2

= ϵA

Then

∥(Ã+∆Ã)x∥ = ∥(Ã− ϵA
ÃxxT

∥Ãx∥2∥x∥2
)x∥

= ∥Ãx− ϵA
ÃxxTx

∥Ãx∥2∥x∥2
∥

= ∥Ãx− ϵA
∥x∥2
∥Ãx∥2

Ãx∥

= (1− ϵA
∥x∥2
∥Ãx∥2

)∥Ãx∥2

= ∥Ãx∥2 − ϵA∥x∥2
On the other hand,

∥(Ã+∆Ã)x∥ ≥ 0

and

∥(Ã+∆Ã)x∥ ≥ ∥Ãx∥ − ∥∆Ãx∥ ≥ ∥Ãx∥ − ∥∆Ã∥∥x∥ ≥ ∥Ãx∥ − ϵA∥x∥

Therefore
∥(Ã+∆Ã)x∥ ≥ max(0, ∥Ãx∥ − ϵA∥x∥)

We already showed that the equality can be achieved. This completes the proof.
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Then the problem becomes

max
x

(∥Ãx∥2 − ϵA∥x∥2)2

xT (B + ϵBI)x
(3.7)

Let y = Cx, where B + ϵB = CTC, then the problem becomes

max
y

(∥ÃC−1y∥2 − ϵA∥C−1y∥2)2

yTy
(3.8)

This can be reformulated as a constrained optimization problem:

max
y

∥Fy∥2 − ∥Gy∥2

s.t. ∥y∥2 = 1
(3.9)

This is a non-convex optimization problem. We will solve for this problem in the
next section.

Formulation 3

When we use the second type of uncertainty set for both A and B, we can formulate
the robust optimization problem as:

max
x

min
∥∆Ã∥≤ϵA,∥∆B̃∥≤ϵB

∥(Ã+∆Ã)x∥2
∥(B̃ +∆B̃)x∥2

(3.10)

Again, since both numerator and denominator are positive, the problem is equivalent
to the following:

max
x

min∥∆Ã∥≤ϵA
∥(Ã+∆Ã)x∥22

max∥∆B̃∥≤ϵB
∥(B̃ +∆B̃)x∥22

(3.11)

Then we need to solve these two subproblems

Lemma 3. The optimal value for max∥∆B̃∥≤ϵB
∥(B̃ +∆B̃)x∥2 is ∥B̃x∥2 + ϵB∥x∥2

Then the problem becomes

max
x

∥Ãx∥2 − ϵA∥x∥2
∥B̃x∥2 + ϵB∥x∥2

(3.12)

This can be reformulated as a constrained optimization problem:

max
x

∥Ãx∥2 − ϵA∥x∥2

s.t. ∥B̃x∥2 + ϵB∥x∥2 = 1
(3.13)

This is a non-convex optimization problem. We will solve for this problem in the
next section.
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Comments

When the matrix A is not full rank, the difference between formulation 1 (3.2) and the
other two formulations is substantially different since A+∆A is no longer a positive
semi-definite matrix in formulation 1. However, the difference between formulation 2
(3.5) and formulation 3 (3.10) is subtle, since B+∆B is still a positive semi-definite
matrix in formulation 2. However, formulation 1 leads to a closed-form solution while
formulation 2 and 3 require more computational resources.

3.2 Optimality Conditions

In this section, we derive the optimality conditions for the two non-convex optimiza-
tion problems mentioned in the previous section.

Formulation 2

Consider the optimization problem:

max
x

∥Fx∥2 − ∥Gx∥2

s.t. ∥x∥2 = 1
(3.14)

The Lagrangian is

L(x, λ) = ∥Fx∥2 − ∥Gx∥2 − λ(∥x∥2 − 1) (3.15)

The optimality condition ∇L(x, λ) = 0 is
F TFx

∥Fx∥2
− GTGx

∥Gx∥2
= λ

x

∥x∥2
∥x∥2 = 1

(3.16)

We can solve for λ in terms of x by multiplying x by the left on both sides of the
first equation:

∥Fx∥2 − ∥Gx∥2 = λ∥x∥2 = λ (3.17)

Then the optimality condition becomes
F TFx

∥Fx∥2
− GTGx

∥Gx∥2
= (∥Fx∥2 − ∥Gx∥2)

x

∥x∥2
∥x∥2 = 1

(3.18)
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It is difficult for us to solve for this highly non-linear system of equations directly.
Instead, we introduce auxiliary variables α, β, µ and aim at solving for a relaxed
system of equations. Specifically, we are looking for (α, β, µ, x) such that

F TFx

α
− GTGx

β
= µx

α− β = µ

||x||2 = 1

α, β > 0

(3.19)

This is a non linear system of equations that is easier to solve than the original one
and it is closely related to the optimality condition. First, for any solution (λ, x)
to the optimality condition, it is also a solution to this relaxed system of equations.
This is because we can simply set α = ∥Fx∥2, β = ∥Gx∥2, µ = λ, and x unchanged.
Note that the other direction is not always true, which means that not all solutions
(α, β, µ, x) to the relaxed system of equations could lead to a solution (λ, x) to the
original optimality condition. However, the specific solution that maximizes µ, which
we are mostly interested in, would guarantee a solution to the optimality condition.

Theorem 1. Let P be the solution path of the system of equations (3.19), then
λ = max{µ| (α, β, µ, x) ∈ P} and the corresponding unit vector x is the solution to
the optimality condition (3.16).

Proof. Let (α+∆α, β+∆β, µ+∆µ, x+∆x) be a perturbed solution to (α, β, µ, x).
Then we have

F TFx

α
− GTGx

β
= µx (3.20)

F TF (x+∆x)

α +∆α
− GTG(x+∆x)

β +∆β
= (µ+∆µ)(x+∆x) (3.21)

Taking the difference, we have

(
F TF∆x

α
− GTG∆x

β
)− (

F TFx

α2
∆α− GTGx

β2
∆β) = µ∆x+∆µx (3.22)

Multiplying xT by the left, we have

−(
∥Fx∥22
α2

∆α− ∥Gx∥22
β2

∆β) = ∆µ (3.23)
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Note that ∆β = ∆α−∆µ, therefore

(1 +
∥Gx∥22
β2

)∆µ = −∆α(
∥Fx∥22
α2

− ∥Gx∥22
β2

) (3.24)

For the specific solution λ = max{µ|(α, β, µ, x) ∈ P}, ∆µ
∆α

should be zero, otherwise
we could perturb α in the direction such that µ increases. Therefore

∥Fx∥2
α

=
∥Gx∥2

β
(3.25)

From the original equations, we have

∥Fx∥22
α

− ∥Gx∥22
β

= µ = α− β (3.26)

Therefore 
α = ∥Fx∥2
β = ∥Gx∥2
µ = ∥Fx∥2 − ∥Gx∥2

(3.27)

In other words, λ = max{µ|(α, β, µ, x) ∈ P} and the corresponding unit vector x is
the solution to the optimality condition.

The theorem basically says that we can solve for the relaxed system of equations
to obtain the maximum λ solution to the optimality condition. In the next section,
we will discuss how we can solve the relaxed system of equations in detail.

Formulation 3

Consider the optimization problem:

max
x

∥Ãx∥2 − ϵA∥x∥2

s.t. ∥B̃x∥2 + ϵB∥x∥2 = 1
(3.28)

The Lagrangian is

L(x, λ) = ∥Ãx∥2 − ϵA∥x∥2 − λ(∥B̃x∥2 + ϵB∥x∥2 − 1) (3.29)

The optimality condition ∇L(x, λ) = 0 is
ÃT Ãx

∥Ãx∥2
− ϵA

x

∥x∥2
= λ(

B̃T B̃x

∥B̃x∥2
+ ϵB

x

∥x∥2
)

∥B̃x∥2 + ϵB∥x∥2 = 1

(3.30)
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We can solve for λ in terms of x by multiplying x by the left on both sides of the
first equation:

∥Ãx∥2 − ϵA∥x∥2 = λ(∥B̃x∥2 + ϵB∥x∥2) = λ (3.31)

Then the optimality condition becomes
ÃT Ãx

∥Ãx∥2
− ϵA

x

∥x∥2
= (∥Ãx∥2 − ϵA∥x∥2)(

B̃T B̃x

∥B̃x∥2
+ ϵB

x

∥x∥2
)

∥B̃x∥2 + ϵB∥x∥2 = 1

(3.32)

It is difficult for us to solve for this highly non-linear system of equations directly.
Instead, we introduce auxiliary variables α, β, γ, µ and aim at solving for a relaxed
system of equations. Specifically, we are looking for (α, β, γ, µ, x) such that

ÃT Ãx

α
− ϵAx = µ(

B̃T B̃x

β
+ ϵBx)

(α− ϵA)γ = µ

(β + ϵB)γ = 1

∥x∥2 = 1

α, β, γ > 0

(3.33)

Eliminating the scale factor λ, we have the simplified system of equations

ÃT Ãx

α
− ϵAx = µ(

B̃T B̃x

β
+ ϵBx)

α− ϵA = µ(β + ϵB)

∥x∥2 = 1

α, β > 0

(3.34)

Again, this is a non linear system of equations that is easier to solve than the original
one and it is closely related to the optimality condition. First, for any solution (λ, x̃)
to the optimality condition, it is also a solution to this relaxed system of equations.

This is because we can simply set α = ∥Ãx̃∥2
∥x̃∥2 , β = ∥B̃x̃∥2

∥x̃∥2 , µ = λ, and x = x̃
∥x̃∥2 .

Note that the other direction is not always true, which means that not all solutions
(α, β, µ, x) to the relaxed system of equations could lead to a solution (λ, x) to the
original optimality condition. However, the specific solution that maximizes µ, which
we are mostly interested in, would guarantee a solution to the optimality condition.

Theorem 2. Let P be the solution path of the above system of equations, then λ =
max{µ|(α, β, µ, x) ∈ P} and the corresponding unit vector x is the solution to the
optimality condition.
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Proof. Let (α+∆α, β+∆β, µ+∆µ, x+∆x) be a perturbed solution to (α, β, µ, x).
Then we have

ÃT Ãx

α
− ϵAx = µ(

B̃T B̃x

β
+ ϵBx) (3.35)

ÃT Ã(x+∆x)

α +∆α
− ϵA(x+∆x) = (µ+∆µ)(

B̃T B̃(x+∆x)

β +∆β
+ ϵB(x+∆x)) (3.36)

Taking the difference, we have

(
ÃT Ã

α
−µ

B̃T B̃

β
)∆x− (

ÃT Ãx

α2
∆α−µ

B̃T B̃x

β2
∆β) = (ϵA+µϵB)∆x+∆µ(

B̃T B̃x

β
+ϵBx)

(3.37)
Multiplying xT by the left, we have

−(
∥Ãx∥22
α2

∆α− µ
∥B̃x∥22
β2

∆β) = ∆µ(
∥B̃x∥22

β
+ ϵB) (3.38)

Note that ∆α = (β + ϵB)∆µ+ µ∆β, therefore

−µ(
∥Ãx∥22
α2

− ∥B̃x∥22
β2

)∆β = ∆µ(
∥B̃x∥22

β
+ ϵB + (β + ϵB)

∥Ãx∥22
α2

) (3.39)

For the specific solution λ = max{µ|(α, β, µ, x) ∈ P}, ∆µ
∆β

should be zero, otherwise
we could perturb β in the direction such that µ increases. Therefore

∥Ãx∥2
α

=
∥B̃x∥2

β
(3.40)

Now we have 

∥Ãx∥22
α

− ϵA = µ(
∥B̃x∥22

β
+ ϵB)

α− ϵA = µ(β + ϵB)

∥Ãx∥2
α

=
∥B̃x∥2

β

(3.41)

Therefore 
α = ∥Ãx∥2
β = ∥B̃x∥2

µ =
∥Ãx∥2 − ϵA

∥B̃x∥2 + ϵB

(3.42)

In other words, λ = max{µ|(α, β, µ, x) ∈ P} and the corresponding unit vector x is
the solution to the optimality condition.
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The theorem basically says that we can solve for the relaxed system of equations
to obtain the maximum λ solution to the optimality condition. In the next section,
we will discuss how we can solve the relaxed system of equations in detail.

3.3 Algorithms

In this section, we introduced two algorithms to solve the above non-linear system
of equations.

Consider the nonlinear system of equations(3.19), after eliminating α, we have
ÃT Ãx

β + µ
− B̃T B̃x

β
= µx

||x||2 = 1

β > 0

(3.43)

There could be more than one set of solutions (β, µ, x) and our goal is to find the
solution with maximal µ. Given µ, this is in fact a quadratic eigenvalue problem of
(β, x) with an additional condition β > 0:

(β2µI + β(µ2I − ÃT Ã+ B̃T B̃) + µB̃T B̃)x = 0

∥x∥2 = 1

β > 0

(3.44)

Similarly, we can consider the nonlinear system of equations(3.34), after eliminating
α, we have 

ÃT Ãx

ϵA + µ(β + ϵB)
− rAx = µ(

B̃T B̃x

β
+ ϵBx)

∥x∥2 = 1

β > 0

(3.45)

There could be more than one set of solutions (β, µ, x) and our goal is to find the
solution with maximal µ. Given µ, this is in fact a quadratic eigenvalue problem of
(β, x) with an additional condition β > 0:

(β2cµI + β(c2I − ÃT Ã+ µ2B̃T B̃) + cµB̃T B̃)x = 0

∥x∥2 = 1

β > 0

(3.46)
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where c = rA + µrB
(3.44) and (3.46) suggest the following root finding algorithm for solving for the op-
timal (β∗, µ∗, x∗):

Step 1: Given µ, test whether (3.44) has solution or not

Step 2: If yes, set µnew > µ, otherwise, set µnew < µ

Step 3: Iterate until the stop criterion is satisfied

In step 1, we solve for the quadratic eigenvalue problem (QEP) given µ. There
would be 2n solution pairs (β(µ), x(µ)) and we would be interested in whether there
are any solution pair such that β(µ) > 0. If this is true, the equation (3.44)(or(3.46))
has a feasible solution tuple (β, µ, x), and this means that the maximal µ∗ among
all feasible solutions would be greater than or equal to µ. Therefore in step 2, we
test another µnew that is larger than µ. On the other hand, if none of the solution
satisfies β(µ) > 0, this means that that the maximal µ∗ among all feasible solutions
would be less than µ. This is because µ is a continuous function of β. Therefore in
step 2, we test another µnew that is less than µ. This way, after every iteration, µnew

gets closer and closer to the optimal value µ∗ and we can use some stopping criteria
to terminate the iteration.

The only question left is how we update µnew. There are many ways to update
µnew. Now we introduce two methods to update µnew.

Bisection

It is obvious that µ∗ ≥ 0. When we have an upper bound of µ∗, which is gener-
ally true in practice, we can use bisection method to update µnew. Algorithm 1 is
the pseudocode of bisection method for solving (3.44). The QEP function in the
pseudocode solves the following quadratic eigenvalue problem and returns all real
eigenvalues βk and corresponding eigenvectors xk, in the order of descending βk.

(β2µI + β(µ2I − ÃT Ã+ B̃T B̃) + µB̃T B̃)x = 0 (3.47)
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Algorithm 1 Bisection

Input: matrix A,B, param ϵA, ϵB, ub
lb, ub, i = 0, ub, 0
while i < MAXITER:
µ = (lb+ ub)/2
βk, xk = QEP(A,B, ϵA, ϵB, µ)
if β1 > 0 :
lb, x∗ = µ, x1

else:
ub = µ

i = i+ 1
µ∗ = (lb+ ub)/2
Output: optimal value µ∗, solution x∗

Boyd-Balakrishnan Method

Inspired by the quadratic convergent algorithm for computing the H∞ norm of a
matrix [13], we proposed another update scheme for µnew. Algorithm 2 is the pseu-
docode of the Boyd-Balakrishnan method for solving (3.44). The QEP function is
the same as that in Bisection and the QEP2 function solves the following quadratic
eigenvalue problem and returns all real eigenvalues µk and corresponding eigenvectors
xk, in the order of descending µk.

(µ2βI + µ(β2I + B̃T B̃) + β(B̃T B̃ − ÃT Ã))x = 0 (3.48)

Experiments show that the Boyd-Balakrishnan method converges quadratically, which
requires much less iterations compared to bisection. However, within each itera-
tion, the Boyd-Balakrishnan method requires to solve multiple quadratic eigenvalue
problems, while bisection method only solves one QEP. Therefore in practice, the
Boyd-Balakrishnan method is not necessarily faster than bisection.
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Algorithm 2 Boyd-Balakrishnan

Input: matrix A,B, param ϵA, ϵB, µ0

µ, i = µ0, 0
while i < MAXITER:
βk, xk = QEP(A,B, ϵA, ϵB, µ)
for k in valid range:
β̃k = (βk + βk+1)/2
if β̃k > 0 :
µk, xk = QEP2(A,B, ϵA, ϵB, β̃k)
µ = max(µ, µ1)

i = i+ 1
βk, xk = QEP(A,B, ϵA, ϵB, µ)
Output: optimal value µ, solution x1
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Chapter 4

Robust GEP: General rank

4.1 Formulation

Recall that there are two ways to model data uncertainty:

SA = {A+∆A | ∥∆A∥ ≤ ϵ} (4.1)

S̃A = {(Ã+∆Ã)(Ã+∆Ã)T | ∥∆Ã∥ ≤ ϵ} (4.2)

From section 2, we know that the leading generalized eigenvectors can be defined as
a solution to the following optimization problem:

max
X

Tr(XTAX)

s.t. XTBX = I
(4.3)

Depending on how we model data uncertainty in the positive semi-definite matrix
A, we have two different robust formulations.

Formulation 1

When we use the first type of uncertainty set (4.1) for A, the robust optimization
problem is:

max
X

min
∥∆A∥≤ϵA

Tr(XT (A+∆A)X)

s.t. XTBX = I
(4.4)

Then we need to solve the inner subproblem.

Lemma 4. The optimal value for min∥∆A∥≤ϵA Tr(XT (A + ∆A)X) is Tr(XTAX) −
ϵA∥XTX∥F
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Proof. We can always choose ∆A = −ϵA
XXT

∥XXT ∥F
, where

∥∆A∥ = ϵA
∥XXT∥F
∥XXT∥F

= ϵA

and then

Tr(XT (A+∆A)X) = Tr(XT (A− ϵA
XXT

∥XXT∥F
)X)

= Tr(XTAX − ϵA
XTXXTX

∥XXT∥F
)

= Tr(XTAX)− ϵA
Tr(XTXXTX)

∥XXT∥F

= Tr(XTAX)− ϵA
∥XXT∥2F
∥XXT∥F

= Tr(XTAX)− ϵA∥XXT∥F
= Tr(XTAX)− ϵA∥XXT∥F

On the other hand,

Tr(XT∆AX) = Tr(XXT∆A) ≥ −∥XXT∥F∥∆A∥F ≥ −ϵA||XXT ||F

This completes the proof.

Then the problem becomes

max
X

Tr(XTAX)− ϵA∥XTX∥F

s.t. XTBX = I
(4.5)

This is a non-convex optimization problem. We will analyze this problem in the next
section.

Formulation 2

When we use the first type of uncertainty set for B and the second type of uncertainty
set for A, we can formulate the robust optimization problem as:

max
X

min
∥∆Ã∥≤ϵA

Tr(XT (Ã+∆Ã)T (Ã+∆Ã)X)

s.t. XTBX = I
(4.6)

Then we need to solve the inner sub-problem.
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Lemma 5. The optimal value for min∥∆Ã∥≤ϵA
Tr(XT (Ã+∆Ã)T (Ã+∆Ã)X) is{

σ2∥ÃX(σI +XTX)−1∥2F , ∥ÃX(XTX)−1XT∥F > ϵA

0, ∥ÃX(XTX)−1XT∥F ≤ ϵA

where σ is a scalar such that ∥ÃX(σI +XTX)−1XT∥F = ϵA

Proof. Consider the constrained optimization problem for ∆Ã:

min
∆Ã

Tr(XT (Ã+∆Ã)T (Ã+∆Ã)X)

s.t. ∥∆Ã∥2F ≤ ϵ2A

(4.7)

The Lagrangian is

L(∆Ã, λ) = Tr(XT (Ã+∆Ã)T (Ã+∆A)X)− λ(∥∆Ã∥2F − ϵ2A) (4.8)

From matrix calculus, we know that

∂Tr(XT (Ã+∆Ã)T (Ã+∆Ã)X)

∂∆Ã
=

∂Tr(2XT ÃT∆ÃX)

∂∆Ã
+

∂Tr(XT∆ÃT∆ÃX)

∂∆Ã

=
∂Tr(2XXT ÃT∆Ã)

∂∆Ã
+

∂Tr(XXT∆ÃT∆Ã)

∂∆Ã
= 2ÃXXT + 2∆ÃXXT

(4.9)

The optimality condition ∇L(∆Ã, λ) = 0 is
ÃXXT +∆ÃXXT + λ∆Ã = 0

∥∆Ã∥2F ≤ ϵ2A
λ ≥ 0

λ(∥∆Ã∥2F − ϵ2A) = 0

(4.10)

Assume that λ = 0, (4.10) becomes:{
ÃXXT +∆ÃXXT = 0

∥∆Ã∥2F ≤ ϵ2A
(4.11)
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The minimum norm solution for ÃXXT +∆ÃXXT = 0 is ∆Ã = −ÃX(XTX)−1XT

In other words, when ∥ÃX(XTX)−1XT∥F ≤ ϵA, the solution to (4.10) is:{
∆Ã = −ÃX(XTX)−1XT

λ = 0
(4.12)

In this case, the optimal value of (4.6) is

Tr(XT (Ã− ÃX(XTX)−1XT )T (Ã− ÃX(XTX)−1XT )X)

=Tr((ÃX − ÃX(XTX)−1XTX)T (ÃX − ÃX(XTX)−1XTX))

=Tr((ÃX − ÃX)T (ÃX − ÃX))

=0

(4.13)

When ∥ÃX(XTX)−1XT∥F > ϵA, the solution of (4.11) doe not exist, which means
that λ > 0
Assume that λ > 0, (4.10) becomes:{

ÃXXT +∆ÃXXT + λ∆Ã = 0

∥∆Ã∥F = ϵA
(4.14)

The solution for ∆Ã is ∆Ã = −ÃXXT (λI + XXT )−1 = −ÃX(λI + XTX)−1XT ,
where λ is a scalar such that ∥ÃX(λI +XTX)−1XT∥F = ϵA
Note that such λ > 0 always exists because

lim
λ→∞

∥ÃX(λI +XTX)−1XT∥F = 0 < ϵA (4.15)

and
lim
λ→0

∥ÃX(λI +XTX)−1XT∥F = ∥ÃX(XTX)−1XT∥F > ϵA (4.16)

In other words, when ∥ÃX(XTX)−1XT∥F > ϵA, the solution to (4.10) is:{
∆Ã = −ÃX(λI +XTX)−1XT

∥ÃX(λI +XTX)−1XT∥F = ϵA
(4.17)
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In this case, the optimal value of (4.6) is

Tr(XT (Ã− ÃX(λI +XTX)−1XT )T (Ã− ÃX(λI +XTX)−1XT )X)

=Tr((ÃX − ÃX(λI +XTX)−1XTX)T (ÃX − AX(λI +XTX)−1XTX))

=Tr((I − (λI +XTX)−1XTX)TXT ÃT ÃX(I − (λI +XTX)−1XTX))

=Tr((λI +XTX −XTX)T (λI +XTX)−TXT ÃT ÃX(λI +XTX)−1(λI +XTX −XTX))

=λ2Tr((λI +XTX)−1XT ÃT ÃX(λI +XTX)−1)

=λ2∥ÃX(λI +XTX)−1∥2F
(4.18)

Summarizing (4.13) and (4.18), we complete the proof.

There are two cases depending on whether ∥ÃX(XTX)−1XT∥F ≤ ϵA or not. If we
consider the outer maximization problem over X, since σ2∥ÃX(σI+XTX)−1∥2F ≥ 0,
X will always be chosen such that ∥ÃX(XTX)−1XT∥F > ϵA unless this is impos-
sible. Now we study under what conditions there exists at least one solution for
∥ÃX(XTX)−1XT∥F > ϵA.

Lemma 6. maxX ∥ÃX(XTX)−1XT∥F =
√
Σk

i=1σ
2
i , where σi is the ith largest singu-

lar value of Ã. The maximum is achieved when the columns of X spans the leading
k dimensional eigenspace of ÃT Ã.

Proof. Note thatX(XTX)−1XT is invariant under linear transformations of columns.
So without loss of generality, we assume that XTX = I, then

∥ÃX(XTX)−1XT∥2F = ∥ÃXXT∥2F
= Tr(XXT ÃT ÃXXT )

= Tr(XT ÃT ÃXXTX)

= Tr(XT ÃT ÃX)

(4.19)

According to (2.12), this is maximized when X consists of the first k eigenvectors of
ÃT Ã and the maximal value is Σk

i=1λi, where λi is the ith eigenvalue of ÃT Ã
Therefore maxX ∥ÃX(XTX)−1XT∥F =

√
Σk

i=1λi =
√

Σk
i=1σ

2
i

The lemma says that if ϵA ≥
√

Σk
i=1σ

2
i , we cannot find any X such that the

objective value of (4.6) is nonzero. In other words, when ϵA is too large compared
to Ã, it makes no sense to model the problem as worst-case robust optimization. In
the following study, we assume that ϵA <

√
Σk

i=1σ
2
i .
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Now the problem becomes

max
X

σ(X)2∥ÃX(σ(X)I +XTX)−1∥2F
s.t. XTBX = I

(4.20)

where σ(X) is an implicit function defined by ∥ÃX(σI +XTX)−1XT∥F = ϵA

This is a highly non-convex optimization problem. We will solve for this problem
in the next section.

4.2 Optimality Condition

In this section, we derive the optimality conditions for the two non-convex optimiza-
tion problems mentioned in the previous section.

Formulation 1

Consider the optimization problem:

max
X

Tr(XTAX)− ϵA∥XTX∥F

s.t. XTBX = I
(4.21)

The Lagrangian is

L(X,Λ) = Tr(XTAX)− ϵA∥XTX∥F − Tr(ΛT (XTBX − I)) (4.22)

The optimality condition ∇L(X,Λ) = 0 isAX − ϵA
XXTX

∥XXT∥F
= BXΛ

XTBX = I

(4.23)

To the best of our knowledge, this is an unsolved non-linear optimization problem
that requires further study. In this paper, we stop here for this specific formulation
and turn to the other formulation which we successfully found a way to solve.
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Formulation 2

Consider the optimization problem:

max
X

σ(X)2∥ÃX(σ(X)I +XTX)−1∥2F
s.t. XTBX = I

(4.24)

where σ(X) is an implicit function defined by ∥ÃX(σI +XTX)−1XT∥F = ϵA
It would be difficult to derive the optimality condition for X directly from this
representation of the objective function. Let’s consider another representation of the
objective function.

max
X

Tr(XT (Ã+D(X))T (Ã+D(X))X)

s.t. XTBX = I
(4.25)

whereD(X) is an implicit matrix function defined byD(X) = −ÃX(σI+XTX)−1XT

and ∥ÃX(σI +XTX)−1XT∥F = ϵA
The Lagrangian is

L(X,Λ) = Tr(XT (Ã+D(X))T (Ã+D(X))X)− Tr(ΛT (XTBX − I)) (4.26)

Let F (X) = G(X,D(X)) = Tr(XT (Ã+D(X))T (Ã+D(X))X), then

dF (X)

dX
=

∂G(X,D(X))

∂X
+

∂G(X,D(X))

∂D(X)
× dD(X)

dX

= 2(Ã+D(X))T (Ã+D(X))X + 0× dD(X)

dX
= 2(Ã+D(X))T (Ã+D(X))X

(4.27)

where × denotes tensor multiplication
Then the optimality condition ∇L(X,Λ) = 0 is

(Ã− ÃX(σI +XTX)−1XT )T (Ã− ÃX(σI +XTX)−1XT )X = BXΛ

∥ÃX(σI +XTX)−1XT∥F = ϵA

XTBX = I

(4.28)

This is a non-linear system of equations of (σ,X). There might be multiple solutions
and we are looking for the solution (σ∗, X∗) such that Tr(Λ) is maximized.
Before diving into algorithms that solve (4.28), we need to simplify the first equation
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of (4.10).
Using the identity of

X(σI +XTX)−1 = (σI +XXT )−1X (4.29)

and
I − (σI +XTX)−1XTX = σ(σI +XTX)−1 (4.30)

We have

(Ã− ÃX(σI +XTX)−1XT )T (Ã− ÃX(σI +XTX)−1XT )X

=(I −X(σI +XTX)−1XT )T ÃT (ÃX − ÃX(σI +XTX)−1XTX)

=(I −X(σI +XTX)−1XT )T ÃT ÃX(I − (σI +XTX)−1XTX)

=(I − (σI +XXT )−1XXT )T ÃT ÃX(I − (σI +XTX)−1XTX)

=σ(σI +XXT )−1ÃT ÃXσ(σI +XTX)−1

=σ2(σI +XXT )−1ÃT ÃX(σI +XTX)−1

(4.31)

Then the first equation of (4.28) is equivalent to

σ2(σI +XXT )−1ÃT ÃX(σI +XTX)−1 = BXΛ (4.32)

or
σ2ÃT ÃX = (σI +XXT )BXΛ(σI +XTX) (4.33)

Since XTBX = I, this can be further simplified to

σ2ÃT ÃX = (σB + I)XΛXT (σB + I)X (4.34)

Now the optimality condition 4.28 becomes
σ2ÃT ÃX − (σB + I)XΛXT (σB + I)X = 0

∥ÃX(σI +XTX)−1XT∥F = ϵA

XTBX = I

(4.35)

4.3 The Subproblem

In this section, we propose an algorithm to solve for (4.35). We first solve the sub-
problem where σ is given, and then analyze the main problem of solving for (4.35).
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The equation (4.35) is highly non-convex and difficult to solve directly. However,
once σ is fixed, solving for X(σ) based on the following turns out to be a tractable
problem of numerical linear algebra.{

σ2ÃT ÃX − (σB + I)XΛXT (σB + I)X = 0

XTBX = I
(4.36)

Let B̃T B̃ = B and Y = B̃X, we have(ÃB̃−1)T (ÃB̃−1)Y − (I +
1

σ
B̃−T B̃−1)Y ΛY T (I +

1

σ
B̃−T B̃−1)Y = 0

Y TY = I
(4.37)

Let Ω(Y ) = ΛY T (I + 1
σ
B̃−T B̃−1)Y , we have(ÃB̃−1)T (ÃB̃−1)Y − (I +

1

σ
B̃−T B̃−1)Y Ω(Y ) = 0

Y TY = I
(4.38)

This is a non-linear system of equations of Y . However, the first equation is very
similar to the generalized eigenvalue problem in the sense that the column spaces of
Y is restricted to the eigensubspace of the generalized eigenvalue problem

(ÃB̃−1)T (ÃB̃−1)Y = (I +
1

σ
B̃−T B̃−1)Y (4.39)

This is because Ω(Y ) is multiplied by the right hand side of (I + 1
σ
B̃−T B̃−1)Y and

would not change the column space spanned by (I + 1
σ
B̃−T B̃−1)Y , which can be

viewed as a ’scalar’ matrix.

To describe the feasible linear subspaces Y that satisfies

(ÃB̃−1)T (ÃB̃−1)Y − (I +
1

σ
B̃−T B̃−1)Y Ω(Y ) = 0, (4.40)

we can simultaneously diagonalize the two matrices:

RT (ÃB̃−1)T (ÃB̃−1)R =

c21
. . .

c2n

, RT (I + 1
σ
B̃−T B̃−1)R =

s21
. . .

s2n
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where R = (r1 · · · rn) is an invertible matrix, and we can scale c2i + s2i = 1 to
impose uniqueness up to diagonal permutation, which is a version of Cosine-sine(CS)
decomposition.
Substituting (ÃB̃−1)T (ÃB̃−1) and (I + 1

σ
B̃−T B̃−1), we have

R−TC2R−1Y −R−TS2R−1Y Ω(Y ) = 0 (4.41)

Simplifying the equation, we have

(S−2C2)(R−1Y ) = (R−1Y )Ω(Y ) (4.42)

Since Ω(Y ) would not change the column spaces spanned by (R−1Y ), (R−1Y ) must
be an eigenspace of (S−2C2), which is a diagonal matrix. While an eigenspace of a
diagonal matrix consists of ei = (0, . . . , 1, . . . , 0)T , this means that there are at most
k non-zero rows in (R−1Y ). In other words, any feasible linear subspace Y consists
of r columns of R. Since the decomposition is unique up to diagonal permutation,
without loss of generality, we can write:

Y = R

(
U1

0

)
=

(
R1 R2

)(U1

0

)
= R1U1 (4.43)

where U1 is a k × k square matrix.

So in general, we have

(
n
k

)
solutions. One benefit of using such a decomposition

is that we can now write Tr(Λ) and ∥ÃX(σI +XTX)−1XT∥F as a function of C, S
and R

Lemma 7. Tr(Λ) = Σk
i=1

c2i
s4i
∥ri∥2

Proof. According to (4.42) and (4.43), we have(
S−2
1 C2

1 0
0 S−2

2 C2
2

)(
U1

0

)
=

(
U1

0

)
Ω (4.44)

Therefore
Ω = U−1

1 S−2
1 C2

1U1 (4.45)
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On the other hand,

Ω = ΛY T (I +
1

σ
B̃−T B̃−1)Y

= Λ(R

(
U1

0

)
)T (R−TS2R−1)(R

(
U1

0

)
)

= Λ
(
UT
1 0

)(S2
1 0
0 S2

2

)(
U1

0

)
= ΛUT

1 S
2
1U1

(4.46)

Combing (4.45) and (4.46), we have

Λ = U−1
1 S−2

1 C2
1U1(U

T
1 S

2
1U1)

−1

= U−1
1 S−2

1 C2
1U1U

−1
1 S−2

1 U−T
1

= U−1
1 S−4

1 C2
1U

−T
1

(4.47)

Since UT
1 R

T
1R1U1 = (R1U1)

T (R1U1) = Y TY = I, we have

U−T
1 U−1

1 = RT
1R1 (4.48)

Therefore

Tr(Λ) = Tr(U−1
1 S−4

1 C2
1U

−T
1 )

= Tr(S−4
1 C2

1U
−T
1 U−1

1 )

= Tr(S−4
1 C2

1R
T
1R1)

= Tr(R1S
−4
1 C2

1R
T
1 )

= Σk
i=1

c2i
s4i
∥ri∥2

(4.49)

Lemma 8. ∥ÃX(σI +XTX)−1XT∥2F = 1
σ
(Σk

i=1
c2i
s2i
− Σk

i=1
c2i
s4i
∥ri∥22)

Proof.

∥ÃX(σI +XTX)−1XT∥2F
=Tr((ÃX(σI +XTX)−1XT )T ÃX(σI +XTX)−1XT )

=Tr(X(σI +XTX)−1XT ÃT ÃX(σI +XTX)−1XT )

=Tr((σI +XTX)−1XT ÃT ÃX(σI +XTX)−1XTX)

=Tr((σI +XTX)−1XT ÃT ÃX(σI +XTX)−1(σI +XTX − σI))

=Tr((σI +XTX)−1XT ÃT ÃX)− σTr((σI +XTX)−1XT ÃT ÃX(σI +XTX)−1)

(4.50)
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For the second term,

σTr((σI +XTX)−1XT ÃT ÃX(σI +XTX)−1)

=σ∥ÃX(σI +XTX)−1∥2F

=
1

σ
(σ2∥ÃX(σI +XTX)−1∥2F )

=
1

σ
Tr(Λ)

=
1

σ
(Σk

i=1

c2i
s4i
∥ri∥2)

(4.51)

For the first term,

Tr((σI +XTX)−1XT ÃT ÃX)

=Tr((σI + Y T B̃−T B̃−1Y )−1Y T B̃−T ÃT ÃB̃−1Y )

=Tr((σY TY + Y T B̃−T B̃−1Y )−1(R

(
U1

0

)
)T (ÃB̃−1)T (ÃB̃−1)R

(
U1

0

)
)

=Tr((Y T (σI + B̃−T B̃−1)Y )−1
(
UT
1 0

)
(RT (ÃB̃−1)T (ÃB̃−1)R)

(
U1

0

)
)

=Tr(((R

(
U1

0

)
)T (σI + B̃−T B̃−1)R

(
U1

0

)
)−1

(
UT
1 0

)(C2
1 0
0 C2

2

)(
U1

0

)
)

=
1

σ
Tr((

(
UT
1 0

)
(RT (I +

1

σ
G−T B̃−1)R)

(
U1

0

)
)−1UT

1 C
2
1U1)

=
1

σ
Tr((

(
UT
1 0

)(S2
1 0
0 S2

2

)(
U1

0

)
)−1UT

1 C
2
1U1)

=
1

σ
Tr((UT

1 S
2
1U1)

−1UT
1 C

2
1U1)

=
1

σ
Tr(U−1

1 S−2
1 U−T

1 UT
1 C

2
1U1)

=
1

σ
Tr(U−1

1 S−2
1 C2

1U1)

=
1

σ
Tr(S−2

1 C2
1U1U

−1
1 )

=
1

σ
Tr(S−2

1 C2
1)

=
1

σ
(Σk

i=1

c2i
s2i
)

(4.52)
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Combining (4.51) and (4.52), we have

∥ÃX(σI +XTX)−1XT∥2F =
1

σ
(Σk

i=1

c2i
s2i

− Σk
i=1

c2i
s4i
∥ri∥22) (4.53)

From these two lemma, we not only represent Tr(Λ) and ∥ÃX(σI+XTX)−1XT∥F
as a function of C, S and R, but also understand that these two quantities are
separable among n indices. Furthurmore, they have some nice properties under
specific conditions.

Lemma 9. When ÃT ÃB = BÃT Ã, fi(σ) =
c2i (σ)

s4i (σ)
∥ri(σ)∥2 is an increasing function

Proof. When ÃT ÃB = BÃT Ã,

(AB̃−1)T (ÃB̃−1)(B̃−T B̃−1) = B̃−TATAB̃−1B̃−T B̃−1

= B̃−T ÃT ÃB−1B̃−1

= B̃−TB−1ÃT ÃB̃−1

= B̃−T B̃−1B̃−T ÃT ÃB̃−1

= B̃−T B̃−1(ÃB̃−1)T (AB̃−1)

= (B̃−T B̃−1)(ÃB̃−1)T (AB̃−1)

(4.54)

So (ÃB̃−1)T (ÃB̃−1) and B̃−T B̃−1 commute, then there exists an orthogonal matrix
P such that

P T (ÃB̃−1)T (ÃB̃−1)P =

a21
. . .

a2n

, P T (B̃−T B̃−1)P =

b21
. . .

b2n


Therefore the CS decomposition has analytic solution of σ:

RT (ÃB̃−1)T (ÃB̃−1)R =

c21
. . .

c2n

, RT (I + 1
σ
B̃−T B̃−1)R =

s21
. . .

s2n


where c2i = a2iw

2
i , s

2
i = (1 +

b2i
σ
)w2

i , wi =
1√

a2i+1+
b2
i
σ

, R = PW , W = diag(wi)

Then we can write fi(σ) as an explicit function of σ:

fi(σ) =
c2i (σ)

s4i (σ)
∥ri(σ)∥2 =

a2iw
2
i

(1 +
b2i
σ
)2w4

i

w2
i =

a2i

(1 +
b2i
σ
)2

(4.55)
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This is an increasing function of σ

Lemma 10. When ÃT ÃB = BÃT Ã, gi(σ) =
1
σ
(
c2i (σ)

s2i (σ)
− c2i (σ)

s4i (σ)
∥ri(σ)∥2) is a decreasing

function

Proof. According to (4.54), when ÃT ÃB = BÃT Ã, (ÃB̃−1)T (ÃB̃−1) and B̃−T B̃−1

commute, and then the CS decomposition has analytic solution of σ:

RT (ÃB̃−1)T (ÃB̃−1)R =

c21
. . .

c2n

, RT (I + 1
σ
B̃−T B̃−1)R =

s21
. . .

s2n


where c2i = a2iw

2
i , s

2
i = (1 +

b2i
σ
)w2

i , wi =
1√

a2i+1+
b2
i
σ

, R = PW , W = diag(wi)

Then we can write gi(σ) as an explicit function of σ:

gi(σ) =
1

σ
(
c2i (σ)

s2i (σ)
− c2i (σ)

s4i (σ)
∥ri(σ)∥2)

=
1

σ
(

a2iw
2
i

(1 +
b2i
σ
)w2

i

− a2iw
2
i

(1 +
b2i
σ
)2w4

i

w2
i )

=
1

σ
(

a2i

(1 +
b2i
σ
)
− a2i

(1 +
b2i
σ
)2
)

=
1

σ2

a2i b
2
i

(1 +
b2i
σ
)2

=
a2i b

2
i

(σ + b2i )
2

(4.56)

This is a decreasing function of σ

Corollary 1. When ÃT ÃB = BÃT Ã, among all

(
n
k

)
solutions to (4.36), the jth

largest ∥ÃX(σ)(σI+X(σ)TX(σ))−1X(σ)T∥2F is a decreasing function over σ for any
j

This corollary says that if we view all solutions given σ as

(
n
k

)
solution paths,

then along these paths, ∥ÃX(σ)(σI +X(σ)TX(σ))−1X(σ)T∥2F is a deceasing vector
with respect to σ. This is useful when we use bisection to find the root ∥ÃX(σ)(σI+
X(σ)TX(σ))−1X(σ)T∥2F = ϵA in the next section. Before diving into the next section,
we conjecture that these nice properties hold for general Ã and B:
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Conjecture 1. fi(σ) =
c2i (σ)

s4i (σ)
∥ri(σ)∥2 is an increasing function

Conjecture 2. gi(σ) =
1
σ
(
c2i (σ)

s2i (σ)
− c2i (σ)

s4i (σ)
∥ri(σ)∥2) is a decreasing function

4.4 The Brute-force Algorithm

Now let’s go back to the optimality condition (4.35):
σ2ÃT ÃX − (σB + I)XΛXT (σB + I)X = 0

∥ÃX(σI +XTX)−1XT∥F = ϵA

XTBX = I

In general, there might be multiple solutions and we are looking for the solution
(σ∗, X∗) such that Tr(Λ) is maximized. Given σ, we’ve already seen that there are

exactly

(
n
k

)
solutions to the following sub problem:

{
σ2ÃT ÃX − (σB + I)XΛXT (σB + I)X = 0

XTBX = I
(4.57)

Under the condition that ÃT Ã and B commute with each other, or under the con-
jectures 1,2, any of these solutions has the property that ∥ÃX(σI +XTX)−1XT∥F
is decreasing over σ. This means that there would be at most

(
n
k

)
solutions to

the optimality condition (4.35). This motivates the following bisection algorithm for
finding all of the roots of (4.35) and thus the optimal solution to the problem (4.6):

Step 1: Given σ,j, solve for X with jth largest ∥ÃX(σI +XTX)−1XT∥F

Step 2: If ∥ÃX(σI +XTX)−1XT∥F > ϵA, set σnew > σ, otherwise, set σnew < σ

Step 3: Iterate until the root X∗
j is found and record Tr(Λ∗

j)

Step 4: Enumerate j and find the maximal Tr(Λ∗
j)

This is an algorithm that tries to solve for all stationary points, i.e. solutions to
the necessary optimality conditions (4.35), and find the one with largest objective.
The time complexity is polynomial in n but exponential in k, which is O(n2k log(1

ϵ
)).
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This is not practical when n or k is large. Whether there exists an algorithm that
has substantially lower time complexity remains an open question. Here we proposed
a heuristic algorithm that performs reasonably well in practice.

4.5 The Heuristic Algorithm

We propose to solve for the solution (σ̃, X̃) such that σ is maximized. This way,
instead of checking every single path while iterating over σ, we only need to check
the specific path with maximal ∥ÃX(σI+XTX)−1XT∥F . The algorithm to find the
solution (σ̃, X̃) such that σ is maximized is as follows:

Step 1: Given σ, solve for X with the largest ∥ÃX(σI +XTX)−1XT∥F

Step 2: If ∥ÃX(σI +XTX)−1XT∥F > ϵA, set σnew > σ, otherwise, set σnew < σ

Step 3: Iterate until the stop criterion is satisfied

Step 1 is summarized in algorithm 3. In step 1, we solve for the CS decomposition

(4.40) given σ. There would be

(
n
k

)
solutions but we would be only interested in

whether there are any solution X such that ∥ÃX(σI + XTX)−1XT∥F > ϵA. This
can be done in O(n) time since ∥ÃX(σI + XTX)−1XT∥F is separable among in-

dices, as discussed in the previous section. Consider gi(σ) =
1
σ
(
c2i (σ)

s2i (σ)
− c2i (σ)

s4i (σ)
∥ri(σ)∥2)

and then the indices corresponding to the largest k values would give us the column
space of X, which is exactly the X with the largest ∥ÃX(σI + XTX)−1XT∥F . If
∥ÃX(σI + XTX)−1XT∥F > ϵA, the equation (4.35) would have another solution
pair (σ̂, X̂) such that σ̂ > σ, and this means that the maximal σ̃ among all fea-
sible solutions would be greater than or equal to σ. Therefore in step 2, we test
another σnew that is larger than σ. On the other hand, if none of the solution satis-
fies ∥ÃX(σI +XTX)−1XT∥F > ϵA, this means that that the maximal σ̃ among all
feasible solutions would be less than σ. Therefore in step 2, we test another σnew

that is less than σ. This way, after every iteration, σnew gets closer and closer to
the optimal value σ̃ and we can use some stopping criteria to terminate the iteration.

There are many ways to update σnew. Here we proposed the bisection algorithm
4 to update σnew.
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Algorithm 3 Path Selection

Input: matrix Ã, B̃, param ϵA, σ, k
c, s, R = decomposition((ÃB̃−1)T (ÃB̃−1), I + 1

σ
B̃−T B̃−1)

a = argsort(
c2i (σ)

s2i (σ)
− c2i (σ)

s4i (σ)
∥ri(σ)∥2)

idx = a[: k]
Y = R[:, idx]
Q, = QR(Y )
X = B−1Y
Output: matrix X

Algorithm 4 Bisection

Input: matrix Ã, B, param ϵA, ub
lb, ub, i = 0, ub, 0
while i < MAXITER:
σ = (lb+ ub)/2
X = Path Selection(Ã,

√
B, σ)

if ∥ÃX(σI +XTX)−1XT∥F > ϵA
lb = σ

else:
ub = σ

i = i+ 1
σ∗ = (lb+ ub)/2
X∗ = Path Selection(Ã,

√
B, σ)

Output: optimal solution X∗

4.6 Properties

In this section, we discuss the properties of our proposed heuristic algorithm 4.

First, the algorithm 4 always converges to a stationary point (σ,X), i.e. one
solution to the optimality condition (4.35)

Theorem 3. Let σj be the output of the jth step from the bisection algorithm 4, then
there exist σ̃ such that σj → σ̃ with linear rate of convergence.

Proof. The algorithm 4 is in fact a bisection algorithm finding the root σ̃ of:

g(σ) = ∥ÃX(σ)(σI +X(σ)TX(σ))−1X(σ)T∥2F − ϵ2A = 0 (4.58)
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where X(σ) is determined by the algorithm 3.
According to lemma 8, we know that

g(σ) = max
I

Σi∈I
1

σ
(
c2i
s2i

− c2i
s4i
∥ri∥22) (4.59)

where the index set I consists of all possible k indices
So g(σ) is a continuous function of σ since ci, si, ri from CS decomposition are all
continuous function of σ.
Also, since XTBX = I, elements of X are upper bounded, therefore

lim
σ→∞

g(σ) = lim
σ→∞

∥ÃX(σ)(σI +X(σ)TX(σ))−1X(σ)T∥2F − ϵ2A = −ϵ2A < 0 (4.60)

Also, we have

lim
σ→0

g(σ) = lim
σ→0

∥ÃX(σ)(σI+X(σ)TX(σ))−1X(σ)T∥2F−ϵ2A = Σk
i=1σ

2
i −ϵ2A > 0 (4.61)

where σi is the i
th largest singular value of Ã. Note that the assumption Σk

i=1σ
2
i > ϵ2A

is discussed in 6.
The previous two limits make sure that the bisection works and has linear rate of
convergence.

The next question is whether this is the optimal solution to the original problem
(4.6). It turns out that in general, the answer is no. This is why this is only a
heuristic algorithm. However, under certain conditions, this solution is the solution
(σ̃, X̃) such that σ is maximized.

Lemma 11. If ÃT ÃB = BÃT Ã, or conjecture 2 holds, then (σ̃, X̃) obtained from
the algorithm 4 is the solution to (4.35) such that σ is maximized.

Proof. According to lemma 10 and conjecture 2, in this case,

g(σ) = ∥ÃX(σ)(σI +X(σ)TX(σ))−1X(σ)T∥2F − ϵ2A (4.62)

is decreasing. Suppose there exist another solution to (4.35) (σ̂, X̂) such that σ̂ > σ̃,
then

0 = g(σ̃) > g(σ̂) > ∥ÃX̂(σI + X̂T X̂)−1X̂T∥2F − ϵ2A > 0 (4.63)

which is a contradiction. Therefore, (σ̃, X̂) is the solution to (4.35) such that σ is
maximized.
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The benefit of obtaining the maximal σ solution is that under certain conditions,
we can easily have an upper bound on the optimal value to (4.6). Given σ̃, we solve
for (4.36) and choose X such that Tr(Λ) is maximized. We will show in Theorem
4 that this would be an upper bound of the optimal value of the original problem
(4.6). To be more specific, we define the following function:

h(σ) = max
I

Σi∈I
c2i (σ)

s4i (σ)
∥ri(σ)∥2 (4.64)

where the index set I consists of all possible k indices

Theorem 4. Let (σ∗, X∗) be the optimal solution of (4.6), f(X∗) be the optimal
value, and (σ̃, X̃) be the solution to (4.35) such that σ is maximized. If ÃT ÃB =
BÃT Ã, or conjecture 1 holds, then f(X̃) ≤ f(X∗) ≤ h(σ̃)

Proof. Since X̃ is a valid solution to the optimality condition (4.35) and thus a valid
solution to the original problem (4.6), the function value f(X) serves as a natural
lower bound of the optimal value f(X∗).
On the other hand, let I∗ be the index set chosen by the optimal solution X∗ at σ∗,

h(σ̃) ≥ Σi∈I∗
c2i (σ̃)

s4i (σ̃)
∥ri(σ̃)∥2 ≥ Σi∈I∗

c2i (σ
∗)

s4i (σ
∗)
∥ri(σ∗∥2 = f(X∗) (4.65)

The first inequality comes from the definition of h, and the second inequality comes
from lemma 9 and the fact that σ̃ ≥ σ.

This theorem suggests an improved version of algorithm 4:

Step 1: Given σ, solve for X with the largest ∥ÃX(σI +XTX)−1XT∥F

Step 2: If ∥ÃX(σI +XTX)−1XT∥F > ϵA, set σnew > σ, otherwise, set σnew < σ

Step 3: Iterate until the stop criterion is satisfied and yield the solution pair (σ̃, X̃)

Step 4: Calculate h(σ̃) and yield the interval for optimal value [f(X̃), h(σ̃)]

This improved version of the algorithm tells the user to what extend the solution
is close the optimal. Surprisingly, in practice, f(X̃) = h(σ̃) for most of the time
when Ã and B are set to be random Gaussian matrices. This means under certain
conditions, our proposed algorithm can usually find the global optimal solution and
we believe that this is a practical heuristic algorithm.
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Chapter 5

Robust Adaptive Beamforming

5.1 Introduction

It is widely recognized that adaptive beamforming methods’ performance signifi-
cantly declines when the desired signal is included in the training data, even with
minor discrepancies in the knowledge of the desired signal covariance matrix. Such
mismatches between the assumed and actual source covariance matrices can arise
due to factors like antenna element displacement, changing environments, or imper-
fections in the propagation medium, among others. The primary objective of any
robust adaptive beamforming (RAB) approach is to ensure resilience against these
types of mismatches.

The majority of RAB methods have been designed for point source signals when
the rank of the desired signal covariance matrix is equal to one. In many practical
scenarios, such as incoherently scattered signal sources or sources with fluctuating
(randomly distorted) wave-fronts, the source covariance matrix’s rank is greater than
one. While the RAB methods in [1] offer excellent robustness against mismatches
based on the point source assumption, they are not ideally suited for cases when the
rank of the desired signal covariance matrix exceeds one.

The general-rank signal model RAB, which explicitly models error mismatches,
was developed in [41] using the worst-case performance optimization principle. Al-
though the RAB in [41] has a straightforward closed-form solution, it is excessively
conservative, as the worst-case correlation matrix for the desired signal could be in-
definite or even negative definite. Consequently, less conservative approaches were
introduced in [15],[42], incorporating an additional positive semi-definite (PSD) con-
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straint on the worst-case signal covariance matrix. The main drawback of the RAB
methods in [15],[42] is that they only provide a suboptimal solution, potentially leav-
ing a significant gap to the global optimal solution. For instance, the RAB in [15]
iteratively finds a suboptimal solution, but there is no guarantee of convergence.
A closed-form approximate suboptimal solution is proposed in [42]; however, this
solution might also be far from the global optimal one. These limitations prompt
the exploration of new, efficient strategies to solve the aforementioned non-convex
problem in a globally optimal manner.

In this chapter, we will first describe the system model in detail in section 2, and
then formulate the robust optimization problem in section 3. Numerical experiments
are shown in section 4. Finally, we explore the potential use of our general-rank
algorithm in the rarely explored field of multi-rank beamforming in section 5.

5.2 System Model

At a given time instant t, the linear antenna array, consisting of M omni-directional
antenna elements, receives a narrow band signal. This can be described as:

x(t) = s(t) + i(t) + n(t) (5.1)

where s(t), i(t), and n(t) are the M×1 vectors of the desired signal, interference, and
noise, respectively. They are assumed to be statistically independent. The output of
the beamformer at time t is:

y(t) = wHx(t) (5.2)

where w is the M × 1 complex beamforming vector of the antenna array. The chal-
lenge of beamforming can be characterized as determining the optimal beamforming
vector w, which enhances the beamformer output’s signal-to-interference-plus-noise
ratio (SINR) to its maximum potential. This is expressed as:

SINR =
wHRsw

wHRi+nw
(5.3)

where Rs and Ri+n are defined as:

Rs = E[s(t)sH(t)] (5.4)

Ri+n = E[(i(t) + n(t)(i(t) + n(t))H ] (5.5)
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Based on the characteristics of the desired signal source, its corresponding covariance
matrix can possess a varying rank, that is, 1 ≤ rank(Rs) ≤ M . In numerous practi-
cal applications, such as scenarios involving incoherently scattered signal sources or
signals with randomly fluctuating wave-fronts, the desired signal covariance matrix’s
rank exceeds one. The unique instance where the rank is equal to one occurs in the
case of a point source.

5.3 Problem Formulation

Adaptive beamforming solves the following optimization problem:

max
w

wHRsw

wHRi+nw
(5.6)

or

max
w

wHRsw

wHRw
(5.7)

where w is the vector of beamformer weights, R = Rs + Ri+n is the mixed covari-
ance matrix, and Rs and Ri+n are the signal and interference-plus-noise covariance
matrices respectively. This is a generalized eigenvalue problem and can be solved
analytically. However, in practical scenarios, neither Rs or Ri+n is exactly known.
To provide robustness against matrix mismatches ∆1 and ∆2 in the two matrices,
researchers proposed to solve the following worst case robust optimization problem:

max
w

min
||∆1||≤η,||∆2||≤ϵ

||(Q+∆1)w||22
wH(R +∆2)w

(5.8)

where Rs = QHQ
This is equivalent of solving for the following optimization problem:

max
w

(||Qw||2 − η||w||2)2

wH(R + ϵI)w
(5.9)

This problem is non-convex and researchers have been developing algorithms for
solving convex approximations to this problem. However, we can solve this non con-
vex optimization problem directly without any convex approximation.

In the context of robust adaptive beamforming, the signal covariance matrix Rs

depends on the signal angular power density [30]:

Rs = σ2
s

∫ π/2

−π/2

ξ(θ)a(θ)aH(θ)dθ (5.10)
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where σs is the desired signal power, ξ(θ) is the normalized signal angular power
density function, and a(θ) is the steering vector towards direction θ.

In practice, σs is a scalar that has no impact on the optimal w, and a(θ) is an
exactly known vector function that only depends on the set up of antennas. For
example, for a uniform linear array of N antennas,

ak(θ) = eiπk sin(θ), k = 1, 2, . . . , N (5.11)

However, the normalized angular power density is unknown, and people have to pre-
sume such a function based on their prior information about the source of signal and
the environment of transmission.

As for the denominator, we have an empirical covariance matrix R̂ and this is
used to approximate the mixed covariance matrix R ≈ R̂.

5.4 Numerical Simulations

In our experiment, we consider a uniform linear array (ULA) of 10 omni-directional
antenna elements with the inter-element spacing of half wave length. The power of
noise is defined to be 0 dB and the interference-to-noise ratio (INR) is set to be 20
dB. The interferer is locally incoherently scattered with uniform angle power density
with central angle of −30◦ and angular spread of 10◦. The desired signal is locally
incoherently scattered with Gaussian angle power density with central angle of 30◦

and angular spread of 4◦. This is not exactly known and there are four main types
of data mismatch. We might overestimate or underestimate the central angle or the
angular spread. Therefore here we consider four presumed signal angle power density:

(a) Gaussian angle power density with central angle of 32◦ and angular spread of
5◦.

(b) Gaussian angle power density with central angle of 32◦ and angular spread of
3◦.

(c) Gaussian angle power density with central angle of 28◦ and angular spread of
5◦.

(d) Gaussian angle power density with central angle of 28◦ and angular spread of
3◦.
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Furthermore, we assume that the mismatch distance or upper bound is roughly

known and the mismatch parameters are set to be η =
√

||R̃s −Rs|| and ϵ = ||R̂−R||.

We compared our proposed method with three other methods and the statistically
optimal method:

Optimal This solves (5.7)

max
w ̸=0

wHRsw

wHRw

with exact Rs and R, which means that there is no data mismatch. Note that this
is not practical and is only used for reference.

MVDR Vanilla MVDR directly optimizes (5.7)

max
w ̸=0

wHR̂sw

wHR̂w

with presumed R̂s and empirical R̂.

Robust MVDR without PSD constraint Robust adaptive beamforming with-
out the positive semi-definite constraint [41] solves (3.2):

max
w ̸=0

min
∥∆A∥≤ϵA,∥∆B∥≤ϵB

wH(R̂s +∆A)w

wH(R̂ +∆B)w

Approximate Robust MVDR with PSD constraint Robust adaptive beam-
forming with the positive semi-definite constraint [42] approximates (5.8) with closed
form solution:

wopt
2 = P((R̂ + ϵBI)

−1(R̂s − 2

√
λmax(R̂s)ηI + ϵ2AI))

The performance of all of these methods in the four cases (a),(b),(c), and (d) are
shown in figures 5.1,5.2,5.3, and 5.4, respectively. The signal-to-interference-plus-
noise-ratio (SINR) are compared versus different scale of signal-to-noise-ratio (SNR).

The result shows that in case (a) and (c), our proposed method and the method of
[42] are better among the three methods. In case (b) and (d), our proposed method
and the method of [41] are better among the three. Therefore, our proposed method
performs constantly well in the considered types of data uncertainty.



CHAPTER 5. ROBUST ADAPTIVE BEAMFORMING 54

Figure 5.1: Output SINR versus different SNR. Case (a): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 32◦ and angular spread of 5◦.

5.5 Multi-rank Beamforming

In our experiment, we consider a uniform linear array (ULA) of 10 omni-directional
antenna elements with the inter-element spacing of half wave length. The power of
noise is defined to be 0 dB and the interference-to-noise ratio (INR) is set to be 20
dB. The interferer is locally incoherently scattered with uniform angle power density
with central angle of −30◦ and angular spread of 10◦. The desired signal is assumed
to be consist of two parts. Each part of the signal is locally incoherently scattered
with Gaussian angle power density. The first part is with central angle of 30◦ and
angular spread of 4◦ and the second part is with central angle of 60◦ and angular
spread of 4◦. In a word, the angular power density of the desired signal is assumed
to follow a Gaussian mixture model. The two distributions are not exactly known
and we assume that presumed signal of the second part is with central angle of 57◦

and angular spread of 3◦, and we consider four types of data mismatch of the first
part of the signal:

(a) Gaussian angle power density with central angle of 32◦ and angular spread of
5◦.

(b) Gaussian angle power density with central angle of 32◦ and angular spread of
3◦.
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Figure 5.2: Output SINR versus different SNR. Case (b): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 32◦ and angular spread of 3◦.

(c) Gaussian angle power density with central angle of 28◦ and angular spread of
5◦.

(d) Gaussian angle power density with central angle of 28◦ and angular spread of
3◦.

Furthermore, we assume that the mismatch distance or upper bound is roughly

known and the mismatch parameters are set to be η =
√
||R̃s −Rs|| and ϵ = ||R̂−R||.

To the best of our knowledge, there is no competing algorithms for the problem
at hand. Therefore we only compared our proposed method with the vanilla MVDR,
which optimizes (5.7) directly with presumed R̂s and empirical R̂.

The performance of all of these methods in the four cases (a),(b),(c), and (d) are
shown in Figures 5.5,5.6,5.7, and 5.8, respectively. The signal-to-interference-plus-
noise-ratio (SINR) are compared versus different scale of signal-to-noise-ratio (SNR).

The result shows that our proposed method performs constantly well in the con-
sidered types of data uncertainty.
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Figure 5.3: Output SINR versus different SNR. Case (c): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 28◦ and angular spread of 5◦.

Figure 5.4: Output SINR versus different SNR. Case (d): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 28◦ and angular spread of 3◦.
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Figure 5.5: Output SINR versus different SNR. Case (a): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 32◦ and angular spread of 5◦.

Figure 5.6: Output SINR versus different SNR. Case (b): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 32◦ and angular spread of 3◦.
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Figure 5.7: Output SINR versus different SNR. Case (c): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 28◦ and angular spread of 5◦.

Figure 5.8: Output SINR versus different SNR. Case (d): the presumed signal covariance
matrix is Gaussian angle power density with central angle of 28◦ and angular spread of 3◦.
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Chapter 6

Semi-supervised Linear
Discriminant Analysis

6.1 Introduction

Dimension reduction in machine learning is crucial for several reasons, including
noise reduction, computational efficiency, visualization, overfitting prevention, and
improved interpretability. By simplifying high-dimensional data, we can focus on
essential features, save computational resources, and better visualize patterns and
relationships. Moreover, reducing dimensions helps prevent overfitting by creating
simpler models and enhances the interpretability of the results, making it easier to
understand and explain the model’s behavior. Overall, dimension reduction is an
indispensable tool for optimizing the performance and efficiency of machine learn-
ing models. Notable examples of dimension reduction techniques include Principle
commponent analysis(PCA) and Linear discriminant analysis(LDA).

LDA is a supervised method. It looks for directions where data points from differ-
ent groups are far apart while keeping data points in the same group close together.
When we have label information, like in classification tasks, LDA can perform much
better than PCA[36]. However, when there aren’t enough training samples compared
to the number of dimensions, we might not accurately estimate each group’s mean
vector and covariance matrix. In this situation, we can’t guarantee good results on
test samples. A possible solution is learning from both labeled and unlabeled data,
which is also called semi-supervised learning. This approach makes sense because,
in real life, we often have only some labeled data and a large amount of unlabeled
data.
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In this chapter, we aim at dimensionality reduction in the semi-supervised case. It
is well-known that supervised LDA is a generalized eigenvalue problem. We proposed
to use worst-case robust optimization of generalized eigenvalue problem as a way
to solve the semi supervised LDA problem. We first formulate the mathematical
optimization problem in section 2. Experiment setting is then described in section
3. We then discuss numerical simulations of the rank-one case and the general-rank
case separately in section 4 and section 5, respectively.

6.2 Problem Formulation

In Fisher discriminant analysis [37], or linear discriminant analysis [35], people solve
the following optimization problem:

max
w

wTSbw

wTSw
(6.1)

or in the general-rank case:

max
W

Tr((W TSW )−1W TSbW ) (6.2)

where w ∈ Rn×1 and W ∈ Rn×k are the projection directions and projection sub-
spaces, respectively. Sb is the between-class scatters, and S is the within-class scat-
ters. They are defined as follows:

Sb =
1

C
ΣC

i=1(µi − µ)(µi − µ)T (6.3)

S = ΣC
i=1Si (6.4)

where µi ∈ Rn×1 and Si ∈ Rn×n are means and covariance matrices of the ith class
of points.

Classical linear discriminant analysis requires to know the class each point belongs
to. In the absence of labels, if we know that each class has the same number of
points and we have a rough estimate of the center of each class, we can reformulate
the optimization problem and perform semi-supervised linear discriminant analysis.
The idea is to consider the covariance matrix of all data points instead of class-specific
covariance:

Sw = Cov(x) = E[(x− µ)(x− µ)T ] (6.5)
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Then

Sw = E[(x− µ)(x− µ)T ]

= E[E[(x− µ)(x− µ)T |x ∈ Ci]]

=
1

C
ΣC

i=1E[(xi − µ)(xi − µ)T ]

=
1

C
ΣC

i=1E[(xi − µi + (µi − µ))(xi − µi + (µi − µ))T ]

= Sb +
1

C
S

(6.6)

Therefore the optimization problem (6.1),(6.2) are equivalent to the following prob-
lems, respectively:

max
w

wTSbw

wTSww
(6.7)

max
W

Tr((W TSwW )−1W TSbW ) (6.8)

The benefit of solving (6.7) and (6.8) instead of (6.1) and (6.2) is that in the absence
of labels, it is usually very difficult to have prior information or rough estimation of Si.
In (6.7) or (6.8), we only need prior information of µi and Sw can be estimated using
all unlabeled data points. The optimization problems (6.7) and (6.8) are generalized
eigenvalue problems and can be solved analytically. However, neither Sb or Sw is
exactly known. To provide robustness against matrix mismatches ∆b and ∆w in the
two matrices, we can solve the following worst case robust optimization problem in
the rank-one case:

max
w

min
||∆b||≤ϵb,||∆w||≤ϵw

||(Q+∆b)w||22
wT (Sw +∆w)w

(6.9)

where Sb = QTQ and the following worst case robust optimization problem in the
general-rank case:

max
W

min
||∆b||≤ϵb

Tr((W TSwW )−1W T (Q+∆b)
T (Q+∆b)W ) (6.10)

where Sb = QTQ
This is equivalent to the following problem:

max
W

min
||∆b||≤ϵb

Tr(W T (Q+∆b)
T (Q+∆b)W )

s.t. W TSwW = I
(6.11)
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Experiment Setting

In our experiment, we assume that the data follows a multivariate Gaussian mixture
model:

pi(x) ∼ N(µi, Si), i = 1, 2, . . . K (6.12)

We further assume that the dimension of data M = 10, the number of classes K = 4,
and the number of data points for each class is N = 500. The covariance matrix
Sw is approximated by the sample covariance matrix Ŝw. Also, in our setting of
semi-supervised linear discriminant analysis, we assume that we have inexact prior
information about the means of these four classes µ̂i. The directions of mismatch of
the means are random and the scale of the mismatch is set to ||µi−µ̂i|| = 0.2||µi−µ||,
where µ is the mean of data in all classes. Note that the experiment result is not
sensitive to the dimension M , the number of classes K, or the number of data N .
Instead, it is sensitive to the degree of mixing of these four types of points. We

used the intermixture value IV =

√
||Si||

||µi−µ|| to quantify the degree of mixing. The true
µi and Si are randomly sampled in each simulation and we run 1000 independent
simulations for each intermixture value.

6.3 Numerical Simulations: Rank-one Case

We compared our proposed method with three other methods and the statistically
optimal method:

Optimal This solves (6.7)

max
w

wTSbw

wTSww

with exact Sb and Sw, which means that there is no data mismatch. Note that this
is not practical and is only used for reference.

ULDA ULDA directly optimizes (6.7)

max
w

wT Ŝbw

wT Ŝww

with presumed Ŝb and empirical Ŝw.
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Robust ULDA without PSD constraint Robust adaptive beamforming with-
out the positive semi-definite constraint [41] solves (3.2):

max
w ̸=0

min
∥∆A∥≤ϵA,∥∆B∥≤ϵB

wT (Ŝb +∆A)w

wT (Ŝw +∆B)w

Approximate Robust ULDA with PSD constraint Robust adaptive beam-
forming with the positive semi-definite constraint [42] approximates (5.8) with closed
form solution:

wopt
2 = P((Ŝw + ϵBI)

−1(Ŝb − 2

√
λmax(Ŝb)ηI + ϵ2AI))

The performance of all of these methods is shown in figure 6.1. The Fisher’s
metric, or the signal-to-noise-ratio SNR = wTSbw

wTSw
are compared versus different in-

termixture value.

The result shows that in the low intermixture region, which corresponds to well-
separated cases, our proposed method and the method of [42] are better among the
four methods and are close to optimal value. While in the high intermixture region,
the robust formulation cannot provide additional value. This also shows that in this
specific context, the approximation [42] works as well as the true solution to the
problem (6.9).

6.4 Numerical Simulations: General-rank Case

To the best of our knowledge, there is no competing algorithms for the problem at
hand (6.11). Therefore we only compared our proposed method with the vanilla
LDA, which optimizes (6.8) directly with presumed Sb and empirical Ŝw.

The performance of the methods is shown in figure 6.2. The Fisher’s metric,
or the signal-to-noise-ratio SNR = Tr((W TSwW )−1W TSbW ) are compared versus
different intermixture value.

The result shows that in the low intermixture region, which corresponds to well-
separated cases, our proposed method is close to optimal and is significantly better
than vanilla LDA. While in the high intermixture region, the robust formulation
cannot provide significant additional value. This conclusion is similar to what we
had in the rank-one case.
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Figure 6.1: SNR versus intermixture of semi-supervised linear discriminant analysis.

Figure 6.2: SNR versus intermixture of semi-supervised linear discriminant analysis.
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