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Abstract

Jets in Soft-Collinear Effective Theory

by

Andrew Carl Hornig

Doctor of Philosophy in Physics

University of California, Berkeley

Dr. Christian W. Bauer, Co-Chair

Professor Yasunori Nomura, Co-Chair

Factorization is the central ingredient in any theoretical prediction for collider experiments. I
introduce a factorization formalism that can be applied to any desired observable, like event shapes
or jet observables, for any number of jets and a wide range of jet algorithms in leptonic or hadronic
collisions. This is achieved by using soft-collinear effective theory to prove the formal factorization
of a generic fully-differential cross section in terms of a hard coefficient, and generic jet and soft
functions. The factorization formula for any such observable immediately follows from our general
result, including the precise definition of the functions appropriate for the observable in question.

As a first application, I present a new prediction of angularity distributions in e+e−

annihilation. Angularities τa are an infinite class of event shapes which vary in their sensitivity to
the substructure of jets in the final state, controlled by a continuous parameter a < 2. I calculate
angularity distributions for all a < 1 to first order in the strong coupling αs and resum large
logarithms in these distributions to next-to-leading logarithmic (NLL) accuracy.

I then apply SCET to the more exclusive case of jet shapes. In particular, I make predic-
tions for quark and gluon jet shape distributions in N -jet final states in e+e− collisions, defined with
a cone or recombination algorithm, where I measure some jet shape observable on a subset of these
jets. I demonstrate the consistent renormalization-group running of the functions in the factoriza-
tion theorem for any number of measured and unmeasured jets, any number of quark and gluon
jets, and any angular size R of the jets, as long as R is much smaller than the angular separation
between jets. I calculate the jet and soft functions for angularity jet shapes τa to next-to-leading
order (NLO) in αs and resum large logarithms of τa to next-to-leading logarithmic (NLL) accuracy
for both cone and kT -type jets.

Finally, I apply SCET to the case of threshold resummmation at hadron colliders. Factor-
ization theorems for processes at hadron colliders near the hadronic endpoint have largely focused
on simple final states with either no jets (e.g., Drell-Yan) or one inclusive jet (e.g., deep inelastic
scattering and prompt photon production). Factorization for the former type of process gives rise
to a soft function that depends on timelike momenta whereas the soft function for the latter type
depends on null momenta. I derive a factorization theorem that allows for an arbitrary number of
jets, where the jets are defined with respect to a jet algorithm, together with any number of non-
strongly interacting particles. I find the soft function in general depends on the null components
of the soft momenta inside the jets and on the timelike component of the soft momentum outside
of the jets. This generalizes and interpolates between the soft functions for the cases of no jets and
one inclusive jet.
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Chapter 1

Introduction

High Energy Physics is approaching one of the most important and exciting periods in
many years with the coming online of the CERN Large Hadron Collider (LHC). In addition to
the potential discovery of the last ingredient of the Standard Model (SM), the Higgs boson, the
LHC will search for evidence of many models of physics beyond the Standard Model that propose
solutions to the problems of the SM.

We may find various kinds of signals of new physics at the LHC. On one hand, in a best-
case scenario, new physics will appear as a smoking gun, and it will be the task of the high energy
community at large to try to explain what we see and why. On the other hand, it might be that
new physics is hiding behind SM backgrounds that are not well understood, a primary example
being SM multijet signals. It is therefore of utmost importance to increase our understanding of
these backgrounds. The development and application of tools that help our understanding of this
area is the goal of this thesis.

In particular, the main approach to understanding collider signatures of the SM that forms
the basis of this thesis is an analytically based approach that makes use of effective field theories
(in particular Soft Collinear Effective Theory [19, 21, 33, 29], or SCET). SCET can be used to
separate (or factorize) different energy scales from one another. This serves two functions. First,
factorization of perturbative from non-perturbative energy scales allows for a model independent
understanding of hadronization effects. Second, further factorization of the perturbative contribu-
tion into pieces that are only sensitive to a single energy scale allows for renormalization group
evolution of each piece from its respective scale to a common scale, which resums logarithms of
ratios of the disparate scales to which the various contributions are sensitive.

In order to apply SCET to multijet environments at the LHC, the definition of a jet itself,
which in practice is made via a jet algorithm, needs to be incorporated into factorization formula.
Jet algorithms are used to define more exclusive objects that still aim to connect short distance
descriptions of QCD (partons) with long distance descriptions (hadrons). In Chapter 2, I explore
how in detail jet algorithms can be incorporated into factorization formulas. After this is achieved,
a wide variety of applications of this formalism can be performed.

For example, one of the topics that SCET can be applied to is in the understanding of jet
substructure, an area of collider physics that has generated considerable interest in the literature.
Jet substructure can be used to distinguish background QCD jets from those arising from the decay
of new physics particles. Since this field is relatively unexplored from the perspective of SCET,
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there is room for considerable progress in this area in the upcoming years.
As a first study in jet substructure, in Chapter 3 I describe a study of idealized hemisphere

jets in e+e- collisions. For these jets, I did a thorough analysis of a class of event shapes called
angularities, characterized by a continuous parameter a. The different angularity distributions
assign differing weights to jet constituents at smaller or larger angles from the jet axis, and are
dominated by jets with different pT. Thus, knowing the angularity of a jet for all values of a gives
the profile of the jet.

Event shapes at hadron colliders are less interesting since it is not feasible to measure
particles of arbitrarily low pT. In Chapter 4, I combine the ideas of using jet algorithms developed
in Chapter 2 with the idea of measuring shapes of jets developed in Chapter 3 to measure the shape
of some number M of jets in an exclusive multijet event of jet multiplicity N ≥M .

Another complication of predictions at hadron colliders is that all theoretical predictions
must be made at the level of partons whereas measurements are made at the hadron level. As
mentioned above, these two descriptions are linked for final state particles through the use of jet
definitions. For the initial state interactions, a link between these two descriptions is made with
parton distribution functions (PDFs), which give the probability to find a parton of momentum
fraction x in a given hadron. However, because of the steepness of the PDFs in x, final states with
real emission that is either highly collinear or soft is strongly favored over large angle emission,
which leads to the presence of large logarithms in fixed-order predictions of the partonic level
process. In Chapter 5, I discuss how these can be resummed in an arbitrary N -jet process at a
hadron collider, where the jets are defined with respect to a jet algorthm.
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Chapter 2

Factorization for Generic Jet
Production1

1 Introduction

Factorization is the main ingredient in any theoretical prediction for collider experiments.
Most factorization theorems are easy to understand intuitively. For example, the most basic fac-
torization theorem for the production of lepton pairs in proton-proton collisions has the form

σ =
∑
i,j

σ̂ij ⊗ fi/P ⊗ fj/P . (2.1)

Here, the partonic cross section σ̂ij describes the production of the two leptons from the two initial
state partons i and j, while the parton distribution functions fi/P and fj/P describe the probability
of finding the partons i and j in the proton. The parton distribution functions and the partonic
cross section both depend on the momentum fractions of the partons with respect to the hadrons,
and the ⊗ denotes the convolution in these variables. For more complicated processes, such as
jet production, factorization formulas still exist, but are more complicated than for the Drell-Yan
process.

While there is usually a simple intuitive picture leading to factorization theorems like
Eq. (2.1), many open questions cannot be answered without a much more detailed understanding
of the factorization theorem. First, precise field theoretical definitions of the different elements in
terms of matrix elements of operators are required to calculate them systematically. Second, each
of these elements depends on a renormalization scale µ, and the precise µ dependence cannot be
obtained from the naive arguments given above. The fact that the final hadronic cross section is
independent of µ allows one to derive renormalization group equations, which can be used to sum
large logarithmic terms present in the perturbative results. Finally, it is important to understand
under which circumstances the factorization theorems hold and when they break down. Thus, a
more detailed understanding of factorization theorems is mandatory for a theoretical understanding
of collider signatures.

Understanding factorization has a long history, and started with the seminal work of
Collins, Soper and Sterman (see Refs. [94, 90, 92, 93] and references therein). It is instructive to

1This chapter was originally cowritten with Christian W. Bauer and Frank J. Tackmann [23].
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remind the reader about the philosophy of these traditional factorization proofs, and to compare
it to factorization proofs using effective fields theories, as discussed in this chapter. While the La-
grangian of the strong interaction is given in terms of partonic degrees of freedom, any perturbative
calculation of partonic scattering amplitudes gives rise to infrared divergent results. These infrared
divergences are a manifestation of the well-known fact that at long distances the strongly interact-
ing degrees of freedom are hadrons, not partons, and that the binding of partons into hadrons is
a nonperturbative effect. The infrared divergences in the partonic results are regulated, however,
if the dimension of spacetime is chosen to be D = 4 − 2ε, and manifest themselves as 1/ε poles
with ε < 0. Thus, for D 6= 4 one can calculate the scattering cross section of two partons m and n,
and by the same intuitive picture as before, one expects that the partonic scattering cross section
factorizes as

σmn =
∑
i,j

σ̂ij ⊗ fi/m ⊗ fj/n . (2.2)

In this case, fi/m [fj/n] denotes the probability to find the parton i [j] in the parton m [n]. This
probability has a well-defined expression order by order in perturbation theory, and is infrared
divergent in the limit D → 4. Under the assumption that any infrared-safe (finite as D → 4)
result is the same in the hadronic (D = 4) and partonic (D 6= 4) theories, the factorization of long
distance and short distance physics in the hadronic theory can be proven by showing to all orders in
perturbation theory that σ̂ij in the partonic theory is indeed finite in the limit D → 4. Traditional
factorization proofs therefore use diagrammatic techniques to show that all infrared-divergent terms
in σmn are contained in the partonic distributions fi/m and fj/n.

Proofs of factorization theorems in soft-collinear effective theory (SCET) [19, 21, 33, 29],
on the other hand, use a different approach. By construction, the correct effective field theory
reproduces the long distance dynamics of the underlying theory in a particular kinematic limit.
SCET is constructed to reproduce the long distance physics for processes involving highly energetic
particles, and the assumption is now that SCET is indeed the correct effective field theory of QCD
in this particular kinematic limit. What is important is that this assumption can be tested in
perturbation theory.

The physics at short distances, in general, is not properly described by the dynamics
of the effective field theory itself, but can be determined by demanding that the effective theory
reproduces the underlying theory order by order in perturbation theory. This matching calculation
can be performed using partonic degrees of freedom, because the effective theory reproduces the
long distance physics of the full theory ensuring that all infrared divergences cancel in the matching
calculation. Thus, the effective theory gives a result of the form

σ =
∑
i,j

SDij ⊗ LDij , (2.3)

where SDij describes the short distance physics governing the scattering of two partons i and j into
anything, while LDij describes the long distance probability of two protons to give two partons i
and j. The final step in the proof of the factorization formula is to show that

LDij = fi/P ⊗ fj/P (2.4)

where fi/P are now matrix elements of operators defined in SCET. This is accomplished in SCET
by exploiting the dynamics of the effective theory, as will be discussed in much more detail later.
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The first factorization proof in SCET was for B → Dπ decays [27], but it was soon
realized that SCET can be used to reproduce factorization for simple QCD processes with back-
to-back jets [20, 26, 24, 160]. Recently, there has been progress in studying factorization and the
resummation of perturbative corrections for some weighted cross sections in e+e− → hadrons [157,
124, 125, 18, 172], Drell-Yan [137, 138, 40], deep inelastic scattering [160, 82, 161, 83, 39], and Higgs
production [127, 138].

While such fully inclusive observables have proven to be very useful in capturing generic
features of hadronic events, they are not well suited to identify specific short distance processes. For
this reason, jet observables are usually considered, in which hadrons that are “close together” are
collected into jets of particles. The idea is that QCD radiation will turn a single parton produced
in a short distance process into a jet of hadrons, such that the total momentum of the jet can be
used as a measure of the momentum of the original parton. Thus, jet observables can be used to
directly test the underlying short distance process that produced the event, as long as the jets are
well separated from the beam axis and their dependence on the underlying event is very small.

Of course, the definition of a jet depends on the precise meaning of “close together”, and
there are many algorithms available which group the final state particles into jets [182, 88, 80, 89,
66, 68, 67, 119, 136, 113, 171, 112]. To calculate jet cross sections perturbatively, we need a jet
algorithm that is infrared safe, such that a partonic calculation does not lead to infrared divergences
in D = 4 dimensions. Which algorithm is chosen by experimentalists is usually determined by
practical considerations, such as speed and algorithmic robustness.

In this chapter, we develop a factorization formalism that can be applied to any desired
observable, like event shapes or jet observables. In particular, for N -jet production in hadronic
collisions, we show that the cross section factorizes into a hard function, σ̂ij,k1...kN , describing the
underlying partonic process to produce N partons, convoluted with N jet functions, Jki , a soft
function, S, and parton distribution functions, fi,j/P ,

σ =
∑
i,j,kn

σ̂ij,k1...kN ⊗ Jk1 ⊗ · · · ⊗ JkN ⊗ S ⊗ fi/P ⊗ fj/P . (2.5)

The jet functions Jki are the final-state analog of the parton distribution functions. They describe
how the final partons from the hard interaction evolve into the observed jets, and contain all de-
pendence on the actual jet algorithm. The soft function S is a nonperturbative object, which
describes, for example, how color is rearranged to allow the colored partons to form color-singlet
jets. The effective theory allows to give precise field-theoretic definitions of all objects in this fac-
torization formula. Whether the differential cross section in some observable factorizes in the usual
sense depends on whether the observable is dominated by factorizable kinematic configurations and
whether it is inclusive enough to allow perturbative calculations of the jet functions.

In Sec. 2, we first define a generic differential cross section written in terms of functional
derivatives, and then show in Sec. 3 how observables are constructed from this generic cross section.
In Sec. 4, we derive a factorization formula for this differential cross section, which relates it to
convolutions over generic building blocks. To focus on the overall structure of the result, this
derivation will be schematic in the sense that we will ignore the explicit color and spin structure of
the underlying interaction. As a first example, in Sec. 5, we apply our results to the production of
two-jet events in e+e− collisions, including all color and spin information. We reproduce the known
results for event shape and hemisphere mass distributions, and obtain results for observables based
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on cone jet algorithms. In Sec. 6, we apply our formalism to hadronic collisions. We derive the
factorization formula for two-jet production in pp collisions, focussing on the simplest subprocess
qq′ → qq′. Our conclusions and outlook are presented in Sec. 7.

2 Energy and three-momentum configuration of an event

The differential cross section in any observable O is given by

dσ
dO

=
1

2p2
I

∑
X

|〈X|Q|I〉|2 (2π)4δ4(pI − pX) δ[O − fO(X)] , (2.6)

where |I〉 denotes the initial state containing two particles with total momentum pI = (Ecm,0),
|X〉 denotes an arbitrary final state with total momentum pX , and the sum over X includes a sum
over states, as well as all final-state phase-space integrations. Finally, Q stands for the relevant
operator responsible for the underlying hard interaction.

The function fO(X) computes the value of the observable for a given final state X, and in
general depends on the four-momenta of all particles in X. The four-momentum configuration of
X can be described by its energy configuration ωX(Ω) and three-momentum configuration kX(Ω).
If X has n particles with four-momenta pi = (Ei,pi), we have

ωX(Ω) =
n∑
i=1

Ei δ(Ω− Ωi) , kX(Ω) =
n∑
i=1

pi δ(Ω− Ωi) , (2.7)

where Ωi ≡ Ω(pi) is the direction of the three-momentum pi. More generally, we can think of ω(Ω)
and k(Ω) as the distribution of energy and three-momentum over the solid angle Ω, as measured
experimentally.

To integrate over ω and k, we define a functional integration measure as usual by dis-
cretization. We divide Ω into bins {Ωk}, and define the set of discrete variables {ωk} and {kk} as
the integrals of ω(Ω) and k(Ω) over the bins {Ωk},2

ωk =
∫

Ωk

dΩω(Ω) , kk =
∫

Ωk

dΩ k(Ω) . (2.8)

Then

Dω(Ω) ≡ Dω(Ω) θ[ω(Ω)] =
∏
k

dωk θ(ωk) ,

Dk(Ω) ≡ Dk(Ω) δ[Ω(k(Ω))− Ω] =
∏
k

d3kk
(2π)3

δ(Ω(kk)− Ωk) =
∏
k

|kk|2 d |kk|
(2π)3

. (2.9)

The θ-functional in Dω(Ω) restricts ω(Ω) to be positive, while the δ-functional in Dk(Ω) restricts
k(Ω) to point into the direction Ω.

2This is slightly different from the usual definition of Dφ(x) for some field φ(x), where the discrete variables
φk = φ(xk) are taken as the values of φ at the points xk. The difference is an irrelevant overall constant. In our
case, taking the integrals is the more natural choice and makes the connection to the usual phase-space integration
simpler.
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The integration measure in Eq. (2.9) still includes unphysical configurations. To only allow
physical configurations, we have to include a mass-shell condition. Taking a fixed invariant-mass
distribution µ(Ω) as boundary condition, we get∫

µ(Ω)
Dω(Ω)Dk(Ω) ≡

∫
Dω(Ω)Dk(Ω) δ

[
ω(Ω)2 − k(Ω)2 − µ(Ω)2

]
=
∫ ∏

k

dωk
|kk|2 d |kk|

(2π)3
δ(ω2

k − |kk|2 − µ2
k) θ(ωk) , (2.10)

where µk =
∫

Ωk
dΩµ(Ω). This fixes the direction of all particles, but could include different final

states X, as long as they have the same invariant-mass distribution µ(Ω). If we instead restrict the
integration to a state X, having n particles with masses mi, we recover the standard n-body phase
space for X,∫

X
Dω(Ω)Dk(Ω) ≡

∫ n∏
i=1

dΩi

∫
X(Ω1,...,Ωn)

Dω(Ω)Dk(Ω)

=
∫ n∏
i=1

dΩi

∫ n∏
k=1

dωk
|kk|2 d |kk|

(2π)3
δ(ω2

k − |kk|2 −m2
k) θ(ωk)

=
∫ n∏

i=1

d4pi
(2π)3

δ(p2
i −m2

i ) θ(p
0
i ) ≡

∫
dΦX . (2.11)

On the right-hand side of the first line, we first integrate ω(Ω) and k(Ω) with the boundary
condition that there are exactly n particles with masses mi moving in the directions Ωi, denoted
as X(Ω1, . . . ,Ωn), which is then integrated over the particle’s positions Ωi. In the second line, in
the discretization only the integrals over those n bins survive that happen to contain a particle.
Together with the Ωi integrations, this reduces to the standard n-body phase space for X. In the
following, we will mostly drop the dependence of ω(Ω) and k(Ω) on Ω, but one should always keep
in mind that ω and k are functions of Ω. We will still use square brackets to denote functionals
f [ω] and f [k].

Returning to Eq. (2.6), we now assume that fO(X) does not depend on any internal
quantum numbers of X, but only on the four-momenta of all particles in X.3 In this case, fO can
be written as a functional of the energy and three-momentum configurations,

fO ≡ fO[ω,k] with fO(X) ≡ fO[ωX ,kX ] . (2.12)

We now define an energy-momentum flow operator Eµ ≡ Eµ(Ω), whose eigenvalues are the energy
and three-momentum configurations of the state |X〉 in Eq. (2.7),

E0(Ω) |X〉 = ωX(Ω) |X〉 , E(Ω) |X〉 = kX(Ω) |X〉 . (2.13)

The energy flow operator E0(Ω) has been used previously, for example to study two-jet event shape
distributions [150, 146, 152, 44, 157, 18] and jet energy-flow correlations [185, 184, 186, 133]. In

3Note that most information about internal quantum numbers, such as the number of b-jets, is obtained from
four-momentum information alone.
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terms of the energy-momentum tensor

Tµν =
∑
φ∈L

∂L
∂(∂µφ)

∂νφ− gµνL , (2.14)

we can write Eµ(Ω) as [150, 18]

Eµ(Ω) = lim
R→∞

R2

∫ ∞
0

dtni Tµi(t, Rn) . (2.15)

Here, n ≡ n(Ω) is the unit three-vector pointing in the direction identified by Ω. Therefore, Eµ(Ω)
measures the total four-momentum arriving over time at infinity in the direction Ω. An expression
for E0(Ω) similar to Eq. (2.15) in terms of an integral over R for t→∞ was derived in Refs. [184, 84].
An explicit proof of Eq. (2.15) for E0(Ω) for scalars and Dirac fermions can be found in Ref. [18].

Using Eqs. (2.12) and (2.13), we can write Eq. (2.6) as

dσ
dO

=
1

2p2
I

∑
X

〈I|Q†|X〉〈X|Q|I〉 (2π)4δ4(pI − pX) δ(O − fO[ωX ,kX ])

=
1

2p2
I

∫
DωDk

∫
d4x 〈I|Q†(x) δ[ω − E0] δ[k− E]Q(0)|I〉 δ(O − fO[ω,k])

≡
∫
DωDk

δσ

δω δk
δ(O − fO[ω,k]) . (2.16)

In the second line, we shift Q† to position x, turning the momentum conservation into an integral
over x, and rewrite ωX and kX in terms of Eµ. This removes any explicit dependence on the final
state X, allowing us to perform the sum over all final states states

∑
X |X〉 〈X| = 1.

For the rest of this chapter, we will assume for simplicity that X only contains massless
particles. The extension to the general case is straightforward. In this case, fO ≡ fO[ω] only
depends on ω, and we can integrate over k to find

dσ
dO

=
∫
Dω δσ

δω
δ(O − fO[ω]) , (2.17)

where the generic differential cross section δσ/δω is defined as

δσ

δω
=

1
2p2
I

∫
d4x 〈I|Q†(x) δ[ω − E0]Q(0)|I〉

=
1

2p2
I

∫
d4p

(2π)4
〈I|Q†(0) δ[ω − E0]Q(p)|I〉 . (2.18)

In the second line, we have written the result in terms of Q(p), the Fourier transform of Q(x). (To
simplify the notation we use the same symbol for operators in position and momentum space and
simply distinguish them by their arguments.)

Equation (2.17) can be regarded as the master formula of our formalism, and its ingredients
are the subject of the following sections. We first discuss the functional fO[ω] in the next section
and then the factorization of δσ/δω in Sec. 4. Then in Secs. 5 and 6 we show how to combine these
two elements to obtain a factorized form of dσ/dO for specific processes and observables.
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3 Constructing Observables

The form of the functional fO[ω] depends on the observable under consideration, and in
this section we will give a few examples of how to construct fO[ω] for specific observables. To get
used to our notation, we start with the simple example of the total four-momentum of the final
state. Next, we consider event shapes, which are fully inclusive observables. Finally, we discuss jet
observables, which are less inclusive and defined with respect to a specific jet algorithm.

3.1 Total Four-Momentum

The total energy and three-momentum of the state X are

EX =
n∑
i=1

Ei =
∫

dΩωX(Ω) , pX =
n∑
i=1

pi =
∫

dΩ n(Ω)ωX(Ω) , (2.19)

where we used that for massless particles k(Ω) = n(Ω)ω(Ω). Hence, we define

Pµ[ω] =
∫

dΩnµ(Ω)ω(Ω) , (2.20)

where nµ(Ω) = (1,n(Ω)). From Eqs. (2.17) and (2.18) we get

dσ
d4P

=
∫
Dω δσ

δω
δ4(P − P [ω]) =

1
2p2
I

∫
d4x 〈I|Q†(x) δ4(P − P̂ )Q(0)|I〉 . (2.21)

In the second step we performed the integration over ω and used that (for massless fields) Pµ[E0]
yields the momentum operator P̂µ = (P̂ 0, P̂),4

Pµ[E0] =
∫

dΩ Eµ(Ω) = lim
t→∞

∫
dxTµ0(t,x) = P̂µ . (2.23)

3.2 Event Shapes

Event shapes are defined with respect to the thrust axis of an event. Given a final state
X, one first calculates the thrust axis t ≡ t(X), which is defined as the unit three-vector t that
maximizes the sum

n∑
i=1

|t · pi| , (2.24)

which runs over all particles in X. Given t, one then calculates the observable of interest. A generic
class of event shapes can be written as

fe(X) =
1
Ecm

n∑
i=1

ge(ηt(pi))
∣∣pTt (pi)

∣∣ , (2.25)

4To see this explicitly, consider the current jν(x) ≡ Tµν(x) (for fixed µ),Z
dΩ Eµ(Ω) = lim

R→∞

Z ∞
0

dt

Z
∂S(R)

dS n · j(t,x) =

Z ∞
0

dt

Z
dx∇ · j(t,x) = lim

t→∞

Z
dx j0(t,x) , (2.22)

where in the last step we used current conservation ∂µj
µ(x) = 0.
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where the rapidity ηt and transverse momentum pTt are measured with respect to t. For example,
for thrust [55, 123], jet broadening [75], and the C-parameter [111], the function ge(η) has the form

gT (η) = e−|η| , gB(η) = 1 , gC(η) =
3

cosh η
. (2.26)

The thrust axis can be obtained from the energy configuration of the final state, and can
therefore be written as a functional t[ω]. It is defined (for massless particles) as maximizing the
integral ∫

dΩ |t · n(Ω)| ω(Ω) , (2.27)

which for ω = ωX reduces to Eq. (2.24). Using
∣∣pTt ∣∣ = E/ cosh ηt, we can write Eq. (2.25) in terms

of ω
fe[ω] =

∫
dt δ(t− t[ω]) fe[ω; t] , (2.28)

with
fe[ω; t] =

1
Ecm

∫
dΩ ge(ηt)

ω(Ω)
cosh ηt

, (2.29)

where the solid angle Ω is decomposed with respect to the thrust axis as Ω = (ηt, φt), and ηt =
tanh−1(cos θt).

3.3 Jet Observables

3.3.1 General Features of Jet Algorithms

A jet algorithm J acting on a final state X returns the set of momenta of all particles in
the event, grouped together into the different subsets belonging to each jet plus a set of particles
not belonging to any jet, which we take to be soft:

J (X) = {{pµ}1, . . . , {pµ}N , {pµ}s} . (2.30)

In terms of the energy configuration ω, we can write the action of the jet algorithm as

J [ω] = {ωjet
1 , . . . , ωjet

N , ω
soft} , (2.31)

where ωjet
i is the part of ω corresponding to jet i, and ωsoft is the remaining soft part of ω not

assigned to any jet, such that
ω = ωjet

1 + · · ·+ ωjet
N + ωsoft . (2.32)

We formally split the action of the jet algorithm into two distinct steps. We first define
a quantity j that contains all global information about ω required to construct the individual jet
configurations ωi from ω. For example, j contains the total number of jets and the direction of each
jet. That is, j is analogous to the thrust axis in the case of event shapes. Hence, a jet algorithm
J provides a functional jJ [ω], which returns the required information j for a given ω. Second,
we define functionals Ji[ω; j] that project out the part of ω belonging to the i-th jet. That is, for
j = jJ [ω], by definition

Ji[ω; jJ [ω]] = ωjet
i , Js[ω; jJ [ω]] = ωsoft . (2.33)
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We stress that Ji[ω; j] only encodes the actual projection, which is completely specified by the
specifics of the jet algorithm and the information provided by j. Thus, for a given j, Ji can be
applied to any ω. For example, by definition, Ji satisfies the consistency conditions

Ji
[
ωjet
j ; jJ [ω]

]
=

{
ωjet
i for i = j

0 for i 6= j .
(2.34)

For simplicity, we will keep the dependence on J implicit from now on and simply write j[ω].

3.3.2 Construction of Jet Observables

We can now write a generic jet observable as

fO[ω] =
∫

dj δ(j− j[ω]) fO[ω; j] , (2.35)

where, in general, fO[ω; j] has the form

fO[ω; j] = fO[J1[ω; j], . . . ,JN [ω; j]] , (2.36)

and N is the total number of jets given by j. Most jet observables only depend on the total
four-momentum of each jet. In this case, using Eq. (2.20)5, we have

fO[ω; j] =
[ N∏
i=1

∫
d4Pi δ

4(Pi − P [Ji[ω; j]])
]
gO(P1, . . . , PN ) . (2.37)

The function gO(P1, . . . , PN ) computes the observable of interest from the given jet momenta Pi.
It is analogous to the function ge(η) for event shapes. Some simple examples would be the total
number of jets or the invariant mass of two jets,

gN (P1, . . . , PN ) = N , gmij (P1, . . . , PN ) = (Pi + Pj)2 . (2.38)

Similar to Eq. (2.37), one can easily define observables depending on additional information about
the individual jets, for example, one can imagine observables which depend on a weighted integral
of the energies of all particles in a jet.

3.3.3 Examples of Jet Algorithms

Of course, in practice, how the action of the jet algorithm is separated into j[ω] and Ji[ω; j]
depends on the actual algorithm, and we will briefly discuss a few examples here. Since most jet
algorithms do not have a simple analytic expression for generic final states, it will not be possible
to obtain j[ω] analytically, either. However, this is not a limitation, because we can always define
j[ω] by acting with the full jet algorithm on ω and only returning the necessary global information.
The more relevant, and perhaps nontrivial, task is to figure out the information required in j, and
to define the projections Ji[ω; j] accordingly.

5For jet algorithms, Eq. (2.20) corresponds to the so-called E-scheme, which defines the total jet momentum as
the sum of the particle momenta.
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The simplest example is probably the hemisphere jet algorithm [88, 80, 89], for which the
number of jets is always 2, and the only relevant global information is the axis perpendicular to
the plane separating the two hemispheres, which is usually taken to be the thrust axis t. Hence,
we can write j as

j = {2; t} , j[ω] = {2; t[ω]} , (2.39)

where by convention we included the number of jets in j. The corresponding projections J1 and
J2 return the two hemispheres defined by the thrust axis,

J1[ω; j] = ω(Ω) θ
(
0 ≤ θt < π/2

)
, J2[ω; j] = ω(Ω) θ

(
π/2 ≤ θt < π

)
, (2.40)

where Ω ≡ (θt, φt) is given with respect to t. Note that here we have Js[ω, j] = 0. Typical
observables constructed from these individual jets are their invariant masses, gM2

1,2
(P1, P2) = P 2

1,2.
Another class of observables is given by the event shapes in Eq. (2.29), for which fO[ω, j] ≡ fe[ω, t].

A less trivial example is a cone jet algorithm [182, 136, 113, 171, 112]. In this case, the
necessary global information returned by j[ω] is the number of jets N , and the direction ji of each
jet,

j = {N ; j1, . . . , jN } . (2.41)

For instance, in e+e− collisions one can define an N -jet final state as one admitting a minimum
number N directions ji such that the total energy outside an opening half angle R about each
direction is less than some fraction ε. For N = 2, and with the additional constraint j1 = −j2, this
is equivalent to the original Sterman-Weinberg jet definition [182]. For a given set j, the projections
are then simply

Ji[ω; j] = ω(Ω) θ(R− θji) , (2.42)

where R is the cone radius and Ω ≡ (θji , φji) is given with respect to ji for each i.
As with all observables, we require jet algorithms that are infrared safe, which is not

the case for many cone jet algorithms. An example of an infrared-safe cone jet algorithm is the
seedless infrared-safe (SIS) cone jet algorithm [171]. For illustration of our method, we will use the
snowmass cone algorithm [136, 112] as an example, however our approach can easily be adapted to
the SIS algorithm or any other infrared-safe jet algorithm.

For hadronic collisions, the variables (η, φ), defined with respect to the beam axis, have
simple transformations under boosts along the beam direction, and so are favored over (θ, φ). In
the Snowmass cone algorithm, jets are defined by cones of constant radius R in (η, φ) space. When
applied to massless particles, the directions ji are given by the solutions of 6

0 =
∫

dΩ
ω(Ω)
cosh η

[Ω− Ω(ji)] θ
(
R−

√
[η − η(ji)]2 + [φ− φ(ji)]2

)
, (2.43)

where Ω = (η, φ) is now measured with respect to the beam axis, and Ω(ji) = (η(ji), φ(ji)) are the
coordinates of the i-th jet direction. Equation (2.43) is the analog of Eq. (2.27) for the thrust axis.
The corresponding projections are

Ji[ω; j] = ω(Ω) θ
(
R−

√
[η − η(ji)]2 + [φ− φ(ji)]2

)
. (2.44)

6For some configurations ω, this equation can admit multiple sets of solutions j, containing a different number of
jets. This happens when there are overlapping cones, and one has to decide whether to split or merge these.
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Finally, kT jet algorithms [66, 68, 67, 119] also fit our general definition of algorithms.
Although their definition contains a cut on some distance measure, the precise size and shape of a
jet also depends on the details of the energy configuration ω. Hence, there is no simple expression for
the projections Ji[ω; j] for arbitrary ω and j. In principle, they are well defined (albeit complicated)
for a fixed number of particles, in which case integrals over the energy configuration reduce to normal
phase space integrals [see Eq. (2.11)]. In practical applications, it is easiest to apply the algorithm
numerically.

4 Factorization of δσ/δω

In this section, we prove a factorization theorem for the generic differential distribution
δσ/δω defined in Eq. (2.18). This will allow us to separate the various scales in the problem and
write our result in terms of convolutions over simpler functions, each of which captures only the
physics at a certain energy scale. The factorization proof uses arguments similar to those used to
prove factorization for event shape distributions in Ref. [18]. The central ingredient in addition
to the usual factorization of soft and collinear degrees of freedom in SCET will be the use of the
energy flow operator Eµ(Ω) defined in Eq. (2.15).

When deriving the factorization formula, we will ignore all color and spin structure of
the SCET operators, and denote all collinear fields by φ, regardless of whether they correspond to
quarks, anti-quarks or gluons. This schematic notation will allow us to focus on the issues directly
related to the proof of factorization. Of course, to obtain the full result for the cross section, the
color and spin information has to be included, and we illustrate how this is achieved when discussing
explicit examples in Secs. 5 and 6.

4.1 Matching QCD onto SCET in Momentum Space

Usually, the matching of QCD onto SCET is performed in position space by expanding
the relevant QCD operator Q(x) in terms of SCET operators O(x),

Q(x) =
∑
{ni,p̃i}

e−i
P
p̃i·xC{ni}({p̃i})O{ni,p̃i}(x) . (2.45)

Here, C{ni}O{ni,p̃i} stands for a sum over several SCET operators with the same number of collinear
directions, each with its own Wilson coefficient. The Wilson coefficients are determined by taking
matrix elements of both sides, and expanding the full-theory matrix elements 〈Q(x)〉 in terms of
the matrix elements 〈O(x)〉 evaluated in SCET. Note also that at this point the operators include
all incoming and outgoing fields, whether they are strongly interacting or not.

The operator O{ni,p̃i}(x) is written in terms of (gauge-invariant) collinear SCET fields
φn,p̃(x). Each field depends on a large label momentum p̃µ = p̃−nµ/2 + p̃µ⊥ with n2 = 0 and p̃⊥ ∼
O(λp̃−), and has a residual x dependence corresponding to a residual momentum k ∼ O(λ2p̃−), so
the total momentum of the field is p = p̃ + k. Thus, one can think of the fields φn,p̃(x) as being
written in label momentum space and residual position space. With this interpretation, the sum
over all labels ni and p̃i in Eq. (2.45) corresponds to taking the remaining label Fourier transform
to convert the right-hand side to full position space.
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This separation into discrete label and continuous residual components is conceptually
convenient when formulating the effective theory, and means that phase space is divided up as∫

d4p =
∑
n,p̃

∫
d4k . (2.46)

The concrete choice of the discrete labels n and p̃ is determined by the external momenta. As
is well-known, this choice is arbitrary at subleading order in λ, which can be exploited to derive
constraints from reparametrization invariance [81, 162].

However, in practical applications, especially with more than one collinear direction, the
label choice can easily get obscured during the calculation. One example is four-momentum con-
servation for two back-to-back jets with collinear momenta p1 = p̃1 + k1 and p2 = p̃2 + k2,∫

d4x ei(p̃1−p̃2+k1−k2)·x = δp̃1,p̃2

∫
d4x ei(k1−k2)x = δp̃1,p̃2+δk

∫
d4x ei(k1−k2+δk)x , (2.47)

where δk ∼ O(k1,2). Both equations are correct and correspond to different choices of the label
momenta. Using the first equality, as is often done, may seem somewhat ad hoc, but one simply
makes an implicit choice of, say, p̃2 relative to p̃1. Of course, this is only justified if p̃2 was not
already chosen somewhere else. Furthermore, at the end of the day, one often has to recombine
some leftover label sums and residual integrations, e.g.,∑

n

∫
dk⊥ ∼

∫
dΩ , (2.48)

corresponding to unconstrained phase space integrations of external particles.
With several collinear directions, keeping track of all label choices and dealing with leftover

label sums and residual integrations quickly becomes very cumbersome. To avoid all of these issues,
it is convenient to perform the matching entirely in momentum space, so Eq. (2.45) becomes

Q(p) =
∑
{ni,p̃i}

(∏
i

∫
d4ki
(2π)4

)
(2π)4δ4

(
p−

∑
i

(p̃i + ki)
)
C{ni}({p̃i})O{ni,p̃i}({ki}) . (2.49)

Here, Q(p) is the Fourier transform of Q(x), and O{ni,p̃i}({ki}) is written in terms of momentum-
space SCET fields, φn,p̃(k), which are obtained by taking the remaining residual Fourier transform
of φn,p̃(x),

φn,p̃(k) =
∫

d4x eik·x φn,p̃(x) . (2.50)

We can imagine that the matching is performed at fixed total momentum pi = p̃i + ki
of each field in O{ni,p̃i}. We then choose the field labels directly during the matching such that
n = p/ |p| for each field. With this choice, p̃− ≡ p− = p0+|p|, p+ ≡ k+ = p0−|p|, and p⊥ = 0. This
allows us to recombine the label sums and residual integrations in Eq. (2.49) into d4pi integrals7

∑
n,p̃

∫
d4k

(2π)4
≡
∫

d4p

(2π)4
=
∫

dp−dp+ dΩ
(2π)4

(p− − p+)2

8
, (2.51)

7We suppress that, strictly speaking, the integral over p should be restricted to only include collinear momenta,
which is equivalent to excluding the zero-bin region [163] from the integral.
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where Ω ≡ Ω(p) is the solid angle corresponding to the direction of p. We also keep the dependence
on the labels implicit and simply write the fields in the operator in terms of their total momentum
p,

φ(p) ≡ φn,p̃(k) , O({pi}) ≡ O{ni,p̃i}({ki}) . (2.52)

Hence, the final form of the matching becomes

Q(p) =
(∏

i

∫
d4pi
(2π)4

)
(2π)4δ4

(
p−

∑
i

pi

)
C({pi})O({pi}) , (2.53)

where here and in the following it is understood that the Wilson coefficient C only depends on the
directions ni = pi/ |pi| and large components p−i = p0

i + pi of the momenta pi.

4.2 Factorization Proof

Starting from the definition of δσ/δω in Eq. (2.18), in the first step we match QCD onto
SCET. According to Eq. (2.53), the matching condition takes the form

Q(p) =
( N∏
i=a,b,1

∫
d4pi
(2π)4

)
CN (pa, pb; p1, . . . , pN )

×OI(pa, pb)OF (p1, . . . , pN ) (2π)4δ4

(
p− pa − pb +

N∑
i=1

pi

)
. (2.54)

Here, pa and pb are initial state collinear momenta, and the operator OI is responsible for annihi-
lating the initial state. Similarly, p1, . . . , pN are N final state collinear momenta, and the operator
OF , defined as

OF (p1, . . . , pN ) =
N∏
i=1

φ†(pi) , (2.55)

is responsible for creating the final state. Equation (2.54) is valid in any region of multi-body phase
space that is dominated by N jets of collinear particles, corresponding to N collinear directions,
that are well separated from each other and the beam axis, i.e., the initial collinear directions pa,b.
The dominant power corrections to Eq. (2.54) scale like p2

i /pi · pj .
The different collinear fields in OI and OF interact with each other only through the

exchange of soft gluons. These interactions are eliminated to all orders in αs and leading order in
the power counting by the usual field redefinition in SCET [29],

φn,p̃(x) = Yn(x)φ(0)
n,p̃(x) , (2.56)

where Yn(x) denotes the appropriate soft Wilson line along the direction n in the color represen-
tation of φn,p̃(x). For color singlet fields, Y (x) = 1. As usual, we will drop the superscript on the
redefined fields and operators henceforth. In terms of the redefined fields, the matching condition



16

in Eq. (2.54) takes the form

Q(p) =
( N∏
i=a,b,1

∫
d4pi
(2π)4

)
CN (pa, pb; p1, . . . , pN )

∫
d4ks
(2π)4

×OI(pa, pb)OF (p1, . . . , pN )OS(ks) (2π)4δ4

(
p− pa − pb + ks +

N∑
i=1

pi

)
, (2.57)

where the soft operator OS(ks) contains the Fourier transform of the time-ordered product of all
soft Wilson lines,

OS(ks) =
∫

d4x e−iks·x T

[
Yna(x)Ynb(x)

( N∏
i=1

Y †ni(x)
)]

. (2.58)

Having factored the operator Q(p), we next move our attention to the δ[ω − E0] term
in Eq. (2.18). After the field redefinition, the leading-order SCET Lagrangian with N + 2 collinear
directions can be written as

LSCET =
N∑

i=a,b,1

Li + Ls , (2.59)

where Li only contains collinear fields in the direction ni, and Ls is the purely soft Lagrangian.
Since the energy-momentum flow operator, defined in Eq. (2.15), is linear in the Lagrangian of the
theory, we have

Eµ(Ω) =
N∑

i=a,b,1

Eµi (Ω) + Eµs (Ω) , (2.60)

where Eµi,s(Ω) is defined analogously to Eq. (2.15), but using the energy-momentum tensor obtained
from the Lagrangian Li,s only. Thus, Eµi (Ω) describes the energy-momentum flow in the i-th
collinear sector, while Eµs (Ω) describes the remaining soft energy-momentum flow. This allows us
to write

δ[ω − E0] =
( N∏
i=a,b,1

∫
Dωi δ[ωi − E0

i ]
)∫
Dωs δ[ωs − E0

s ] δ
[
ω − ωs −

N∑
i=a,b,1

ωi

]
. (2.61)

Combining Eqs. (2.61) and (2.57) with Eq. (2.18), and letting ΦN = {pa, pb; p1, . . . , pN}
denote a point in (2→ N)-body phase space (with dΦN the corresponding phase space measure),
δσ/δω can be written as

δσ

δω
=

1
2p2
I

∫
dΦ′N dΦN C

∗
N (Φ′N )CN (ΦN )

∫
d4k′s
(2π)4

d4ks
(2π)4

( N∏
i=a,b,1

∫
Dωi

)∫
Dωs

×
〈
I
∣∣∣(OIOFOS)†(Φ′N , k

′
s)
( N∏
i=a,b,1

δ[ωi − E0
i ]
)
δ[ωs − E0

s ] (OIOFOS)(ΦN , ks)
∣∣∣I〉

× (2π)4δ4(Φ′N − ks) δ
[
ω − ωs −

N∑
i=a,b,1

ωi

]
. (2.62)
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Since there are no interactions between the different collinear sectors or the soft sector in Eq. (2.59),
we can factorize the forward matrix element into a product of several matrix elements.

First, for each final state collinear sector we get the vacuum expectation value of two
collinear fields, with an insertion of δ[ωi − E0

i ] between the fields, which restricts the collinear
energy configuration to ωi. Since the matrix element conserves four momentum, we can write it as

〈0|φ(p′i) δ[ωi − E0
i ]φ†(pi)|0〉 = (2π)4δ4(p′i − pi) J(pi;ωi) , (2.63)

which defines the momentum-space jet function J(pi;ωi). Integrating both sides over pi, we obtain
the equivalent definition in position space in terms of the standard fields φn,p̃(x),

J(pi;ωi) =
∫

d4x eiki·x 〈0|φni,p̃i(x) δ[ωi − E0
i ]φ†ni,p̃i(0)|0〉 . (2.64)

Momentum conservation implies that J(p;ω) only has support for configurations ω that satisfy
P [ω] = p, where P [ω] is defined in Eq. (2.20). One can also define a jet function J(ω) =∫

d4p J(p;ω), which has support for any (physically allowed) ω, but we find it conceptually and
notationally easier to keep the total momentum of ω as an explicit separate argument.

At leading order in the power counting, any hadron in the initial state is bound by collinear
interactions only, and thus does not interact with the soft sector. Hence, we can factor out the soft
matrix element,

〈0|O†S(k′s) δ[ωs − E0
s ]OS(ks)|0〉 = (2π)4δ4(k′s − ks) (2π)4δ(ks − P [ωs])S(ωs) , (2.65)

which defines the soft function S(ωs), and we again used momentum conservation. Note that OS
and S depend on the N + 2 collinear directions with respect to which the Wilson lines are defined,
which is hidden in our notation. The soft function S(ωs) is defined with support for any physical
ωs, and the total soft momentum is given by ks = P [ωs].

The remaining initial state matrix element can be written as

〈I|O†I(p′a, p′b) δ[ωa − E0
a ] δ[ωb − E0

b ]OI(pa, pb)|I〉
= (2π)4δ4(p′a − pa) (2π)4δ4(p′b − pb) I(pa, pb;ωa, ωb) , (2.66)

and defines the initial-state function I(pa, pb;ωa, ωb). In writing Eq. (2.66) we already used that
the matrix element will factorize for the two collinear sectors, which allows us to write two separate
momentum-conserving δ functions. As for the jet function, we choose to keep the momenta pa,b
explicit in the definition of I(pa, pb;ωa, ωb), so its support is restricted by momentum conservation
to P [ωa + ωb] = pI − pa − pb. For e+e− collisions, the initial-state function reduces to a calculable
leptonic matrix element, as discussed in Sec. 5.1. For hadronic collisions, it can be reduced to
parton distribution functions, but also allows one to treat the underlying event or beam remnants,
as discussed in Sec. 6.2.

Combining Eqs. (2.63), (2.65), and (2.66) with Eq. (2.62), we can perform the integrals
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over all primed momenta, and arrive at

δσ

δω
=

1
2p2
I

( N∏
i=1

∫
d4pi
(2π)4

Dωi J(pi;ωi)
)∫

d4pa
(2π)4

d4pb
(2π)4

DωaDωb I(pa, pb;ωa, ωb)

× |CN (pa, pb; p1, . . . , pN )|2
∫
Dωs S(ωs)

× (2π)4δ4

(
pa + pb − P [ωs]−

N∑
i=1

pi

)
δ

[
ω − ωs −

N∑
i=a,b,1

ωi

]
. (2.67)

As anticipated, the fully differential cross section δσ/δω is given by the product of a hard coefficient,
|CN |2, N jet functions, J(pi;ωi), an initial-state function, I(pa, pb;ωa, ωb), and a soft function,
S(ωs). Note that there are no power corrections to Eq. (2.67) other than from higher-order SCET
operators in the matching of QCD onto SCET and higher-order contributions to the Lagrangian,
which could in principle be included systematically. One should keep in mind that this factorization
is purely academic at this point, because all ingredients depend on the precise energy configuration
in each sector of the theory. The energy configurations are obviously very different for partonic
and hadronic states, and therefore the functions J , I, and S cannot be calculated perturbatively.
One should think of them as fully exclusive functions.

The importance of Eq. (2.67) lies in the fact that it establishes factorization for a generic
N -jet like kinematic configuration. In our formalism, the question whether the cross section dσ/dO
for a particular observable factorizes is two-fold. First, a given value of the observable has to
be dominated by factorizable kinematic configurations. If this is the case, one can immediately
obtain a factorized form for dσ/dO from Eq. (2.67) via Eq. (2.17). This means that any jet
observable (meaning any observable whose definition restricts it to N -jet configurations) is formally
factorizable. The second, and more important, question then is whether one is able to determine
the relevant functions, J , I, and S, for a given observable.

For sufficiently inclusive observables, the jet functions, J(pi;ωi), will be smeared enough,
i.e., integrated over ωi with a sufficiently smooth weight function, such that we can trust their
perturbative calculation. Similarly, the soft function, S(ωs), and (for hadronic collisions) the initial-
state function, I(pa, pb;ωa, ωb), have to be smeared enough (integrated over ωs and ωa,b) to reduce
to nonperturbative functions that are universal between different processes. For such observables,
one obtains a factorization formula in the more traditional sense, which allows for the perturbative
calculation of all ingredients, with the exception of maybe a traditional soft function or initial state
parton distribution functions.

To study the structure of the factorization for a specific observable, and obtain explicit
definitions of the relevant jet, soft, and initial state functions, it is usually required to also expand
the kinematics of the process, because Eq. (2.67) still mixes momentum components with different
scaling in SCET. In this way, one obtains a result that formally is fully leading order in the power
counting. As discussed above, with our choice of field labels the components p∓i = p0

i ± |pi| are
defined with respect to the direction of the momentum pi itself, so pi⊥ = 0 and ni = pi/ |pi|. Since
p−i � p+

i , to leading order the phase space in Eq. (2.51) is∫
d4pi
(2π)4

=
∫

dp−i dp+
i dΩi

(2π)4

(p−i )2

8
. (2.68)
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Furthermore, expanding the momentum conserving δ function, we find

δ4

(
pa + pb − P [ωs]−

N∑
i=1

pi

)
= δ4

(
p−a
na
2

+ p−b
nb
2
−

N∑
i=1

p−i
ni
2

)
. (2.69)

Equation (2.67) together with Eqs. (2.68) and (2.69) provides the final factorized form of
the fully differential cross section δσ/δω for N jets, and is the main result of this chapter. In the
remaining part of the chapter we will show how to use this result to understand the factorization
properties of several observables. We will focus mostly on simple two-jet final states, for which the
kinematics is simple enough to explicitly perform all phase space integrations analytically. All our
examples, however, follow directly from our general result, and the extensions to more complicated
final states should be obvious.

5 e+e− → 2 Jets

In this section, we show how to apply the result in Eq. (2.67) to the simplest case of two-jet
events in e+e− collisions. The analysis simplifies considerably because of the absence of strongly
interacting particles in the initial state, and due to the back-to-back nature of the jets and the
corresponding need for only a single collinear direction, e.g., the thrust axis. We first give explicit
definitions of the operators OI , OF , and OS , including all relevant spin and color information,
and then define all the ingredients in the factorized form of δσ/δω. We then apply this generic
formula to the special cases of event shape observables in the limit e → 1 and to hemisphere jet
masses, whose factorization is well understood [146, 152, 149, 44, 47]. Factorization for the former
was proven using SCET in Refs. [157, 18] and for the latter in Ref. [124], and we show how to
reproduce these results. We then consider the factorization of generic observables defined for cone
jet algorithms, and obtain the definition of the relevant cone jet functions and cone soft function.
In SCET, cone jets were previously discussed in Refs. [26, 24, 187] using Sterman-Weinberg cones.

5.1 Generic Expression

For e+e− → 2 jets, including the full spin and color information, the three SCET operators
entering the matching in Eq. (2.57) are8

OµI (pa, pb) = ē(−pa)γµe(pb) ,
OcdFµ(p1, p2) = χ̄c(p1)γµχd(−p2) ,

OcdS (ks) =
∫

d4x e−iks·x T
[
Y † cen1

(x)Y ed
n2

(x)
]
, (2.70)

where χc(p) = [Wξ]c(p) denotes a noninteracting collinear quark field of color c and charge eQf
(where f denotes the flavor), moving in the p/|p| direction. Note that we are distinguishing particle
and anti-particles by the sign of the momentum argument on the field. The soft Wilson lines along

8We only give the result for an intermediate photon here, and include the Z boson contribution later.
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an outgoing collinear direction are9

Y †n (x) = P exp
[
igs
∫ ∞

0
ds n ·As(x+ s n)

]
, (2.71)

where P denotes path ordering. The Wilson coefficient at tree level is given by

C2(pa, pb; p1, p2) =
ie2Qf

2 pa · pb [1 +O(αs)] . (2.72)

Since the initial state is not strongly interacting, the initial-state function in Eq. (2.66),
including the average over initial spins, reduces to

Iµν(pa, pb;ωa, ωb)

=
1
4

∑
spins

∫
d4p′a
(2π)4

d4p′b
(2π)4

〈
e+e−

∣∣ē(p′b)γµe(−p′a) δ[ωa − E0
a ] δ[ωb − E0

b ] ē(−pa)γνe(pb)
∣∣e+e−

〉
= (2π)4δ(pa − pe+) (2π)4δ(pb − pe−) δ[ωa] δ[ωb]Lµν , (2.73)

where pe± are the momenta of the incoming leptons and

Lµν = pµ
e−p

ν
e+ + pµ

e+
pνe− − gµν (pe− ·pe+) (2.74)

is the well-known leptonic tensor. Note that as we do not consider any initial state radiation from
the incoming leptons, E0

a,b = 0 in Eq. (2.73).
Using φ(p1) = χcα(p1) and φ(p2) = χ̄dβ(−p2) in Eq. (2.63) (where α, β are spinor indices),

the quark and anti-quark jet functions become (with the sum over spins implicit)

Jc
′c
α′α(p1;ω1) =

∫
d4p′1
(2π)4

〈
0
∣∣χc′α′(p′1) δ[ω1 − E0

1 ] χ̄cα(p1)
∣∣0〉 = δc

′c
(n/1

2

)
α′α
J(p1;ω1) , (2.75)

J̄d
′d
β′β(p2;ω2) =

∫
d4p′1
(2π)4

〈
0
∣∣χ̄d′β′(−p′2) δ[ω2 − E0

2 ]χdβ(−p2)
∣∣0〉 = δd

′d
(n/2

2

)
ββ′
J̄(p2;ω2) ,

where the spin-singlet and color-singlet jet functions are defined as

J(p1;ω1) =
1

4Nc

∫
d4p′1
(2π)4

tr
〈
0
∣∣n̄/1χ(p′1) δ[ω1 − E0

1 ] χ̄(p1)
∣∣0〉 ,

J̄(p2;ω2) =
1

4Nc

∫
d4p′2
(2π)4

tr
〈
0
∣∣χ̄(−p′2) δ[ω2 − E0

2 ] n̄/2χ(−p2)
∣∣0〉 . (2.76)

Here, tr denotes the trace over spin and color indices and Nc is the number of colors. At lowest
order in perturbation theory, we have J(p;ω) = J̄(p;ω) = 2π δ(p+) θ(p−) δ[ω(Ω)− p0 δ(Ω−Ω(p))].

From Eq. (2.65), the soft function is defined as

Sd
′c′cd
n1n2

(ωs) =
1
Nc

∫
d4k′s
(2π)4

d4ks
(2π)4

〈
0
∣∣O† d′c′S (k′s) δ[ωs − E0

s ]OcdS (ks)
∣∣0〉 , (2.77)

9For a discussion of the different choices of boundary conditions for in- and outgoing Wilson lines see for example
Ref. [9].
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where we made explicit the dependence of S on the directions n1,2 of the Wilson lines in OS , and
the factor 1/Nc is included by convention. Contracting with the trivial color structure of the jet
functions in Eq. (2.75), we obtain the color-singlet soft function

Sn1n2(ωs) = δc
′c δd

′d Sd
′c′cd
n1n2

(ωs) =
1
Nc

tr
〈
0
∣∣T [(Y †n2

Yn1)(0)
]
δ[ωs − E0

s ]T
[
(Y †n1

Yn2)(0)
]∣∣0〉 . (2.78)

Since the spin structure of the jet functions in Eq. (2.75) factorizes, we can contract all
vector and spinor indices,

Lµν

(n/1

2

)
α′α
γναβ

(n/2

2

)
ββ′
γµβ′α′ = E2

cm(1− cos θ1 cos θ2) , (2.79)

where Ecm is the total energy and θ1,2 are the angles of p1,2 with respect to the e+e− beam axis in
the center-of-mass frame. Thus, combining all pieces with Eq. (2.67), we find

δσ

δω
=

8π2α2Q2
f Nc

E4
cm

∫
d4p1

(2π)4
Dω1 J(p1;ω1)

∫
d4p2

(2π)4
Dω2 J̄(p2;ω2)H2(p1, p2) (1− cos θ1 cos θ2)

×
∫
Dωs Sn1n2(ωs) (2π)4δ4(pe+ + pe− − P [ωs]− p1 − p2) δ[ω − ω1 − ω2 − ωs] , (2.80)

where the hard coefficient H2(p1, p2) = 1 +O(αs) is defined by

|C2(pe+ , pe− ; p1, p2)|2 =
(4παQf

E2
cm

)2
H2(p1, p2) . (2.81)

Equation (2.80) specializes Eq. (2.67) to generic 2-jet configurations ω in e+e− collisions.
Next, we expand the kinematics. Using Eq. (2.69), the momentum conserving δ function

becomes

δ4
(
p−
e+
ne+

2
+ p−

e−
ne−

2
− p−1

n1

2
− p−2

n2

2

)
=

8
E2

cm

δ(p−1 − Ecm) δ(p−2 − Ecm) δ(cos θ1 + cos θ2) δ(φ1 − φ2 − π) , (2.82)

where as before in the center-of-mass frame pI = pe+ + pe− = (Ecm,0). The δ functions allow us
to perform the p−1 , p−2 , and Ω2 integrations in Eq. (2.80), and imply that p1 and p2 are back-to-
back, as expected for two-jet events. In particular, n1 = −n2, so we can write p1,2 in terms of the
components (p+, p−,n) as

p1 =
(
p+

1 , Ecm,n(Ω)
)
, p2 =

(
p+

2 , Ecm,−n(Ω)
)
, (2.83)

where Ω = (θ, φ) ≡ Ω1 describes the orientation of the momenta relative to the beam axis. We also
write Sn1n2 ≡ Sn(Ω). Similar to the Wilson coefficient C2, the hard coefficient H2(p1, p2) does not
depend on the small momentum components p+

1,2. Since p−i = Ecm, we define H2(Ecm) ≡ H2(p1, p2).
Combining everything with Eq. (2.80), using Eq. (2.68), and writing the momenta in terms of their
components, we have

δσ

δω
= H2(Ecm)

∫
dΩ
2π

∫
dp+

1

2π
Dω1 J(p+

1 , Ecm,n(Ω);ω1)
∫

dp+
2

2π
Dω2 J̄(p+

2 , Ecm,−n(Ω);ω2)

× dσ0

d cos θ

∫
Dωs Sn(Ω)(ωs) δ[ω − ω1 − ω2 − ωs] , (2.84)
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where
dσ0

d cos θ
=

πα2

2E2
cm

NcQ
2
f (1 + cos2 θ) (2.85)

is the Born differential cross section. The exchange of a Z boson can be included by using

dσ0

d cos θ
=

πα2

2E2
cm

Nc

{[
Q2
f −

2 vevfQf
1−m2

Z/E
2
cm

+
(v2
e + a2

e)(v
2
f + a2

f )

(1−m2
Z/E

2
cm)2

]
(1 + cos2 θ)

+
[ 4 aeafQ2

f

1−m2
Z/E

2
cm

− 8 veaevfaf
(1−m2

Z/E
2
cm)2

]
cos θ

}
, (2.86)

where ve,f and ae,f are the standard vector and axial couplings to the Z.
Equation (2.84) is the penultimate formula for generic observables in e+e− → 2 jet events.

Each of the ingredients in Eq. (2.84) is a completely exclusive object that depends on the energy
distribution of the individual partons. The details of how to integrate over the energy configurations
to arrive at perturbative jet functions and a universal soft function depend on the observable in
question, but since all observable independent simplifications have been done, a wide range of
factorization theorems can now be obtained with relative ease. We illustrate this with a few
examples in the following subsections.

5.2 Event Shapes in the Limit e→ 1

Combining Eqs. (2.17) and (2.28), the differential cross section in some event shape e is

dσ
de

=
∫

dt
∫
Dω δσ

δω
δ(t− t[ω]) δ(e− fe[ω; t]) . (2.87)

For e → 1, the final state is dominated by two highly collimated jets, and hence, we can use the
result for δσ/δω in Eq. (2.84). The integration over ω is trivial and sets ω = ω1 + ω2 + ωs. Since
ω1,2 describe collinear energy configurations along ±n(Ω), we have t[ω1 +ω2 +ωs] = n+O(λ2) [18].
This allows us to integrate over t,

dσ
de

= H2(Ecm)
∫

dΩ
2π

∫
dp+

1

2π
Dω1 J(p+

1 , Ecm,n(Ω);ω1)
∫

dp+
2

2π
Dω2 J̄(p+

2 , Ecm,−n(Ω);ω2)

× dσ0

d cos θ

∫
Dωs Sn(Ω)(ωs) δ(e− fe[ω1 + ω2 + ωs; n(Ω)]) . (2.88)

From Eq. (2.29), we see that fe[ω; n] is linear in ω, from which it follows that we can write
fe[ω1 + ω2 + ωs; n] = fe[ω1; n] + fe[ω2; n] + fe[ωs; n]. This implies

δ(e− fe[ω1 + ω2 + ωs; n]) =
∫

de1 de2 des δ(e− e1 − e2 − es)
× δ(e1 − fe[ω1; n]) δ(e2 − fe[ω2; n]) δ(es − fe[ωs; n]) , (2.89)

which separates the ω dependencies in Eq. (2.88). We stress that this is not a requirement for
the factorization of dσ/de, as demonstrated by Eq. (2.88). In fact, the full event-shape functional
fe[ω] = fe[ω, t[ω]] is not linear in ω and does not obey a similar separation, because t[ω] is not
linear in ω. The crucial ingredient for the factorization is the linearity of the energy-momentum
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tensor and the resulting separation of the energy flow operator in Eqs. (2.60) and (2.61). However,
without Eq. (2.89) the jet and soft functions depend on the full energy distributions ωi, and are
therefore neither perturbatively calculable, nor universal enough to be extracted from data. The
important point about Eq. (2.89) is that it allows us to perform the ω integrations in Eq. (2.88),
and to define inclusive event-shape jet and soft functions

J(e1) =
∫

dp+
1

2π
Dω1 J(p+

1 , Ecm,n;ω1) δ(e1 − fe[ω1; n]) ,

J̄(e2) =
∫

dp+
2

2π
Dω2 J̄(p+

2 , Ecm,n;ω2) δ(e2 − fe[ω2; n]) ,

S(es) =
∫
Dωs Sn(ωs) δ(es − fe[ωs; n]) . (2.90)

With the definitions in Eqs. (2.76) and (2.78), these are identical to the definitions given in Ref. [18].
For J̄(e2) we used that fe[ω,n] = fe[ω,−n] because the sign of the thrust vector is irrelevant. By
rotational invariance, after integrating over ω1,2, the jet functions J(e1), J̄(e2), do not depend on
the value of n on the right-hand side. This would not be true if the thrust axis n in fe[ω; n] would
be different from the momentum direction n in J(p+, Ecm,n;ω). Similarly, after integrating over
ωs, the soft function S(es) is independent of n, because the direction of the Wilson lines in Sn(ωs)
coincides with the thrust axis. Thus, using Eq. (2.90) and integrating over Ω, we obtain the final
result

dσ
de

= H2(Ecm)σ0

∫
de1 de2 des J(e1) J̄(e2)S(es) δ(e− e1 − e2 − es) . (2.91)

where σ0 =
∫

d cos θ dσ0/d cos θ is the total Born cross section. Equation (2.91) agrees with the
result of Ref. [18].

5.3 Double Differential Hemisphere Mass Distribution

Combining Eqs. (2.17) and (2.37), the double differential hemisphere mass distribution is

d2σ

dM2
1 dM2

2

=
∫

d4P1

∫
d4P2

d2σ

d4P1 d4P2
δ(M2

1 − P 2
1 ) δ(M2

2 − P 2
2 ) , (2.92)

where the cross section differential in the total momentum of each jet for the hemisphere jet
algorithm is

d2σ

d4P1 d4P2
=
∫

dt
∫
Dω δσ

δω
δ(t− t[ω]) δ4(P1 − P [J1[ω; t]]) δ4(P2 − P [J2[ω; t]]) . (2.93)

Here, P [ω] is given in Eq. (2.20) and Ji[ω; t] in Eq. (2.40). Combining these we have

Pµhemi 1[ω; t] ≡ Pµ[J1[ω; t]] =
∫

dΩnµ(Ω)ω(Ω) θ(0 ≤ θt < π/2) ,

Pµhemi 2[ω; t] ≡ Pµ[J2[ω; t]] =
∫

dΩnµ(Ω)ω(Ω) θ(π/2 ≤ θt ≤ π) . (2.94)
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In general, Eq. (2.93) will receive contributions from final states containing several distinct collinear
momenta, corresponding to SCET operators with N ≥ 2. However, if the final states are restricted
to the kinematic region of small hemisphere invariant masses M2

i = P 2
i ∼ O(λ2E2

cm), corresponding
to two collimated jets, the operator with N = 2 collinear directions gives the dominant contribution,
with the corrections suppressed by powers of λ. Thus, we can apply the result for δσ/δω in Eq. (2.84)
in this region.

The integral over t can be performed as in the previous subsection, which sets t = n +
O(λ2). As Eq. (2.94) is linear in ω, we then have

Phemi i[ω; n] = Phemi i[ω1 + ω2 + ωs; n] = Phemi i[ω1; n] + Phemi i[ω2; n] + Phemi i[ωs; n] . (2.95)

To understand the size of Phemi i[ωj ] for i = j and i 6= j, we need to think about states in SCET in
some more detail. Since the direction n labelling the collinear fields in SCET is a conserved quantum
number, there exists a basis for the physical states which have a fixed value of n as well. This implies
that for a given SCET state with momentum p, one has to identify the value of the direction n as
well. Of course, to have the same final states as in full QCD, one needs

∑
n |p, n〉SCET = |p〉QCD,

i.e. one has to be careful not to double count the physical states. Certainly, a convenient choice
is to define the SCET states such that for every momentum p there is only a single value n. For
our problem, the simplest choice is to assign the label n1 = (1,n) to all states with momentum in
hemisphere 1, and n2 = (1,−n) to all states in hemisphere 2. This choice implies

Phemi i[ωj 6=i; n] = 0 and Phemi i[ωi; n] = pi , (2.96)

where pi = P [ωi] is the total momentum of ωi, i.e., the momentum in J(pi;ωi). The power
counting of SCET implies that `i = Phemi i[ωs] ∼ λ2E2

cm, where `i can be interpreted as the total
soft momentum in each hemisphere. Thus, using Eq. (2.83) we can expand

M2
i = P 2

i = p2
i + 2pi · `i + `2i = Ecm(p+

i + ni · `i) +O(λ4E2
cm) . (2.97)

Since our observables M2
i only depend on p+

i and ni · `i, we can do the remaining integra-
tions in Eq. (2.84), and define the corresponding jet and soft functions

J(Ecmp
+
1 ) =

1
2πEcm

∫
Dω1 J(p+

1 , Ecm,n;ω1) ,

J̄(Ecmp
+
2 ) =

1
2πEcm

∫
Dω2 J̄(p+

2 , Ecm,n;ω2) ,

Shemi(`+1 , `
+
2 ) =

∫
Dωs Sn(ωs) δ(`+1 − n1 ·Phemi 1[ωs; n]) δ(`+2 − n2 ·Phemi 2[ωs; n]) . (2.98)

Again, after integrating over ω1,2,s, the jet functions, J(p2
1) and J̄(p2

2), and the hemisphere soft
function, Shemi(`+1 , `

+
2 ), do not depend on n due to rotational invariance. The SCET hemisphere

soft function has been discussed previously in Refs. [124, 132, 125, 130]. The above definition
provides an operator definition of Shemi(`+1 , `

+
2 ) in SCET, and is equivalent to the definition in

Ref. [152]. Putting everything together, we obtain for the double differential hemisphere mass
distribution

d2σ

dM2
1 dM2

2

= H2(Ecm)σ0

∫
d`+1 d`+2 J(M2

1 − Ecm`
+
1 ) J̄(M2

2 − Ecm`
+
2 )Shemi(`+1 , `

+
2 ) , (2.99)

which agrees with the massless limit of the result in Ref. [124].
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5.4 Two-Jet Cone Algorithms

As the last example in this section, we consider the cross section for two-jet final states
obtained from an infrared-safe cone jet algorithm. Since the discussion follows closely that of
the previous two subsection, we keep it short, mainly highlighting the differences. Combining
Eqs. (2.17) and (2.37) with N = 2 we have

dσ
dO

=
∫

dj1 dj2

∫
Dω δσ

δω
δ(j1 − j1[ω]) δ(j2 − j2[ω])

×
∫

d4P1 δ
4(P1 − Pcone[ω; j1])

∫
d4P2 δ

4(P2 − Pcone[ω; j2]) δ(O − gO(P1, P2)) , (2.100)

where ji[ω] denotes the i-th jet direction returned by j[ω], and the functionals for the total jet
momenta are now defined for example using Eq. (2.42)

Pµcone[ω; ji] ≡ Pµ[Ji[ω; j]] =
∫

dΩnµ(Ω)ω(Ω) θ(R− θji) . (2.101)

As before, Eq. (2.100) receives in general contributions from operators with N ≥ 2. However, if the
final state is restricted to two jets with small invariant masses, M2

i = P 2
i ∼ O(λ2E2

cm), the result
for δσ/δω in Eq. (2.84) for N = 2 gives the dominant contribution, with corrections suppressed
by powers of λ. The restriction on the kinematics of the final state is now provided by the jet
algorithm, or by the combination of jet algorithm and observable.

For a good jet algorithm, the result of j[ω] should not depend on ωs up to power correc-
tions. This is equivalent to the requirement that the jet algorithm should not be infrared sensitive.
Furthermore, since ωi describes a collinear energy configuration along ni, by a similar argument as
in the case of thrust, up to power corrections, the direction of the jets is aligned with the direction
of the collinear fields. Therefore,

ji[ω1 + ω2 + ωs] = ni +O(λk) . (2.102)

The power of k depends on the details of the algorithm, e.g., for the hemisphere jet algorithm,
where j is the thrust axis, we had k = 2.

To define the states in SCET, we assign the label ni to states with momentum lying in
the i-th cone, so there is again no overlap between states with the same momentum but different
n inside the cones. The precise definition of states with momentum outside any of the cones is not
important at this point. With this definition, Pcone[ωj 6=i; ni] = 0, and since Eq. (2.101) is linear in
ω, we have

Pcone[ω1 + ω2 + ωs; ni] = Pcone[ωi; ni] + Pcone[ωs; ni] ≡ qi + `i , (2.103)

where qi = Pcone[ωi; ni] and `i = Pcone[ωs; ni] are the total collinear and soft momentum in each
cone. Equation (2.102) implies that qi+`i are aligned along ni up to power corrections. In addition,
note that q±i ≡ q±i (R) is a function of the cone size R (and the used jet algorithm). For R = π
the cones become hemispheres, and thus q±i (π) = p±i , while at lowest order in perturbation theory,
q±i (R) = p±i − O(αs). Thus, for large enough R, q±i /p

±
i ∼ 1 with the corrections calculable in

perturbation theory. (Generically, we expect the perturbative corrections to contain logarithms of
π/R. Similar phase space logarithms have been studied for the case of Sterman-Weinberg jets in
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Ref. [187].) Hence, as q±i obeys the same power counting as p±i for reasonable R, any observable
that does not vanish at leading order in the SCET power counting can be written as

gO(P1, P2) ≡ gO(q+
1 + `+1 , q

−
1 , q

+
2 + `+2 , q

−
2 ,n) +O(λm) , (2.104)

where, m is not necessarily the same as k and also depends on the observable.
Since Eq. (2.104) only depends on q±i , the result for dσ/dO can be expressed in terms of

the cone jet and soft functions

Jcone(q+
1 , q

−
1 ) =

∫
dp+

1

2π
Dω1 J(p+

1 , Ecm,n;ω1) δ(q+
1 − n1 ·Pcone[ω1; n]) δ(q−1 − n2 ·Pcone[ω1; n]) ,

J̄cone(q+
2 , q

−
2 ) =

∫
dp+

2

2π
Dω2 J̄(p+

2 , Ecm,n;ω2) δ(q+
2 − n1 ·Pcone[ω2; n]) δ(q−2 − n2 ·Pcone[ω2; n]) ,

Scone(`+1 , `
+
2 ) =

∫
Dωs Sn(ωs) δ(`+1 − n1 ·Pcone[ωs; n]) δ4(`+2 − n2 ·Pcone[ωs;−n]) , (2.105)

where as before n1,2 = (1,±n), and the functions on the left-hand side do not depend on n.
Combining Eq. (2.84) with Eq. (2.100) and using the above definitions, we obtain the final result
for the factorized differential cross section

dσ
dO

= H2(Ecm)
∫

dΩ
2π

dσ0

d cos θ

∫
dq+

1 dq−1 Jcone(q+
1 , q

−
1 )
∫

dq+
2 dq−2 J̄cone(q+

2 , q
−
2 )

×
∫

d`+1 d`+2 Scone(`+1 , `
+
2 ) δ

(
O − gO(q+

1 + `+1 , q
−
1 , q

+
2 + `+2 , q

−
2 ,n(Ω))

)
. (2.106)

To our knowledge, factorization for jet distributions has not received much attention in the literature
(however, see Refs. [187, 144]), and this is the first time any factorization theorem for jet observables
based on jet algorithms has been proven in the framework of SCET.

For many observables, such as the transverse momentum distribution, the dependence on
the soft momenta and the small components q+

i is power suppressed, which allows us to integrate
over these to obtain

dσ
dO

=H2(Ecm)
∫

dΩ
2π

dσ0

d cos θ

∫
dq−1 Jcone(q−1 )

∫
dq−2 J̄cone(q−2 )Scone δ

(
O − gO(q−1 , q

−
2 ,n(Ω))

)
,

(2.107)

where
∫

dl+dl− Scone(l+, l−) ≡ Scone is perturbatively calculable up to small power corrections and
we defined

Jcone(q−1 ) =
∫

dq+
1 Jcone(q+

1 , q
−
1 ) , J̄cone(q−2 ) =

∫
dq+

2 J̄cone(q+
2 , q

−
2 ) . (2.108)

6 Towards pp→ 2 Jets

In the previous section we have focused on two-jet production in e+e− collisions. In this
section, we extend these results to include hadrons in the initial state. Jet production in hadronic
collisions is in several ways more complicated than for e+e− collisions. First, there are several
different partonic processes contributing to pp→ 2 jets. Second, the operators describing the short
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distance process now contain strongly interacting particles for both initial and final states, giving
rise to a more involved color and Dirac structure. Finally, there are several additional matrix
elements required to describe the long distance physics. These are the parton distribution function
describing how the initial state partons are distributed inside the incoming proton, as well as new
soft functions.

In this chapter, we will only consider the simplest partonic process qq′ → qq′, and work
only to tree level in the matching from QCD onto SCET. This simplifies the discussion dramatically,
since only a single operator contributes at this order. Furthermore, due to the absence of gluons in
the initial or final state, the only additional nonperturbative ingredients are the parton distributions
of finding a quark inside the proton and the new soft function. The complete analysis of pp → 2
jets is considerably more involved and will be discussed elsewhere [22].

6.1 Matching onto SCET at Tree Level

At tree level, only a single operator is required in SCET to describe the partonic process
qq′ → qq′, schematically

O(pa, pb; p1, p2) = C4(pa, pb; p1, p2)OI(pa, pb)OF (p1, p2)OS(ks) , (2.109)

where we define the Wilson coefficient C4 to contain all the kinematic and Dirac factors. The
operators OI , OF , and OS are defined as

OcdI αβ(pa, pb) = χcα(pa)χdβ(pb) ,

OefF γδ(p1, p2) = χ̄eγ(p1) χ̄fδ (p2) ,

Oec fdS (ks) =
∫

d4x e−iks·x T
[
(Y †n1

TAỸna)ec(x) (Y †n2
TAỸnb)

fd(x)
]
, (2.110)

where subscripts denote spinor and superscripts color indices. The Wilson lines for the outgoing
fields are defined as in Eq. (2.71), while for the incoming fields they are

Ỹn(x) = P exp
[
igs
∫ 0

−∞
ds n ·As(x+ sn)

]
. (2.111)

The Wilson coefficient is given by

C4(pa, pb; p1, p2) =
ig2
s

t̂
(γµ)γα (γµ)δβ , (2.112)

where we stress again that we are only working to tree level in the matching. The variable t̂ is one
of the usual Mandelstam variables defined in terms of the partonic momenta

ŝ = (pa + pb)2 , t̂ = (pa − p1)2 , û = (pa − p2)2 . (2.113)

6.2 New Nonperturbative Matrix Elements

There are two sources of additional matrix elements which cannot be calculated perturba-
tively. First, the operator OI now includes strongly interacting degrees of freedom, and the matrix
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elements involving the initial state protons are no longer calculable. Second, the soft operator
contains four Wilson lines, rather than just two as for e+e− collisions. This implies that a new soft
function is required. In this section we define all required nonperturbative matrix elements needed
for the process pp→ 2 jets via the partonic process qq′ → qq′.

Since the initial state hadrons are moving along different light cones, they are described by
two sets of SCET Lagrangians which do not interact with each another. Therefore, the physics of the
two initial states completely factorizes, in the same way as the final state partons in different direc-
tions factorize from one another, and we can write |I〉 = |Pa〉 |Pb〉 and OI(pa, pb) = OaI (pa)ObI(pb),
such that we can factorize the initial state matrix element as

〈I|O†I(p′a, p′b) δ[ωa − E0
a ] δ[ωb − E0

b ]OI(pa, pb)|I〉
= 〈Pa|Oa †I (p′a) δ[ωa − E0

a ]OaI (pa)|Pa〉 〈Pb|Ob †I (p′b) δ[ωb − E0
b ]ObI(pb)|Pb〉 . (2.114)

For the case considered here, the operators OaI and ObI contain just a single quark field, (OaI )cα =
χcα(pa) and (ObI)dβ = χdβ(pb). The resulting matrix elements define the parton distribution functions
to find the quarks q and q′ in the initial protons Pa,b.∫

d4p′a
(2π)4

〈
Pa
∣∣χ̄c′α′(p′a) δ[ωa − E0

a ]χcα(pa)
∣∣Pa〉 =

1
2Nc

δc
′c
(n/a

2

)
αα′

fq/P (pa;ωa) , (2.115)

and similarly for fq′/P (pb;ωb). (Note that since we are distinguishing particles and antiparticles by
the sign of their momentum, there is no anti-quark distribution on the right-hand side.) Combining
these results gives the initial state function

Ic
′c d′d
α′αβ′β(pa, pb;ωa, ωb) =

1
4N2

c

δc
′c δd

′d
(n/a

2

)
αα′

(n/b
2

)
ββ′

fq/P (pa;ωa) fq′/P (pb;ωb) . (2.116)

In most cases of experimental interest, the observable is independent of ωa,b and the plus- and
transverse components of the collinear momentum, which means we can integrate over these to
obtain the standard parton distribution function [91, 20, 160]

fq/P (xa) =
∫

d4pa
(2π)4

Dωa fq/P (pa;ωa) δ(p−a − xaEcm) , (2.117)

while everywhere else up to power corrections we can use

pa = xaEcm
na
2
, pb = xbEcm

nb
2
, (2.118)

with na = (1,nPa) and nb = (1,nPb) now aligned along the direction of the incoming protons.
While the dependence on ω in our generalized distributions fq/I(p;ω) is not of relevance

for most processes of interest, it describes the energy configuration of the remnant of the proton
after the hard scattering. Thus, this matrix element provides a field-theoretical definition of the
beam remnant. In particular, this means that the effect of the beam remnant is properly taken
into account in our factorization proof in Sec. 4. In principle, operators OI with more than one
collinear field in the directions na and nb can be included as well, and would describe multiple
scatterings of partons originating from the initial protons. These additional hard scatterings give
rise to what is usually referred to as the underlying event [178, 176]. Thus, these effects are also
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taken into account in our factorization proof. Moreover, our formalism provides a field-theoretic
basis to study the underlying event. The details are left for future work.

Since we only work to tree level in the matching from QCD to SCET, there is only a single
soft function required for the process qq′ → qq′. After contracting with the color structures of the
initial state function and the q and q′ quark jet functions Je

′e
γ′γ(p1;ω1) and Jf

′f
δ′δ (p2;ω2) (defined in

the first line of Eq. (2.75)), we obtain

Snanbn1n2(ωs) =
2

NcCF

∫
d4k′s
(2π)4

d4ks
(2π)4

〈
0
∣∣O†ce dfS (k′s) δ[ωs − E0

s ]Oec fdS (ks)
∣∣0〉

=
2

NcCF

〈
0
∣∣T [(Ỹ †naTBYn1)ce(0) (Ỹ †nbT

BYn2)df (0)
]
δ[ωs − E0

s ]

× T [(Y †n1
TAỸna)ec(0) (Y †n2

TAỸnb)
fd(0)

]∣∣0〉 . (2.119)

6.3 Generic Expression

Combining Eqs. (2.67), (2.75), (2.112), (2.115) and (2.119), the qq′ → qq′ contribution to
δσ/δω for 2-jet production can be written as

δσ

δω
=

1
2E2

cm

( ∏
i=a,b,1,2

∫
d4pi
(2π)4

Dωi
)

1
4N2

c

fq/P (pa;ωa) fq′/P (pb;ωb) J(p1;ω1) J(p2;ω2)

× H4(pa, pb; p1, p2)
NcCF

2

∫
Dωs Snanbn1n2(ωs)

× (2π)4δ4(pa + pb − P [ωs]− p1 − p2) δ[ω − ωa − ωb − ω1 − ω2 − ωs] , (2.120)

where (at tree level in the matching)

H4(pa, pb; p1, p2) =
g4
s

t̂2
1
4

tr[n/aγµn/1γν ]
1
4

tr[n/bγµn/2γ
ν ] =

2g4
s

t̂2
(na ·nb n1 ·n2 + na ·n2 nb ·n1) . (2.121)

As discussed before, most observables are independent of the energy configurations ωa
and ωb, i.e., fO[ωa + ωb + ω1 + ω2 + ωs] = fO[ω1 + ω2 + ωs]. Therefore we can drop these beam
remnant configuration in the δ functional for ω and integrate over them in the parton distribution
functions. Furthermore, inserting

1 = E2
cm

∫ 1

0
dxa

∫ 1

0
dxb δ(p−a − xaEcm) δ(p−b − xbEcm) , (2.122)

and using Eqs. (2.117) and (2.118), the expression for δσ/δω becomes

δσ

δω
=

CF
16Nc

∫ 1

0
dxa dxb fq/P (xa) fq′/P (xb)

∫
d4p1

(2π)4
Dω1 J(p1;ω1)

∫
d4p2

(2π)4
Dω2 J(p2;ω2)

× H4

(
Ecmxa

na
2
, Ecmxb

nb
2

; p1, p2

)∫
Dωs Snanbn1n2(ωs)

× (2π)4δ4
(
Ecmxa

na
2

+ Ecmxb
nb
2
− P [ωs]− p1 − p2

)
δ[ω − ωs − ω1 − ω2] , (2.123)
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where na,b = (1,nPa,b) are now aligned with the directions of the incoming protons. As in Sec. 5,
this can be simplified further by expanding the kinematics. After some algebra, we obtain

δσ

δω
=
∫

dΩp

2π

∫ 1

0
dxa dxb

∫
dp+

1

2π
Dω1 J(p+

1 , p
−
1 ,n1;ω1)

∫
dp+

2

2π
Dω2 J(p+

2 , p
−
2 ,n2;ω2)

× fq/P (xa) fq′/P (xb)
dσ0

d cos θp

∫
Dωs Snanbn1n2(ωs) δ[ω − ωs − ω1 − ω2] , (2.124)

where the angular integral is defined in the center-of-mass frame of the partonic collision. Both
the large p−i components and the directions ni are functions of the partonic center-of-mass angular
variables, Ωp, and the energy fractions of the incoming partons, xa,b. They are defined by

p−1 (Ωp, xa, xb) =
Ecm

2
[xa(1 + cos θp) + xb(1− cos θp)] ,

p−2 (Ωp, xa, xb) =
Ecm

2
[xa(1− cos θp) + xb(1 + cos θp)] ,

ni(Ωp, xa, xb) = n(Ωi) , (2.125)

where Ωi = (θi, φi) are given by

cos θ1 =
xa(1 + cos θp)− xb(1− cos θp)
xa(1 + cos θp) + xb(1− cos θp)

, φ1 = φp

cos θ2 =
xa(1− cos θp)− xb(1 + cos θp)
xa(1− cos θp) + xb(1 + cos θp)

, φ2 = φp + π . (2.126)

Finally, the differential cross section dσ0/d cos θp is given by

dσ0

d cos θp
=
πα2

sCF
2Nc

1
xa xbE2

cm

4 + (1 + cos θp)2

(1− cos θp)2
, (2.127)

which agrees with the well known expression in terms of the Mandelstam variables ŝ, t̂, û

dσ0

dt̂
=
πα2

sCF
Nc

ŝ2 + û2

ŝ2 t̂2
. (2.128)

6.4 Jet Observables

As an example how to use Eq. (2.124), we derive a factorized cross section for infrared-safe
cone jet observables, which was also studied in Ref. [144]. The required steps are very similar to the
derivation given in Sec. 5.4, and we only highlight the differences that arise from having protons in
the initial state. First, δσ/δω depends on the parton distribution functions fq/P (xa) and fq′/P (xb).
Second, while for e+e− collisions one often uses the variables θ and φ to denote the direction of jets,
in pp collisions it is more appropriate to use the rapidity instead of the angle θ, due to the easier
transformation properties under boosts along the beam direction. This gives cone jet functions
Jcone that have exactly the same form as in Eq. (2.124) but use the corresponding cone projections
in place of Eq. (2.42) to define the functionals Pcone[ω; ji] in Eq. (2.101). The final difference is that
the cone soft function now explicitly depends on the orientation of the directions ni relative to the
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beam axis, since it contains Wilson lines in both the directions of the incoming protons and the
outgoing jets. In particular, this implies that the nonperturbative physics described by this cone
soft function depends on the rapidities of the outgoing jets. The experimental determination of the
soft function is thus considerably more difficult for hadronic collisions than for e+e− collisions.

Keeping in mind these differences, we can follow the same steps as in Sec. 5.4 to obtain
the factorization formula for generic two-jet observable using cone jets:

dσ
dO

=
∫

dΩp

2π

∫ 1

0
dxa dxb fq/P (xa) fq′/P (xb)

dσ0

d cos θp

×
∫

dq+
1 dq−1 Jcone(q+

1 , q
−
1 )
∫

dq+
2 dq−2 Jcone(q+

2 , q
−
2 )

×
∫

d`+1 d`+2 S
cone
n1n2

(`+1 , `
+
2 ) δ

(
O − gO(q+

1 + `+1 , q
−
1 , q

+
2 + `+2 , q

−
2 ,n1,n2)

)
, (2.129)

where the cone soft function is now defined as

Scone
n1n2

(`+1 , `
+
2 ) =

∫
Dωs Snanbn1n2(ωs) δ(`+1 − n1 ·Pcone[ωs; n1]) δ(`+2 − n2 ·Pcone[ωs; n2]) . (2.130)

As for e+e−, many jet observables only depend on the large momentum components and
the direction of the jets. In this case, we can perform the integrals over p+

i and `+i . Integrating
over `+i we define ∫

d`+1 d`+2 S
cone
n1,n2

(`+1 , `
+
2 ) ≡ Scone

n1,n2
, (2.131)

which is now perturbatively calculable up to small power corrections. We obtain

dσ
dO

=
∫

dΩp

2π

∫ 1

0
dxa dxb fq/P (xa) fq′/P (xb)

dσ0

d cos θp

∫
dq−1 J(q−1 )

∫
dq−2 J(q−2 )

× Scone
n1,n2

δ
(
O − gO(q−1 , q

−
2 ,n1,n2)

)
, (2.132)

where the jet functions integrated over p+
i are defined as in Eq. (2.108).

7 Conclusions and Outlook

We have developed a new formalism for obtaining factorization theorems for almost any
observable of interest at high energy colliders. We argued that any observable differential cross
section can be written in terms of two building blocks, a fully differential cross section describing
the energy and momentum distribution of a given event, together with the restriction of how to
obtain the desired observable from this distribution. For events containing only massless particles
in the final state, the only information required to define observables O is the energy configuration
ω of the event, and we therefore focused on the cross section fully differential in ω, which we
denoted as δσ/δω. By integrating this energy distribution with an appropriate functional fO[ω],
the differential cross section dσ/dO in any observable O can be obtained.

Our main result is the proof of factorization for the fully differential cross section, δσ/δω,
using soft-collinear effective theory. It relies on the fact that δσ/δω can be written directly in
terms of a matrix element of well-defined operators in SCET using the energy flow operator. The
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linearity of the energy flow operator allowed us to factorize δσ/δω into simpler building blocks, each
of which is defined by matrix elements of operators in the effective theory and contains a single
scale allowing for a systematic program of logarithmic resummation. After the factorized form of
δσ/δω for a given process is determined once and for all, it can be used to study the factorization
properties of specific observables. The question of whether a given differential cross section dσ/dO
factorizes in the traditional sense depends on whether the form of fO[ω] is such that it smears the
individual matrix elements in δσ/δω into objects that can be either calculated perturbatively or
determined experimentally from other processes.

Using our formalism, we were able to directly study the factorization properties of the
fully differential cross section, independent from the observable-specific functional fO[ω]. While
the question of whether the differential cross section in a given observable factorizes in the tra-
ditional sense still needs to be asked on an observable-by-observable basis, this disentanglement
demonstrates to what length the steps taken in factorization proofs are observable independent.
It turns out that it is the observable independent analysis that requires most of the calculational
work. The fact that we can study factorization on an observable independent level could potentially
be relevant for Monte Carlo event generation. It should be possible to make a connection between
our factorized result for δσ/δω for generic N -jet production and the N -body partonic calculations
that were introduced in Refs. [34, 35] as input for an event generation framework. If so, our results
could be used to provide improved theoretical inputs for event generation. However, more work in
this direction is needed.

To demonstrate the simplicity with which factorization formulas for specific observables
can be obtained from the factorized result for δσ/δω, we have applied our results to several simple
observables in e+e− → 2 jets. We first reproduced the known results for event shape and hemisphere
mass distributions, and then obtained factorization formulas for generic observables defined in terms
of the total jet momenta obtained from cone jet algorithms, which so far have not been studied
in SCET. We have also explored some of the issues arising in jet production in hadronic collisions
by studying the partonic subprocess qq′ → qq′ using tree level matching from QCD onto SCET.
In particular, we showed that the more complicated structure requires a soft function that is more
complicated from the case of e+e− scattering. We also showed how parton distribution functions
arise in our formalism, and commented on how it could be used to study beam remnants and
underlying events.

It should be clear from these examples how our generic N-jet formalism can be applied
to the study of observables in more complicated processes, such as processes with heavy vector
bosons and more than two jets in the final state, which are crucial for many measurements at
the upcoming LHC. It is these more complicated processes where the power of our new formalism
becomes increasingly pronounced. While the number and complexity of Dirac and color structures
grows quickly for any exhaustive study of factorization with two or more final state jets, the
application of our formalism is straightforward and in fact facilitates recycling the bulk of the
work needed or already known in the literature for a particular observable, to be used for other
observables of interest.
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Chapter 3

Effective Predictions of Event Shapes:
Factorized, Resummed, and Gapped
Angularity Distributions1

1 Introduction

Event shapes probe the hadronic final states produced in hard scattering processes for jet-
like structure [99]. Two-jet event shapes e in hadronic e+e− annihilations are constructed so that
one of the kinematic endpoints corresponds to the limit of two back-to-back perfectly collimated
jets. Different event shapes vary in their sensitivity to particles close to or far away from the jet
axis and thus used in tandem probe the substructure of jets [4, 3]. Some examples of two-jet event
shapes are the familiar thrust [55, 123], jet masses [88, 80, 89], and jet broadening [75], and the
more recently introduced angularities [47]. The shape of the distributions in these variables depend
on several energy scales, namely, the scale Q of the hard scattering, the scale of the invariant
mass or typical transverse momentum of the jet µJ , and the scale ΛQCD of soft radiation from the
jets involved in color recombination occurring during hadronization. Event shapes thus probe the
behavior of QCD over a large range of energy scales, and indeed have been the source of some of
the most precise extractions of the strong coupling constant αs [41, 102, 51].

Dependence on strong interactions at soft scales near ΛQCD where QCD is nonperturbative
would render predictive calculations impossible, without the use of factorization. Factorization
separates an observable into pieces depending on each individual relevant energy scale. Those pieces
depending on large scales can be calculated perturbatively, while those depending on soft scales
remain nonperturbative. If these soft functions are, however, universal among different observables
or physical processes, then calculations of the factorized observables become predictive. A large
number of two-jet event shape distributions in e+e− annihilation can be factorized into hard, jet,
and soft functions:

1
σtot

dσ
de

= H(Q;µ)
∫

de1 de2 des J1(e1;µ)J2(e2;µ)S(es;µ)δ(e− e1 − e2 − es) , (3.1)

1This chapter was originally cowritten with Christopher Lee and Gregory Ovanesyan [134].
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where H(Q;µ) is the hard coefficient dependent only on the hard scattering e+e− → qq̄ at center-of-
mass energy Q, J1,2 are jet functions describing the perturbative evolution of the initially produced
partons q, q̄ into collimated jets of lower-energy partons, and finally S(es;µ) is the soft function
describing the color exchange between the two jets leading to the hadronization of their constituent
partons. This description introduces dependence on a factorization scale µ, at which the cross-
section is factorized, into each of the individual functions. This dependence must cancel in the
whole combination in Eq. (3.1). The full distribution and the individual jet and soft functions
contain terms of the form (1/e)αns lnme which become large in the two-jet limit e → 0. The
dependence of the hard, jet, and soft functions on the factorization scale µ can be determined from
renormalization group equations, which can be used to resum the large logarithms [96].

The formidable achievements of proofs of factorization theorems for hard scattering cross-
sections in QCD span a long and monumental history [93, 181]. More recently many of these
theorems were reformulated in the language of soft-collinear effective theory (SCET) [19, 21, 33, 29].
This was done for two-jet event shapes for light quark jets in the series of papers [26, 24, 157, 18]
and for top quark jets in [124, 125]. Some of the relations between the full and effective theory
formulations of factorization were explored in [157, 18]. Equivalent results can be formulated
in either language, although our discussion below will be in the context of SCET, which we find
advantageous for its intuitive framework for separating physics at hard, collinear, and soft scales and
its explicit Lagrangian for interactions between collinear and soft modes. These features facilitate
the implementation of factorization and resummation of logarithms of ratios of all the relevant
energy scales. At the same time that the effective theory provides us an intuitive framework in which
to analyze the behavior of event shape distributions, the properties of the angularities themselves
will in turn illuminate properties of the effective theory, and in particular, the conditions under
which it is valid for the observables under consideration.

To describe the conditions under which the distribution in a particular event shape fac-
torizes as in Eq. (3.1), it is useful to write event shapes in a generic form. Many event shapes can
be written in the form,

e(X) =
1
Q

∑
i∈X

∣∣pi⊥∣∣ fe(ηi) , (3.2)

where the sum is over all particles i in the final state X, pi⊥ is the transverse momentum of the
ith particle and ηi its rapidity relative to the thrust axis. Each choice of the weight function fe
determines a different event shape. For example, for the thrust and jet broadening, f1−T (η) = e−|η|

and fB(η) = 1. A continuous set of event shapes which generalize the thrust and jet broadening
are the angularities τa [47], corresponding to the choice

fτa(η) = e−|η|(1−a) , (3.3)

where a is any real number a < 2. For a ≥ 2, the function in Eq. (3.3) weights particles collinear
to the thrust axis too strongly and makes the quantity Eq. (3.2) sensitive to collinear splitting, and
thus not infrared-safe. The factorization theorem Eq. (3.1), however, is valid only for a < 1. At
a = 1, the distribution of events in τ1 is dominated by jets with invariant mass of order ΛQCD. Thus,
the jet and soft scales coincide, and the distribution cannot be divided into separately infrared-safe
jet and soft functions, at least in the traditional form of the factorization theorem. This breakdown
can be seen in the uncontrollable growth of a number of nonperturbative power corrections as a→ 1
[47, 157], or in the failure to cancel infrared divergences in the perturbative calculation of the jet
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or soft functions in the same limit, as we have recently explored in Ref. [135]. We review this
breakdown of factorization in the explicit perturbative calculations we perform below. Any choice
of weight function fe that sets a jet scale at or lower than the soft scale will ruin the factorization
Eq. (3.1).

The distributions for which the factorization in Eq. (3.1) breaks down might still factorize
in a different form, by distinguishing collinear and soft modes not by their invariant mass, but by
their rapidity, as proposed in [163]. We do not, however, pursue such a strategy here, and focus
only on angularities with strictly a < 1.2

The soft function evaluated at a scale µs ∼ ΛQCD is nonperturbative. Evaluated at a
higher scale, however, it can be calculated in perturbation theory. An appropriate model for the
soft function should interpolate between these two regimes. In our analysis we adopt a model like
that proposed for hemisphere jet masses in [132] and for b-quark distributions in [159], in which
the soft function is a convolution,

S(es;µ) =
∫

de′s S
PT(es − e′s;µ)f exp(e′s −∆e) , (3.4)

where SPT is the partonic soft function calculated in perturbation theory, and f exp is a nonper-
turbative model function. The gap parameter ∆e, proposed in Ref. [132], enters f exp through a
theta function θ(es − ∆e) so that the minimum possible value of an event shape e of final states
is ∆e, which is zero in the partonic distribution, but is nonzero due to hadronization in the actual
distribution. The full soft function S(es;µ) inherits its scale dependence from SPT(es;µ) and thus
has a well-defined running with the scale µ.

The partonic soft function SPT(es;µ) contains a renormalon ambiguity due to the behavior
of the perturbative series at high orders. This ambiguity should not be present in the full physical
distribution or the soft function, so the ambiguity in SPT is canceled by a corresponding ambiguity
in ∆e. Shifting from ∆e to a renormalon-free gap parameter ∆̄e(µ) = ∆e − δe(µ) removes the
ambiguity from the entire soft function Eq. (3.4). This greatly reduces the uncertainty in the
predicted distribution due to such renormalon ambiguities. These features were demonstrated in
[132] for jet mass and thrust distributions. In this chapter, we extend the soft function model and
demonstrate that a similar cancellation occurs for angularities τa.

Many studies of nonperturbative soft power corrections in event shape distributions have
been based on the behavior of the perturbative expansions of the distributions, either the behavior
of their renormalon ambiguities [164, 45] or their dependence on a postulated “infrared” effective
coupling αs at low scales [108, 109, 110]. In particular, they led to the proposal of a universal soft
power correction to the mean values of event shape distributions in the form [109, 110]

〈e〉 = 〈e〉PT +
ceA
Q

, (3.5)

where 〈e〉PT is the mean value of the partonic distribution, and the coefficient of the 1/Q power
correction is an exactly-calculable number ce dependent on the choice of event shape multiplied by
an unknown nonperturbative parameter A which is universal for numerous event shape distribu-
tions. In [157] the operator definition of the soft function in the factorization theorem Eq. (3.1)

2Even though traditional factorization breaks down for a = 1 (jet broadening), the resummation of jet broadening
in QCD was performed in [75, 106] and nonperturbative effects were discussed in [107].
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was used to prove the relation Eq. (3.5) to all orders in αs. For angularities, cτa = 2/(1− a). This
scaling of the power correction with a was observed in [49] based on the behavior of the resummed
perturbative series for angularity distributions after imposing an IR cutoff on the scale in αs(µ)
and in [48] based on analysis of the distributions using dressed gluon exponentiation [128]. Below
we will review the proof of the scaling in [157] based on the operator definition of the soft func-
tion independently of its perturbative expansion, and later use the scaling rule to constrain the
nonperturbative model we adopt for the soft function in angularity distributions.

The history of calculating event shape distributions using perturbation theory in QCD
goes all the way back to QCD’s earliest years. The thrust distribution for light quark jets to
O(αs) was calculated in [101], to which our fixed-order results for dσ/dτa reduce at a = 0. The
resummation of the thrust distribution to NLL was performed in QCD in [73, 76] and to LL in
SCET in [32, 172] (and later extended to N3LL in [41]). Our results are consistent with these
SCET results at the appropriate orders for a = 0. The jet mass distribution for top quark jets
was calculated and resummed to the same order in [125], with which we agree on the SCET jet
and soft functions for a = 0 in the limit mt = 0. The jet and soft functions for thrust or jet
mass distributions can be derived easily from the “ordinary” SCET jet function J(k+), and the
hemisphere soft function S(k+, k−), because the thrust and jet mass depend only on a single light-
cone component of the total four-momentum in each hemisphere (cf. [73]). These standard jet
and soft functions were calculated to two-loop order in [37, 38, 130]. Angularities for arbitrary
a, however, depend on both light-cone components k± in each hemisphere, thus requiring the new
calculations we perform below.

In the original introduction of the angularities τa [47] the resummation of logarithms was
achieved to the same next-to-leading-logarithmic (NLL) order that we achieve below, but without
full inclusion of next-to-leading-order (NLO) jet and soft functions for the τa-distribution, which
we calculate explicitly here for the first time. This improves the accuracy of our result for small
τa. Our result is also improved in this region by adopting the soft function model Eq. (3.4) which
cures unphysical behavior of the point-by-point distribution dσ/dτa as τa → 0 due to renormalon
ambiguities. The results of [47] converted to the traditional form of an NLL resummed event
shape distribution [73] were subsequently matched to fixed-order QCD at O(α2

s) numerically in
[49], improving the accuracy of the large-τa region. We perform this fixed-order matching only at
O(α1

s).
Comparing our result to those of [47, 49] elucidates the relation between SCET and tra-

ditional QCD-based approaches to resumming logarithms more generally. While the advantages
of SCET in achieving factorization or resummation of logarithms through renormalization group
evolution can of course be formulated without the explicit language of the effective theory (see,
e.g., [47, 96]), the effective theory nevertheless unifies these concepts and methods in an intuitive
framework that, we have found, allows us greater facility in improving the precision and reliability
of our predictions of event shape distributions. Even though we do not go beyond the existing NLL
resummation of logarithms of τa [47, 49], the flexibility in the effective theory to vary the scales
µH,J,S , where logarithms in the hard, jet, and soft functions are small and from which we run each
function to the factorization scale µ, allows additional improvements. For example, we are able to
avoid any spurious Landau pole singularities which the traditional approaches usually encounter.
(For previous discussions on how the effective theory avoids spurious Landau poles present in the
traditional approach, see Refs. [160, 36, 39].)
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The plan of the chapter is as follows. In Sec. 2, we review the demonstration of factor-
ization of event shape distributions in the formalism of SCET that was presented in [18], recalling
the introduction of the event shape operator ê that returns the value of an event shape e of a final
state X, constructed from the energy-momentum tensor. In Sec. 3, we calculate the jet and soft
functions appearing in the factorization theorem for angularity distributions for a < 1 to one-loop
order in αs. We recall the observations of [135] about how the breakdown of factorization as a→ 1
is observed in the infrared behavior of these functions in perturbation theory. In Sec. 4 we solve the
renormalization group equations obeyed by the hard, jet, and soft functions and resum leading and
next-to-leading logarithms of τa in the perturbative expansions of these functions, and explain how
we match the resummed distributions onto the fixed-order prediction of QCD at O(αs). In Sec. 5
we construct a model for the soft function in angularity distributions for all a < 1, based on existing
models for hemisphere and thrust soft functions which contain a nonperturbative gap parameter
introduced in [132], which cancels the renormalon ambiguity in the perturbative series for the soft
function. In Sec. 6 we present plots of our final predictions of angularity distributions using all the
results of Secs. 3–5. In Sec. 7 we compare and contrast the SCET approach to predicting resummed
angularity distributions to those based on factorization and RG evolution in full QCD [47] and to
the traditional approach to resummation [49, 73]. In Sec. 8 we present our conclusions, and in the
Appendices, we verify a consistency relation among the hard, jet, and soft anomalous dimensions
for arbitrary a, provide some technical details necessary for the solution of the RG equations for
the jet and soft functions, and explain our procedure to calculate angularity distributions at fixed-
order in QCD at O(αs), noting the hitherto unnoticed property of the angularities that they fail
to separate two- and three-jet-like events for values of a . −2, and so cease to behave exactly as
“two-jet” event shapes.

2 Review of Factorization of Event Shape Distributions

We begin by reviewing the factorization of event shape distributions in the formalism of
SCET, presented in [18].

2.1 Event shape distributions in full QCD

The full QCD distribution of events in e+e− → hadrons in an event shape variable e is
given, to leading-order in electroweak couplings, by

dσ
de

=
1

2Q2

∑
X

∫
d4x eiq·x

∑
i=V,A

Liµν 〈0| jµ†i (x) |X〉 〈X| jνi (0) |0〉 δ(e− e(X)) , (3.6)

where q = (Q,0) is the total four-momentum in the center-of-mass frame, the sum is over final
states X, and e(X) is the value of the event shape e of the state X. The final state is produced by
the vector and axial currents,

jµi =
∑
f,a

q̄afΓµi q
a
f , (3.7)
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where ΓµV = γµ and ΓµA = γµγ5 and the sum is over quark flavors f and colors a. The leptonic
tensor, which includes contributions from an intermediate photon and Z boson, is given by

LVµν = − e4

3Q2

(
gµν − qµqν

Q2

)[
Q2
f −

2Q2vevfQf
Q2 −M2

Z

+
Q4(v2

e + a2
e)v

2
f

(Q2 −M2
Z)2

]
(3.8a)

LAµν = − e4

3Q2

(
gµν − qµqν

Q2

)
Q4(v2

e + a2
e)a

2
f

(Q2 −M2
Z)2

, (3.8b)

where Qf is the electric charge of f in units of e, and vf , af are the vector and axial charges of f ,

vf =
1

2 sin θW cos θW
(T 3
f − 2Qf sin2 θW ) , af =

1
2 sin θW cos θW

T 3
f . (3.9)

As shown in [18], the sum over hadronic final states remaining in Eq. (3.6) can be performed by
introducing an operator ê that gives the event shape e(X) of a final state X. This operator can
be constructed from a momentum flow operator, which in turn is constructed from the energy-
momentum tensor. That is,

ê |X〉 ≡ e(X) |X〉 =
1
Q

∫ ∞
−∞

dη fe(η)ET (η; t̂) |X〉 , (3.10)

where t̂ is the operator yielding the thrust axis of final state X, and ET (η; t̂) is the transverse
momentum flow operator, yielding the total transverse momentum flow in the direction given by
rapidity η, measured with respect to the thrust axis, in a final state X,

ET (η; t̂) |X〉 ≡ 1
cosh3 η

∫ 2π

0
dφ lim

R→∞
R2

∫ ∞
0

dt n̂iT0i(t, Rn̂) |X〉 =
∑
i∈X

∣∣pi⊥∣∣ δ(η − ηi) |X〉 , (3.11)

which is closely related to the energy flow operator proposed in [150]. The thrust axis operator t̂
can be constructed explicitly, as shown in [18]. After matching onto SCET, however, an explicit
construction is not necessary, as the thrust axis is simply given by the jet axis n labeling the
two-jet current. The difference between the two axes introduces power corrections in λ which are
subleading, as long as a < 1 [47, 18]. Using the operator ê, we perform the sum over X in Eq. (3.6),
leaving

dσ
de

=
1

2Q2

∫
d4x eiq·x

∑
i=V,A

Liµν 〈0| jµ†i (x)δ(e− ê)jνi (0) |0〉 . (3.12)

2.2 Factorization of event shape distributions in SCET

To proceed to a factorized form of the distribution Eq. (3.12), we match the current jµ

and the operator ê onto operators in SCET. To reproduce the endpoint region of the two-jet event
shape distribution, we match the QCD currents jµi onto SCET operators containing fields in just
two back-to-back collinear directions,

jµi (x) =
∑
n

∑
p̃n,p̃n̄

Cnn̄(p̃n, p̃n̄;µ)Onn̄(x; p̃n, p̃n̄) , (3.13)
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summing over the direction n of the light-cone vectors n, n̄ = (1,±n), and label momenta p̃n, p̃n̄.
The two-jet operators [24, 20], after the BPS field redefinition [29] with soft Wilson lines, are

Onn̄(x; p̃n, p̃n̄) = ei(p̃n−p̃n̄)·xχ̄n,pn(x)Yn(x)Γµi Y n̄(x)χn̄,pn̄(x) , (3.14)

where ΓµV = γµ⊥ and ΓµA = γµ⊥γ5. The soft Wilson lines are the path-ordered exponentials of soft
gluons,

Yn(x) = P exp
[
ig

∫ ∞
0

n ·As(ns+ x)
]
, Y n̄(x) = P exp

[
ig

∫ ∞
0

n̄ · Ās(n̄s+ x)
]
, (3.15)

with As, Ās respectively in the fundamental or anti-fundamental representation. The jet fields
χn = W †nξn and χn̄ = W †n̄ξn̄ are combinations of collinear quark fields made invariant under
collinear gauge transformations by Wilson lines of collinear gluons [21, 33], where

Wn(x) =
∑

perms

exp
[
−g 1
P̄ n̄ ·An,q(x)

]
, (3.16)

where q is the label momentum of the collinear gluon field An, and P̄ is a label momentum operator
which acts as P̄An,q = (n̄ · q)An,q [33]. Recall that, in SCET, collinear momenta pµc = p̃µ + kµ are
divided into a large label piece, p̃µ = (n̄ · p̃)nµ/2 + p̃µ⊥, and a residual piece, kµ, where n̄ · p̃ is O(Q),
p̃⊥ is O(Qλ), and k is O(Qλ2). The residual momenta are the same size as soft momenta, ks, of
O(Qλ2). Below, however, we will see how the natural scaling of the collinear modes varies with the
choice of observable τa. The integral over x in Eq. (3.12) enforces that the label momenta of the
jet fields in the two-jet operator satisfy n̄ · p̃n = −n · p̃n̄ = Q and p̃⊥n = p̃⊥n̄ = 0.

We must also match the operator ê in full QCD onto SCET. To do so we simply replace
the QCD energy-momentum tensor Tµν appearing in the definition Eq. (3.11) with the energy-
momentum tensor in SCET, and, as noted above, set the thrust axis equal to the jet axis n in the
two-jet operator Onn̄. After the BPS field redefinition, to leading order in λ the SCET energy-
momentum tensor is a direct sum over contributions from fields in the n, n̄ collinear and soft
sectors, since the Lagrangian splits into these separate sectors with no interactions between them.
(Beyond leading order in λ, there are power-suppressed terms in the SCET Lagrangian in which
interactions between collinear and soft fields do not decouple following the BPS field redefintion
[28, 81, 168, 30].) Then the event shape operator ê splits into separate collinear and soft operators,

ê = ên + ên̄ + ês , (3.17)

where each êi is constructed only from the energy-momentum tensor of sector i of the effective
theory. So, finally, the event shape distribution in SCET factorizes into purely hard, collinear and
soft functions,

1
σ0

dσ
de

= H(Q;µ)
∫

den den̄ des δ(e− en − en̄ − es)Jn(en;µ)Jn̄(en̄;µ)S(es;µ) , (3.18)

where the hard coefficient is the squared amplitude of the two-jet matching coefficient,

H(Q;µ) = |Cnn̄(Qn/2,−Qn̄/2;µ)|2 , (3.19)
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and the jet and soft functions are given by the matrix elements of collinear and soft operators,

S(es;µ) =
1
NC

Tr 〈0|Y †n̄(0)Y †n (0)δ(es − ês)Yn(0)Y n̄(0) |0〉 , (3.20)

and

Jn(en;µ) =
∫

dl+

2π
Jn(en, l+;µ) , Jn̄(en̄;µ) =

∫
dk−

2π
Jn̄(en̄, k−;µ) , (3.21)

where

Jn(en, l+;µ)
(
n/

2

)
αβ

=
1
NC

Tr
∫

d4x eil·x 〈0|χn,Q(x)αδ(en − ên)χ̄n,Q(0)β |0〉 (3.22a)

Jn̄(en̄, k−;µ)
(
n̄/

2

)
αβ

=
1
NC

Tr
∫

d4x eik·x 〈0| χ̄n̄,−Q(x)βδ(en̄ − ên̄)χn̄,−Q(0)α |0〉 . (3.22b)

In Eqs. (3.20), (3.22a), and (3.22b), the traces are over colors. Also, in Eq. (3.18), we have divided
the distribution by the total Born cross-section for e+e− → qq̄,

σ0 =
4πα2NC

3Q2

∑
f

[
Q2
f −

2Q2vevfQf
Q2 −M2

Z

+
Q4(v2

e + a2
e)(v

2
f + a2

f )

(Q2 −M2
Z)2

]
. (3.23)

The n-collinear jet function Jn depends only on the l+ ≡ n ·l component of the residual momentum,
and Jn̄ on k− ≡ n̄ · k, as only the n ·∂ derivative appears in the n-collinear Lagrangian, and n̄ ·∂ in
the n̄-collinear Lagrangian, at leading order in λ [21]. In angularity distributions, the jet functions
are independent of the residual transverse momenta k⊥, l⊥ as long as a < 1 [18].

In Secs. 3 and 4 we calculate the above hard, jet, and soft functions for angularity distribu-
tions to next-to-leading order in αs, and solve for their dependence on µ through the renormalization
group equations, which will allow us to sum large logarithms of τa.

2.3 Universal first moment of the soft function

As shown in [157], the behavior of the soft function Eq. (3.20) under Lorentz boosts in
the n direction implies a universal form for its first moment. The vacuum |0〉 and the Wilson lines
Yn,n̄(0), Y n,n̄(0) are all invariant under such boosts, while the transverse momentum flow operator
ET (η) appearing in the definition of ês transforms as ET (η) → ET (η′) under a boost by rapidity
η′ − η. These properties imply that the first moment of S(es;µ) is given by∫

des es S(es;µ) =
ceA(µ)
Q

, (3.24)

where

ce =
1
Q

∫ ∞
−∞

dη fe(η) (3.25)

A(µ) =
1
NC

Tr 〈0|Y †n̄(0)Y †n (0)ET (0)Yn(0)Y n̄(0) |0〉 . (3.26)
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The coefficient ce is exactly calculable from the definition of the event shape e Eq. (3.2) while
A(µ) is not fully calculable due to the contribution of nonperturbative effects, but is completely
independent of the choice of variable e. The first moment Eq. (3.24) is universal for all event shapes
of the form Eq. (3.2) in this sense. For angularities, using Eq. (3.3) and Eq. (3.25),

ca =
∫ ∞
−∞

dη e−|η|(1−a) =
2

1− a . (3.27)

This scaling of the first moment of the soft function for angularities will constrain the parameteri-
zation of the nonperturbative model for the soft function that we introduce in Sec. 5.

3 Fixed-order Perturbative Calculations of Hard, Jet, and Soft
Functions

In this section we calculate at next-to-leading order, that is, O(αs), in perturbation theory
the hard, jet, and soft functions, H(Q;µ), Jn,n̄a (τn,n̄a ;µ), and Sa(τ sa ;µ), in the factorization theorem
for angularity distributions, which is given by Eq. (3.18) with e = τa.3

3.1 Hard function at NLO

The hard function H(Q;µ), given by Eq. (3.19), is the squared amplitude of the two-jet
matching coefficient Cnn̄(Q,−Q;µ). This matching coefficient was calculated, for example, in [160]
in the context of DIS and in [24] for e+e− annihilation, to NLO. It is found by calculating a matrix
element of the QCD current Eq. (3.7) and SCET current Eq. (3.13) (for example, 〈q(pq)q̄(pq̄)| jµi |0〉),
and requiring that the two match. Since the matching of the currents is independent of the observ-
able being calculated, we do not need to repeat the matching calculation here, and simply quote
the result. The matching coefficient Cnn̄(p̃n, p̃n̄;µ) in the SCET current Eq. (3.13) is given by

Cnn̄(p̃n, p̃n̄;µ) = 1− αsCF
4π

[
8− π2

6
+ ln 2

(
µ2

2p̃n · p̃n̄

)
+ 3ln

(
µ2

2p̃n · p̃n̄

)]
, (3.28)

Here and in the remainder of this section, αs ≡ αs(µ). The hard function H(Q;µ) in Eq. (3.19) is
thus

H(Q;µ) = 1− αsCF
2π

(
8− 7π2

6
+ ln 2 µ

2

Q2
+ 3ln

µ2

Q2

)
. (3.29)

The additional contribution to the coefficient of π2 in going from Eq. (3.28) to Eq. (3.29) is due to
the sign of 2p̃n · p̃n̄ = −Q2, following the conventions of [33].

The bare SCET two-jet operators in Eq. (3.14) are renormalized by the relation

O(0)
nn̄ (x; p̃n, p̃n̄) = ZO(p̃n, p̃n̄;µ)Onn̄(x; p̃n, p̃n̄) , (3.30)

where the renormalization constant, calculated using dimensional regularization to regulate the UV
divergences in d = 4− 2ε dimensions, is given by

ZO(p̃n, p̃n̄;µ) = 1 +
αsCF

4π

[
2
ε2

+
2
ε

ln
(

µ2

2p̃n · p̃n̄

)
+

3
ε

]
. (3.31)

3Note that here and below a superscript n on a quantity is not a power but denotes “n-collinear” just as n̄ denotes
“n̄-collinear” and s denotes “soft”.
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Matching the QCD current Eq. (3.7) onto only two-jet operators in SCET is sufficient
to describe accurately the two-jet region near τa = 0 of angularity distributions. To calculate
accurately also the tail region to O(αs), where the jets broaden and an additional jet begins to
form, we would need to include a basis of three-jet operators in Eq. (3.13) as well [32, 165]. But
since we are mainly interested in obtaining the correct shape of the two-jet region, we do not
pursue this approach here. We will simply calculate the whole distribution in SCET with only
two-jet operators, and the match the tail region numerically onto the fixed-order prediction of full
QCD. This will be described more precisely in Sec. 4.4.

3.2 Cutting rules for weighted matrix elements

The jet and soft functions that typically appear in factorizations of hard cross-sections in
SCET are defined in terms of matrix elements of the products of collinear and soft fields, which
are related to the imaginary part of the matrix element of a time-ordered product of the fields
according to the optical theorem,∫

d4x eiq·x
〈
0
∣∣φ(x)φ†(0)

∣∣0〉 = Disc
[∫

d4x eiq·x
〈
0
∣∣Tφ(x)φ†(0)

∣∣0〉] . (3.32)

The right-hand side is then related to the sum of all cuts of the relevant Feynman diagrams using
the standard Cutkosky cutting rules.

However, for more generic jet observables such as angularities for a 6= 0, the jet and soft
functions that appear in factorization proofs contain matrix elements in which additional operators
are inserted between the collinear and soft fields in the definition of the traditional jet and soft
functions [23]. For the matrix elements involving the extra insertion of such operators, we need to
generalize the cutting rules for calculating these matrix elements from Feynman diagrams.

For the case of angularities, the jet and soft functions given in Eqs. (3.20), (3.22a), and
(3.22b) differ from the traditional jet and soft functions by the insertion of the delta function oper-
ator δ(τa − τ̂a). We denote the appropriate generalized prescription for calculating the new matrix
element from the Feynman diagrams of time-ordered perturbation theory as the “τa-discontinuity,”∫

d4x eiq·x
〈
0
∣∣φ(x) δ(τa − τ̂a)φ†(0)

∣∣0〉 ≡ Discτa

[∫
d4x eiq·x

〈
0
∣∣Tφ(x)φ†(0)

∣∣0〉] . (3.33)

The Discτa prescription is to cut the diagrams contributing to the matrix element of time-ordered
operators just as for the usual matrix elements in Eq. (3.32) but to insert an additional factor
of δ(τa − τa(X)) for each cut, where X is the final state created by the cut.4 This prescription
corresponds to reinserting a sum over a complete set of final states between the delta function
operator and φ†(0) in Eq. (3.33), and is precisely how we would calculate the full differential cross-
section as written in Eq. (3.6). In the next two subsections we illustrate extensively the use of the
Discτa prescription.
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Figure 3.1: The (A), (B) real and (C), (D) virtual contributions to the soft function. The gluons
all have momentum k.

3.3 Calculation of the soft function to NLO

The diagrams that contribute to the soft function are shown in Fig. 3.1. From Eqs. (3.3),
(3.10), and (3.11), the contribution to the angularity from an on-shell soft gluon with momentum
k is

τ sa =
|k⊥|
Q

e
− 1−a

2

˛̨̨
ln k+

k−

˛̨̨
=

{
1
Q |k+|1−a2 |k−|a2 for k− ≥ k+

1
Q |k−|1−

a
2 |k+|a2 for k+ ≥ k− . (3.34)

Since cutting a gluon puts it on shell, the operator τ̂ sa returns these values when acting on a cut
soft gluon. When no gluon is in the final state cut, the operator τ̂ sa simply returns zero. The real
and virtual diagrams then contain delta functions, which we denote δR and δV , respectively,

δR ≡ δR(τ sa , k) = θ(k− − k+) δ
(
τ sa −

1
Q

∣∣k+
∣∣1−a2 ∣∣k−∣∣a2) (3.35a)

+ θ(k+ − k−) δ
(
τ sa −

1
Q

∣∣k−∣∣1−a2 ∣∣k+
∣∣a2) ,

δV ≡ δV (τ sa) = δ(τ sa) . (3.35b)

In terms of these delta functions, the (bare) perturbative soft function can be written

SPT(0)
a (τ sa ;µ) = δ(τ sa) + 2 δR + 2 δV , (3.36)

where we used that the tree level contribution is just δ(τ sa) and that the two real and the two virtual
diagrams in Fig. 3.1 give identical contributions.

In pure dimensional regularization, the virtual contributions are scaleless and hence vanish
so we only need to evaluate the real diagrams. They add to

2 δR = 2g2µ2εCF n·n̄
∫

ddk
(2π)d

1
k−

1
k+

2πδ(k−k+ − |k⊥|2) θ(k−)δR(τ sa , k) . (3.37)

4The operator-based method that was developed in [167] for calculating weighted cross-sections can be used to
relate matrix elements such as in the left-hand side of Eq. (3.33) directly to the ordinary discontinuity of matrix
elements of time-ordered products of fields. However, for the scope of this chapter, we choose simply to apply the
prescription Eq. (3.33).
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Performing the k integrals gives

SPT(0)
a (τ sa ;µ) = δ(τ sa) + θ(τ sa)

αsCF n·n̄
π(1− a)

(
4πµ2

Q2

)ε 1
Γ(1− ε)

1
ε

(
1
τ sa

)1+2ε

. (3.38)

Nonzero values of τ sa regulate the IR divergences and so here the 1/ε pole is of UV origin, ε = εUV.
Applying the distribution relation (valid for ε < 0)

θ(x)
x1+2ε

= −δ(x)
2ε

+
[
θ(x)
x

]
+

− 2ε
[
θ(x)lnx

x

]
+

+O(ε2) , (3.39)

where [
θ(x)ln n(x)

x

]
+

≡ lim
β→0

[
θ(x− β)ln n(x)

x
+

ln n+1β

n+ 1
δ(x− β)

]
, (3.40)

to Eq. (3.38) we obtain the final result for the (bare) angularity soft function,

SPT(0)
a (τ sa ;µ) =

∫
dτ s

′
a ZS(τ sa − τ s

′
a ;µ)Sa(τ s

′
a ;µ) , (3.41)

where to NLO the renormalized soft function, SPT
a , is given by

SPT
a (τ sa ;µ) = δ(τ sa)

[
1− αsCF

π(1− a)

(
1
2

ln 2 µ
2

Q2
− π2

12

)]
+

2αsCF
π(1− a)

[
θ(τ sa)
τ sa

ln
µ2

(Qτ sa)2

]
+

, (3.42)

and the renormalization factor, ZS , is given by

ZS(τ sa ;µ) = δ(τ sa)
[
1− αsCF

π(1− a)

(
1
ε2

+
1
ε

ln
µ2

Q2

)]
+

1
ε

2αsCF
π(1− a)

[
θ(τ sa)
τ sa

]
+

. (3.43)

3.4 IR structure of the soft function

While the mathematical identity in Eq. (3.39) allowed us to arrive at our final result,
Eq. (3.42), the origin of the 1/ε poles became obscured through its use. In fact, the use of Eq. (3.39)
is only valid for ε < 0 which suggests that the 1/ε pole on the right-hand side of Eq. (3.39) is of
IR origin. The virtual diagrams, while formally zero in pure dimensional regularization, play the
role of converting this IR divergence into a UV divergence by adding a quantity proportional to
(1/εUV−1/εIR) to the coefficient of δ(τ sa), if the final result is in fact free of IR divergences. Näıvely
it seems that this conversion cannot possibly occur for arbitrary a, because the 1/ε poles in the
real diagrams have a-dependent coefficients (see Eq. (3.43)), while the virtual diagrams contain
no apparent a dependence. Nevertheless, by carefully examining the contribution of both the real
and virtual diagrams, we will show that, for a < 1, the virtual diagrams play precisely this role
and convert each IR divergence in the real graphs into UV, but that for a ≥ 1, this cancellation is
incomplete. This is accomplished through an analysis of integration regions in the loop momentum
integrals that avoids the use of explicit IR regulators. Our presentation here complements our
discussion of these issues in [135].
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Using that
∫ 1

0 dx [ln n(x)/x]+ = 0, the contribution to the coefficient of δ(τ sa) can be
isolated by integrating the diagrams over τ sa from 0 to 1. We find that the contribution from the
real diagrams can be written as

∫ 1

0
dτ sa

[
2 δR

]
=
αsCF n·n̄

2π

(
4πµ2

)ε
Γ(1− ε)

∫
R

dk+dk−(k+k−)−1−ε , (3.44)

where R is given by the region of positive k+ and k− such that

(k−)
a
2 (k+)1−a

2 < Q for k− ≥ k+

(k+)
a
2 (k−)1−a

2 < Q for k− ≤ k+ . (3.45)

This region is plotted in Fig. 3.2A for various values of a.
The contribution of the virtual diagrams to the coefficient of δ(τ sa) sums to

∫ 1

0
dτ sa

[
2 δV

]
= 2g2µ2εCF n·n̄

∫
ddk

(2π)d
1

k− − i0+

1
k+ + i0+

i

k+k− − |k⊥|2 − i0+

= −αsCF n·n̄
2π

(
4πµ2

)ε
Γ(1− ε)

∫
V

dk+dk−(k+k−)−1−ε , (3.46)

where V is the entire positive k+, k− quadrant, plotted in Fig. 3.2B.
The two contributions to δ(τ sa), Eqs. (3.44) and (3.46), are each both UV and IR divergent,

but as we will show, their sum is convergent for ε > 0 and so is only UV divergent. Since the form
of the integrand is the same and the virtual contribution differs only by an overall minus sign, it
converts the region of integration of the real contribution, R, into the complementary part of the
positive k+, k− quadrant (see Fig. 3.2) which does not include the IR divergent regions k± → 0.
Note that as a→ 1, the boundary of the region of integration R approaches the curve of constant
k+k− = Q2. With this boundary, the integral over the region S does not converge for either positive
or negative ε, implying that both IR and UV divergences are present.

That the region S has only UV divergence for a < 1 and has both UV and IR divergence
for a = 1 is perhaps more clearly seen in the k−,k2

⊥ plane. The integral of the soft diagrams over
τ sa in terms of these variables is given by

∫ 1

0
dτ sa

[
2 δR + 2 δV

]
= −αsCF n·n̄

2π

(
4πµ2

)ε
Γ(1− ε)

∫
S

dk−dk2
⊥

k−(k2
⊥)1+ε

,

and the resulting region S in terms of k− and k2
⊥ for a ≤ 1 is(

k2
⊥
Q2

)− a
2(1−a)

<

(
k−

Q

)
<

(
k2
⊥
Q2

) 2−a
2(1−a)

with k2
⊥ > Q2 . (3.47)

The region S is plotted for several values of a in Fig. 3.2D. The limiting case a = 1 clearly includes
the IR divergent region k− → 0 for all k2

⊥ > Q2.
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Figure 3.2: The regions of integration for the coefficent of δ(τ sa) in S
(0)
a (τ sa) in the (A), (B), (C)

k−, k+ and (D) k−,k2
⊥ planes. The regions of integration for both (A) the real contribution R and

(B) the virtual contribution V contain both UV and IR divergences. Since the integrands for the
two contributions differ only by an overall minus sign, (C) the region resulting in their sum S, is the
complement of R and contains only UV divergences for a < 1. The dashed line in (C) represents
the line of constant k+k− = Q2.

Performing the integral over S we obtain∫ 1

0
dτ sa S

(0)
a (τ sa ;µ) = 1− αsCF n·n̄

2π(1− a)

(
4πµ2

Q2

)ε 1
ε2 Γ(1− ε) . (3.48)

After expanding Eq. (3.48) in ε, we find that the coefficient of δ(τ sa) in Eq. (3.42) is unchanged,
except that for a < 1 all the 1/ε poles are unambiguously of UV origin.

A lesson from this analysis is that in pure dimensional regularization, the coefficient of
(1/εUV − 1/εIR) in a virtual diagram cannot be determined from the virtual diagram alone, but
only together with the real diagram whose IR divergence it is supposed to cancel. The reason that
the virtual subtraction can depend on a even though by itself it is independent of a is that the area
of overlap between the integration regions of real and virtual diagrams depends on a.
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(B)(A) (D)(C)(A) (A)

Figure 3.3: Diagrams contributing to the angularity jet function J na (τna , l
+) with incoming momen-

tum l = n
2Q+ n̄

2 l
+ and gluon momentum q: (A) Wilson line emission diagram and (B) its mirror;

(C) sunset and (D) tadpole QCD-like diagrams. The contributions to the jet function Jna (τna )
are given by the integrals of these diagrams over the + component of the incoming momentum,∫

dl+J na (τna , l
+) = 2πJna (τna ).

3.5 Calculation of the jet functions to NLO

Now we proceed to calculate the jet functions given by Eqs. (3.21) and (3.22). The
diagrams that contribute to Jna are shown in Fig. 3.3, and the Feynman rules necessary to calculate
these diagrams are found in [21]. The total momentum flowing through each diagram is Qn/2 + l,
with the label component Qn/2 specified by the labels on the jet fields in the matrix elements in
Eq. (3.22a), and l the residual momentum. The total momentum of the gluon in each loop is q,
which has both label and residual components. All results for the anti-quark jet function J n̄a can
be found from those for the quark jet function Jna with the replacement n↔ n̄ and so we calculate
explicitly only Jna .

Cutting the diagrams in Fig. 3.3 in all possible places, we can cut through the gluon loops
or through one of the individual quark propagators connected to a current. We naturally call these
classes of cut diagrams “real” and “virtual” respectively. The real and virtual diagrams contain
the delta functions,

δR ≡ δR(τna , q, l
+) ≡ δ

(
τna −

1
Q

[
(q−)

a
2 (q+)1−a

2 + (Q− q−)
a
2 (l+ − q+)1−a

2

] )
,

δV ≡ δV (τna , l
+) ≡ δ

(
τna −

(
l+/Q

)1−a
2

)
, (3.49)

which are obtained using Eq. (3.34). In this case we simply consider the contribution to τa from
a final state with a single on-shell collinear quark of momentum l for δV and from a final state
consisting of an on-shell collinear gluon of momentum q together with an on-shell collinear quark
of momentum l− q for δR, and use that the ‘−’ component of momentum is always larger than the
‘+’ component for on-shell collinear particles. The momentum l flowing through the diagrams in
Fig. 3.3 has a label component which is fixed to be Qn/2 by the labels on the collinear fields in the
matrix element in Eq. (3.22a).

Before turning to evaluate the diagrams in Fig. 3.3, we first perform a few simplifications
to facilitate the computation. First, we note that the Wilson line emission diagram, Fig. 3.3A, and
its mirror, Fig. 3.3B, give identical contributions. Second, we employ the fact that the number
and complexity of jet function diagrams needed in loop calculations is reduced by noticing that
the QCD-like diagrams can be computed using ordinary QCD Feynman rules with appropriate
insertions of the projection operators Pn and Pn̄ [38, 14]. In particular, for our one-loop example
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we use that the sum of Fig. 3.3C and Fig. 3.3D reduces to

+ = Pn Pn̄ . (3.50)

Next, we relate the τna -discontinuity to the ordinary discontinuity,

Disc τna
[
2 + Pn Pn̄

]
(3.51)

≡
[
2 + Pn Pn̄

]
δR +

[
2 + 2Pn Pn̄

]
δV

= Disc
[
2 + Pn Pn̄

]
δV +

[
2 + Pn Pn̄

](
δR − δV

)
,

where in the third line the we used that the real diagrams induced by taking the discontinuity in
the first term cancel the coefficient of δV in the second term.

Now, since δV (τna , l
+) has no dependence on the loop momentum q, it factors out of

the ddq integrand. This implies that, after adding the tree level contribution to the one-loop
τna -discontinuity in Eq. (3.51), we can write the NLO jet function as

J n(0)
a (τna , l

+;µ)
n/

2
= 2πδ(l+)δ(τna )

n/

2
+ Disc τna

[
2 + Pn Pn̄

]
(3.52)

= Jn(0)(l+;µ)
n/

2
δV +

[
2 + Pn Pn̄

](
δR − δV

)
,

where J (0)
n (l+;µ) is the standard jet function [29],

Jn(0)(l+;µ)
n/

2
≡ 1
NC

Disc
[∫

d4x eil·x Tr
〈
0
∣∣Tχn,Q(x) χ̄n,Q(0)

∣∣0〉]
= 2πδ(l+)

n/

2
+ Disc

[
2 + Pn Pn̄

]
+O(α2

s) , (3.53)

containing no additional operator insertions. Each term on the second line of Eq. (3.52) is then well-
defined5 and straightforwardly calculable. In fact, Jn(l+;µ) has been calculated to two loops [38],
and we expect that the techniques we employed above are the most practical way to extend our
results to two loops. The additional term on the second line of Eq. (3.52) is a sum of real emission
diagrams containing a difference of the delta functions δR and δV . Note that for the special case
a = 0, δV (τna , l

+) = δR(τna , q, l
+) and this additional term vanishes, so Jn = Jna=0. This is why only

the standard jet function is needed when a = 0.
To find the angularity jet function Jna (τna ;µ), we must integrate Eq. (3.52) over l+ as in

Eq. (3.21),

Jn(0)
a (τna ;µ) =

∫
dl+

2π
J n(0)
a (τna , l

+;µ) . (3.54)

5By this we mean that had we evaluated the individual cut virtual QCD-like diagrams contained in the first line
of Eq. (3.52) directly, we would have encountered the complication of cutting one lone quark propagator and thus
putting the second lone, uncut quark propagator on shell also.
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By integrating the known one-loop expression for J (0)
n (l+;µ) (see, e.g., [25, 53]), we find that the

contribution of the first term in Eq. (3.52) is∫
dl+

2π
Jn(0)(l+;µ) δV = δ(τna )

{
1 +

αsCF
4π

[
4
ε2

+
3
ε

+
4
ε

ln
µ2

Q2
+ 2ln 2 µ

2

Q2

+ 3ln
µ2

Q2
+ 7− π2

]}
− 1

1− a/2
αsCF

4π

[(
4
ε

+ 3 + 8ln
µ

Q(τna )1/(2−a)

)(
θ(τna )
τna

)]
+

. (3.55)

It is well known that all 1/ε poles in this expression are of UV origin.
We find that the term involving the real QCD-like diagram in Eq. (3.52) is∫

dl+

2π

[
Pn Pn̄

](
δR − δV

)
(3.56)

= −g2µ2εCF (d− 2)
n/

2

∫
dl+

2π

(
1
l+

)2 ∫ ddq
(2π)d

(l+ − q+)

×
(

(−2πi)δ(q+q− − |q⊥|2)θ(q−)
) 1
q−

(
δR(τna , q, l

+)− δV (τna , l
+)
)

×
(

(−2πi)δ
(
(Q− q−)(l+ − q+)− |q⊥|2

)
θ(Q− q−)

)
=

αsCF
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 2(1− ε)
Γ(1− ε)

(
1
τna

)1+ ε
1−a/2

×
∫ 1

0
dxx

[(
xa−1 + (1− x)a−1

) ε
1−a/2 − (x(1− x))−ε

]
,

where we defined x ≡ q−/Q. This expression is finite as ε→ 0.
For the term involving the real Wilson line diagram, we find∫

dl+

2π

[ ](
δR − δV

)
(3.57)

= −g2µ2εCF n·n̄n/2
∫

dl+

2π
1
l+

∫
ddq

(2π)d
1
q−

(
(−2πi)δ(q+q− − |q⊥|2)θ(q−)

)
×
[
(Q− q−)

(
(−2πi)δ

(
(Q− q−)(l+ − q+)− |q⊥|2

)
θ(Q− q−)

)
−Q

(
(−2πi)δ

(
Q(l+ − q+)

))](
δR(τna , q, l

+)− δV (τna , l
+)
)
.

The piece with δR can be written as∫
dl+

2π

[ ]
δR = θ(τ sa)

αsCFn·n̄
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 1
Γ(1− ε)

(
1
τna

)1+ ε
1−a/2

(3.58)

×
[∫ 1

0

dx
x

(1− x)
(
xa−1 + (1− x)a−1

) ε
1−a/2 −

∫ ∞
0

dx
x
x
−ε 1−a

1−a/2

]
,
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and the piece with δV is∫
dl+

2π

[ ]
δV = θ(τ sa)

αsCFn·n̄
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 1
Γ(1− ε)

(
1
τna

)1+ ε
1−a/2

×
[∫ 1

0

dx
x

(1− x) (x(1− x))−ε −
∫ ∞

0

dx
x
x−ε
]
. (3.59)

The second term in brackets in each of Eqs. (3.57), (3.58), and (3.59) corresponds to the zero-bin
subraction [163] needed to avoid the double counting of soft modes [157, 140, 139]. Note that from
the expressions in both Eqs. (3.58) and (3.59), the zero-bin contributions are scaleless and hence
formally zero. Their role is to convert the IR divergence (q− → 0) in each integrand into a UV
divergence (q− →∞) for a < 1. After this subtraction, both of the integrals over x in brackets are
convergent for ε > 0.

Subtracting Eq. (3.59) from Eq. (3.58) and performing the integral over x we find that∫
dl+

2π
Disc

[
2 + Pn Pn̄

](
δR − δV

)
(3.60)

= − αsCF
2π(2− a)

n/

2

(
4πµ2

Q2

)ε 1
Γ(1− ε)

1
ε

(
1
τna

)1+ ε
1−a/2

[
2a

1− a + ε2
2a(π2 − 9)
3(2− a)

− ε2 4
1− a/2

∫ 1

0
dx

1− x+ x2/2
x

ln [(1− x)1−a + x1−a] +O(ε3)
]
,

where the overall 1/ε pole is of UV origin from the discussion above.
Applying the relation Eq. (3.39) to Eq. (3.60) and adding the result to Eq. (3.55), we

arrive at our final expression for the (bare) NLO angularity jet function,

Jn(0)
a (τna ;µ) =

∫
dτna

′ ZJ(τna − τna ′;µ)Jna (τna
′;µ) , (3.61)

where the renormalized jet function, Jna , is

Jna (τna ;µ) = δ(τna )
{

1 +
αsCF
π

[
1− a/2
2(1− a)

ln 2 µ
2

Q2
+

3
4

ln
µ2

Q2
+ f(a)

]}
− αsCF

π

[(
3
4

1
1− a/2 +

2
1− a ln

µ

Q(τna )1/(2−a)

)(
θ(τna )
τna

)]
+

, (3.62)

where we defined

f(a) ≡ 1
1− a/2

(
7− 13a/2

4
− π2

12
3− 5a+ 9a2/4

1− a

−
∫ 1

0
dx

1− x+ x2/2
x

ln [(1− x)1−a + x1−a]
)
, (3.63)

and the Z-factor is given by

ZJ(τna ;µ) = δ(τna )
[
1 +

αsCF
π

(
1− a/2
1− a

(
1
ε2

+
1
ε

ln
µ2

Q2

)
+

3
4ε

)]
− 1
ε

αsCF
π(1− a)

[
θ(τna )
τna

]
+

. (3.64)
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3.6 IR structure of the jet functions

As we showed in Sec. 3.5, the 1/ε pole in front of the plus-distribution corresponds to a
UV divergence. However, as we discussed for the case of the soft function in Sec. 3.4, the use of
Eq. (3.39) means that we can not immediately make the same claim for the poles in the coefficient
of δ(τna ). We now perform an analysis similar to that in Sec. 3.4 by integrating over 0 < τna < 1 to
isolate this coefficient and study its divergent structure in the resulting q−, q2

⊥ integration regions,
complementing our discussion in [135].

The diagrams (C) and (D) in Fig. 3.3, being equivalent to diagrams in full QCD as
noted above, are manifestly infrared-finite and do not need to be analyzed in further detail. The
Wilson line graphs (A) and (B) potentially contain infrared divergences that we must identify more
carefully.

If the jet function is infrared-safe, infrared divergences in virtual and real diagrams, with
proper zero-bin subtractions taken, should cancel and leave purely UV divergent integrals. The
contribution of the sum of the real and virtual Wilson line diagrams to the coefficient of δ(τna ) in
the jet function J

n(0)
a (τna ) is

2
∫ 1

0
dτa

∫
dl+

2π

[
δV + δR

]
(3.65)

= −αsCF
π

(4πµ2)ε

Γ(1− ε)

[∫
J̃

dq−dq2
⊥

1
(q2
⊥)1+ε

(
1
q−
− 1
Q

)
−
∫
J0

dq−dq2
⊥

1
(q2
⊥)1+ε

1
q−

]
,

where the last integral is the zero-bin subtraction of the näıve collinear integral in the first term.
The näıve integration region J̃ is shown in Fig. 3.4 and is given by 0 < q− < Q and

q2
⊥ >

{
Q

[
1

(Q− q−)1−a +
1

(q−)1−a

]−1
} 1

1−a/2

. (3.66)

The zero-bin region J0 is given by q− > 0 and

q2
⊥ >

[
Q(q−)1−a] 1

1−a/2 . (3.67)

The resulting integral for the total contribution of the zero-bin-subtracted Wilson line diagrams to
the coefficient of δ(τna ) in the jet function is

2
∫ 1

0
dτa

∫
dl+

2π

[
δV + δR

]
(3.68)

= −αsCF
π

(4πµ2)ε

Γ(1− ε)

[∫
J

dq−dq2
⊥

1
(q2
⊥)1+ε

sgn(q− −Q)
q−

−
∫
J̃

dq−dq2
⊥

1
(q2
⊥)1+ε

1
Q

]
,

where the region J resulting from combining J̃ and J0, with a relative minus sign in the integrands,
is also shown in Fig. 3.4.

The shape of the final integration region J in Fig. 3.4 demonstrates that the scaleless
virtual and zero-bin integrals succeed in converting IR divergences in the real diagram contributions



52

Q2

4

Q2

Q2

4

Q2

Q2

4

Q2

Q

Q2

4

Q2

Q Q q−

q2
⊥

a = −2

a = 0

a = 0.9

a = 1

+

+

+

+

=

=

=

=

J (total)

IR

UV

IR

IR

IR

IR

IR

IR

IR/UV

UV UV

UV UV

UV UV

UV

UV

UV

IR

UV
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Figure 3.4: Regions of integration for the coefficient of δ(τna ) in the jet function J
n(0)
a (τna ). The

sum of näıve real and virtual Wilson line diagrams are integrated over the region J̃ in the q−,q2
⊥

plane. The sum of real and virtual zero-bin subtractions are integrated over J0, and the resulting
sum of näıve diagrams and zero-bin subtractions over the region J . Integrals over J have only UV
divergences as long as a < 1. For a = 1, an IR divergent region remains.

into UV divergences for all a < 1. Eq. (3.68) converges for ε > 0 if and only if a < 1. The result of
performing this integration, after including the contributions of the QCD-like diagrams in Fig. 3.3C
and D, agrees with the coefficient of δ(τna ) that is obtained by (näıvely) using the relation Eq. (3.39)
in Eq. (3.60).

3.7 Infrared safety, factorizability, and the effective theory

In the one-loop calculations of soft and jet functions above, we observed that infrared
safety of these functions, and, thus, factorizability of the angularity distributions, required a < 1.
By analyzing explicitly the regions of integration over loop momenta in real and virtual graphs,
we were able to identify when the loop integrals contained infrared or ultraviolet divergences.
Cancellations of regions in real gluon diagrams sensitive to IR divergences relied crucially not only
on the addition of virtual diagrams but also on zero-bin subtractions from collinear diagrams (see
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Figure 3.5: Scaling of SCET modes appropriate for angularities τa, a = 0, 1. For a = 0, the collinear
modes dominating the τa distribution have virtualities p2 ∼ (Qλ)2, parametrically separated from
the soft scale p2 ∼ (Qλ2)2. These scalings correspond to the effective theory known as SCETI . For
a = 1, the collinear modes in the distribution have typical p2 ∼ (Qλ2)2, coinciding with the soft
scale. The collinear and soft modes are no longer separated by virtuality but instead by rapidity.
These scalings correspond to SCETII . Collinear modes dominating angularity distributions for
other values of a between 0 and 1 live at scales intermediate between these limits.

also examples in [163, 140, 139, 86]).
The shape of the momentum regions contributing to the one-loop soft function in Fig. 3.2

suggest a simple physical interpretation of the breakdown of factorization as a → 1. In the k±

plane, the region of integration in the sum of real and virtual graphs for a = 1 is the region above
the line k+k− = Q2. For angularity soft functions with a < 1, as k± → ∞, the loop integral goes
over a region with k+k− strictly greater than Q2, and in fact, k+k− → ∞, while for a > 1, the
loop integral enters the region with k+k− < Q2, and in fact, k+k− → 0. But this latter region,
k+ →∞ while k− → 0 or vice versa, is the region where collinear modes live, illustrated in Fig. 3.5.
This means that collinear modes still contribute to the soft function even after the attempted
factorization.

This suggests that for a ≥ 1, the contributions of SCETI soft and collinear modes to the
angularity distribution have not actually been separated. In SCETI , soft, collinear, and hard modes
can be distingushed by their well-separated virtualities, namely, p2

S ∼ (Qλ2)2, p2
J ∼ (Qλ1/(1−a/2))2,

and p2
H ∼ Q2. At a = 1, the virtualities of soft and collinear modes contributing to the τa

distribution coincide, and SCETI must be matched onto SCETII where collinear and soft modes
both have virtualities p2 ∼ (Qλ2)2. In this case, the modes are no longer distinguished by their
virtuality, but instead by their rapidity, as illustrated in Fig. 3.5. Ref. [163] suggested a modified
version of the factorization theorem Eq. (3.1) in which soft and jet functions are defined either with
cutoffs on rapidity or in dimensional regularization with the scale µ separated into two light-cone
scales µ±, which must satisfy µ+µ− = µ2, with each of the two jet functions depending on one
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of these scales, and the soft function on both. However, in the present chapter we do not pursue
such a strategy and limit our analysis to angularities with strictly a < 1. For arbitrary values of
a, the virtuality of collinear modes p2

J ∼ (Qλ1/(1−a/2))2 suggests an interpretation as the modes
of an effective theory “SCET1+a.”6 Since our analysis and calculations utilize the framework of
SCETI , we may expect non-negligible corrections to our results to arise for values of a less than
but approaching 1, and for reasonable criteria for when corrections are negligible, our analysis is
reliable for values of a . 1/2 [157].

4 NLL Resummation of Logarithms and Fixed-order Matching to
QCD

The fixed-order NLO cross-section, obtained by using the fixed-order expressions for the
hard, jet, and soft functions in Eqs. (3.29), (3.42), and (3.62) in the factorization formula Eq. (3.18),
contain logarithms of µ divided by the scales Q, Qτa, and the intermediate scale Qτ1/(2−a)

a . This
means that there is no single choice for the scale µ that will simultaneously set all of the logarithms
in the NLO cross-section to zero. For small τa, these scales become widely separated and the
logarithms of ratios of these scales become large, which causes the perturbative series to break
down. In Sec. 4.1 and Sec. 4.2, we take advantage of the effective theory framework separating the
hard, jet, and soft contributions by evolving each of them separately through renormalization-group
(RG) evolution which resums these logarithms. We then combine these RG-evolved functions into
the full cross-section accurate to NLO at fixed order in αs and resummed to NLL accuracy in
Sec. 4.3.

Since our final result for the NLL/NLO resummed distribution is derived using an effective
theory which is valid only in the small-τa limit, it does not get the larger-τa region as accurately as
QCD at O(αs). To arrive at a result that retains NLL/NLO accuracy in the small-τa region while
retaining the accuracy of QCD at O(αs) in the larger-τa region, we need to match our distribution
onto QCD. This matching is constructed such that if we turn off the resummation, the distributions
should agree with full QCD to O(αs). We perform this matching in Sec. 4.4.

4.1 Hard function at NLL

The anomalous dimension of the hard function in Eq. (3.29) can be found by requiring
that matrix elements of the bare two-jet operator in Eq. (3.30) are independent of the scale µ, and
is given by

γH(µ) = −γO(Qn/2,−Qn̄/2;µ)− γ∗O(Qn/2,−Qn̄/2;µ) , (3.69)

where

γO(p̃n, p̃n̄;µ) = −Z−1
O (p̃n, p̃n̄;µ)µ

d
dµ
ZO(p̃n, p̃n̄;µ) =

αsCF
2π

(
2ln

µ2

2p̃n · p̃n̄ + 3
)
, (3.70)

so that

γH(µ) = −αsCF
π

(
2ln

µ2

Q2
+ 3
)
, (3.71)

6We would like to thank M. Strassler for suggesting this terminology to CL.
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which is the first term in the expansion of the anomalous dimension to all orders in αs,

γH(µ) = ΓH [αs]ln
µ2

Q2
+ γH [αs] . (3.72)

Solving the RG equation,

µ
d

dµ
H(Q;µ) = γH(µ)H(Q;µ) , (3.73)

for H(Q;µ) gives

H(Q;µ) = H(Q;µ0)eKH
(
µ0

Q

)ωH
, (3.74)

where ωH and KH are defined as

ωH ≡ ωH(µ, µ0) ≡ 8CF
β0

[
ln r +

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
(3.75a)

KH ≡ KH(µ, µ0) ≡ 6CF
β0

ln r +
16πCF
(β0)2

[
r − 1− rln r

αs(µ)
(3.75b)

+

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
1− r + ln r

4π
+

β1

8πβ0
ln 2r

]
.

Here r = αs(µ)
αs(µ0) , and β0, β1 are the one-loop and two-loop coefficients of the beta function,

β[αs] = µ
dαs
dµ

= −2αs

[
β0

(αs
4π

)
+ β1

(αs
4π

)2
+ · · ·

]
, (3.76)

where

β0 =
11CA

3
− 2nf

3
and β1 =

34C2
A

3
− 10CAnf

3
− 2CFnf . (3.77)

The two-loop running coupling αs(µ) at any scale is given by

1
αs(µ)

=
1

αs(MZ)
+
β0

2π
ln
(

µ

MZ

)
+

β1

4πβ0
ln
[
1 +

β0

2π
αs(MZ)ln

(
µ

MZ

)]
. (3.78)

In Eq. (3.74), we have used the fact that to all orders in perturbation theory, ΓH [αs] is proportional
to Γcusp[αs], where

Γcusp[αs] =
(αs

4π

)
Γ0

cusp +
(αs

4π

)2
Γ1

cusp + · · · . (3.79)

The ratio of the one-loop and two-loop coefficients of Γcusp is [148]

Γ1
cusp

Γ0
cusp

=
(

67
9
− π2

3

)
CA − 10nf

9
. (3.80)

Γ1
cusp and β1 are needed in the expressions of ωH and KH for complete NLL resummation since we

formally take α2
sln τa ∼ O(αs).
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F = S F = J

jF 1 2− a
Γ0
F −8CF 1

1−a 8CF
1−a/2
1−a

γ0
F 0 6CF

Table 3.1: Γ0
F , γF and jF for the jet and soft functions.

4.2 Jet and soft functions at NLL

The jet and soft functions obey the RG equation

µ
d

dµ
F (τ ;µ) =

∫ +∞

−∞
dτ ′ γF (τ − τ ′;µ)F (τ ′;µ) , (3.81)

where F = J, S. The anomalous dimensions γF can be found from the Z-factors (given in Eqs. (3.43)
and (3.64)) via the relation

γF (τ − τ ′;µ) = −
∫

dτ ′′ Z−1
F (τ − τ ′′;µ)µ

d
dµ
ZF (τ ′′ − τ ′;µ) . (3.82)

We find that

γJ(τ − τ ′;µ) =
2αsCF
π

{
δ(τ − τ ′)

(
1− a/2
1− a ln

µ2

Q2
+

3
4

)
− 1

1− a
[
θ(τ − τ ′)
τ − τ ′

]
+

}
, (3.83)

and

γS(τ − τ ′;µ) =
2αsCF
π(1− a)

{
−δ(τ − τ ′)ln µ2

Q2
+ 2

[
θ(τ − τ ′)
τ − τ ′

]
+

}
. (3.84)

Both anomalous dimensions are the first terms in the perturbative expansion of the general form
to all orders in αs [125, 129],

γF (τ − τ ′;µ) = −ΓF [αs]
(

2
jF

[
θ(τ − τ ′)
(τ − τ ′)

]
+

− ln
µ2

Q2
δ(τ − τ ′)

)
+ γF [αs]δ(τ − τ ′) , (3.85)

where the coefficients ΓF [αs], γF [αs] have the expansions

ΓF [αs] =
(αs

4π

)
Γ0
F +

(αs
4π

)2
Γ1
F + · · · (3.86)

and

γF [αs] =
(αs

4π

)
γ0
F +

(αs
4π

)2
γ1
F + · · · . (3.87)

We summarize the coefficients Γ0
F and γ0

F and the jF -values for the jet and soft functions in Table 3.1.
The solution of the RG equation Eq. (3.81) with the anomalous dimension γF of the form

given in Eq. (3.85) with particular values of jF was developed in the series of papers [39, 147, 10,
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166]. Later, it was solved for arbitrary jF in [125] using a convolution variable t = Qjτ with mass
dimension j = jF . The resulting evolution equation for F is

F (τ ;µ) =
∫

dτ ′ UF (τ − τ ′;µ, µ0)F (τ ′;µ0) , (3.88)

where the evolution kernel UF is given to all orders in αs by the expression

UF (τ − τ ′;µ, µ0) =
eK̃F+γE ω̃F

Γ(−ω̃F )

(
µ0

Q

)jF ω̃F [ θ(τ − τ ′)
(τ − τ ′)1+ω̃F

]
+

, (3.89)

where γE is the Euler constant and where ω̃F and K̃F are defined as

ω̃F (µ, µ0) ≡ 2
jF

∫ αs(µ)

αs(µ0)

dα

β[α]
ΓF [α] , (3.90a)

K̃F (µ, µ0) ≡
∫ αs(µ)

αs(µ0)

dα

β[α]
γF [α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
ΓF [α]

∫ α

αs(µ0)

dα′

β[α′]
. (3.90b)

The plus function in Eq. (3.89) for all ω < 1 and ω 6= 0 is defined as7[
θ(x)
x1+ω

]
+

≡ lim
β→0

[
θ(x− β)
x1+ω

− β−ω

ω
δ(x− β)

]
= −δ(x)

ω
+
∞∑
n=0

(−ω)n
[
θ(x)ln nx

x

]
+

, (3.91)

with the latter plus functions defined in Eq. (3.40).
For the NLL parameters of the evolution kernel UF , Eq. (3.90) gives

ωF (µ, µ0) = − Γ0
F

jF β0

[
ln r +

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
, (3.92a)

KF (µ,µ0) = − γ
0
F

2β0
ln r +

−2πΓ0
F

(β0)2

[
r − 1− rln r

αs(µ)

+

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
1− r + ln r

4π
+

β1

8πβ0
ln 2r

]
, (3.92b)

where we have used the fact that ΓF ∝ Γcusp. This proportionality is well known for the a = 0 jet
and soft functions. In Appendix 3.A we verify that it remains true for all a < 1.

From Eq. (3.88) we can write explicit formulas for the resummed jet and soft functions
at any scale µ. Details of evaluating the integral over the convolution variable τ ′ are given in
Appendix 3.B. For the soft function, we plug the fixed-order NLO result Eq. (3.42) at the scale µ0

7Note that from the definition in Eq. (3.91), for ω < 0 the ‘+’ label can be dropped and so Eq. (3.91) is consistent
with the distribution relation Eq. (3.39).
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into Eq. (3.88), and obtain at the scale µ,

Sa(τa;µ) =
eKS+γEωS

Γ(−ωS)

(
µ0

Q

)jSωS
×
[{

1− αs(µ0)CF
2π

1
1− a

(
ln 2 µ2

0

(Qτa)2
+ 4H(−1− ωS)ln

µ2
0

(Qτa)2

+
π2

2
+ 4
[
[H(−1− ωS)]2 − ψ(1)(−ωS)

])}( θ(τa)
τ1+ωS
a

)]
+

,

(3.93)

and for the jet function, plug in the fixed-order NLO result Eq. (3.62) at µ0 into Eq. (3.88), and
obtain at µ,

Jna (τa;µ) =
eKJ+γEωJ

Γ(−ωJ)

(
µ0

Q

)jJωJ
(3.94)

×
[{

1 +
αs(µ0)CF

4π

(
2− a
1− a ln 2 µ2

0

Q2τ
2

2−a
a

+
(

3 +
4H(−1− ωJ)

1− a
)

ln
µ2

0

Q2τ
2

2−a
a

+ 4f(a) +
4

(1− a)(2− a)

[π2

6
+ [H(−1− ωJ)]2 − ψ(1)(−ωJ)

])}( θ(τa)
τ1+ωJ
a

)]
+

,

where in the above two equations KF ≡ KF (µ, µ0), ωF ≡ ωF (µ, µ0), H(z) is the harmonic number
function, and ψ(ν)(z) is the polygamma function.

4.3 Full distribution at NLL

By running the hard, jet, and soft functions from the scales µ0 = µH , µJ , and µS ,
respectively, to the common factorization scale µ and performing the convolution in Eq. (3.18) (see
Appendix 3.B for details), we find for the final resummed expression for the two-jet angularity
distribution with NLL/NLO perturbative accuracy

1
σ0

dσ2

dτa

PT
∣∣∣∣
NLL/NLO

=
[(

1 + fH + 2fJ + fS

)
Uσa (τa;µ, µH , µJ , µS)

]
+

, (3.95)

where we defined

Uσa (τa;µ, µH , µJ , µS) ≡ eK+γEΩ

Γ(−Ω)

(
µH
Q

)ωH(µJ
Q

)2jJωJ
(
µS
Q

)jSωS ( θ(τa)
τa1+Ω

)
, (3.96)

where

Ω ≡ 2ωJ(µ, µJ) + ωS(µ, µS) (3.97)
K ≡ KH(µ, µH) + 2KJ(µ, µJ) +KS(µ, µS) , (3.98)
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with ωH ,KH given by Eq. (3.75) and ωJ,S and KJ,S given by Eq. (3.92) and

fH =
αs(µH)CF

π

(
−4 +

7π2

12
− 2ln 2µH

Q
− 3ln

µH
Q

)
(3.99a)

fJ =
αs(µJ)CF

π

[
f(a) +

3/4
1− a/2H(−1− Ω) +

π2

6 +H(−1− Ω)2 − ψ(1)(−Ω)
2(1− a)(1− a/2)

(3.99b)

+
2− a
1− a ln 2 µJ

Qτa1/(2−a)
+
(

3
2

+
2

1− aH(−1− Ω)
)

ln
µJ

Qτa1/(2−a)

]
fS =

αs(µS)CF
π

[
1

1− a
(
−π

2

4
− 2H(−1− Ω)2 + 2ψ(1)(−Ω)

)
(3.99c)

− 2ln 2 µS
Qτa

− 4H(−1− Ω)ln
µS
Qτa

]
,

and f(a) was defined in Eq. (3.63).
From these expressions, it is clear that the logarithms are minimized by choosing µH , µJ ,

and µS of order Q, Qτa1/(2−a), and Qτa, respectively. We will describe in more detail precisely
which values we choose for these scales when we plot the full distributions in Sec. 6.

4.4 Matching to QCD

One way to achieve matching onto QCD is to include three-jet operators in the matching
of the QCD current onto the SCET operators in Eq. (3.13) [32, 165]. For the scope of this paper,
however, we simply adopt the matching procedure described by [73], as implemented in [41].

To O(αs) the full QCD distribution will take the form

1
σ0

dσ
dτa

= δ(τa) +
(αs

2π

)
Aa(τa) +O(α2

s) . (3.100)

In Appendix 3.C we describe how to calculate Aa(τa) numerically. Meanwhile, the fixed-order
two-jet angularity distribution in SCET at O(αs) is given by the convolution Eq. (3.18) of the
fixed-order hard, jet, and soft functions Eqs. (3.29), (3.42), and (3.62). The result is independent
of µ (except through αs ≡ αs(µ)), and is given by

1
σ0

dσ2

dτa
= δ(τa)Dδ

a +
αs
2π

[Da(τa)]+ , (3.101)

where

Dδ
a = 1− αsCF

2π
1

2− a
{

2 + 5a− π2

3
(2 + a)

+ 4
∫ 1

0
dx
x2 − 2x+ 2

x
ln [x1−a + (1− x)1−a]

}
(3.102)

Da(τa) = − 2CF
2− a

θ(τa)(3 + 4ln τa)
τa

. (3.103)



60

The two-jet fixed-order SCET distribution Eq. (3.101) reproduces the most singular parts
of the full QCD distribution8 Eq. (3.100), that is, the coefficient of the δ(τa), 1/τa and (1/τa)ln τa
pieces. The expression for Da(τa) in Eq. (3.103) makes explicit that the angularities are not
infrared-safe for a = 2.

The difference of the two fixed-order distributions Eq. (3.100) and Eq. (3.101) away from
τa = 0 is a purely integrable function,

ra(τa) ≡ 1
σ0

(
dσ
dτa
− dσ2

dτa

)
=
(αs

2π

)
[Aa(τa)−Da(τa)] . (3.104)

By adding this remainder function to the NLL resummed SCET distribution, we obtain a result
which both agrees with QCD to O(αs) and resums large logarithmic terms in the entire perturbative
series with NLL/NLO accuracy. The matched distributions are thus defined as

1
σ0

dσ
dτa

PT
∣∣∣∣
NLL/NLO

=
1
σ0

dσ2

dτa

PT
∣∣∣∣
NLL/NLO

+ ra(τa) . (3.105)

To find ra(τa), we numerically obtain Aa(τa) from an analysis of the full QCD distributions away
from τa = 0 using the procedure described in Appendix 3.C, and then subtract out the expression
for Da(τa) given in Eq. (3.103).

For the case a = 0 (thrust), the analytic form of dσPT/dτ0 is known [101], with which our
formula Eq. (3.157) for A0(τ0) agrees. Using Eqs. (3.157) and (3.103), we obtain the remainder
function

r0(τ0) =
αsCF

2π

[
2(2− 3τ0 + 3τ2

0 )
1− τ0

ln (1− 2τ0)
τ0

− 2(1− 3τ0)
1− τ0

ln τ0 + 6 + 9τ0

]
, (3.106)

which we see is integrable down to τ0 = 0.
As a consistency check of this matching technique, we calculated the total integral9 of our

fixed-order result,

σtotal =
∫ τmax

a

0
dτa

(
1
σ0

dσ2

dτa

PT

+ ra(τa)
)
, (3.107)

and compared with the total inclusive cross-section, σ(e+e− → X) = σ0(1 +αs/π). We found that
our results agreed to any arbitrary precision which could be achieved by our numerical computation.

5 Nonperturbative Model for the Soft Function

In this section we adapt the model for the soft function used in jet mass and thrust dis-
tributions as constructed in [132] to work for all angularities with a < 1. This model is designed
to describe the small-τa region where perturbation theory breaks down, while leaving the pertur-
batively reliable large- and intermediate-τa regions unaffected. The gap parameter in this model is

8Technically, we mean that the difference of the two distributions integrated from 0 to ε vanishes as ε→ 0.
9The upper limit on τa in Eq. (3.107), τmax

a , is that of the maximally symmetric three-jet configuration, τsym(a) =
1/31−a/2 [49], but only for a & −2.6 (see Appendix 3.C).
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designed to turn off the soft function at energies below a minimum hadronic threshold. Such a pa-
rameter is known to have renormalon ambiguities [132], which must cancel those in the perturbative
soft function (which we denote in this section as SPT) to yield a renormalon-free total soft func-
tion S. To ensure perturbative stability, a scheme is needed to explicitly enforce this cancellation
order-by-order in perturbation theory. Recently, the position-mass scheme developed in Ref. [141]
was used to define a renormalon-free gap parameter for hemisphere jet masses in Ref. [130]. This
gap parameter obeys transitive RG evolution and has a well-behaved perturbative expansion. We
implement this scheme generalized to arbitrary angularity.

5.1 Review of hemisphere and thrust soft function models

To motivate the functional form of the model function that we will use for all angularity
distributions, we begin with the model hemisphere soft function constructed in [149]. This model is
a function of two variables which can be chosen to be l+ and l−, defined as the + and − components
of the momentum in the n and n̄ hemispheres, respectively. It takes the form

f exp(l+, l−) = θ(l+)θ(l−)
N (A,B)

Λ2

(
l+l−

Λ2

)A−1

exp
(−(l+)2 − (l−)2 − 2Bl+l−

Λ2

)
. (3.108)

The parameter A controls how steeply the soft function falls as l± → 0, and B contains information
about the cross correlation of the soft particles in the two hemispheres. f exp is normalizable for
A > 0 and B > −1. Λ is an O(ΛQCD) parameter that describes the range that hadronic effects
can smear the soft function around a given l+, l−. Finally, N (A,B) is chosen such that f exp is
normalized to unity,

∫ +∞
−∞ dl+dl−f exp(l+, l−) = 1.

In Ref. [125], this model was used to relate the total hemisphere soft function Shemi(l+, l−)
to the perturbative hemisphere soft function SPT

hemi(l
+, l−) via the convolution

Shemi(l+, l−;µ) =
∫ +∞

−∞
dl̃+dl̃−SPT

hemi(l
+ − l̃+, l− − l̃−;µ)f exp(l̃+ −∆, l̃− −∆) . (3.109)

where ∆ is the gap parameter. This method of implementing the model function ensures a smooth
continuation between the nonperturbative, model-dominated and the perturbative regions of the
cross-section.

To use this expression in our formalism, we first relate the a = 0 soft function, S0(τ0, µ),
and the hemisphere soft function, Shemi(l+, l−, µ). Using that τ0 = (l+ + l−)/Q, we find

S0(τ0;µ) =
∫

dl+dl−Shemi(l+, l−;µ) δ
(
τ0 − l+ + l−

Q

)
= Q

∫
dl Shemi(l, Qτ0 − l;µ) . (3.110)

This gives the model function convolution for S0(τ0;µ) as

S0(τ0;µ) = Q

∫
dl
∫

dl+dl− SPT
hemi(l − l+, Qτ0 − l − l−;µ)f exp(l+ −∆, l− −∆)

=
∫

dτ ′0 S
PT
0 (τ0 − τ ′0;µ)f exp

(
τ ′0 −

2∆
Q

)
, (3.111)
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where (absorbing A and B dependent constants into the normalization N )

f exp(τ) ≡ Q2

∫
dτ ′ f exp(Qτ −Qτ ′, Qτ ′)

= θ(τ)N (A,B)
Q

Λ

(
Qτ

Λ

)2A−1

1F1

(
1
2
,
1
2

+A, (B − 1)
(Qτ)2

2Λ2

)
e−(B+1)

(Qτ)2

2Λ2 . (3.112)

f exp(τ) inherits its normalization from f exp(l+, l−),
∫∞
−∞dτf exp(τ) = 1.

5.2 Adaptation to all angularities

For nonzero a, we still want to use a convolution of the form

Sa(τa;µ) =
∫

dτ ′a S
PT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆a

Q

)
. (3.113)

Moreover, we would like to retain the functional form of f exp since it has had relatively good success
in describing different event shapes with the same values of A and B [149]. However, we must at
a minimum modify f exp so that the first moment of Sa(τa;µ) satisfies the scaling relation given in
Eqs. (3.24) and (3.27). In terms of the first moment of SPT

a (τa;µ) and f exp
a , the first moment of

Sa(τa;µ) is ∫
dτa τa Sa(τa;µ) =

∫
dτa τa

∫
dτ ′a S

PT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆a

Q

)
= SPT[1]

a (µ) +
[ ∫

dτa SPT
a (τa;µ)

](
2∆a

Q
+ f exp[1]

a

)
= SPT[1]

a (µ) +
2∆a

Q
+ f exp[1]

a , (3.114)

where here SPT[1]
a (µ) and f exp[1]

a are the first moments of SPT
a (τa;µ) and f exp

a (τa), respectively, and
in the third line we dropped αs corrections to the O(ΛQCD/Q) power corrections ∆a/Q and f exp[1]

a .
Since the first moment of the perturbative soft function, SPT[1]

a , already obeys the proper
scaling (cf. Eq. (3.42)) we simply rescale the gap parameter,

∆a =
∆

1− a , (3.115)

and require that the parameters of f exp
a vary from those in f exp such that

f exp[1]
a ≡

∫
dτa τa f exp

a (τa) =
1

1− a
∫

dτ τ f exp (τ) =
1

1− af
exp[1] . (3.116)

This latter condition is most easily satisfied by fixing A and B to their value at a = 0 and allowing
Λ → Λa to vary accordingly. Note from the definition of f exp, Eq. (3.112), Λf exp(Λτ/Q) is inde-
pendent of Λ and hence Λaf

exp
a (Λaτ/Q) = Λf exp(Λτ/Q) when A and B are fixed. This implies

that

f exp[1]
a =

(
Λa
Q

)2 ∫
dτa τa f exp

a

(
Λa
Q
τa

)
=
(

ΛaΛ
Q2

)∫
dτ τ f exp

(
Λ
Q
τ

)
=
(

Λa
Λ

)
f exp[1] , (3.117)
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and so to satisfy Eq. (3.116) we take f exp
a to be defined as in Eq. (3.112) but with Λ replaced with

Λa where

Λa =
Λ

1− a . (3.118)

5.3 Renormalon cancellation

We want to ensure that the 1/Q renormalon ambiguity in SPT(τa;µ) is cancelled order-
by-order in perturbation theory. To implement the position-mass renormalon cancellation scheme
defined in Ref. [141] for jet-masses and applied to the a = 0 gap parameter in Ref. [130], we first
take the Fourier transform of Sa(τa;µ) with respect to Qτa,

Sa(xa;µ) ≡
∫

dτa e−iQτaxaSa(τa;µ)

=
∫

dτa e−iQτaxa
∫

dτ ′a S
PT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆a

Q

)
= SPT

a (xa;µ) f exp(xa)e−2i∆axa

=
[
SPT
a (xa;µ)e−2iδa(µ)xa

][
f exp
a (xa)e−2i∆̄a(µ)xa

]
, (3.119)

where in the second line we used Eq. (3.113) and in fourth line we split ∆a into two µ dependent
pieces, ∆a = ∆̄a(µ) + δa(µ). Note that since ∆a is µ-independent, SPT

a and Sa obey the same RG
equation.

Next, we demand that for some value R, the term in the first pair of brackets in the last
line of Eq. (3.119) satisfies

d
d(ixa)

ln [SPT
a (xa;µ)e−2iδa(µ)xa ]ixa=(ReγE )−1 = 0 , (3.120)

a condition which guarantees no ambiguity in SPT
a at order 1/Q. This gives δa(µ) to all orders in

terms of SPT
a (τa;µ) as

δa(µ) = −Q
2

∫
dτa τa e−Qτa/(Re

γE )SPT
a (τa;µ)∫

dτa e−Qτa/(Re
γE )SPT

a (τa;µ)
, (3.121)

which to leading order is given by the expression

δ1
a(µ) = −ReγE 8CF

1− a
(
αs(µ)

4π

)
ln
µ

R
. (3.122)

Since ∆a = ∆̄a(µ) + δa(µ) is µ-independent we find that to O(αs),

µ
d

dµ
∆̄a(µ) = −µ d

dµ
δa(µ) = ReγE

[
8CF
1− a

(
αs(µ)

4π

)]
≡ −ReγE

[
Γ0
S

(
αs(µ)

4π

)]
. (3.123)

Using that Γ∆̄[αs] ∝ ΓS [αs] (cf. Refs. [130, 141]) to all orders and that, for arbitrary a, ΓS [αs] ∝
Γcusp[αs] (cf. App. 3.A), we find that the NLL expression for µd∆̄a/dµ is

µ
d

dµ
∆̄a(µ) = −ReγE

[
Γ0
S

(
αs(µ)

4π

)(
1 +

Γ1
cusp

Γ0
cusp

αs(µ)
4π

)]
, (3.124)
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which has the solution

∆̄a(µ) = ∆̄a(µ0)− ReγE

2
ωS(µ, µ0) , (3.125)

where ωS(µ, µ0) is given in Eq. (3.92). Note that since δ1
a(µ) and ∆̄a(µ)− ∆̄a(µ0) are proportional

to 1/(1− a), Eq. (3.115) suggests that we should choose ∆̄a(µ0) to be ∆̄(µ0)/(1− a), where ∆̄(µ0)
is the best choice for a = 0.

Expanding Eq. (3.113) in powers of αs to O(αs) gives

Sa(τa;µ) =
∫

dτ ′a

[
SPT
a (τa − τ ′a;µ) +

2δ1
a(µ)
Q

d
dτ ′a

SPT
a (τa − τ ′a;µ)

]
f exp

(
τ ′a −

2∆̄a(µ)
Q

)
, (3.126)

where SPT
a at NLO in the first term in brackets and at LO in the second term should be used since

δ1
a is O(αs). Using the fixed-order expression SPT

a (τa;µ) = δ(τa) + O(αs) in the second term and
integrating this term by parts gives

Sa(τa;µ) =
∫

dτ ′a

[
SPT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆̄a(µ)
Q

)]
− 2δ1

a(µ)
Q

d
dτa

f exp
a

(
τa − 2∆̄a(µ)

Q

)
.

(3.127)

Evolving Sa(τa;µS) to the scale µ with US(τa − τ ′a;µ, µS) as in Eq. (3.88) gives

Sa(τa;µ) =
∫

dτ ′a

[
SPT
a (τa − τ ′a;µ) f exp

a

(
τ ′a −

2∆̄a(µS)
Q

)
− 2δ1

a(µS)
Q

US(τa − τ ′a;µ, µS)
d

dτ ′a
f exp
a

(
τ ′a −

2∆̄a(µS)
Q

)]
. (3.128)

Here we keep ∆̄a and δa at the scale µS which is needed to achieve the 1/Q renormalon cancellation
[131].

Finally, Eq. (3.128) implies that the total resummed distribution at NLL convoluted with
the model function f exp

a is

1
σ0

dσ
dτa

∣∣∣∣
NLL/NLO

=
∫

dτ ′a

{
1
σ0

dσ
dτa

PT

(τa − τ ′a;µ)
∣∣∣∣
NLL/NLO

f exp
a

(
τ ′a −

2∆̄a(µS)
Q

)
− 2δ1

a(µS)
Q

[
Uσa (τa − τ ′a;µ, µH , µJ , µS)

]
+

d
dτ ′a

f exp
a

(
τ ′a −

2∆̄a(µS)
Q

)}
,

(3.129)

where the resummed two-jet distribution matched to QCD, dσPT/dτa|NLL/NLO, is given in Eq. (3.105)
and Uσa is given in Eq. (3.96).

5.4 Numerical results for the soft function

By plugging the partonic soft function Eq. (3.42) into the model Eq. (3.127), we obtain
for the full convoluted model soft function to O(αs),

Sa(τa;µ) =
{

1− αsCF
2π

1
1− a

[
ln 2

(
µ2

Q2(τ∆
a )2

)
− π2

6

]}
f exp
a

(
τ∆
a

)− 2δa1(µ)
Q

d
dτa

f exp(τ∆
a )

+
2αsCF
π

1
1− a

∫ τ∆
a

0
dτ ′

1
τ ′

ln
(

µ2

Q2τ ′2

)[
f exp
a

(
τ∆
a − τ ′

)− f exp
a

(
τ∆
a

)]
,

(3.130)
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where τ∆
a ≡ τa − 2∆̄a(µ)/Q. To integrate against the plus distributions in Eq. (3.42), we used the

prescription ∫ a

0
dx
[
θ(x)
x

]
+

f(x) =
∫ a

0
dx
θ(x)
x

[f(x)− f(0)] + f(0)ln a (3.131a)∫ a

0
dx
[
θ(x)lnx

x

]
+

f(x) =
∫ a

0
dx
θ(x)lnx

x
[f(x)− f(0)] +

1
2
f(0)ln 2a , (3.131b)

which correspond to the definition of plus-functions given in Eq. (3.40). To minimize the logarithms
in the peak region of the soft function while also avoiding the Landau pole in αs, it is natural to
choose the scale to be of order µ & ΛQCD. To minimize the logarithms for larger values of τa, it is
natural to choose µ ∼ Qτa. A scale choice that interpolates between these two regions is

µ =
√
θ(Qτa − µmin

S )(Qτa − µmin
S )2 + (µmin

S )2 , (3.132)

where the minimum scale is µmin
S & ΛQCD.

In Fig. 3.6, we plot Sa(τa;µ) for six values of a between −2 and 1/2. In each plot, we
show the tree-level (LO) soft function with a gap parameter (solid gray), the one-loop (NLO)
soft function with a gap parameter but without renormalon subtraction (dashed green), and the
one-loop soft function with a gap and renormalon subtraction (solid blue). For the parameters in
the model function Eq. (3.112) we take A = 2.5, B = −0.4,Λ = 0.55 GeV, as extracted from a
fit to the jet mass distribution [149]. For the scale dependence of the gap parameter, we choose
∆̄0(1 GeV) = 100 MeV and use Eq. (3.125) to evolve to other scales. We choose R = 200 MeV in
the renormalon subtraction Eq. (3.122) and the minimum value of the scale in Eq. (3.132) to be
µmin
S = 1 GeV. We illustrate the variation of Sa(τa;µ) with the scale µ by varying it between 0.8

and 1.2 times the formula in Eq. (3.132). The tree-level soft functions depend on µ only through
the gap parameter ∆̄a(µ) and thus artificially have smaller scale variation than the one-loop soft
functions, at which order the nontrivial µ dependence is first probed.

The one-loop soft functions in Fig. 3.6 display unphysical behavior near τa = 0 by taking
negative values, due to the renormalon ambiguity in the perturbative series for the partonic soft
function. By cancelling the renormalon ambiguity between the partonic soft function and the
nonperturbative gap parameter ∆a through Eq. (3.127), we obtain the renormalon-free one-loop
soft functions. One of the plots of the soft function for a = 1/2 still exhibits a small negative dip
after renormalon subtraction, but it is nevertheless much smaller than the original negative dip,
and from its size may be expected to an effect of higher-order power corrections. The dip does not
appear in the total cross-section calculated below in Sec. 6.

6 Numerical Results for the Full Distribution

In this section we plot the angularity distributions dσ/dτa which include LO and NLO
perturbative hard, jet, and soft function contributions, resummation of large logarithmic terms to
NLL accuracy, matching to QCD at O(αs), and the effects of the nonperturbative gapped soft
functions.

In Fig. 3.7 we plot the angularity distributions given by Eq. (3.129), plugging in the NLL
resummed partonic distribution given by Eq. (3.95) and matched according to Eq. (3.105). We
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Sa(τa;µ)
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Figure 3.6: Angularity soft functions with a gap parameter, at tree-level (solid gray) and at one-
loop with (solid blue) and without (dashed green) renormalon subtraction, for Q = 100 GeV, for
several values of a as labeled on each plot. The variation of the soft functions with the scale µ is
illustrated by first setting µmin

S = 1.0 GeV in Eq. (3.132) and choosing µ to be (0.8, 1, 1.2) times the
formula in Eq. (3.132), with the plots for smaller values of µS peaking earlier in τa. For the model
parameters we take A = 2.5, B = −0.4,Λ = 0.55 GeV. In the renormalon subtraction Eq. (3.122),
we have chosen R = 200 MeV.
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keep the same soft model function parameters as in the previous section. As noted earlier, the
logarithms in the hard, jet, and soft functions are minimized by choosing µH = Q, µJ ∼ Qτ1/(2−a)

a ,
and µS ∼ Qτa. In order to avoid the Landau pole in αs as τa → 0, we choose the scales as in
Eq. (3.132) ,

µS =
√
θ(Qτa − µmin

S )(Qτa − µmin
S )2 + (µmin

S )2 (3.133a)

µJ =
√
θ(Qτ1/(2−a)

a − µmin
J )(Qτ1/(2−a)

a − µmin
J )2 + (µmin

J )2 . (3.133b)

We may vary µmin
S,J independently, or choose them in a correlated fashion suggested by their natural

scaling µS ∼ Qλ, µJ ∼ Qλ1/(2−a), that is,

µmin
J = Q(1−a)/(2−a)(µmin

S )1/(2−a) . (3.134)

In Fig. 3.7 we have done the latter. The NLL/NLO distributions exhibit negative values for small
τa as a result of the renormalon ambiguity. Performing the renormalon subtraction in the soft
function removes this pathology.

In Fig. 3.8 we plot angularity distributions for the values of a used in Fig. 3.7 on the same
figure to illustrate clearly how they change with a. The range of τa populated by two-jet-like events
grows with increasing a, so that the peak regions are populated by jets of increasing narrowness
with increasing a. This is reflected in the scales µJ,S in Eq. (3.133) drawing closer as a grows to 1.

In Fig. 3.9 we vary the hard, jet, and soft scales and plot the resulting variation of our final
predictions for the distributions. First we vary the hard scale µH between Q/2 and 2Q, plotting
the result in the dark green band. Then we vary the collinear and soft scales µJ,S between half and
twice the values we chose in Eq. (3.133) and plot the result in the light blue band.

Although published data on e+e− angularity distributions for a 6= 0 are not yet available,
data for the a = 0 (thrust) distribution are of course plentiful. The remaining difference between
our prediction in Fig. 3.7 and existing measurements of the a = 0 distribution can be accounted
for by higher-order perturbative corrections (see, for example, Fig. 6 in Ref. [41]), which are known
but have not been included here, since we calculated the other angularity distributions only to
NLL/NLO. For a sufficiently smaller than 1, we expect our predictions of all angularity distributions
to agree with data to the same accuracy that the NLL/NLO a = 0 prediction agrees with the thrust
data.
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Figure 3.7: Angularity distributions at Q = 100 GeV for six values of a between −2 and 1/2. The
solid gray curves are the LO partonic distributions resummed to NLL and convoluted with the
gapped soft model function. The dotted green curves are NLL/NLO convoluted with the gapped
soft function but without renormalon subtraction. The dashed red curves are the same as the
green but with renormalon subtraction, and the solid blue curves are the same as the red but
matched to fixed-order QCD at O(αs). We choose the scales µ = Q,µmin

S = 1 GeV, and µmin
J given

by Eq. (3.134). For the gap parameter we take ∆̄0(1 GeV) = 100 MeV and in the renormalon
subtraction R = 200 MeV.
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Figure 3.8: Angularity distributions at Q = 100 GeV. The full, NLL/NLO resummed, renormalon-
subtracted distributions in Fig. 3.7 are here shown all on the same scale. The parameters are chosen
the same as in Fig. 3.7. From highest to lowest peak value, the curves are for a = −2,−1,−1
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Figure 3.9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = −1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
values given in Eq. (3.133) and twice these values.
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7 Comparison to Previous Results and Classic Resummation

To compare to previous predictions of angularity distributions [47, 49] and focus more
generally on the differences between SCET and alternative approaches to factorization and re-
summation, in this section we restrict our attention to the perturbative distribution both before
matching, Eq. (3.95), and after matching, Eq. (3.105), leaving out the nonperturbative model of
Sec. 5.

Our result for the unmatched NLL resummed distribution Eq. (3.95) involves an evolution
factor Uσa , which resums all leading and next-to-leading logarithms (for example the (1/τa)ln τa and
1/τa terms in the fixed-order Da(τ) of Eq. (3.103)), and a multiplicative NLO prefactor 1 + fH +
2fJ + fS = 1 +O(αs). Both the evolution factor and the NLO prefactor are sensitive to physics at
the three distinct scales µH , µJ , and µS . Keeping these scales arbitrary until after solving the RG
equations in Sec. 4 and retaining the freedom to choose them only at the end provides a flexibility
which is indispensable in achieving reliable predictions in the SCET approach. This approach has
significant advantages over what we refer to as the classic approach to resummation in QCD [73].

To illustrate these advantages, we compare our results for angularity distributions to
those obtained in full QCD [47, 49]. The analysis in Ref. [47] used a formalism of factorization and
resummation of logarithms through renormalization-group evolution paralleling that of SCET, in
principle containing all the advantages that we emphasize here, but which were not fully realized.
Before arriving at the explicit prediction for the NLL resummed distribution dσ/dτa given in
Ref. [49], the factorized result of Ref. [47] was first converted into the form of a resummed event
shape distribution that would be obtained using the classic approach (and has been for a = 0).

One major advantage of the SCET approach over the classic approach is the presence of
Landau pole singularities in the results of the classic approach that are not in the results from
SCET, as also found in the cases of DIS and Drell-Yan [160, 36, 39]. We can illustrate why SCET
avoids this for the case of angularities by returning to our results for the resummed jet and soft
functions and for the final resummed distribution. From the expressions for the resummed soft
function Sa(τ sa), Eq. (3.93), and for the resummed jet function Jna (τna ), Eq. (3.94), one might be
tempted to set µS = Qτ sa and µJ = Q(τna )1/(2−a), since the logarithms in Eqs. (3.93) and (3.94) are
minimized for these choices. The problem with this choice is that the soft and jet functions still
enter the convolution in the factorization theorem Eq. (3.1) and thus the scales in αs(µJ/S) run
below τn,sa = ΛQCD/Q even for τa > ΛQCD/Q (where τa = τna + τ n̄a + τ sa) if these τn,sa dependent
scales are chosen. However, for a τ sa -independent choice of µS in the case of the soft function, for
instance, the full functional dependence of the resummed S(τ sa ;µ) on τ sa and µS is such that after
the integrals over τ sa , τna , and τ n̄a needed to get to the final resummed distribution, Eq. (3.95), are
performed, the resulting dependence on µS only comes in the combination µS/Qτa in logarithms
(and similarly for the jet functions). The proper choice is thus µS ∼ Qτa (and µJ ∼ Qτ1/(2−a)

a ) and
not µS ∼ Qτ sa . With this choice, Landau pole singularites never affect our result for τa > ΛQCD/Q.
Setting µS = Qτ sa before doing the convolution Eq. (3.1) is equivalent to setting µS = Q/ν in the
Laplace transform with respect to ν of the distribution, which is the scale choice made in Ref. [47]
needed to reproduce the classic result for a = 0. Thus, when transforming back to get dσ/dτa,
one inevitably runs into spurious Landau pole singularities with this scale choice10, confirming the

10There are also inherent Landau pole singularities in the classic approach before transforming back to τa-space and
thus not associated with making ν-dependent scale choices for µJ,S . In the classic approach, a prescription to avoid
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Figure 3.10: Factorization scale µ variation of the (unmatched, partonic) SCET NLL/LO (light
blue band) and the classic QCD NLL/LO (red band) resummed results for angularity distributions.
µ is varied over the range Q

2 ≤ µ ≤ 2Q with Q = 100 GeV for the cases a = −1, a = 0, a = 1/4,
and a = 1/2. To make a direct comparison to the QCD results, the scales in the SCET results have
been chosen as µ = µH = Q, µJ = Qτ

1/(2−a)
a , and µS = Qτa.

similar observation of [39].
Another difference between the explicit results we give and those given in [47] is that

while both achieved resummation of logarithms to NLL accuracy, the latter does not include a
full NLO calculation of the jet and soft functions in the distribution dσ/dτa, that is, effectively
does not have the prefactors fH,J,S . As with our SCET results, the results of [47] are not as
accurate as fixed-order QCD in the large-τa region and need to be matched. This matching was
subsequently performed numerically to at O(α2

s) in Ref. [49]. We summarize this by saying that we
have resummed logarithms of τa to NLL/NLO with O(αs) matching and Ref. [49] has resummed
to NLL/LO with O(α2

s) matching.
The explicit dependence of the NLO prefactor on the separate scales µH,J,S makes it

distinct from what is obtained by NLO matching to QCD in the large-τa region where the three

both types of Landau pole singularities is employed, but at the expense of introducing unphysical power corrections
[73, 79]. The results of [49] plotted in Fig. 3.10 used the prescription of [73].
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scales are comparable. Specifically, it improves the accuracy in the smaller-τa region where the
distribution depends on physics at the three widely disparate scales separately, as revealed by
the factorization theorem. We emphasize that even though the effects of including this NLO
piece are formally of next-to-next-to-leading logarithmic (NNLL) accuracy (using the counting
αsln τa ∼ O(1)), it is natural to include it in our NLL resummed result since the dependence on
the arbitrary scales µH,J,S is cancelled to order αs in our NLL/NLO calculation.11

Finally, we point out that while SCET can incorporate O(α2
s) matching with, for example,

a O(α2
s) QCD calculation or an event generator, the classic approach by itself is less easily gen-

eralized to achieve full NLL/NLO accuracy. The reason for this difference is that SCET predicts
the evolution boundary conditions for the hard, jet, and soft functions, H(Q;µH) and F (τa;µF )
(F = J, S) in Eq. (3.88), for arbitrary scales µH,J,S order by order in perturbation theory. On
the other hand, as discussed in Ref. [172], the classic approach in contrast must effectively use the
evolution boundary conditions F (τa;µ0) = δ(τa), which are LO in the SCET point of view. An
implication of this difference is that, since our NLO prefactor is formally part of the NNLL series,
full NNLL resummation is a nontrivial task in the classic approach (e.g. [54, 100]) whereas it is
straightforward in SCET, using no new techniques additional to the ones described above.

In Fig. 3.10, we compare our result with the classic result obtained in [47]. To make
this comparison, we truncate our result to NLL/LO accuracy and make the scale choices that are
equivalent to those that were made in Ref. [47] for the purpose of arriving at the classic resummed
form. Namely, we run the jet and soft functions from their respective natural scales, µJ = Qτ

1/(2−a)
a

and µS = Qτa, to the hard scale set to µH = Q. In addition, in Ref. [47] the factorization scale µ
was also chosen to be µ = µH , effectively turning off running between µH and µ. Thus, to make a
genuine comparison, we vary µ both in the classic result given in [49] and in our result Eq. (3.95)
over the range Q/2 to 2Q, fixing µH = µ in our result. Notice from the plots that the peak position
appears to be more stable in the SCET results relative to the classic results and that there is a
discrepancy in the overall normalization in the peak region, both of which may be attributed to
power corrections arising from the spurious Landau poles present in the classic result.

8 Conclusions

We have calculated angularity distributions in e+e− collisions for a < 1 to O(αs) in fixed-
order accuracy, resummed leading and next-to-leading large logarithms in the perturbative series,
incorporated the effects of a nonperturbative model for the soft function with a gap parameter,
and cancelled the leading renormalon ambiguities in the perturbative expansion of the distribution
and the gap parameter. Our new results for the one-loop jet and soft functions for all a < 1 and
the NLL resummation of logarithms of τa with explicit analytical dependence on the scales µH,J,S
made possible what we believe are the most precise predictions of angularity distributions to date.

These predictions, especially after extension to higher orders in perturbation theory and
resummation of logarithms, can prove useful in improving extraction of the strong coupling αs or
the parameters of nonperturbative models for the soft function. At the present time, in the absence

11More generally, in an NnLL/NmLO calculation, the dependence on µH,J,S cancels up to order α
min{n,m}
s , as the

µH,J,S derivative of the logarithm of the distribution receives contributions from the prefactor at order αms and from
the anomalous dimension at order αns .
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of a new linear collider, such extractions would require the re-analysis of LEP data to extract the
angularity distributions.

We also gain insight into the steps that will be required to predict jet observables in
hadronic collisions, a broad range of which have been studied in [13, 12] using the classic approach.
An SCET-based framework to factorize jet observables in this environment was developed in [23].
Our analysis of angularities suggests that the study of any set of jet observables which vary in their
sensitivity to narrower or wider jets or which depend on a jet algorithm picking out narrower or
wider jets should be scrutinized in the same way as we did for angularities to determine whether
the contributions of collinear and soft modes to each observable can be clearly separated. Also, our
calculations of light quark angularity distributions in e+e− collisions can be extended to calculating
individual jet shapes for jets of various origins to higher accuracy, contributing to strategies to use
such jet shapes to distinguish experimentally different types of jets [4, 3].

While we have used SCET to calculate and explore the behavior of angularity distributions,
the variation in behavior of the angularities has in turn shed light on the behavior and applicability
of the effective theory. Varying a essentially varies the collinear scale of SCET, in effect interpolating
between (and extrapolating beyond) SCETI and SCETII , and so angularities provide an ideal
testing ground for the behavior of these effective theories.

It is natural and straightforward to consider further improvement of our predictions to
higher perturbative accuracy and reduced nonperturbative uncertainty. We believe by using the cut
diagram methods described above to obtain the angularity distributions to O(αs) we can extend
our results to O(α2

s) in a straightforward manner. Also, all of the ingredients necessary for NNLL
resummation at a = 0 are already known [41], and we would only need to calculate those pieces
which change with a. The three-loop ΓJ,S part of the jet and soft anomalous dimensions for
arbitrary a can be obtained from known three-loop Γcusp [39] and the all-orders proportionality
ΓJ,S ∝ Γcusp which we verified in Appendix 3.A. The only unknown ingredients are the two-loop
non-cusp part of the jet and soft anomalous dimensions. These can be obtained solely from the UV
divergences of the two-loop graphs, and would immediately extend our results to NNLL accuracy.
As for nonperturbative effects in the angularity distributions, we have treated these effects in the
soft function in the simplest manner possible, adapting the a = 0 soft model function to all a by
rescaling its first moment. Comparison of these predictions to e+e− data can shed light on the
reliability of this choice.

Angularities and other event shapes have proven to be powerful probes of QCD and its
effective theories, and promise to play a key role in the new era of collider physics searching for
signals of new physics amid a sea of jets and strong interactions.

3.A Relation Among Hard, Jet, Soft, and Cusp Anomalous Di-
mensions

In Eq. (3.92) we used that the ΓF [αs] part of the jet or soft function anomalous dimension,
defined in Eq. (3.85), is proportional to the cusp anomalous dimension Γcusp to all orders in αs. This
fact is well known for the standard a = 0 jet function and soft functions. In this section we verify
that this relation remains true for all a. Our strategy will be to show that ΓJ,S [αs] must always
remain proportional to ΓH [αs], which is independent of a and is already known to be proportional
to Γcusp.
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The consistency of the factorization theorem Eq. (3.18) requires a relation among the hard,
jet, and soft function renormalization counterterms, and, thus, among the anomalous dimensions
(see, e.g., [47, 125]). This relation can be derived by requiring that Eq. (3.18) remain true when
written in terms of either the bare or renormalized hard, jet, and soft functions on the right-hand
side. This requires that

Z−1
H (µ)δ(τJ − τS) =

∫
dτ ′
∫

dτ ′′ZJ(τJ − τ ′;µ)ZJ(τ ′ − τ ′′;µ)ZS(τ ′′ − τS ;µ) , (3.135)

to all orders in αs. To O(αs), we can easily verify this relation using Eqs. (3.31), (3.43), and
(3.64) with ZH(µ) = |ZO(µ)|−2. This relation amongst the counterterms requires in turn that the
anomalous dimensions satisfy

−γH(µ)δ(τ) = 2γJ(τ ;µ) + γS(τ ;µ) . (3.136)

To all orders in αs the hard anomalous dimension takes the form of Eq. (3.72) and the jet
and soft anomalous dimensions take the general form of Eq. (3.85) [129] , where the constant jF
is jJ = 1/(2− a) for the jet function and jS = 1 for the soft function. The constraint Eq. (3.136)
then requires the three independent relations

0 =
4
jJ

ΓJ [αs] +
2
jS

ΓS [αs] , (3.137)

−ΓH [αs] = 2ΓJ [αs] + ΓS [αs] , (3.138)
−γH [αs] = 2γJ [αs] + γS [αs] , (3.139)

to all orders in αs. These relations can be verified to O(αs) from Eq. (3.71) and Table 3.1. The
first two relations Eqs. (3.137) and (3.138) taken together imply that

ΓS [αs] =
1

1− aΓH [αs] , ΓJ [αs] = −1− a/2
1− a ΓH [αs] , (3.140)

to all orders in αs and for all a < 1. Since ΓH [αs] ∝ Γcusp and is independent of a, both ΓS,J [αs] ∝
Γcusp as well.

3.B Evaluation of Resummed Jet and Soft Functions and Full Dis-
tribution

To evaluate the resummed jet and soft functions, we used the following method. First,
note that from the expressions for the evolution equation, Eq. (3.88), the form of the evolution
kernel, Eq. (3.89), and the generic form of the NLO jet and soft functions,

F (τ ;µ0) = c1δ(τ) + c2

(
1
τ

)
+

+ c3

(
ln τ
τ

)
+

, (3.141)

the resummed jet and soft functions are proportional to

F (τ ;µ) ∝
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

F (τ ′;µ0) = c1W1 + c2W2 + c3W3 , (3.142)



75

where

W1 =
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

δ(τ ′) ,

W2 =
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[
θ(τ ′)
τ ′

]
+

,

W3 =
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[
θ(τ ′)ln (τ ′)

τ ′

]
+

. (3.143)

Next, note that from the definitions of the plus functions, Eqs. (3.40) and (3.91), we can find Wi

as the coefficient of δi in the Taylor series of W (δ), where W (δ) is defined as

W (δ) ≡
∫

dτ ′
[
θ(τ − τ ′)

(τ − τ ′)1+ω

]
+

[
θ(τ ′)
τ ′1+δ

]
+

=
Γ(−ω)Γ(−δ)
Γ(−ω − δ)

[
θ(τ)
τ1+ω+δ

]
+

. (3.144)

Eq. (3.144) follows from the fact that∫
dτ ′′

[
θ(τ − τ ′′)

(τ − τ ′′)1+ω1

]
+

[
θ(τ ′′ − τ ′)

(τ ′′ − τ ′)1+ω2

]
+

=
Γ(−ω1)Γ(−ω2)
Γ(−ω1 − ω2)

[
θ(τ − τ ′)

(τ − τ ′)1+ω1+ω2

]
+

. (3.145)

By expanding both sides of Eq. (3.144) in δ and comparing like powers of δ, we find that

W1 =
[
θ(τ)
τ1+ω

]
+

, W2 =
[(

ln (τ)−H(−1− ω)
)(

θ(τ)
τ1+ω

)]
+

,

W3 =
[(

1
2

ln 2(τ)− ln (τ)H(−1− ω) +
π2

12

+
1
2
H(−1− ω)2 − 1

2
ψ(1)(−ω)

)(
θ(τ)
τ1+ω

)]
+

. (3.146)

Here, H(z) is the harmonic number function and ψ(ν)(z) is the polygamma function.
The same technique can be used to analytically calculate the fully resummed cross-section,

Eq. (3.18), directly from the unresummed jet and soft functions. The resummed cross-section is of
the form

1
σ0

dσ
dτ

PT

∝
3∏
i=1

(∫
dτi dτ ′i Fi(τ

′
i ;µi)

[
θ(τi − τ ′i)

(τi − τ ′i)1+ωi

]
+

)
δ(τ − τ1 − τ2 − τ3) . (3.147)

where the jet and soft functions Fi(τi, µi) are all of the form given in Eq. (3.141). These inte-
grals can be done most easily by replacing the Fi(τi;µi) on the right hand side of Eq. (3.147)
with

[
θ(τ)/τ1+δi

]
+

, expanding in δi before and after combining all the plus distributions using
Eq. (3.145), and comparing like powers of the δi. The result for the resummed cross-section
Eq. (3.95) then follows.



76

3.C Angularity Distribution in QCD to O(αs)

In Sec. 6 we matched the NLL resummed two-jet angularity distributions in SCET onto
the O(αs) fixed-order distributions in full QCD using the remainder function ra(τa), defined in
Eq. (3.104). In this section we provide some details of how we calculate the QCD contribution
to ra(τa) away from τa = 0, Aa(τa). In the process, we show that for a . −1.9 the angularities
of events with more two-jet like kinematics become degenerate with those of more three-jet like
events and contribute to the same τa, and that for a . −2.6 the maximally symmetric three-jet
event contributes to a smaller τa then some more two-jet like events. Thus, for small enough a,
angularities fail to separate two-jet and three-jet like events.

Both the one loop qq̄ and tree-level qq̄g final states contribute to dσ/dτa at O(αs). How-
ever, the qq̄ final states’ contribution is proportional to δ(τa) and hence only contributes to Aδa.
Thus to find Aa(τa) we only need to consider the tree-level qq̄g final states. Their contribution can
be writtten as

1
σ0

dσ
dτa

qq̄g

=
(αs

2π

)
Aa(τa) , (3.148)

where

Aa(τa) = CF

∫
dx1 dx2

x2
1 + x2

2

(1− x1)(1− x2)
δ
(
τa − τa(x1, x2)

)
, (3.149)

and where x1,2 ≡ 2E1,2/Q are the energy fractions of any two of the three final-state partons. By
momentum conservation, x1 + x2 + x3 = 2. For a three-particle final state, the thrust axis is given
by the direction of the particle with the largest energy. The x1,2 phase space can be divided into
three regions, as illustrated in Fig. 3.11A, according to which parton has the largest energy. In the
region in which xi is larger than xj,k, the angularity τa(x1, x2) is given by

τa(x1, x2)
∣∣∣
xi>xj,k

=
1
xi

(1−xi)1−a/2
[
(1− xj)1−a/2(1− xk)a/2 + (1− xj)a/2(1− xk)1−a/2

]
. (3.150)

At each fixed value of τa = c in the distribution Eq. (3.148), the delta function restricts the integral
over x1,2 to a linear contour determined by the equation τa(x1, x2) = c, where τa(x1, x2) is given
by Eq. (3.150). Examples of these integration contours are shown in Fig. 3.11B.

It is sufficient to consider the part of the phase space corresponding to region III shown
in Fig. 3.11, where x3 > x1,2. Integration over the remaining two regions can be related to the
integration over region III by a trivial shift of variables of integration. Thus we need to solve

c =
1

2− x1 − x2
(x1 + x2 − 1)1−a/2

[
(1− x1)1−a/2(1− x2)a/2 + (1− x1)a/2(1− x2)1−a/2

]
, (3.151)

where x1,2 lie in region III. To find an explicit one-variable parameterization for x1,2(w) which
satisfies Eq. (3.151), we first absorb the factor 1/(2− x1 − x2) inside the brackets and define

w ≡ 1− x1

2− x1 − x2
. (3.152)

In terms of w, Eq. (3.151) can be written as

c = (x1 + x2 − 1)1−a/2
[
w1−a/2(1− w)a/2 + wa/2(1− w)1−a/2

]
. (3.153)
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Figure 3.11: (A) Phase space for three-particle qq̄g final state. The energy fractions xi = 2Ei/Q
of the three particles satisfy x1 + x2 + x3 = 2. In region I, x1 > x2,3, in region II, x2 > x1,3, and
in region III, x3 > x1,2. The thrust axis is in the direction of the particle with the largest energy.
(B) Contours of constant τa = 1/10 for a = −1 (purple), a = 0 (gray), and a = 1 (pink). The
differential cross-section dσ/dτa is given by integrals over these contours in the x1,2 phase space.

Solving Eqs. (3.152, 3.153) for x1, x2 gives:

x1(w) = 1− w + w

(
c

w1−a/2(1− w)a/2 + wa/2(1− w)1−a/2

) 1
1−a/2

,

x2(w) = x1(1− w). (3.154)

Clearly from Eq. (3.152), w lies in the interval 0 ≤ w ≤ 1. The precise range of values for
w is determined from the conditions x1(w) ≤ 2 − x1(w) − x2(w) and x2(w) ≤ 2 − x1(w) − x2(w).
These inequalities can be simplified to

c ≤ min {Fa(w), Fa(1− w)} =

{
Fa(w) for 0 ≤ w ≤ 1/2
Fa(1− w) for 1/2 ≤ w ≤ 1

, (3.155)

where

Fa(w) ≡ w(1− w)a/2

(1 + w)1−a/2 (w1−a + (1− w)1−a) . (3.156)

The function Fa(w) is monotonically increasing over the range 0 < w < 1/2 only for
2 > a ≥ a1 ≈ −1.978, but for a < a1 turns out to have exactly one local maximum, τmax(a),
and one local minimum, τmin(a). At a = a2 ≈ −2.618, τmax(a) is equal to the angularity of the
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Figure 3.12: The local minimum (green line) and maximum (red line) of the function Fa(w) over
the range 0 < w < 1/2 coincide at the point a ≡ a1 ≈ −1.978. At a ≡ a2 ≈ −2.618, the value of
angularity for the maximally symmetric three-jet case, τsym(a) = 1/31−a/2 (blue line), intersects
the local maximum and so for a < a2, the value of maximum angularity for such a corresponds not
to the maximally symmetric case but to a more two-jet like event.

symmetric three-jet configuration x1 = x2 = x3 (where w = 1/2), τsym(a) = 1/31−a/2. Thus, the
global maximum of τa over the whole range 0 ≤ w ≤ 1, defined as τmax

a , is τmax(a) for a ≤ a2 and
is τsym(a) for a ≥ a2.

In Fig. 3.12, we show how the maximum and minimum of the function Fa(w) depend on
a, along with the a dependence of the symmetric three-jet configuration, and plot the special points
a1 and a2.

In Fig. 3.13 we plot the boundary of τa (Fa(w) for 0 ≤ w ≤ 1/2 and Fa(1 − w) for
1/2 ≤ w ≤ 1) together with the contours of constant τa(x1, x2) = c for different values of c in the
full x1-x2 plane for the cases a = −1, a = −2.3, and a = −4, which qualitatively represent the
three cases a > a1, a1 > a > a2, and a2 > a, respectively. From this analysis we conclude that for
a < a1 and especially a < a2 angularities fail to separate two-jet like and three-jet like events.

To obtain Aa(τa), we evaluate the integral in Eq. (3.148) over the appropriate contours
in the x1,2 phase space numerically, except for a = 0, for which the integral can be evaluated
analytically, giving (cf. [101])

A0(τ0) = CF

[
2(2− 3τ0 + 3τ2

0 )
τ0(1− τ0)

ln
(

1− 2τ0

τ0

)
− 3(1− 3τ0)(1 + τ0)

τ0

]
. (3.157)
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Figure 3.13: (A), (B), (C) Allowed regions for the parameter w as a function of fixed τa = c are
bounded by the curves Fa(w) and Fa(1−w). For (A), (D) a = −1, the integration is over a single,
continuous domain for all fixed τa = c but for (B), (E) a = −2.3 and (C), (F) a = −4, there are
multiple disjoint regions of integration for large enough values of c. In (D), (E), and (F), the blue,
red, and green curves represent contours of integration for fixed τa = c, in order of increasing c,
and correspond to integration over a range of w given by the lines of constant τa = c in the regions
of the same color in (A), (B) and (C), respectively.
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Chapter 4

Jet Shapes and Jet Algorithms in
SCET1

1 Introduction

Jets provide troves of information about physics within and beyond the Standard Model of
particle physics. On the one hand, jets display the behavior of Quantum Chromodynamics (QCD)
over a wide range of energy scales, from the energy of the hard scattering, through intermediate
scales of branching and showering, to the lowest scale of hadronization. On the other hand, jets
contain signatures of exotic physics when produced by the decays of heavy, strongly-interacting
particles such as top quarks or particles beyond the Standard Model.

Recently, several groups have explored strategies to probe jet substructure to distinguish
jets produced by light partons in QCD from those produced by heavier particles [173, 60, 61, 56,
62, 63, 169, 153], and methods to “clean” jets of soft radiation to more easily identify their origin,
such as “filtering” or “pruning” for jets from heavy particles [62, 120, 121] or “trimming” for jets
from light partons [154]. Another type of strategy, explored in [3], to probe jet substructure is
the use of jet shapes, which are modifications of event shapes [99] such as thrust. Jet shapes are
continuous variables constructed by taking a weighted sum over the four-momenta of all particles
constituting a jet. Different choices of weighting functions produce different jet shapes, and can be
designed to probe regions closer to or further from the jet axis with greater sensitivity.2

Reliable theoretical prediction of jet observables in the presence of jet algorithms is made
challenging by the presence of many scales, the logarithms of which can become large and spoil
the behavior of perturbative expansions predicting these quantities. These scales include the jet
energy, the cut on the angular size of a jet R, the measured value of the jet shape, and any other
cut or selection parameters introduced by the jet algorithm.

Precisely this separation of scales, however, allows us to take advantage of the powerful
theoretical tools of factorization and effective field theory. Factorization separates the calculation

1This chapter was originally cowritten with Stephen D. Ellis, Christopher Lee, Christopher K. Vermilion, Jonathan
R. Walsh [116].

2The original “jet shape,” to which the name properly belongs, is the variable Ψ(r/R), the fraction of the total
energy of a jet of radius R that is contained in a subjet of radius r [117, 118, 1] . This variable falls into the larger
class of jet shapes we have described here and for which we have hijacked the name.
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of a hard scattering cross section into hard, jet and soft functions each depending only on physics
at a single scale [93, 181]. Renormalization group (RG) evolution of these functions between scales
resums logarithms of these scales to all orders in αs, with the logarithmic accuracy determined by
the order to which the anomalous dimensions in the running are calculated [96]. Effective field
theory organizes these concepts and tools into a conceptually simple framework unifying many
ingredients going into traditional methods, such as power counting, gauge invariance, and resum-
mation through RG evolution. The rules of effective theory facilitate proofs of factorization and
achievement of logarithmic resummation at leading order in the power counting and make straight-
forward the improvement of results order-by-order in power counting and logarithmic accuracy of
resummation.

Soft-collinear effective theory (SCET) [19, 21, 33, 29] has been successfully applied to
the analysis of many hard scattering cross sections [20] including the production of jets. SCET is
constructed by integrating out of QCD all degrees of freedom except those collinear to a lightlike
direction n and those which are soft, that is, have much lower energy than the energy of the hard
scattering or of the jets. Using this formalism, factorization and calculation of two-jet cross sections
and event shape distributions in SCET were developed in [26, 24, 124, 18]. Later, these techniques
were extended to the factorization of jet cross sections and observables using jet algorithms in [23].
Calculations in SCET of two-jet rates using jet algorithms have been performed in [24, 187], and
more recently in [85]. Calculations of cross sections with more than two jet directions have been
given in [32, 31, 42].

Resummation of large logarithms (ln e)/e of an event shape e near the kinematic endpoint
of extremely collimated jets has now been performed in several cases both in traditional methods in
QCD and in SCET. In QCD, these cases include next-to-leading-logarithmic (NLL) resummation
of the thrust distribution in [76, 73], jet mass distributions in [73, 74, 97, 59], the jet broadening
distribution in [75, 106], and the C-parameter in [77]. Resummation of an event shape distribution
using the modern SCET method was first illustrated with the thrust distribution to LL accuracy
in [172]. A method to extract precisely the top quark mass using resummed jet mass distributions
in SCET to NLL accuracy was demonstrated in [125]. The N3LL resummed thrust distribution in
SCET was compared to LEP data to extract a value for the strong coupling αs to high precision
in [41]. Angularity distributions were resummed to NLL using SCET in [134] directly in the
distribution instead of in moment space as in the QCD-based method used in [47].

Factorization and resummation of jet rates and jet observables while using a jet algorithm
requires more care than with event shapes due to logarithms of phase space cuts that may not be
resummable to all orders. Some exploration of these issues in SCET have been given in [187, 85].
Consistent all-orders resummation of logs of phase space cuts such as the angular size R of a jet
or the energy cutoff Λ for emission outside of jets has not yet been completely demonstrated.
There are logarithms of these parameters that may appear in fixed-order expansions, beginning at
O(α2

s), that are not correctly reproduced by exponentiating lower order logs. This is the issue of
“non-global” logarithms [97, 11, 8, 104].

In this work, we confine our focus to the particular but interesting problem of measuring
a jet shape of one or more jets in an N -jet final state in e+e− annihilation, where the jets are
defined using a cone algorithm or an inclusive recombination algorithm, and resumming logs of
the jet shape in the narrow jet limit. We formulate a factorization theorem for such jet shape
distributions, and aim to resum logs of the jet shape which become large for collimated jets to
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NLL accuracy. Ref. [104] demonstrated the factorization of such a distribution into a “global” and
“non-global” part, and our methods resum the logs in the global part, and at least a subset of
those in the non-global part. We do not tackle the problem of ensuring full resummation of all
non-global logs generated by phase space cuts, which would require an O(α2

s) analysis of jet and
soft functions, beyond the scope of this work.

Nevertheless, we demonstrate, at O(αs), the nontrivial consistency of the factorization
theorem for jet shape distributions even in the presence of these phase space cuts, as we reported
in [114]. In order for a factorization theorem to be consistent, the anomalous dimensions of hard,
jet, and soft functions must satisfy a very nontrivial constraint so that the physical cross section is
independent of the factorization scale µ. We will find that these anomalous dimensions depend on
algorithm phase space cut parameters and that the consistency condition is indeed satisfied, but
only in the kinematic limit where jets are well-separated compared to their angular size R. Namely,
we will find the consistency relation, and therefore the factorization theorem, is valid only for large
t = tan(ψ/2)/ tan(R/2), where ψ is the minimum angle between any two jet axes. This condition
manifests the range of validity of the effective theory constructed by adding together N copies of
the collinear Lagrangian in SCET to a single soft sector Lagrangian to represent the dynamics of
N identifiable jets in a final state.

For concreteness, for the jet shape, we choose to calculate the angularity τa of a jet, defined
by (cf. [3, 47]),

τa ≡ 1
2EJ

∑
i∈J

∣∣piT ∣∣ e−ηi(1−a) , (4.1)

where a is a parameter taking values −∞ < a < 2 (for IR safety), the sum is over all particles
in the jet, EJ is the jet energy, pT is the transverse momentum relative to the jet direction, and
η = −ln tan(θ/2) is the (pseudo-)rapidity measured from the jet direction. However, our logic and
methods are applicable to any suitable jet shape. We have organized our results in such a way that
the pieces independent of the choice of jet shape and dependent only on the jet algorithm are easily
identifiable, requiring recalculation only of the observable-dependent pieces to extend our results
to other choices of jet shapes.

In this chapter, we will calculate to next-to-leading order (NLO) in αs the jet and soft
functions corresponding to N jets, where we measure the jet shape Eq. (4.1) of M ≤ N jets. We
will demonstrate the consistency of the anomalous dimensions of hard, jet and soft functions to
NLO for any number of total jets, any numbers of quark and gluon jets, any number of these jets
whose shapes are measured, and any value of the distance measure R in cone or kT -type algorithms
(as long as t � 1). We calculate the finite parts of the SCET jet and soft functions to NLO, and
resum logarithms of the jet shape τa to NLL accuracy.3

We will demonstrate the crucial role of zero-bin subtractions [163] from collinear jet func-
tions in obtaining the consistent anomalous dimensions and the correct finite parts. In this case
zero-bin subtractions are not merely scaleless integrals converting IR to UV divergences, but in fact
contribute part (sometimes the most important part) of the correct nonzero result, as was already
pointed out by [85, 86]. The relation of zero-bin subtractions in SCET to eikonal jet subtractions

3Jet shapes were also studied in the QCD factorization approach in [4]. In this work QCD jet functions for quark
and gluon jets defined with an algorithm and whose jet masses m2

J are measured were calculated to O(αs). The jet
mass corresponds to τa for a = 0. A fixed-order QCD jet function as defined in [4] is given by the convolution of our
fixed-order SCET jet function and soft function for a measured jet away from τa = 0.
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from soft functions in traditional methods of QCD factorization was explored in [157, 140, 139].
We will find that the scale governing each measured jet function is set only by the measured

value of the jet shape τa, and that the scale governing each unmeasured jet function is set by the
scale of the angular cut R. The hard function depends on a large scale determined by the jet
energies. The soft function, as we initially define it, will appear to depend on many scales, set by
the value of τa for every individual measured jet (which may all be different), the angular cut R,
and the threshold Λ for the minimum jet energy. When these scales are disparate, large logarithms
remain in the soft function even after naive resummation. We will therefore introduce a framework
to “refactorize” the naive soft function into individual pieces, each of which depends only on one
soft scale. Each piece is the matching coefficient from a theory with a soft mode with virtuality
given by one of these scales onto a theory with a soft mode with virtuality at the next lowest scale,
with the original higher-scale soft mode integrated out. Running between these scales then resums
logarithms of ratios thereof. We find that this procedure tames large logarithmic dependence
on ratios of these various soft scales, including non-global logs of the form ln (Λ/ωτa). It was
demonstrated in [47] that choosing ωτa ∼ Λ removed such non-global logs entirely. We allow for
disparate Λ and ωτa, resumming logs arising at the NLL level, although there may be non-global
logs starting at O(α2

s) which we still miss. Whether this procedure achieves NLL resummation
including all the non-global logs is still an open question, outside the scope of the present work.

We will give an estimate of power corrections to the factorization theorem due to approx-
imations we must make in its proof to the jet momenta and the action of the jet algorithm on
collinear and soft particles. We will find for R ∼ O(1) and a < 1, these remain small enough not
to spoil the factorization. Algorithm-related power corrections to jet momenta were studied more
quantitatively in [98], and their estimated R dependence is consistent with our observations. We
do not address in this work the issue of power corrections to jet shapes due to hadronization. Event
shape distributions are known to receive power corrections of the order 1/(τaQ), enhanced in the
endpoint region but suppressed by large energy. The endpoints of our jet shape distribution near
τa → 0, therefore, will have to be corrected by a nonperturbative shape function. Such functions
have been constructed for event shapes in [149, 132]. The shift in the first moment of event shape
distributions induced by these shape functions was postulated to take a universal form in [109, 110]
based on the behavior of single soft gluon emission, and the universality was proven to all orders
in soft gluon emission at leading order in the SCET power counting in [157, 156]. This universality
relied on the boost invariance of the soft function describing soft gluon radiation from two back-to-
back collinear jets. The extent to which such universality may survive for jet shapes with multiple
jets in arbitrary directions is an open question that must be addressed in order to construct appro-
priate soft shape function models to deal adequately with the power corrections to jet shapes from
hadronization. Nonperturbative power corrections to jet observables from hadronization and the
underlying event in hadron collisions were also studied in [98], and hadronization corrections were
found to scale like 1/R. In this work, we focus only on the perturbative calculation and resumma-
tion of large logarithms of jet shapes, and leave inclusion of nonperturbative power corrections for
future work.

By comparing to the output of a Monte Carlo event generator, we can test both the
accuracy of our perturbative resummed predictions and assess the extent to which hadronization
corrections affect jet shapes. We will illustrate our results in the case of e+e− → 3 jets, with the
jets constrained to be in a configuration where each has equal energy and are maximally separated.
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In both the effective theory and Monte Carlo, we can take the jets to have been produced by an
underlying hard process e+e− → qq̄g. After placing cuts on jets to ensure each parton corresponds
to a nearby jet, we measure the angularity jet shape of one of the jets. We compare our NLL
resummed theoretical predictions with the Monte Carlo output for quark and gluon jet shapes
with various values of a and R. We find that the dependencies on a and R of the shapes of the
distribution and the peak value of τa agree well between the theory and Monte Carlo, with small
but noticeable corrections due to hadronization. We can extract the hadronization dependence by
comparing Monte Carlo output with hadronization turned on or off.

Our work is, to our knowledge, the first achieving factorization and resummation of a jet
observable distribution in an exclusive N -jet final state defined by a non-hemisphere jet algorithm.4

Having demonstrated the consistency of this factorization for any number of quark and gluon jets,
measured and unmeasured jets, and phase space cuts in cone and kT -type algorithms, and having
constructed a framework to resum logarithms of jet shapes in the presence of these phase space cuts,
we hope to have provided a starting point for future precision calculations of many jet observables
both in e+e− and hadron-hadron collisions. The case of pp collisions will require a number of
modifications, including turning two of our outgoing jet functions into incoming “beam functions”
introduced in [183]. We leave this generalization for future work.

An outline of this chapter is as follows. In Sec. 2, we describe the jet shapes and jet
algorithms we will use to calculate jet shape distributions in exclusive N -jet final states. In Sec. 3,
we give a summary of the logic and method of the calculations we perform in subsequent sections.
We tabulate the main results of the chapter in Table 4.1 appearing in this section. In Sec. 4 we
give a brief overview of SCET and derive in detail the factorized cross section for a jet shape
distribution in e+e− → 3 jets and state the generalization to the distribution in M measured
jet shapes in an N -jet cross section. In Sec. 5 we calculate jet functions for both measured and
unmeasured jets defined with a jet algorithm to NLO. In Sec. 6 we calculate the NLO soft function
for M measured jets in an N -jet cross section. In Sec. 7 we verify that the hard, jet, and soft
anomalous dimensions satisfy the consistency relation to NLO if and only if t � 1 and perform
resummation of logarithms of jet shapes to NLL accuracy. In Sec. 8 we use these results to give
theoretical predictions for quark and gluon angularity jet shape distributions in Mercedes-Benz-like
3-jet events in e+e− annihilation, and compare to the output of a Monte Carlo event generator.
Finally, in Sec. 9, we give our conclusions and outlook. We also collect a number of technical details
and results for NLO finite pieces of jet and soft functions in the Appendices.

The reader wishing to follow the general structure of our ideas and logic and understand
the basis of the final results of the chapter without working through all the technical details may
read Secs. 2 and 3, and then skip to Sec. 8. Some short non-technical discussion also appears in
Sec. 4.4.

2 Jet Shapes and Jet Algorithms

Event shapes, such as thrust, characterize events based on the distribution of energy in
the final state by assigning differing weights to events with differing energy distributions. Events
that are two-jet like, with two very collimated back-to-back jets, produce values of the observable
at one end of the distribution, while spherical events with a broad energy distribution produce

4Dijet cross sections for cone jets were factorized and resummed in [143].
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values of the observable at the other end of the distribution. While event shapes can quantify the
global geometry of events, they are not sensitive to the detailed structure of jets in the event. Two
classes of events may have similar values of an event shape but characteristically different structure
in terms of number of jets and the energy distribution within those jets.

Jet shapes, which are event shape-like observables applied to single jets, are an effective
tool to measure the structure of individual jets. These observables can be used to not only quantify
QCD-like events, but study more complex, non-QCD topologies, as illustrated for light quark vs.
top quark and Z jets in [3, 4]. Broad jets, with wide-angle energy depositions, and very collimated
jets, with a narrow energy profile, take on distinct values for jet shape observables. In this work, we
consider the example of the class of jet shapes called angularities, defined in Eq. (4.1) and denoted
τa. Every value of a corresponds to a different jet shape. As a decreases, the angularity weights
particles at the periphery of the jet more, and is therefore more sensitive to wide-angle radiation.
Simultaneous measurements of the angularity of a jet for different values of a can be an additional
probe of the structure of the jet.

A key component of the distribution of jet shapes is the jet algorithm, which builds jets
from the final state particles in an event. (We are using the term “particle” generically here to
refer to actual individual tracks, to cells/towers in a calorimeter, and to combinations of these
objects within a jet.) Since the underlying jet is not intrinsically well defined, there is no unique jet
algorithm and a wide variety of jet algorithms have been proposed and implemented in experiments.
The details of each algorithm are motivated by particular properties desired of jets, and different
algorithms have different strengths and weaknesses. In this work we will calculate angularity
distributions for jets coming from a wide variety of algorithms. Because we calculate (only) at
next-to-leading order, jet algorithms that implement the same phase space cuts at NLO simplify
to the same algorithm. Two classes of algorithms, cone algorithms and recombination algorithms,
each simplify to a generic jet algorithm at NLO.

Cone algorithms build jets by grouping particles within a fixed geometric shape, the
cone, and finding “stable” cones. A cone contains all of the particles within an angle R of the
cone axis, and the angular parameter R sets the size of the jet. In found jets (stable cones), the
direction of the total three-momentum of particles in the cone equals the cone (jet) axis. Different
cone algorithms employ different methods to find stable cones and deal with the “split/merge”
problem of overlapping stable cones. The SISCone algorithm [171] is a modern implementation
of the cone algorithm that finds all stable cones and is free of infrared unsafety issues. In the
next-to-leading order calculation we perform, there are at most two particles in a jet, and all jets
are well-separated and defined by a label direction associated with a collinear sector in SCET.
Therefore, it is straightforward to find all stable cones, there are no issues with overlapping stable
cones, and the phase space cuts of all cone algorithms are equivalent. This simplifies all standard
cone algorithms to a generic cone-type algorithm, in which each particle is constrained to be within
an angle R of the jet axis. For a two-particle jet, if we label the particles 1 and 2 and the jet axis
n, then the cone-like constraints for the two particles to be in a jet are

cone jet: θ1n < R and θ2n < R . (4.2)

This defines our cone-type algorithm.
Recombination algorithms build jets by recursively merging pairs of particles. Two dis-

tance metrics, defined by the algorithm, determine when particles are merged and when jets are
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formed. A pairwise metric ρpair (the recombination metric) defines a distance between pairs of
particles, and a single particle metric ρjet (the beam, or promotion, metric) defines a distance for
each single particle. Using these metrics, a recombination algorithm builds jets with the following
procedure:5

0. Begin with a list L of particles.

1. Find the smallest distance for all pairs of particles (using ρpair) and all single particles (using
ρjet).

2a. If the smallest distance is from a pair, merge those particles together by adding their four
momenta. Replace the pair in L with the new particle.

2b. If the smallest distance is from a single particle, promote that particle to a jet and remove it
from L.

3. Loop back to step 1 until all particles have been merged into jets.

The kT, Cambridge-Aachen, and anti-kT algorithms are common recombination algorithms, and
their distance metrics are part of a general class of recombination algorithms. For e+e− colliders,
a class of recombination algorithms can be defined by the parameter α:

ρpair(i, j) = min
(
Eαi , E

α
j

) θij
R

ρjet(i) = Eαi , (4.3)

where α = 1 for kT, 0 for Cambridge-Aachen, and −1 for the anti-kT algorithm. The parameter R
sets the maximum angle between two particles for a single recombination.6 For a two-particle jet,
the only phase space constraint imposed by this class of recombination algorithms is that the two
particles be separated by an angle less than R:

kT jet: θ12 < R . (4.4)

This defines a generic recombination algorithm suitable for our calculation. We will denote this as
the kT-type algorithm.

Because jets are reliable degrees of freedom and provide a useful description of an event
when they have large energy, in the description of an event we impose a cut Λ on the minimum
energy of jets. An N -jet event, therefore, is one where N jets have energy larger than the cutoff
Λ, with any number of jets having energy less than the cutoff. In our calculation, we impose the
same constraint: any jet with energy less than Λ is not considered when we count the number of
jets in the final state. This imposes phase space cuts: for a gluon radiated outside of all jets in the
event, that gluon is required to have energy Eg < Λ to maintain the same number of jets in the
event. The proper division of phase space in calculating the jet and soft functions is a key part of
the discussion below, and careful treatment of the phase space cuts is needed.

5This defines an inclusive recombination algorithm. Exclusive recombination algorithms are described along with
other jet algorithms in [170].

6We use R for both cone and kT algorithms for ease of notation. For kT, this parameter is sometimes referred
to as D. We emphasize that having the same size R for different algorithms does not in general guarantee the same
sized jets.
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3 Overview of Calculations and Main Results

In this section we give an overview of the calculations that we will present in the remainder
of the chapter, explaining the logic and strategy in broad strokes.

We will first formulate and prove a factorization theorem for distributions in the jet shape
variables we introduced in the previous sections. These jet shapes are measured in N -jet events
defined with a cone or kT-type algorithm. Using the tools of SCET, we will derive in detail a
factorization theorem for exclusive 3-jet production where we measure the angularity jet shape of
one of the jets, and then perform the straightforward extension to N -jet production with M ≤ N
measured jets.

We will give a review of the necessary technical details of SCET in Sec. 4.1. The important
features of SCET are that it is an effective theory of QCD in which all but collinear and soft degrees
of freedom have been integrated out, and a Lagrangian in terms of these remaining modes can be
derived order-by-order in an expansion in λ, a small parameter formed by the ratio of soft to
collinear or collinear to hard scales, determined by the kinematics of the process under study. In
our case, λ is roughly the typical transverse momentum pT of the constituent of a jet (relative
to the jet direction) divided by the jet energy EJ , or the measured value of a jet shape τa. The
size of λ may thus be different for different jets. The momentum pn of collinear modes in the
light-cone direction n in SCET are separated into a large “label” momentum p̃n containing O(EJ)
and O(λEJ) components and a “residual” component of O(λ2EJ), the same size as soft momenta.
Effective theory fields have dynamical momenta only of this soft or residual scale. This fact, along
with the fact that soft quarks and soft gluons can be shown to decouple from collinear modes at
the level of the Lagrangian, makes possible the factorization of a jet shape distribution into hard,
jet, and soft functions depending only on the dynamics at those respective scales.

We will formulate an effective theory with SCET collinear fields in N separate directions,
and use it to factorize the distribution in M jet shapes in an N -jet final state. In addition to
steps common to all factorization proofs in SCET (such as soft-collinear decoupling and collinear
jet functions’ dependence on residual momentum only in the n ·k component) we will identify a
number of additional criteria required for the factorization of jet shape cross sections with jets
defined by a jet algorithm.

Two of these conditions enforce that there are exactly N jets in the final state. First,
to ensure that the algorithm does not group final-state particles into fewer than N jets, the jets
must be “well separated.” This allows us to use as the effective theory Lagrangian a sum of N
copies of the collinear part of the SCET Lagrangian for a single direction n and a soft part, and
to construct a basis of N -jet operators built from fields from each of these sectors to produce the
final state. The validity of using this Lagrangian and basis of N -jet operators requires that a
parameter t measuring the separation between jets is large. Later calculations and the requirement
of consistency among hard, jet, and soft anomalous dimensions will suggest a natural definition of
t = tan(ψ/2)/ tan(R/2), where ψ is the minimum angle between two jets.

Second, to ensure that the jet algorithm does not find more than N jets, we place an energy
cut Λ on the particles outside of the jets. We will take this energy Λ to scale as a soft momentum
so that we will be able to identify the total energy of each jet with the “label” momentum on the
SCET collinear jet field producing the jet, which introduces corrections that are subleading in the
SCET power counting. These approximations have the effect that all particles with large energy
grouped into a jet by the jet algorithm will remain in the same jet even after the approximations
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we make to the action of the algorithm in order to prove our factorization theorem.
Third (and related to the first two), we will assume that the N -jet restriction on the final

state can itself be factorized into a product of N 1-jet restrictions, one in each collinear sector, and
a 0-jet restriction in the soft sector. We represent the energetic particles in the ith jet by collinear
fields in the SCET Lagrangian in the ni collinear sector and soft particles everywhere with fields
in the soft part of the Lagrangian. We then stipulate that the jet algorithm acting on states in the
ni collinear sector find exactly one jet in that sector, and when acting on the soft final state find
no additional jet in that sector.

In addition, as always, there are power corrections to the factorization theorem which we
must ensure are small. One class of these corrections arises from approximating the jet axis of
the measured jet with the collinear direction ni, which labels that jet in the SCET Lagrangian.
This direction ni is the direction of the parent parton initiating the jet. The jet observable must
be such that the difference between the parent parton direction and the jet axis identified by the
algorithm makes a subleading correction to the calculated value of the jet observable. In the context
of angularity event shapes, such corrections were estimated in [18, 47] and found to be negligible
for a < 1, and we find the same condition for jet shapes.

In the presence of algorithms, however, there are additional power corrections due to the
difference in the soft particles that are included or excluded in a jet by the actual algorithm and in
its approximated form in the factorization theorem. We comment on the extent to which existing
algorithms satisfy the criteria we need in deriving our all-orders factorization formula in Sec. 4.4,
and find that with all the modern algorithms we examine the jet size R is required to be R ∼ O(1).

When all power corrections are under control and the algorithm itself does not lead to a
breakdown of factorization, our factorization theorem states that the cross section can be written as
a certain convolution of hard, jet, and soft functions. The hard function is calculated by demanding
that virtual corrections to operators in full QCD with N partons “match” those in SCET. Since
this is given by virtual corrections alone, the hard function has no dependence on the jet algorithm
or jet shape observable and is thus universal. The jet and soft functions, which respectively contain
collinear and soft real emission information, do depend on the algorithm and observable. The
running of the hard function, which can be obtained from the ultraviolet divergent part, is universal
and can be found in the literature (e.g. in [87]). The finite terms in the hard function can be taken
as the process-dependent virtual diagrams from the corresponding full QCD calculation. These
finite terms, however, are not strictly needed at NLL accuracy, to which we work in this chapter.
Thus the only new calculations we need to perform are for the divergent and finite parts of the
jet and soft functions. For NLL accuracy, we do not need these finite pieces either, but they will
suggest to us the natural scales µJ,S at which to evaluate the jet and soft functions to minimize
potentially large logarithms in the finite parts. We thus report the infinite parts of the bare jet and
soft functions in the main text, and leave the finite parts in the Appendices.

We calculate the jet functions in Sec. 5 for measured quark jets, Jqω(τa), unmeasured
quark jets, Jqω, measured gluon jets, Jgω(τa), and unmeasured gluon jets, Jgω, where ω = 2EJ is
the label energy of the collinear jet field in each jet function. Unmeasured jets are sensitive to a
scale related to the characteristic size of the jet R as defined by the algorithm. However, since
we show that we need R ∼ O(1) to minimize power corrections for commonly used algorithms (as
we discussed above), and since small R is not practical in modern detectors, resummation of R is
not the immediate goal of this chapter. Measured jets on the other hand are sensitive to the scale
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ωiτ
i
a, in addition to R. We find that collinear emissions that escape a jet are suppressed by Λ/ωi

once the zero-bin subtraction [163] to eliminate double-counting between soft and collinear modes
is taken into account.

We calculate the soft function in Sec. 6. To do this, we split the soft function into several
contributions from different parts of phase space in order to facilitate the calculation and elucidate
its intuitive structure. We find it most convenient to split the soft function into an observable-
independent part that arises from soft emission out of the jets, Sunmeas, and a part that depends
on our choice of angularities as the observable that arises from soft emission into measured jet i,
Smeas(τ ia). S

unmeas is hence sensitive to the scale Λ while Smeas(τ ia) is sensitive the the scale ωiτ ia.
Then, having calculated all the jet and soft function contributions at NLO, we extract

the anomalous dimensions and perform renormalization-group (RG) evolution in Sec. 7. We find
the hard anomalous dimension from existing results in the literature. The equivalence of the“top-
down” and “bottom-up” approaches in effective theories (see, e.g., [58]) implies that we can either
RG-evolve the jet and soft functions from their respective scales up to the hard scale or evolve
the hard function down to the jet scale and the soft function from the jet scale to the soft scale
[125]. This boils down to the simple fact that the physical cross section must be independent of the
arbitrary factorization scale µ at which the hard, jet, and soft functions in the factorization theorem
are evaluated. These observations imply that the sum of the jet and soft anomalous dimensions
must be (minus) the universal N -jet hard function, giving a non-trivial consistency check on our
factorization theorem.

For N jets whose angular separations from one another are given by angles ψij , and a jet
algorithm requiring that individual jets have angular extent R, we show in Sec. 7.3 that consistency
is valid when, for every pair of jets i, j, we have that tij � 1, where

tij ≡
tan ψij

2

tan R
2

. (4.5)

That is, our calculation of the anomalous dimensions indicates precisely what we should use for
the jet separation parameter t, which we need to be large in order for our factorization proof to be
valid. Notice that for back-to-back jets (ψij = π), we have that 1/tij = 0 exactly. Thus, for all cases
previously considered in the literature, the jets are infinitely separated according to this measure,
and no additional criterion regarding jet separation is required for consistency of the factorization
and running.

It may seem mysterious that the calculations of the hard, jet, and soft functions themselves
indicate the necessity for a large separation parameter t in order for the anomalous dimensions to
satisfy consistency. Although we already specified this criterion qualitatively for the validity of
introducing N separate collinear sectors in our SCET Lagrangian and N -jet operator, it may not
be immediately apparent where this criterion is implemented in the actual calculations. It enters in
the definition of the collinear jet functions. In the large-t limit, the N jets are infinitely separated
from one another according to the measure given by Eq. (4.5). Therefore, in each collinear sector
of SCET in direction ni, we assume that the other N − 1 jets are all maximally far away.

And indeed, when N -jet operators are constructed in SCET, each collinear jet field con-
tains a Wilson line Wn, defined below in Eq. (4.14), of collinear gluons in the direction n that
were emitted from the back-to-back direction n̄. That is, the ni-collinear sector assumes that all
other hard directions are in the maximally-separated opposite direction n̄i. (This is similar to QCD
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Category Contribution Symbol Location
measured quark jet function Jqω(τa) Eq. (4.50)
unmeas. quark jet function Jqω Eq. (4.56)
measured quark jet function Jgω(τa) Eq. (4.64)
unmeas. gluon jet function Jgω Eq. (4.65)

NLO contributions summary of divergent
— Table 4.2

before resummation: parts of soft func. (any t)
total universal

Sunmeas Eq. (4.85)
soft func. (large t)

total measured
Smeas(τ ia) Eq. (4.87)

soft func. (large t)
anomalous dimensions: — — Table 4.3

measured jet function f iJ(τ ia;µ
i
J) Eq. (4.131a)

NLO contributions measured soft function fS(τ ia;µ
i
J) Eq. (4.131b)

after resummation: unmeas. jet function J iω(µJ) Eq. (4.132a)
universal soft function Sunmeas(µΛ) Eq. (4.132b)

Total NLL Distribution: — — Eq. (4.128)

Table 4.1: Directory of main results. We tabulate the location of the key results of this chapter: the
fixed-order NLO quark and gluon jet functions for jets whose shapes τa are measured or not; the
fixed-order NLO contributions to the soft functions from parts of phase space where a soft gluon
enters a measured jet, Smeas(τa), or not, Sunmeas; their anomalous dimensions; the contributions
the jet and soft functions make to the finite part of the NLL resummed distributions; and the full
NLL resummed jet shape distribution itself.

factorization proofs of hard scattering cross sections, e.g. in [47], in which this direction n̄ is chosen
to be along some arbitrary path ξ that is separated by an O(1) amount from the jet direction n.)
Furthermore, the ni-collinear jet function knows only its own color representation, and not those
of the other jets. Meanwhile, the hard and soft functions we calculate “know” about all N jets and
their precise directions and color representations. Therefore it is no surprise that, when we actually
calculate the anomalous dimensions of these functions, we find that they are consistent with one
another only in the limit that the separation parameter t→∞.

Even after requiring t � 1, the satisfaction of the consistency conditions is non-trivial.
The hard function knows only about the direction of each jet and the jet function knows only the
jet size R; the soft function knows about both. Furthermore, it is not sufficient only to include
regions of phase space where radiation enters the measured jets. It is crucial to include radiation
entering unmeasured jets, and also soft radiation outside of all jets with an upper energy cutoff of
Λ. Only after including all of these contributions from the various parts of phase space do the jet,
hard, and soft anomalous dimensions cancel and we arrive at a consistent factorization theorem.

The RG solutions for the soft function and our proof of factorization make it clear at this
point that the assumption that the soft function is sensitive to a single scale is limited to the case
that Λ ∼ ωiτ

i
a for all jets i. However, we argue in Sec. 7.4 that in the case of a hierarchy of scales

in the soft function, we can “refactorize” the soft function into multiple pieces to all orders, each



91

sensitive to a single scale. The result for the soft function, Eq. (4.127), resums logarithms of ratios
of these various scales, although we leave as an open question whether non-global logs remain at
O(α2

s) and higher.
We summarize where to find the results of the calculations outlined above in Table 4.1.

4 Factorization of Jet Shape Distributions in e+e− to N Jets

In this Section we formulate a factorization theorem for jet shape distributions in e+e−

annihilation to N jets. All the formal aspects we need to describe an N -jet cross section appear
already in the 3-jet cross section, so we will give explicit details only for that case. We will use the
framework of Soft-Collinear Effective Theory (SCET), developed in [19, 21, 33, 29], to formulate
the factorization theorem. We begin with a basic review of the relevant aspects of the effective
theory.

4.1 Overview of SCET

SCET is the effective field theory for QCD with all degrees of freedom integrated out,
other than those traveling with large energy but small virtuality along a light-like trajectory n, and
those with small, or soft, momenta in all components. A particularly useful set of coordinates is
light-cone coordinates, which uses light-like directions n and n̄, with n2 = n̄2 = 0 and n · n̄ = 2.
In Minkowski coordinates, we take n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1), corresponding to collinear
particles moving in the +z direction. A generic four-vector pµ can be decomposed into components

pµ = n̄ · pn
µ

2
+ n · pn̄

µ

2
+ pµ⊥ . (4.6)

In terms of these components, p = (n̄ · p, n · p, p⊥), collinear and soft momenta scale with some
small parameter λ as

pn = E(1, λ2, λ) , ps ∼ E(λ2, λ2, λ2) , (4.7)

where E is a large energy scale, for example, the center-of-mass energy in an e+e− collision. λ is
then the ratio of the typical transverse momentum of the constituents of the jet to the total jet
energy. Quark and gluon fields in QCD are divided into collinear and soft effective theory fields
with these respective momentum scalings:

q(x) = qn(x) + qs(x) , Aµ(x) = Aµn(x) +As(x) . (4.8)

We factor out a phase containing the largest components of the collinear momentum from the
fields qn, An. Defining the “label” momentum p̃µn = n̄ · p̃n nµ2 + p̃µ⊥, where n̄ · p̃n contains the O(1)
part of the large light-cone component of the collinear momentum pn, and p̃⊥ the O(λ) transverse
component, we can partition the collinear fields qn, An into their labeled components,

qn(x) =
∑
p̃ 6=0

e−ip̃·xqn,p(x) , Aµn,p(x) =
∑
p̃6=0

e−ip̃·xAµn,p(x) . (4.9)

The sums are over a discrete set of O(1, λ) label momenta into which momentum space is parti-
tioned. The bin p̃ = 0 is omitted to avoid double-counting the soft mode in Eq. (4.8) [163]. The
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labeled fields qn,p, An,p now have spacetime fluctuations in x which are conjugate to “residual”
momenta k of the order Eλ2, describing remaining fluctuations within each labeled momentum
partition [33, 163]. It will be convenient to define label operators Pµ = n̄ · Pnµ/2 +Pµ⊥ which pick
out just the label components of momentum of a collinear field:

Pµφn,p(x) = p̃µφn,p(x) . (4.10)

Ordinary derivatives ∂µ acting on effective theory fields φn,p(x) are of order Eλ2.
The final step to construct the effective theory fields is to isolate the two large components

of the Dirac spinor qn,p for a fermion with lightlike momentum along n. The large components ξn,p
and the small Ξn,p can be separated by the projections

ξn,p =
n/n̄/

4
qn,p , Ξn,p =

n̄/n/

4
qn,p , (4.11)

and we have qn,p = ξn,p + Ξn,p. One can show, substituting these definitions into the QCD La-
grangian, that the fields Ξn,p have an effective mass of order E and can be integrated out of the
theory. The effective theory Lagrangian at leading order in λ is [21, 33, 29]

LSCET = Lξ + LAn + Ls , (4.12)

where the collinear quark Lagrangian Lξ is

Lξ = ξ̄n(x)
[
in ·D + iD/ c⊥Wn(x)

1
in̄ · PW

†
n(x)iD/ c⊥

]
n̄/

2
ξn(x) , (4.13)

where Wn is the Wilson line of collinear gluons,

Wn(x) =
∑

perms

exp
[
−g 1

n̄ · P n̄ ·An(x)
]

; (4.14)

the collinear gluon Lagrangian LAn is

LAn =
1

2g2
Tr
{[
iDµ + gAµn, iDν + gAn

]}2

+ 2 Tr
{
c̄n

[
iDµ,

[
iDµ + gAµn, cn

]]}
+

1
α

Tr
{[
iDµ, Aµn

]}
,

(4.15)

where cn is the collinear ghost field and α the gauge-fixing parameter; and the soft Lagrangian Ls
is

Ls = q̄siD/sqs(x)− 1
2

TrGµνs Gsµν(x) , (4.16)

which is identical to the form of the full QCD Lagrangian (the usual gauge-fixing terms are implicit).
In the collinear Lagrangians, we have defined several covariant derivative operators,

Dµ = ∂µ − igAµn − igAµs , iDµ
c = Pµ + gAµn , iDµ = Pµ + in·Dn̄

µ

2
. (4.17)

In addition, there is an implicit sum over the label momenta of each collinear field and the require-
ment that the total label momentum of each term in the Lagrangian be zero.
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Note the soft quarks do not couple to collinear particles at leading order in λ. Meanwhile,
the coupling of the soft gluon field to a collinear field is in the component n ·As only, according
to Eqs. (4.13) and (4.15), which makes possible the decoupling of such interactions through a field
redefinition of the soft gluon field given in [29]. We will utilize this soft-collinear decoupling to
simplify the proof of factorization below.

The SCET Lagrangian Eq. (4.12) may be extended to include collinear particles in more
than one direction [20]. One adds multiple copies of the collinear quark and gluon Lagrangians
Eqs. (4.13) and (4.15) together. The collinear fields in each direction ni constitute their own
independent set of quark and gluon fields, and are governed in principle by different expansion
parameters λ associated with the transverse momentum of each jet, set either by the angular cut
R in the jet algorithm or by the measured value of the jet shape τa. Each collinear sector may be
paired with its own associated soft field As with momentum of order Eλ2 with the appropriate λ.
For the purposes of keeping the notation tractable while proving the factorization theorem in this
section, we will for simplicity take all λ’s to be the same, with a single soft gluon field As coupling
to collinear modes in all sectors. In Sec. 7.4, we will discuss how to “refactorize” the soft function
further into separate soft functions each depending only on one of the various possible soft scales.

The effective theory containing N collinear sectors and the soft sector is appropriate to de-
scribe QCD processes with strongly-interacting particles collimated in N well-separated directions.
Thus, in addition to the power counting in the small parameter λ within each sector, guaranteeing
that the particles in each direction are well collimated, we will find in calculating an N -jet cross
section the need for another parameter that guarantees that the different directions ni are well
separated. This latter condition requires tij � 1, where tij is defined in Eq. (4.5).7

4.2 Jet Shape Distribution in e+e− → 3 Jets

Consider a 3-jet cross section differential in the jet 3-momenta P1,2,3, where we measure
the shape τ1

a of jet number 1. The full theory cross section for e+e− → γ∗ → 3 jets at center-of-mass
energy Q is

dσ

dτ1
ad

3P1,2,3
=

1
2Q2

∑
X

|〈X| jµ(0) |0〉Lµ|2 (2π)4δ4(Q− pX)δN(J (X)),3

× δ(τ1
a − τa(jet 1)

) 3∏
j=1

δ3
(
Pj −P(jet j)

)
,

(4.18)

where the J (X) is the jet algorithm acting on final state X, and N(J (X)) is the number of jets
identified by the algorithm [23]. P(jet j) is the 3-momentum of jet j, and is also a function of the
output of the jet algorithm J (X). Lµ is the leptonic part of the amplitude for e+e− → γ∗ → qq̄g.
The current jµ is

jµ =
∑
a

q̄aγµqa, (4.19)

7This condition is a consequence of our insistence on using operators with exactly N directions to create the final
state. We could move away from the large-t limit and account for corrections to it by using a basis of operators
with arbitrary numbers of jets and properly accounting for the regions of overlap between an N jet operator and
(N ± 1)-jet operators. This is outside the scope of the present work, where we limit ourselves to kinematics well
described by an N -jet operator, and thus, limit ourselves to the large-t limit.
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summing over colors a. For simplicity we work with a single quark flavor.
When the three jet directions are well separated, we can match the QCD current jµ(x)

onto a basis of three-jet operators in SCET [31, 165]. We build these operators from quark jet
fields χn, related to collinear quark fields ξn by χn = W †nξn, where Wn is given by Eq. (4.14), and
a gluon jet field B⊥n related to gluons An by

B⊥n =
1
g
W †n(P⊥ +A⊥n )Wn . (4.20)

The matching relation is

jµ(x) =
∑

n1n2n3

∑
p̃1p̃2p̃3

ei(p̃1−p̃2+p̃3)·xCµαβν(n1, p̃1;n2, p̃2;n3, p̃3)χ̄αn1,p1
(gB⊥νn3,p3

)χβn2,p2
(x) , (4.21)

with sums over Dirac spinor indices α, β and Lorentz index ν, and over label directions n1,2,3 and
label momenta p̃1,2,3. We have chosen to produce a quark in direction n1, antiquark in n2, and gluon
in n3. The matching coefficients Cµαβν are found by equating QCD matrix elements of jµ to SCET
matrix elements of the right-hand side of Eq. (4.21). These coefficients have been found at tree
level in [165]. The number of independent Dirac and Lorentz structures that can actually appear
with nonzero coefficients is considerably smaller than suggested by Eq. (4.21) due to symmetries.
We will keep the form of these coefficients general to make extension to N jets transparent, which
would require the introduction of a basis of N jet fields in Eq. (4.21), with specified numbers of
quark, antiquark, and gluon fields. We will not write the details for an N -jet cross section here, but
the procedures are obvious extensions of all the steps in factorizing the 3-jet cross section below.

As a final step before factorization, we redefine the collinear fields to decouple collinear-soft
interactions in the Lagrangian [29]:

χn(x) = Y †n (x)χ(0)
n (x) (4.22a)

χ̄n(x) = χ̄(0)
n (x)Yn(x) (4.22b)

An(x) = Yn(x)A(0)
n (x) , (4.22c)

where Yn is a Wilson line of soft gluons along the light-cone direction n,

Yn(x) = P exp
[
ig

∫ ∞
0

ds n ·As(ns+ x)
]
, (4.23)

with As in the fundamental representation.8 Yn is similar but in the adjoint representation. The
new fields χ(0)

n , A
(0)
n do not have interactions with soft fields in the SCET Lagrangian at leading order

in λ. Henceforth, we use only these redefined fields, but for simplicity drop the (0) superscripts.
8The path choice (0 to ∞) in Eq. (4.23) is convenient for outgoing particles. The physical cross section is

independent of whether the path goes to ±∞ if the transformation of the external states X is also taken into account
[9].
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The cross section in SCET can now be written,

dσ

dτ1
ad

3P1,2,3
=

L2

6Q2

∑
X

δN(J (X)),3δ(τ
1
a − τa(jet 1))

3∏
j=1

δ3(Pj −P(jet j))

×
∑
n1,2,3

∑
p̃1,2,3

∫
d4x ei(Q−p̃1+p̃2−p̃3)·xCµαβν(n1,2,3; p̃1,2,3)C∗µγδρ(n1,2,3; p̃1,2,3)

× 〈0| T̄
{
χ̄aδn2,p2

Y ab
n2
YABn3

(gB⊥ρBn3,p3
)TAbcY

†cd
n1

χdγn1,p1
(x)
}
|X〉

× 〈X|T
{
χ̄eαn1,p1

Y ef
n1
YCDn3

(gB⊥νDn3,p3
)TCfgY

†gh
n2

χhβn2,p2
(0)
}
|0〉 .

(4.24)

To proceed to factorize this cross section, it is convenient to rewrite the remaining delta functions
that depend on the final state X in terms of operators acting on X. Those quantities depending
on the jet algorithm J can be rewritten in terms of an operator containing the momentum flow
operator,

Eµ(n) = lim
R→∞

∫ ∞
0

dt niTµi(t, Rn) , (4.25)

where Tµν is the energy-momentum tensor. The operator Eµ(n) measures the flow of four-momentum
Pµ in the direction n (cf. [18, 150, 44]), and the jet algorithm J can be written as an operator Ĵ
acting on the momentum flow in all directions [23]. Correspondingly we can define an operator for
the 3-momentum of the jet, P̂(Jj(Ĵ )). In addition, the event shape τa(jet 1) can also be expressed
as an operator τ̂a(J1(Ĵ )), built from the momentum flow operator, acting on the state |X〉 (cf.
[18]):

τ̂a(J1(Ĵ )) =
∫
dη e−η(1−a)ET (η)Θ(η − ηmin(J1(Ĵ ))) . (4.26)

The operator is constructed to count only particles actually entering the jet in direction n1 de-
termined by the action of the jet algorithm (for simplicity we will suppress the argument J1(Ĵ )
of τ̂a in the following, but add a superscript for the jet number). Using these operators, we can
eliminate the X dependence in the delta functions in Eq. (4.24) and perform the sum over states
X, obtaining

dσ

dτ1
ad

3P1,2,3
=

L2

6Q2

∑
n1,2,3

∑
p̃1,2,3

∫
d4x ei(Q−p̃1+p̃2−p̃3)·xCµαβν(n1,2,3; p̃1,2,3)C∗µγδρ(n1,2,3; p̃1,2,3)

× 〈0| T̄
{
χ̄aδn2,p2

Y ab
n2
YABn3

(gB⊥ρBn3,p3
)TAbcY

†cd
n1

χdγn1,p1
(x)
}

× δN(Ĵ ),3δ(τ
1
a − τ̂1

a )
3∏
j=1

δ3(Pj − P̂(Jj(Ĵ )))

× T
{
χ̄eαn1,p1

Y ef
n1
YCDn3

(gB⊥νDn3,p3
)TCfgY

†gh
n2

χhβn2,p2
(0)
}
|0〉 .

(4.27)

The matrix element can be calculated as the sum over cuts of time-ordered Feynman graphs, with
the delta function operators inside the matrix element enforcing phase space restrictions from the
jet algorithm and jet shape measurement on the final state created by the cut.
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The operators τ̂a and Ĵ depend linearly on the energy-momentum tensor, which itself
splits linearly in SCET into separate collinear and soft pieces,

Tµν =
∑
i

Tniµν + T sµν , (4.28)

which will aid us to factorize the full matrix element in Eq. (4.27) into separate collinear and soft
matrix elements. To achieve this factorization, however, we must make some more approximations:

1. The contribution of soft particles and residual collinear momenta to the momentum P(jet j)
of each jet can be neglected, and the jet momentum is just given by the label momentum p̃j
of the collinear state |Xj〉. Thus the energy and jet axis of each jet is approximated to be
that of the parent collinear parton initiating the jet. In particular, the mass of the jet is order
λ2 compared to its energy. So in this approximation we take the jet energy to be equal to the
magnitude of its 3-momentum. On the other hand, we keep the leading non-zero contribution
to the angularity even though it is also of order λ2. These approximations also require that
we treat the energy of any particles outside all of the jets, and thus the cutoff Λ, as a soft or
residual energy.

2. The Kronecker delta restricting the total number of jets to 3 can be factored into three
separate Kronecker deltas restricting the number of jets in each collinear direction ni to 1,
and one Kronecker delta restricting the soft particles not to create an additional jet. This
approximation requires the separation between jets to be much larger than the size of any
individual jet so that different jets do not overlap. Factoring the restriction on the number
of jets in this way is one reason that the parameter tij in Eq. (4.5) is required to be large.

We describe to what extent the algorithms we consider actually satisfy these two approximations
in Sec. 4.4. For now we assume these approximations and facts hold, which allows us to factor the
cross section Eq. (4.24),

dσ

dτ1
adE1,2,3d2Ω1,2,3

=
L2

6Q2

∑
n1,2,3

∑
ω1,2,3

Cµαβν(n1,2,3;ω1,2,3)C∗µγδρ(n1,2,3;ω1,2,3)

×
∫
d4x ei(Q−ω1n1/2+ω2n2/2−ω3n3/2)·x

∫
dτJdτSδ(τ1

a − τJ − τS)

× 〈0|χfγn1,ω1
(x)δN(Ĵ ),1δ(τJ − τ̂n1

a )χ̄eαn1,ω1
(0) |0〉 δ

(
E1 − ω1

2

)
δ2(Ω1 − n1)

× 〈0| χ̄aδn2,−ω2
(x)δN(Ĵ ),1χ

hβ
n2,−ω2

(0) |0〉 δ
(
E2 − ω2

2

)
δ2(Ω2 − n2)

× 〈0| (gB⊥ρAn3,ω3
)(x)δN(Ĵ ),1(gB⊥νBn3,ω3

(0) |0〉 δ
(
E3 − ω3

2

)
δ2(Ω3 − n3)

× 〈0|Y †abn2
Y †bcn3

TAcdY
†de
n3
Y †efn1

(x)δN(Ĵ ),0δ(τS − τ̂ sa)Y gh
n1
Y
hi
n3
TBij Y

jk
n3
Y
kl
n2

(0) |0〉

(4.29)

We have rewritten the cross section to be differential in Ei (the magnitude of Pi) and Ωi (the
direction of Pi). In the sum over label directions, ni can be chosen to align with Pi such that
p̃⊥i = 0. In Eq. (4.29) we have written the label momentum as ωi ≡ n̄i · p̃i. In Eq. (4.1) we
approximate the jet axis by this ni and the jet energy by n̄i · p̃i/2, so that they do not depend
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on soft momenta at all. The operators τ̂n1
a and τ̂ sa are defined to count only particles inside the

measured jet identified by the algorithm.
In the soft matrix element in Eq. (4.29), we have introduced the soft Wilson line Y n in

the antifundamental representation to remove the time- and anti-time-ordering operators T, T̄ in
Eq. (4.24) [24], and related Wilson lines Yn in the adjoint representation to those in the fundamental
representation by [29]

YABn TB = Y †nT
AYn . (4.30)

Defining the jet functions by the relations∫
d4k1

(2π)4
e−ik1·xJn1,ω1(τJ , n1 · k1)

(
n/1

2

)
γα

δef = 〈0|χfγn1,ω1
(x)δN(Ĵ ),1δ(τJ − τ̂n1

a )χ̄eαn1,ω1
(0) |0〉 (4.31a)

∫
d4k2

(2π)4
e−ik2·xJn2,ω2(n2 ·k2)

(
n/2

2

)
βδ

δah = 〈0| χ̄aδn2,ω2
(x)δN(Ĵ ),1χ

hβ
n2,ω2

(0) |0〉 (4.31b)

∫
d4k3

(2π)4
e−ik3·xJn3,ω3(n3 ·k3)gρν⊥ δ

AB = −ω3 〈0| (gB⊥ρAn3,ω3
)δN(Ĵ ),1(gB⊥νBn3,ω3

) |0〉 , (4.31c)

and the soft function by∫
d4r

(2π)4
e−ir·xS(τs, r) =

1
NCCF

Tr 〈0|Y †n2
Y
†
n3
TAY †n3

Y †n1
(x)δN(Ĵ ),0δ(τS − τ̂ sa)

× Yn1Yn3T
BYn3Y n2(0) |0〉

(4.32)

we can express the cross section Eq. (4.29) as

dσ

dτ1
adE1,2,3d2Ω1,2,3

=
L2NCCF

6Q2

∑
n1,2,3

∑
ω1,2,3

∫
d4x ei[Q−(ω1n1−ω2n2+ω3n3)/2]·x

× Cµαβν(n1,2,3;ω1,2,3)C∗µγδρ(n1,2,3, ω1,2,3)
(
n/1

2

)
γα

(
n/2

2

)
βδ

gνρ⊥

×
∫
dτJdτSδ(τ1

a − τJ − τS)
3∏
i=1

δ
(
Ei − ωi

2

)
δ2(Ωi − ni)

×
∫

d4k1

(2π)4
e−ik1·x

∫
d4k2

(2π)4
e−ik2·x

∫
d4k3

(2π)4
e−ik3·x

∫
d4r

(2π)4
e−ir·x

× Jn1,ω1(τJ , n1 · k1)Jn2,−ω2(n2 · k2)Jn3,ω3(n3 · k3)S(τS , r) ,

(4.33)

where now Pi = Ei(1,ni). The jet functions depend only on the smallest component of momentum
ni·ki in each collinear direction. The residual and soft momenta appearing in the exponentials can
be reabsorbed into the label momenta by a series of reparameterizations of the label momenta and
directions, under which the SCET Lagrangian is invariant [162]. The three-jet operator Eq. (4.21)
will receive corrections of order λ2 (which we can drop) under the reparameterizations we perform
below, or can be constructed from the outset to be explicitly reparameterization invariant (RPI)
[165].
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First, collect the residual and soft momenta together by defining K = k1 + k2 + k3 + r.
We can decompose x in n1 light-cone coordinates, so

e−iK·x = e−i(n̄1·K n1·x/2+n1·K n̄1·x/2+K⊥1·x⊥1) . (4.34)

Performing a type-A transformation (in the language of [162]) on the label momentum p̃1 = ω1n1/2,

ω1 → ω1 + n̄1 ·K , (4.35)

and a type-IB transformation on the vector n1 itself,

n1 → n1 + ∆⊥ , ∆⊥ = − 2
ω1
K⊥ , (4.36)

shifts the label momentum on the jet function 1 by ω1n1/2 → (ω1 + n̄1 · K)n1/2 + K⊥1. The
summation variables n1, ω1 can then be shifted to eliminate n̄1 ·K and K⊥1 from the exponentials
entirely. We drop all corrections suppressed by λ2 due to these shifts.

It remains to absorb the n1 · K component of residual and soft momentum, appearing
in the exponential factor e−in1·K n̄1·x/2. This cannot be achieved by RPI transformations in the
n1 sector since this momentum is purely residual—there is no label momentum in this direction.
However, in a multijet cross section, n̄1 can be written as a linear combination of n2, n3, and, say,
n⊥2 (unit vector transverse to n2, n̄2), so that RPI transformations on ω2, ω3 and n2 similar to those
above can absorb n1 · K into the label momenta also. Then, the x-dependent residual and soft
exponentials all disappear, and we can combine the nine superfluous n̄i · ki and k⊥i integrals with
the nine discrete sums over label directions and momenta to give continuous integrals over total
momenta. Performing these with the remaining energy and direction delta functions in Eq. (4.33)
and the x integral with the remaining exponential gives the momentum conservation delta function
δ4(Q− E1n1 − E2n2 − E3n3).

The resulting cross section Eq. (4.33) takes the form

dσ

dτ1
adE1,2,3d2n1,2,3

=
dσ(0)

dE1,2,3d2n1,2,3
H(n1,2,3;E1,2,3)

∫
dτJdτSδ(τ1

a − τJ − τS)

×
∫
dn1 ·k1

2π

∫
dn2 ·k2

2π

∫
dn3 ·k3

2π

∫
d4r

(2π)4

× Jn1,2E1(τJ , n1 · k1)Jn2,2E2(n2 · k2)Jn3,2E3(n3 · k3)S(τS , r) ,

(4.37)

where we used that the matching coefficients Cµαβν(ni; p̃i) are such that, by construction, the right-
hand side at tree-level is simply the Born cross section (denoted by σ(0)) for e+e− → qq̄g times
δ(τ1

a ). The hard function H = 1 +O(αs) is determined by calculating the matching coefficients C
order-by-order in perturbation theory.

The above may be modified in the obvious ways to describe the antiquark or gluon jet
angularities, by moving the appropriate delta function δ(τ ia−τa(jet i)) into the J2 or J3 jet functions.
In addition, we may choose from among various jet algorithms. The choice determines what Θ-
function restrictions must be inserted into the final state phase space integrations created by cutting
the jet and soft diagrams to determine which particles make it into the jet. As long as the algorithm
is such that the approximations enumerated above hold, it will not violate factorization of the jet
shape cross section. We will discuss factorization and its potential breakdown in the context of
particular jet algorithms below.
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4.3 Jet Shapes in e+e− → N jets

To generalize the result Eq. (4.37) to an arbitary number N of jets, we simply add more
quark and gluon jet fields to the operator matching in Eq. (4.21), and obtain the corresponding
number of quark and gluon jet functions in Eq. (4.21), along with a hard coefficient and a soft
function for N jet directions. Consider an event with 2Nq quark and antiquark jets and Ng gluon
jets, where 2Nq + Ng = N . Furthermore, we can choose to measure the angularity shape for any
number of these jets. Achieving a factorization theorem that remains consistent for any of these
combinations is a nontrivial task and thus a powerful test of the validity of the effective theory.

For an N = 2Nq + Ng jet event, we generalize the matching of the QCD current in
Eq. (4.21) to:

jµ(x) =
∑

n1···nN

∑
p̃1···p̃N

ei(p̃1+···+p̃N )·xC
µa1···aNq b1···bNqA1···ANg
α1···αNqβ1···βNqν1···νNg

(n1, p̃1; · · · ;nN , p̃N )

×
Nq∏
i=1

χ̄αiaini,pi(x)
Nq∏
j=1

χ
βjbj
nj ,−p̃j (x)

Ng∏
k=1

(gB⊥νkAknk,−p̃k)(x) ,
(4.38)

with implicit sums over Dirac spinor indices αi, βj , Lorentz indices νk, (anti-)fundamental color
indices ai, bj , and adjoint color indices Ak. The N jet cross section differential in M jet shapes,
with M < N , factors in SCET into the form

dσ(E1,n1; · · · ;EN ,nN)
dτ1
a1
· · · dτMaM

= σ(0)(E1,n1; · · · ;EN ,nN )HaibjAk(n1, E1; · · ·nN , EN )

×
M∏
l=1

∫
dτ lJdτ

l
Sδ(τ

l
a − τ lJ − τ lS)

∫
dn1 · k1

2π
· · ·
∫
dnN · kN

2π

× Jf1

n1,2E1
(τ1
J ;n1 · k1) · · · JfMnM ,2EM (τMJ ;nM · kM )

× JfM+1

nM+1,2EM+1
(nM+1 · kM+1) · · · JfNnN ,2EN (nN · kN )

×
∫

d4r

(2π)4
SaibjAk(τ1

S , . . . , τ
M
S ; r) ,

(4.39)

where σ(0) is the Born cross section for e+e− to Nq quarks, Nq antiquarks, and Ng gluons; the
color indices on the hard and soft functions H and S allow for color mixing; and fi is the flavor of
each jet function (quark, antiquark, or gluon). H itself is determined by calculating the matching
coefficients C in Eq. (4.38). The jet functions have the same definitions given in Eq. (4.31), and
the soft function is given by the appropriate generalization of Eq. (4.32) with Wilson lines in the
directions and color representations corresponding to the choice of fields in Eq. (4.38). We rearrange
the order of flavor and color indices in the hard and soft functions to agree with the choices of flavor
indices on the jet functions.

4.4 Power Corrections to Factorization in the Presence of Jet Algorithms

Factorization of observables in the presence of jet algorithms can break down in a number
of ways, for instance, when power corrections become too large. We will argue in this section
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that power corrections for jet angularities induced by all commonly used algorithms can give O(1)
effects unless the jet size R is parametrically larger than λ.9 In order to use algorithms that have
R ∼ λ, we would need to minimize power corrections associated with the assumptions that we
made in deriving the factorization formula, Eq. (4.39), regarding the action of jet algorithms on
the final state. In general, the size of these power corrections depends both on the algorithm
and the observable. Power corrections to the pT of a jet arising from perturbative emissions (as
well as from hadronization and the underlying event in pp collisions) for various jet algorithms
were explored in [98]. These power corrections arise for similar reasons as those we discuss below,
namely, perturbative emissions changing which partons get combined into the jet. Ref. [98] finds
that such power corrections scale like lnR for small R. This result agrees with our qualitative
discussion below, where we argue that power corrections to jet angularities arising from the jet
algorithms we use are minimized when R is O(1).

One assumption that is independent of the choice of algorithm is in setting the jet axis
equal to the label direction n. Since this neglects the effects of soft particles, it is valid up to O(λ2)
corrections. It was argued in Refs. [18, 47, 157] for the case of hemisphere jet algorithms that these
corrections in turn induce corrections to the angularity τa of order λ2(2−a), which for τa ∼ λ2, are
subleading for a < 1. Essentially the same arguments can be applied to all of the algorithms we
consider.

The main difference among jet algorithms is in which soft particles are included in a jet.
For observables that scale as O(1), such as the jet energies and 3-momenta, the contribution of
soft momenta can be neglected since they scale as O(λ2). Clearly then, these observables are not
dependent on our choice of jet algorithm and so the assumptions we made about factorization of
the algorithm in deriving Eq. (4.39) are trivially satisfied.

However, for observables that scale as O(λ2) such as angularities, soft contributions be-
come important and so the details of the algorithms we consider become relevant. We now demon-
strate that all of the algorithms we consider miscount soft particles in an angular area of O(λ2)
relative to what the soft function can include, which is an area of O(R2). This means that any
measurement that is sensitive to soft momenta needs jets of size R� λ for these power corrections
to be considered negligible. This miscounting arises due to the fact that factorization requires
that collinear particles be combined first, and that the soft function only knows about the parent
collinear direction. None of the algorithms that we consider strictly obey this ordering.

In Fig. 4.1, we illustrate the actions of the kT and anti-kT algorithms in relation to the
action of the soft function for the example of one parent particle splitting into two collinear daughter
particles separated by an angular distance θij . The two dots represent the daughter particles and
the “×” denotes the parent particle. Factorization assumes that all soft particles only know about
the parent particle, and hence the soft function can only include particles in a circle of radius R
around the parent particle.

The kT algorithm effectively finds the softest particle and then combines this particle with
its nearest neighbor. This process is iterated until all particles within a distance R are combined.
Since collinear particles are combined last, all soft particles within two circles of radius R about the

9We noted earlier that there may be different λ’s for the SCET modes describing different jets. For measured
jets, λ2 ∼ τa, while for unmeasured jets, λ ∼ tan(R/2), and for soft gluons outside jets, λ2 ∼ Λ/Q. Here it is mainly
important that R be much bigger than the scale associated with τa. But if R is too large, the separation parameter
t ∝ 1/ tan(R/2) becomes too small. We will consider R ∼ 0.7 to 1 to be safe.
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Figure 4.1: Error induced by the (A) kT and (B) anti-kT algorithms at NLO. Both the algorithm
and the soft function merge the large white circle. The algorithm also merges the cross-hatched
area which occupies a region of phase space which is of O(θ2

ij) for both algorithms.

daughter particles are included,10 as shown in Fig. 4.1A. The area that the kT algorithm includes
that the soft function does not is represented by the cross-hatched region, which is an area of O(θ2

ij).
This must be parametrically smaller than the area included by the soft function for the associated
power corrections to be small. We thus require that R� θij ∼ λ in the SCET power counting.

The anti-kT algorithm at first sight combines particles in a manner that is closer to
respecting factorization. It finds the hardest particle first and merges particles at successively
larger distance from this particle. For the example of two daughters, it will merge all soft particles
with the hardest daughter that are closer than the distance to the softer daughter before merging
the two daughters and then merging all soft particles a distance R from the merged daughter (i.e.,
the parent) particle, as shown in Fig. 4.1B. As the Figure illustrates, the cross-hatched area of the
anti-kT jet tends to be less than that of the kT jet, but it is still formally of O(θ2

ij). Again, we
require that R� λ for this algorithm to be applicable.

Unlike the kT-type algorithms, cone algorithms such as the SISCone algorithm do not
induce errors in which soft particles to include when there are only two collinear daughter particles.
However, at higher orders in perturbation theory, stable solutions may exist with overlapping cones
when collinear splittings are of the order of the cone radius R. In these cases, the amount of
radiation that falls into the overlapping region is used to decide whether the cones are split or
merged. If merged, the resulting region has the appearance of Fig. 4.1A. Thus, as for the kT-
type algorithms, we require that R is parametrically larger than the SCET parameter λ for power
corrections to all-orders factorization to be small. For the remainder of this chapter, we take R to
be O(1) in the λ power counting and we will mainly be concerned with the resummation of the jet
observables such as angularities τa in the presence of jet algorithms.11

Another requirement for the validity of the factorization theorem is that the factorized jet
and soft functions be separately IR safe, which is a stronger condition than the full cross section
being IR safe. If the observable [134, 135] or algorithm [85] too strongly weights final states with
narrow jets whose invariant masses are the same as the virtuality of soft particles, then the jet

10Soft particles in this region can also by removed from this region by merging with other soft particles outside of
the region and vice-versa, but this average area suffices for our discussion.

11Because small R (. 0.3) jets cannot be well resolved in current experiments, resummation of logarithms of R is
not of primary practical importance in the near future.
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Figure 4.2: A representative diagram for the NLO quark and gluon jet functions. The incoming
momentum is l = n

2ω + n̄
2 l

+ and particles in the loop carry momentum q (“particle 1”) and l − q
(“particle 2”).

and soft functions for the observable in standard SCET with dimensional regularization become
IR divergent. When this occurs it does not necessarily mean that factorization is not possible; but
at least not in the standard form derived from the version of SCET we utilized above. It could
be, for example, that a scheme to further separate modes by defining the theory with an explicit
cutoff [85] or by factorizing modes by rapidity instead of virtuality [163] can restore a version of the
factorization theorem. We leave a explicit study of which algorithms and observables give IR safe
jet and soft functions in SCET in dimensional regularization for a separate publication. However,
we note here that the algorithms and observables (τa for a < 1) that we consider in this chapter,
at least at NLO, do give rise to IR safe jet and soft functions.

In addition to minimizing power corrections to ensure factorizability, in order to resum
logarithms of jet algorithm parameters to all orders in perturbation theory, the algorithms have to
act at all orders in perturbation theory in a way that mimics what they do at NLO. Otherwise, we
cannot use information from a fixed order in perturbation theory to obtain all-orders resummed
results. The JADE algorithm is one well-known example in which resummability even of leading
logarithms of the jet mass cut y is spoiled by the differences in the jet phase space at different orders
in perturbation theory [57]. 12 We do not in this work tackle the full problem of resummability of
logarithms of R and other phase space cuts, but instead focus just on resumming logs of the jet
shape τa when the jets are defined with an algorithm.

5 Jet Functions at O(αs) for Jet Shapes

In this section, we calculate the quark and gluon jet functions for jet shapes at next-to-
leading order in perturbation theory. The jet functions can be divided into two categories: those
for measured jets, which are fixed to have a specific angularity τa, and those for unmeasured jets,
which are not. We will denote the quark jet function by Jqω, the gluon jet function by Jgω, where
ω is the label momentum, and a jet function Jq,g(τa) with an argument of τa denotes a measured
jet. We will calculate the jet functions for the two classes of jet algorithms, kT-type and cone-type
algorithms.
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5.1 Phase Space Cuts

To calculate the jet functions for a particular algorithm, we must impose phase space
restrictions in the matrix element. From the jet function definitions, Eq. (4.31), these cuts take two
forms. One kind, imposed by the operator δN(Ĵ ),1 in Eq. (4.31), is common to every jet function.
It is the set of phase space restrictions related to the jet algorithm, and requires exactly one jet
to arise from each collinear sector of SCET. The other, imposed by the operator δ(τa − τ̂a), is
implemented only on measured jets and restricts the kinematics of the cut final states to produce
a fixed value of the jet shape. In this section we describe these phase space cuts in detail.

The typical form of the NLO diagrams in the jet functions is shown in Fig. 4.2. As shown
in the figure, the momentum flowing through the graph has label momentum l− ≡ n̄ · l = ω and
residual momentum l+ ≡ n · l, and the loop momentum is q. We will label “particle 1” as the
particle in the loop with momentum q and “particle 2” as the particle in the loop with momentum
l − q. For the quark jet, we take particle 1 as the emitted gluon and particle 2 as the quark.

As usual, the total forward scattering matrix element can be written as a sum over all
cuts. Cutting through the loops corresponds to the interference of two real emission diagrams, each
with two final state particles, whereas cutting through a lone propagator that is connected to a
current corresponds to the interference between a tree-level diagram and a virtual diagram, each
with a single final state particle. Thus, the phase space restrictions and measurements we impose
act differently depending on where the diagrams are cut. In addition, since we will be working
in dimensional regularization (with d = 4 − 2ε), which sets scaleless integrals to zero, the only
diagrams that contribute are the cuts through the loops. This means that we only need to focus on
the form of phase-space restrictions and angularities in the case of final states with two particles.

The regions of phase space for two particles created by cutting through a loop in the jet
function diagrams can be divided into three contributions:

1. Both particles are inside the jet.

2. Particle 1 exits the jet with energy E1 < Λ.

3. Particle 2 exits the jet with energy E2 < Λ.

In contributions (2) and (3), the jet has only one particle, which is the remaining particle with
E > Λ.

It is well known that collinear integrations of jet functions can be allowed to extend over all
values of loop momenta so long as a “zero-bin subtraction” is taken from the result to avoid double
counting the soft region already accounted for in the soft function [163]. We will demonstrate that
contributions (2) and (3) are power suppressed by O(Λ/ω), which scales as λ2, after the zero-bin
subtraction.

The phase space cuts that enforce both particles to be in the jet depend on the jet
algorithm. There are two classes of jet algorithms that we consider, cone-type algorithms and
(inclusive) kT-type algorithms, and all the algorithms in each class yield the same phase space
cuts. We label the phase space restrictions as Θcone and ΘkT

, generically Θalg. For the cone-type

12Another obvious example that will not work, just to illustrate the issue, is using a kT-type algorithm with R
randomly chosen for each recombination. This is clearly such that resummation of logarithms of R cannot be achieved.
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algorithms,

Θcone ≡ Θcone(q, l+) = Θ
(

tan2 R

2
>
q+

q−

)
Θ
(

tan2 R

2
>
l+ − q+

ω − q−
)
. (4.40)

These Θ functions demand that both particles are within R of the label direction. For the kT-type
algorithms, the only restriction is that the relative angle of the particles be less than R:

ΘkT
≡ ΘkT

(q, l+) = Θ

cosR <
~q ·~l − q2

q

√
l2 + q2 − 2~q ·~l


= Θ

(
tan2 R

2
>

q+ω2

q− (ω − q−)2

)
. (4.41)

In the second line we took the collinear scaling of q (q+ � q−). While this is not strictly needed,
it makes the calculations significantly simpler.

For the phase space restrictions of zero-bin subtractions, we take the soft limit of the
above restrictions. The zero-bin subtractions are the same for all the algorithms we consider. For
the case of particle 1, which has momentum q, the zero-bin phase space cuts are given by

Θ(0)
alg = Θ(0)

cone = Θ(0)
kT

= Θ
(

tan2 R

2
>
q+

q−

)
. (4.42)

The zero bin of particle 2 is given by the replacement q → l − q.
For all the jet algorithms we consider, the zero-bin subtractions of the unmeasured jet

functions are scaleless integrals.13 However, for the measured jet functions, the zero-bin subtractions
give nonzero contributions that are needed for the consistency of the effective theory.

In the case of a measured jet, in addition to the phase space restrictions we also demand
that the jet contributes to the angularity by an amount τa with the use of the delta function
δR = δ(τa − τ̂a), which is given in terms of q and l by

δR ≡ δR(q, l+) = δ

(
τa − 1

ω
(ω − q−)a/2(l+ − q+)1−a/2 − 1

ω
(q−)a/2(q+)1−a/2

)
. (4.43)

In the zero-bin subtraction of particle 1, the on-shell conditions can be used to write the corre-
sponding zero-bin δ-function as

δ
(0)
R = δ

(
τa − 1

ω
(q−)a/2(q+)1−a/2

)
, (4.44)

(and for particle 2 with q → l − q).

5.2 Quark Jet Function

The diagrams corresponding to the quark jet function are shown in Fig. 4.3. The fully
inclusive quark jet function is defined as∫

d4x eil·x 〈0|χaαn,ω(x)χ̄bβn,ω(0) |0〉 ≡ δab
(
n/

2

)αβ
Jqω(l+) , (4.45)

13Note that algorithms do exist that give nonzero zero-bin contributions to unmeasured jet functions [85].
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(B)(A) (D)(C)(A) (A)

Figure 4.3: Diagrams contributing to the quark jet function. (A) and (B) Wilson line emission
diagrams; (C) and (D) QCD-like diagrams. The momentum assignments are the same as in Fig. 4.2.

and has been computed to NLO (see, e.g., [25, 53]) and to NNLO [38]. Below we compute the quark
jet function at NLO with phase space cuts for the jet algorithm for both the measured jet, Jqω(τa),
and the unmeasured jet, Jqω. As discussed above, we will find that the only nonzero contributions
come from cuts through the loop when both cut particles are inside the jet.

5.2.1 Measured Quark Jet

The measured quark jet function includes contributions from naive Wilson line graphs (A)
and (B) and QCD-like graphs (C) and (D) in Fig. 4.3. The sum of these contributions is

J̃qω(τa) = g2µ2εCF

∫
dl+

2π
1

(l+)2

∫
ddq

(2π)d

(
4
l+

q−
+ (d− 2)

l+ − q+

ω − q−
)

2πδ(q−q+ − q2
⊥)

×Θ(q−)Θ(q+)2πδ
(
l+ − q+ − q2

⊥
ω − q−

)
Θ(ω − q−)Θ(l+ − q+) ΘalgδR .

(4.46)

The contribution proportional to d − 2 comes from the QCD-like graphs (C) and (D) in Fig. 4.3.
Only the Wilson line graphs have a nonzero zero-bin limit, which comes from taking the scaling
limit q ∼ λ2 of the naive contribution:

Jq(0)
ω (τa) = 4g2µ2εCF

∫
dl+

2π
1
l+

∫
ddq

(2π)d
1
q−

2πδ(q−q+ − q2
⊥)Θ(q−)Θ(q+)

× 2πδ
(
l+ − q+

)
Θ(l+ − q+) Θ(0)

algδ
(0)
R .

(4.47)

All jet algorithms that we use yield the same zero-bin contribution, since the phase space cuts are
the same.

To evaluate these integrals, we can analytically extract the coefficient of δ(τa) by integrat-
ing over τa and using the fact that remainder is a plus distribution, as defined in Eq. (4.138). We
find the naive contribution is

J̃qω(τa) =
αsCF

2π
1

Γ(1− ε)

(
4πµ2

ω2 tan2 R
2

)ε(
1
ε2

+
3
2ε

)
δ(τa) +

αs
2π
J̃qalg(τa) . (4.48)

The only difference between the jet algorithms that we consider resides in the finite distribution
J̃qalg(τa), which is a complicated function of τa that we give in Appendix 4.A. Note that the
divergent part of the naive contribution is proportional to δ(τa). This is due to the fact that the
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jet algorithm regulates the distribution for τa > 0. The divergent plus distributions come entirely
from the zero-bin subtraction, which is given by

Jq(0)
ω (τa) =

αsCF
π

1
Γ(1− ε)

(
4πµ2 tan2(1−a) R

2

ω2

)ε
1

(1− a)ε
1

τ1+2ε
a

. (4.49)

Adding the leading-order contribution to all of the NLO graphs and expanding in powers
of ε, adopting the MS scheme, we find the total quark jet function,

Jqω(τa) = δ(τa) + J̃qω(τa)− Jq(0)
ω =

{
1 +

αsCF
π

[
1− a

2

1− a
1
ε2

+
1− a

2

1− a
1
ε

ln
µ2

ω2
+

3
4ε

]}
δ(τa)

− αsCF
π

[
1
ε

1
1− a

Θ(τa)
τa

]
+

+
αs
2π
Jqalg(τa) .

(4.50)

This agrees with the standard jet function J(k+) given in [25, 53] by setting a = 0 and k+ = ωτa.
We have shown the divergent terms explicitly, and collect the finite pieces in Jqalg(τa), which we
give in Eq. (4.149). Note that there is no jet algorithm dependence in the divergent parts of the
jet function at this order in perturbation theory.

5.2.2 Gluon Outside Measured Quark Jet

In this section we calculate the contribution to the quark jet function from the region
of phase space in which the gluon exits the jet carrying an energy Eg < Λ. This cut causes the
contribution to be power suppressed by Λ/ω, which scales as λ2. However, we elect to evaluate this
case explicitly as it provides a clear example of the zero-bin subtraction giving the proper scaling
to the total contribution. We only evaluate this contribution for the cone algorithm; the details of
the kT algorithm calculation are similar. Note that the contribution when the quark is out of the
jet is power suppressed at the level of the Lagrangian given in Sec. 4.1, in which soft quarks do not
couple to collinear partons at leading order in λ.

For the cone algorithm, the gluon exits the jet when the angle between the jet axis, n1,
and the gluon is greater than R. When the gluon is not in the jet, the cone axis is the quark
direction, and so it makes no contribution to the angularity. Therefore, this region of phase space
contributes only to the δ(τa) part of the angularity distribution.

For the naive contributions, requiring the gluon to be outside the jet and have energy less
than Λ, we have the integral

J̃q,out
ω (τa) = g2µ2εCF

∫
dl+

2π
1

(l+)2

∫
ddq

(2π)d

(
4
l+

q−
+ (d− 2)

l+ − q+

ω − q−
)

2πδ(q−q+ − q2
⊥)

×Θ(q−)Θ(q+)2πδ
(
l+ − q+ − q2

⊥
ω − q−

)
Θ(ω − q−)Θ(l+ − q+)

×Θ
(
q+

q−
− tan2 R

2

)
Θ
(
2Λ− q−) δ(τa) .

(4.51)
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Note that the theta function requiring q− < 2Λ is more restrictive than q− < ω. Evaluating
Eq. (4.51) yields a contribution that scales with Λ only below the leading term in 1/ε:

J̃q,out
ω (τa) = −αsCF

2π
1

Γ(1− ε)

(
4πµ2

(2Λ tan R
2 )2

)ε
δ(τa)

(
1
ε2

+
1
ε

(
4Λ
ω
− 2Λ2

ω2

)
+

8Λ
ω

)
(4.52)

The zero-bin subtraction of Eq. 4.51 is

J̃q,out(0)
ω (τa) = g2µ2εCF

∫
dl+

2π
1

(l+)2

∫
ddq

(2π)d

(
4
l+

q−
+ (d− 2)

l+ − q+

ω − q−
)

2πδ(q−q+ − q2
⊥)

×Θ(q−)Θ(q+)2πδ
(
l+ − q+

)
Θ
(
q+

q−
− tan2 R

2

)
Θ
(
2Λ− q−) δ(τa) . (4.53)

Evaluating Eq. (4.53), we find the zero bin will exactly remove the leading term in 1/ε:

J̃q,out(0)
ω (τa) = −αsCF

2π
1

Γ(1− ε)

(
4πµ2

(2Λ tan R
2 )2

)ε
δ(τa)

1
ε2

(4.54)

Therefore, the difference is power suppressed only after the zero bin is included. Because other
contributions when one particle is outside of the jet are similarly power suppressed, we will drop
them in our remaining discussion of the jet functions.

5.2.3 Unmeasured Quark Jet

When the angularity of a jet is not measured, the jet function has no τa dependence. The
naive and zero-bin contributions are the same as Eqs. (4.46) and (4.47) except for the factor of δR.
The zero-bin contribution is

Jq(0)
ω = 2g2µ2εCFn·n̄

∫
dl+

2π
1
l+

∫
ddq

(2π)d
1
q−

2πδ(q−q+ − q2
⊥)Θ(q−)Θ(q+)

× 2πδ
(
l+ − q+

)
Θ(l+ − q+) Θ(0)

alg .

(4.55)

This integral is scaleless and therefore equal to 0 in dimensional regularization. This implies that
the NLO part of the quark jet function for an unmeasured jet is just the naive result. We find,
making the divergent part explicit,

Jqω = 1 + J̃qω = 1 +
αsCF

2π

{
1
ε2

+
3
2ε

+
1
ε

ln

(
µ2

ω2 tan2 R
2

)}
+
αs
2π
Jqalg , (4.56)

where the finite part Jqalg is given in Eq. (4.150).14

14The unmeasured jet function Eq. (4.56) is not simply obtained by integrating the measured jet function Eq. (4.50)
over τa. This is due to the different relative scaling of R with the SCET expansion parameter λi in a measured
and unmeasured jet sector, as noted earlier. Namely, R ∼ λ0

i in a measured jet sector (where λ ∼ √τa) while
λk ∼ tan(R/2) in an unmeasured jet sector.
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Figure 4.4: Diagrams contributing to the gluon jet function. (A) sunset and (B) tadpole gluon
loops; (C) ghost loop; (D) sunset and (E) tadpole collinear quark loops; (F) and (G) Wilson line
emission loops. Diagrams (F) and (G) each have mirror diagrams (not shown). The momentum
assignments are the same as in Fig. 4.2.

5.3 Gluon Jet Function

The diagrams needed for the gluon jet function at NLO are shown in Fig. 4.4. The fully
inclusive jet function, defined as∫

d4x eil·x 〈0|BµA
⊥,ω(x)BνB

⊥,ω(0) |0〉 ≡ − 1
ω
gµν⊥ δ

ABJgω(l+) , (4.57)

(with Jgω(l+) normalized to 2πδ(l+) at tree-level) has been calculated to NLO in Feynman gauge
in [31, 15, 126] and was reported to give the same result in both Rξ and light-cone gauges in [42].
Since our phase space restrictions and the observables act differently on cuts through loops and on
cuts through external propagators, it is useful to reproduce these results by explicitly cutting the
diagrams.

After some algebra, we find that the sum of all cuts through the loops gives∫
dl+

2π
Jgω(l+) = µ2ε 2g2

(2π)d−1

∫
dl+

l+

∫
ddq δ(q2)δ((l − q)2) Θ(0 < q− < ω)

×
[
TRNf

(
1− 2

1− ε
q+q−

ωl+

)
− CA

(
2− ω

q−
− ω

ω − q− −
q+q−

ωl+

)]
. (4.58)

In the absence of phase-space restrictions, this reduces to the standard (inclusive) gluon jet function

Jgω(l+)
2πω

=
αs
4π
µ2ε(ωl+)−1−ε

[
TRNf

(
4
3

+
20
9
ε

)
− CA

(
4
ε

+
11
3

+
(

67
9
− π2

)
ε

)]
. (4.59)

The measured and unmeasured jet functions are obtained by inserting ΘalgδR and Θalg into Eq. (4.58),
respectively.

We also record the zero bin that needs to be subtracted from Eq. (4.58). To leading-power
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it is given by ∫
dl+

2π
Jg(0)
ω (l+) = µ2εCA

2g2

(2π)d−1

∫
dl+

l+

∫
ddq

[
δ(q2)δ(l+ − q+)Θ(q−)

1
q−

+ δ((l − q)2)δ(q+)Θ(ω − q−)
1

ω − q−
]
. (4.60)

5.3.1 Measured Gluon Jet

The naive contribution to the measured gluon jet can be written as

J̃gω(τa) =
αs
2π

1
Γ(1− ε)

(
4πµ2

ω2

)ε 1
1− a

2

(
1
τa

)1+ 2ε
2−a
∫ 1

0
dx (xa−1 + (1− x)a−1)

2ε
2−a

×
[
TRNf

(
1− 2

1− εx(1− x)
)
− CA

(
2− 1

x(1− x)
− x(1− x)

)]
Θalg(x) , (4.61)

where x ≡ q−/ω. This gives

J̃gω(τa) =
αs
2π

1
Γ(1− ε)

(
4πµ2

ω2 tan2 R
2

)ε
δ(τa)

[
CA

(
1
ε2

+
11
6

1
ε

)
− 2

3ε
TRNf

]
+
αs
2π
J̃galg(τa) , (4.62)

where, as for the quark jet function, the finite distributions J̃galg(τa) differ among the algorithms we
consider. They are given in Appendix 4.A.

The zero-bin result is

Jg(0)
ω (τa) =

αsCA
π

1
Γ(1− ε)

αs
2π

(
4πµ2 tan2(1−a) R

2

ω2

)ε(
1
τa

)1+2ε 1
(1− a)ε

. (4.63)

Subtracting the zero-bin from the naive integral and adding the leading-order contribution, we
obtain in MS

Jgω(τa) = δ(τa) + J̃gω(τa)− Jg(0)
ω (τa)

=

{
1 +

αsCA
π

[
1− a/2
1− a

(
1
ε2

+
1
ε

ln
µ2

ω2

)
+

11
12

1
ε

]
− αs

3π
TRNf

1
ε

}
δ(τa)

− αsCA
π

1
1− a

1
ε

(
Θ(τa)
τa

)
+

+
αs
2π
Jgalg(τa) . (4.64)

The finite distribution Jgalg(τa) is given in Eq. (4.149).

5.3.2 Unmeasured Gluon Jet

As for the quark jet function, for unmeasured jets the naive and zero-bin contributions
are given by the measured jet contributions without the δR constraint. Also, as it was for the quark
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jet function, the zero-bin contribution to the unmeasured jet function is a scaleless integral. Thus,
the final answer is just the naive result, which is given by

Jgω = 1 +
αs
2π

[
CA

(
1
ε2

+
11
6

1
ε

+
1
ε

ln
µ2

ω2 tan2 R
2

)
− 2

3ε
TRNf

]
+
αs
2π
Jgalg , (4.65)

with the finite part Jgalg given in Eq. (4.157) in the Appendix.

6 Soft Functions at O(αs) for Jet Shapes

In this section we compute the soft function for a generic N jet event. In Sec. 6.1, we
describe the phase space cuts that we impose on soft particles emitted into the final state. We
then give an outline of how we disentangle the various contributions to the N -jet soft function in
Sec. 6.2 and proceed to calculate these contributions in the remaining subsections.

6.1 Phase Space Cuts

Soft particles in the final state must satisfy the phase space cuts required by the operator
δN(Ĵ ),0 in Eq. (4.32), which constrains the soft particles to not create an extra jet. A soft particle
allowed in the final state if it is emitted into one of the jets as defined by the jet algorithm, or if it
is not in a jet by has energy less than a cutoff Λ. At NLO, only a single soft gluon can be emitted.
Therefore, for both cone-type and kT-type algorithms, the constraint that the soft gluon be in a
jet is simply that the angle of the gluon with respect to the jet axis satisfies θgJ < R. Thus, our
requirement on soft gluons is that they obey one of the two following conditions:

in jet i: θgJi < R

out of all jets: Eg < Λ and θgJi > R for all i . (4.66)

These conditions can be written in terms of theta functions on the gluon momentum k. We denote
the energy restriction for out-of-jet gluons as

ΘΛ ≡ Θ(k0 < Λ) , (4.67)

and we denote the requirement that a gluon be in jet i in terms of the light-cone components k±

about the the direction of jet i, ni, as

Θi
R ≡ Θ

(
k+

k−
< tan2 R

2

)
. (4.68)

For the case when the soft gluon is in a measured jet, we demand that it contributes an
amount τa to the angularity of a jet with label momentum ω with the use of the delta function

δR ≡ δ
(
τa − 1

ω
(k−)a/2(k+)1−a/2

)
. (4.69)
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Figure 4.5: Soft function real-emission diagrams. Diagrams (A) and (C) are interference diagrams
of Wilson line emission from lines i and j and (B) and (D) are from lines i and k. The shaded
region in the center represents the region of phase space corresponding to jet k defined by the jet
algorithm, and so the gluons in diagrams (A) and (B) are inside jet k and those in (C) and (D) are
not. Each diagram has a corresponding mirror diagram (not shown).

6.2 Calculation of contributions to the N-Jet Soft Function

The topology of the various graphs that we need to compute the soft function is shown in
Fig. 4.5. The next-to-leading order part S(1) of the soft function S is the sum of the interference
of soft gluon emissions from Wilson lines in directions i and j, Sij , over all lines i and j with i 6= j
(since for i = j, the diagram is proportional to n2

i = 0),

S(1) =
∑
i 6=j

Sij . (4.70)

It is conceptually straightforward to see that Sij is just the sum of the following three classifications
of the final state cut gluon:

• The gluon is in a measured jet and thus contributes to the jet angularity.

• The gluon is outside of all the jets and has energy Eg < Λ.

• The gluon is in an unmeasured jet and has any energy.

However, the second contribution is technically difficult to compute due to the complicated shape
of the space with all jets cut out of it, like Swiss cheese. A division of phase space leading to a
simpler calculation is the following:

• Smeas
ij (τka ): The gluon is in measured jet k and contributes to the jet’s angularity τka .

• Skij : The gluon is in jet k with energy Eg > Λ (and does not contribute to τka ).

• S̄kij : The gluon is in jet k with energy Eg < Λ (and does not contribute to τka ).

• Sincl
ij : The gluon is anywhere with Eg < Λ (and does not contribute to any angularity).
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In terms of these pieces, the NLO soft function with M measured jets and N −M unmeasured jets
is given by

S(1)(τ
1
a , τ

2
a , . . . , τ

M
a ) =

∑
i 6=j

 ∑
k∈meas

Smeas
ij (τka )

M∏
l 6=k

δ(τ la)


+
∑
i 6=j

[(
Sincl
ij −

∑
k∈meas

S̄kij +
∑

k/∈meas

Skij

)
M∏
l

δ(τ la)

 .
(4.71)

From the definitions above, it is easy to see that the term in large parentheses on the second line is
equivalent to the sum of the last two contributions on the original list above, i.e., the contributions
from a gluon not in any jet with Eg < Λ and from a gluon in an unmeasured jet with any energy.

We can simplify this expression by noting that the contribution from a gluon in jet k
with no energy restriction involves a scaleless integral over the energy that vanishes in dimensional
regularization and thus

Skij + S̄kij = 0 . (4.72)

Using this relation, the soft function simplifies to

S(1)(τ
1
a , . . . , τ

M
a ) = Sunmeas

(1)

M∏
l

δ(τ la) +
∑

k∈meas

Smeas
(1) (τka )

M∏
l 6=k

δ(τ la) , (4.73)

where the first term in Eq. (4.73) is a universal contribution that is needed for every N -jet observ-
able, defined as

Sunmeas
(1) ≡

∑
i 6=j

(
Sincl
ij +

N∑
k=1

Skij

)
. (4.74)

The second term, defined as,
Smeas

(1) (τka ) ≡
∑
i 6=j

Smeas
ij (τka ) , (4.75)

depends on our choice of angularities as the observable.
We now proceed to set up the one-loop expressions for the contributions in Eq. (4.73).

The integrals involved are highly nontrivial and so in this section we simply quote the result of each
integral, referring the reader to Appendix 4.B for details. Most of these integrals are most easily
written in terms of the variable tij , defined in Eq. (4.5) as tij ≡ tan ψij

2 / tan R
2 , where ψij is the

angle between jet directions i and j. (That is, ni · nj = 1 − cosψij .) In Table 4.2, we summarize
the divergent parts of the soft function.

The Feynman rules for the emission of a soft gluon from fundamental- and adjoint-
representation Wilson lines (corresponding to quark and gluon jets, respectively) have the same
kinematic structure. The difference is entirely encoded in the color charge of the Wilson lines
which, using the color space formalism of [69, 70], we denote as Ti for emission from Wilson line
i. Thus, we can consider the N -jet soft function without specifying the color representation of the
final-state jets.
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6.2.1 Inclusive Contribution: Sincl
ij

The contribution to the soft function from a gluon going in any direction with energy
Eg < Λ is given by the integral

Sincl
ij = −g2µ2ε Ti ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0) ΘΛ . (4.76)

We evaulate this integral in Sec. 4.B.1 of the Appendix and find

Sincl
ij = −αs

2π
Ti ·Tj

Γ(1− ε)
(

4πµ2

4Λ2

)ε( 1
ε2
− 1
ε

ln
ni · nj

2
− π2

6
− Li2

(
1− 2

ni · nj

))
. (4.77)

Note that this calculation is related to the inclusive, timelike soft function that has appli-
cations elsewhere (see, e.g., [147, 43, 40]), generalized for non back-to-back jets:

dSincl
ij

dΛ
= −g2µ2ε Ti ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0)δ(k0 − Λ) . (4.78)

6.2.2 Soft gluon inside jet k with Eg > Λ: Skij

Using Eq. (4.72), the contribution Skij from a gluon emitted into jet k from lines i and j
is given by the integral

Skij = g2µ2ε Ti ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0) Θk

RΘΛ . (4.79)

Much like for the Smeas
ij contribution, if k = i, j, there is an additional divergence (arising from

nk · k → 0) relative to the case k 6= i, j, and so we evaluate these two cases separately below.

6.2.2.1 Case 1: k = i or j The integrals for this case are performed in Sec. 4.B.2 of the
Appendix, with the result that Sjij is

Sjij = Siij =
αsTi ·Tj

4π

[
1
ε2

1
Γ(1− ε)

(
4πµ2

4Λ2

)ε( t2ij
t2ij − 1

tan2 R

2

)−ε
+ Li2

( −1
t2ij − 1

)

+ 2 Li2

( −1

cos2 ψij
2 (t2ij − 1)

)]
. (4.80)

6.2.2.2 Case 2: k 6= i, j These contributions are at most 1/ε divergent since the matrix element
does not have the nk · k → 0 singularity. We show in Appendix 4.B.3.2 that the result takes the
form

Skij
∣∣
k 6=i,j = −αs

4π
Ti ·Tj

[
1
ε

ln
(
t2ikt

2
jk − 2tiktjk cosβij + 1

(t2ik − 1)(t2jk − 1)

)
+ F (tik, tjk, βij)

]
, (4.81)

where βij is the angle between the i-k and j-k planes and the finite function F is given in Eq. (4.191)
and is O(1/t2).
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6.2.3 Soft gluon inside measured jet k: Smeas
ij (τka )

The contribution of a gluon emitted into jet 1 (the measured jet) from lines i and j is
given by the integral

Smeas
ij (τka ) = −g2µ2ε Ti ·Tj

∫
ddk

(2π)d
ni · nj

(ni · k)(nj · k)
2πδ(k2)Θ(k0) Θk

RδR . (4.82)

The singularity structure of this integral depends on whether or not k = i or j. Thus, we evaluate
the case k = i or j and the case k 6= i, j separately below.

6.2.3.1 Case 1: k = i or j We consider first Smeas
ij (τ ia). Using the results of Sec. 4.B.2 of the

Appendix, we obtain the result in terms of tij ,

Smeas
ij (τ ia) = Smeas

ji (τ ia)

= −αs
2π

Ti ·Tj

[
1
ε

1
1− a

(
1
τ ia

)1+2ε 1
Γ(1− ε)

(
4πµ2

ω2

)ε( t2ij
t2ij − 1

tan2 R

2

)ε(1−a)

+
1 + a

2
δ(τ ia) Li2

( −1
t2ij − 1

)]
. (4.83)

6.2.3.2 Case 2: k 6= i, j The remaining contributions to the observed jet angularity are Smeas
ij

for k 6= i, j. Using the results from Sec. 4.B.3.3 in the Appendix, this contribution is

Smeas
ij (τka )

∣∣
i,j 6=k = −αs

2π
Ti ·Tj

[(
1
τka

)1+2ε

ln
(
t2ikt

2
jk − 2tiktjk cosβij + 1

(t2ik − 1)(t2jk − 1)

)
+ δ(τka )G(tik, tjk, βij)

]
, (4.84)

where G is O(1/t2) and is given in Eq. (4.194) and, again, βij is the angle between the i-k and j-k
planes.

6.3 Total N-Jet Soft Function in the large-t Limit

In this section, we add together the necessary ingredients calculated above to obtain the
N -jet soft function from Eq. (4.73). The results for the divergent pieces are summarized in Table 4.2
. In Sec. 7 we use Table 4.2 to show that the consistency of factorization is explicitly violated by
terms of order 1/t2, and so in this section we give the full soft function (including the finite terms)
to O(1/t2).

Using color-conservation (
∑

i Ti = 0), we find that the observable-independent part,
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contribution divergent terms

Sincl
ij −1

ε
αs
2πTi ·Tj

(
1
ε − ln ni·nj

2 + ln µ2

4Λ2

)
Siij

1
ε
αs
4πTi ·Tj

(
1
ε − ln

t2ij tan2(R/2)

t2ij−1
+ ln µ2

4Λ2

)
Skij −1

ε
αs
4πTi ·Tj ln

t2ikt
2
jk−2tiktjk cosβij+1

(t2ik−1)(t2jk−1)

Sunmeas
(1)

1
ε
αs
2π

[∑N
i=1 T2

i ln tan2(R/2) +
∑

i 6=j Ti ·Tj ln (ni · nj/2)
]

+O(1/t2)

Smeas
ij (τ ia)

1
ε
αs
4πTi ·Tj

[(
1

1−a
(

1
ε + ln µ2

ω2
i

)
+ ln

t2ij tan2(R/2)

t2ij−1

)
δ(τ ia)− 2

1−a

(
1
τ ia

)
+

]
Smeas
ij (τka ) 1

ε
αs
4πTi ·Tj ln

t2ikt
2
jk−2tiktjk cosβij+1

(t2ik−1)(t2jk−1)
δ(τka )

Smeas
(1) (τ ia) −1

ε
αs
2πT2

i

[(
1

1−a
(

1
ε + ln µ2

ω2
i

)
+ ln tan2(R/2)

)
δ(τ ia)− 2

1−a

(
1
τ ia

)
+

]
+O(1/t2)

Table 4.2: Summary of the divergent parts of the soft function at NLO. The first block contains
the the observable-independent contributions: soft gluons emitted by jets i and j in any direction
with energy Eg < Λ in row 1; soft gluons entering jet k with Eg > Λ (with k = i or j in the second
row and k 6= i, j in the third). In the last row of the first block, we summed over i and j and took
the large-t limit to get the total Sunmeas

(1) . Similarly, in the second block we give the contributions
to the angularities τka (with k = i or j in the first row and k 6= i, j in the second) and summed over
i and j and took the large-t limit to get Smeas

(1) in the third row.

Sunmeas
(1) , defined in Eq. (4.74), is given for large t by

Sunmeas
(1) =

αs
2π

∑
i

T2
i

[
1
ε

ln
(

tan2 R

2

)
+ ln

(
µ2

4Λ2 tan R
2

)
ln
(

tan2 R

2

)
− π2

6

]

+
αs
2π

∑
i 6=j

Ti ·Tj

[
1
ε

ln
ni · nj

2
+ ln

(
µ2

4Λ2

)
ln
(ni · nj

2

)

+ Li2

(
1− 2

ni · nj

)]
+O(1/t2) . (4.85)

In addition to tan(R/2) which, according the the discussion in Sec. 4.4, we take to be O(1), the
finite parts from this contribution are sensitive to the scale µΛ

S , where

µΛ
S ≡ 2Λ tan1/2 R

2
∼ 2Λ . (4.86)

The remaining part of the soft function that is dependent on angularities as our choice of
jet observable is the sum over Smeas

(1) (τ ia) (defined in Eq. (4.75)) for each jet i, where Smeas
(1) (τ ia) is
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given by

Smeas
(1) (τ ia) = −αs

2π
T2
i

1
1− a

{[
1
ε2

+
1
ε

ln
(
µ2

ω2
i

tan2(1−a) R

2

)
− π2

12

+
1
2

ln 2

(
µ2

ω2
tan2(1−a) R

2

)]
δ(τ ia) (4.87)

− 2

[(
1
ε

+ ln
(
µ2 tan2(1−a) R

2

(ωτ ia)2

))
Θ(τ ia)
τ ia

]
+

}
+O(1/t2) .

The finite part of this contribution is sensitive to the scale µiS , where

µiS ≡
ωiτ

i
a

tan1−a R
2

, (4.88)

which, in principle, differs for each jet i and from the scale µΛ in the unmeasured part of the soft
function Eq. (4.85). After discussing resummation of large logarithms through RG evolution, we
will describe in Sec. 7.4 a framework to “refactorize” the soft function into pieces depending on
multiple separated soft scales. This framework will enable us to resum logarithms of all of these
potentially disparate scales.

7 Resummation and Consistency Relations at NLL

The factorized cross section Eq. (4.39) is written in terms of hard, jet, and soft functions
evaluated at a factorization scale µ. Since the physical cross section is independent of µ, the
anomalous dimensions of these functions are closely related. We derive and verify this relation in
Sec. 7.3. In Sec. 7.1 and Sec. 7.2, we work out the form of the renormalization-group equations
(RGEs) satisfied by the hard, jet, and soft functions, and obtain their solutions so that we can
express each function at the scale µ in terms of its value at a scale µ0 where logarithms in it are
minimized. In Sec. 7.4, we present a framework to refactorize the soft function and give the total
resummed distribution in Sec. 7.5.

7.1 General Form of Renormalization Group Equations and Solutions

We will build solutions for the hard, jet, and soft functions from two forms of RGEs.
The first form is for a function which does not depend on the observable τa and is multiplicatively
renormalized,

F bare = ZF (µ)F (µ) , (4.89)

and satisfies the RGE,

µ
d

dµ
F (µ) = γF (µ)F (µ) , (4.90)

where the anomalous dimension γF is found from the Z-factor by the relation

γF (µ) = − 1
ZF (µ)

µ
d

dµ
ZF (µ) , (4.91)
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and takes the general form,

γF (µ) = ΓF [α]ln
µ2

ω2
+ γF [α] . (4.92)

We call ΓF [α] the “cusp part” of the anomalous dimension and γF [α] the “non-cusp part”. They
have the perturbative expansions

ΓF [αs] =
(αs

4π

)
Γ0
F +

(αs
4π

)2
Γ1
F + · · · (4.93)

and

γF [αs] =
(αs

4π

)
γ0
F +

(αs
4π

)2
γ1
F + · · · . (4.94)

The RGE Eq. (4.90) has the solution

F (µ) = UF (µ, µ0)F (µ0) , (4.95)

where the evolution kernel UF is given by

UF (µ, µ0) = eKF (µ,µ0)
(µ0

ω

)ωF (µ,µ0)
, (4.96)

where KF and ωF will be defined below in Eq. (4.103).
The second form of RGE is for a function dependent on the jet shape τa is renormalized

through a convolution,

F bare(τa) =
∫
dτ ′aZF (τa − τ ′a;µ)F (τ ′a, µ) , (4.97)

and satisfying the RGE

µ
d

dµ
F (τa;µ) =

∫
dτ ′a γF (τa − τ ′a;µ)F (τ ′a;µ) , (4.98)

with an anomalous dimension calculated from

γF (τa;µ) = −
∫
dτ ′ Z−1

F (τa − τ ′a;µ)µ
d

dµ
ZF (τ ′a;µ) , (4.99)

and taking the general form

γF (τa;µ) = −ΓF [αs]
(

2
jF

[
Θ(τa)
τa

]
+

− ln
µ2

ω2
δ(τa)

)
+ γF [αs]δ(τa) . (4.100)

The solution of an RGE of the form Eq. (4.98) has the solution [147, 39, 10, 166, 125]

F (τa;µ) =
∫
dτ ′ UF (τa − τ ′a;µ, µ0)F (τ ′a;µ0) , (4.101)

where the evolution kernel UF is given to all orders in αs by the expression

UF (τa;µ, µ0) =
eKF+γEωF

Γ(−ωF )

(µ0

ω

)jFωF [ Θ(τa)
(τa)1+ωF

]
+

, (4.102)
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where γE is the Euler constant.
In Eqs. (4.96) and (4.102), the exponents ωF and KF are given in terms of the cusp and

non-cusp parts of the anomalous dimensions by the expressions

ωF (µ, µ0) ≡ 2
jF

∫ αs(µ)

αs(µ0)

dα

β[α]
ΓF [α] , (4.103a)

KF (µ, µ0) ≡
∫ αs(µ)

αs(µ0)

dα

β[α]
γF [α] + 2

∫ αs(µ)

αs(µ0)

dα

β[α]
ΓF [α]

∫ α

αs(µ0)

dα′

β[α′]
. (4.103b)

In the case of Eq. (4.96) or if ΓF [α] happens to be zero, we define jF to be 1. To achieve NLL
accuracy in the evolution kernels UF , we need the cusp part of the anomalous dimension to two
loops and the non-cusp part to one loop, in which case the parameters ωF ,KF in Eq. (4.103) are
given explicitly by

ωF (µ, µ0) = − Γ0
F

jF β0

[
ln r +

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
, (4.104a)

KF (µ,µ0) = − γ
0
F

2β0
ln r − 2πΓ0

F

(β0)2

[
r − 1− rln r

αs(µ)

+

(
Γ1

cusp

Γ0
cusp

− β1

β0

)
1− r + ln r

4π
+

β1

8πβ0
ln 2r

]
. (4.104b)

Here r = αs(µ)
αs(µ0) , and β0, β1 are the one-loop and two-loop coefficients of the beta function,

β[αs] = µ
dαs
dµ

= −2αs

[
β0

(αs
4π

)
+ β1

(αs
4π

)2
+ · · ·

]
, (4.105)

where (with TR = 1/2)

β0 =
11CA

3
− 2Nf

3
and β1 =

34C2
A

3
− 10CANf

3
− 2CFNf . (4.106)

The two-loop running coupling αs(µ) at any scale is given by

1
αs(µ)

=
1

αs(MZ)
+
β0

2π
ln
(

µ

MZ

)
+

β1

4πβ0
ln
[
1 +

β0

2π
αs(MZ)ln

(
µ

MZ

)]
. (4.107)

In Eq. (4.104), we have used the fact that, for the hard, jet, and soft functions for which we will
solve, the cusp part of the anomalous dimension ΓF [αs] is proportional to the cusp anomalous
dimension Γcusp[αs], where

Γcusp[αs] =
(αs

4π

)
Γ0

cusp +
(αs

4π

)2
Γ1

cusp + · · · . (4.108)

The ratio of the one-loop and two-loop coefficients of Γcusp is [148]

Γ1
cusp

Γ0
cusp

=
(

67
9
− π2

3

)
CA − 10Nf

9
. (4.109)

Γ1
cusp and β1 are needed in the expressions of ωF and KF for complete NLL resummation since we

formally take α2
sln τa ∼ O(αs).
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7.2 RG Evolution of Hard, Jet, and Soft Functions

7.2.1 Hard Function

The hard function is related to the matching coefficient CN of the N -jet operator in
Eq. (4.38). If there are multiple operators with different color structures, CN is a vector of coeffi-
cients. The hard function is then a matrix Hab = C†bCa . The hard function is contracted in the
cross section Eq. (4.39) with a matrix of soft functions.

The anomalous dimensions of the matching coefficients Ca have been calculated in the
literature (for example, Table III of Ref. [87]). For an operator with N legs with color charges T2

i ,
the anomalous dimension is

γCN (αs) = −
N∑
i=i

[
T2
iΓ(αs)ln

µ

ωi
+

1
2
γi(αs)

]
− 1

2
Γ(αs)

∑
i 6=j

Ti ·Tj ln
(−ni ·nj − i0+

2

)
, (4.110)

where Ti is a matrix of color charges in the space of operators, and γi is given for quarks and gluons
by

γq =
3αsCF

2π
, γg =

αs
π

11CA − 2NF

6
. (4.111)

The coefficient Γ(αs) is the cusp anomalous dimension and is given to one-loop order by Γ(αs) =
αs/π. The anomalous dimension of the hard function itself is given by γH = γ†CN + γCN , and
takes the form of Eq. (4.92), with cusp and non-cusp parts ΓH [αs] and γH [αs] given to one loop in
Table 4.3 , with the result

γH(αs) = −Γ(αs)T2ln
µ2

ω̄2
H

−
N∑
i=1

γi(αs)− Γ(αs)
∑
i 6=j

Ti ·Tj ln
ni ·nj

2
, (4.112)

where T2 =
∑N

i=1 T2
i is the sum of all the Casimirs, and the effective hard scale ω̄H appearing as

the scale ω in the logarithm in Eq. (4.92) is given by the color-weighted average of the jet energies,

ω̄H =
N∏
i=1

ω
T2
i /T

2

i (4.113)

7.2.2 Jet Functions

There are two forms of jet functions, those for measured and those for unmeasured jets.
Unmeasured jet functions Jq,gω (µ) satisfy multiplicative RGEs, with anomalous dimensions given
by the infinite parts of Eqs. (4.56) and (4.65),

γJi = Γ(αs)T2
i ln

µ2

ω2
i tan2 R

2

+ γi , (4.114)

which falls into the general form Eq. (4.92), with cusp and non-cusp parts of the anomalous di-
mension given in Table 4.3, and the scale ω in Eq. (4.92) being ωi tan R

2 . The part γi is given by
Eq. (4.111).
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ΓF [αs] γF [αs] jF ω

γH −Γ
∑

i T
2
i −∑i γi − Γ

∑
i 6=j Ti ·Tj ln

ni·nj
2 1 ω̄H

γJi(τ
i
a) ΓT2

i
2−a
1−a γi 2− a ωi

γmeas
S (τ ia) −ΓT2

i
1

1−a 0 1 ωi tan−1+a R
2

γJi ΓT2
i γi 1 ωi tan R

2

γunmeas
S 0 Γ

∑
i T

2
i ln tan2 R

2 + Γ
∑

i 6=j Ti ·Tj ln
ni·nj

2 1 —

O(1/t2) 0 Γ
∑

i 6=j Ti ·Tj

[
δi/∈meas 2ln

t2ij
t2ij−1

1 —

+Γ
∑

k 6=i,j
k/∈meas

ln
(
t2ikt

2
jk−2tiktjk cosβij+1

(t2ik−1)(t2jk−1)

)]
Table 4.3: Anomalous dimensions for the jet and soft functions. We give the cusp and non-cusp
parts of the anomalous dimensions, ΓF [αs] and γF [αs]. Γ is the cusp anomalous dimension itself,
equal to αs/π at one loop. γi is given for quark and gluon jets in Eq. (4.111). The third column
gives the value of jF appearing in Eq. (4.100) or Eq. (4.103). The last column gives the values of
ω appearing in the logarithm lnµ2/ω2 multiplying the cusp part of the anomalous dimension in
Eqs. (4.92) and (4.100). The scale ω̄H is the color-weighted averages of all jet energies defined in
Eq. (4.113). All rows except for the last are given in the large-t limit and in the last row we give
the remaining terms that are present for arbitrary t. This last row explictly violates consistency at
O(1/t2). The first group of rows are needed for measured jets and the second group for unmeasured
jets. In the large-t limit, for any number of measured and unmeasured jets, the consistency relation
Eq. (4.121) is satisfied.

Measured jet functions satisfy RGEs of the form Eq. (4.98), with anomalous dimensions
given by the infinite parts of Eqs. (4.50) and (4.64),

γJi(τ
i
a) = T2

i

[
Γ(αs)

2− a
1− a ln

µ2

ω2
i

+ γi

]
δ(τ ia)− 2Γ(αs)T2

i

1
1− a

[
Θ(τ ia)
τ ia

]
+

, (4.115)

which takes the form Eq. (4.100) with cusp and non-cusp parts of the anomalous dimension split
up as in Table 4.3, and the scale ω in Eq. (4.100) being ωi.

7.2.3 Soft Function

The total N -jet soft function is given by Eq. (4.85) for unmeasured jets added to the sum
over measured jets of Eq. (4.87). This soft function depends on the M jet shapes τ1

a , . . . , τ
M
a , and

satisfies the RGE

µ
d

dµ
S(τ1, . . . , τM ;µ) =

∫
dτ ′1 · · · dτ ′M γS(τ1 − τ ′1, . . . , τM − τ ′M ;µ)S(τ ′1, . . . , τ

′
M ;µ) . (4.116)
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From the infinite parts of the soft function given in Table 4.2, we find the anomalous dimension
γS(τ1, . . . , τM ;µ) decomposed into a sum of terms,

γS(τ1, . . . , τM ;µ) = γunmeas
S (µ)δ(τ1) · · · δ(τM ) +

M∑
k=1

γmeas
S (τk;µ)

∏
j 6=k

δ(τj) , (4.117)

where the pieces γunmeas
S (µ) and γmeas

S (τk;µ) are given in terms of their cusp and non-cusp parts in
Table 4.3, with the result

γunmeas
S (µ) = Γ(αs)T2

i ln tan2 R

2
+ Γ(αs)

∑
i 6=j

Ti ·Tj ln
ni · nj

2
, (4.118)

which takes the form of Eq. (4.92) with no cusp part, and

γmeas
S (τk;µ) = −Γ(αs)T2

i

1
1− a

{
ln

(
µ2 tan2(1−a) R

2

ω2
k

)
δ(τk)− 2

[
Θ(τk)
τk

]
+

}
, (4.119)

which takes the form of Eq. (4.100) with no non-cusp part, and the scale ω in Eq. (4.100) being
ωk/ tan1−a R

2 .
The solution of the RGE Eq. (4.116) is given by

S(τ1, . . . , τM ;µ) =
∫
dτ ′1 · · · dτ ′M S(τ ′1, . . . , τ

′
M ;µ0)Uunmeas

S (µ, µ0)
M∏
k=1

UkS(τk − τ ′k;µ, µ0) , (4.120)

where Uunmeas
S is given by the form of Eq. (4.96) and UkS(τka ) by the form of Eq. (4.102).
The solution Eq. (4.120) is appropriate if all the scales appearing in the soft function

are similar, and thus all large logarithms in the finite part can be minimized at a single scale µ0.
As we noted in Sec. 6.3, however, the potentially disparate scales ωiτ ia, set by the jet shapes of
the measured jets, and Λ, set by the cutoff on particles outside jets, appear together in the soft
function, and logarithms of ratios of these scales may be large. In this case, the soft function
should be “refactorized” into pieces depending only on one of these scales at a time. We describe
a framework for doing so below in Sec. 7.4.

But first, we verify the consistency of the anomalous dimensions for the hard, jet, and soft
functions to the order we have calculated them.

7.3 Consistency Relation among Anomalous Dimensions

We summarize the anomalous dimensions of the hard, jet, and soft functions in Table 4.3.
We separate contributions to the jet and soft anomalous dimensions that arise from measured jets,
from unmeasured jets, and those that are universally present. In all rows except the last row, we
take the large-t limit and give the additional terms that arise (from the soft function) for arbitrary
t.

Consistency of the effective theory requires that the anomalous dimensions satisfy

0 =
(
γH(µ) + γunmeas

S (µ) +
∑

i/∈meas

γJi(µ)
)
δ(τ ia) +

∑
i∈meas

(
γJi(τ

i
a;µ)) + γmeas

S (τ ia;µ)
)
. (4.121)
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From the results tabulated in Table 4.3, up to corrections of O(1/t2), we see that, remarkably, this
relation is indeed satisfied! This is highly nontrivial, as jet and soft anomalous dimensions depend on
the jet radius R and the jet shape τa, while the hard function does not; in addition, the hard and soft
functions know the directions ni of all N jets, while the jet functions do not. These dependencies
cancel precisely between the R-dependent pieces of unmeasured jet contributions to the jet and
soft functions, between τa-dependent pieces of the measured jet contributions, and between ni ·nj-
dependent pieces of the hard and soft functions. The sum of all jet and soft anomalous dimensions
then precisely matches the hard anomalous dimensions, satisfying Eq. (4.121).

Making the satisfaction of consistency even more nontrivial, individual contributions to
the infinite part of the soft function, and therefore its anomalous dimension, given by Table 4.2
depend on the energy cut parameter Λ as well. However, these terms cancel in the sum over the
contributions Sincl

ij and Siij in the first two rows of Table 4.2. The double poles of the form 1
ε ln Λ

arise from regions of phase space where a soft gluon can become both collinear to a jet direction
(giving a 1/ε) and soft (giving a ln Λ). These regions exist in the integral over all directions giving
Sincl
ij but are subtracted back out in the contributions Siij . In the surviving “Swiss cheese” region

the regions giving these double poles are cut out.
The O(1/t2) terms that violate consistency arise whenever there are unmeasured jets.

While this limit is not required for the contribution of measured jets to the anomalous dimension
to satisfy the consistency condition Eq. (4.121), the finite parts of measured jet contributions to
the soft function contain large logarithms of ω/Λ that can not be minimized with a scale choice
but are suppressed by O(1/t2) (cf. Eq. (4.195) of Appendix 4.B). This is the manifestation of the
fact that jets need to be well-separated, as explained in Sec. 4. For the remainder of the chapter,
we work strictly in the large-t limit.

7.4 Refactorization of the Soft Function

Our results for the soft function in Sec. 6.3 make clear that in general there are multiple
scales that appear in the soft function: the µ1

S , . . . , µ
M
S associated with the M measured jets and the

scale µΛ
S associated with the out-of-jet cutoff Λ. When these scales are all comparable, we can RG

evolve the soft function from the single scale µS . However, when any of them differ considerably
from the others, we need to “refactorize” the soft function into multiple contributions, each of
which is sensitive to a single energy scale. For illustration, take the scales µiS to be such that
µ1
S � µ2

S � · · · � µMS as in Fig. 4.6. We also take µl−1
S � µΛ

S � µlS for our discussion, but the
result is independent of whether µΛ

S lies in the range µ1
S < µΛ

S < µMS or not.

Figure 4.6: Soft scales.
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We can express the soft function appearing in Eq. (4.39) as

S(τ1
a , τ

2
a , . . . , τ

M
a ;µ) = 〈0|O†SΘ(Λ− Λ̂)

M∏
i=1

δ(τ ia − τ̂ ia)OS |0〉 , (4.122)

where the operator τ ia returns the contribution to τa of final-state soft particles entering jet i, and
Λ̂ returns the energy of final-state soft particles outside of all N jets. We have kept the dependence
on the scales µiS and on Λ implicit on the left-hand side.

There are N Wilson lines appearing in the operator OS ,

OS = Y1 . . . YMYM+1 . . . YN , (4.123)

corresponding to the M measured jets and N−M unmeasured jets. The scales associated with soft
gluons entering the M measured jets whose shapes are measured to be τ1, . . . , τM are µ1

S , . . . , µ
M
S ,

given by Eq. (4.88). The scale associated with soft gluons outside of measured jets is µΛ
S given

by Eq. (4.86). We have illustrated the ladder of these scales in Fig. 4.6. Each of these soft scales
can be associated with different soft fields Ais whose momenta scale as λ2

iωi where λi is associated
with the typical transverse momentum λiωi of the collinear modes for the ith jet. For measured
jets, λi is determined by τ ia, while for unmeasured jets λi ∼ tan(R/2). For soft gluons outside jets,
however, the soft momentum is set by the cutoff scale Λ, which is why µΛ

S appears in the ladder of
Fig. 4.6.

At a scale µ larger than all µiS and µΛ
S , the soft function is calculated as we presented

in Sec. 6. In particular, we take the quantities τ ia and Λ to be nonzero and finite. At a scale µ
below µ1

S , we integrate out soft gluons of virtuality µ1
S and match onto a theory with soft gluons of

virtuality µ2
S . The scale µ1

S associated with τ1
a is taken to infinity, and phase space integrals for soft

gluons entering the measured jet 1 become zero (see, e.g., Eq. (4.175)). Therefore, the matching
coefficient from the theory above µ1

S to the theory below is just the measured jet 1 contribution
Smeas(τ1

a ) to the soft function given by Eq. (4.87). The same occurs when matching from the theory
above each scale µiS for soft gluons entering measured jet i to the scale below µiS , giving a matching
coefficient Smeas(τ ia).

When going through the scale µΛ
S , in the theory above this scale, the calculation of unmea-

sured contributions to the soft function gives the result Eq. (4.85), by treating Λ as a nonzero, finite
cutoff. In the theory below µΛ

S , we take Λ to infinity, making all phase space integrals originally
cutoff by Λ to be scaleless and thus zero. So the matching coefficient between the theory above
and below µΛ

S is just Sunmeas.
After performing the above matchings all the way down to the lowest soft scale Fig. 4.6,

we find that the original soft function S(τ1
a , . . . , τ

M
a ;µ) can be expressed to all orders as

S(τ1
a , . . . , τ

M
a ;µ) = Sunmeas(µ)

M∏
i=1

Smeas(τ ia;µ) 〈0| O†SOS |0〉 , (4.124)

where to next-to-leading order Smeas and Sunmeas are given by

Sunmeas(µ) = 1 + Sunmeas
(1) (µ) (4.125)

Smeas(τ ia;µ) = δ(τ ia) + Smeas
(1) (τ ia;µ) , (4.126)
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where Sunmeas
(1) is given by Eq. (4.85) and Smeas

(1) is given by Eq. (4.87). Note that no operators
restricting the jet shape or the phase space appear in the final matrix element of soft fields living at
the lowest scale on the ladder in Fig. 4.6. If all the scales on the ladder are at a perturbative scale, we
can now just use 〈O†SOS〉 = 1 to eliminate the final matrix element. If any scale is nonperturbative,
we should have stopped the matching procedure before that scale, and defined the surviving soft
matrix element still containing additional delta function operators as a nonperturbative shape
function.

Since the factors Sunmeas(µ) and Smeas(τ ia, µ) are now matching coefficients between two
theories above and below the respective scales µΛ

S and µiS , we can run each of the individual factors
separately from their natural scale, instead of from a single soft scale µ0 as in Eq. (4.120). The
result for the RG-evolved soft function is then Eq. (4.124) where each factor at NLO is given by
the solution of its RGE,

Sunmeas(µ) = Uunmeas
S (µ, µΛ)Sunmeas(µΛ) (4.127a)

Smeas(τ ia, µ) =
∫
dτ ′U iS(τ ia − τ ′;µ, µiS)Smeas(τ ′, µiS) . (4.127b)

These solutions allow us now to resum logarithms of all of the scales appearing in the ladder in
Fig. 4.6 when these scales are widely disparate. However, the result we obtained in Eq. (4.116)
when we took all scales to be of the same order and had a single soft scale has the form Eq. (4.127)
at NLL accuracy. We will use equation Eq. (4.127) in all cases to interpolate between these two
extremes.

7.5 Total Resummed Distribution

Collecting together the above results for the running of hard, jet, and soft functions in
the factorized cross section Eq. (4.39), we obtain the RG-improved N -jet cross section differential
in M jet shapes,

1
σ(0)

dσN
dτ1
a1
· · · dτMaM

= H(µH)
(
µH
ω̄H

)ωH(µ,µH) N∏
k=M+1

Jkωk(µkJ)

(
µkJ

ωk tan R
2

)ωkJ (µ,µkJ )

Sunmeas(µΛ)

×
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J) + f iS(τ ia, µ

i
S)
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2
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(
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)(2−a)ωiJ (µ,µiJ ) 1
Γ[−ωiJ(µ, µiJ)−ωiS(µ, µiS)]
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}
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J , µ1,...,M

S , µΛ
S) + γEΩ(µ;µ1,...,M

J , µ1,...,M
S )

]
,

(4.128)

where ω̄H is the color-weighted average of jet energies,

ω̄H =
N∏
i=1

ω
T2
i /T

2

i , (4.129)
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the evolution parameters ωF (µ, µF ) and KF (µ, µF ) are defined in Eq. (4.103), and we have defined
the collective parameters,

K(µ;µH , µ
1,...,N
J , µ1,...,M

S , µΛ
S) = KH(µ, µH) +

N∑
i=1

Ki
J(µ, µiJ) +

M∑
j=1

Kj
S(µ, µjS)

+Kunmeas
S (µ, µΛ

S)

(4.130a)

Ω(µ;µ1,...,M
J , µ1,...,M

S ) =
M∑
i=1

Ωi(µ;µiJ , µ
i
S) ≡

M∑
i=1

[ωiJ(µ, µiJ) + ωiS(µ, µiS)] . (4.130b)

The functions f iJ,S are generated by the finite pieces of the measured jet and soft functions,

f iJ(τ ia;µ
i
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i
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+ (2− a) ln 2 tan
R

2
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αs(µiJ)

2π
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S) = −αs(µ

i
S)T2
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π

1
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{
ln 2µ

i
S tan1−a R

2
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+ 2H(−1− Ωi)ln

µiS tan1−a R
2

ωiτ ia
+ dS(τ ia)

}
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(4.131b)

where ci = 3/2 for quark jets and β0/2CA for gluon jets. H(−1 − Ωi) is the harmonic number
function, with Ωi given by Eq. (4.130b). The functions dJ,S are additional contributions from
the finite parts of jet and soft functions that do not contain any logarithms. They are given in
Eq. (4.199) in the Appendix. Since we will use these finite parts only to tell us what scales to
choose in order to minimize the large logarithms, and not actually include them in the final result
at NLL accuracy, we do not need the exact form of the distributions dJ,S(τa). Similarly, the terms
containing large logarithms in the unmeasured jet functions and unmeasured contribution to the
soft function are

J iω(µJ) = 1 +
[
Γ(αs(µJ))T2

i ln
2 µJ

ω tan R
2

+ γk[αs(µJ)]ln
µJ

ω tan R
2

+ diJ

]
(4.132a)

Sunmeas(µΛ) = 1 + Γ(αs(µΛ))
∑
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T2
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[
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2Λ tan1/2 R
2

)
ln tan2 R

2
− π2

8
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+ Γ(αs(µΛ))

∑
i 6=j

Ti ·Tj

[
ln

µ

2Λ
ln
ni ·nj

2
+ Li2

(
1− 2

ni ·nj

)]
, (4.132b)

where diJ is the part of the unmeasured jet function containing no large logarithms (given in
Eqs. (4.151) and (4.158) in the Appendix).
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The finite parts of the measured and unmeasured jet and soft functions given in Eqs. (4.131)
and (4.132) show that to minimize large logarithms in the NLO finite parts in the resummed dis-
tribution Eq. (4.128), we should choose initial scales for the running to be

µH = ω̄H (4.133a)

µiJ = ωi(τ ia)
1

2−a , µkJ = ωk tan
R

2
(4.133b)

µiS =
ωiτ

i
a

tan1−a R
2

, µΛ = 2Λ tan1/2 R

2
. (4.133c)

These choices eliminate all large logarithms in the NLO hard, jet, and soft functions. They still
leave logs of tan R

2 and ni · nj in the unmeasured part of the soft function, and logs of tan R
2 in the

measured jet function, but we already take R numerically of O(1) 15 to minimize power corrections
from our implementation of the jet algorithm, and ni · nj ≈ 1 since the jet separation parameter
tij is large compared to 1. All logs of R, Λ, and τ ia are eliminated in the unmeasured jet function
and measured part of the soft function.

8 Plots of Distributions and Comparisons to Monte Carlo

Having resummed the jet shape distributions in τa to NLL accuracy, in this section we
plot the distributions for various values of a and R, compare to Monte Carlo simulated events,
and perform scale variation on the resummed distribution. We use the process e+e− → 3 jets
to study our predictions of jet shapes, where the jets arise from partons in the “Mercedes-Benz”
configuration, with each parton having equal energy. In these configurations, the partons lie in a
plane and are equally separated with a pairwise angle of 2π/3. This allows us to study event shape
distributions of well-separated jets where t is reasonably large. We choose three values of R to
study, R = 1.0, 0.7, and 0.4. With these values of R, the 1/t2 suppression factor for corrections to
the large-t limit are 0.10, 0.044, and 0.014 respectively. We will measure the angularity of only one
of the three jets; the other two jets will be unmeasured.

In general, the Ti · Tj color correlations in the soft and hard functions lead to operator
mixing in color space under RG evolution. This implies that the RG kernels US and UH are matrices
in color space and must be studied on a process-by-process basis (see, e.g., [87, 144, 142, 105, 174,
175]). For the case of N = 2, 3 jets there is only one color-singlet operator and hence no mixing.
This can be seen, for example, by noting that all color correlations reduce to the Casimir invariants
(CF and CA) in this case (cf. Appendix 4.D). We have restricted the example process we use in
this work to N = 3 jets, avoiding the additional complication of color-correlations that comes with
a larger number of jets.

The NLL resummed distribution for one quark or gluon jet shape in a three-jet final state,
15We still consider tan(R/2) to be of order λk in the collinear sectors describing unmeasured jets, as implied by

Eq. (4.133). This means λk is effectively much larger than the parameter λi in a measured jet sector.
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choosing jet 1 to be the measured jet, is
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(4.134)

where the various evolution parameters ωiJ,S , Ω, K are all defined in Eqs. (4.103) and (4.130). The
best scale choices Eq. (4.133) for this case are
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1 ω
T2

2
2 ω

T2
3

3

) 1
2CF+CA (4.135a)

µ1
J = ω1(τ1
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2
(4.135b)
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ω1τ
1
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tan1−a R
2

, µΛ = 2Λ tan1/2 R

2
. (4.135c)

In Eq. (4.134) we have used tree-level initial conditions for the hard, jet, and soft functions at these
scales. Eq. (4.134) evolves these functions to the arbitrary scale µ at NLL accuracy.

With these choices, we plot Eq. (4.134) in Fig. 4.7 for several values of a and R for a
quark or gluon jet shape in a three-jet final state in e+e− annihilation at center-of-mass energy
Q = 500 GeV. The jets are chosen to be in a Mercedes-Benz configuration, where all jets have equal
energies of 150 GeV. We choose the jet energy cutoff Λ to be 15 GeV. We choose the factorization
scale to be µ = µH .

We compare the results of a jet algorithm implemented on Monte Carlo simulated events
with our NLL resummed predictions for a variety of a and R values in Fig. 4.8. Because the
resummed NLL distribution we choose to study applies to an exclusive process, three-jet events in
the Mercedes-Benz configuration, we implement cuts on the simulated events to obtain a sample
that matches onto this configuration. We use MadGraph/MadEvent v.4.4.21 [6] to generate parton-
level e+e− → qq̄g events at a center-of-mass energy Q = 500 GeV, with cuts imposed to obtain
partons in the Mercedes-Benz configuration. We shower and hadronize the events with Pythia
v.6.414 [177] using pT -ordered parton showers. The process of hadronization will induce a shift in
the angularity distribution, which we do not model in our resummed distribution. Therefore, we
produce two samples: one sample with only QCD final-state showering, no initial-state radiation,
and no hadronization, and another sample with complete showering, initial-state radiation, and
hadronization. The anti-kT jet algorithm is run on the final state particles from Pythia, and we
use FastJet [64] to implement the jet algorithm. The anti-kT algorithm is particularly well suited
for this comparison, as very few particles at an angle θ > R to the jet axis are included in the jet.
With anti-kT, the phase space cut on an individual particle matches well with the phase space cuts
in the next-to-leading order calculation.

To select a sample of events to compare to our NLL resummed distributions, we make cuts
on the final state jets, requiring each of the three hard, well-separated partons from MadGraph to
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Figure 4.7: Quark and gluon jet shapes for several values of a and R. The NLL resummed distri-
bution in Eq. (4.134) is plotted for a = −1

2 ,−1
4 , 0,

1
4 ,

1
2 for quark and gluon jets with R = 1, 0.7, 0.4.

The plots are for jets produced in e+e− annihilation at center-of-mass energy Q = 500 GeV, with
three jets produced in a Mercedes-Benz configuration with equal energies EJ = 150 GeV, and
minimum threshold Λ = 15 GeV to produce a jet.
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Figure 4.8: Quark vs. gluon jet shapes with comparison to Monte Carlo. Solid, straight curves
represent the NLL resummed jet shape distribution in Eq. (4.134), and jagged curves are his-
tograms from the Monte Carlo, normalized as described in the text. The solid histogram has no
hadronization, while the dashed histogram includes the effects of hadronization. The distributions
are plotted for a = −1

2 , 0,
1
2 with quark (blue) and gluon (red) jets compared on the same plot, for

jets of size R = 1.0, 0.7, 0.4. Gluon jet shape distributions peak at larger values of τa than quark
jets, indicative of their broader shape. The plots are for jets produced in e+e− annihilation at
center-of-mass energy Q = 500 GeV, with three jets produced in a Mercedes-Benz configuration
with equal energies EJ = 150 GeV, angular separation ψ = 2π/3 between all pairs of jets, and
minimum threshold Λ = 15 GeV to produce a jet.

be associated with a jet. This involves a cut on the jet direction and momentum:

pparton · pjet

|pparton| |pjet| > 0.9 and
||pparton| − |pjet||
|pparton| < 0.15 . (4.136)

We analyze events passing these cuts, and tag each associated jet as coming from a quark or a
gluon based on which parton it matches onto. The angularity value for each jet is computed from
the constituent particles of the jet, using the matching parton direction as the jet axis. The jet
direction only differs from the parton direction by a power correction (see Sec. 4.2). In Fig. 4.8, we
isolate some of the quark and gluon jet shapes in Fig. 4.7 and compare to Monte Carlo events.

The relative normalization between Monte Carlo events and the NLL resummed angularity
distribution is important. Both our calculation and the Monte Carlo simulation are most accurate
in the region that includes the peak of the distribution and the larger-τ side of the peak, but
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Figure 4.9: Location of peak of jet shape distribution as a function of a for quark and gluon jets.
We plot the value of τa at the peak of the jet shape distribution for a between -1.0 and 0.8 for
quark vs. gluon jets, using R = 1, 0.7, 0.4.

both are inaccurate as τ → 0 and in the tail region. Therefore, each will differ in the relative
normalization between the peak region and the tail region. An accurate prediction of the tail
region requires matching onto a calculation at fixed-order in αs in full QCD as in [73, 41, 134]. In
Fig. 4.8, we choose to normalize the area of the Monte Carlo distribution to the total area of the
NLL resummed theory distribution. We find the area under the theory curves for gluon jets to be
1 within small numerical errors, and for quark jets, 0.5 for R = 0.4, 0.65 for R = 0.7, and 0.8 for
R = 1. This suppression in the normalization is due to the fact that quark jet shape distributions
are peaked closer to τa = 0, where αs evaluated at the measured jet and soft scales µ1

J,S(τa) grows
large, causing the evolution kernels to suppress the distribution. Gluon jet shapes, being peaked at
larger τa, are not as prone to this suppression. This should be cured by convolving the perturbative
distribution with a nonperturbative shape function that moves the peak of the distribution to larger
τa, as also suggested by the Monte Carlo predictions with hadronization turned on.

Nevertheless, the shapes of the theory and Monte Carlo distributions are very similar in
the peak region. Across the values of a and R that we sample, the dependence of the shape and the
location of the peak value agrees very well between the theory distributions and the Monte Carlo
distributions without hadronization for both quark and gluon jets.

In Fig. 4.9 we plot the location of the peak of the jet shape distributions as a function of
a for three values of R, displaying the different variation of the peak of quark and gluon jet shape
distributions. The peak value increases with increasing R and a, as wide angle radiation is included
(increasing R) and less suppressed (increasing a). Although the difference in the peak value between
the quark and gluon jet angularity distributions is large, the width of each distribution creates
substantial overlap in angularity values between quark and gluon jets. Distinguishing between
quark and gluon jets using jet angularities is a complex task which we will explore in [115]; for now,
we note only that the NLL resummed distributions indicate that discrimination between quark and
gluon jets using jet angularities is possible.

As a rough estimate of the theoretical uncertainty in our NLL resummed predictions for
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Figure 4.10: Scale variation of quark and gluon jet shapes. For a = 0 and R = 0.7, we display
the variation of the NLL resummed jet shape distributions with the hard scale µH , the jet cutoff
scale µΛ, the unmeasured jet scales µ2,3

J , the measured jet scale µ1
J(τa), and the measured soft scale

µS(τa). In each case we vary the scale between 1/2 and 2 times the natural choices in Eq. (4.133),
except for the measured soft scale, which we varied between 1 and 2 times the choice in Eq. (4.133).
We keep the factorization scale fixed at the default hard scale given by Eq. (4.135), µ = ωi.
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these jet shape distributions, we show in Fig. 4.10 the variation of the a = 0 quark and gluon τa
jet shape distributions for jets of radius R = 0.7 with changes in the various scales that appear in
the resummed cross section Eq. (4.134). These are the initial scales at which the hard, jet, and
soft functions are evaluated to minimize logarithms in the NLO fixed-order part, from which the
evolution kernels run them to the common factorization scale µ. In the top row of Fig. 4.10, we
vary the factorization scale µ between ω̄H/2 and 2ω̄H . In the next four rows, we vary the hard scale
µH , the soft jet energy cutoff scale µΛ, the unmeasured jet scales µ2,3

J , and the measured jet scale
µ1
J(τ1

a ) between half and twice the natural values given in Eq. (4.135). In the last row, we vary the
measured soft scale µ1

S(τ1
a ) between one and two times the value in Eq. (4.135). This is because

too low a value of µ1
S(τ1

a ) as τa → 0 brings it into the nonperturbative region where αs(µ1
S) blows

up, so that the perturbative estimate of uncertainty is not very meaningful. We note that, while
the uncertainty in the vertical scale of the distributions is considerable in some cases, the location
of the peak and the shape as a function of τa along the horizontal axis is remarkably stable.

9 Conclusions

In this work, we have factorized an N -jet exclusive cross section differential in M ≤ N jet
observables and resummed logarithms of the jet observable τa to NLL accuracy. We demonstrated
that the anomalous dimensions of the hard, jet, and soft functions in the factorization theorem
satisfy the nontrivial consistency condition Eq. (4.121) to NLO in αs, for any number of quark and
gluon jets, any number of jets whose shapes are measured, and any size R of the jets, as long as the
jets are well-separated, meaning t � 1. This condition ensures the validity of an effective theory
with N collinear directions that are assumed to be distinct. We identified and estimated important
power corrections to the factorized form of the cross section. We also illustrated that zero-bin
subtractions give nonzero contributions to the anomalous dimensions crucial for consistency.

Armed with consistent factorization and the fixed-order jet and soft functions, we re-
summed large logarithms in the jet shape distribution by running each individual function from
the scale where logs in it are minimized to the common factorization scale µ. We thereby resummed
logs of the jet shape τa to NLL accuracy, and logs of the scale Λ/EJ of soft radiation outside of jets
(up to possible missing non-global logs), but not all logs of the angular cut R, which we took to
be order 1. This is the first such calculation of a resummed jet shape distribution in an exclusive
multijet cross section.

We constructed a framework to deal with all the scales that appear in the multijet soft
function which depends on the values τ ia of all M jet shapes and the phase space cuts Λ, R. By
refactorizing the full soft function into individual pieces depending on one of these scales at a time,
we were able to sum logs of ratios of these scales.

We demonstrated the utility and accuracy of our results by comparing our NLL resummed
prediction for quark and gluon jet shapes in e+e− → 3 jets to the output of Monte Carlo event
generators, MadGraph/MadEvent and Pythia. Our predictions agreed with the Monte Carlo output
without hadronization very well. The change in shape and location of the peak value of τa as
functions of a and R match particularly well between the theory and Monte Carlo.

Our results provide a basis for future studies of other jet observables at both e+e− and
hadron colliders, requiring recalculation of those parts of our jet and soft functions actually de-
pending on the choice of observable. Studying jets at hadron colliders requires the construction
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of observables appropriate for that environment and the switching of two of our outgoing jets to
incoming beams, which can be described by beam functions in SCET [183].

Precision calculations of jet shapes will allow improved discrimination of jets of different
origins. We are applying the results of our predictions of light quark and gluon jet shapes to
distinguish quark and gluon jets with greater efficiency than achieved before, and will present the
results in [115]. Extensions to the shapes of heavy jets and calculations of other types of jet shapes
such as the Ψ(r/R) shape introduced in [117, 118, 1] can also be performed.

4.A Jet Function Calculations

4.A.1 Finite Pieces of the Quark Jet Function

4.A.1.0.1 Measured Quark Jet Function The finite pieces the jet functions, which depend
on the jet algorithm, share common features. For cone-type algorithms, the finite piece of the naive
part of the quark jet function, J̃qalg(τa), is given by

J̃qcone(τa) = CF

(
7
2

+ 3ln 2− π2

3

)
δ(τa) +

CF
1− a

2

[
Iqcone

Θ(τa)Θ(τmax
a − τa)
τa

]
u

(4.137)

where in this Appendix, plus distributions are defined by [183]

[Θ(x)g(x)]+ = lim
ε→0

d

dx
[Θ(x− ε)G(x)], with G(x) =

∫ x

1
dx′g(x′) , (4.138)

defined so as to satisfy the boundary condition
∫ 1

0 dx[Θ(x)g(x)]+ = 0. The quantity Iqcone depends
implicitly on τa and R and is given by

Iqcone =
∫ 1−xcone

xcone

dx
2(1− x) + x2

x
= 2 log

1− xcone

xcone
− 3

2
+ 3xcone . (4.139)

The parameter xcone = xcone(τa) is the lower limit on the x = q−/ω scaled gluon momentum integral
imposed by the cone restriction. It is given by the solution of the equation

fcone(xcone) =
τa

tan2−a R
2

, (4.140)

where fcone(x) is defined as

fcone(x) ≡ x2−a[x−1+a + (1− x)−1+a] (4.141)

in the range 0 < x < 1/2, which is plotted in Fig. 4.11A. The upper limit τmax
a is given by the

maximum value over x of Eq. (4.140). Similarly, for kT-type algorithms, J̃qkT
(τa) is given by

J̃qkT
(τa) = CF

(
13
2
− 2

π2

3

)
δ(τa) +

CF
1− a

2

[
IqkT

Θ(τa)Θ(τmax
a − τa)
τa

]
u
. (4.142)

IqkT
is given by

IqkT
=
∫
R
dx

2(1− x) + x2

x
(4.143)
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Figure 4.11: Regions of integration for the (A) cone and kT-type algorithms for (B) a > −1 and
(C) a < −1. The allowed region of x is when the (blue) functions fcone, kT

(x) lie above the (red)
lines of constant τa/ tan(2−a)R/2. When a < −1 for the kT algorithm, there are two regions of
integration when τa > 2a−2 tan(2−a)R/2.

where R is the region in x where the constraint

fkT
(x) ≡ x2−a(1− x)2−a[x−1+a + (1− x)−1+a] ≥ τa

tan2−a R
2

(4.144)

is satisfied. We plot this region in Fig. 4.11B and C for the cases a > −1 and a < −1, repsectively.
The upper limit τmax

a is given by the maximum value over x of the right-hand side of Eq. (4.144).
In general, the constraint Eq. (4.144) is symmetric about x = 1

2 , and so the region R is symmetric
about the same point. In general, if a > −1 or τa < 2a−2 tan(2−a) R

2 , then R is a single range in x.
Otherwise, R is two disjoint ranges in x. Since τa ≥ 2a−2 tan(2−a) R

2 can only occur for a < −1, we
can write IqkT

as

IqkT
=
∫ 1−x1

x1

dx
2(1− x) + x2

x
−Θ

(
τa > 2a−2 tan(2−a) R

2

)∫ 1−x2

x2

dx
2(1− x) + x2

x
(4.145)

Note that Iqcone and IqkT
involve the same integrand, but for each algorithm the integral is

over different ranges. In addition, both xcone and x1 approach the same limiting value for small τa,

x
τa→0−−−→ τa

tan(2−a) R
2

. (4.146)

Thus, we can extract the small τa behavior of both distributions by writing[
1
τa

ln
(

1− x
x

)]
u

=

[
1
τa

ln

(
τa

tan(2−a) R
2

1− x
x

)]
u

−
[

1
τa

ln

(
τa

tan(2−a) R
2

)]
+

, (4.147)

where x = xcone or x1 for the cone and kT algorithms, respectively. Defining

rq(x) = 3x+ 2ln
1− x
x

, (4.148)
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using Eq. (4.147), and including the zero-bin subtraction in Eq. (4.49), we find that the finite
distributions of the full measured quark jet functions are

Jqcone(τa) = CF

[
3
2

ln
µ2

ω2 tan2 R
2

+
1− a

2

1− a ln 2 µ
2

ω2
+
(

1− a

2

)
ln 2 tan2 R

2
+

7
2

+ 3ln 2 (4.149a)

− π2

6

(
2 +

1− a
2

1− a
)]

δ(τa)− CF
{[

4
1− a ln

µ

ωτ
1/(2−a)
a

+
3

2− a

]
Θ(τa)
τa

}
+

+
CF

1− a
2

{
Θ(τa)Θ(τmax

a − τa)
τa

[
rq(xcone) + 2ln

(
τa

tan(2−a) R
2

)]}
u

and

JqkT
(τa) = CF

[
3
2

ln
µ2

ω2 tan2 R
2

+
1− a

2

1− a ln 2 µ
2

ω2
+
(

1− a

2

)
ln 2 tan2 R

2
+

13
2

(4.149b)

− π2

6

(
4 +

1− a
2

1− a
)]

δ(τa)− CF
{[

4
1− a ln

µ

ωτ
1/(2−a)
a

+
3

2− a

]
Θ(τa)
τa

}
+

+
CF

1− a
2

{
Θ(τa)Θ(τmax

a − τa)
τa

[
rq(x1) + 2ln

(
τa

tan(2−a) R
2

)
−Θ

(
τ

1
2−a
a > 2 tan

R

2

)
rq(x2)

]}
u
.

4.A.1.0.2 Unmeasured Quark Jet Function The finite pieces for the unmeasured quark jet
function are

Jqalg =
3CF

2
ln

(
µ2

ω2 tan2 R
2

)
+
CF
2

ln 2

(
µ2

ω2 tan2 R
2

)
+ dq, alg

J , (4.150)

where the constant term dq, alg
J is given by

dq, cone
J = CF

(
7
2

+ 3ln 2− 5π2

12

)
(4.151a)

and

dq, kT
J = CF

(
13
2
− 3π2

4

)
, (4.151b)

for the cone and kT algorithms, respectively.
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4.A.2 Finite Pieces of the Gluon Jet Function

4.A.2.0.3 Measured Gluon Jet Function The finite distributions of the naive gluon jet
function are given by

J̃gcone(τa) = δ(τa)
[
CA

(
137
36

+
11
3

ln 2− π2

3

)
− TRNf

(
23
18

+
4
3

ln 2
)]

+
1

1− a
2

[
Igcone

Θ(τa)Θ(τmax
a − τa)
τa

]
u
, (4.152)

and

J̃gkT
(τa) = δ(τa)

[
CA

(
67
9
− 2π2

3

)
− TRNf

(
23
9

)]
+

1
1− a

2

[
IgkT

Θ(τa)Θ(τmax
a − τa)
τa

]
u

, (4.153)

where the integrals Igalg are given by

Igalg =
∫
dx

[
CA

(
1

x(1− x)
+ x(1− x)− 2

)
+ TRNf (1− 2x(1− x))

]
, (4.154)

with the cone and kT regions of integration the same as for the quark jet functions. The value τmax
a

is the same as in the measured quark jet function, for the respective jet algorithm.
Going through similar steps as for the quark jet function, defining

rg(x) = 2CAln
(

1− x
x

)
+ CA x

(
2
3
x2 − x+ 4

)
− TRNf x

(
4
3
x2 − 2x+ 2

)
, (4.155)

and using Eq. (4.147) to make all logarithmic dependence on τa explicit, we find for the cone and
kT-type jet function finite distributions

Jgcone(τa) = δ(τa)

[
β0

2
ln

µ2

ω2 tan2 R
2

+ CA
1− a

2

1− a ln 2 µ
2

ω2
+ CA

(
1− a

2

)
ln 2 tan2 R

2
(4.156a)

+ CA

(
137
36

+
11
3

ln 2− π2

6

(
2 +

1− a
2

1− a
))
− TRNf

(
23
18

+
4
3

ln 2
)]

−
{[

4CA
1− a ln

µ

ωτ
1/(2−a)
a

+
β0

2− a

]
Θ(τa)
τa

}
+

+
1

1− a
2

{
Θ(τa)Θ(τmax

a − τa)
τa

[
rg(xcone) + 2CAln

(
τa

tan(2−a) R
2

)]}
u

,
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and

JgkT
(τa) = δ(τa)

[
β0

2
ln

µ2

ω2 tan2 R
2

+ CA
1− a

2

1− a ln 2 µ
2

ω2
+ CA

(
1− a

2

)
ln 2 tan2 R

2
(4.156b)

+ CA

(
67
9
− π2

6

(
4 +

1− a
2

1− a
))
− TRNf

(
23
9

)]
−
{[

4CA
1− a ln

µ

ωτ
1/(2−a)
a

+
β0

2− a

]
Θ(τa)
τa

}
+

+
1

1− a
2

{
Θ(τa)Θ(τmax

a − τa)
τa

[
rg(x1) + 2CAln

(
τa

tan(2−a) R
2

)

−Θ
(
τ

1
2−a
a > 2 tan

R

2

)
rg(x2)

]}
u

,

where xcone and x1, 2 are given in Eqs. (4.139) and (4.144).

4.A.2.0.4 Unmeasured Gluon Jet Function For the unmeasured gluon jet functions, the
finite pieces are given by

Jgalg =
CA
2

ln 2 µ2

ω2 tan2 R
2

+
β0

2
ln

µ2

ω2 tan2 R
2

+ dg, alg
J (4.157)

where the constant part dg, alg
J for the cone and kT algorithms is given by

dg, cone
J = CA

(
137
36

+
11
3

ln 2− 5π2

12

)
− TRNf

(
23
18

+
4
3

ln 2
)

(4.158a)

and

dg, kT
J = CA

(
67
9
− 3π2

4

)
− TRNf

(
23
9

)
, (4.158b)

respectively.

4.B Soft function calculations

4.B.1 Sincl
ij

To evaluate the expression Eq. (4.76), we first define

Sincl
ij ≡

1
ε

αs
2π

(
4πµ2

4Λ2

)ε
Ti ·Tj I incl(ni · nj) . (4.159)
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We need I incl to O(ε). Working in a coordinate system with ~ni aligned along the z-axis and ~nj in
the xz-plane and defining n ≡ 1− ni · nj = nzj , we have

I incl(ni · nj) =
ni · nj 4ε Γ(1− ε)

2
√
πΓ(1

2 − ε)
∫ π

0
dθ sin1−2ε θ

1
1− cos θ

1
1− nxj sin θ cosφ− nzj cos θ

=
4ε

2
Γ(1− ε)

∫ +1

−1
du (1− u)−1−ε(1 + u)−ε

1− n
1− un 2F̃1

(
1
2
, 1; 1− ε; z

)
(4.160)

where z = (1−n2)(1−u2)
(1−un)2 . The integration over u = cos θ has singularities at the points u = 1 and

u = n which correspond to z = 1 and z = 0, respectively. To isolate these singularities, we split
the integration over u into the ranges (−1, δ) and (δ, 1) where n < δ < 1,

I incl(ni · nj) = I incl
1 (ni · nj) + I incl

2 (ni · nj) , (4.161)

where

I incl
1 (ni · nj) ≡ 4ε

2
Γ(1− ε)

∫ δ

−1
du (1− u)−1−ε(1 + u)−ε

1− n
1− un 2F̃1

(
1
2
, 1; 1− ε; z

)
I incl

2 (ni · nj) ≡ 4ε

2
Γ(1− ε)

∫ 1

δ
du (1− u)−1−ε(1 + u)−ε

1− n
1− un 2F̃1

(
1
2
, 1; 1− ε; z

)
. (4.162)

Over the range of integration of u in I incl
1 , z ∈ [0, 1) for δ < 1. For I incl

2 , z ∈ (0, 1].
Furthermore, the singularity at u = n in I incl

1 is made more explicit through the use of
the identity

2F̃1

(
1
2
, 1; 1− ε; z

)
= fa(z) + fb(z)

fa(z) =
√
π

cos (επ)

(
1− nu
|u− n|

)1+2ε

2F̃1

(
1
2
− ε,−ε; 1

2
− ε; 1− z

)
fb(z) =

π

cos (επ)
ε

Γ(1/2− ε)Γ(1− ε)2F̃1

(
1
2
, 1;

3
2
− ε; 1− z

)
. (4.163)

fa(z) gives an O(1/ε) contribution and we proceed by using the following trick that we exploit
multiple times throughout the Appendix.

To integrate a product of functions f(x, ε)g(x, ε) where f is singular at the point x0, we
write the integation as∫

dx f(x, ε)g(x, ε) =
∫
dx f(x, ε)g(x0, ε) +

∫
dx f(x, ε)

(
g(x, ε)− g(x0, ε)

)
. (4.164)

The first integral has relatively simple x dependence since g(x0, ε) does not depend on x. The term
in parenthesis in the second integral vanishes at least as fast as x for regular functions g and so the
entire integrand can be expanded in ε.

We can now evaluate fa(z) by adding and subtracting the non-singular part of the inte-
grand (which is the hypergeometric function) evaluated at u = n as in Eq. (4.164), whereas fb(z)
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is O(ε) and so we can simply expand about ε = 0. Adding these contributions, we find that

I incl
1 (ni · nj) =

4ε

2

[√
π Γ(1− ε) (1− n2

)ε
cos(πε)Γ

(
1
2 − ε

) ∫ δ

−1

du

|u− n|1+2ε

−
∫ δ

−1
du

sgn(n− u)
1− u

(
1− εln

(
4(n− u)2

1− n2

))

+ ε

∫ δ

−1

du

1− u
2

|u− n| tanh−1

( |u− n|
1− nu

)]
. (4.165)

For I incl
2 , the part of the integrand that is not singular at u = 1 is everything that multiplies

(1− u)−1−ε, and so we add and subtract this part as in Eq. (4.164). This gives

I incl
2 (ni · nj) =

4ε

2

[
− 1
ε

2−ε(1− δ)−ε+
∫ 1

δ

du

u− n

(
1 +

1− n
1− u log

(
(n− 1)2(u+ 1)

4(n− u)2

)

− log(1− u) +
u− n
1− u log(2)

)]
. (4.166)

The integrals in Eqs. (4.165) and (4.166) give rise to many terms. However, we find that,
after some lengthy algebra, the dependence on δ cancels in the sum as it must and that the result
can be simplified to

I incl(ni · nj) = −1
ε

+ ln
(ni · nj

2

)
+ ε

(
π2

6
+ Li2

(
1− 2

ni · nj

))
. (4.167)

4.B.2 Siij and Smeas
ij (τ ia)

4.B.2.1 Common Integrals

In evaluating the soft contributions Siij and Smeas
ij (τ ia), we find an integral of the following

form:

I(α, β, t) = 2t2
∫ 1

0

du

u
u2αεf(u;β, t) , (4.168)

where t > 1 and

f(u;β, t) =
(tan−2 R

2 + u2)2βε

(u+ t)2 2F1

(
1,

1
2
− ε; 1− 2ε;

4tu
(u+ t)2

)
. (4.169)

To evaluate this integral, we add and subtract the part of the integrand that is not singular at
u = 0, namely f(u;β, t), as in Eq. (4.164). This allows us to write

I(α, β, t) = 2 tan−4βε R

2

∫ 1

0
du

{
u−1+2αε

+
1

t2 − u2

[
u+ 2ε

(
αulnu+

t2

u
ln

t2

t2 − u2
+
βt2

u
ln
(

1 + tan2 R

2
u2
))]}

, (4.170)
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where we used that
f(0;β, t) =

1
t2

tan−4βε R

2
, (4.171)

and that the expansion of the hypergeometric about ε = 0 for t > u is

2F1

(
1,

1
2
− ε; 1− 2ε;

4tu
(u+ t)2

)
=
t+ u

t− u
(

1 + 2εln
t2

t2 − u2
+O(ε2)

)
. (4.172)

Evaluating the integals, we obtain

I(α, β, t) =
tan−4βε R

2

αε

(
t2

t2 − 1

)αε
+ ε
(
α+ 2β − 2

)
Li2

( −1
t2 − 1

)
− 2βεLi2

(
−1 + t2 tan2 R

2

t2 − 1

)
+O(ε2) . (4.173)

4.B.2.2 Smeas
ij (τ ia)

To evaluate Eq. (4.82) for the case that k = i, we use light cone coordinates in the frame
of jet i, k+ = ni · k and k− = n̄i · k. In terms of these variables, the on-shell condition can be used
to give

nj · k = k+ cos2 ψij
2

+ k− sin2 ψij
2
−
√
k+k− sinψij cosφ, (4.174)

with cosψij = 1 − ni · nj , and φ the angle in k⊥-space (the azimuthal angle about ~ni). We can
do the k⊥ and k+ integrals using the on-shell and τa delta functions respectively. The resulting
Smeas
ij (τ ia) has non-trivial integrals over k− and φ:

Smeas
ij (τ ia) = −αs

4π

(
4πµ2

ω2

)ε
(ni · nj)(Ti ·Tj)

1√
π Γ(1

2 − ε)
2ω

2− a
1

(τ ia)2ε

∫ π

0
dφ sin−2ε φ

×
∫ ∞

0

dk−

(k−)2

(
ωτ ia
k−

)−1

Θ

(
tan2 R

2
−
(
ωτ ia
k−

) 2
2−a
)(

ωτ ia
k−

)2ε 1−a
2−a

×
[(

ωτ ia
k−

) 2
2−a

cos2 ψij
2

+ sin2 ψij
2
−
(
ωτ ia
k−

) 1
2−a

sinψ1j cosφ

]−1

.

(4.175)

Making the change of variables u = cot R2
√
k+/k− = cot R2

(
ωτ ia
k−

) 1
2−a , we find that Smeas

ij (τ ia) can
be written as

Smeas
ij (τ ia) = −αs

2π
Ti ·Tj

1
Γ(1− ε)

(
4πµ2

ω2
tan2(1−a) R

2

)ε( 1
τ ia

)1+2ε

I(1− a, 0, tij) , (4.176)

where I(α, β, t) is defined in Eq. (4.168). Using Eq. (4.173) we find the result given in Eq. (4.83).
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4.B.2.3 Siij

The Θ-functions in Eq. (4.79) are easiest to deal with if we shift to variables where each
Θ-function is in a different variable. The simplest choices are just the arguments of the Θ functions
ΘΛ and Θi

R, k0 and u = cot R2
√
k+/k−, respectively, where k± are defined with respect to direction

ni. This gives a form similar to the integral in Smeas
ij (τ ia),

Sjij = −1
ε

αs
4π

Ti ·Tj
1

Γ(1− ε)
(

4πµ2

4Λ2
tan2 R

2

)ε
I(−1, 1, tij) . (4.177)

where I(α, β, t) is defined in Eq. (4.168) and evaluates to Eq. (4.173). This gives Eq. (4.80).

4.B.3 Smeas
ij (τ ka ) and Skij for k 6= i, j

We again use light cone coordinates centered on jet k. The integrations involved in
Smeas
ij (τka ) and Skij only give rise to a 1/ε pole as explained in the text, but integrating the eikonal

factor 1/(ni · k)(nj · k) is more complicated than for the other cases since there is a third direction,
nk, involved.

For unmeasured jets when there are n ≥ 3 total final state jets, Skij is needed. However,
as we explain in the text, measured jets violate consistency at O(1/t2) even for n = 2 (non back-
to-back) jets and the contribution of Skij does not ameliorate this fact when n ≥ 3. To show this,
we need to evaluate the divergent contribution of Skij . In addition, we give the form of the finite
pieces which are O(1/t2).

For each measured jet when there are n ≥ 3, the sum Smeas
ij (τka ) + Skijδ(τ

k
a ) is needed.

However, in this case the 1/ε pole cancels in this sum and we are left with only a single, finite
integral to evaluate. This is clear from the expressions for Smeas

ij (τka ) and Skij which we derive in
Sec. 4.B.3.2 and Sec. 4.B.3.3, respectively. We evaluate the sum explicitly in Sec. 4.B.3.4.

4.B.3.1 Common Integrals

We find the following integral arising in both Smeas
ij (τka ) and Skij :

I(u; ta, tb, β) ≡ −2ε
π

∫ π

0
dθ1 sin−2εθ1

∫ π

0
dθ2 sin−1−2εθ2

t2a + t2b − 2tatb cosβ
u2 + t2a − 2uta cos θ1

× 1
u2 + t2b − 2utb(cosβ cos θ1 + sinβ sin θ1 cos θ2)

= I(0)(u; ta, tb, β) + εI(1)(u; ta, tb, β) +O(ε2) , (4.178)

where the O(ε0) and O(ε1) parts of I are

I(0)(u; ta, tb, β) =
2
π

∫ π

0
dθ

A

A2 −B2

t2a + t2b − 2tatb cosβ
u2 + t2a − 2uta cos θ

(4.179)

I(1)(u; ta, tb, β) = − 2
π

∫ π

0
dθ
[

2ln (sin θ)A
A2 −B2

+
B

A2 −B2
log

A−B
A+B

]
t2a + t2b − 2tatb cosβ
u2 + t2a − 2uta cos θ

,
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where we defined

A = u2 + t2b − 2utb cosβ cos θ
B = 2utb sinβ sin θ . (4.180)

We can evaluate I(0) straightforwardly. For the range of our interest, ta,b > 1 and 0 <
u < 1, it gives

I(0)(u; ta, tb, β) =
2(t2a + t2b − 2tatb cosβ)(t2at

2
b − u4)

(t2a − u2)(t2b − u2)(t2at2b − 2tatbu2 cosβ + u4)
. (4.181)

In addition, we will need the following integrals over I(0)(u):

f1(ta, tb, β) ≡
∫ 1

0
duu I(0)(u; ta, tb, β) = ln

(
t2at

2
b − 2tatb cosβ + 1
(t2a − 1)(t2b − 1)

)
, (4.182)

and

f2(ta, tb, β, r) ≡
∫ 1

0
duu I(0)(u; ta, tb, β)ln (r + u2)

= −
{
g(ta, r) + g(tb, r) + 2ln (r + 1)ln (tatb)

+ 2 Re

[
Li2

(
tatb − eiβ
reiβ + tatb

)
− Li2

(
tatb

reiβ + tatb

)

+ ln
(

tatb
tatb − eiβ

)
ln (r + tatbe

−iβ)
)]}

, (4.183)

where

g(t, r) ≡ Li2

(
t2

t2 + r

)
− Li2

(
t2 − 1
t2 + r

)
+ ln (t2 − 1)ln (r + t2)− ln (t2)ln ((r + 1)(r + t2)) . (4.184)

For r = 0, this simplifies to

f2(ta, tb, β, 0) = −Li2

(
1
t2a

)
− Li2

(
1
t2b

)
+ 2 Re

[
Li2

(
eiβ

tatb

)]
. (4.185)

Notice that both f1 and f2 are O(1/t2).
The O(ε1) piece, I(1), is less trivial. However, the only property of I(1) that we need is

that

f3(ta, tb, β) ≡
∫ 1

0
duuI(1)(u; ta, tb, β) = O(1/t2) , (4.186)

which can be seen by taking the large-t limit of I(1) in Eq. (4.179). The integral is finite an
suppressed by 1/t2.
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4.B.3.2 Skij

To compute Skij , we choose a coordinate system such the ~nk is in the z-direction and ~ni lies
in the xz-plane. In terms of the light-cone coordinates about nk and the variable u = cot R2

√
k+/k−,

we have

ni · k = k+ cos2 ψik
2

+ k− sin2 ψik
2
−
√
k+k− sinψik cos θ1

= k− cos2 ψik
2

tan2 R

2

[
u2 + t2ik − 2utik cos θ1

]
nj · k = k+ cos2 ψjk

2
+ k− sin2 ψjk

2
−
√
k+k−(nxj cos θ1 + nyj sin θ1 cos θ2)

= k− cos2 ψjk
2

tan2 R

2

[
u2 + t2jk − 2utjk

(
cosβij cos θ1 + sinβij sin θ1 cos θ2

)]
, (4.187)

where βij is defined as the angle between the ik- and jk-planes. Using the relation

ni · nj
cos2 ψik

2 cos2 ψjk
2 tan2 R

2

= 2(t2ik + t2jk − 2tiktjk cosβij) , (4.188)

we find that Skij can be written as

Skij = −1
ε

αs
4π

Ti ·Tj
1

Γ(1− ε)
(

4πµ2

4Λ2

)ε
tan2ε R

2

∫ 1

0
duu1−2ε

(
tan−2 R

2
+ u2

)2ε
I(u; tik, tjk, βij) ,

(4.189)
where I(u, ta, tb, βij) is defined in Eq. (4.178). Expanding in ε, we find

Skij = −αs
4π

Ti ·Tj

[
1
ε
f1(tik, tjk, βij) + F (tik, tjk, βij)

]
, (4.190)

where the finite part is given by

F (ta, tb, β) ≡
[
f1(ta, tb, β)ln

(
µ2

4Λ2
tan2 R

2

)
− f2(ta, tb, β, 0)

+ 2f2

(
ta, tb, β, tan−2 R

2

)
+ f3(ta, tb, β)

]
, (4.191)

and f1, f2, and f3 are given in Eqs. (4.182), (4.183), and (4.186), respectively.

4.B.3.3 Smeas
ij (τka )

Using the same coordinate system as for Skij , we find that Smeas
ij (τka ) can be written as

Smeas
ij (τka ) = −αs

2π
Ti ·Tj

1
Γ(1− ε)

(
4πµ2

ω2
tan2(1−a) R

2

)ε( 1
τka

)1+2ε

×
∫ 1

0
duu1+2ε(1−a)I(u; t12, tik, βij) . (4.192)
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Expanding in ε gives

Smeas
ij (τka ) = −αs

2π
Ti ·Tj

[(
1
τka

)1+2ε

f1(tik, tjk, βij) + δ(τka )G(tik, tjk, βij)

]
, (4.193)

where

G(ta, tb, β) ≡ −1
2

[
f1(ta, tb, β)ln

(
µ2

ω2
tan2(1−a) R

2

)
+ (1− a)f2(ta, tb, β, 0) + f3(ta, tb, β)

]
, (4.194)

and f1, f2, and f3 are given in Eqs. (4.182), (4.183), and (4.186), respectively.

4.B.3.4 Skij + Smeas
ij (τka )

The sum of Eqs. (4.190) and (4.193) is finite. We find

Smeas
ij (τka ) + Skijδ(τ

k
a ) =

αs
4π

Ti ·Tj

[
δ(τka )

(
f1(tik, tjk, βij)ln

(
4Λ2

ω2
tan−2a R

2

)

+ (2− a)f2(tik, tjk, βij , 0)− 2f2

(
t12, tik, βij , tan−2 R

2

))

− 2
(

1
τka

)
+

f1(tik, tjk, βij)
]
. (4.195)

where f1 and f2 are given in Eqs. (4.182) and (4.183), respectively.

4.C Convolutions and Finite Terms in the Resummed Distribu-
tion

In evaluating the final resummed distribution Eq. (4.128), each measured jet function
must be convolved against a corresponding soft function piece Smeas. These convolutions take the
form.∫

dτJdτSdτ
′
J dτ

′
S J(τ ′J , µJ)Smeas(τ ′S , µS)

[
Θ(τJ − τ ′J)

(τJ − τ ′J)1+ωiJ

]
+

[
Θ(τS − τ ′S)

(τS − τ ′S)1+ωiS

]
+

δ(τ − τJ − τS) .

(4.196)
For the class of functions of the form x−1−ω with ω 6= 0 and ω < 1, we define the plus distribution
by [

Θ(x)
x1+ω

]
+

≡ lim
β→0

[
Θ(x− β)
x1+ω

− β−ω

ω
δ(x− β)

]
= −δ(x)

ω
+
∞∑
n=0

(−ω)n
[

Θ(x)ln nx

x

]
+

,

(4.197)
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where the plus functions on the second line are given by Eq. (4.138),[
Θ(x)ln n(x)

x

]
+

≡ lim
β→0

[
Θ(x− β)ln n(x)

x
+

ln n+1β

n+ 1
δ(x− β)

]
. (4.198)

Using the techniques of, for example, Appendix B of Ref. [134], we find that the final result can be
written in the form Eqs. (4.128) and (4.131) with the functions dJ(τ ia) given by

dq,cone
J (τ ia) = CF

[
3

2− aH(−1− Ωi) +
7
2

+ 3ln 2− π2

6

(
2 +

1− a
2

1− a
)

+
4

(1− a)(2− a)

(
π2

12
+H(−1− Ωi)2 − 1

2
ψ(1)(−Ωi)

)
(4.199a)

+
1

1− a
2

∫
dτJdτ

′
J

{[
1
τ ′J

(
rq(xcone) + 2ln

(
τ ′J

tan(2−a) R
2

))]
u

×
[

Θ(τJ − τ ′J)

(τJ − τ ′J)1+ωiJ

]
+

[
Θ(τS − τ ′S)

(τ ia − τJ)1+ωiS

]
+

}]

and

dq,kT
J (τ ia) = CF

[
3

2− aH(−1− Ωi) +
13
2
− π2

6

(
4 +

1− a
2

1− a
)

+
4

(1− a)(2− a)

(
π2

12
+H(−1− Ωi)2 − 1

2
ψ(1)(−Ωi)

)
(4.199b)

+
1

1− a
2

∫
dτJdτ

′
J

{[
1
τ ′J

(
rq(x1) + 2ln

(
τ ′J

tan(2−a) R
2

)
−Θ

(
τ

1
2−a
a >

1
2

tan
R

2

)
rq(x2)

)]
u

×
[

Θ(τJ − τ ′J)

(τJ − τ ′J)1+ωiJ

]
+

[
Θ(τS − τ ′S)

(τ ia − τJ)1+ωiS

]
+

}]
,

for quarks and by

dg,cone
J (τ ia) =

β0

2− aH(−1− Ωi) +
4CA

(1− a)(2− a)

(
π2

12
+H(−1− Ωi)2 − 1

2
ψ(1)(−Ωi)

)
+ CA

(
137
36

+
11
3

ln 2− π2

6

(
2 +

1− a
2

1− a
))
− TRNf

(
23
18

+
4
3

ln 2
)

+
1

1− a
2

∫
dτJdτ

′
J

{[
1
τ ′J

(
rq(x1) + 2ln

(
τ ′J

tan(2−a) R
2

))]
u

×
[

Θ(τJ − τ ′J)

(τJ − τ ′J)1+ωiJ

]
+

[
Θ(τS − τ ′S)

(τ ia − τJ)1+ωiS

]
+

}
(4.199c)
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and

dg,kT
J (τ ia) =

β0

2− aH(−1− Ωi) +
4CA

(1− a)(2− a)

(
π2

12
+H(−1− Ωi)2 − 1

2
ψ(1)(−Ωi)

)
+ CA

(
67
9
− π2

6

(
4 +

1− a
2

1− a
))
− TRNf

(
23
9

)
+

1
1− a

2

∫
dτJdτ

′
J

{[
1
τ ′J

(
rq(x1) + 2ln

(
τ ′J

tan(2−a) R
2

)
−Θ

(
τ

1
2−a
a >

1
2

tan
R

2

)
rg(x2)

)]
u

×
[

Θ(τJ − τ ′J)

(τJ − τ ′J)1+ωiJ

]
+

[
Θ(τS − τ ′S)

(τ ia − τJ)1+ωiS

]
+

}
(4.199d)

for gluons, where in all cases xcone, x1,2 (defined in Eqs. (4.139) and (4.144)) are evaluated at τ = τ ′J
and rq,g are defined in Eqs. (4.148) and (4.155). For the soft function, dS(τ ia) is given by

dS(τ ia) =
π2

8
+H(−1− Ωi)2 − ψ(1)(−Ωi) . (4.199e)

4.D Color Algebra for n = 2, 3 Jets

For the two and three jet cases, there are no color correlations since all color generator
inner products Ti ·Tj can be expressed in terms of the Casimir invariants CA and CF . For n = 2,
there is a quark jet with charge Tq and an anti-quark jet with charge Tq̄ that each square to CF .
There is only one inner-product in this case and using color conservation (

∑
i Ti = 0), we have that

Tq ·Tq̄ = −T2
q = −T2

q̄ = −CF . (4.200)

For n = 3 jets color conservation gives that, for example,

T1 ·T2 =
1
2
[
(T1 + T2)2 −T2

1 −T2
2

]
=

1
2
[
T2

3 −T2
1 −T2

2

]
. (4.201)

Referring to the quark, anti-quark, and gluon generators as Tq, Tq̄, and Tg, respectively, using
T2
q = T2

q̄ = CF and T2
g = CA in Eq. (4.201) gives

Tq ·Tq̄ =
CA
2
− CF

Tq ·Tg = Tq̄ ·Tg = −CA
2
. (4.202)
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Chapter 5

Factorization of Boosted Multijet
Processes for Threshold
Resummation1

1 Introduction

Factorization of cross-sections is the basis of every theoretical prediction at hadron collid-
ers. In its simplest form, factorization states the measured hadronic cross-section σ can be obtained
by convolving a perturbatively calculable cross-section σ̂ with nonperturbative parton distribution
functions (PDFs) [94, 90],

σ = f ⊗ f ⊗ σ̂ . (5.1)

The PDFs are universal, and can therefore be extracted from one process and used to make predic-
tions in another. Moreover, σ̂ will in general depend on a hard scale Q (for example, the partonic
center-of-mass energy

√
ŝ), while the PDFs depend on the scale at which they are measured, say

ΛQCD. The evolution of the PDFs between these two scales resums logarithms of Q/ΛQCD. This ba-
sic paradigm illustrates the two main uses of factorization: separation of universal, non-perturbative
contributions to a cross-section from perturbatively calculable contributions, and resummation of
logarithms of ratios of scales to which each contribution is sensitive.

When σ̂ depends only on a single scale, Eq. (5.1) is the end of the story. The situation
is more involved when σ̂ itself depends on multiple, widely disparate scales. For example, in many
collider physics processes involving jets, σ̂ can depend on mass scales associated with the jets such
as MJ , hard scales like

√
ŝ, and seesaw scales like M2

J/
√
ŝ. In such cases large logarithms of ratios

of these scales can spoil the convergence of the fixed order perturbative expansion of σ̂. One must
further factorize σ̂ in order to resum these large logarithms and, perhaps, to separate out any other
non-perturbative physics that is not captured in the PDFs [92, 93, 145, 144].

In this chapter we will focus on so-called threshold logarithms. When a process approaches
its kinematical threshold, there is limited phase space available for radiation. This gives rise to
an incomplete cancellation between real and virtual diagrams, resulting in large logarithmic terms.
This is common in situations where the invariant mass of the final state is near the maximum

1This chapter was originally cowritten with Christian W. Bauer and Nicholas Daniel Dunn [17].
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available energy, which limits the amount of energy that can go into excess radiation. Examples
of this type of resummation can be found for Drell-Yan, deep-inelastic scattering (DIS), B meson
decay, and top production [5, 180, 179, 71, 72, 95, 52, 122, 151, 155, 2, 50, 144, 158, 19, 160, 39, 83].
It has been suggested [7, 78] that a similar effect occurs at hadron colliders away from hadronic
endpoint due to the steepness of parton luminosities and this effect was explored more quantitatively
in [40]. In this chapter, we will concentrate on hadronic threshold and assume that the invariant
mass of the final state is near the maximum allowed by the collider; however, we plan on exploring
resummation away from the hadronic endpoint in future work [16]. For this reason we will derive a
factorization theorem that can be applied away from hadronic threshold without loss of information.

An extremely useful tool to prove factorization is effective field theory. In the case of
jet physics, Soft-Collinear Effective Theory (SCET) [19, 21, 33, 29] is the relevant effective field
theory that can be used to derive factorization in many hard scattering processes [20]. The SCET
Lagrangian is constructed by integrating out all modes of QCD except for soft modes and collinear
modes with respect to some fixed number of directions ni. Matching QCD onto SCET gives rise to
a hard function that contains the physics of the hard scales in the problem, and matrix elements
of the remaining soft and collinear fields give rise to soft and jet functions, respectively.

The first applications of SCET involved cases with particularly simple jet definitions, such
as in Drell-Yan [137, 40] where there are no jets, hemisphere jets in event shapes [26, 24, 156, 157,
124, 172, 125, 18, 41, 135, 134], or completely inclusive jets as in B → Xsγ [19], DIS [160, 39, 83]
and prompt photon production [42]. Factorization of jets defined with more generic algorithms
was considered in [23] and two-jet rates defined with jet algorithms were computed using SCET in
[24, 187, 85]. A study of various different jet algorithms and the dependence on the jet parameters
in the framework of SCET was discussed in [85]. More recently, a NLL analysis of jet shapes in
multijet events using modern jet algorithms in e+e− collisions was performed in [114, 116].

The goal of this chapter is to derive a factorization formula for an arbitrary number of jets
in the presence of any number of non-strongly interacting particles in the threshold limit. We allow
for a nonzero total rapidity and calculate the ingredients of this formula to allow resummation of
threshold logarithms at NLL accuracy. This is conceptually distinct from the case of a single final
state jet, which can be measured indirectly by simply demanding that a non-strongly interacting
particle is produced with nonzero pT. When there is more than one final state jet, jet algorithms
must be used to identify jets, and so the technology of incorporating jet algorithms into a factor-
ization formula, developed in [23] and applied to e+e− collisions in [116, 114], must be employed.
The consistency of this factorization (that is, the fact that the cross-section is independent of the
factorization scale µ) is only demonstrated here in the true hadronic endpoint. However, we plan on
investigating the consistency of this factorization away from hadronic endpoint using the steepness
of parton luminosities in [16].

Factorization formulas for the case of a single, inclusive jet have soft functions that depend
on the null component of the total soft momentum in the direction of the jet. When there are no jets
(e.g., Drell-Yan), the soft function depends on the timelike component of the total soft momentum.
In extending threshold resummation to more than one jet using jet algorithms, we find a soft
function that depends on the timelike component of the total soft momentum outside of the jets
and on the null component of the soft momentum within each of the jets. Thus, our result reduces to
the previously considered cases of zero and one inclusive jet when our jet algorithm either includes
none or all of the final state soft momentum, respectively.
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The organization of this chapter is as follows. In Sec. 2, we define precisely what we mean
by threshold production of N jets and discuss the corresponding kinematics. In Sec. 3, we briefly
discuss different classes of jet algorithms used at hadron colliders. We then derive our factorization
theorem in Sec. 4, beginning for notational simplicity with the case of a single (quark or gluon) final
state jet, then extending these results to the case of N jets. We derive the anomalous dimensions
for the objects that appear in our N jet factorization formula in Sec. 5 and use these in Sec. 6 to
show that our factorization theorem is formally consistent, at least in the hadronic endpoint region.
Finally, we present our conclusions in Sec. 7.

2 Kinematics of Threshold Resummation

To explain our approach to threshold resummation, how it includes both the cases of Drell-
Yan and direct gauge boson production as limiting cases, and how it is extendable to arbitrary N -jet
production, we first discuss the kinematics. By demanding that the final state contains N jets each
with fixed transverse momentum pT and pseudo-rapidity η, together with some number of non-
strongly interacting particles with total 4-momentum q, we are requiring that there is a minimum
partonic center-of-mass energy

ŝmin =
(
q +

N∑
i

piJ

)2
, (5.2)

where piJ is the momentum of the ith jet. This momentum is defined in terms of the pT
J and ηJ of

the jet as
pJ ≡ (pT

J cosh ηJ ,pT
J , p

T
J sinh ηJ) . (5.3)

Of course, the actual partonic center-of-mass energy ŝ typically exceeds this minimum value, and
in general can be as large as the available machine center-of-mass energy s. Therefore the dimen-
sionless variable z, defined as

z ≡ ŝmin

ŝ
, (5.4)

can range from

τ ≤ z ≤ 1 , with τ ≡ ŝmin

s
. (5.5)

Going to hadronic threshold (τ → 1) forces z → 1, such that the only emissions kinemat-
ically allowed are collinear radiation off the hard partons that form jets, as well as soft radiation.
Radiation collinear to one of the jets with momentum scaling as Ecm(1, λ2, λ) (in the light-cone co-
ordinates of the jet) and soft radiation scaling as Ecm(λ2, λ2, λ2), each contribute an equal amount
to ŝ, where λ ∼ √1− z is a small, dimensionless parameter. In this limit of restricted radiation,
partonic momentum conservation can be written as

pI = q + ks +
N∑
i

pic , (5.6)

where pI is the total initial-state (partonic) momentum, ks is the total soft momentum and pic is
the momentum carried by collinear fields in the direction of jet i. The total momentum can be
separated into two components: the first is the minimum momentum needed to create N jets of
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fixed pT and η together with the non-strongly interacting particles of total momentum q, while
the second brings the invariant mass of the final state above its minimum value ŝmin. To do this,
we note that an arbitrary four-vector p can be written as the sum of a massless four-vector which
characterizes the transverse momentum and pseudorapidity of p and a purely timelike four-vector
with a magnitude equal to the +-component of p in light-cone coordinates about n = (1,p/ |p|),
(i.e., p+ ≡ p0 − |p|) which characterizes the off-shellness of p. That is, for any four-vector p, we
can write

pµ = pµJ + p+vµ , (5.7)

where vµ = (1,0) and pJ is given in Eq. (5.3) with pT
J and ηJ the transverse momentum and

pseudorapidity of p, respectively. We want to apply this relation to the total 4-momentum in each
of the jets. To do this, we note that the jet algorithm will group some of the soft momentum ks
into parts that belong to jet i, ki, and a part that is not included in any of the jets, kout,

ks =
N∑
i

ki + kout . (5.8)

Using this together with the relation Eq. (5.7) and the fact that

(pic + ki)+ ≡ pi,0c + k0
i −

∣∣pic + ki
∣∣ = pi+c + k+

i +O(λ4) , (5.9)

where on the right hand side, k+
i is plus with respect to pJ and pi+c is plus with respect to pc, we

can write momentum conservation Eq. (5.6) at leading order in λ as

pµI = qµ + kµout +
N∑
i

pµJ + vµ
[ N∑

i

(p+
i + k+

i )
]
. (5.10)

Here, we have also used that out-of-jet collinear radiation is power suppressed [116].
Given these definitions, we can write

1− z =
2
ŝ
pI ·

(
kout + v

[ N∑
i

(p+
i + k+

i )
])

+O(λ4)

=
2
ŝ

(
pI · kout + p0

I

N∑
i

(p+
i + k+

i )
)

+O(λ4) , (5.11)

where ŝ = p2
I . We see that since pI is timelike, 1− z depends on the timelike component of the soft

momentum outside of the jets and on the null component of the momentum within the jets.
So far we have discussed the kinematics in the hadronic endpoint defined as τ → 1, which

is the main focus of this chapter. However, z can be forced close to one not only in this hadronic
endpoint, but also in the limit of steeply falling parton luminosities. In this case, final states with
small values of ŝ are preferred, giving again z → 1. Our analysis is independent of the precise
mechanism which guarantees that 1− z can be regarded as a small quantity, and can therefore be
used away from the true hadronic endpoint.

We are now in a position to discuss how our parameterization of 1 − z reduces to the
standard variable in the case of Drell-Yan and cases when there is one inclusive jet, such as B →
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Xsγ, DIS, and direct gauge boson production. As we will see in Sec. 4, Eq. (5.11) implies the soft
function in general depends on the timelike component of kout and on the null components (with
respect to the corresponding jet directions) of the soft momenta in each of the jets ki. In Drell-Yan,
there are no jets in the final state and so the entire soft momentum ks is just kout. This is why the
soft function in Drell-Yan depends only on the timelike component of the total soft momentum. For
a single inclusive jet (i.e., defined with a jet algorithm that includes all of the hadronic momentum),
all the soft momentum is included in the jet, such that ks = k1. This explains why the soft function
in this latter type of process only depends on the null component of the total soft momentum. In
Ref. [144], on the other hand, threshold resummation for dijet production was considered and it
was found that the soft function only depended on the timelike component of momentum outside
of the jets. This apparent discrepancy is due to the fact that the limit of small jet size R → 0
was taken and the contribution of in-jet soft particles vanishes in this limit.2 From the discussion
above, the soft function will have dependence on the null component of in-jet momentum for jets
of finite size.

3 Jet Algorithms at Hadron Colliders

Perturbative calculations require a precise definition of the phase space boundaries im-
posed by the jet algorithms. There are two general types of jet algorithms, cone algorithms and
cluster algorithms. Cone algorithms decide on which particles belong to a given jet based on cones
of fixed size R, while cluster algorithms group particles together into jets based on a relative mea-
sure of their distance. These jet algorithms act on the entire set of particles in the final state
to decide how many jets are contained in a given event and which particles belong to which jet.
Almost all jet algorithms depend on a jet-size R, and a distance ∆Rij that measures the distance
between two particles in η − φ space

∆Rij =
√

(∆ηij)2 + (∆φij)2 . (5.12)

As already discussed in the previous section, the relevant degrees of freedom in jet pro-
duction close to z = 1 are collinear and soft particles. To perform perturbative calculations in this
region we therefore need a restriction on these degrees of freedom to decide whether they belong
to a given jet or not. Collinear particles in a given direction all belong to the same jet. This is
in contrast with soft particles, which can either belong to a jet or not. Note that the treatment
of jet algorithms in SCET is only correct to leading order in the power counting parameter λ.
Therefore, we assume that all jets have energy much in excess of their mass, and that all jets are
widely separated.

Standard cone algorithms, such as SISCone and Snowmass, are quite simple. The restric-
tions they impose on each particle to belong to a given jet are independent of other particles in
the event, and only depend on the angular distance from the jet direction. The restriction for both

2Note that double counting is avoided in [144] by removing collinear modes from the soft function (“eikonal
subtractions”) whereas in SCET double counting is avoided by removing soft modes from the jet functions (“zero-bin
subtractions” [163]). In SCET there is no freedom to choose how to avoid double-counting since it is only when soft
modes in the collinear sector are removed that we find soft and jet functions which are separately IR finite [134, 135]
and thus the limit R→ 0 does not lead to a vanishing contribution from in-jet soft momentum.
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soft and collinear particles to be in a jet j with direction n is therefore

Θ̂R
soft,j = Θ̂R

coll,j =
∏
i

Θ(∆Ri,n < R) . (5.13)

For the purposes of this chapter, we only need results at relative order αs, and therefore only have
to consider one extra particle in the final state. The restrictions therefore simplify, and for the
extra particle i we can write

Θ̂R
soft,j = Θ̂R

coll,j = Θ(∆Ri,n < R) . (5.14)

Cluster algorithms iterate a process of calculating a distance measure dij for all pairs of
particles and removing the one with the minimum distance. The precise definition of dij depends on
the choice of algorithm.3 This makes the action of the jet algorithm considerably more complicated.
As explained above, all collinear particles in a given direction have to end up in the same jet, which
allows us to write a generic restriction for the action of a cluster algorithm on a set of collinear
particles in a given direction as

Θ̂R
coll,j =

N−1∏
k=0

Θ(∆RN−kmin < R) . (5.15)

Here N denotes the total number of collinear particles in the direction of the jet nj . ∆RN−kmin denotes
the ∆Rij between the pair of collinear particles in the set of N − k remaining particles with the
smallest dij . For soft particles, such a generic formula is not possible (at least analytically), since
different soft particles can end up in different jets, and the restriction on a given particle depends
on all other soft particles in the event. At relative order αs, however, the restrictions ΘR

i for cluster
algorithms simplify and are given by

Θ̂R
soft,j = Θ(∆Ri,n < R) (5.16)

for soft particles and by

Θ̂R
coll,j = Θ(∆Rk,l < R) (5.17)

for collinear particles, where k and l label the new particles after the collinear splitting. For more
information about jet algorithms in SCET see [116].

4 N-Jet Factorization Theorem

In this section, we present the factorization theorem for the cross-section to produce N
jets, defined with respect to a jet algorithm, differential in the 3-momentum (pT and pseudo-rapidity
η) of each jet and of the non-strongly interacting particles. To keep the notation simple, we begin
in Sec. 4.1 by discussing the case of a single jet produced via the channel qg → q. We then discuss
the differences between this derivation and the one needed for the channel qq̄ → g. It will be clear
from these derivations that, aside from the promotion of the hard and soft functions to matrices

3An example for such a distance measure is dij = min{pTi , pTj}∆Rij for the kT algorithm.
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which arise from mixing of operators in color space, there is nothing conceptually or technically
new for arbitrary N jet production in our approach. This allows us to generalize our results to the
N jet factorization formula in Sec. 4.2.

In writing down a factorization theorem, we first assume that we can match QCD onto
operators in SCET containing N+2 distinct collinear fields. This is valid when a (direct or indirect)
measurement constrains the final state to be N -jet like. In our case this is ensured by the fact that
we take the variable 1−z to be small, together with the assumption that the jets are well separated
from each other and from the beams (with the latter requirement ensuring that the probability of
initial state collinear radiation to produce a jet is power suppressed relative to the probability of
the jet arising from the hard interaction). Our derivation is agnostic as to the cause of 1− z � 1,
and in [16] we explore in greater detail in what regimes the steepness of parton luminosities allow
the factorization theorem we derive here to be applied away from the hadronic endpoint. We will
assume in this section that the reader has some familiarity with SCET. For details, we refer the
reader to the original SCET literature [19, 21, 33, 29].

4.1 Case of a Single Jet

4.1.1 qq̄ → g

Working to leading order in the electroweak coupling constant, we first write the full
theory matrix element mediating the partonic interaction as

〈qX|O|P1P2〉 =
∑
i

Mαβµ
i TAab 〈X|ψ̄αaψβbAAµ |P1P2〉 . (5.18)

Here, |q〉 represents the non-strongly interacting final state of total momentum q, |P1〉 and |P2〉 are
the incoming hadrons with the corresponding momentum, and |X〉 represents the hadronic final
state. This equation defines the Mαβµ

i . Note that we have used the fact that there is only one color
singlet in the decomposition of 3⊗ 3̄⊗ 8.

In terms of Mi, the matching of QCD onto the fields of SCET takes the form

Mαβµ
i Qαβµ(x) ≡Mαβµ

i

[
ψ̄αaψ

β
bA

A
µ

]
(x)

=
∑
j

Mαβµ
j

∑
{p̃}

Cij({p̃})ei(p̃1+p̃2−p̃3)·x[(χ̄−p̃1)αa (χp̃2)βb (B−p̃3)Aµ
]
(x) . (5.19)

At tree level, we have
Cij({p̃}) = δij . (5.20)

The matching condition in momentum space takes the form

Mαβµ
i Qαβµ(k) ≡Mαβµ

i

∫
d4x e−ik·xQαβµ(x)

=
∑
j

Mαβµ
j

( 3∏
i=1

∫
d/4pi

)
Cij({p̃})

[
χ̄βb (−p1)χαa (p2)BA

µ (−p3)
]

× (2π)4δ4(p1 + p2 − p3 − k) , (5.21)
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where we turned the sums over labels and integrals over residual momenta into integrals over the
full d4pi and used the shorthand notation∫

d/4p ≡
∫

d4p

(2π)4
. (5.22)

Using this matching condition, we can write the cross-section differential in the jet pseudo-
rapidity ηJ and transverse momentum pT

J as

dσ
d2pT

J dηJdΦq
=

1
2E2

cm

rest.∑
X

|〈qX|O|P1P2〉|2spin avg.δ(ηJ − η(X))δ2(pT
J − pT(X)) (5.23)

× (2π)4δ4(P1 + P2 − q − pX)

=
1

2E2
cm

rest.∑
X

∑
spin

∑
i,j,i′,j′

Mαβµ
j M

β̄ᾱµ̄
j′

TAabT
Ā
b̄ā

4C2
A

( 3∏
k=1

∫
d/4pkd/4p′k

)
Cij({p̃k})C∗i′j′({p̃′k})

× 〈P1P2|χ̄β̄b̄ (p′2)χᾱā (−p′1)B†Āµ̄ (−p′3)|X〉〈X|χ̄αa (−p1)χβb (p2)BA
µ (−p3)|P1P2〉

× δ(ηJ − η(X))δ2(p⊥J − p⊥(X)) (2π)4δ4(p1 + p2 − p3 − q) .

Here we defined dΦq as the phase space measure of the m non-strongly interacting final-state
particles,

dΦq ≡
m∏
k

d/3qk
2Ek

. (5.24)

The restriction on the sum over final states X (“rest.”) is that they include exactly one jet as defined
by the jet algorithm and the delta functions that fix η(X) and pT(X) act on the part of X identified
to be the jet, which we assume to be sufficiently separated from the beams such that contributions
from collinear initial state radiation are power suppressed. We also define M ≡ γ0M †γ0. To arrive
at this equation, we used the hadronic momentum conserving delta function in the first line to shift
the operator O† to the point x, applied the matching condition Eq. (5.21), and then integrated over
x which resulted in the partonic momentum conserving delta function on the last line.

We can simplify Eq. (5.23) using the following observations. First, we can use the BPS
field redefinition [29] to decouple soft and collinear modes to O(λ2),

χn(x)→ Yn(x)χn(x) (5.25a)

χ̄n(x)→ χ̄n(x)Y †n (x) (5.25b)

Bn(x)→ Yn(x)Bn(x) = Y †n (x)Bn(x)Yn(x) , (5.25c)

where Yn is a soft Wilson line, for which we adopt the conventions4

Y in
n (x) = P exp

[
igs
∫ 0

−∞
ds n ·As(x+ sn)

]
, (5.26a)

4For a discussion of the various conventions for in- and outgoing Wilson lines and how they are related see for
example Ref. [9]. There is also a nice discussion of how soft Wilson lines arise in the path integral formulation of
SCET in Appendix C of Ref. [40].
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for an incoming particle (where P denotes path ordering) and

Y out †
n (x) = P exp

[
igs
∫ ∞

0
ds n ·As(x+ s n)

]
, (5.26b)

for an outgoing particle. In momentum space, the field redefinition in Eq. (5.25) induces the shift
pc → pc + ks where ks is the total soft momentum carried by the Wilson lines.

Second, we can implement the restriction on the final state X that there is one jet at the
operator level to all orders by using the jet algorithm operator Θ̂R

i , defined in Sec. 3. This allows us
to complete the sum over X and factorize the collinear and soft matrix elements from one another.

The final state collinear matrix element can be written as〈
0
∣∣B†Aµ (−p′3) Θ̂R

coll,3δ(ηJ − η̂)δ2(pT
J − p̂T)BB

ν (−p3)
∣∣0〉 = −EJ(2π)4δ4(p′3 − p3)δABg⊥3

µν J
g
ω(p3) ,

(5.27)

which defines the gluon jet function Jgw(p). Integrating Eq. (5.27) over the full p3 and p′3, which
contain integrals over residual momentum and sums over the labels ω and n3 of the B⊥ field, fixes
the labels to be n3 = (1,pT

J /
∣∣pT
J

∣∣ cosh ηJ , tanh ηJ) and ω = 2pT
J cosh ηJ . The label “3” on Θ̂3

R and
on g⊥3

µν indicates these are defined with respect to the direction n3 of the jet. Note that this jet
function depends on the choice of the jet algorithm.

For an algorithm that is inclusive over collinear initial state radiation, the initial state
collinear matrix elements give rise to PDFs from the relations [20, 23]∫

d/4p d/4p′〈P |χ̄α′a′ (p′)χαa (p)|P 〉spin avg. = Ecmδaa′
(n/

2

)αα′ ∫ 1

0
dxfq(x)∫

d/4p d/4p′〈P |χα′a′ (−p′)χ̄αa (−p)|P 〉spin avg. = Ecmδaa′
( n̄/

2

)α′α ∫ 1

0
dxfq̄(x) , (5.28)

with p1,2 set to x1,2Ecm
n1,2

2 = 1
2ω1,2 n1,2 (where n1 ≡ n and n2 ≡ n̄) and p′1,2 = p1,2.

The color structure in the matrix elements Eqs. (5.27) and (5.28) leads to a trace over the
color structure of the Wilson lines in the soft function. We can write the soft function in terms of
the variables of interest kout and k3 (the out-of-jet and in-jet momenta) as∫

d/4ksS(ks, {ni}) =
1

CACF

∫
d4ks

〈
0
∣∣T[Y †n2

Y †n3
TAYn3Yn1

]
δ4(kµs − i∂µ)T

[
Y †n1

Y †n3
TAYn3Yn2

]∣∣0〉
=
∫

d4kout d4k3 S(kout, k3, {ni}) , (5.29)

where {ni} = {nq, nq̄, ng} and T (T) denotes (anti-) time-ordering. S(kout, k3, {ni}) is then defined
as

S(kout, k3, {ni}) ≡ 1
CACF

〈
0
∣∣T[Y †n2

Y †n3
TAYn3Yn1

]
δ4(k3 − k̂3)

× δ4(kout − k̂out)T
[
Y †n1

Y †n3
TAYn3Yn2

]∣∣0〉 , (5.30)
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and it is understood that the replacement ks → kout + k3 should be made wherever ks appears.
The operators k̂out and k̂3 are defined as

k̂µ3 ≡ Θ̂R
soft,3i∂

µ

k̂µout ≡
(

1− Θ̂R
soft,3

)
i∂µ . (5.31)

Finally, using that the spin- and color-averaged square of the Born matrix element MB,∣∣MB

∣∣2, can be written in terms of Mi as∣∣MB

∣∣2 ≡ 1
4C2

A

∑
spin,color

|MB|2 = −Tr[TATA]
4C2

A

∑
i,i′

Mαβµ
i M

ᾱβ̄µ̄
i′ (∂/p1)αᾱ(∂/p2)β̄βg⊥3

µµ̄

= − CF
4CA

ŝ
∑
i,i′

Mαβµ
i M

ᾱβ̄µ̄
i′

(n/1

2

)αᾱ(n/2

2

)β̄β
g⊥3
µµ̄ , (5.32)

we see that the Dirac structure of the matrix elements in Eqs. (5.27) and (5.28) naturally gives rise
to the Born cross-section.

To simplify the notation, we define a hard function H which includes all perturbative
corrections contained in the matching coefficients Cij as

H({ni, ωi}) ≡ −
CF
4CA

ŝ
∑

i,i′,j,j′ Cij({p̃k})C∗i′j′({p̃k})Mαβµ
j M

β̄ᾱµ̄
j′

(
n/1

2

)αᾱ(
n/2

2

)β̄β
g⊥3
µµ̄

|MB|2
, (5.33)

where ωi are the labels on the three collinear fields. H by definition is 1 to leading order in αs.
Putting this together we arrive at the expression

dσ
d2pT

J dtanh ηJ dΦq
=

EJ
2E2

cm

∫
dx1

x1

dx2

x2
|MB|2

∫
d/4p3

∫
d4k∅

∫
d4k3 (5.34)

×H({ni, ωi})fq(x1)fq̄(x2)Jgω(p3)Sqq̄→g(k∅, k3, {ni})
× (2π)4δ4(x1Ecm

n

2
+ x2Ecm

n̄

2
− q − k∅ − p3 − k3) .

The final step is to simplify the momentum-conserving delta function. We use Eqs. (5.7)
and (5.10) to write it, up to power corrections in λ, as

δ4(x1Ecm
n

2
+ x2Ecm

n̄

2
− q − kout − p3 − k3)

=
2

E2
cmτ

δ
(

1− z − 1
Q2

[
2pI · kout + 2p0

I(p
+
c + k+

3 )
])

× δ2(pT
J + qT

J ) δ
(
Y − tanh−1

(
pT
J sinh ηJ + qz

pT
J cosh ηJ + q0

))
, (5.35)

To arrive at Eq. (5.35) we made the change of variables

x1 =
√
τ

z
eY

x2 =
√
τ

z
e−Y . (5.36)
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In switching from x1,2 to z and the total rapidity Y , we will also need that∫
dx1

x1

dx2

x2
=
∫ 1

τ

dz
z

∫ 1
2

ln z
τ

− 1
2

ln z
τ

dY . (5.37)

Now, since there is no dependence on the soft momenta other than on the components pI ·kout and
k+

3 , and the only unconstrained component of p3 is the plus-component, p+
3 , we can integrate over

the other variables to obtain our final expression

dσ
d2pT

J dtanh ηJ dΦq
=

π

E4
cmτ

∫ 1

τ

dz
z

∫ 1
2

ln z
τ

− 1
2

ln z
τ

dY |MB|2Hqq̄→gX({ni, ωi})fq(x1)fq̄(x2)

×
∫

dp+
3 J

g
ω(p+

3 )
∫

dk0
∅

∫
dk+

3 Sqq̄→g(k
0
∅, k

+
3 )δ2(~pT

J + ~qT)

× δ
(
Y − tanh−1

(
pT
J sinh ηJ + qz

pT
J cosh ηJ + q0

))
× δ

[
1− z − 2√

ŝ

(√
τEcm√
ŝ

coshY
(
p+
c + k+

in

)
+ k0
∅

)]
. (5.38)

The soft function in Eq. (5.38) is defined as

Sqq̄→g(k0
out, k

+
3 , {ni}) ≡

1
CACF

〈
0
∣∣T[Y †n2

Y †n3
TAYn3Yn1

]
δ(k+

3 − k̂+
3 )δ
(
k0

out −
pI · k̂out

|pI |
)

×T
[
Y †n1

Y †n3
TAYn3Yn2

]∣∣0〉
= δ(k0

out)δ(k
+
3 ) +O(αs) . (5.39)

Note that, despite our notation, k0
out ≡ pI · kout/|pI | in general has a nonzero spatial component.

This function is most easily computed in the partonic center-of-mass frame where k0
out is in fact

purely timelike. The jet function in Eq. (5.38) is defined as

Jgω(p+)gµν⊥ δ
AB ≡ − ω

2π

∫
d4x eip·x 〈0|Bµ,A

⊥,ω(x)Θ̂R
coll,3B

ν,B
⊥,ω(0) |0〉 = δ(p+)gµν⊥ δ

AB +O(αs) , (5.40)

where, again, the label ω is set to ω = 2EJ = 2pJT cosh ηJ .

4.1.2 qg → q

The majority of the above discussion goes through in much the same way for the channel
qg → q. The main differences are that the matrix element of final state fields gives rise to a quark
jet function, defined by∫

d/4p′3
〈
0
∣∣χc′α′(p′3) Θ̂R

coll,3δ(ηJ − η̂)δ2(pT
J − p̂T)χ̄cα(p3)

∣∣0〉 = δc
′c
(∂/n3

2

)
α′α
Jqω(p3) , (5.41)

which, after integrating over all but the p+ component, becomes

Jqω(p+)δab ≡ 1
2π

∫
d4x eip·x 〈0| n̄/

2
χan,ω(x)Θ̂R

coll,3χ̄
b
n,ω(0) |0〉 = δ(p+)δab +O(αs) . (5.42)
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For the initial state gluon, we obtain the gluon PDF via the relation∫
d/4p d/4p′〈P |B†Aν (p′)BB

µ (p)|P 〉 =
g⊥µν
D − 2

δAB

∫ 1

0

dx
x
fg(x) . (5.43)

Finally, the soft function is defined as in Eq. (5.29) but with the appropriate modification in the
definition of the Wilson lines for incoming and outgoing fields given in Eq. (5.26). The final result
after these differences are taken into account is of the form Eq. (5.38) but with the substitutions
fq̄ → fg, Jg → Jq, and Sqq̄→g → Sqg→q.

4.2 Extension to N Jets

The above results clearly generalize. The only nontrivial complication is due to mixing in
color space. To avoid cumbersome notation, we will explain what generalizes and state the result
rather than write down the N -jet derivation. Explicitly, for every quark, anti-quark and gluon in
the final (initial) state, the all-orders jet function (PDF) has precisely the Dirac and color structure
to contract with the non-QCD matrix element Mαβ...µ...

i to give the Born matrix element at tree
level. The PDFs and jet functions have the same definitions as in the single jet case. However, due
to the fact that operators with different color structures in general mix, the hard and soft functions
in these formulas should be interpreted as matrices in color space.

Since the main difference in the generalization to N jets is in the soft function, we will
discuss it in more detail. It takes the general form

S(k0
out, {ni, k+

i }) ≡
1
N 〈0|O

†
S δ
(
k0

out −
pI · k̂out

|pI |
) N∏

i

δ(k+
i − k̂+

i )OS |0〉 , (5.44)

where N is a normalization factor such that the soft function is unity (times delta functions in its
arguments) at tree level and the operator OS is the product of Wilson lines that arise from the
BPS field redefinitions Eq. (5.25), appropriately traced. As for the one jet case, the arguments ki
in the soft function run over all final state jets and the ni include all directions, both initial and
final. The operators k̂out and k̂i that appear in Eq. (5.44) are defined as

k̂µi ≡ Θ̂R
soft,i i∂

µ

k̂µout ≡
(

1−
N∑
i

Θ̂R
soft,i

)
i∂µ . (5.45)

The result of going through the same steps as for the single jet case leads to the N -jet factorization
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formula,

dσ∏N
i d2pT

Ji
dtanh ηJidΦq

=
1

E4
cmτ

∫ 1

τ

dz
z

∫ 1
2

ln z
τ

− 1
2

ln z
τ

dY |MB|2H({ni, ωi})f1(x1)f2(x2)

×
N∏
i

∫
dp+

i

2·(2π)3
Ji(p+

i )
N∏
i

∫
dk+

i

∫
dk0
∅S(k0

∅, {ni, k+
i })

× (2π)4 δ

[
1− z − 2√

ŝ

(√
τEcm√
ŝ

coshY
N∑
i

(
p+
i + k+

i

)
+ k0
∅

)]

× δ
(
Y − tanh−1

(∑N
i p
⊥
Ji

sinh ηJi + qz∑N
i p
⊥
Ji

cosh ηJi + q0

))
δ2(

N∑
i

~pT
Ji + ~qT) . (5.46)

5 Anomalous dimensions

Now that we have shown that a generic N -jet cross-section factorizes in the limit of
1− z � 1, we are left to calculate each ingredient of the factorization theorem. In this chapter we
focus on the consistency of the factorization theorem to O(αs), and we therefore need the one-loop
anomalous dimensions for the hard, jet and soft functions. Note that the results presented here are
enough to resum threshold logarithms at NLL5.

5.1 Hard, Jet and Parton Distribution Functions

Both the Born-level matrix element and the hard function, which can be found by calcu-
lating the the virtual corrections to the Born-level matrix element in the MS scheme, are process
dependent, so they can not be calculated generically. However, the hard anomalous dimension,
defined as

dH({ni, ωi};µ)
d lnµ

≡ γH ({ni, ωi};µ)H ({ni, ωi};µ) , (5.47)

only depends on the directions ni, label momenta ωi, and color charges Ti of the collinear particles
and is given by [87]

γH({ni, ωi};µ) =
∑

i∈{partons}

(
−Γcusp T2

i ln
µ2

ω2
i

− γi
)
− 2 Γcusp

∑
〈i,j〉

Ti ·Tj ln
ni ·nj

2
. (5.48)

The cusp anomalous dimension at two loops is given by

Γcusp =
αs
π

+
α2
s

4π2

[
CA

(
67
9
− π2

3

)
− 20

9
CFTFnf

]
. (5.49)

The γi to one-loop are given by

γq =
3αs
2π

CF and γg =
αs
2π
β0 , (5.50)

5There are several different ways to define precisely what is meant by NLL. In this chapter, we will use the
convention of [40].
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for quarks and gluons respectively, where β0 is defined as

β0 =
11CA

3
− 2Nf

3
. (5.51)

The sum on 〈i, j〉 is a sum over all distinct pairs of partons i and j for i 6= j.
The quark and gluon jet functions have been calculated previously, e.g.[25, 53, 15], and

were first calculated with a jet algorithm in [116]. Their anomalous dimensions, defined by

dJi(p+
i ;µ)

d lnµ
=
∫ p+

i

0
dp′+i γJi(p

+
i − p′+i ;µ)Ji(p′

+
i ;µ) , (5.52)

are given by

γJi(p
+
i ;µ) =

(
2 Γcusp T2

i ln
µ

ωi
+ γi

)
δ(p+

i )− 2 Γcusp T2
i

1
µ

(
µ

p+
i

)
+

. (5.53)

The expressions for Γcusp and γi are the same as for the hard function. Note that the algorithm in
[116] used a polar angle for the measure and not Eq. (5.12). However, since the anomalous dimension
in that case did not depend on the algorithm parameter R, the result must be independent of
which measure is chosen since the precise definition of the jet boundaries is not associated with any
singularities. It does however affect the finite parts of the jet function, which become important
starting at NNLL accuracy.

It it well known that the parton distribution functions are not perturbatively calculable;
in practice, they can be expressed as universal matrix elements, which are then extracted from
experiment. However, the evolution of the PDFs with µ can be computed,

dfi(xi;µ)
d lnµ

=
αs
π

∫ 1

xi

dz
z
Pij(z)fj

(xi
z

;µ
)
, (5.54)

where the repeated index j is summed over and Pij are the Altarelli-Parisi splitting functions. Near
hadronic threshold, the splitting functions simplify and can be written as

αs
π
Pij(x) =

[
2 Γcusp T2

i

1
(1− x)+

+ γi δ(1− x)
]
δij . (5.55)

5.2 Soft Function

In general, the soft function depends on the null component of the soft momentum inside
each jet as well as the timelike component k0

out. At order αs, the soft function can be written as
a sum of functions that depend only on one momentum variable, with trivial dependence on the
others and is given by

S(k0
out, {ni, k+

i }) = Sout(k0
out)

∏
i∈{jets}

δ(k+
i ) + δ(k0

out)
∑

i∈{jets}

Sin(k+
i )

∏
j∈{jets}
j 6=i

δ(k+
j ) , (5.56)

where the sum over i ∈ {jets} is over all i corresponding to outgoing jets and does not include the
incoming partons (and we remind the reader that the dependence here on ki is only over final state
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jets but the ni run over all initial and final partons). The time-like component of the soft function,
Sout, receives contributions from soft gluons that are not inside any of the outgoing jets. We can
find this by calculating the contribution of soft gluons going anywhere and then subtracting the
contribution from gluons that enter one of the jets. This can be written in the hadronic center-of-
mass frame as

Sout(k0
out) =−

∑
〈i,j〉

Ti ·Tj 2g2µ2ε

∫
ddk

(2π)d
ni ·nj

(ni ·k)(nj ·k)

× 2πδ(k2)δ
(pI ·k
|pI | − k

0
out

)[
1−

∑
k∈{jets}

Θ̂R
soft,k

]
, (5.57)

where Θ̂R
k is the restriction that the gluon is in jet k, defined by a jet algorithm of size R as in

Sec. 3. This is most easily calculated in the partonic center-of-mass frame. Denoting the directions
and energies of the collinear partons in this frame as ñi and ω̃i respectively, we have that

Sout(k0
out) =−

∑
〈i,j〉

Ti ·Tj 2g2µ2ε

∫
ddk

(2π)d
ñi ·ñj

(ñi ·k)(ñj ·k)
2πδ(k2)δ(k0 − k0

out)
[
1−

∑
k∈{jets}

Θ̂R
soft,k

]
,

(5.58)

where we have used the fact that, for an η − φ algorithm, the jet algorithm restrictions are frame
invariant.

The null components of the soft function, Sin(k+
i ), are defined in the hadronic center-of-

mass frame as

Sin(k+
k ) = −

∑
〈i,j〉

Ti ·Tj 2g2µ2ε

∫
ddk

(2π)d
ni ·nj

(ni ·k)(nj ·k)
2πδ(k2)δ(nk ·k − k+

k )Θ̂R
soft,k . (5.59)

In the partonic center-of-mass frame, this can be written as

Sin(k+
k ) = −

∑
〈i,j〉

Ti ·Tj 2g2µ2ε

∫
ddk

(2π)d
ñi ·ñj

(ñi ·k)(ñj ·k)
2πδ(k2)

ωk
ω̃k
δ

(
k+ − ωk

ω̃k
k+
k

)
Θ̂R

soft,k . (5.60)

The calculation of Sin and Sout in the partonic center-of-mass frame can be related to
the calculation of the soft function in [116]. While [116] uses a polar angle measure, we will show
that, even though Sin and Sout separately depend on the parameter R, the anomalous dimension
is R-independent. This implies that all algorithms with the same singularity structure as the polar
angle algorithm used in [116] have the same anomalous dimension for this observable. Specifically,
the anomalous dimension calculated in the partonic center-of-mass frame should be the same for
both a polar angle measure and an η − φ measure. Since the η − φ measure is boost invariant, the
R-indepence of the anomalous dimension must be true in all frames6. The relations of Sin and Sout

to the soft function in [116] are given by
6We have verified this explicitly for small R by making the replacement R → R/cosh η, which relates the polar

angle and η − φ measures in the small R limit.
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Sout(k0
out) = 2

∑
〈i,j〉

d
dΛ

Sincl
ij +

∑
k∈{jets}

Skij


Λ=k0

out

, (5.61)

and

Sin(k+
k ) = 2

∑
〈i,j〉

1
ω̃k
Smeas
ij (τk0 ) . (5.62)

where Sincl
ij , Skij and Smeas

ij are defined and computed in [116]. In calculating Smeas
ij , we use the

definitions τk0 = k+
k /ω̃k and δR = δ

(
τk0 − k+/ωk

)
, where τa and δR are originally defined in [116].

The anomalous dimension of this soft function is defined as

dS(k0
out, {ni, k+

i };µ)
d lnµ

=
∏

i∈{jets}

∫ k+
i

0
dk′+i

∫ k0
out

0
dk′0out γS(k0

out − k′0out, {ni, k+
i − k′+i };µ)

× S(k′0out, {ni, k′+i };µ) . (5.63)

Using the results of [116], together with Eqs. (5.61) and (5.62), the result for the anomalous
dimension can be written as

γS(k0
out, {ni, k+

i };µ) =
∑

i∈{jets}

γSi(k
+
i ;µ)

∏
j∈{jets}
j 6=i

δ(k+
j ) δ(k0

out) + γSout(k
0
out;µ)

∏
i∈{jets}

δ(k+
i ) . (5.64)

with

γSi(k
+
i ;µ) = 2 ΓcuspT2

i

ωi
µ ω̃i

(
µ ω̃i

k+
i ωi

)
+

(5.65)

γSout(k
0
out;µ) = Γcusp

∑
〈i,j〉

Ti ·Tj

(
2 ln

ñi ·ñj
2

)
δ(k0

out)− 4 Γcusp (T2
1 + T2

2)
1
µ

(
µ

2k0
out

)
+

. (5.66)

6 Consistency of Factorization to O(αs)

Consistency is a nontrivial check of our factorization theorem. The factorized cross-section
should be independent of the factorization scale µ in the threshold limit and thus renormalization
group invariant. Starting from the generic N -jet cross-section, Eq. (5.46), ignoring multiplicative
factors that do not affect the derivative, and using the shorthand notation

dσ
d lnµ

≡ d
d lnµ

dσ∏
i d2pT

Ji
dηJidΦq

, (5.67)
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we have that

dσ
d lnµ

∝
∫ 1

τ

dz
z

∫ 1
2

ln z
τ

− 1
2

ln z
τ

dY H({ni, ωi};µ)f1(x1;µ)f2(x2;µ)

×
∏

i∈{jets}

∫
dp+

i Ji(p
+
i ;µ)

∏
i∈{jets}

∫
dk+

i

∫
dk0

outS(k0
out, {ni, k+

i };µ)

×
(

d lnH({ni, ωi};µ)
d lnµ

+
d ln f1(x1;µ)

d lnµ
+

d ln f2(x2;µ)
d lnµ

+
∑

i∈{jets}

d lnJi(p+
i ;µ)

d lnµ
+

d lnS(k0
out, {ni, k+

i };µ)
d lnµ

)

× δ
1− z − 2√

ŝ

√τEcm coshY√
ŝ

∑
i∈{jets}

(p+
i + k+

i ) + k0
out

 . (5.68)

There are several simplifications we can make to check the independence of µ. First, µ only enters
perturbative expressions, and whether or not the cross section depends on µ is independent of non-
perturbative physics. This allows us to use the perturbative definition of the parton distribution
functions. Second, given that the µ dependence of each of the factorization ingredients starts at
order αs, we can use the tree level expressions for the hard, jet and soft functions, as well as for
the PDFs,

fi(x;µ) = δ(1− x) (5.69)
H({ni, ωi};µ) = 1 (5.70)

Ji(p+
i ;µ) = δ(p+

i ) (5.71)

S(k0
out, {ni, k+

i };µ) = δ(k0
out)

∏
i∈{jets}

δ(k+
i ) . (5.72)

Using this and working to lowest order in αs, we can simplify Eq. (5.68) to get

dσ
d lnµ

∝ αs
π
P11(τ) +

αs
π
P22(τ) +

ŝ

2Ecm
√
τ

∑
i∈{jets}

γJi

(
ŝ

2Ecm
√
τ

(1− τ);µ
)

+
ŝ

2Ecm
√
τ

∑
i∈{jets}

γSi

(
ŝ

2Ecm
√
τ

(1− τ);µ
)

+ γH(µ) δ(1− τ)

+

√
ŝ

2
γSout

(√
ŝ

2
(1− τ);µ

)
. (5.73)

After plugging in Eqs. (5.48), (5.53), and (5.64), rescaling the plus functions using the identity(
1
ax

)
+

=
ln a
a
δ(x) +

1
a

(
1
x

)
+

, (5.74)
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and combining the various terms, we find

dσ
d lnµ

∝Γcusp

∑
i 6=j

Ti ·Tj

(
2 ln

ñi ·ñj
ni ·nj

)
+ T2

1 ln
ω2

1

ŝ
+ T2

2 ln
ω2

2

ŝ
+

∑
i∈{jets}

T2
i

(
2 ln

ωi
ω̃i

) . (5.75)

After making the simplification∑
i 6=j

Ti ·Tj

(
2 ln

ñi ·ñj
ni ·nj

)
=
∑
i,j
i 6=j

Ti ·Tj

(
ln
ωi
ω̃i

+ ln
ωj
ω̃j

)
=

∑
i∈{partons}

T2
i

(
−2 ln

ωi
ω̃i

)
, (5.76)

where we have used that p̃i ·p̃j = pi ·pj and
∑

i Ti = 0, Eq. (5.75) gives

dσ
d lnµ

= 0 . (5.77)

This result confirms that our factorization theorem is consistent at hadronic threshold and justifies
using the renormalization group to resum logarithms of 1− τ .

7 Conclusions and Outlook

We have derived a factorization theorem for the production of N jets, together with any
number of non-strongly interacting particles, such as electroweak gauge bosons. This factorization
theorem allows us to write the physical cross-section in terms of a convolution of parton distribution
functions, a hard function, jet functions for each observed jet and a soft function describing among
other things the color recombination between the initial and final state partons. Both the jet and
the soft functions depend on the precise form of the jet algorithm chosen.

The main new ingredient in this factorization theorem is a soft function that depends
on a time-like component of the soft momentum outside of the observed jets, and the light-like
component of the soft momentum in a given jet. This function is directly related to the soft
function first proposed and calculated for the case of jet production in e+e− collisions in [116, 114].
This soft function allows us to interpolate between the soft function arising for final states without
observed jets (which depends only on a time-like component of the soft momentum) and the soft
function for completely inclusive jet production (which depends only on the light-like component
of the soft momentum).

We have derived the UV divergent parts of all ingredients of the factorization theorem to
O(αs). These were then used to show that the combination of all ingredients of the factorization
theorem is independent of the arbitrary factorization scale µ, and therefore the derived results
satisfy the nontrivial requirement of consistency. While consistency was shown in this work only in
the true hadronic endpoint, we have kept the kinematics general enough (in particular allowing for
a nonzero overall boost) to allow for a generalization of our results to the case where the steepness
of the parton luminosities force events to be close to the partonic threshold. This result, which is
by far more interesting phenomenologically, will be the subject of future work [16].

Our results can be used to explicitly resum threshold logarithms to NLL accuracy (in the
log-counting convention of [40]) for any process in hadron collisions with any number of jets and
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non-strongly interacting particles in the final state. The technology of going from the anomalous
dimensions we present here to explicit resummed distributions is well known. Beyond one jet, in
addition to the standard resummation methods, we need the matrices Ti ·Tj , but these have been
computed for many processes (see, e.g., [87, 144, 142, 105, 174, 175]), including all 2 → 2 and
2 → 3 partonic channels. The only other ingredient needed to obtain a NLL distribution is the
Born matrix element.

In addition, if our results are extended to include two-loop results of the anomalous di-
mensions together with the full algorithm-dependent one-loop finite parts, NNLL results can be
obtained for all processes for which the virtual NLO corrections are known. Together with recent
advances in calculations of NLO cross-sections (e.g., W+W−j [65, 103] and Wjjj [46]), this would
have a significant impact on the precision frontier of predictions at the LHC.
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