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Abstract

The Geometry of Thermodynamic Control

by

Patrick Russell Zulkowski

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael R. DeWeese, chair

Living systems are distinguished by their self-organization. Given the entropic driving force
embodied in the second law of thermodynamics, creating and maintaining such organization re-
quires staying far from equilibrium. Furthermore, since selective advantage may be incurred by
energetically-efficient operation, evolution may have sculpted biological components to interact so
as to reduce the energy wasted during transitions. Therefore, a deeper understanding of the prin-
ciples governing biological molecular machines and their synthetic counterparts may be achieved
by cultivating a set of tools to explore the optimization of finite-time nonequilibrium transitions of
mesoscopic systems.

Recent work has shown that when a thermodynamic system is driven from equilibrium then,
in the linear response regime, the space of controllable parameters has a Riemannian geometry
induced by a generalized friction tensor. Optimal protocols are equivalent to geodesics in the
geometric sense.

We exploit this geometric insight to construct closed-form expressions for minimal-dissipation
protocols for a colloidal particle diffusing in a one dimensional harmonic potential. These proto-
cols are verified numerically. We also calculate and numerically verify protocols optimizing the
Hatano-Sasa Y-value (a quantity relevant for transitions between nonequilibrium steady states and
similar to dissipated work) for a colloidal particle dragged through solution by a translating optical
trap with two controllable parameters. Finally, in an application that has particular relevance to
small-scale information processing systems, we calculate maximally efficient erasure cycles for
deletion of a single classical bit of information. The system storing this bit consists of an over-
damped Brownian colloidal particle diffusing in a one-dimensional double-well potential separated
by a potential barrier stabilizing the memory.
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Chapter 1

Introduction

There has been considerable progress in the study of nonequilibrium processes in recent years.
For example, fluctuation theorems relating the probability of an increase to that of a comparable
decrease in entropy during a finite time period have been derived [2, 3, 4, 5, 6] and experimentally
verified [7, 8, 9, 10] in a variety of contexts. Moreover, other new fundamental relationships be-
tween thermodynamic quantities that remain valid even for systems driven far from equilibrium,
such as the Jarzynski equality [11, 12, 13, 14], have also been established. Interestingly, some of
these ideas were independently developed in parallel within the machine learning community [15],
as ideas from nonequilibrium statistical mechanics are increasingly finding applications to learning
and inference problems [16, 17].

A unifying picture of nonequilibrium statistical mechanics remains elusive due to the broad
range of nonequilibrium phenomena. In this thesis, we narrow our focus considerably to a specific
optimization scheme for nonequilibrium transitions of small-scale systems with an eye towards
applications in two very important (and possibly related) realms of nonequilibrium physics: living
systems and small-scale information processing systems.

Living systems are distinguished by their self-organization. Given the entropic driving force
embodied in the second law of thermodynamics, creating and maintaining such organization re-
quires staying far from equilibrium [18], typically by coupling to nonequilibrium gradients. For
example, ATP-driven molecular motors (e.g., kinesin) are forced away from equilibrium by cellular
maintenance of a chemical potential difference between ATP and ADP [19], and the rotary FO-F1

ATP synthase operates out of equilibrium due to cellular maintenance of an electrochemical gradi-
ent across the inner mitochondrial membrane [20]. That these molecular-scale machines typically
operate out of thermodynamic equilibrium results in a major obstacle to quantitative understanding
of their thermodynamics.

Since selective advantage may be incurred by energetically-efficient operation, evolution may
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have sculpted biological components to interact so as to reduce the energy wasted during tran-
sitions. Therefore, a deeper understanding of the principles governing biological molecular ma-
chines and their synthetic counterparts may be achieved by cultivating a set of tools to explore the
optimization of finite-time nonequilibrium transitions of mesoscopic systems.

Optimization schemes for thermodynamic processes occurring in finite time will be needed
for applications in which energetic or entropic costs are undesirable [21, 22] and are not limited
to purely small-scale biological problems. Another important class of such processes consists of
mesoscopic information processing systems operating out of equilibrium. Optimization will aid
technological development in the decades to come as computational demands begin to reach limits
imposed by physical law [23].

Moreover, understanding these systems will provide insight into the foundations of nonequi-
librium statistical mechanics. Investigations into the interplay between information and thermo-
dynamics seem to have originated with Maxwell’s hypothetical demon and its implications for the
second law of thermodynamics [24]. Much ground-breaking work followed from the Maxwell
demon paradox including Szilard’s engine revealing a quantitative link between thermodynamic
work and information [25], Landauer’s observation of the physical nature of information [26] and
Bennett’s interpretation of the paradox in terms of the relation between logical and thermodynamic
reversibility [27].

In recent times, research into nonequilibrium statistical mechanics of small-scale systems has
shed more light on the thermodynamic role of information. Most notable is experimental veri-
fication [28] of the theoretical prediction of microscopic violations of Landauer’s principle with
the preservation of the principle on average [29], analogous to experimental and theoretical work
on fluctuation theorems demonstrating that entropy absorbing processes can occur microscopi-
cally whereas the second law holds on average [30]. Research into feedback and measurement
of mesoscopic nonequilibrium systems has improved our understanding of the role information
plays in the second law [31, 32]. Other work has focused on developing techniques to optimize
thermodynamic quantities arising in small-scale systems designed to store and erase classical in-
formation [33, 34, 35], including the derivation of a refined second law [35]. Recent work has also
focused on the general problem of predicting optimal protocols to drive systems between station-
ary states with minimal dissipation [36, 37, 38, 39, 40, 41, 42, 43].

This discussion highlights the need for the development of optimization techniques applicable
to small-scale nonequilibrium systems. For macroscopic systems, the properties of optimal driving
processes have been investigated using thermodynamic length, a natural measure of the distance
between pairs of equilibrium thermodynamics states [44, 45, 46, 47, 48, 49], with extensions to
microscopic systems involving a metric of Fisher information [50, 51]. Recently, a linear-response
framework has been proposed for protocols that minimize the dissipation during nonequilibrium
perturbations of microscopic systems. In the resulting geometric formulation, a generalized inverse
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diffusion tensor induces a Riemannian manifold structure on the space of parameters, and optimal
protocols trace out geodesics of this inverse diffusion tensor [52]. Ch. 2 of this thesis reproduces an
argument for the general construction of this generalized inverse diffusion tensor, making available
the mathematical details to the interested reader.

In Ch. 3, we make use of Riemannian geometry theorems and the groundwork laid down in
Ch. 2 to calculate optimal protocols for a specific physical system consisting of a colloidal particle
diffusing in a one dimensional harmonic potential, where the spring constant, inverse temperature,
and trap location are adjusted simultaneously. That we can calculate closed-form expressions for
optimal protocols for this model system illustrates the power of these geometric ideas. We test
the accuracy of our approximation by numerically comparing our optimal protocols against naive
protocols using the Fokker-Planck equation. We conclude by demonstrating that our inverse diffu-
sion tensor framework arises naturally from a first order expansion in temporal derivatives of the
control parameters, without appealing directly to linear response theory.

For constant ATP and ADP concentrations, or constant membrane potential, the dynamics of
an ensemble of molecular motors will approximate a nonequilibrium steady state (NESS). Thus,
biological systems are often better characterized as nonequilibrium steady states rather than equi-
librium systems. Such NESS may change in response to changing environmental conditions and
so, if we are to eventually see applications of this geometric framework to faithful models of bi-
ological processes, we must seek extensions to systems relaxing to stationary state distributions.
Indeed, the study of NESS promises greater mathematical tractability than arbitrary nonequilib-
rium phenomena, while significantly relaxing the restrictive assumptions of equilibrium physics.

We take a first step towards this goal by optimizing the Hatano-Sasa Y-value, a quantity similar
to dissipated work, for the paradigmatic model system tested in [1] and analyzed in [53] with an eye
towards experimental tests. In Ch. 4, we calculate closed-form expressions for both the geodesic
optimal protocol and the optimal straight-line protocol and test these protocols numerically via a
system of equations derived from the Fokker-Planck equation. Finally, we propose a regime of va-
lidity of our approximation based on this numerical work. By measuring the average work required
to drive this system along either optimal or naive paths through control parameter space, our re-
sults can be tested experimentally in a straightforward way using existing experimental techniques.

In Ch. 5, we optimize the efficiency of erasure cycles for a simple model system storing a
classical bit of information. The system storing this bit consists of an overdamped Brownian col-
loidal particle diffusing in a one-dimensional double-well potential separated by a potential barrier
stabilizing the memory. Information erasure inevitably leads to heat dissipation according to the
Landauer principle. Minimizing this dissipation will be crucial for the development of small-scale
information processing systems as alluded to above. We take as control parameters the height of
the potential barrier and the potential difference of the two wells. We demonstrate close agreement
between the exact optimal cycle and the protocol found using a linear-response framework.
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Ch. 6 illustrates how the inverse diffusion tensor may be calculated and applied to systems
influenced by non-linear deterministic forces. The paradigmatic models used in Ch. 3 and Ch. 4
involve a colloidal particle diffusing in a thermal bath while coupled to an optical trap represented
by a harmonic potential. For the harmonic potential (and only for this potential), the inverse diffu-
sion tensor may be calculated straightforwardly from the Langevin dynamics of the model system.
This technique does not carry over to more general potentials. In Ch. 6, we show how the method
of Laplace transform may be used to obtain an explicit expression for the inverse diffusion tensor
directly from the Fokker-Planck equation. With this expression we compute optimal protocols for
some idealized models to further illustrate the power of this approximation in determining optimal
protocols.

For completeness, we include a chapter (Ch. A) on the essential notions of Riemannian geom-
etry relevant to this thesis. This chapter is not intended to be a complete treatise of Riemannian
geometry which is a firmly established branch of pure mathematics with a long and colorful history.
Readers acquainted with General Relativity and/or String Theory should have enough experience
with geometry to make the arguments presented in this thesis comprehensible. A firm grounding
in nonequilibrium statistical mechanics may be achieved by reading [54]. However, we present a
short discussion of the Fokker-Planck equation in Ch. B.
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Chapter 2

The Inverse Diffusion Tensor

For the model systems considered in this thesis, we wish to minimize the nonequilibrium aver-
age of a quantity sometimes referred to as the Hatano-Sasa Y-value [6, 1] while driving a system
from either an equilibrium state or a nonequilibrium steady state. During the driving process, the
system’s probability distribution over microstates fundamentally depends on the history of the con-
trol parameters λ, which we denote by the control parameter protocol Λ. We assume the protocol
to be sufficiently smooth to be twice-differentiable. The Y-value for a given stochastic trajectory
x(t) is defined as

Y ≡
∫ τ

0

dt

[
dλT

dt

]
· ∂φ
∂λ

(
x(t),λ(t)

)
(2.1)

where τ is the duration of the protocol, φ ≡ − ln ρss and ρss is the time-independent stationary
distribution describing the system in the absence of driving after a sufficiently long relaxation time
has elapsed. We refer to φ as the nonequilibrium potential.

For systems relaxing to an equilibrium state described by Boltzmann’s distribution, the Y-
value equals the work dissipated during the driving process (scaled by β). Suppose the ambient
temperature is constant during the driving process; the more general case of time-dependent β
is considered in Ch. 3. Suppose further that E(x,λ) represents the energy of a microstate of
the system indexed by the continuous symbol x (e.g. one spatial dimension). The Boltzmann
distribution is given by

ρeq(x,λ) ≡ e−βE(x,λ)

Z(λ)
(2.2)

where Z(λ) =
∫
dx e−βE(x,λ) and β ≡ (kBT )−1 with kB Boltzmann’s constant. By definition of

the nonequilibrium potential,

φ(x,λ) = − ln ρeq(x,λ) = βE(x,λ) + lnZ(λ). (2.3)
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From
∂

∂λ
lnZ(λ) =

1

Z(λ)

∫
dx

∂

∂λ

(
− βE(x,λ)

)
e−βE(x,λ) ≡

〈
∂

∂λ

(
− βE

)〉
λ

(2.4)

follows

Y = −
∫ τ

0

dt

[
dλT

dt

]
· δX(t) (2.5)

where we define
X(t) = − ∂

∂λ

(
βE(x(t),λ(t)

)
(2.6)

and δX(t) ≡ X(t)−〈X〉λ(t). The average 〈X〉λ(t) is taken with respect to the Boltzmann distribu-
tion characterized by the control parameters λ at time t. Taking the nonequilibrium average over
stochastic trajectories yields the average amount of work done on the system during the driving
times β minus βF (λ(τ))− βF (λ(0)); i.e. the average work dissipated scaled by β.

The remainder of this chapter establishes the general optimization scheme. First, we provide
a heuristic argument for the positivity of the average Y-value. This should convince the reader
that the optimization problem is well-posed for the applications we have in mind. Second, we de-
scribe in detail a linear response approximation originally presented in [52] and further elaborated
in [37] that allows us to reinterpret the problem of optimizing the average Y-value over admissible
protocols as the problem of computing geodesics on a Riemannian manifold.

2.1 Positivity of the average Y-value

General arguments based on a fluctuation theorem exist to establish the positivity of the aver-
age Y-value for nonequilibrium driving processes [6, 55, 30, 1]. In general, 〈e−Y 〉Λ = 1 and so,
by Jensen’s inequality, 〈Y 〉Λ ≥ 0. However, a detour exploring the details of this theorem will
take us too far afield. To keep the exposition as clear and as self-contained as possible, we provide
a proof in the simple case of an overdamped colloidal particle diffusing in one dimension under
the influence of a time-dependent potential U(x,λ(t)). We assume the stationary state is given by
the Boltzmann distribution. The proof is by no means limited to this special case as we will see
in Ch. 3. However, it captures the essential physics without delving too deeply into complicated
mathematics.

The nonequilibrium ensemble average of the Y-value is defined as

〈Y 〉Λ ≡
∫ τ

0

dt

[
dλT

dt

]
·
〈
∂φ

∂λ

(
x,λ(t)

)〉
Λ

(2.7)
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where, for the system considered here,〈
∂φ

∂λ

(
x,λ(t)

)〉
Λ

≡
∫ ∞
−∞

dx ρ(x, t)
∂φ

∂λ

(
x,λ(t)

)
(2.8)

and the nonequilibrium distribution ρ(x, t) is governed by the Fokker-Planck equation

∂ρ

∂t
=

1

βγ

∂

∂x

[
β∂xU(x,λ(t))ρ+

∂ρ

∂x

]
. (2.9)

The constant γ is the Cartesian friction coefficient. We assume the bath temperature to be constant;
this is not a limitation of the technique, merely a mathematical convenience.

Consider now the relative entropy D
[
ρ || ρeq(x,λ(t))

]
which corresponds to the available en-

ergy in the system due to being out of equilibrium [56] and is defined by

D
[
ρ || ρeq(x,λ(t))

]
≡
∫ ∞
−∞

dx ρ(x, t) ln

(
ρ(x, t)

ρeq(x,λ(t))

)
(2.10)

with

ρeq(x,λ) =
e−βU(x,λ)

Z(λ)
. (2.11)

The time derivative of the relative entropy is

d

dt
D
[
ρ || ρeq(x,λ(t))

]
=

∫ ∞
−∞

dx
∂ρ

∂t
ln

(
ρ(x, t)

ρeq(x,λ(t))

)
+

∫ ∞
−∞

dx ρ(x, t)

[
1

ρ(x, t)

∂ρ

∂t
+
∂φ

∂t

]
=

∫ ∞
−∞

dx
∂ρ

∂t
ln

(
ρ(x, t)

ρeq(x,λ(t))

)
+

[
dλT

dt

]
·
〈
∂φ

∂λ

(
x,λ(t)

)〉
Λ

. (2.12)

The first term may be simplified by integrating by parts and using the Fokker-Planck equation:∫ ∞
−∞

dx
∂ρ

∂t
ln

(
ρ(x, t)

ρeq(x,λ(t))

)
=

∫ ∞
−∞

dx

{
1

βγ

∂

∂x

[
β∂xU(x,λ(t))ρ+

∂ρ

∂x

]}
ln

(
ρ(x, t)

ρeq(x,λ(t))

)
= − 1

βγ

∫ ∞
−∞

dx

[
β∂xU(x,λ(t))ρ+

∂ρ

∂x

][
1

ρ

∂ρ

∂x
− 1

ρeq

∂ρeq
∂x

]
= − 1

βγ

∫ ∞
−∞

dx

[
β∂xU(x,λ(t))ρ+

∂ρ

∂x

]2
1

ρ

≤ 0. (2.13)
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Therefore, it follows immediately that∫ τ

0

dt
d

dt
D
[
ρ || ρeq(x,λ(t))

]
≤ 〈Y 〉Λ. (2.14)

Since we assume that our system begins in equilibrium, D
[
ρ || ρeq(x,λ(0))

]
= 0. Furthermore,

since the relative entropy is always nonnegative, we conclude that the average Y-value is positive
for the nonequilibrium driving process.

2.2 The geometric approximation

The material in this section is largely based on the arguments of [52]. However, we will fill in
the mathematical details for the reader.

By definition,〈
∂φ

∂λi
(x,λ(t))

〉
Λ

≡
∫
dx ρ(x, t)

∂φ

∂λi
(x,λ(t))

=

∫
dx0 ρss(x0,λ(0))

∫
dx

∂φ

∂λi
(x,λ(t))ρ(x, t|x0, 0). (2.15)

Abusing notation, we define

∂φ

∂λi
(t) ≡

∫
dx

∂φ

∂λi
(x,λ(t))ρ(x, t |x0, 0). (2.16)

In this notation we suppress the dependence on the initial condition x0. We may use dynamic linear
response theory to first order in the magnitude of the externally imposed protocol to show〈

∂φ

∂λi
(x,λ(t0))

〉
Λ

≈
∫ t0

−∞
dt′ χij(t0 − t′)

[
λj(t′)− λj(t0)

]
(2.17)

where χ is referred to as the linear response kernel [52, 54].

We may obtain an expression for the linear response kernel χij as follows: consider a system
in a stationary state from time−∞ to time 0 characterized by control parameters λ+4λ. At time
t = 0, assume the perturbation vanishes so that the control parameters have values λ. For times
t > 0, we see from Eq. (2.15) that〈

∂φ

∂λi
(x,λ(t))

〉
Λ

=

∫
dx0

∂φ

∂λi
(t)ρss(x0,λ+4λ). (2.18)

8



Approximating ρss(x0,λ+4λ) ≈ ρss(x0,λ)
[
1−

[
4λT

]
· ∂φ
∂λ

(x0,λ)
]
, we see that〈

∂φ

∂λi
(x,λ(t))

〉
Λ

≈
∫
dx0 ρss(x0,λ)

[
1−

[
4λT

]
· ∂φ
∂λ

(x0,λ)

]
∂φ

∂λi
(t). (2.19)

The first term vanishes since ρss(x0,λ) must be normalized.

Therefore, we find that〈
∂φ

∂λi
(x,λ(t))

〉
Λ

≈ −4λj ·
〈
∂φ

∂λi
(t)

∂φ

∂λj
(0)

〉
ss,λ

(2.20)

for this simple example.

If the linear response approximation holds in general, then it must reproduce this simple case.
Consider the right-hand side of Eq. (2.17) and assume t0 > 0. The integral may be broken up into
the integral over t′ from−∞ to 0 and the integral from 0 to t0. In the latter integral, λj(t′)−λj(t0)
vanishes and so this integral does not contribute. In the former integral, λj(t′)−λj(t0) = 4λj and
may be brought outside the time integral. Making the change of variables s = t0 − t′, we see that〈

∂φ

∂λi
(x,λ(t0))

〉
Λ

≈ 4λj
∫ ∞
t0

ds χij(s). (2.21)

Therefore, it follows that ∫ ∞
t0

ds χij(s) = −
〈
∂φ

∂λi
(t0)

∂φ

∂λj
(0)

〉
ss,λ

. (2.22)

If the time correlation functions vanish for long times, we see that

χij(s) ≡
d

ds

〈
∂φ

∂λi
(s)

∂φ

∂λj
(0)

〉
ss,λ(t0)

. (2.23)
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Substituting this expression for the linear response kernel into Eq. (2.17), we have〈
∂φ

∂λi
(x,λ(t0))

〉
Λ

≈
∫ t0

−∞
dt′ χij(t0 − t′)

[
λj(t′)− λj(t0)

]
=

∫ ∞
0

ds χij(s)
[
λj(t0 − s)− λj(t0)

]
=

∫ ∞
0

ds
d

ds

〈
∂φ

∂λi
(s)

∂φ

∂λj
(0)

〉
ss,λ(t0)

[
λj(t0 − s)− λj(t0)

]
= −

∫ ∞
0

ds

〈
∂φ

∂λi
(s)

∂φ

∂λj
(0)

〉
ss,λ(t0)

d

ds

(
λj(t0 − s)

)
=

∫ ∞
0

ds

〈
∂φ

∂λi
(s)

∂φ

∂λj
(0)

〉
ss,λ(t0)

dλj

dt
(t0 − s) (2.24)

When the control parameter velocities change on timescales slower than the relaxation time of the
system’s force fluctuations [52], we can make the approximation

dλj

dt
(t0 − s) ≈

dλj

dt
(t0). (2.25)

In conclusion,

〈Y 〉Λ ≈
∫ τ

0

dt ζij(λ(t))
dλi

dt
(t)
dλj

dt
(t) (2.26)

with the inverse diffusion tensor defined by

ζij(λ) ≡
∫ ∞

0

dt′
〈
∂φ

∂λi
(t′)

∂φ

∂λj
(0)

〉
ss,λ

. (2.27)

When the detailed balance condition is satisfied, the matrix
〈
∂λiφ(t′)∂λjφ(0)

〉
λ

is a covariance
matrix. Any covariance matrix is symmetric and positive-semidefinite [52]. It follows that the
inverse diffusion tensor ζ(λ) is symmetric, positive-semidefinite, and smoothly varying except at
macroscopic phase transitions. Therefore the inverse diffusion tensor induces a Riemannian man-
ifold structure on the space of thermodynamic states when the detailed balance condition holds.
Furthermore, positive-semidefiniteness of the inverse diffusion tensor guarantees that the average
Y-value is non-negative, consistent with the observations made in Ch. 2.1.

In general, the detailed balance condition is violated in NESS and so the matrix〈
∂λiφ(t′)∂λjφ(0)

〉
λ

may be asymmetric. Eq. (2.26) shows the use of Eq. (2.27) (specifically its
symmetric part) as a metric tensor is not precluded. However,

〈
∂λiφ(t′)∂λjφ(0)

〉
λ

is not neces-
sarily a covariance matrix and so a general proof of positive-definiteness is lacking [52]. These
considerations do not affect the models considered in this thesis but future work is needed to ad-
dress this issue for the general case.
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We conclude this chapter with a few observations first presented in [52]. First, by interpreting
the inverse diffusion tensor ζ(λ) as a Riemannian metric on the space of parameters, we see that
protocols optimizing the average Y-value are equivalent to geodesics, or length minimizing curves,
at least in the linear response regime. As we will see in subsequent chapters, this proves to be a
very useful observation as the geodesic equation is invariant under coordinate transformations by
virtue of the invariance of Eq. (2.26). By choosing an appropriate coordinate system, it is possible
to compute exact, closed-form expressions for optimal protocols for the model systems considered
in subsequent chapters. Second, the control parameter path of an optimal protocol is independent
of the protocol duration. Increasing or decreasing the duration does not change the optimal path in
the linear response regime. However, subsequent chapters will demonstrate that the validity of the
approximation itself will be sensitive to the duration of the protocol compared to some relaxation
time characteristic of the system. Finally, since the length of a tangent vector to a geodesic is
constant along the path of the geodesic, the average Y-value along an optimal path accumulates at
a constant rate. (See Ch. A for details.)

11



Chapter 3

Geometry of Thermodynamic Control

This chapter expands upon results originally published in [37]. Ch. 2 demonstrated that when a
thermodynamic system is driven from equilibrium then, in the linear response regime, the space of
controllable parameters has a Riemannian geometry induced by a generalized inverse diffusion ten-
sor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation
protocols for a particle diffusing in a one dimensional harmonic potential, where the spring con-
stant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols
are geodesics on the Riemannian manifold, and reveal that this simple model has a surprisingly rich
geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck
equation and demonstrate that the friction tensor arises naturally from a first order expansion in
temporal derivatives of the control parameters, without appealing directly to linear response theory.

3.1 Derivation of the excess power for variable temperature

For a physical system at equilibrium in contact with a thermal bath, the probability distribution
over microstates x is given by the canonical ensemble

ρeq(x,λ) ≡ exp β [F (λ)− E(x,λ)] , (3.1)

where β = (kBT )−1 is the inverse temperature in natural units, F (λ) is the free energy, and
E(x,λ) is the system energy as a function of the microstate x and a collection of experimentally
controllable parameters λ.

The usual expressions for heat and work [57, 58, 59, 60] assume that the temperature of the heat
bath is held constant over the course of the nonequilibrium protocol. Following the development of
methods to handle time-varying temperature described in section 1.5 of [61], and preceding Eq. (4)
of [62], we argue that the unitless energy βE(x,λ) (normalized by the natural scale of equilibrium
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thermal fluctuations, kBT = β−1, set by equipartition) is the fundamental thermodynamic quantity.
Thus when generalizing to a variable heat bath temperature, we arrive at the following definition
for the average instantaneous rate of (unitless) energy flow into the system:〈

d

dt

(
βE(x,λ)

)〉
Λ

, (3.2)

where angled brackets with subscript indicate a nonequilibrium average dependent on the protocol
Λ. For constant β, this reduces to the standard thermodynamic definition [52]. With this defini-
tion, we can prove that for systems obeying Fokker-Planck dynamics, excess work is guaranteed
to be non-negative for any path, which is not true of the naive definition. Nonetheless, a deeper
understanding of the subtleties involved in our modified energy flow definition (Eq. (3.2)) calls out
for further study.

Eq. (3.2) may be written as〈
dxT

dt
· ∂ (βE)

∂x
(x,λ)

〉
Λ

+

〈
dλT

dt
· ∂ (βE)

∂λ
(x,λ)

〉
Λ

. (3.3)

The first term represents energy flux due to fluctuations of the system at constant parameter values
and naturally defines heat flux for nonequilibrium systems. The second term, associated with an
energy flux due to changes of the external parameters, defines nonequilibrium average power in
the general setting of time-variable bath temperature.

The average excess power exerted by the external agent on the system, over and above the
average power on a system at equilibrium, is

β(t0)Pex(t0) ≡ −
[
dλT

dt

]
t0

· 〈δX〉Λ . (3.4)

Here X ≡ −∂(βE)
∂λ

are the forces conjugate to the control parameters λ, and δX(t0) ≡ X(t0) −
〈X〉λ(t0) is the deviation of X(t0) from its current equilibrium value.

As observed in the introduction of Ch. 2, the time integral of this average excess power is
precisely equal to the average of the Hatano-Sasa Y-value. We employ the machinery developed
in Ch. 2 to approximate the resulting mean excess power as

β(t0)Pex(t0) ≈
[
dλT

dt

]
t0

· ζ(λ(t0)) ·
[
dλ

dt

]
t0

, (3.5)
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for inverse diffusion tensor

ζij(λ(t0)) =

∫ ∞
0

dt′
〈
δXj(0)δXi(t

′)
〉
λ(t0)

. (3.6)

We will construct geodesics using this inverse diffusion tensor.

3.2 The model system and its inverse diffusion tensor

We consider a particle (initially at equilibrium) in a one-dimensional harmonic potential dif-
fusing under inertial Langevin dynamics, with equation of motion

mÿ + k(t) (y − y0(t)) + γẏ = F (t) , (3.7)

for Gaussian white noise F (t) satisfying

〈F (t)〉 = 0 , 〈F (t)F (t′)〉 =
2γ

β(t)
δ(t− t′) . (3.8)

Here γ is the Cartesian friction coefficient. We take as our three control parameters: the inverse
temperature of the bath β, the location of the harmonic potential minimum y0, and the stiffness of
the trap k [see Fig. 3.1(a)]. The conjugate forces are

X =

(
βk (y − y0) ,− p2

2m
− k

2
(y − y0)2 ,−β

2
(y − y0)2

)
. (3.9)

This model can be experimentally realized as, for instance, a driven torsion pendulum [63, 64].

The excess work

〈(βW )ex〉 ≡
∫ tb

ta

dt β(t)Pex(t) (3.10)

is non-negative. Assuming the system begins in equilibrium, the relative entropy
D
[
f || ρeq(x,λ(t))

]
corresponds to the available energy in the system due to being out of equi-

librium [56], and bounds the excess work from below. Here, ρeq is the equilibrium distribution
defined by parameters λ(t), and f ≡ f(y, p, t) is the nonequilibrium probability distribution. The
time derivative of the relative entropy may be written as

d

dt
D
[
f || ρeq(x,λ(t))

]
=

∫
∂f

∂t
log (f/ρeq(x,λ(t))) + β(t)Pex(t), (3.11)
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(a) (b)

(c) (d)

Figure 3.1: (a) Our model system. A particle (black dot) diffusing in an optical trap (blue) modeled by a harmonic
potential with adjustable spring constant k, position y0, and inverse bath temperature β = 1

kBT (indicated by the
thermometer). (b) Representative optimal protocols (orange and red curves) plotted for two of the three control
parameters, k and β. An optimal protocol (e.g., red curve) results in the minimum dissipation for any path taking the
system from one particular state (black square) to another (black triangle) in a fixed amount of time. (c) A change
of variables {β, k} → {z, x} (Eq. (3.28)) reveals that our model system has an underlying structure described by
hyperbolic geometry, represented here as the Poincaré half-plane, in which geodesics form half circles (orange curve)
or vertical lines (red line). (d) A piece of the (z, x) manifold may be isometrically embedded as a saddle in R3. The
distortions in each of these two optimal paths as shown in panels (b) and (c) reflect the curvature of this manifold.
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which follows from the identity∫
f

[
∂

∂t
log (ρeq(x,λ(t)))

]
=
dλT

dt
· 〈δX(t)〉Λ . (3.12)

The first term of Eq. (3.11) simplifies to

−γ
β

∫
e−

βp2

m

[
1

f

(
∂

∂p

(
e
βp2

2m f

))2
]
≤ 0. (3.13)

Integrating Eq. (3.11) from 0 to t0 proves the relative entropy bounds the excess work from below.
Since this quantity is always non-negative, so is the excess work; in fact, for any finite-duration
path visiting more than one point in parameter space, it is strictly positive, yielding a well-behaved
metric in our geometrical formalism. See [65] for related results in the special case of constant
temperature. Note that, unlike our modified definition for work, the naive definition

∫ tb
ta
dtPex(t)

may be negative for particular protocols that vary β.

Calculation of the time correlation functions in Eq. (3.6) requires knowledge of the dynamics
for fixed control parameters. We may write any solution to the equation of motion as a sum yh+yp
of a homogeneous part yh, which depends on the initial conditions and is independent of F (t), and
a particular part yp, which has vanishing initial conditions but depends linearly on F (t) (see, for
instance, Theorem 3.7.1 in [66]). Explicitly, we may write

yp(t) =

∫ t

0

(
y

(1)
h (s)y

(2)
h (t)− y(1)

h (t)y
(2)
h (s)

y
(1)
h (s) d

ds
y

(2)
h (s)− y(2)

h (s) d
ds
y

(1)
h (s)

)
F (s)

m
ds (3.14)

where y(i)
h (t) for i = 1, 2 are independent solutions of the homogeneous equation. It follows

immediately that
yh(t) = C1y

(1)
h (t) + C2y

(2)
h (t) (3.15)

where the constants C1, C2 are determined by initial conditions.

For Gaussian white noise F (t), it is easy to show that the particular piece yp does not contribute
to the equilibrium time correlation function 〈δXj(0)δXi(t)〉. For simplicity and without loss of
generality, consider the correlation function 〈δy(t)2δy(0)2〉. Expanding this expression,〈

δy(t)2δy(0)2
〉

=
〈
y(t)2y(0)2

〉
−
〈
y(t)2

〉 〈
y(0)2

〉
, (3.16)
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and substituting y(t) = yh(t) + yp(t), we find〈
δy(t)2δy(0)2

〉
=
〈
yh(t)

2y(0)2
〉

+
〈
yp(t)

2y(0)2
〉

−
〈
yh(t)

2
〉 〈
y(0)2

〉
−
〈
yp(t)

2
〉 〈
y(0)2

〉
(3.17)

+ 2
( 〈
yh(t)yp(t)y(0)2

〉
− 〈yh(t)yp(t)〉

〈
y(0)2

〉 )
.

Angled brackets denote an average over noise and initial conditions.

According to Eq. (3.14), the particular solution yp does not depend on the initial conditions. It
follows immediately that 〈

yp(t)
2y(0)2

〉
−
〈
yp(t)

2
〉 〈
y(0)2

〉
= 0 . (3.18)

Furthermore, since yh depends only on the initial conditions and is independent of the noise,〈
yh(t)yp(t)y(0)2

〉
− 〈yh(t)yp(t)〉

〈
y(0)2

〉
= 0 , (3.19)

follows from the assumption that 〈F (t)〉 = 0. To summarize,〈
δy(t)2δy(0)2

〉
=
〈
δyh(t)

2δy(0)2
〉
. (3.20)

For each of the time correlation functions needed to compute the inverse diffusion tensor, it is gen-
erally true that yh(t) may be substituted in the average for y(t).

Without loss of generality, let us assume for the moment that (γ)2 − 4km > 0. The com-
ponents of the inverse diffusion tensor calculated below are identical to those calculated with the
assumption (γ)2 − 4km ≤ 0. If we define

r± =
γ

2m
± 1

2

√( γ
m

)2

− 4k

m
, (3.21)

then the homogeneous solution with initial conditions {y(0), p(0) = mẏ(0)} is given by

yh(t) = y0 +
p(0) +mr− (y(0)− y0)

m(r− − r+)
e−r+t +

p(0) +mr+ (y(0)− y0)

m(r+ − r−)
e−r−t , (3.22)

where y0 is the fixed trap position. For convenience, let us define Y ≡ y − y0. Assuming that
the initial conditions {y(0), p(0)} are distributed according to the equilibrium Boltzmann distribu-
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tion ρeq[y(0), p(0)] ∝ e−βE[y(0),p(0)] for E[y, p] = p2

2m
+ 1

2
kY 2, we obtain the following identities:

〈δY 2
h (t)δY 2(0)〉 =

2

(kβ)2 (r+ − r−)2

(
r−e

−r+t − r+e
−r−t

)2 (3.23a)

〈δẎ 2
h (t)δY 2(0)〉 =

2r2
+r

2
−

k2β2 (r+ − r−)2

(
e−r+t − e−r−t

)2 (3.23b)

〈δY 2
h (t)δp2(0)〉 =

2

β2 (r+ − r−)2

(
e−r+t − e−r−t

)2 (3.23c)

〈δẎ 2
h (t)δp2(0)〉 =

2

β2 (r+ − r−)2

(
r−e

−r−t − r+e
−r+t

)2
. (3.23d)

Integrating these expressions, we obtain∫ ∞
0

dt〈δY 2
h (t)δY 2(0)〉 =

m

k2β2γ

(
1 +

(γ)2

km

)
(3.24a)∫ ∞

0

dt〈δẎ 2
h (t)δY 2(0)〉 =

1

kβ2γ
(3.24b)∫ ∞

0

dt〈δY 2
h (t)δp2(0)〉 =

m2

kβ2γ
(3.24c)∫ ∞

0

dt〈δẎ 2
h (t)δp2(0)〉 =

m

γβ2
. (3.24d)

Thus the inverse diffusion tensor is

ζij =
m

4γ


4(γ)2

m
β 0 0

0 1
β2

(
4 + (γ)2

km

)
1
βk

(
2 + (γ)2

km

)
0 1

βk

(
2 + (γ)2

km

)
1
k2

(
1 + (γ)2

km

)
 , (3.25)

which endows the space −∞ < y0 <∞, 0 < β <∞, 0 < k <∞ with a Riemannian structure.

3.3 Optimal protocols

Though one can write down the geodesic equations for the metric Eq. (3.25) in the (y0, β, k)
coordinate system, more insight is gained by finding a suitable change of coordinates. Consider the
lower right 2× 2 block of the metric Eq. (3.25) which is the metric tensor for the two-dimensional
(β, k) submanifold. A direct calculation of this submanifold’s Ricci scalar yields R = −2γ/m
which is constant and always strictly negative.
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Theorems from Riemannian geometry [67] imply that this constant negative-curvature subman-
ifold is isometrically related to the hyperbolic plane. In our construction, we choose the Poincaré
half-plane representation of the hyperbolic plane, which is described by {(z, x) ∈ R2, x > 0}
with metric tensor given by the line element ds2 = ζijdx

idxj = dx2+dz2

x2 . The geodesics of the
hyperbolic plane (see Fig. 3.1) are half-circles with centers on the z-axis and lines perpendicular
to the z-axis. Fig. 3.1(c) shows two geodesics in (z, x) coordinates. The portion of the hyperbolic
plane {(z, x) ∈ R2, x > 1, z ∈ [0, π]} may be isometrically embedded in R3 using the map(

1

x
cos z, log

(√
x2 − 1 + x

)
−
√
x2 − 1

x
,

1

x
sin z

)
. (3.26)

The geodesics of Fig. 3.1 (c) and the part of the hyperbolic plane containing them are embedded
in R3 in Fig. 3.1(d).

The line element associated with the submanifold metric tensor,

ds2 =
m

4γ

[
1

β2

(
4 +

(γ)2

km

)
dβ2 +

2

βk

(
2 +

(γ)2

km

)
dβ dk +

1

k2

(
1 +

(γ)2

km

)
dk2

]
, (3.27)

is coordinate-invariant since it measures geometric distances. Thus we may construct an explicit
coordinate transformation,

x ≡ 1

2βγ

√
m

k
, z ≡ 1

4βk
, (3.28)

to demonstrate the equivalence of the submanifold with a portion of the Poincaré plane. Note that x
is proportional to the classical partition function of the system in equilibrium, and z is proportional
to the equilibrium variance of y − y0. Inverting Eq. (3.28), and substituting into Eq. (3.27) gives
the metric tensor in (z, x)-coordinates,

ds2 =
m

γ

dx2 + dz2

x2
. (3.29)

The line element corresponding to the metric of the full three-dimensional manifold in Eq. (3.25)
is

ds2 =
m

γ

z dy2
0 + dx2 + dz2

x2
(3.30)

in (y0, z, x) coordinates. To fully exploit the machinery of Riemannian geometry to find closed-
form geodesics, we look for Killing fields of Eq. (3.30). In general [68, 67, 69], isometries of
a metric are generated by the Killing vector fields K which are themselves characterized by the
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Killing equation
∂iKj + ∂jKi − 2ΓkijKk = 0 . (3.31)

While directly solving this system of equations may be difficult, certain characterizations of Killing
vectors help circumvent this difficulty. For instance, if in a given coordinate system the metric
tensor components are independent of a coordinate xi, then the coordinate vector ∂xi is a Killing
field [69]. Hence, ∂y0 is clearly a Killing vector field. Examining the full set of Killing equations
shows that

K = y0∂y0 + 2x∂x + 2z∂z (3.32)

is also a Killing vector field. There may be more solutions to the Killing equation yet to be discov-
ered.

In general [69], for Killing vector Ki the quantity Ki
dλi

dt
is conserved along the geodesic de-

scribed by λ. For the three-dimensional inverse diffusion tensor, we have the following two con-
served quantities associated with Killing fields:

z(t)

x2(t)

dy0

dt
,

2

x(t)

dx

dt
+

z(t)

x2(t)
y0(t)

dy0

dt
+

2z(t)

x2(t)

dz

dt
. (3.33)

To solve the geodesic equations, note that the velocity of the geodesic (i.e., its tangent vector)
must have constant norm [68, 67, 69]. (See Ch. A for details.) For convenience, we choose the
norm so that

1 =
1

x2(t)

((
dz

dt

)2

+

(
dx

dt

)2
)

+
c2

1

r2

x2(t)

z(t)
(3.34)

where we have used the first conserved quantity of Eq. (3.33). We combine this with the full
geodesic equation for x(t), to decouple x(t) from y0(t) and z(t):

d2x

dt2
− 2

x(t)

(
dx

dt

)2

+ x(t) = 0 , (3.35)

which has solution
x(t) = r sech(t) . (3.36)

When z(t) is constant, the geodesic equation for z implies that y0 is also constant, giving a geodesic
straight line in the constant-z submanifold.

When z(t) is not constant, Eqs. (3.34) and (3.36) imply

x4(t)

r2
=

(
dz

dt

)2

+
c2

1

r2

x4(t)

z(t)
, (3.37)
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which integrates to
z(t) = h−1

(
c2 − r tanh(t)

)
, (3.38)

where
h (ξ) ≡ ξ

√
1− c21

ξ
+ 1

2
c2

1 log
(

2ξ
(
1 +

√
1− c21

ξ

)
− c2

1

)
. (3.39)

The Killing conserved quantities of Eq. (3.33), together with x(t) and z(t), yield

y0(t) = E−c1 log

[
−c2

1+2h−1 (c2 − r tanh(t))×

(
1 +

√
1− c2

1

h−1 (c2 − r tanh(t))

)]
. (3.40)

Let (y0,i, xi, zi) and (y0,f , xf , zf ) denote the endpoints of the geodesic. Define ∆λ ≡ λf − λi
and λ̄ ≡ λi+λf

2
for λ ∈ {y0, x, z}. Defining h̄ ≡ h(zf)+h(zi)

2
and4h ≡ h (zf )−h (zi) , the constant

c2 may be written as

c2 = h̄+ x̄
4x
4h

(3.41)

and r is given by

r2 = x2
i +

1

4

(
4h+ 2

4x
4h

x̄

)2

. (3.42)

The constant E is given by

E = y0,i + c1 log

−c2
1 + 2zi

1 +

√
1− c2

1

zi

 (3.43)

and c1 is determined by the equation

4y0 = −c1

[
log

(
−c2

1 + 2zf

(
1 +

√
1− c2

1

zf

))
− log

−c2
1 + 2zi

1 +

√
1− c2

1

zi

].
(3.44)

The parameter t ranges between the values

ti = sgn
(
4h+ 2

4x
4h

x̄

)
sech−1

(xi
r

)
(3.45)

and

tf = −sgn
(
4h− 2

4x
4h

x̄

)
sech−1

(xf
r

)
. (3.46)
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When y0 is held fixed, the geodesics are precisely those of the hyperbolic plane as expected.
Furthermore, these geodesics are necessarily minimizing by virtue of the constant, negative Ricci
scalar [68, 67]. Several example geodesics are displayed in Fig. 3.2.

Figure 3.2: Optimal protocols differ substantially from linear interpolation (red dashed lines). Blue solid curves
represent geodesics of the inverse diffusion tensor, and are thus optimal protocols for transitioning the system from
one state to another in a fixed amount of time. Blue dots indicate points separated by equal times along each of the
eight optimal paths shown.

3.4 Computing dissipation numerically

We validate the optimality of these geodesics by calculating excess work directly from the
Fokker-Planck equation. In full generality, the mean excess work as a functional of the protocol
λ(t) = (y0(t), β(t), k(t)) is

〈(βW )ex〉 ≡
∫ tf

0

dt βPex =

∫ tf

0

dt

(
β̇
〈p2〉
2m

+
1

2
〈(y − y0)2〉

(
kβ̇ + k̇β

)
+kβẏ0〈y0−y〉−

β̇

β
− k̇

2k

)
.

(3.47)
Here angled brackets denote averages over the nonequilibrium probability density f(y, p, t).

Standard arguments [54] yield the Fokker-Planck equation for the time evolution of f(y, p, t),

∂f

∂t
+
p

m

∂f

∂y
− k(t) [y − y0(t)]

∂f

∂p
− γ

m

∂[pf ]

∂p
− γ

β(t)

∂2f

∂p2
= 0 . (3.48)
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By integrating Eq. (3.48) against y, p, etc., we find a system of equations for relevant nonequilib-
rium averages:

d

dt
〈y〉 =

〈p〉
m

(3.49a)

d

dt
〈p〉 = − γ

m
〈p〉 − k〈y − y0〉 (3.49b)

d

dt
〈py〉 =

〈p2〉
m
− k〈y2〉 − γ

m
〈py〉+ ky0〈y〉 (3.49c)

d

dt
〈y2〉 =

2

m
〈py〉 (3.49d)

d

dt
〈p2〉 = −2k〈p (y − y0)〉 − 2

γ

m
〈p2〉+

2γ

β
. (3.49e)

Following the derivation of the friction tensor in [52] would require us to use linear response theory
and to supplement the system Eq. (3.49) by initial conditions

〈y〉 (0) = y0(0) (3.50a)
〈p〉 (0) = 0 (3.50b)〈
y2
〉

(0) = y0(0)2 +
1

k(0)β(0)
(3.50c)

〈py〉 (0) = 0 (3.50d)〈
p2
〉

(0) =
m

β(0)
. (3.50e)

We solve these equations numerically and compare a geodesic protocol with naive protocols in
Fig. 3.3.

This system has three natural dimensionless quantities

A ≡ m

γ4t
, B ≡ γ

k̃4t
, M ≡ γ (4t)3

l̃2m2β̃
, (3.51)

dependent upon characteristic scales for (inverse) temperature β̃, length l̃, spring constant k̃ and
the protocol duration 4t. These suggest at least two plausible measures of distance from equilib-
rium [52]. A corresponds to the ratio of two timescales, the timescale m

γ
for frictional damping

and the timescale of the perturbation protocol ∆t. Likewise, B is the ratio of two powers during
changes of y0, the dissipative power γ(∆y0/∆t)

2 and the elastic power k̃(∆y0)2/∆t. As A de-
creases and as B decreases, the system will remain closer to equilibrium during the course of the
nonequilibrium perturbation, and hence our near-equilibrium approximation will be more accurate.

This intuition is confirmed in our numerical calculations: with A � 1 and B � 1, the dis-
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sipation of geodesic protocols obtained numerically via Fokker-Planck agrees with the inverse
diffusion tensor approximation to better than .1% (see Fig. 3.3). Note that, while the inverse dif-
fusion tensor approximation is excellent for optimal protocols and small deviations thereof, it can
deviate substantially from the exact result for large deviations from the geodesic.

3.5 The inverse diffusion tensor arises naturally from the Fokker-
Planck equation

If we neglect terms involving derivatives of protocols of degree two and higher, we may find
an approximate solution to the Fokker-Planck system:

〈y〉 ≈ y0 −
γ

k
ẏ0 (3.52a)

〈p〉 ≈ mẏ0 (3.52b)

〈py〉 ≈ my0ẏ0 −
m

2

(
k̇

βk2
+

β̇

β2k

)
(3.52c)

〈
p2
〉
≈ m

β
+
m2

γ

(
k̇

2βk
+

β̇

β2

)
(3.52d)

〈
y2
〉
≈ y2

0 +
1

βk
− 2γ

k
y0ẏ0 (3.52e)

+ k̇

(
m

γ

1

2βk2
+

γ

2βk3

)
+ β̇

(
m

γ

1

β2k
+

γ

2β2k2

)
.

Substituting this into the expression for mean excess power Eq. (3.47), we recover Eq. (3.5). The
argument above suggests that the emergence of the inverse diffusion tensor from the Fokker-Planck
equation may follow from a perturbation expansion in small parameters.

3.6 Discussion

We have employed geometric techniques to find optimal protocols for a simple, but previously
unsolved, stochastic system. Calculation of the Ricci scalar for a submanifold pointed to a change
of coordinates that identified the submanifold with the hyperbolic plane and greatly simplified the
metric for the full three-dimensional manifold. This simplification, combined with the identifi-
cation of a Killing field, permitted calculation of an exact closed-form expression for geodesics.
Exact calculations using the Fokker-Planck equation confirmed that geodesics in the (β, k) sub-
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Figure 3.3: Geodesics describe protocols that outperform naive straight line paths in parameter space. A geodesic
between two fixed points in the (β, k)-plane (black) and several comparison protocols are pictured above. The com-
parison protocols were generated via a linear interpolation between the constant speed straight line (pink) and the
geodesic. The tick marks represent points separated by equal times. The solid pink dots correspond to the constant
speed parametrization of the line whereas the open red circles correspond to the optimal parametrization along this
straight path. The ratio of excess work to that of the geodesic protocol is: 6.12 (pink circle), 4.37 (red open circle),
3.67 (cyan downward-pointing triangle), 1.38 (orange upward-pointing triangle), 1.00 (black star (geodesic)), 2.86
(magenta square), and 6.29 (green circle). These ratios are plotted in the inset figure along with a graph of the ratio as
a function of the interpolating parameter (light gray curve). All excess work values were calculated using the Fokker-
Planck system Eq. (3.49). Here,A = 10−2, B = 10−3,M = 1, placing the system within the near-equilibrium regime
and ensuring accuracy of the inverse diffusion tensor approximation.

manifold do indeed produce less dissipation than any comparison protocol we tested.

In addition to being useful for identifying optimal protocols, we expect that the Ricci scalar
will turn out to have an important physical interpretation. Riemannian geometry has been useful
for the study of thermodynamic length of macroscopic systems [40, 70], and there has been some
speculation about the role of the Ricci scalar in that setting [70], but the interpretation of R arising
from the inverse diffusion tensor remains ambiguous. We hope that further study of these geomet-
rical ideas extended to nonequilibrium systems will help clarify its role.

It would also be interesting to establish a physical interpretation for the conserved quantities
arising from Killing fields in this context. We found two conserved quantities (see Eq. (3.33)),
which may be the only ones, but this model could have as many as six, given that there might be
as many as six unique globally smooth Killing fields for this three-dimensional model system. (In
general, there are at most 1

2
n (n+ 1) independent globally smooth Killing fields where n is the

dimension of the manifold [69].)
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In the course of developing our framework, we encountered four distinct measures of the de-
parture from equilibrium. The first two were dimensionless parameters, A and B, which have
relatively straightforward physical interpretations — the timescale for frictional dissipation rela-
tive to the protocol duration and the ratio of the dissipative power to elastic power, respectively
(see discussion following Eq. (3.51)).

The third was the disagreement between dissipation computed assuming linear response theory
and the true dissipation. Empirically, we found that our linear response approximation was consis-
tently accurate for all parameter regimes we tested in which both dimensionless parameters A and
B were small, at least for protocols not too far from geodesics. Conversely, the linear response ap-
proximation appeared to break down for many cases we tested with at least one of these parameters
of order unity or greater. However, the full extent of validity of the linear response approximation
is not clear to us, suggesting an important direction for future research.

Finally, we found that truncating to first order in temporal derivatives of the control parame-
ters in our model was sufficient to yield the same inverse diffusion tensor formalism we originally
derived using linear response theory. While it is plausible that these two types of linear approxima-
tions are directly related, further exploration is needed to uncover the relationship between linear
response theory and truncating the model equations to first order in temporal derivatives.

Our results are novel in three distinct ways. First, we included β as a control parameter, which
is a natural extension of thermodynamic length (e.g. [71, 40]) that is amenable to direct experimen-
tal confirmation. Our work generalizes the construction of [52] and opens up new experimental
avenues for testing the validity of the framework.

Secondly, our geodesic protocols optimize dissipation for simultaneous variation of all three
adjustable parameters; to our knowledge, no previous study has reported optimal protocols for any
model system with three control parameters. In [41, 42], Seifert and coworkers elegantly derived
the exact optimal protocols for perturbing the position y0 and spring constant k separately, for both
over-damped and under-damped Langevin dynamics. In [72], Aurell and coworkers discuss the
simultaneous variation of the stiffness and the location of the trap. We note that our method misses
the protocol jumps found in their analysis due to our smoothness assumptions on the protocols.
When this restriction on the differentiability of the curve is imposed, we found that any component
of the optimal protocol

(
y0(t), β(t), k(t)

)
generically depends on all components of both endpoints

due to the non-trivial geometry of the parameter space.

Finally, we successfully brought the machinery of Riemannian geometry to bear on a small-
scale, nonequilibrium thermodynamic problem, revealing a surprisingly rich geometric structure.
Concepts such as Killing vector fields, coordinate invariance and the Ricci scalar proved indispens-
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able in the construction of optimal protocols. These results are encouraging and this approach may
prove useful for understanding the constraints on the non-equilibrium thermodynamic efficiency
of biological and synthetic molecular machines.
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Chapter 4

Optimal Control of Nonequilibrium Steady
State Transitions

Living systems are distinguished by their self-organization. Biological systems fundamentally
exist out of equilibrium in order to preserve organized structures and processes. Given the entropic
driving force embodied in the second law of thermodynamics, creating and maintaining such or-
ganization requires staying far from equilibrium [18], typically by coupling to nonequilibrium
gradients.

For example, ATP-driven molecular motors (e.g., kinesin) are forced away from equilibrium
by cellular maintenance of a chemical potential difference between ATP and ADP [19], and the
rotary FO-F1 ATP synthase operates out of equilibrium due to cellular maintenance of an elec-
trochemical gradient across the inner mitochondrial membrane [20]. For constant ATP and ADP
concentrations, or constant membrane potential, the dynamics of an ensemble of such molecular
motors will approximate a nonequilibrium steady state (NESS). Thus, biological systems are often
better characterized as nonequilibrium steady states rather than equilibrium systems.

Such NESS may change in response to changing environmental conditions. Given that selec-
tive advantage may be incurred by energetically-efficient operation, evolution may have sculpted
biological components to interact so as to reduce the energy wasted during transitions between
NESS. Accordingly, optimizing such transitions may offer insights into the design principles of
biological systems and guide the creation of synthetic molecular-scale machines.

In this chapter, we take a first step towards this goal by optimizing the Hatano-Sasa Y-value,
a quantity similar to dissipated work, for the paradigmatic model system tested in [1] and ana-
lyzed in [53] with an eye towards experimental tests. We calculate and numerically verify optimal
protocols for a colloidal particle dragged through solution by a translating optical trap with two
controllable parameters. We propose a regime of validity of our approximation based on this nu-
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merical work. By measuring the average work required to drive this system along either optimal or
naive paths through control parameter space, our results can be tested experimentally in a straight-
forward way using existing experimental techniques.

4.1 The model system and its inverse diffusion tensor

We consider a particle with spatial coordinate x diffusing under Langevin dynamics subject to
a one-dimensional harmonic potential, with equation of motion

ẋ = −k(t)

γ
x+ η(t)− v(t) , (4.1)

for Gaussian white noise η(t) satisfying

〈η(t)〉 = 0 , 〈η(t)η(t′)〉 =
2

βγ
δ(t− t′) . (4.2)

Here γ is the Cartesian friction coefficient, k is the trap stiffness, v is the trap center velocity in
the lab frame and x is the coordinate of the colloidal particle in the frame co-moving with the trap.
The particle is initially in NESS due to constant trap velocity v.

As defined in Ch. 2, the Hatano-Sasa Y-value [6]

Y ≡
∫ τ

0

dt

[
dλT

dt

]
· ∂φ
∂λ

(
x(t),λ(t)

)
(4.3)

arises in NESS transitions when the control parameters λ are changed rapidly compared to the
system’s relaxation timescale. Here φ(x,λ) ≡ − ln ρss(x,λ) where ρss(x,λ) is the steady state
probability distribution and τ is the protocol duration.

In some simple cases this corresponds to the system ‘lagging’ behind the changing control
parameters. For transitions between equilibrium states this measure reduces to the standard dissi-
pation governed by the Clausius inequality [73]. This measure of irreversibility (4.3) obeys a sig-
nificant NESS fluctuation theorem that has been experimentally observed in our particular model
system [1].

The ensemble average of the Y-value is

〈Y 〉Λ ≡
∫ τ

0

dt

[
dλT

dt

]
·
〈
∂φ

∂λ

(
x,λ(t)

)〉
Λ

. (4.4)
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Applying linear response theory [54, 52, 37] and assuming that the protocol varies sufficiently
slowly [52], we arrive at an expression for the average Y-value

〈Y 〉Λ ≈
∫ τ

0

dt

[
dλT

dt

]
· ζ(λ(t)) ·

[
dλ

dt

]
, (4.5)

in terms of the control parameter velocities dλ/dt and the inverse diffusion matrix ζ(λ) with
entries

ζij(λ) ≡
∫ ∞

0

dt′
〈
∂φ

∂λi
(t′)

∂φ

∂λj
(0)

〉
λ

. (4.6)

The angle brackets 〈. . . 〉λ represent an average over noise followed by a stationary state average
over initial conditions using the distribution ρss(x,λ). Note that, if ρss(x,λ) is the equilibrium
distribution, the inverse diffusion tensor of [37] is recovered. For details, the interested reader is
referred to Ch. 2 of this thesis.

The steady-state distribution is given by ρss(x,λ) ≡
√

βk
2π

exp{− β
2k

(kx+ γv)2} [1, 53]. The
parameter space derivative of φ is given by

∂φ

∂λ
≡
(
∂φ

∂k
,
∂φ

∂v

)
(4.7a)

=

(
− 1

2k
+
β

2
x2 − β

2

[γv
k

]2

, βγ
[
x+

γv

k

])
. (4.7b)

In order to calculate the time correlation functions in Eq. (4.6), we solve Eq. (4.1) for constant k
and v, giving

x(t) = x0e
− k
γ
t +

∫ t

0

ds e−
k
γ

(t−s)η(s)− γv

k

(
1− e−

k
γ
t
)
. (4.8)

Recalling that η(t) is Gaussian noise, Eq. (4.8) implies

〈
∂kφ(t)∂kφ(0)

〉
λ

=
β (γv)2

k3
e−

k
γ
t +

1

2k2
e−

2k
γ
t , (4.9a)〈

∂kφ(t)∂vφ(0)
〉
λ

= −βv
(γ
k

)2

e−
k
γ
t , (4.9b)〈

∂vφ(t)∂kφ(0)
〉
λ

= −βv
(γ
k

)2

e−
k
γ
t , (4.9c)〈

∂vφ(t)∂vφ(0)
〉
λ

=
βγ2

k
e−

k
γ
t . (4.9d)

Integrating over time yields the inverse diffusion tensor:

ζ(k, v) =

(
γ

4k4

[
k + 4β (γv)2] −βv [γ

k

]3
−βv

[
γ
k

]3
β γ

3

k2

)
. (4.10)
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4.2 Optimal protocols

Though one can write down the geodesic equations for the metric [Eq. (4.10)] in the (k, v)
coordinate system, more insight is gained by finding a suitable change of coordinates. A direct
calculation of this metric’s Ricci scalar yields R = 0, demonstrating that the underlying geometry
is Euclidean [67].

The line element corresponding to the metric in Eq. (4.10) is

ds2 =
γ

4k4

[
k + 4β (γv)2] dk2 − 2βv

(γ
k

)3

dk dv + β
γ3

k2
dv2 .

To find the explicit coordinate transformation making the Euclidean geometry manifest, we write
the line element as

ds2 = βγ3

{[
d
(v
k

)]2

+

(
dk

2
√
βγk

3
2

)2}
. (4.11)

This suggests the coordinate transformation ξ = v
k
, χ = 1

γ
√
βk

, so that

ds2 = βγ3
(
dξ2 + dχ2

)
. (4.12)

In this coordinate system, geodesics are straight lines of constant speed. To find optimal pro-
tocols in (k, v) space, one simply transforms the coordinates of the endpoints into (ξ, χ) space,
connects these points by a straight line, and uses the inverse transformation to map the line onto a
curve in (k, v) space. This follows from the invariance of the geodesic equation [67]. Explicitly,
the optimal protocol joining (ki, vi) and (kf , vf ) is

k(t) =

[
1√
ki

(1− T ) +
1√
kf
T

]−2

, (4.13a)

v(t) = k(t)

[
vi
ki

(1− T ) + T
vf
kf

]
, (4.13b)

where T = t
τ
. Sample optimal protocols are pictured in Fig. 4.2.

4.3 Optimal straight-line protocols

In the absence of any particular information about the system’s dynamical properties, a naive
control strategy would change the control parameters at a constant rate, producing a straight line in
control parameter space. The inverse diffusion tensor approximation [Eq. (4.5)] provides a recipe
for choosing both a potentially nonlinear path through control parameter space, as well as a time-
course along that path. The inverse diffusion tensor formalism can alternatively be used to optimize
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the time-course along a straight-line control parameter path. Such a protocol provides a benchmark
against which an optimal protocol [Eq. (4.13)] can be compared. For the model considered here,
we will find that an optimal straight-line protocol can be substantially better than the most naive
(constant-speed) straight-line protocol. Furthermore, straight-line protocols are relatively straight-
forward to test experimentally.

When k(t) is held fixed, a straightforward application of variational calculus demonstrates that
a straight-line protocol in v(t) is exactly optimal and agrees with the predictions of the linear
response approximation [Eq. (4.5)]. To see this, consider the explicit functional form the mean
Y-value as recorded in Eq. (4.25). When k̇ = 0, this expression simplifies to

βγ

∫ τ

0

dt v̇

[
〈x〉Λ + γ

v

k

]
. (4.14)

From Eq. (4.26) we may write

v̇ = −
[
d2〈x〉Λ
dt2

+
k

γ

d〈x〉Λ
dt

]
(4.15)

which allows us to write the mean Y-value as a functional of the ensemble moment 〈x〉Λ:

〈Y 〉Λ =
βγ2

k

∫ τ

0

dt

[
d2〈x〉Λ
dt2

+
k

γ

d〈x〉Λ
dt

]
d〈x〉Λ
dt

. (4.16)

Extrema of a functional of the form
∫ τ

0
dt L[f(t), ḟ(t), f̈(t)] satisfy the Euler-Lagrange equa-

tion

∂fL −
d

dt
∂ḟL+

d2

dt2
∂f̈L = 0. (4.17)

Therefore, the optimal time course for the ensemble moment 〈x〉Λ satisfies

− d

dt

(
d2〈x〉Λ
dt2

+
2k

γ

d〈x〉Λ
dt

)
+
d2

dt2

(
d〈x〉Λ
dt

)
= 0 (4.18)

or
d〈x〉Λ
dt

= const. (4.19)

Integrating this equation demonstrates that the optimal 〈x〉Λ is linear in time. From Eq. (4.15), the
optimal time course for v(t) must also be linear with coefficients determined by the endpoints of
the protocol and the protocol duration.

In Ref. [1], the average Y-value was measured for three distinct experimental trials involving
protocols with constant k. As summarized in Fig. 4.1, the optimal protocol, namely the naive
straight line in the case of constant k, shows significantly reduced Y-value compared with the pro-
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tocols used in each experimental trial. However, in terms of testing the performance of the optimal
protocols [Eq. (4.13)], kf 6= ki is the more general case.

As in the case of finding globally optimal protocols, the problem of finding optimal straight
line protocols simplifies dramatically in (ξ, χ) coordinates. Using Eq. (4.12), we find

〈
Y
〉
Λ
≈ βγ3

∫ τ

0

dt

[
1 + b2χ2(t)

](
dχ

dt

)2

, (4.20)

for
b ≡ 2βγ2kfvi − kivf

kf − ki
. (4.21)

The Euler-Lagrange equation implies

dχ

dt
=

1
τ

∫ χf
χ0
dz
√

1 + b2z2√
1 + b2χ2(t)

, (4.22)

which determines an implicit expression for χ(t):

2b

(
t

τ

)∫ χf

χ0

dz
√

1 + b2z2 = b

(
χ(t)

√
1 + b2χ2(t)−χ0

√
1 + b2χ2

0

)
+sinh−1 [bχ(t)]−sinh−1 [bχ0] .

(4.23)
The relation χ = 1

γ
√
βk

determines an implicit expression for k(t), and hence for v(t).

4.4 Computing the Y-value numerically

We validate the optimality of the geodesics [Eq. (4.13)] and compare with optimal straight-
line protocols by calculating the average Y-value directly by integrating in time the Fokker-Planck
equation describing the dynamical evolution of the particle probability distribution [53],

∂ρ

∂t
=
k(t)

γ

∂

∂x
(xρ) + v(t)

∂ρ

∂x
+

1

βγ

∂2ρ

∂x2
. (4.24)

In full generality, the mean Y-value as a functional of the protocol λ(t) = (k(t), v(t)) is∫ τ

0

dt

[
− k̇

2k
− β

2

(γv
k

)2

k̇ +
β

2
k̇〈x2〉Λ + βγv̇〈x〉Λ + βγ2 v

k
v̇

]
. (4.25)

Here angled brackets denote averages over the nonequilibrium probability density ρ(x, t).

By integrating Eq. (4.24) against x and x2, we find a system of equations for relevant nonequi-
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Exp. 1 Exp. 2 Exp. 3

Figure 4.1: Experiment 1 (left, red) used a quarter-sine wave protocol to vary the trap speed; Experiments 2 (middle,
blue) and 3 (right, orange) used an inverted three-quarters sine wave. Specifically, v(t) = 8.12+4.03 sin (πt/2τ), k =
4.25, τ = 0.06, q = 0.20 for Experiment 1, v(t) = 9.93 − 3.63 sin (3πt/2τ), k = 4.51, τ = 0.06, q = 0.21 for
Experiment 2, and v(t) = 7.53− 2.67 sin (3πt/2τ), k = 4.9, τ = 0.08, q = 0.23 for Experiment 3. Here, velocity is
measured in µm/s, τ is the protocol duration measured in s, k is the trap stiffness measured in pN/µm, and q ≡ k/βγ
is measured in pN µm/s . The Y-value for these protocols (light color bar) and for the optimal protocols (solid color
bar) were obtained numerically assuming β−1 = 4.6 pN nm (red), β−1 = 4.45 pN nm (blue), β−1 = 4.35 pN nm
(orange) respectively. These effective temperatures were chosen to give the best match between experiment and
numerical calculation, and may differ from room temperature (β−1 = 4.14 pN nm) because of local heating by the
optical trap [74]. We predict a significant reduction in Y-value for optimal protocol driving under the conditions of the
three experiments described in Ref. [1].

librium averages:

d

dt
〈x〉Λ = −k(t)

γ
〈x〉Λ − v(t) , (4.26a)

d

dt
〈x2〉Λ = −2k(t)

γ
〈x2〉Λ − 2v(t)〈x〉Λ +

2

βγ
, (4.26b)
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supplemented by initial conditions

〈x〉Λ (0) = −γvi
ki

, (4.27a)

〈
x2
〉
Λ

(0) =
1

βki
+

[
γvi
ki

]2

. (4.27b)

Note that for a more complex system the first and second moments 〈x〉 and 〈x2〉 are not suffi-
cient to characterize the probability distribution, but time-dependent solutions are still accessible
through standard (but more computationally intensive) numerical integration of the full Fokker-
Planck equation (4.24) [75].

We solve these equations numerically and compare the performance of optimal straight lines
against geodesics [Eq. (4.13)] and naive (constant-speed) straight-line protocols in Fig. 4.2. We
selected endpoints and physical constants based on those used in the experiments of Ref. [1]; in this
regime the inverse diffusion tensor approximation produces small relative error in Y-value. Though
there is only a marginal difference in performance between the optimal straight-line protocol and
the geodesic for both sets of endpoints, there is a substantial benefit in using either over the naive
straight line protocol.

4.5 The inverse diffusion tensor arises naturally from the Fokker-
Planck equation

If we neglect terms involving second- and higher-order temporal derivatives (an alternative
near-equilibrium approximation), we obtain an approximate solution to the Fokker-Planck system:

〈x〉Λ ≈ −γ
v

k
+
(γ
k

)2

v̇ − v

k

(γ
k

)2

k̇ , (4.28a)〈
x2
〉
Λ
≈ γ2 v

2

k2
+

1

βk
+

γk̇

2βk3
+

2γ3v2k̇

k4
− 2γ3vv̇

k3
. (4.28b)

Substituting this into the expression for the mean Y-value [Eq. (4.25)], we recover Eq. (4.11). The
argument above suggests that the emergence of the inverse diffusion tensor from the Fokker-Planck
equation may follow from a perturbation expansion in small parameters [37].
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(a) (b)

Figure 4.2: Geodesics describe protocols that outperform naive (constant-speed) straight-line paths in parameter space.
Geodesics between fixed pairs of points in the (k, v)-plane and accompanying straight-line protocols are pictured in (a).
The filled circles represent points separated by equal times. The open circles correspond to the optimal parametrization
along the respective straight path. All mean Y-values were calculated using the Fokker-Planck system, Eq. (4.26).
Here, γ = 0.1 pN s/µm and β−1 = 4.6 pN nm to approximate the experiments of Ref. [1]. The protocol duration
is chosen to be τ = 100 s to ensure that the relative error

∣∣1 − 〈Y 〉approxΛ /〈Y 〉Λ
∣∣ is less than 1.4% for all protocols.

Protocol endpoints were selected for experimental accessibility [76]. The relative performance of naive straight-line,
optimal straight-line, and geodesic protocols are summarized in (b).

4.6 Discussion

We have taken the first step towards extending the geometric framework for calculating opti-
mal protocols presented in [52, 37] to systems relaxing to NESS. As energy-transducing biological
systems are more faithfully described by NESS than by equilibrium statistics, this brings recent
theoretical developments closer to the behavior of in vivo biological systems.

Using a linear response approximation, we found the optimal mean Y-value for a model system
of a colloidal particle (initially in NESS) dragged through solution and subject to a time-dependent
harmonic potential. We took as our control parameters the velocity and spring constant of the
harmonic potential. Tools from Riemannian geometry revealed a useful coordinate transformation
which greatly simplified the construction of optimal straight-line protocols as well as geodesic pro-
tocols. These optimal protocols were tested numerically and the small relative error in the Y-value
approximation for experimentally relevant choices of parameters is encouraging.

Our predictions may be tested experimentally with existing hardware and methods. In Ref. [1],

36



the authors report on experiments performed with micron-sized polystyrene beads in solution. The
harmonic potential is created by superposing the foci of two counterpropagating laser beams. The
location of this trap was translated using a steerable mirror. The velocity v of the trap location was
altered by changing the mirror’s angular rate of rotation, and the trap stiffness k can be manipulated
by dynamically changing the intensity of the laser beam [77] or by passing the laser beam through
a polarization filter and dynamically changing the polarization of the laser beam. Force is inferred
from the rate of change of the momentum of light measured by position-sensitive photodetectors.
Comparison of the average work incurred during different protocols would provide an experimen-
tal test of the optimal protocols predicted in this manuscript.

Using the inverse diffusion tensor approximation in general allows us access to the full power
of Riemannian geometry in calculating optimal protocols. However, such experimental tests can
assess the range of validity of the approximation. Our alternate derivation of the inverse diffusion
tensor via a “derivative-truncation” expansion [37] suggests a greater robustness of the approxima-
tion.

In this chapter we provide concrete theoretical predictions for experiments — specifically, we
find that geodesics, optimal straight-lines, and naive straight-line protocols all are substantially
more efficient than the protocols tested in Trepagnier, et al. Moreover, we demonstrate that for si-
multaneous adjustment of k and v, optimal straight-line protocols can perform substantially better
than naive (constant-speed) straight-line protocols. The necessary methodology and experimental
apparatus are well-established [1] to not only verify our predictions but to push beyond the near-
steady-state regime.

Given the greater generality embodied by the extension to NESS, and the accuracy of this
approximation for a standard model system, optimal driving protocols derived in this framework
promise greater applicability to models of biomolecular machines. Nevertheless, important hurdles
remain: our model system experiences forces linear in position and has a steady-state distribution
differing from the equilibrium one only in its average displacement. Molecular machines feature
nonlinear force profiles, potentially nontrivial steady-state distributions, and often operate far from
equilibrium. Thus our comparatively simple theoretical framework may need further elaboration
to address the dynamics and efficiency of molecular machines with reasonable fidelity.

Furthermore, the relatively simple model system we treat in this chapter represents a new fron-
tier for the analytical solution of optimal protocols under the inverse diffusion tensor approxima-
tion. For significantly more complicated models of greater biological interest, a simple general
approach (in lieu of a search for an analytical solution) would be a fully numerical method, involv-
ing the calculation of the inverse diffusion tensor at a grid of points in control parameter space,
analogous to the approach in [39].
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Finally, there remains the important open question of what quantity or quantities are to be op-
timized in faithful models of biological processes. In this thesis chapter, we made the choice of
optimizing the Y-value which has been experimentally studied in this particular model system [1]
and may be optimized by the same geometric framework as in [52]. These qualities were advanta-
geous to begin a clear and mathematically tractable first step towards optimization of steady state
transitions.

However, it is possible and perhaps likely that a properly defined average dissipated heat will
be the biologically relevant quantity to optimize rather than the Y-value. We anticipate that a
geometric approach to optimization will be applicable to these more general systems and notions
of heat production in a relevant regime of parameter values and protocol durations. However, a
more general construction will have to take into account the so-called housekeeping heat [6, 55]
which is generated in maintaining the steady state at given control parameter values. Future work
is needed to address these issues properly.
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Chapter 5

Optimal Finite-Time Erasure Cycles

5.1 Introduction

Optimization schemes for thermodynamic processes occurring in finite time will be needed for
applications in which energetic or entropic costs are undesirable [21, 22]. An important class of
such processes consists of mesoscopic information processing systems operating out of equilib-
rium. Optimization will aid technological development in the decades to come as computational
demands approach limits imposed by physical law [23, 78], and it has implications for biomolec-
ular processes [79].

Moreover, understanding these systems will provide insight into the foundations of nonequi-
librium statistical mechanics. Investigations into the interplay between information and thermo-
dynamics seem to have originated with Maxwell’s hypothetical demon and its implications for the
second law of thermodynamics [24]. Much ground-breaking work followed from the Maxwell
demon paradox including Szilard’s engine revealing a quantitative link between thermodynamic
work and information [25], Landauer’s observation of the physical nature of information [26] and
Bennett’s interpretation of the paradox in terms of the relation between logical and thermodynamic
reversibility [27].

In recent times, research into nonequilibrium statistical mechanics of small-scale systems has
shed more light on the thermodynamic role of information [31]. Most notable is experimental ver-
ification [28] of the theoretical prediction of microscopic violations of Landauer’s principle with
the preservation of the principle on average [29], analogous to experimental and theoretical work
on fluctuations theorems demonstrating that entropy-reducing processes can occur microscopi-
cally whereas the second law holds on average [30]. Research into feedback and measurement
of mesoscopic nonequilibrium systems has improved our understanding of the role information
plays in the second law [31, 32]. Other work has focused on developing techniques to optimize
thermodynamic quantities arising in small-scale systems designed to store and erase classical in-
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formation [33, 34, 35], including the derivation of a refined second law [35]. Recent work has also
focused on the general problem of predicting optimal protocols to drive systems between station-
ary states with minimal dissipation [36, 37, 80, 39, 40, 41, 42, 43]. Note that we use “dissipation”
here to refer to all heat generation, including heat that could be recovered as useful work (c.f. [81]).

We have obtained closed-form expressions for the dissipation of maximally efficient cyclical
protocols for a simple system designed to store and delete a classical bit of information. The
system storing this bit consists of an overdamped Brownian colloidal particle diffusing in a one-
dimensional double-square-well potential separated by a potential barrier stabilizing the memory.
We take as control parameters the height of the potential barrier and the difference in minima of
the two wells.

When our two simultaneously adjustable parameters are optimally controlled, we find that the
dissipation falls off as the inverse of the cycle duration, asymptoting to the Landauer bound in
the long duration limit. This is consistent with pioneering work on erasure for a similar model
system [35] as well as a numerical [33] and theoretical [34] work on a single-level quantum dot,
though it is unclear if predictions for high temperature behavior in that system [34] can be recon-
ciled with our findings. However, unlike all previous studies, we have derived an explicit formula
for the minimal dissipation, valid for arbitrary temperature, providing specific testable predictions
for existing experimental setups [82, 28]. Our solutions are non-trivial in that both control param-
eters are continuously varying in time, but they are easily described, which complements previous
results for a nonparametric model [35].

For durations that are long compared to a characteristic timescale, we obtain a simple expres-
sion for the dissipation that depends on the difference between the initial and final spatial distribu-
tions of the particle. Interestingly, the extra dissipation beyond the Landauer bound for the optimal
finite-time protocol is proportional to the square of the Hellinger distance, which is always greater
than zero for any nonzero change in the probabilities of finding the particle in the left or right
potential well, unlike the Landauer bound itself, which can be zero or even negative depending on
the change in entropy of the particle’s spatial distribution.

Finally, we demonstrate that the geometrical framework developed in previous chapters for
finding optimal protocols based on the inverse diffusion tensor predicts nearly identical solutions
to our exact optimal protocols in this parameter regime, which is an encouraging sign for finding
optimal protocols in other model systems.

5.2 Model of classical information erasure

We consider the following model to represent a single classical bit of information: an over-
damped Brownian colloidal particle diffusing in a one-dimensional double-well potential in con-
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(a) (b) (c)

Figure 5.1: Double-well potential for storage of a single classical bit. (a,b) The system begins in thermal equilibrium
with equipotential wells and a potential barrier of height much larger than the thermal fluctuation scale. Observing the
particle (black dot) to the left (right) of the potential barrier corresponds to memory value 1 (0). The width 2w of the
central barrier and the width l of each well satisfy 2w/l � 1. (c) Optimally-efficient erasure protocols are sought in
which the “tilt” Vl (orange) and the barrier height Vb (blue) are control parameters. After the erasure step, the particle
is much more likely to be in the right well, regardless of where it originated.

tact with a thermal bath of temperature T [29, 28] (Fig. 5.1). The wells are initially separated by
a potential barrier whose height is much larger than the energy scale β−1 ≡ kBT set by thermal
fluctuations, ensuring stability of memory. The system is prepared so that the particle has equal
probability of being found in either well. This may be achieved, for example, by selecting the ini-
tial position of the particle to be at the midpoint of the potential barrier and waiting a sufficiently
long relaxation period [29]. If the particle is found in the left-hand (right-hand) well, the memory
value is defined to be 1 (0).

The time evolution of the particle’s position x(t) is governed by Brownian dynamics

ẋ = −1

γ
∂xU(x(t), t) + F (t) (5.1)

for Gaussian white noise F (t) satisfying

〈F (t)〉 = 0 , 〈F (t)F (t′)〉 =
2

βγ
δ(t− t′). (5.2)

Here, γ is the Cartesian friction coefficient and U(x, t) is a generic double-well potential satisfying
U(x, t) → ∞ as |x| → ∞. We will find the equivalent statistical description in terms of the
Fokker-Planck equation

∂tρ = D
[
∂x (βU ′(x, t)ρ) + ∂2

xρ
]
≡ −∂xG (5.3)

convenient, where ρ(x, t) is the position probability density, G(x, t) is the probability current, and
D is the diffusion coefficient.

Out of equilibrium, the system’s probability distribution over microstates fundamentally de-
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pends on the history of the control parameters λ, which we denote by the control parameter proto-
col Λ; 〈 · 〉Λ denotes the average over the nonequilibrium probability distribution arising from the
parameter protocol Λ.

We are primarily interested in optimizing finite-time erasure efficiency over cyclic protocols
for the classical single bit model described above. When classical information is being erased,
the difference in Shannon entropies of the final and initial probability distributions must satisfy
4S ≡ Sf − Si < 0, which would allow us to define the erasure efficiency ε ≡ −4S/ (kB〈βQ〉Λ)
as the ratio of this decrease in Shannon entropy to the average heat 〈Q〉Λ released into the thermal
bath [33, 83]. However, in addition to erasure, we will also consider arbitrary initial and final
spatial distributions for the particle, so we will state our results in terms of dissipation rather than
efficiency.

Our goal will be to minimize the dissipated heat subject to constraints on the initial and final
probability distributions, similar in some ways to “stochastic optimal control,” but for a different
cost function [84]. Since we are constraining the initial and final probability distributions, we
expect our optimal protocols to have jump discontinuities at the endpoints based on experience
with optimization in the context of stochastic thermodynamics in general [42, 41, 43, 55, 85] and
erasure efficiency in particular [34, 35]. These jump discontinuities warrant caution when defining
thermodynamic quantities such as the average dissipated heat [85].

Suppose λ is smooth for t ∈ (0, tf ) but possesses jump discontinuities at t = 0, tf . Then
U(x, t) ≡ U(x,λ(t)) is smooth on the interval (δ, tf − δ) and it is possible to write

U(x(tf − δ), tf − δ)− U(x(δ), δ) =∫ tf−δ

δ

dt

[
dλ

dt

]T
· ∂U
∂λ

(x(t),λ(t)) +

∫ tf−δ

δ

∂U

∂x
(x(t),λ(t)) ◦ dx(t), (5.4)

where the integral over the fluctuating quantity x is computed using Stratonovich integral calcu-
lus [35, 55, 58] and δ is small and positive. We may also write this expression as

U(x(tf ), tf )− U(x(0), 0) =[
U(x(tf ), tf )− U(x(tf − δ), tf − δ)

]
−
[
U(x(0), 0)− U(x(δ), δ)

]
+∫ tf−δ

δ

dt

[
dλ

dt

]T
· ∂U
∂λ

(x(t),λ(t)) +

∫ tf−δ

δ

∂U

∂x
(x(t),λ(t)) ◦ dx(t). (5.5)

The nonequilibrium ensemble average of the left-hand side is given by〈
U(x(tf ), tf )− U(x(0), 0)

〉
Λ

=

∫
R
dx
[
U(x, tf )ρ(x, tf )− U(x, 0)ρ(x, 0)

]
. (5.6)

The last equality follows from the fact that 〈δ(x(t)−x)〉Λ = ρ(x, t) which is assumed continuously
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differentiable on (0, tf ) and continuous on [0, tf ]. Note that
〈
U(x(tf ), tf )− U(x(0), 0)

〉
Λ
≡ 4U

depends only on λ(0), λ(tf ) and the initial and final probability distributions.

Taking the nonequilibrium ensemble average of both sides of Eq. (5.5) and then taking the limit
δ → 0, we find the average work done on the system [58, 55]

〈W 〉Λ =

∫ t−f

0+

dt

[
dλ

dt

]T
·

〈
∂U

∂λ
(λ(t))

〉
Λ

+

∫
R
ρ(x, tf ) U(x, t)|t=tf

t=t−f
−
∫
R
ρ(x, 0) U(x, t)|t=0

t=0+

(5.7)

where we abuse notation by defining∫
R
dx

∂U

∂λ
(x,λ(t)) ρ(x, t) ≡

〈
∂U

∂λ
(λ(t))

〉
Λ

. (5.8)

The last two terms of the average work explicitly take into account the cost of jump discontinuities
at the beginning and end of the protocol [85].

By definition of average dissipation for nonequilibrium transitions from stationary states [6,
38],

〈βWex〉Λ =

∫ t−f

0+

dt

[
dλ

dt

]T
·
〈
∂φ

∂λ
(λ(t))

〉
Λ

+

∫
R
ρ(x, tf ) βU(x, t)|t=tf

t=t−f
−
∫
R
ρ(x, 0) βU(x, t)|t=0

t=0+

(5.9)

whereWex ≡ W −4F , 4F ≡ F (λ(t−f ))−F (λ(0+)), F (λ) ≡ −β−1 ln
(∫

R exp{−βU(x;λ)}
)
,

φ(x,λ) ≡ − ln ρeq(x;λ) and ρeq(x;λ) = exp{β (F (λ)− U(x,λ))} is the Boltzmann distribu-
tion.

To simplify the mathematics, we consider a piecewise constant potential as illustrated in Fig. 5.1
and similar to the model considered in [86]. This model admits a reasonable “discretization” of the
system, providing a means of calculating optimal protocols exactly. We use the discrete approxi-
mation of [87] to obtain transition rates for the master equations [54]

dpi
dt

=
∑
j 6=i

rj→i pj −
∑
j 6=i

ri→j pi (5.10)

governing the time evolution of pi. Here and throughout, pl (pr) is the probability of the particle
being on the left (right) of the barrier, corresponding to memory value 1 (0).

The double-well potential has a natural decomposition into “compartments”: we define the in-
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terval (−l−w,−w) as compartment 1, (−w,w) as compartment 2 and (w, l+w) as compartment
3, which we will denote as l (left) , b (barrier), and r (right) respectively. We may discretize the
continuum dynamics a la [87] to obtain master equations governing the probability of finding the
particle in compartment i at any given time.

If we define
qi(x) = e−βU(x)

∫ x

xi−1

dx′ eβU(x′) (5.11)

for x0 = −l − w , x1 = −w , x2 = w , x3 = l + w and

e−βGi =

∫ xi

xi−1

dx′ e−βU(x′), (5.12)

then the transition rates are given by

ri→i+1 = Dh+
i [U ] , ri+1→i = Dh−i [U ] (5.13)

where

h+
i [U ] =

e−βGi+1

e−βGi
∫ xi+1

xi
dx qi(x)− e−βGi+1

∫ xi
xi−1

dx qi(x)
(5.14)

and

h−i [U ] =
e−βGi

e−βGi
∫ xi+1

xi
dx qi(x)− e−βGi+1

∫ xi
xi−1

dx qi(x)
. (5.15)

A straightforward calculation determines the nontrivial transition rates for our model system:

rl→b =
2D

l2
1

1 + 4
(
w
l

)2 η
ξ

rb→l =
2D

l2
η

ξ

1

1 + 4
(
w
l

)2 η
ξ

rb→r =
2D

l2
1

4
(
w
l

)2
+ ξ

1−η−ξ

rr→b =
2D

l2
1

1 + 4
(
w
l

)2
(

1−η−ξ
ξ

) . (5.16)

The quantities ξ and η serve as an intermediate coordinate system in the geometric construc-
tion of optimal protocols. They are explicitly written in terms of physical coordinates (Vb, Vl)
in Eq. (5.58). The transition rates simplify considerably if we assume terms proportional to (w/l)2

are negligible. Physically, this means that the width of the barrier is negligible compared to the
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width of the wells. In that case,

rl→b ≈
2D

l2
, rb→l ≈

2D

l2
η

ξ
, rb→r ≈

2D

l2
1− η − ξ

ξ
, rr→b ≈

2D

l2
. (5.17)

From the perspective of our optimization problem, minimizing the dissipation is equivalent to
minimizing the average work done on the system, so in addition to yielding an exact solution, this
problem is amenable to the geometric framework for calculating optimal protocols. The inverse
diffusion tensor can be calculated directly from the Fokker-Planck equation Eq. (5.3), allowing us
to compare the exact answer with this approximate solution.

We take as control parameters the “tilt” Vl and the potential barrier height Vb (see Fig. 5.1(c)),
and we initially focus on the class of protocols resulting in (partial) erasure of the classical bit. For
example, increasing Vl and decreasing Vb appropriately as in Fig. 5.1(c) ensures near unity prob-
ability of finding the particle in the right well (i.e., memory value of 0) regardless of its initial state.

We consider protocols consisting of two stages. During the first (erasure) stage, the initial
equilibrium distribution transitions to a final nonequilibrium distribution in which the system is
overwhelmingly likely to have memory value 0. In the second (reset) stage, the control parameters
are brought instantaneously back to their original values while keeping the particle probability
distribution constant. We allow these protocols to have jump discontinuities at the endpoints of
each stage, and the optimal protocols will indeed exhibit them.

5.3 Exact optimizer

For the discrete dynamics, Eq. (5.9) simplifies to

〈βWex〉Λ =

∫ tf
−

0+

dt̄

[
λ̇ ·
∑
i

pi(t̄)
∂φi
∂λ

]
+
∑
i

pi(tf ) βUi(t̄)|
t̄=tf

t̄=t−f
−
∑
i

pi(0) βUi(t̄)|t̄=0
t̄=0+

(5.18)

where

β4F ≡ ln

[
l + le−βVl(0

+) + 2we−βVb(0
+)

l + le−βVl(t
−
f ) + 2we−βVb(t

−
f )

]
. (5.19)

Integrating by parts, 〈βW 〉Λ equals

∑
i

pi(tf )βUi(tf )−
∑
i

pi(0)βUi(0)−
∫ tf

−

0+

dt̄
∑
i

φiṗi. (5.20)
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It follows immediately that the average work performed during the reset stage of the cycle is given
by

〈βW 〉Λreset =
∑
i

pi(tf )

[
βUi(0)− βUi(tf )

]
(5.21)

and so

〈βW 〉Λcycle =
∑
i

[
pi(tf )− pi(0)

]
βUi(0)−

∫ tf
−

0+

dt̄
∑
i

φiṗi. (5.22)

By the first law of stochastic thermodynamics,

〈βQ〉Λcycle = −
∫ tf

−

0+

dt̄
∑
i

φiṗi. (5.23)

The average heat over the cycle is given explicitly by∫ tf
−

0+

dt̄

[
ṗl ln (η) + ṗb ln (ξ) + ṗr ln (1− ξ − η)

]
, (5.24)

or, since pb = 1− pl − pr, ∫ tf
−

0+

dt̄

[
ṗl ln

(
η

ξ

)
+ ṗr ln

(
1− ξ − η

ξ

)]
. (5.25)

We may write this integral and hence the total average heat lost over the cycle explicitly as a func-
tional of the probabilities and then optimize over these variables. We begin by rewriting Eq. (5.54)
as

1

1− pl − pr

(
ṗl + pl

ṗr + 1− pl

)
=

(
1 0
−1 1

)( η
ξ
1
ξ

)
, (5.26)

which allows us to solve for η and ξ explicitly in terms of the probabilities and their time deriva-
tives:

ξ =
1− pl − pr
1 + ṗl + ṗr

, η =
ṗl + pl

1 + ṗl + ṗr
. (5.27)

Using these expressions and performing another integration by parts,

〈βQ〉Λcycle = Qb +

∫ tf
−

0+

dt̄
[
ṗl ln

(
ṗl + pl

)
+ ṗr ln

(
ṗr + pr

)]
, (5.28)

with a boundary term defined as

Qb ≡ pb(tf )
[

ln (pb(tf ))− 1
]
− pb(0)

[
ln (pb(0))− 1

]
, (5.29)

where t ≡ 2D
l2
t, ṗ ≡ ∂p/∂t, and f(t±) ≡ limδ→0+ f(t± δ)
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The boundary term Qb depends only on the probability distributions at the endpoints. More-
over, we see that the “bulk” term of the average heat functional is a sum I[pl] + I[pr], where

I[z] ≡
∫ tf

−

0+

dt̄
[
ż ln

(
ż + z

)]
. (5.30)

Therefore, to extremize the average heat functional, we can solve the Euler-Lagrange equations for
I .

Suppose z(t) satisfies the Euler-Lagrange equation for the Lagrangian L[z, ż] ≡ ż ln (ż + z).
Then it must be true that

ż
∂L

∂ż
− L =

(ż)2

ż + z
(5.31)

is a constant.

Therefore, probability distributions extremizing 〈βQ〉Λcycle satisfy ṗ2
i = Ki (ṗi + pi) for posi-

tive constants Ki and i = l, r. Over the course of the erasure stage, pl (pr) decreases (increases).
The constants Ki may in turn be numerically fixed by imposing the constraints pl(0) = 1

2(1+γ)
=

pr(0) , pl(tf ) = δ , pr(tf ) = 1− 2δ, where δ and γ are small and positive. The uniqueness of our
solution combined with the Second Law guarantee that this is the minimum we sought.

In the long duration regime, Ki is a very small quantity. This observation is important in
determining the optimal efficiency in the long time regime. Recall that

〈βQ〉Λcycle = Qb +

∫ tf
−

0+

dt̄
[
ṗl ln

(
ṗl + pl

)
+ ṗr ln

(
ṗr + pr

)]
(5.32)

for boundary term

Qb ≡ pb(tf )
[

ln (pb(tf ))− 1
]
− pb(0)

[
ln (pb(0))− 1

]
(5.33)

and ε ≡ (−4S) /
(
kB〈βQ〉Λcycle

)
for change in Shannon entropy

4S ≡ Sf − Si ≡ −kB
∑
i

pfi ln pfi + kB
∑
i

poi ln poi . (5.34)

To find the approximate efficiency in the long duration limit, we must approximate the integrals∫ tf−
0+ dt̄ ṗi ln

(
ṗi + pi

)
. We first consider i = l: since

ṗl =
Kl

2

(
1−

√
1 +

4

Kl

pl

)
, (5.35)
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we may rewrite the integral as∫ pfl

pol

dz ln

[
Kl

2

(
1−

√
1 +

4

Kl

z

)
+ z

]
(5.36)

after a change of variables. We may factorize the logarithm as

ln

[
Kl

2z

(
1−

√
1 +

4

Kl

z

)
+ 1

]
+ ln(z). (5.37)

In the long duration limit, we have

ln

[
Kl

2z

(
1−

√
1 +

4

Kl

z

)
+ 1

]
≈ −

√
Kl

z
. (5.38)

Therefore,∫ pfl

pol

dz ln

[
Kl

2

(
1−

√
1 +

4

Kl

z

)
+ z

]
≈ pfl ln pfl −p

f
l −p

o
l ln pol +pol −2

√
Kl

(√
pfl −

√
pol

)
.

(5.39)

A similar calculation demonstrates∫ pfr

por

dz ln

[
Kr

2

(
1 +

√
1 +

4

Kr

z

)
+ z

]
≈ pfr ln pfr − pfr − por ln por + por + 2

√
Kr

(√
pfr −

√
por

)
.

(5.40)

The total average heat dissipated during the cycle is equal to the sum of these two integrals
plus the boundary term Eq. (5.33). The first two terms of each integral approximation plus the
boundary term simply yield the Landauer term −4S. This follows from the observation that the
sum over pi for i = l, b, r must be 1 both at the beginning and end of the time course.

Therefore,

〈βQ〉Λcycle ≈ −4S/kB + 2
√
Kr

(√
pfr −

√
por

)
− 2
√
Kl

(√
pfl −

√
pol

)
. (5.41)

Furthermore, since
ṗl
pl

=
Kl

2pl

(
1−

√
1 +

4

Kl

pl

)
≈ −

√
Kl

pl
(5.42)

and
ṗr
pr

=
Kr

2pr

(
1 +

√
1 +

4

Kr

pr

)
≈

√
Kr

pr
, (5.43)
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we find that

−
√
Kl tf ≈ 2

(√
pfl −

√
pol

)
,
√
Kr tf ≈ 2

(√
pfr −

√
por

)
. (5.44)

In the long duration limit, we obtain the simple result

〈βQ〉Λopt ≈
−4S
kB

+
4K

tf
, (5.45)

where

K ≡
(√

pr(tf )−
√
pr(0)

)2

+

(√
pl(tf )−

√
pl(0)

)2

(5.46)

is twice the square of the Hellinger distance [88], a measure of similarity between pairs of proba-
bility distributions. Note that K contains no terms for pb(0) and pb(tf ), which are both small for
the cases we consider.

Consistent with two previous studies [35, 33], we find that the total dissipation for our opti-
mized protocols consists of the sum of two terms: one given by the Landauer bound, which is
proportional to the decrease in Shannon entropy resulting from the erasure of information, and a
second term that falls as 1/tf (Eq. (5.45)). Fortunately, we have arrived at a simple closed-form ex-
pression for the total dissipation, valid for arbitrary temperature, that can be experimentally tested
using existing setups [82, 28] by comparing our optimal path through the two dimensional param-
eter space with alternate protocols. Fig. 5.2(a) depicts an optimally efficient finite-time erasure
cycle constructed based on the calculations in this section. For the parameter values selected to
generate Fig. 5.2, the erasure efficiency ε is about 94%.

5.4 Inverse diffusion tensor-based approximation

The components of the inverse diffusion matrix [38] are

ζij(λ) ≡
∫ ∞

0

dt′
〈
∂φ

∂λi
(t′)

∂φ

∂λj
(0)

〉
λ

. (5.47)

This matrix is symmetric and positive semi-definite in general for systems relaxing to an equilib-
rium state [36] and it defines a Riemannian geometry on the space of parameters.

We calculate the components of the inverse diffusion tensor using both the continuum and
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discrete dynamics. In the continuum case, the components are given by

ζij(λ) =
1

D

∫ l+w

−l−w
dx

[
∂λiΠeq(x,λ) ∂λjΠeq(x,λ)

ρeq(x,λ)

]
. (5.48)

which is a specific case of Eq. (6.18) constructed in Ch. 6. Here, Z(λ) ≡
∫ l+w
−(l+w)

dx e−βU(x,λ) is the
classical partition function, ρeq(x,λ) is the equilibrium probability distribution and Πeq(x,λ) =∫ x
−l−w dx

′ ρeq(x
′,λ) is the cumulative distribution function.

Since the potential is piecewise constant, it is possible to evaluate the iterated integrals in
Eq. (5.48) explicitly. However, the resulting expressions are quite complicated when left in terms
of the “physical” parameters Vb and Vl. It is mathematically advantageous at this stage to make a
coordinate transformation in parameter space so that the metric tensor components are compact.
Define

η ≡ le−βVl

Z
, ξ ≡ 2we−βVb

Z
, (5.49)

where Z = l + le−βVl + 2we−βVb . The inverse diffusion tensor in this coordinate system is

ζcont(λ) =
1

D

(
l2

3
1−ξ

η(1−η−ξ) + 4w2

ξ
2w2

ξ
+ l2

3
1

1−η−ξ
2w2

ξ
+ l2

3
1

1−η−ξ
4w2

3ξ
+ l2

3(1−η−ξ)

)
. (5.50)

Since we are ignoring (w/l)2 terms,

ζcont(λ) ≈ l2

3D

1

1− η − ξ

( 1−ξ
η

1

1 1

)
. (5.51)

For the discrete dynamics, Eq. (5.47) may be written as

ζij(λ) =

∫ ∞
0

dt
∑
σ,σ′

pσ′(t|σ) p∗σ ∂λjφσ ∂λiφσ′ . (5.52)

Here, p∗σ denotes the equilibrium probability distribution

p∗l = η , p∗b = ξ , p∗r = 1− η − ξ, (5.53)

φσ ≡ − ln p∗σ, and pσ′(t|σ) represents the solution to the master equations Eq. (5.10) satisfying the
initial condition pσ′(0|σ) = δσ,σ′ for fixed η, ξ.

To obtain pσ′(t|σ), we recognize that pb(t|σ) = 1 − pl(t|σ) − pr(t|σ) and write the master
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equations Eq. (5.10) with rates Eq. (5.17) as a linear system of equations:

d

dt̄

(
pl
pr

)
= −

(
1 + η

ξ
η
ξ

1−η−ξ
ξ

1−η
ξ

)(
pl
pr

)
+

(
η
ξ

1−η−ξ
ξ

)
, (5.54)

where t̄ ≡ 2D
l2
t. This system may be solved by standard methods [66]. We find

(
pl(t|1)
pr(t|1)

)
=

 η
(

ξ
1−ξe

− t̄
ξ + 1

)
+ 1−η−ξ

1−ξ e
−t̄

(1− η − ξ)
(

ξ
1−ξe

− t̄
ξ + 1

)
− 1−η−ξ

1−ξ e
−t̄

 ,

(
pl(t|2)
pr(t|2)

)
=
(

1− e−
t̄
ξ

)( η
1− η − ξ

)
,

(
pl(t|3)
pr(t|3)

)
=

 η
(

ξ
1−ξe

− t̄
ξ + 1

)
− η

1−ξe
−t̄

(1− η − ξ)
(

ξ
1−ξe

− t̄
ξ + 1

)
+ η

1−ξe
−t̄

 . (5.55)

Evaluation of Eq. (5.52) using Eq. (5.55) yields

ζdisc(λ) =
l2

2D

1

1− η − ξ

( 1−ξ
η

1

1 1

)
. (5.56)

It follows that ζcont(λ) = 2/3 ζdisc(λ) when (w/l)2 is negligible. Both dynamics then yield pre-
cisely the same geodesics since Christoffel symbols are invariant under constant scalings of the
metric tensor [67].

Ignoring constant prefactors, (approximate) optimal protocols are precisely the geodesics of
the line element

dΣ2 =
1

1− η − ξ

[
(1− ξ)
η

(dη)2 + 2 dηdξ + (dξ)2

]
. (5.57)

The Ricci scalar vanishes identically; therefore, there must exist a coordinate transformation in
which the line element is Euclidean [67]. Indeed, if we define x = 2

√
1− η − ξ , y = 2

√
η, then

dΣ2 = dx2 + dy2.

Geodesics are most conveniently calculated in (x, y)-coordinates. Physically, we should ex-
press quantities in terms of the (Vb, Vl)-coordinate system. For convenience, we list here the ex-
plicit formulae allowing us to transform between the two coordinate systems via the intermediate
coordinates (η, ξ):

η =
le−βVl

l + le−βVl + 2we−βVb
, ξ =

2we−βVb

l + le−βVl + 2we−βVb
,

x = 2
√

1− η − ξ , y = 2
√
η, (5.58)
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ξ = 1− 1

4

(
x2 + y2

)
, η =

y2

4
,

βVb = ln

[
2w

l

1− η − ξ
ξ

]
, βVl = ln

[
1− η − ξ

η

]
. (5.59)

As originally constructed [36], the formulation of the inverse diffusion tensor assumes smooth
protocols on the entire domain of definition. Here we constructed an approximation for the opti-
mizer in the interior of the erasure stage.

The question of what endpoints should be selected for the approximate optimizer is answered
by enforcing the probability constraints at the endpoints. This is achieved by using the derivative
truncation method [37, 38] to obtain the approximate time evolution of the probability distributions
when the parameters are adjusted according to the geodesic protocol. This in turn gives us approx-
imate formulae for the probability distributions at the beginning and end of the erasure stage in
terms of the endpoints of the geodesic. A numerical solution of these constraints is easily obtained.

Note the strong agreement between the exact solution and the approximate solution (Fig. 5.2(b))
based on the inverse diffusion tensor.

(a) (b)

Figure 5.2: Optimally efficient finite-time erasure cycles. (a) The optimal cycle consists of two parts: the erasure
stage and the reset stage. The erasure stage begins at (ln{w/(lγ)}, 0) (red star) then jumps to the initial point of
the erasure protocol (brown square). The erasure protocol (blue) proceeds for time tf until reaching its terminus
(green triangle). The reset stage consists of the jump from this terminus to the parameter values defining the original
equilibrium state (red star). Blue dots indicate points separated by equal times along the erasure stage. For these
parameters (tf ≡

(
2D/l2

)
tf = 50 , δ = 0.01 , γ = exp (−10) , w/l = 0.01) the efficiency of the optimal cycle is

94.01%. (b) An approximate optimal efficiency erasure cycle determined by the inverse diffusion tensor framework is
nearly identical to the exact solution shown in panel (a).
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5.5 Beyond erasure

So far we have focused on the case of complete erasure of one bit, for which both the Landauer
bound and the added dissipation necessary to achieve erasure in finite time are always positive.
However, our formalism is completely general, valid for any change in the spatial distribution of
the particle. Importantly, even in this broader setting, the second term is always nonnegative, as
the Hellinger distance (and its square) is positive for any nonzero difference between the initial
and final probability distributions, unlike the Landauer term, which can be zero or even negative.

(a) (b) (c)

Figure 5.3: The Landauer bound and the added dissipation necessary for finite-time cycles exhibit different depen-
dences on the spatial distribution of the particle. (a) If the particle is initially distributed equally between the two
wells, pl(0) = 0.5, where pl(0) is the probability of being found in the left well at t = 0, then the Landauer bound,
proportional to −∆S (dashed blue curve), is zero for no change in the likelihood of finding the particle on the left
(pl(tf ) = 0.5) and positive for any other final distribution. This is always true for the second term in the full dissipa-
tion (solid red curve), which is proportional to K (Eq. (5.46)). In all panels, pb(0) = pb(tf ) = 0, where pb(t) is the
probability of finding the particle at the central barrier at time t. (b,c) For other initial conditions, the Landauer bound
can be positive, zero, or negative depending on how the particle’s spatial distribution changes.

5.6 Discussion

We have obtained a simple, closed-form expression for the dissipated heat of optimally effi-
cient, finite-time erasure cycles, providing falsifiable predictions for currently achievable exper-
iments. The solutions we have found are nontrivial, in that both of our control parameters are
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continuously varying throughout the optimal protocol, yet our parametric solutions can be easily
described. In addition to erasure, our solutions are valid for any initial and final particle distribu-
tions.

We find that the total dissipation for the optimal protocol consists of the Landauer bound plus
a nonnegative second term proportional to the square of the Hellinger distance between the initial
and final particle distributions (Eqs. (5.45,5.46)). Fittingly, one can think of this second term as a
measure of how far out of equilibrium the system must be during the driving protocol, as it is the
ratio of the “distance” between the initial and final probability distributions and the time allowed
to make the transition. Indeed, one can show [88] that K (Eq. (5.46)) is a lower bound on the
relative entropy D[p(tf ) ‖ p(0)] ≡ Σipi(tf ) log[pi(tf )/pi(0)] between the distributions, which
is precisely the dissipation that would result from allowing the system to relax from the final dis-
tribution back to the initial equilibrium distribution with the control parameters held fixed to their
initial values [89, 90, 91]. This is a tight bound in many cases; for example, for perfect erasure of
one bit, K ≈ 0.59 and D[p(tf ) ‖ p(0)] ≈ 0.69 are comparable.

The exact and approximate optimal erasure cycles we found are nearly identical and both
achieved high efficiencies for the finite cycle duration selected here, suggesting that the inverse
diffusion tensor formalism could be an indispensable tool for predicting optimally efficient finite-
time erasure cycles for complex model systems more relevant for biology or engineering.
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Chapter 6

Inverse Diffusion Tensor for General
Potentials

In Ch. 3 and Ch. 4, the method to calculate the inverse diffusion tensor components relied on the
potential being harmonic. In this chapter, we demonstrate how the inverse diffusion tensor may be
computed for a more general class of potentials in terms of the equilibrium probability distribution.
Our starting point will be the Fokker-Planck equation which we assume fully describes the physics
of the system. Furthermore, we show that the inverse diffusion tensor arises naturally through an
expansion in temporal derivatives in this general setting.

We use this construction to compute optimal protocols for two model systems of physical in-
terest. First, we consider a one-dimensional system modeling the storage and erasure of a single
classical bit of information as in Ch. 5. There, we illustrated Landauer’s principle that the erasure
of information results in energy dissipation with a simple piece-wise constant potential. In this
chapter, our erasure model consists of an overdamped colloidal particle diffusing under the influ-
ence of a continuous double-well potential with a large central barrier stabilizing the memory. If
the particle is found to the left (right) of the origin, the memory value is 1 (0). We seek the most
efficient protocols altering the shape of the confining potential so that the particle has overwhelm-
ingly probability to be found to the right of the origin, thus setting the memory value to 0 and
erasing the single bit of classical information originally encoded by the system.

The erasure cycle consists of a continuous stage in which the wells merge and the central
barrier is lowered. A reset stage in which the potential returns instantaneously to its original state
and leaves the final probability distribution undisturbed completes the erasure cycle. The inverse
diffusion tensor predicts optimal erasure cycles in the long duration limit.

The second model system consists of an overdamped colloidal particle diffusing in one-dimension
while coupled to a ratchet potential and an optical trap. In this simplified model, the coordinate of
the diffusing particle may be identified with a mechanical state variable of a molecular motor [92]
and the thermal bath consists of the huge number of irrelevant degrees of freedom of the liquid
surrounding the motor as well as the internal degrees of freedom of the motor itself and the struc-
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tures with which it interacts. The inverse diffusion tensor framework predicts the optimal time
course for the optical trap center which represents an external driving of this simplistic molecular
machine.

6.1 General construction

In this section, we present the general construction of the inverse diffusion tensor directly from
the Fokker-Planck equation. We adapted the argument used below from [93]. We assume that
the potential satisfies U(x,λ) → ∞ as |x| → ∞. However, the construction also applies for
reflecting-wall boundary conditions.

For potential U(x,λ), the Fokker-Planck equation governing the probability distribution ρ(x, t)
in the overdamped case is

∂ρ

∂t
= D

[
∂

∂x

(
∂ (βU(x,λ))

∂x
ρ

)
+
∂2ρ

∂x2

]
(6.1)

where D is the diffusion coefficient. The inverse diffusion tensor components are given by

ζij(λ) =

∫ ∞
0

dt′
〈
∂φ

∂λi
(t′)

∂φ

∂λj
(0)

〉
eq,λ

(6.2)

where φ(x,λ) ≡ − ln ρeq(x,λ) and ρeq(x,λ) is the equilibrium distribution.

We rewrite Eq. (6.2) as

ζij(λ) =

∫ ∞
0

dt′
[ ∫ ∞
−∞

dx0 ρeq(x0,λ) ∂λjφ(x0,λ)×
(∫ ∞

−∞
dx ρ(x, t′;x0) ∂λiφ(x,λ)

)]
(6.3)

where ρ(x, t;x0) satisfies Eq. (6.1) with initial condition ρ(x, t = 0;x0) = δx,x0 and ρ(x, t;x0)→ 0
for |x| → ∞. For simplicity, define

mi(t) ≡
∫ ∞
−∞

dx ρ(x, t;x0) ∂λiφ(x,λ) (6.4)

so that
ζij(λ) =

∫ ∞
−∞

dx0 ρeq(x0,λ) ∂λjφ(x0,λ)

∫ ∞
0

dt′ mi(t
′). (6.5)

Note that we have suppressed the dependence of mi on x0 and λ for convenience. We evaluate∫∞
0
dt′ mi(t

′) by computing the Laplace transform

m̂i(s) ≡
∫ ∞

0

dt′ mi(t
′) e−st

′
(6.6)
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and taking the limit as s→ 0+.

Integrating by parts, ∫ ∞
0

dt′
dmi

dt′
(t′) e−st

′
= s m̂i(s)−mi(0). (6.7)

Note that mi(∞) vanishes since limt→∞ ρ(x, t;x0) = ρeq(x,λ); i.e. the system comes to a station-
ary state after a sufficiently long time has elapsed. By definition of mi,

m′i(t) =

∫ ∞
−∞

dx ∂tρ(x, t;x0) ∂λiφ(x,λ). (6.8)

In terms of the probability current G(x, t),

m̂i(s) =
mi(0)−

∫∞
−∞ dx ∂xĜ(x, s) ∂λiφ(x,λ)

s
. (6.9)

Therefore, to compute m̂i(s), we need the Laplace transform of the probability current.

The Fokker-Planck equation may be used to derive an equation for the probability current:

∂tG(x, t) = D
[
βU ′(x,λ)∂xG(x, t) + ∂2

xG(x, t)
]
. (6.10)

Taking the Laplace transform of both sides, we have

s Ĝ(x, s)−G(x, 0) = D
[
βU ′(x,λ) ∂xĜ(x, s) + ∂2

xĜ(x, s)
]

(6.11)

which follows from limt→∞G(x, t) = 0. Multiplying both sides by s and defining H(x, s) ≡
s Ĝ(x, s),

s H(x, s)− s G(x, 0) = D
[
βU ′(x,λ) ∂xH(x, s) + ∂2

xH(x, s)
]
. (6.12)

We may obtain a solution to Eq. (6.12) by expanding H(x, s) as a series in s. If we define
H(x, s) ≡ H0(x) + s H1(x) + . . . , then

0 = βU ′(x,λ) H ′0(x) +H ′′0 (x) (6.13)

H0(x)−G(x, 0) = D
[
βU ′(x,λ) ∂xH1(x) + ∂2

xH1(x)
]

(6.14)

Hk−1(x) = D
[
βU ′(x,λ) ∂xHk(x) + ∂2

xHk(x)
]

(6.15)

follow from substituting the expansion into Eq. (6.12) and comparing the coefficients of powers of
s on both sides. The boundary conditions on the probability current must also be satisfied by Hk

for each k.

We see that these differential equations may be solved iteratively. Fortunately, it turns out that
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only H2(x) is needed for our purposes as a short calculation using Eq. (6.9) shows that∫ ∞
0

dt′ mi(t
′) = −

∫ ∞
−∞

dx ∂xH2(x) ∂λiφ(x,λ). (6.16)

For potentials that grow unbounded as |x| → ∞, the probability current must vanish in the
limit of large |x|. With these boundary conditions it is not difficult to show

H2(x) =
1

D

[
−
(∫ ∞

−∞
dx e−βU(x,λ)

∫ x

a

dx′ eβU(x′,λ)
(
θ(x′ − x0)− Πeq(x

′,λ)
))

Πeq(x,λ)+∫ x

−∞
dx′ e−βU(x′,λ)

∫ x′

a

dx′′ eβU(x′′,λ)
(
θ(x′′ − x0)− Πeq(x

′′,λ)
)]

(6.17)

where θ denotes the Heaviside function and Πeq(x,λ) =
∫ x
−∞ dx

′ ρeq(x
′,λ) is the equilibrium

cumulative distribution function. Here, a is an arbitrary real constant. Surprisingly, H2(x) is
independent of a and we will have occasion to choose different convenient values for computational
purposes.

From this result we see that the inverse diffusion tensor has the compact form

ζij(λ) =

∫
dν(x, x′, x′′)

[
eβ(U(x′,λ)−U(x,λ)−U(x′′,λ))∂λiφ(x,λ) ∂λjφ(x′′,λ)

]
(6.18)

where we have used the shorthand∫
dν(x, x′, x′′)→ − 1

DZ(λ)

∫ ∞
−∞

dx

∫ x

a

dx′
∫ x′

−∞
dx′′. (6.19)

This expression may be further simplified by observing that∫ x′

−∞
dx′′ ∂λjφ(x′′,λ)e−βU(x′′,λ) = −Z(λ)∂λjΠeq(x

′,λ) (6.20)

and
∂λiφ(x,λ)e−βU(x,λ) = −Z(λ)∂λiρeq(x,λ) (6.21)

which follow from the definition of the nonequilibrium potential φ. These expressions may be used
to rewrite Eq. (6.18) as

ζij(λ) = −Z(λ)

D

∫ ∞
−∞

dx

[
∂λiρeq(x,λ)

∫ x

a

dx′ eβU(x′,λ)∂λjΠeq(x
′,λ)

]
(6.22)
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or

ζij(λ) = −Z(λ)

D

∫ ∞
−∞

dx

[
∂x

(
∂λiΠeq(x,λ)

)∫ x

a

dx′ eβU(x′,λ)∂λjΠeq(x
′,λ)

]
. (6.23)

If
lim

x→±∞
∂λiΠeq(x,λ)

∫ x

a

dx′ eβU(x′,λ)∂λjΠeq(x
′,λ) = 0, (6.24)

then

ζij(λ) =
1

D

∫ ∞
−∞

dx

[
∂λiΠeq(x,λ) ∂λjΠeq(x,λ)

ρeq(x,λ)

]
. (6.25)

As an example, this equation may be used to construct the components of the inverse diffusion
tensor arising in Ch. 5 for the classical bit system with continuum dynamics. These components
are recorded in Eq. (5.50). The potential is piecewise constant in the interval (−l − w, l + w) and
+∞ elsewhere. Specifically,

U(x,λ) =


Vl −(l + w) < x < −w
Vb −w < x < w

0 w < x < l + w

∞ otherwise

(6.26)

where (for now) λ = {Vl, Vb}. The integral appearing in Eq. (6.25) may be computed through a
straightforward calculation.

Before we proceed, we note that computations using the physical coordinates λ = {Vl, Vb}
very rapidly become unwieldy. We define

η ≡ le−βVl

Z
, ξ ≡ 2we−βVb

Z
(6.27)

where Z = l + le−βVl + 2we−βVb to facilitate the following calculations. In other words, we use
the equilibrium probabilities of locating the particle in each compartment as control parameters.
In terms of these parameters, the equilibrium distribution is given by

ρeq(x,λ) =


η
l

−(l + w) < x < −w
ξ

2w
−w < x < w

1−η−ξ
l

w < x < l + w

. (6.28)

The equilibrium distribution has a relatively compact form when expressed in terms of η and ξ.
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The corresponding cumulative distribution function Πeq(x,λ) is given by

Πeq(x,λ) =


η
(
x
l

+ 1 + w
l

)
−(l + w) < x < −w

ξ
(
x

2w
+ 1

2

)
+ η −w < x < w

ξ + η + (1− η − ξ) x−w
l

w < x < l + w

. (6.29)

We see that

eβU(x′,λ)∂ξΠeq(x
′,λ) =


0 −(l + w) < x′ < −w
eβVb

(
x′/(2w) + 1/2

)
−w < x′ < w

1− (x′ − w)/l w < x′ < l + w

(6.30)

and

eβU(x′,λ)∂ηΠeq(x
′,λ) =


eβVl
(
x′/l + 1 + w/l

)
−(l + w) < x′ < −w

eβVb −w < x′ < w

1− (x′ − w)/l w < x′ < l + w

(6.31)

and so

ζηη =
1

D

[
l2

3

1− ξ
η (1− η − ξ)

+
4w2

ξ

]
ζηξ =

1

D

[
l2

3 (1− η − ξ)
+

2w2

ξ

]
ζξξ =

1

D

[
l2

3

1

1− η − ξ
+

4w2

3ξ

]
(6.32)

precisely as recorded in Eq. (5.50).

6.1.1 Example: Erasure Model

We consider the following model to represent a single classical bit of information: an over-
damped Brownian colloidal particle diffusing in a one-dimensional double-well potential in con-
tact with a thermal bath of temperature T [29, 28]. The wells are initially separated by a potential
barrier whose height is much larger than the energy scale β−1 ≡ kBT set by thermal fluctuations,
ensuring stability of memory. Explicitly,

U(x, λ) ≡ − 1

β
log

[
αe−α(x−1+λ)

(1 + e−α(x−1+λ))
2 +

αe−α(x−1)

(1 + e−α(x−1))
2

]
(6.33)

60



where x is a dimensionless spatial coordinate and α � 1. Initially, λ = 2 and there are two
distinct wells and a central barrier with height governed by α. As λ decreases to 0, the barrier
height diminishes and the left-hand well shifts to merge with the right-hand well.

The system is prepared so that the particle has equal probability of being found in either well.
This may be achieved, for example, by selecting the initial position of the particle to be at the
midpoint of the potential barrier and waiting a sufficiently long relaxation period [29]. If the
particle is found to the left (right) of the origin, the memory value is defined to be 1 (0).

We are primarily interested in optimizing finite-time erasure efficiency over cyclic protocols
for the classical single bit model described above. When classical information is being erased,
the difference in Shannon entropies of the final and initial probability distributions must satisfy
4S ≡ Sf − Si < 0, which would allow us to define the erasure efficiency ε ≡ −4S/ (kB〈βQ〉Λ)
as the ratio of this decrease in Shannon entropy to the average heat 〈Q〉Λ released into the thermal
bath [33, 83].

Our goal will be to minimize the dissipated heat over protocols in which λ decreases from 2 to
0. According to the first law of stochastic thermodynamics [55],

〈βWex〉Λ +
−4S
kB

= 〈βQ〉Λ (6.34)

and so
ε =

1

1 + 〈βWex〉Λ
(−4S)/kB

, (6.35)

Therefore, minimizing the dissipation is equivalent to minimizing the average work done on the
system by the first law of stochastic thermodynamics. Furthermore, minimizing the average excess
work done on the system is equivalent to maximizing the efficiency of the erasure cycle.

The inverse diffusion tensor formalism allows us to compute an approximation to the optimal
time course for λ. We consider protocols consisting of two stages. During the first (erasure) stage,
the initial equilibrium distribution transitions to a final nonequilibrium distribution in which the
system is overwhelmingly likely to have memory value 0. Equivalently, the control parameter λ
decreases from 2 to 0 during this erasure stage. In the second (reset) stage, λ is brought instanta-
neously back to its original value while keeping the particle probability distribution constant. No
heat is generated during this stage.

From Eq. (6.25), we have

ζ(λ) =
1

2D

{
1−

π
2
− tan−1

(√
2
/[

cosh(αλ)− 1
])√

2
[

cosh(αλ)− 1
]

}
. (6.36)

The equilibrium distribution for the potential Eq. (6.33) has the form

ρeq(x, λ) =
1

2

[
f(x+ λ) + f(x)

]
(6.37)
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for

f(x) =
αe−α(x−1)

(1 + e−α(x−1))
2 =

d

dx

[
1

1 + e−α(x−1)

]
(6.38)

by construction.

It is straightforward to show that

∂λΠeq(x, λ) =
1

2
f(x+ λ) (6.39)

and [
∂λΠeq

]2
ρeq

=
1

2

f(x+ λ)2

f(x+ λ) + f(x)
=

1

2

{
f(x+ λ)− 1

1
f(x+λ)

+ 1
f(x)

}
. (6.40)

Therefore, ∫ ∞
−∞

dx

[
∂λΠeq

]2
ρeq

=
1

2

{
1−

∫ ∞
−∞

dx
1

1
f(x+λ)

+ 1
f(x)

}

=
1

2

{
1−

∫ ∞
−∞

dx
αe−α(x−1)

(1 + e−α(x−1))
2

+ eαλ (1 + e−αλe−α(x−1))
2

}
(6.41)

Making the change of variables u = e−α(x−1), we have that∫ ∞
−∞

dx

[
∂λΠeq

]2
ρeq

=
1

2

{
1−

∫ ∞
0

du

(1 + u)2 + eαλ (1 + e−αλu)2

}

=
1

2

{
1− 1

1 + e−αλ

∫ ∞
2

(1+e−αλ)

dv

v2 +

(
e−αλ+eαλ−2

(1+e−αλ)
2

)}

=
1

2

{
1− 1√

2 [cosh(αλ)− 1]

(
π

2
− tan−1

(√
2

cosh(αλ)− 1

))}
(6.42)

which implies Eq. (6.36).

Since

〈βWex〉Λ ≈
∫ τ

0

dt ζ(λ(t))

(
dλ

dt

)2

, (6.43)

the Euler-Lagrange equation for the optimal time course is

dλ

dt
= −

∫ 2

0
dz
√
ζ(z)

/
τ√

ζ(λ(t))
. (6.44)
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Eq. (6.44) yields an implicit expression for the optimal protocol:∫ 2

λ

dz
√
ζ(z)

/∫ 2

0

dz
√
ζ(z) =

t

τ
. (6.45)

6.1.2 Example: Ratchet model with optical trap coupling

We consider an overdamped colloidal particle diffusing in one dimension subject to optical trap
confinement and a tilted ratchet potential [92]. Mathematically,

βU(x,λ) =
1

2
βk (x− x0)2 − βFx+ βV0 ϕ (x/l) . (6.46)

Here, l is some characteristic length scale, F is the “tilt” of the ratchet, and V0 is the magnitude of
the ratchet potential. Furthermore, we choose a single control parameter, namely x0, the position
of the center of the optical trap.

The model possesses relative mathematical simplicity and captures essential physics of chem-
ical processes relevant to the operation of cellular machinery. We view the following as the first
step towards applying the inverse diffusion tensor framework to optimization of nonequilibrium
processes underlying the functionality of nanoscale biological motors and machines.

If we consider an isothermal chemical reaction in the presence of a catalyst protein (i.e. an en-
zyme), then the reaction can be described by a single reaction coordinate, cycling through a num-
ber of chemical states in the simplest case [92]. A suitable working model is then an overdamped
Brownian particle (reaction coordinate) in the presence of thermal fluctuations in a periodic poten-
tial. For this reason, we select ϕ(y) = sin(y).

If the concentrations of the reactants and products are away from their equilibrium ratio, then
the catalyst molecule will loop through the chemical reaction cycle preferably in one direction [92].
In the corresponding ratchet model, the periodic potential must be supplemented by a constant tilt,
i.e. F .

Define

α ≡ βkl2 , y ≡ x/l , f ≡ F/(kl) ,

u0(y, y0) ≡ 1

2
(y − y0)2 − fy , ε ≡ V0/(kl

2) (6.47)

so that βU(x, x0) = α
[
u0(y, y0) + εϕ(y)

]
. Assuming the strength of the optical trap far exceeds

the strength of the ratchet potential, ε is a small parameter and we may apply perturbation theory;
i.e. we expand all quantities to first order in ε and discard higher order terms.

It is straightforward to show that

ρeq(y, y0) ≈ 1

l

√
α

2π
e−

1
2
α(y−y0−f)2

[
1− αε

(
ϕ(y)− 〈ϕ〉0

)]
(6.48)
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where the subscript “0” indicates an average with ε = 0.

Using Eq. (6.25), we compute

ζ(y0) ≈ l2

D
(1− 2αε〈ϕ′′〉0) . (6.49)

The equilibrium distribution for the ratchet model (Eq. (6.48)) is

ρeq(y, y0) ≈ 1

l

√
α

2π
e−

1
2
α(y−y0−f)2

[
1− αε

(
ϕ(y)− 〈ϕ〉0

)]
(6.50)

with cumulative distribution function

Πeq(y, y0) =

∫ y

−∞
dy′ρeq(y

′, y0). (6.51)

Since
∂y0〈ϕ〉0 = 〈ϕ′〉0, (6.52)

we have that

∂y0Πeq(y, y0) =

√
α

2π

{
− e−

1
2
α(y−y0−f)2

+ αε

((
ϕ(y)− 〈ϕ〉0

)
e−

1
2
α(y−y0−f)2

−∫ y

−∞
dy′e−

1
2
α(y′−y0−f)2

(ϕ′(y′)− 〈ϕ′〉0)

)}
(6.53)

and so

∂y0Πeq(y, y0) eβU(y,y0) =√
α

2π
e−α(fy0+ 1

2
f2)
{
− 1 + αε

(
ϕ(y)− 〈ϕ〉0 − e

1
2
α(y−y0−f)2

∫ ∞
y

dy′e−
1
2
α(y′−y0−f)2

×

(ϕ′(y′)− 〈ϕ′〉0)

)}
. (6.54)

According to [94],

ew
2

∫ ∞
w

e−z
2

dz ≤ 1

w +
√
w2 + 4

π

(6.55)

for w ≥ 0. Since ϕ and all of its derivatives are bounded on R,

lim
y→∞

∂y0Πeq(y, y0)

∫ y

0

dy′ eβU(y′,y0)∂y0Πeq(y
′, y0) = 0. (6.56)
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A similar argument shows that

lim
y→−∞

∂y0Πeq(y, y0)

∫ y

0

dy′ eβU(y′,y0)∂y0Πeq(y
′, y0) = 0, (6.57)

and so we may apply Eq. (6.25) to compute the inverse diffusion tensor.

Using Eqs. (6.50) and (6.53), we see that[
∂y0Πeq

]2
ρeq

≈ l

√
α

2π

{
e−

α
2

(y−y0−f)2

+ αε

(
− (ϕ(y)− 〈ϕ〉0)×

e−
α
2

(y−y0−f)2

+ 2

∫ y

−∞
dy′ (ϕ′(y′)− 〈ϕ′〉0) e−

α
2

(y′−y0−f)2

)}
. (6.58)

From Eq. (6.25) we have

ζ(y0) ≈ l2

D

{
1 + 2αε

∫ ∞
−∞

dy

∫ y

−∞
dy′ (ϕ′(y′)− 〈ϕ′〉0)×

e−
α
2

(y′−y0−f)2

/√
2π

α

}
. (6.59)

The integral may be evaluated using integration by parts:∫ ∞
−∞

dy

∫ y

−∞
dy′ (ϕ′(y′)− 〈ϕ′〉0) e−

α
2

(y′−y0−f)2

=∫ ∞
−∞

dy

{
d

dy
(y − y0 − f)

∫ y

−∞
dy′ (ϕ′(y′)− 〈ϕ′〉0) e−

α
2

(y′−y0−f)2

}
=∫ ∞

−∞
dy (y − y0 − f) (〈ϕ′〉0 − ϕ′(y)) e−

α
2

(y−y0−f)2

=∫ ∞
−∞

dy (ϕ′(y)− 〈ϕ′〉0)
d

dy

(
1

α
e−

α
2

(y−y0−f)2

)
=

− 1

α

∫ ∞
−∞

dy ϕ′′(y)e−
α
2

(y−y0−f)2

= −
√

2π

α
〈ϕ′′〉0. (6.60)

Therefore

ζ(y0) ≈ l2

D
(1− 2αε〈ϕ′′〉0) . (6.61)

For ϕ(y) = sin(y),

ζ(y0) ≈ l2

D

(
1 + 2ε e−

1
2α sin (y0 + f)

)
. (6.62)
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Since

〈βWex〉Λ ≈
∫ τ

0

dt ζ(y0)

(
dy0

dt

)2

, (6.63)

the optimal time course for the trap center is given by the Euler-Lagrange equation

dy0

dt
=

C√
D
l2

√
ζ(y0)

. (6.64)

Here, C is a constant of integration.

Using perturbation theory, an approximate solution is given by

y0(t) ≈ Ct+B + ε e−
1

2α cos (Ct+ f + A) (6.65)

where the constants A,B and C are determined by the endpoints of the protocol and the duration
τ . Note that the temporal periodicity of the optimal protocol driving the center of the harmonic
trap reflects the spatial periodicity of the ratchet.

6.2 Derivative truncation

We conclude this chapter with a discussion of the derivative truncation approach to deriving
the inverse diffusion tensor for general potentials in the overdamped case. Recall that in Ch. 3
and Ch. 4 we presented an alternative means of computing the inverse diffusion tensor which ob-
viated the need to compute time integrals of stationary state correlators. A first-order derivative
truncation expansion forms the basis of this alternative construction. In this concluding section,
we demonstrate how the derivative truncation method reproduces the inverse diffusion tensor for
general potentials.

Since we assume general, non-harmonic potentials, the moments appearing in the mean Y-
value functional will not satisfy a closed, finite set of ordinary differential equations. Therefore,
the construction used in Ch. 3 and Ch. 4 does not obviously carry over to the more general situa-
tion. Instead, we base our proof on the mathematics developed in this chapter.

Referring to Eq. (6.1), we assume the nonequilibrium probability density has the approximate
form

ρ(x, t) ≈ ρeq(x,λ(t)) +
dλi

dt
Gi(x,λ(t)) (6.66)

where Gi(x,λ) is to be determined. Substituting this expression into Eq. (6.1) and neglecting
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higher-order derivatives, we see

∂ρeq(x,λ)

∂λi
= D

[
∂

∂x

(
∂ (βU(x,λ))

∂x
Gi(x,λ)

)
+

∂2

∂x2
Gi(x,λ)

]
. (6.67)

Furthermore, since both ρ(x, t) and ρeq(x,λ) are normalized probability distributions, we have the
constraint ∫ ∞

−∞
dx Gi(x,λ) = 0. (6.68)

We may systematically integrate Eq. (6.67) to obtain a solution which also satisfies Eq. (6.68) and
appropriate boundary conditions. For our purposes, a more expedient way of arriving at the solu-
tion is to simply state a candidate and demonstrate that it satisfies the necessary requirements.

Our candidate is
Gj(x,λ) ≡ −〈∂xH2(x;λ, x0)∂λjφ(x0,λ)〉eq,λ. (6.69)

Here, H2 is defined by Eqs. (6.13), (6.14) and (6.15) and appropriate boundary conditions as dic-
tated by the physics of the problem. The average 〈·〉eq,λ applies to the variable x0 and is defined in
terms of the stationary state probability distribution characterized by λ.

We can quickly establish Eq. (6.68). Bringing the integral
∫∞
−∞ dx inside of the stationary state

average in Eq. (6.69), we see that
∫∞
−∞ dx ∂xH2(x;λ, x0) vanishes by the fundamental theorem of

calculus in the case of an unbounded potential at ±∞.

Substituting Eq. (6.69) into Eq. (6.67), we see that we must establish

∂ρeq(x,λ)

∂λj
= −D∂x

[〈
(βU ′(x,λ)∂xH2(x;λ, x0) + ∂xH2(x;λ, x0)) ∂λjφ(x0,λ)

〉
eq,λ

]
. (6.70)

From Eq. (6.15) follows

D
[
βU ′(x,λ)∂xH2(x;λ, x0) + ∂xH2(x;λ, x0)

]
= H1(x;λ, x0) (6.71)

and so we must show

∂ρeq(x,λ)

∂λj
= −〈∂xH1(x;λ, x0)∂λjφ(x0,λ)〉eq,λ. (6.72)

For unbounded-potential boundary conditions, H1(x;λ, x0) = θ(x− x0) + Πeq(x,λ). Therefore,

〈∂xH1(x;λ, x0)∂λjφ(x0,λ)〉eq,λ = 〈δ(x− x0)∂λjφ(x0,λ)〉eq,λ. (6.73)

The second term vanishes since ρeq(x,λ) is independent of x0 and 〈∂λjφ(x0,λ)〉eq,λ = 0. More-
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over,
〈δ(x− x0)∂λjφ(x0,λ)〉eq,λ = ρeq(x,λ)∂λjφ(x,λ) = −∂λjρeq(x,λ), (6.74)

establishing the claim.

We are now in position to relate this derivative truncation approximation to the inverse diffusion
tensor approximation. Recall

〈Y 〉Λ ≡
∫ τ

0

dt

[
dλT

dt

]
·
〈
∂φ

∂λ

(
λ(t)

)〉
Λ

(6.75)

where 〈
∂φ

∂λi
(
λ(t)

)〉
Λ

≡
∫ ∞
−∞

dx ρ(x, t)
∂φ

∂λi
(
x,λ(t)

)
. (6.76)

Using the derivative truncation approximation,〈
∂φ

∂λi
(
λ(t)

)〉
Λ

≈ dλj

dt

∫ ∞
−∞

dx Gj(x,λ(t))
∂φ

∂λi
(
x,λ(t)

)
= −dλ

j

dt

∫ ∞
−∞

dx 〈∂xH2(x;λ(t), x0)∂λjφ(x0,λ(t))〉eq,λ(t)
∂φ

∂λi
(
x,λ(t)

)
= −dλ

j

dt

〈[∫ ∞
−∞

dx ∂xH2(x;λ(t), x0)
∂φ

∂λi
(
x,λ(t)

)]
∂λjφ(x0,λ(t))

〉
eq,λ(t)

=
dλj

dt

〈[∫ ∞
0

dt′
∫ ∞
−∞

dx ρ(x, t′;x0)
∂φ

∂λi
(
x;λ(t)

)]
∂λjφ(x0,λ(t))

〉
eq,λ(t)

=
dλj

dt

∫ ∞
0

dt′ 〈∂λiφ(t′)∂λjφ(0)〉eq,λ(t). (6.77)

Therefore, we see that the derivative truncation approximation reproduces the inverse diffusion
tensor for general potentials in the overdamped regime.
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Appendix A

Riemannian Geometry

A careful definition of a maximal atlas of coordinate charts on a topological space would typ-
ically initiate any complete introduction to the subject of Riemannian geometry. However, since
the parameter spaces of the applications presented in this thesis are open subsets of Rn, it will be
most convenient and expedient to present the relevant geometric quantities in terms of the familiar
concept of vectors defined on Euclidean space. This way, we may avoid being bogged down by
unnecessary exposition or lost in irrelevant mathematical technicalities. The interested reader may
refer to [67, 68] for details related to topics covered below and for a complete treatment of the
fascinating field of Riemannian geometry. A strong introduction written by a physicist may be
found in [69].

A.1 Metric Tensor

We begin our treatment with a discussion of geometry in R3 which is assumed familiar to the
reader. The Euclidean inner product of vectors (or first fundamental form for the more sophisti-
cated reader) may be defined as follows: given the standard basis of vectors for this space, it is
possible to uniquely expand any two vectors as v =

∑3
i=1 v

iei , w =
∑3

i=1 w
iei and to define

their inner product as 〈v,w〉 ≡
∑3

i=1 v
iwi. Note that the inner product is symmetric in its argu-

ments and that 〈v,v〉 ≥ 0 always with equality holding if and only if v = 0. Since 〈v,v〉 ≥ 0,
it is natural to use this quantity as a measure of length. Furthermore, it is possible to show that
〈v,w〉 =

√
〈v,v〉

√
〈w,w〉 cos θ where θ is the angle between the two vectors. In this way the

inner product encodes the geometry of three-dimensional Euclidean space.

We may rewrite the inner product in a more illuminating way:

〈v,w〉 =
3∑

i,j=1

δijv
iwj (A.1)
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where δij is the Kronecker delta. Note that δij is trivially a symmetric, positive-definite matrix. It
is possible to generalize the inner product by making the substitution δij → gij(x) where gij(x) is
a symmetric, positive-definite matrix depending on position in Euclidean space x:

〈v,w〉g,x ≡
∑
ij

gij(x)viwj. (A.2)

To be consistent with the notation of the thesis, we will henceforth adhere to the Einstein sum-
mation convention and suppress summation symbols for the remainder of this appendix. Unless
stated otherwise, if an index symbol is duplicated in both a superscript and a subscript, we assume
the index is summed over. For instance, the generalized inner product may be written as

〈v,w〉g,x ≡ gij(x)viwj. (A.3)

where i and j are implicitly summed over. The matrix gij(x) is referred to as the metric tensor and
generally encodes a richer geometry than the standard Euclidean inner product defined in terms of
the Kronecker tensor. Note that Eq. (A.2) may be extended to spaces of dimension n 6= 3 trivially.

The term “tensor” may invoke trepidation in the newcomer. However, for our purposes, it is
convenient and sufficient to think of tensors as objects that transform a specific way under coor-
dinate transformations. A hallmark of geometric quantities is their coordinate invariance: things
like length, angle, area of a surface, etc. should not depend on the particular coordinate system
we humans employ to calculate them. Students familiar with the basic concepts of gravitation will
recognize that the physical importance of coordinate invariance is a mantra often repeated by gen-
eral relativists. We will give an argument for the behavior of the metric tensor under coordinate
transformations by thinking of the coordinate invariant notion of curve length.

Recall how one may compute the length of a parameterized curve in R3 endowed with the
standard inner product: one divides the curve into very small segments and approximates each
segment by the tangent vector to the curve. The length of each tangent vector is measured using
the inner product and the total length is approximated by a sum over all segments. In the limit
where the segment length approaches 0, the approximation converges to the definition of the curve
length. This process is not restricted to the standard inner product and may be extended to a more
general metric tensor gij(x). A most convenient condensation of this process is given by the metric
line element which encodes the distance between two infinitesimally separated points:

ds2 ≡ gij(x)dxidxj. (A.4)

Here, xj is a coordinate system chosen a priori and does not necessarily have to coincide with
Cartesian coordinates and dxj is an increment of the j-th coordinate.

Since length must be a coordinate invariant concept, ds2 will not change under a redefinition of
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coordinates. Not only is this a convenient way of demonstrating the metric tensor’s behavior under
coordinate redefinitions but it is a fact we use extensively throughout this thesis to find analytic
expressions for geodesics which we define shortly. Suppose a new set of coordinates x̃J(xi) is
defined in terms of the old where we assume a smooth inverse transformation exists. Here, we use
upper case Latin symbols for the indices of the new coordinate system. Then, by the chain rule of
calculus,

dxi =
∂xi

∂x̃I
dx̃I (A.5)

and so

ds2 = gij(x)dxidxj = gij(x(x̃))
∂xi

∂x̃I
∂xj

∂x̃J
dx̃Jdx̃I = g̃IJ(x̃)dx̃Jdx̃I . (A.6)

From this expression, we see that the coordinate invariance of length is ensured if

g̃IJ(x̃) ≡ gij(x(x̃))
∂xi

∂x̃I
∂xj

∂x̃J
. (A.7)

This is the tensorial nature of the metric.

It is furthermore assumed in the expression Eq. (A.2) that the vectors v,w are in some sense
“attached” to the point x. More concretely, v,w are assumed to be elements of the tangent space
attached to x. The collection of tangent spaces (each a vector space copy of R3) is referred to as
the tangent bundle. It is necessary to distinguish tangent spaces in the presence of a non-trivial
metric since it is no longer possible to parallel transport vectors in the standard way.

In a standard calculus course, calculations often call for the comparison of two vectors in some
sense. For instance, addition and taking the inner product of two vectors are two operations that
come immediately to mind. When R3 is endowed with the standard inner product, it is acceptable
to move vectors anywhere in space without rotation in order to make these comparisons. In this
circumstance it was not necessary to distinguish the vector v with base at x from the vector with
the same components but based at x′ 6= x. In the presence of curvature this way of moving vectors
about is no longer consistent and so it becomes fundamentally important to distinguish tangent
spaces at different points. This issue of parallel transport will arise again during our brief discus-
sion of curvature.

A.2 Curvature Tensor

The intrinsic curvature of a surface can be readily understood in terms of a simple thought ex-
periment. Suppose a two-dimensional being inhabits the surface of a sphere which we embed into
R3. We emphasize that this embedding is not necessary or even practical for the general definition
of intrinsic curvature; the example used here is a convenient visual heuristic. The two-dimensional
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being is unaware of any other spatial dimensions but notices something very strange during an
expedition on the sphere. With an arrow fixed in her frame of reference, the explorer sets out from
the north pole and travels down a meridian. She then cuts across a latitude and returns to the north
pole along another meridian. Though she is careful not to disturb the arrow’s direction in her ref-
erence frame, she finds that the arrow points in a different direction upon her return. The situation
is illustrated in Fig. A.1.

(a) (b)

(c) (d)

Figure A.1: A two-dimensional explorer traverses a closed curve on the surface of a sphere (red) while carrying an
arrow (blue) in a fixed direction in her frame of reference. In (a) the explorer begins at the north pole with the arrow
tangent to a meridian, moves down the meridian in (b), along the equator in (c) and returns to the north pole along the
meridian in (d) which is part of the same great circle as the meridian in (b). The result is a rotation of the vector due
to the intrinsic curvature of the sphere.

The explorer rightfully comes to the conclusion that her two-dimensional universe must be
curved. In Riemannian geometry, the Riemann tensor encodes information about the intrinsic
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geometry of space and is defined in terms of parallel transport of vectors around small closed
loops [95]. We need not go into the details of the construction of this tensor nor many of its
properties. We hope the reader will find the above narrative a useful visualization of the idea of
intrinsic curvature. For our purposes, it is sufficient to give the explicit mathematical definition
of the tensor and a few key characteristics which we use extensively throughout this thesis. In the
following, observe that the Riemann tensor may be expressed entirely in terms of the metric tensor.

To begin, we need to define the so-called Christoffel symbols (of the second kind) which arise
naturally in the context of vector parallel transport. We assume a coordinate system has been
chosen from the outset.

Γijk ≡
1

2
gil (∂kgjl + ∂jgkl − ∂lgkj) (A.8)

where gij are the components of the matrix inverse of gij . Please note that the Christoffel symbols
do not transform tensorially under changes of coordinates.

The Christoffel symbols are used to construct the Riemann tensor:

Ri
jkl ≡ ∂kΓ

i
jl − ∂lΓijk + ΓmjlΓ

i
mk − ΓmjkΓ

i
ml. (A.9)

Contracting indices gives the Ricci tensor Rij and the Ricci scalar R,

Rij = Rl
ilj , R = gijRij , (A.10)

which are useful for determining the curvature content of the space. For our purposes, the Ricci
scalar is the most useful quantity recorded here. In every application presented in this thesis we
construct a metric tensor initially in physical coordinates; i.e. those under the direct control of
an experimentalist. Geometrically, one coordinate system is not singled out over another, though
some coordinate systems prove to be more convenient than others depending on the situation as
any multi-variable calculus student can attest. The utility of the Ricci scalar is due to its coordinate
invariance; i.e. the Ricci scalar can tell us something about the underlying geometry independently
of our coordinate system.

We use the Ricci scalar extensively to seek out coordinate transformations making our com-
putations as simplistic as possible. For instance, in Ch. 3, we demonstrate that the Ricci scalar of
the (β, k)-submanifold is constant and negative implying that the underlying geometry is that of
hyperbolic space, a well-known and thoroughly understood geometry. In Ch. 4 and Ch. 5, com-
putation of the Ricci scalar reveals to us that the underlying geometry in both instances is that of
Euclidean space with the standard inner product. In all cases considered in this thesis, the physical
coordinates obscure the often-times simplistic geometry describing our models.

80



A.3 Geodesics

Loosely speaking, a geodesic is a curve of minimal length joining two fixed points in space.
From Eq. (A.4), the length of the parameterized curve γ(t) is given by

L[γ] ≡
∫ b

a

√
gij(λ(t))

dγi

dt

dγj

dt
dt (A.11)

where the parameter t takes on values from [a, b]. Using standard arguments from the calculus of
variations [67, 68, 95], extrema of this functional must satisfy the geodesic equation

d2γi

dt
+ Γijk

dγj

dt

dγk

dt
= 0 (A.12)

where Γijk are the Christoffel symbols. The geodesic equation Eq. (A.12) holds regardless of the
coordinate system used. (For a proof, see [95].) Therefore, obtaining useful coordinate systems
in which the metric tensor and Christoffel symbols simplify expedites the solution of the geodesic
equation.

A quick calculation demonstrates that the norm of the tangent vector to a geodesic must neces-
sarily be constant; i.e. gij(λ(t))dγ

i

dt
dγj

dt
= const.:

d

dt

(
gij(λ(t))

dγi

dt

dγj

dt

)
=
dgij(λ(t))

dt

dγi

dt

dγj

dt
+ 2gij(λ(t))

dγi

dt

d2γj

dt2
=
dγi

dt

dγj

dt

dγk

dt

(
∂kgij − 2gilΓ

l
jk

)
(A.13)

which vanishes by definition of the Christoffel symbols in terms of the metric (Eq. (A.8)). This
fact proves useful in finding geodesics in Ch. 3.

A.4 Killing Vectors

We conclude this appendix with a brief account of Killing vector fields. In general, Killing
vector fields generate isometries of the metric tensor [68, 69]. In words, if we follow the flow
generated by a Killing vector field, distances are preserved. Mathematically, a Killing vector field
K satisfies the Killing equation [68, 69]:

∂iKj + ∂jKi − 2ΓkijKk = 0 (A.14)

where Ki ≡ gijK
j . Killing vector fields may be very useful in computing closed-form expressions

of geodesics since they determine conserved quantities along geodesics. Indeed, we shall now
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prove that

Ki
dγi

dt
(A.15)

is parameter-independent when γ(t) satisfies the geodesic equation Eq. (A.12).
The proof is elementary: from basic calculus, we see that

d

dt

(
Ki
dγi

dt

)
= Ki

d2γi

dt2
+ ∂jKi

dγi

dt

dγj

dt
. (A.16)

SinceK is a Killing field,

∂jKi
dγi

dt

dγj

dt
= ΓkijKk

dγi

dt

dγj

dt
. (A.17)

Furthermore, since γ is a geodesic, we have

∂jKi
dγi

dt

dγj

dt
= −Kk

d2γk

dt2
(A.18)

and so
d

dt

(
Ki
dγi

dt

)
= 0. (A.19)

With a Killing vector field in hand, it is therefore possible to obtain a first integral of the
geodesic equation, simplifying the calculation of closed-form expressions for geodesics. However,
it may seem we have traded one difficulty (calculating solutions to the second order geodesic equa-
tion) for another (solving the Killing equation). Though true in general, it is sometimes possible
to write down Killing vector fields based on some symmetry of the metric tensor. In particular, if
it is possible to find a coordinate system in which the metric components do not depend on one of
the coordinates, say xj , then the vector pointing in the j-th direction is a Killing vector field [69].
This observation is used to great effect in Ch. 3.
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Appendix B

Fokker-Planck Equations

Fokker-Planck equations form the basis for many of the results discussed in this thesis and are
useful descriptions in nonequilibrium statistical mechanics when the underlying dynamical system
has Markovian friction and Gaussian white noise. They are often used as an alternative to Langevin
equations which are difficult to solve when nonlinearities are present. Therefore, for sake of com-
pleteness and for the benefit of the newcomer to nonequilibrium statistical mechanics, a chapter
devoted to the derivation of the Fokker-Planck equation seems appropriate. The reader should not
mistakenly believe that the material presented in this appendix originated with the author: the ex-
position given here is largely drawn from Ch. 2.2 of [54].

B.1 Derivation of a Fokker-Planck Equation

Let us suppose that the dynamical system of interest is described by a set of variables {a1, a2 . . . }
which is more conveniently denoted by a vector a. For the reader familiar with the basics of clas-
sical mechanics, the vector a could for instance represent a point in the phase space of a system
consisting of N particles. In that case, the components of a would consist of the three position
coordinates and the three components of momentum for each of the N particles under considera-
tion. We suppose at the outset that the noise-free part of the dynamics is Markovian; i.e. has no
memory. Furthermore, we require that the noise is white and has a Gaussian distribution.

Specifically, we assume equations of motion

da

dt
= v(a) + F (t), (B.1)

where v(a) is a given function and the noise F (t) is Gaussian with

〈F (t)〉 = 0 , 〈F (t)F (t′)〉 = 2Bδ(t− t′). (B.2)
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In general, B is a symmetric matrix which may depend upon a. However, for the applications
found in this thesis, the matrix B will be fixed by enforcing the Einstein relation between the dif-
fusion constant and the ambient temperature.

As an alternative to solving the equations of motion directly, we seek a probability distribution
f(a, t) of the values of a at time t. More to the point, we want the average of such a probability
distribution over the noise. First, we recognize that the probability distribution is a conserved
quantity: ∫

daf(a, t) = 1 (B.3)

for all time. Therefore, we expect the f(a, t) to satisfy a conservation law:

∂f

∂t
+

∂

∂a
·
(
∂a

∂t
f

)
= 0. (B.4)

If we use Eq. (B.1) in the conservation law Eq. (B.4), then we obtain

∂f

∂t
= − ∂

∂a
·
(
v(a)f + F (t)f

)
(B.5)

which contains a random term.

Following the notation set by [54], we define the operator L by

LΦ ≡ ∂

∂a
·
(
v(a)Φ

)
(B.6)

so that formal solutions to Eq. (B.4) with F (t) = 0 are given by

f(a, t) = e−tLf(a, 0). (B.7)

With the noise term, the conservation equation reads

∂f

∂t
= −Lf − ∂

∂a
· F (t)f. (B.8)

An integration over time leads to the operator equation

f(a, t) = e−tLf(a, 0)−
∫ t

0

ds e−(t−s)L ∂

∂a
· F (s)f(a, s). (B.9)

Substituting this back into the conservation law yields

∂

∂t
f(a, t) = −Lf(a, t)− ∂

∂a
·F (t)f(a, 0) +

∂

∂a
·F (t)

∫ t

0

ds e−(t−s)L ∂

∂a
·F (s)f(a, s). (B.10)
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Upon averaging over the noise, terms with a single F vanish and we obtain

∂

∂t
〈f(a, t)〉 = − ∂

∂a
· v(a)〈f(a, t)〉+

∂

∂a
·B · ∂

∂a
〈f(a, t)〉. (B.11)

This is the Fokker-Planck equation. In this thesis, we abuse notation and identify f(a, t) as the
probability distribution obtained after averaging over noise.
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