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Semi-parametric exponential family PCA : Reducing dimensions

via non-parametric latent distribution estimation

Sajama, Alon Orlitsky

{sajama, alon}@ucsd.edu

June 2, 2004

Abstract

Principal component analysis is a widely used technique for dimensionality reduction, but is not
based on a probability model. Many recently proposed dimension reduction methods are based
on latent variable modelling with restrictive assumptions on the latent distribution. We present
a semi-parametric latent variable model based technique for density modelling, dimensionality
reduction and visualization. Unlike previous methods, we estimate the latent distribution non-
parametrically. Using this estimated prior to reduce dimensions ensures that multi-modality is
better preserved in the projected space. In addition, we allow the components of latent variable
models to be drawn from the exponential family which makes the method suitable for special
data types, for example binary or count data. We discuss connections to other probabilistic and
non-probabilistic dimension reduction schemes based on gaussian and other exponential family
distributions. Simulations on real valued, binary and count data show favorable comparison to
other related schemes both in terms of separating different populations and generalization to
unseen samples.

Keywords

Dimensionality reduction, Latent variables, Non-parametric prior estimation, Constrained mix-
ture model, Exponential family, Principal components, Visualization, Clustering.

1 Introduction

Many machine learning applications involve high-dimensional data sets. Representing this high-
dimensional data in lower-dimensional space is a pre-processing step performed before learning
to classify the data or to discover structure in it. The reasons for reducing dimensions include
difficulty of estimating densities and computational complexity of learning classifiers in high
dimensions. Also, visualization requires representation in two or three dimensions.

Principal component analysis (PCA) is a widely used dimensionality reduction technique.
Several of the proposed extensions/alternatives to PCA fall into one or more of the following
three categories

• Alternatives based on approximating the data density by low dimensional probability mod-
els

• Extensions to deal with special data types for example binary or count data
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• Non-linear alternatives which find a low dimensional non-linear manifold passing close to
the data

In this paper, we concentrate on the first two categories and present a linear probabilistic
dimensionality reduction technique called semi-parametric PCA (SP-PCA in short) which im-
proves over some recently proposed alternatives to PCA. A common thread among many of these
alternatives to PCA is that they are based on latent variable modelling which is commonly used
in statistics to summarize observations [BK99]. A latent variable model assumes that the dis-
tribution of data is determined by a latent or mixing distribution P (θ) and a conditional or
component distribution P (x|θ), i.e., P (x) =

∫

P (θ)P (x|θ)dθ. In the discussion that follows,
we present PCA and its extensions in the latent variable framework and motivate the need for
SP-PCA.

PCA finds a lower dimensional space that minimizes
∑

i ||xi − θi||
2, the sum of squared

distances from data xi to their projections θi. In a quasi-probabilistic interpretation of PCA,
each point xi is thought of as a random draw from some unknown distribution P (x|θ), where
P (x|θ) denotes a unit Gaussian with mean θ ∈ R

d [CDS02]. Then, PCA can be thought of as
finding a set of parameters θ1, . . . ,θn that maximize the likelihood of the data subject to the
constraint that the parameters lie in a lower dimensional subspace.

Note that this interpretation does not mean that PCA is associated with a probability model,
since the parameters θi are assumed to be drawn arbitrarily from the subspace and not according
to any distribution. A probabilistic formulation of PCA can offer several advantages like allow-
ing statistical testing, application of Bayesian inference methods and naturally accommodating
missing values [TB99].

Probabilistic PCA (PPCA) is an alternative to PCA based on the factor analysis model
[TB99, Row98]. In this model, data is assumed to be generated by the following two step process.
First a latent variable, θ, is drawn according to the prior or latent distribution P (θ), which is
constrained to a lower dimensional Euclidean subspace of the data space. This models the belief
that data is intrinsically low-dimensional. Then the observed data x is generated by adding a
spherical gaussian noise to θ, i.e., the conditional distribution P (x|θ) is assumed to be Gaussian.

A key feature of PPCA is that the latent distribution P (θ) is also assumed to be a single
Gaussian since it leads to simple and fast model estimation. This means that the density of
x is approximated by a Gaussian distribution whose covariance matrix is aligned along a lower
dimensional subspace. This may be a good approximation when data is drawn from a single
population and the goal is to explain the data in terms of a few variables. However, in machine
learning we often deal with data drawn from several populations and PCA is used to reduce
dimensions to control computational complexity of learning. A mixture model with Gaussian
latent distribution would not be able to capture this information. Also, dimension reduction
is often used to visualize data, where the goal is to understand the data structure and detect
the presence of sub-populations belonging to the same class. The projection obtained using
a Gaussian latent distribution tends to be skewed toward the center [TB99] and hence the
distinction between nearby sub-populations may be lost in the visualization space. For these
reasons, it is important not to make restrictive assumptions about the latent distribution.

We present an alternative probabilistic formulation where no assumptions are made about
the distribution of the latent random variable θ, i.e., we estimate the latent distribution non-
parametrically. Non-parametric latent distribution estimation allows us to approximate data
density better than other existing methods and hence gives better low dimensional representa-
tions. In particular, multi-modality of the high dimensional density is better preserved in the
projected space. We argue that even when the ‘true’ density of x is far from the model space,
this method captures as much of the structure of observed data density as possible in the low
dimensional space. When the observed data is composed of several clusters, this technique can
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be viewed as performing simultaneous clustering and dimensionality reduction.
To make our method suitable for special data types, we allow the conditional distribution

P (x|θ) to be any member of the exponential family of distributions. Use of exponential family
distributions for P (x|θ) is common in statistics where it is known as latent trait analysis. It has
also been used in several dimensionality reduction schemes [Tip99, BSW98, KG01, CDS02].

One possible way to estimate the P (θ) non-parametrically would be to assume that it belongs
to a class of parametric distributions which is dense in the space of all distributions over the
latent space. For example, we can approximate P (θ) by a mixture of Gaussians. However,
using even a single Gaussian as prior requires use of monte-carlo techniques for model estimation
when P (x|θ) is not Gaussian, for example Bernoulli. Instead, we use Lindsay’s non-parametric
maximum likelihood estimation theorem to reduce the estimation problem to one with a large
enough discrete prior. It turns out that this choice gives us a prior which is ‘conjugate’ to all
exponential family distributions, allowing us to give a simple unified algorithm for all data types.
This choice also makes it possible to efficiently estimate the model even in the case when different
components of the data vector are of different types.

We present examples demonstrating the properties of semiparametric latent variable models
with Gaussian conditional density and compare it to PCA and PPCA [TB99]. We also present
simulation results on binary and count data which show that estimating the prior from data
(instead of assuming a parametric form) can improve the quality of low dimensional projections
both in terms of separating different populations and generalization to unseen samples. These
properties, along with the fact that our algorithm remains computationally efficient for moderate
values of projected space dimension, indicate that the method is suitable for general purpose
projection in the pre-processing stage.

This report is organized in the following manner. Section 2.1 describes the probability model.
In Sections 2.2 and 2.4 we describe how to use the model to get low dimensional representations
and use it for data analysis and visualization. In Section 4 we discuss the consistency of maximum
likelihood (ML) estimator for our model and derive an EM algorithm for ML estimation. Section
5 discusses how SP-PCA relates to past work and Section 6 presents simulation results comparing
our work with some previously proposed methods. Section 7 contains conclusions and discussion
of possible future work.

2 Semi-parametric PCA

2.1 The constrained mixture model

We assume that the d-dimensional observation vectors x1, . . . ,xn are outcomes of iid draws
of a random variable whose distribution P (x) =

∫

P (θ)P (x|θ)dθ is determined by the latent
distribution P (θ) and the conditional distribution P (x|θ). This can also be viewed as a mixture
density with P (θ) being the mixing distribution, the mixture components labelled by θ and
P (x|θ) being the component distribution corresponding to θ.

The latent distribution is used to model the interdependencies among the components of x

and the conditional distribution to model ‘noise’. For example in the case of a collection of
documents we can think of the ‘content’ of the document as a latent variable since it cannot
be measured. For any given content, the words used in the document and their frequency may
depend on random factors - for example what the author has been reading recently, and this can
be modelled by P (x|θ).

Conditional distribution P (x|θ): We assume that P (θ) adequately models the depen-
dencies among the components of x and hence that the mixture components are independent
when conditioned upon θ, i.e., P (x|θ) = ΠjP (xj |θj), where xj and θj are the j’th components of
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x and θ. As noted in the introduction, using Gaussian means and constraining them to a lower
dimensional subspace of the data space is equivalent to using Euclidean distance as a measure
of similarity. This Gaussian model may not be appropriate for other data types, for instance
the Bernoulli distribution may be better for binary data and Poisson for integer data. These
three distributions, along with several others, belong to a family of distributions known as the
exponential family [MN83]. Any member of this family can be written in the form

log P (x|θ) = log P0(x) + xθ − G(θ)

where θ is called the natural parameter and G(θ) is a function that ensures that the probabilities
sum to one. An important property of this family is that the mean µ of a distribution and its
natural parameter θ are related through a monotone invertible, nonlinear function µ = G′(θ) =
g(θ). It can be shown that the negative log-likelihoods of exponential family distributions can
be written as Bregman distances (ignoring constants) which are a family of generalized metrics
associated with convex functions [CDS02]. Note that by using different distributions for the
various components of x, we can model mixed data types.

Latent distribution P (θ): Like previous latent variable methods, including PCA, we con-
strain the latent variable θ to an ℓ-dimensional Euclidean subspace of R

d to model the belief that
the intrinsic dimensionality of the data is smaller than d. One way to represent the (unknown)
linear constraint on values that θ can take is to write it as an invertible linear transformation of
another random variable which takes values a ∈ R

ℓ,

θ = aV + b (1)

where V is an ℓ× d rotation matrix and b is a d-dimensional displacement vector. Hence any
distribution PΘ(θ) satisfying the low dimensional constraints can be represented using a triple
(P (a), V,b), where P (a) is a distribution over R

ℓ.
Lindsay’s mixture non-parametric maximum likelihood estimate (NPMLE) theorem states

that for fixed (V ,b), the maximum likelihood (ML) estimate of P (a) exists and is a discrete

distribution with no more than n distinct points of support [Lin83]. Hence if ML is the chosen
parameter estimation technique, our model can be assumed (without loss of generality) to be a
constrained finite mixture model with at most n mixture components. The number of mixture
components in the model, n, grows with the amount of data and so does the computation required
for model estimation (see Section 4.1.2). One way to address this problem is to start with c = n
and eliminating or merging components as the estimation procedure proceeds (Section 4.1.1).
Also, it is often sufficient to start with c ≪ n since the distribution of the mixture component
parameters along the hyperplane is used to capture the multi-modality and spread (or variance)
of the density of X. The number of centers needed to get a good approximation will depend on
how complex the distribution of X is or alternatively how much of the complexity we want to
capture. For example, if all we want to do is separate out different populations, we do not need to
approximate the variance of each population along the hyperplane very well. Use of small c also
leads to better generalization. Finally, we note that instead of the natural parameter, any of its
invertible transformations could have been constrained to a lower dimensional space. Choosing
to linearly constrain the natural parameter affords us computational advantages similar to those
available when we use the canonical link in generalized linear regression.

2.2 The low dimensional representation

There are several ways in which low-dimensional representations can be obtained using the con-
strained mixture model.
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If the distribution of x is a constrained mixture density described above, we would ideally
like to represent a given observation x by the unknown θ (or the corresponding a related to θ

by Equation (1)) that generated it, since the conditional distribution P (x|θ) is used to model
random effects. However, the actual value of a is not known to us and all of our knowledge of a

is contained in the posterior distribution

P (a|x) =
P (a)P (x|a)

P (x)

Since P (x|a) =
∏d

j=1 P0(xj) exp(xjθj − G(θj)), where θj = bj + a1V1j + . . . + aLVℓj , we can
write the posterior as

P (a|x) =
exp(

∑d
j=1 xjθj −

∑d
j=1 G(θj))

∫

a
P (θ) exp(

∑d
j=1 xjθj −

∑d
j=1 G(θj))

Since a belongs to an ℓ-dimensional space, any of its estimators like the posterior mean or
mode (MAP estimate) can be used to represent x in ℓ dimensions. For presenting the simulation
results in this paper, we use the posterior mean as the representation point. This representation
has been used in other latent variable methods to get meaningful low dimensional views [TB99,
Tip99, KG01].

Note that the distribution P (a|x) depends on x only through

d
∑

j=1

xjθj =
ℓ

∑

l=1

al

d
∑

j=1

xjVlj

Hence x can also be represented [BK99] by the ℓ-dimensional minimal sufficient statistic

{
d

∑

j=1

xjV1j , . . . ,
d

∑

j=1

xjVℓj}

Yet another method is to represent x by that point θ on (V, b) that is closest according to
the appropriate Bregman distance (it can be shown that there is a unique such θopt on the plane
[CDS02]). For the Gaussian case, this representation is the usual Euclidean projection.

2.3 Reference vectors view

Dimension reduction using this model can be viewed as a ‘reference vectors’ based method. In
this view, each θi acts as a reference vector and using ML estimation to find the distribution
P (θ), is a natural way to find the appropriate locations and relative weights (importance) for θi’s.
In the estimation process, the reference vectors are moved around so that they cluster toward
the ‘centers’ of data clusters and the subspace on which they lie is moved as close as possible to
the data. The posterior mean representation is the weighted average of these reference vectors
where the weights are determined by how ‘far’ x is from each of them. Hence, we expect SP-PCA
to generate meaningful projections even when data is not generated according to a constrained
mixture model.

2.4 Visualization and data analysis

SP-PCA can be used in several ways to visualize high dimensional data. Firstly, the projections
using posterior mean can reveal presence of clusters. Secondly, a topographic (contour) map of
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the posterior induced by data point x will reveal which sections of the projected space (sub-
populations) it is close to in the appropriate Bregman divergence sense. If natural parameter
vectors of two exponential family distributions are close to each other, then so are the correspond-
ing mean parameters, since g, the one-one invertible function map between these two parameter
spaces is typically continuous. This means that if representations of two data points are close
to one another in the projected space, then so are the data points in some directions. Also,
plotting the estimated prior P̂ (θ) will indicate clusters or reveal multi-modality in the pdf of
X and examining the parameter values corresponding to these modes will reveal distinguishing
characteristics of the clusters. However the actual values of the mixture parameters may not pass
close to data points if P (θ) is not concentrated along some hyperplane of dimension ℓ.

3 The Gaussian case

When the exponential family distribution chosen is Gaussian, the model is a mixture of n spherical
Gaussians, with a fixed variance σ, all of whose means lie on a hyperplane in the data space.
This can be thought of as a ‘soft’ version of PCA, i.e., Gaussian case of SP-PCA is related to
PCA in the same manner as Gaussian mixture model is related to K-means. The use of arbitrary
mixing distribution over the plane allows us to approximate arbitrary spread of data along the
hyperplane (see Fig. 1). Use of fixed variance spherical Gaussians ensures that like PCA, the
direction perpendicular to the plane (V, b) is irrelevant in any metric involving relative values of
likelihoods P (x|θk), including the posterior mean. To see why this is the case, consider xp, the
point on the hyperplane (V, b) closest to x. Now, P (x|θk) ∝ exp(−{||x,xp||

2 + ||xp, θk||
2}/2σ2)

and for a fixed x, the factor involving ||x,xp||
2 is common to all θk’s on the hyperplane (V, b)

and hence cancels out.

Figure 1: Subspace aligned variance approximated by clustered but slightly spread out mixture
component mean parameters ⊗

When using SP-PCA as a low-dimensional density model, σ should be assumed to be unknown
and estimated using ML along with other parameters of the model. When SP-PCA is being used
only to project data into a lower dimensional space, we noticed that assuming a reasonable fixed
variance (a few times the minimum distance between data points) worked well.

Consider the case when data density P (x) belongs to our model space, i.e., it is specified
by {A, V, b, Π, σ} and let D be any direction parallel to the plane (V, b) along which the latent
distribution P (θ) has non-zero variance. Since Gaussian noise with variance σ is added to this
latent distribution to obtain P (x), variance of P (x) along D will be greater than σ. The variance
of P (x) along any direction perpendicular to (V, b) will be exactly σ. Hence, PCA of P (x) yields
the subspace (V, b) which is the same as that obtained using SP-PCA. This may not be true when
P (x) does not belong to our model space and we found that SP-PCA differs significantly from
PCA and PPCA in the nature of low dimensional representations obtained using the estimated
prior (see Section 6).
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4 Model estimation

4.1 Algorithm for ML estimation

Given n iid samples of a d-dimensional random variable X, we derive an EM algorithm for esti-
mating parameters of a finite mixture model with the components constrained to an ℓ-dimensional
Euclidean subspace. Let c be the number of components of the finite mixture and let the mixing
density be Π = (π1, . . . , πc). Associated with each mixture component (indexed by k) is a param-
eter vector θk and ak which are related by θk = akV + b. In this section we will work with the
assumption that all features Xj correspond to the same exponential family for ease of notation.

Let A be an c× ℓ matrix whose k’th row is ak, B be an c×d matrix all of whose rows equal b

and Θ be an c×d matrix whose k’th row is θk. Hence we can rewrite Equation 1 as Θ = AV +B.
Our model is parametrized by {Π, A, V, B}. As in the case of usual (unconstrained) finite mixture
model estimation, we introduce a ‘missing’ variable Z for use in EM derivation. For each observed
xi there is an unobserved zi, a c-dimensional binary vector whose k’th component is one if the
k’th mixture component was the outcome in the i’th random draw and zero otherwise. Writing
the complete data log likelihood function,

log P (xn
1 , zn

1/Π, A, V, B) =
n

∑

i=1

P (xi, zi/Π, A, V, B)

=
n

∑

i=1

c
∑

k=1

zik log πk +
n

∑

i=1

c
∑

k=1

d
∑

j=1

zik log P (xij/θkj)

The E-step is identical to unconstrained finite mixture case,

ẑik = E(zik) =
πkP (xi/θk)

∑c
m=1 πmP (xi/θm)

, for k = 1, . . . , c and i = 1, . . . , n

In the M-step we need to update all the parameters Π, A, V and B. The maximizing value of
Π is independent of other parameters and is given by

πk =

∑n
i=1 ẑik

∑n
i=1

∑c
m=1 xim

=

∑n
i=1 ẑik

n

A, V and b should be updated in such a way as to strictly increase the value of the function
ℓ or equivalently of L̃ given by

L(A, V,b) =
n

∑

i=1

c
∑

k=1

d
∑

j=1

ẑik{xijθkj − G(θkj)}

L̃(A, V,b) =
c

∑

k=1

d
∑

j=1

{θkj x̃kj − G(θkj)}

where,

x̃kj =

∑n
i=1 ẑikxij

∑n
i=1 ẑik

To optimize L̃(A, V,b), we could use alternating minimization (similar to the algorithm in
[CDS02]) since the function to be optimized is convex in each element of the matrices A, V and b.
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However, for the sake of speed, we propose an iterative weighted least squares method along the
lines of Generalized linear models [MN83], i.e., we apply the Newton-Raphson (NR) procedure
to find zeros of the derivative of L̃(A, V,b). Use of NR does not guarantee monotone increase
in the value of L̃. However, L̃ always increases locally in the direction in which NR moves the
parameters and so we can move in small steps whenever NR stepping leads to a decrease in L̃.
Upon taking the first and second derivatives with respect to the components of the matrix A, it
turns out that each row can be updated independently of the others in a given iteration. This
decoupling is convenient since it means smaller matrix operations. (Derivation of the NR update
equations is shown in Appendix A). Similarly, we find that each column of V and each dimension
of b can be updated independently.

Each row of A, ai, is updated by adding δai calculated using

(V ΩiV
′)δai = GRi

where the d × d diagonal matrix Ωi, and the ℓ × 1 matrix GRi are given by,

[Ωi]qq =
∂g(θiq)

∂θiq

[GRi]l1 =
d

∑

j=1

(x̃ij − g(θij))Vlj

Each column of the matrix V , vs, is updated by adding δvs obtained by solving

(A′ΩsA)δvs = GRs

where the c × c diagonal matrix Ωs, and the ℓ × 1 matrix GRs are given by,

[Ωs]kk =
∂g(θks)

∂θks

[GRs]l1 =
c

∑

k′=1

(x̃k′s − g(θk′s))Ak′l

Each column of the row matrix b, bs, is updated by adding δbs obtained by solving

Hsδbs = GRs

where the 1 × 1 matrices Hs and GRs are given by

Hs =
c

∑

k′=1

∂g(θk′s)

∂θk′s

GRs =
c

∑

k′=1

(x̃k′s − g(θk′s))
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4.1.1 Pruning the mixture components

Redundant mixture components can be pruned between the EM iterations in order to improve
speed of the algorithm and generalization properties while retaining the full capability to approx-
imate P (x). We propose the following criteria for pruning

• Starved components : If πk < C1, then drop the k’th component

• Nearby components : If max
i |P (xi|θk1) − P (x|θk2)| < C2, then drop either k1’th or k2’th

component

The value of C1 should be Θ(1/n) since we want to measure how starved a component is based
on what percentage of the data it is ‘responsible’ for. To measure the nearness of components
we use the distance of between probabilities the components assign to observations. If we were
working with mixture of Gaussians, we could have used the usual distance between mixture
component parameters. However, for general exponential family distributions, the Euclidean
distance between two components does not accurately reflect the difference in the distributions
that they represent. For example, for Bernoulli distributions with natural parameter θ, θ = 1000
is practically identical to θ = 10000 whereas θ = 0 is significantly different from θ = 1. The
∞-norm of the difference between probability vectors is used instead of its two-norm since we do
not want to lose mixture components that are distinguished with respect to a small number of
observation vectors. In the case of clustering this means that we do not ignore under-represented
clusters. C2 should be chosen to be a small constant, depending on how much pruning is desired.

4.1.2 Convergence of the EM iterations and computational complexity

It is easy to verify that our model satisfies the continuity assumptions of Theorem 2, [Wu83],
and hence we can conclude that any limit point of the EM iterations is a stationary point of the
log likelihood function.

Time taken for the E-step is O(cdn) since for each data vector x and component θ we need
to compute P (x|θ) which is a product of d univariate densities. In the M-step, each update
of the parameter vector (A, V,b) involves computing the hessian matrices and then inverting
them. Using naive matrix multiplication and inversion, the time taken is O(cdℓ2). Hence the
computational complexity of each iteration of the EM algorithm is O(cdℓ2 + cdn).

For the Gaussian case, the E-step only takes O(cℓn) since we only need to take into account
the variation of data along the subspace given by current value of V (as explained in Section 3).
The most expensive step is computation of P (xi|θj), and this is a common problem faced in neural
network training. [Omo87] gives a procedure for speeding up this computation using the k-d
tree data structure by identifying relevant prototypes (for each x) thereby avoiding unnecessary
computation.

4.1.3 Model selection : Choosing the dimension of projected space

In the derivation of the estimation algorithm, we assumed that ℓ, the dimension of representation
space, is a known and fixed input. While any of the standard model selection methods based on
penalizing complexity could be used to choose ℓ, an alternative reasonable method is to pick ℓ
which minimizes a validation or bootstrap based estimate of the prediction error (negative log
likelihood per sample). For the Gaussian case, a fast method to pick ℓ would be to plot the
variance of data along the principal directions (found using PCA) and look for the dimension
at which there is a ‘knee’ or a sudden drop in variance or where the total residual variance falls
below a chosen threshold.
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4.2 Consistency of the Maximum Likelihood estimator

We propose to use the ML estimator to find the latent space (V, b) and the latent distribution
P (a). Usually a parametric form is assumed for P (a) and the consistency of the ML estimate is
well known for this task where the parameter space is a subset of a finite dimensional Euclidean
space. In our model, one of the parameters P (a) ranges over the space of all distribution functions
on R

ℓ and hence we need to do more to verify the validity of our estimator.
Before defining consistency, one issue we need to address is the non-identifiability of some

mixture distributions. Consider a parametric family of cumulative distribution functions, F =
{F (x/γ), γ ∈ Γ} (parameter γ takes values in the parameter space Γ). The elements of Γ are
said to be identifiable if ∀ γ 6= γ′, ∃ x s/t F (x/γ) 6= F (x/γ′). Exponential family mixture
distributions are not identifiable in general (for an example see [CPR00]). This, however, is not
a problem for us since we are only interested in approximating P (x) well and not in the actual
parameters corresponding to the distribution. Hence we use the definition of consistency of an
estimator given by Redner [Red81].

Let γ0 be the ‘true’ parameter from which observed samples are drawn. Let C0 be the set
of all parameters γ corresponding to the ‘true’ distribution F (x/γ0) (i.e., C0 = {γ : F (x/γ) =
F (x/γ0) ∀ x}). Let γ̂n be an estimator of γ based on n observed samples of X and let Γ̂ be the
quotient topological space obtained from Γ obtained by identifying the set C0 to a point γ̂0.

Definition. The sequence of estimators {γ̂n, n = 1, . . . ,∞} is said to be strongly consistent in

the sense of Redner if limm→∞ γ̂n = γ̂0 almost surely.

The following result follows by verifying that the assumptions of Kiefer and Wolfowitz [KW56]
are satisfied by our model.

Theorem. If P (a) is assumed to be zero outside a bounded subset of R
ℓ, the ML estimator

of parameter (V, b, P (a)) is strongly consistent for Gaussian, Binary and Poisson conditional

distributions.

The proof details are given in Appendix B. The assumption that P (a) is zero outside a
bounded region is not restrictive in practice for Gaussian and Poisson distributions, since we
expect the observations belong to a bounded region of R

d. For the Bernoulli distribution, as we let
θ → +∞, the corresponding mean parameter µ → 1 slower and slower (similarly with θ → −∞).
Hence if we take the subset to be large enough, there is no restriction within computing precision.

5 Relation to past work

SP-PCA is a factor model that makes fewer assumptions about latent distribution than PPCA.
Mixtures of probabilistic principal component analyzers (also known as mixtures of factor ana-
lyzers) is a generalization of PPCA which aims to overcome the limitation of global linearity of
PCA via local dimensionality reduction. Mixtures of SP-PCA’s can be similarly defined and used
for local dimensionality reduction.

Tipping [Tip99] proposes a binary data visualization technique based on a latent trait model.
This model is similar to PPCA in that it assumes that the latent distribution is Gaussian.

Collins et. al. [CDS02] proposed a generalization of PCA using exponential family distribu-
tions. Like PCA, this generalization is not associated with a probability density model for the
data. SP-PCA with conditional distributions drawn from the exponential family can be thought
of as a ‘soft’ version of this generalization of PCA.

Non-negative matrix factorization [LS00] is another non-probabilistic generalization of PCA
for special data types in which the mean parameters of exponential family distributions are
constrained to a lower dimensional subspace and no distribution is assumed over the latent space.
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Probabilistic latent semantic indexing [Hof99] is a dimension reduction method based on
a latent class model. In contrast with most methods we have discussed, in PLSI the latent
distribution is not constrained to a lower dimensional subspace, but is instead constrained to be
discrete over ℓ points, when the objective is to reduce data dimension to ℓ.

Generative topographic mapping (GTM) is a probabilistic alternative to Self organizing map
(SOM) which aims at finding a nonlinear lower dimensional manifold passing close to data points.
An extension of GTM using exponential family distributions to deal with binary and count data
is described in [BSW98, KG01]. Apart from the fact that GTM is a non-linear dimensionality
reduction technique while SP-PCA is globally linear like PCA, one main feature that distinguishes
the two is the choice of latent distribution. GTM assumes that the latent distribution is uniform
over a finite and discrete grid of points. Both the location of the grid and the nonlinear mapping
are to be given as an input to the algorithm.

Tibshirani [Tib92] defined a semi-parametric latent variable model for estimation of principle
curves. Unlike SP-PCA, the mixing density was not constrained to lie in a subspace, only
Gaussian mixture components were considered and each Gaussian component was allowed to
have arbitrary covariance matrix. This method makes no assumptions/restrictions on the the
relative positions of the mean parameters of the Gaussian components and hence there is no
topographic ordering on the mixture component mean parameters obtained at the end of model
estimation. Hence, this method cannot be used to reduce dimensions when data is in more than
three dimensions and a reasonable ordering of component means cannot be visually determined.

6 Experiments

In this section we present simulations on synthetic and real data to demonstrate the properties
of SP-PCA. In factor analysis literature, it is commonly believed that choice of prior distribution
is unimportant for the low dimensional data summarization (see [BK99], Sections 2.3, 2.10 and
2.16). Through the examples below we argue that estimating the prior instead of assuming
it arbitrarily can make a difference both when we use the low dimensional representation for
visualization/data analysis and also when we plan to use distances between points in the low
dimensional space to measure similarity of data.

We present three sets of experiments. In the first set, we use synthetic two dimensional data
to illustrate the properties of the Gaussian case of SP-PCA and compare it with PCA and PPCA.
The second set of experiments over the Tobamovirus data set [Rip96] include a comparison of the
predictive power of PPCA and SP-PCA. The third set consist of simulation results on binary and
count data using the Bernoulli and Poisson cases of SP-PCA and comparison with exponential
family PCA [CDS02] and with the exponential family version of GTM [KG01].

6.1 Illustrative examples of synthetic two dimensional data

In all the figures in this section, .’s represent data points and +’s represented projected points.
To show the estimated constrained finite mixture model, we use straight lines located at the
component parameters θi or ai, and the height of the lines corresponds to the component weights
πi. For each of the examples in this subsection, the low dimensional projections obtained using
PPCA [TB99] were indistinguishable from PCA and hence we present only PCA and SP-PCA
results.

6.1.1 Simultaneous clustering and dimension reduction

Mixture modelling is commonly used for clustering, for example Gaussian mixture estimation is
often used as a ‘soft’ alternative to K-means. Even when the mixture means are constrained to
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lie in a lower dimensional subspace, they tend to collect into groups corresponding to the clusters
(when present). For this reason, our model performs simultaneous clustering and dimensionality
reduction.

The first example is a mixture of two unit variance, symmetric Gaussians. Fig. 2 shows the
projection of this two-dimensional data with two clusters onto a one-dimensional subspace. Note
that the component means are clustered near the centers of the two clusters and that each cluster
in the projection using PCA is more spread out than in the projection using SP-PCA.
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(c) PCA projection

Figure 2: Projection of samples drawn from a mixture of two spherical Gaussian densities.

In the second example, Fig. 3, we have a mixture of three Gaussians whose means do not lie
on a one-dimensional plane. Also, two of the three clusters are close to each other. Even though
projection using PCA preserves multi-modality in the lower dimensional space, the separation is
better visualized in the projection using the SP-PCA.

It is possible that the SP-PCA model corresponding to parameters at a local maximum of the
likelihood function clearly shows all clusters in the data while the global maximum does not. This
is illustrated in Fig. 4 where a model with lower likelihood yields a much better view than the
model with higher likelihood shown in Fig. 3(a). We observed this phenomenon in simulations
on real data sets as well.
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(a) Projection using SP-PCA reveals 3 clusters
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(b) Projection using PCA reveals only 2 clusters

Figure 3: Visual identification of clusters easier with SP-PCA projection than with PCA
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Figure 4: Projection using a local maximum of the likelihood surface may provide better view
than the global maxima

6.1.2 Density aware nature of projection using SP-PCA

Now we consider more complex examples when the presence of multi-modality in the density of
data is not obvious to human eye. In the first example (Fig. 5), we consider a mixture of two
unit variance clusters which are close to one another. The data and its projection using SP-PCA
is shown in Fig. 5(a). Fig. 5(b) shows the estimated parameters θk, where the height of the red
lines is πk, the weight of each component, and the location of the lines in the x-y plane is the
mean parameter of the component gaussian. Fig. 5(b) shows the estimated mixture component
parameters ak and the projection of data in the latent space.

The density of projected data using SP-PCA (Fig. 5(d)) makes the presence of the two
clusters clear and we see that the two clusters are separated by a low-density region. Hence SP-
PCA projection summarizes the density of data and removing noise simultaneously with reducing
dimensions.

13



1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

(a) SP-PCA projection

0

2

4

6

8

10

−2

0

2

4

6

8

0

0.005

0.01

0.015

0.02

0.025

0.03

(b) Estimated latent prior in data space

−1 −0.5 0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

(c) Estimated mixing distribution and projected data in
latent space

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(d) Density of data projected using SP-PCA

1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

(e) Projection using PCA

−4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(f) Density of data projected using PCA

Figure 5: Two nearby unit-variance clusters
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Table 1: Bootstrap estimates of prediction error for PPCA and SP-PCA.

Density Isotropic Diagonal PPCA SP-PCA Full

gaussian gaussian ℓ=1 ℓ=2 ℓ=3 ℓ=1 ℓ=2 ℓ=3 gaussian

Error 50.39 34.37 38.03 34.71 34.76 36.85 30.99 28.54 343.83

The second example (Fig. 6) uses data drawn from a mixture of two clusters which are close
and have unequal variance (one cluster is unit Gaussian while the other has variance two along
both axes). We observe that the latent distribution (Fig. 6(b)) is no longer clustered at the
centers of the two clusters. The density of projected data using SP-PCA (Fig. 6(d)) indicates
presence of two clusters, one much more spread out than the other, whereas the density of PCA
projection shows just one widely spread mass of data.

6.2 Experiments with the Tobamovirus data

The Tobamovirus data [Rip96] consists of 38 examples and is 18-dimensional. It was used in
[TB99] to illustrate properties of PPCA.

6.2.1 Missing data

A latent variable model estimated using the EM algorithm is naturally suited to deal with missing
data. Missing data was simulated by randomly removing each value in the data set with probabil-
ity 20%. Fig. 7(a) shows the direct projection of data on the subspace found using full data (this
is similar to the PCA subspace projection which is not included for this reason). The projection
obtained using missing data, Fig. 7(b), retains all the main features of PCA projection.

6.2.2 Predictive power

PPCA and SP-PCA can be thought of as density models of data. The densities defined by
PPCA with lower dimension ℓ between 1 and the data dimension d can be thought of as models
of intermediate complexity between an isotropic gaussian model and a Gaussian model with
full covariance matrix. For data sets with small number of examples, the predictive error of a
Gaussian model with full covariance matrix is likely to be high because of over fitting and that of
an isotropic model may also be high since it is a very simple model. Hence Tipping and Bishop
propose using PPCA as a means of controlling the degrees of freedom of the density model.
SP-PCA also provides a range of density models with increasing complexity. For a fixed lower
dimension ℓ, the density model of SP-PCA is more complex than that of PPCA.

In Table 1, we present bootstrap estimates of the predictive power of PPCA and SP-PCA
for various values of ℓ. SP-PCA has lower prediction error than PPCA for ℓ = 1, 2 and 3.
This indicates that SP-PCA has excellent generalization properties even when trained on a small
amount of data.

6.3 Simulation results on discrete datasets

We performed simulations on a synthetic binary dataset and the 20 Newsgroups dataset (both
binary and count data). Initialization of the matrices V and b was done randomly. In initialization
of A it is important that the points ai were spread out well on the plane. This can mean different
things for different members of the exponential family, but we found that a uniform grid works
well for Binary and Poisson distributions. While picking A we ensured that each component of a

was bounded so that eθ is neither too large nor too small. This is because the canonical link g(θ)
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(f) Density of data projected using PCA

Figure 6: Two nearby clusters - one cluster has twice the variance of the other along each axes
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(a) Projection using full data
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(b) Projection with 130 missing values

Figure 7: Missing data

is a function of eθ for the Binary and Poisson distributions. The iterations in M-step were not
carried out until convergence since this is not necessary to ensure convergence to a local maxima
(GEM algorithm). We did not use early stopping for improving model generalization for our
simulations (though this will be useful when using the SP-PCA in applications).

We implemented Bernoulli and Poisson GTM and used simple gradient descent for opti-
mization as suggested in [KG01]. We observed that random initialization of exponential GTM
estimation often lead to poor projections of data while PCA-based initialization of the parameter
matrix worked well.

We also implemented Exponential family PCA proposed by Collins et. al. [CDS02] and
used iterative weighted least squares for optimizing the loss function defined in the paper. We
observed that the problem of convergence of some representation points yi’s to a point at infinity
often occurs and used the conjugate prior method proposed in the paper to prevent this from
happening.

It is possible to encounter a similar problem in SP-PCA - convergence of ai’s to a point
at infinity. However we cannot assume a conjugate prior on the mixture components in our
scheme as it will destroy the non-parametric nature of prior assumption. We note that this is
not a problem practically for the Poisson case since the counts we observed are finite and so
are the means (irrespective of the responsibilities calculated in the E-step). A problem would
arise if a component of V continually decreases and the corresponding component of A increases
while keeping the mean bounded. However, we did not see this occur in our simulations. In the
case of Bernoulli distribution, the mean and natural parameter are related by µ = eθ

1+eθ , and
if the optimal value of a parameter µ is close to zero or one, the corresponding θ and hence at
least one of the corresponding entries in A or V would tend to infinity. In practice, this does
not pose much of a problem if we use convergence of log likelihood as the stopping criterion
because once θ becomes large/small enough, large changes in θ would lead to small changes in µ
and correspondingly small changes in data likelihood and hence the algorithm would terminate
automatically.

6.3.1 Projection of binary data

In order to compare various schemes for the binary case, we present projections (Fig. 8) of an
artificial three cluster data used in [Tip99]. The 16-dimensional data vectors were generated by
first randomly picking three ‘prototype’ vectors where each bit was drawn Bernoulli(1/2). Then
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600 data points were generated by taking 200 copies of each prototype and inverting each bit
with probability 0.15.

Note that both PCA (Fig. 8(d)) and Exponential family PCA [CDS02] (Fig. 8(c)) produced
similar projections. These in turn are similar to the projections obtained using a latent trait
analysis in which a gaussian prior is assumed (See [Tip99]). That the projection obtained using
Exponential family PCA and latent trait analysis are similar is not surprising since we used a
conjugate gaussian prior to project data in Exponential family PCA as suggested in [CDS02] to
deal with the phenomenon of projections into latent space drifting to infinity.

Projection using SP-PCA model shows three well separated clusters (Fig. 8(a)). In Fig. 8(b)
we show the estimated prior distribution and note that latent parameters which were initialized
uniformly on the latent space have migrated and formed three clusters.
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(c) Projection with Exponential family PCA
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Figure 8: Projection of binary data with three artificial clusters

6.3.2 Documents

We did simulations on two sets of samples drawn from the 20 Newsgroups data set. Data for the
first set of simulations was drawn from comp.sys.ibm.pc.hardware, comp.sys.mac.hardware and
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sci.med newsgroups. A dictionary size of 150 words was chosen and the words in the dictionary
were picked to be those which have maximum mutual information with class labels. 200 docu-
ments were drawn from each of the three newsgroups to form the training data. Two-dimensional
representations obtained using various methods are shown in Fig. 9. In the projection obtained
using Bernoulli GTM, the classes comp.sys.ibm.pc.hardware and comp.sys.mac.hardware were
not well separated in the 2D space. This projection in Fig. 9(c) is similar to the results pre-
sented in [KG01] and the explanation given for the overlap between the two groups was that two
newsgroups are very similar to one another and hence share many words in common. However
we found that SP-PCA was able to separate the three sets reasonably well (Fig. 9(d)).

To quantify the separation of dissimilar groups in the two-dimensional projections we use
the training set classification error of projected data using SVM. The accuracy of the best SVM
classifier (we tried a range of SVM parameter values and picked the best for each projected data
set) was 75% for bernoulli GTM projection and 82.3% for SP-PCA projection (the difference
corresponds to 44 data points while the total number of data points is 600).

We conjecture that the reason Binary GTM did not succeed in separating comp.sys.ibm.pc.-
hardware and comp.sys.mac.hardware is that the prior is over a pre-specified grid in latent space
and the spacing between grid points happened to be large in the parameter space close to the two
news groups. In contrast to this, in SP-PCA there is no grid and the latent ‘reference vectors’
θi are allowed to move about freely to adapt to the data and hence are able to separate the
two populations. Note that a standard clustering algorithm could be used on the data projected
using SP-PCA to conclude that data consisted of three kinds of documents.

Data for the second set of simulations was drawn from sci.crypt, sci.med, sci.space and soc.-
culture.religion.christianity newsgroups. A dictionary size of 100 words was chosen and again the
words in the dictionary were picked to be those which have maximum mutual information with
class labels. 100 documents were drawn from each of the newsgroups to form the training data.

Fig. 10 shows two-dimensional representations of binary data obtained using various methods.
Newsgroups sci.space and sci.med are merged in projections by PCA. Note that while the four
newsgroups are bunched together in the projection obtained using Exponential family PCA (Fig.
10(b)), we can still detect the presence four groups from this projection and in this sense this
projection is better than the PCA projection. This result is pleasing since it confirms our intuition
that using negative log-likelihood of Bernoulli distribution as a measure of similarity is more
appropriate than squared Euclidean distance for binary data. We conjecture that the reason the
four groups are not well separated in the Exponential family PCA projection is that a conjugate
prior is used in its estimation for numerical reasons [CDS02] and the form and parameters of
this prior are considered fixed and given inputs to the algorithm.

Both Binary GTM (Fig. 10(e)) and SP-PCA (Fig. 10(c)) were able to clearly separate the
clusters in the training data. Figs. 10(f) and 10(d) show representation of test data using the
models estimated for Binary GTM and SP-PCA respectively. To measure generalization of these
methods, we use a K-nearest neighbors based non-parametric estimate of the projected training
data density. The percentage difference between the log-likelihoods of training and test data
with respect to this density was 9.1% for ExpPCA and 17.6% for GTM for K=40 (ExpPCA had
smaller percentage change in log-likelihood for most values of K that we tried between 10 and
40). This indicates that SP-PCA generalizes better than GTM. This can be seen visually by
comparing Figs. 10(e) and 10(f) where the projections of training and test data of sci.space (∇)
differ significantly.

Fig. 11 shows two-dimensional representations of word count data (both training and test)
obtained using Poisson GTM and SP-PCA. The percentage difference between the log-likelihoods
of training and test data with respect to KNN estimate of projected training data density was
6.8% for SP-PCA and 12.1% for GTM for K=40 (Again, SP-PCA had smaller percentage change
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Figure 9: Projection by various methods of binary data from 200 documents each from
comp.sys.ibm.pc.hardware (×), comp.sys.mac.hardware (◦) and sci.med (.)

in log-likelihood for most values of K that we tried between 10 and 40). The better generalization
property of SP-PCA is probably because it has greater flexibility in estimating the latent variable
prior and hence it is better able to adapt to observed data.

7 Conclusions

An intuitive and effective dimensionality reduction and visualization method for various data
types is presented. A key feature of this model is that the mixing distribution is estimated
non-parametrically and hence is better able to capture any multi-modality in data density. The
method performs simultaneous clustering and dimensionality reduction since it is based on a finite
mixture model. Simulations on standard datasets demonstrate that it is effective in separating
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(f) Test data : GTM

Figure 10: Projection by various methods of binary data from 100 documents each from sci.crypt
(×), sci.med (◦), sci.space (∇) and soc.culture.religion.christianity (+)
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(d) Test data : GTM

Figure 11: Projection by various methods of count data from 100 documents each from sci.crypt
(×), sci.med (◦), sci.space (∇) and soc.culture.religion.christianity (+)

different populations and projecting similar observed data points close to one another in the
representation space. It was also observed to generalize well to unseen samples.

Future work includes extending the model to categorical data, finding a suitable objective
function for semi-supervised training of the mixture model and extending the method to find
non-linear lower dimensional latent spaces.
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A The Newton-Raphson updates for use in EM algorithm

In this section, we describe how to get the NR update equations for the matrix A. The updates
for V and b can be obtained in a similar manner.

Let l̃kj = θkj x̃kj − G(θkj). From Section 4.1, L̃ is given by

L̃(A, V,b) =
c

∑

k=1

d
∑

j=1

{θkj x̃kj − G(θkj)} =
c

∑

k=1

d
∑

j=1

l̃kj

The optimal value for matrix A will solve the following equations

∂L̃

∂akl

= 0 ∀ k = 1, . . . , c and ∀ l = 1, . . . , ℓ

Let At be the current value of A and At+1 be the value of A at the next step. Then the NR
equation is At+1 = At − H−1

t GRt, where Ht is the Hessian matrix of L̃ and GRt is its gradient
at A = At.

The first and second derivatives of L̃ with respect to entries in A are

∂L̃

∂ars
=

d
∑

j=1

∂l̃rj

∂θrj
Vsj =

d
∑

j=1

(x̃rj − g(θrj))Vsj

∂2L̃

∂atu∂ars
= −

d
∑

j=1

Vsj
∂g(θrj)

∂atu
= −

∑

j

Vsj
∂g(θrj)

∂θrj

∂θrj

∂atu

=

{

0 if r 6= t

−
∑

j VjuVjs
∂g(θrj)

∂θrj
if r = t

Since ∂2L̃
∂atu∂ars

is zero when r 6= t, the rows of A can be updated independently of each other
and the updates in Section 4.1 easily follow from the above equations.

B Consistency of the ML estimate

Let Xi = (Xi1, . . . , Xid) be iid draws of a d-dimensional random variable. Assume that the
frequency function is f(x|s,a), where s ∈ Ω ⊆ R

k1 is a structural parameter and G(a) ∈ Γ is a
distribution over incidental parameters a ∈ R

k2. γ = (s, G) is a generic point in the parameter
space Ω × Γ. In the space Ω × Γ, we define the metric

δ(γ1, γ2) = δ((s1, G1), (s2, G2)) =
k1
∑

j=1

| tan−1 s1j − tan−1 s2j | +

∫

Rk2
|G1(z) − G2(z)|e−|z|dτ(z)

Let γ0 be the ‘true’ parameter from which observed samples are drawn. The following are
some of the assumptions made by Kiefer and Wolfowitz

Assumption 1 f(x|s,a) is a density with respect to a σ-finite measure µ on a Euclidean
space of which x is a generic point.

Assumption 2 It is possible to extend the definition of f(x|γ) so that the range of γ will be
in Ω̄× Γ̄ and so that, for any {γi} and γ∗ in Ω̄× Γ̄, γi −→ γ∗ implies f(x|γi) −→ f(x|γ∗) except
perhaps on a set of x that has zero probability according to the true distribution.
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Assumption 3 For any γ in Ω̄ × Γ̄ and any ρ > 0, w(x|γ, ρ) is a measurable function of
x, where w(x|γ, ρ) = supf(x|γ′), the supremum being taken over all γ′ in Ω̄ × Γ̄ for which
δ(γ, γ′) < ρ.

Assumption 5 For any γ ∈ Ω̄ × Γ̄ we have, as ρ ↓ 0,

lim E

[

log
w(x|γ, ρ)

f(x|γ0)

]+

< ∞

As defined in Section 4.2, let C0 be the set of all parameters γ corresponding to the ‘true’
distribution F (x/γ0) (i.e., C0 = {γ : F (x/γ) = F (x/γ0) ∀ x}). Let γ̂n be an estimator of γ based
on n observed samples of X and let Γ̂ be the quotient topological space obtained from Γ obtained
by identifying the set C0 to a point γ̂0.

Definition. The sequence of estimators {γ̂n, n = 1, . . . ,∞} is said to be strongly consistent in

the sense of Redner if limm→∞ γ̂n = γ̂0 almost surely.

Theorem. If assumptions 1,2,3 and 5 are satisfied, the ML estimator of the parameter γ = (s, G)
is strongly consistent in the sense of Redner.

Verifying that the assumptions are satisfied for the model considered in this paper

Our model consists of a system Xi1, . . . , Xid, i = 1, 2, . . . , independent draws of a d-dimensional
random variable X. The distribution f(x|γ) is determined by parameter γ = (s, G). Here
s = (V, b) ∈ Ω = R

(ℓ+1)∗d is the structural part of the parameter which determines the subspace
to which natural parameters of the exponential family distributions are constrained and G ∈ Γ
is the distribution of according to which the natural parameters are picked on the subspace. Γ
consists of all the distributions G on R

ℓ such that the corresponding density function g(a) = 0
for ||a|| > B (B is some constant fixed apriori).

Hence the model f(x|γ), with parameter γ = (V, b, G) belonging to the space Ω×Γ is specified
by

a ∼ G (2)

θ = aV + b (3)

log f(xj |θj) = log f0(xj) + xjθj − G(θj) j = 1, . . . , d (4)

f(x|θ) =

d
∏

j=1

f(xj |θj) (5)

(6)

From the definition of f(x|V, b, G), it follows immedietly that Assumptions 1 and 2 are satis-
fied. Assumption 3 is satisfied since both Ω and Γ are separable spaces.

To verify Assumption 5, note that f(x|s, G) is uniformly bounded in x, s and G (since the
mean of the poisson is assumed to be bounded above). Hence E[log ω] < ∞.

Also, to show that E[log f(Xj |γ0)] > −∞, it is sufficient to show that E[log |Xj |]
+ < ∞ (by

Lemma in Section 2 of [KW56]).

E[log |Xj |]
+ ≤ E[log(|Xj − g(θj)| + |g(θj)|)]

+ ≤ E[log(|Xj − g(θj)| + 1)]+ + E[log |g(θj)|]
+

E[log |g(θj)|]
+ ≤ ∞ since we have assumed that P (a) is zero outside a bounded region and

since g(θj) is a continuous function of a for all the distributions we are considering. That
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E[log(|Xj−g(θj)|+1)]+ is ≤ ∞ follows from the fact that variance of Poisson, Gaussian, Bernoulli
and Exponential distributions is bounded if a and hence θj are bounded.

Gaussian case when the common variance parameter σ is considered unknown and

estimated using ML: For this case, the ML estimator is consistent if we make an additional
assumption that σ is bounded below by a small constant. This assumption ensures that f(x|s, G)
is uniformly bounded in x, s and G and hence E[log ω] < ∞ which is needed to satisfy Assumption
5.
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