
UC Davis
IDAV Publications

Title
Real-Time Optimal Adaptation for Planetary Geometry and Texture: 4-8 Tile Hierarchies

Permalink
https://escholarship.org/uc/item/7tm336w0

Journal
IEEE Transactions on Visualization and Computer Graphics, 11

Authors
Hwa, Lok Ming
Duchaineau, Mark A.
Joy, Ken

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tm336w0
https://escholarship.org
http://www.cdlib.org/

Real-Time Optimal Adaptation for Planetary
Geometry and Texture: 4-8 Tile Hierarchies

Lok M. Hwa, Mark A. Duchaineau, Member, IEEE, and Kenneth I. Joy, Member, IEEE

Abstract—The real-time display of huge geometry and imagery databases involves view-dependent approximations, typically through

the use of precomputed hierarchies that are selectively refined at runtime. A classic motivating problem is terrain visualization in which

planetary databases involving billions of elevation and color values are displayed on PC graphics hardware at high frame rates. This

paper introduces a new diamond data structure for the basic selective-refinement processing, which is a streamlined method of

representing the well-known hierarchies of right triangles that have enjoyed much success in real-time, view-dependent terrain display.

Regular-grid tiles are proposed as the payload data per diamond for both geometry and texture. The use of 4-8 grid refinement and

coarsening schemes allows level-of-detail transitions that are twice as gradual as traditional quadtree-based hierarchies, as well as

very high-quality low-pass filtering compared to subsampling-based hierarchies. An out-of-core storage organization is introduced

based on Sierpinski indices per diamond, along with a tile preprocessing framework based on fine-to-coarse, same-level, and coarse-

to-fine gathering operations. To attain optimal frame-to-frame coherence and processing-order priorities, dual split and merge queues

are developed similar to the Realtime Optimally Adapting Meshes (ROAM) Algorithm, as well as an adaptation of the ROAM frustum

culling technique. Example applications of lake-detection and procedural terrain generation demonstrate the flexibility of the tile

processing framework.

Index Terms—Large data set visualization, level-of-detail techniques, view-dependent visualization, adaptive textures, out-of-core

algorithms, procedural terrain generation.

�

1 INTRODUCTION

PLANETARY data sets are readily available with over a
billion elevation and color values [1], [27]. Displaying

good approximations of these databases on PC hardware at
high frame rates is an ongoing challenge as the sizes of the
databases and the opportunities afforded by new graphics
hardware both grow. We consider the case when geometry
and color data is too extensive to fit in core, but must be
paged from disk both during pre-interaction processing
(hierarchy building and the like), as well as during
interactive display. Given that the databases are hundreds
to thousands of times as large as can be displayed at high
frame rates, reductions in complexity are needed. Ideally,
geometry and texture approximations should be optimized
dynamically based on the viewpoint. Historically, view-
dependent optimizers worked at a fine-grained level,
adding or subtracting only two triangles at a time. This
makes it hard to exploit newer graphics hardware that
works best with rendering units that consist of larger
collections of triangles. The ROAM Algorithm [8], which
makes ideal use of frame-to-frame coherence to prioritize
coarsening and refinement work, is used as the basis in this
paper for ordering selective-refinement operations and

frustum culling. This basic scheme is enhanced with a
streamlined data structure, out-of-core indexing, and a tile-
processing system. This coarse-grained selective refinement
of geometry and images is made more seamless at level-to-
level transitions through the use of 4-8 tile hierarchies that
have very gradual level-of-detail changes and through the
use of high-quality low-pass filtering. An example of a one-
meter database of Fort Hunter Liggett, California, shown in
Fig. 1, demonstrates how seamless these transitions can be,
even without the use of per-pixel blending (mipmaps) to
hide the seams.

Hardware rendering rates have grown to exceed
200 million triangles per second. This means that choosing
triangle adaptations for uniform screen size will result in
roughly one-pixel triangles for full-screen display at
100 frames-per-second rendering rates. At this point, it is
no longer desirable to make triangles nonuniform in screen
space due to variations in surface roughness since this will
only lead to subpixel triangles and artifacts. This situation
for geometry is now in a similar regime to that of texture
level-of-detail adaptation, which seeks to make each texel
project to roughly one pixel in screen space. Overall, then,
our goal is to low-pass filter the geometry and textures so
that triangles and texels project to about a pixel.

While many geometric hierarchies have been devised for
large-data view-dependent adaptation, the above analysis
suggests that uniform aspect-ratio triangles are more
desirable for attaining better control of geometric antialias-
ing. Also, better low-pass filtering methods are known for
regular grids. Texture hierarchies are more constrained than
geometry since graphics hardware works most effectively
with raster tiles of modest, power-of-two sizes. For
efficiency of texture loading and packing, we avoid

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005 355

. L.M. Hwa can be reached at 607 Westview Place, Chula Vista, CA 91910.
E-mail: lok.hwa@gmail.com.

. M. Duchaineau is with the Lawrence Livermore National Laboratory, 7000
East Ave. L-557, Livermore, CA 94551. E-mail: duchaine@llnl.gov.

. K.I. Joy is with the Institute for Data Analysis and Visualization and the
Department of Computer Science, University of California, Davis, One
Shields Avenue, Davis, CA 95616-8562. E-mail: joy@cs.ucdavis.edu.

Manuscript received 9 Oct. 2004; revised 7 Feb. 2005; accepted 16 Feb. 2005;
published online 10 May 2005.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCGSI-0127-1004.

1077-2626/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

consideration of texture atlas schemes in which a power-of-
two tile is filled with irregular subregions that are used
independently. This leads us to use regular grids for
efficiency and uniformity of treatment. In theory, there are
only two regular tilings of the plane that allow conformant
adaptive meshes to be formed without special fix-ups at
level of detail transitions: the 4-8 meshes and the 4-6-12
meshes [10], [11]. We chose the 4-8 meshes and their
diamond elements, shown in Fig. 2, since these match the
constraints of texture hardware and have many known
desirable properties [19], [8], [20]. At display time, triangle
patches associated with the leaf diamonds are drawn,
where each patch associates with the most appropriate
available texture diamond.

The system proposed here includes two main parts:
First, a pre-interaction preparation phase which converts
raw input elevations and colors into processed and filtered
tile hierarchies on disk and, second, a runtime view-
dependent optimization and rendering algorithm that
incrementally updates the neighborhoods of geometry or
texture tiles. The overall runtime state is depicted in Fig. 3.
The goal of this design is to prioritize coarsening and
refinement work that is most urgently needed each frame to
stay near the target triangle count and texel-to-pixel ratio.
The paging and view-dependent optimization states are
almost identical for geometry and texture. Both include a
hierarchical disk database, caches for compressed I/O

blocks and decompressed tile rasters, a selectively refined
diamond mesh, and the dual split-merge priority queues
that order the incremental updates to the diamond mesh.
The block and tile caches use a least-recently-used (LRU)
replacement strategy. In addition, geometry patches map
to the available texture that is closest to its ideal texel-to-
pixel ratio. Since updates to patch-to-texture mappings
involve expensive transfers of new texture coordinate
arrays to AGP memory, a single priority queue is used to
budget these updates per frame. Triangle-patch diamonds
and texture-object diamonds are optimized independently
using dual queues. Both of these optimization loops are
similar to the original ROAM optimization loop for

356 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 1. Two screen shots of an overflight of Fort Hunter Liggett, California, that illustrate the use of 4-8 texture hierarchies. On the left is the seamless

textured image produced by the system, while the right shows the outline of the texture tiles used in producing the image.

Fig. 2. A 4-8 mesh illustrating different levels of resolution. Part (a)
shows a coarse, uniform refinement, which is effectively a grid of
squares (blue) with distinguished diagonals (green). Part (b) is one level
finer everywhere. Note the blue squares are rotated 45� and scaled byffiffiffiffiffiffiffiffi

1=2
p

. Part (c) shows the selective refinement of (b) to add the diamond
(yellow) with center d.

Fig. 3. The system state for frame-to-frame optimization of geometry

and texture includes disk hierarchies, least-recently-used caches of

blocks and tiles, dual-queue optimizers for patches and texture objects,

and a priority queue to budget updates to the patch-to-texture mappings.

triangles. Splits and merges schedule future heavy-weight
activity, including the retrieval of data from cache or disk

as needed and the uploading of patch or texture data to
special graphics-hardware memory. The paging and up-

load work can be tightly controlled per frame to achieve
an application-specific balance of the trade-off between

full optimization per frame and fast, even frame rates. The
overall optimization and rendering loop per frame is

performed in phases as follows:
For each frame {

1. Update the frustum-cull state and priorities for the
active diamonds:

. Update frustum for new frame (do not upload to
graphics hardware yet).

. Update frustum-cull IN/OUT labels for all
diamonds.

. Update split/merge priorities for texture and
geometry diamonds.

2. Perform texture-object optimization loop (uses dual
split-merge priority queues). This will schedule
heavy-weight operations that will be performed
later: access to texture tiles from cache if available
and paging from disk as needed. The optimization
loop will terminate early to limit the number of
paging and texture upload operations per frame.

3. Perform geometry patch optimization loop (uses a
second dual queue). Geometry tiles will be sched-
uled to be accessed from cache or paged from disk as
needed. The optimization loop will terminate early
to limit the number of paging and upload operations
per frame.

4. Determine desired patch-to-texture mappings.
Compute priorities of patch-to-texture mapping
updates.

5. Perform patch-to-texture update loop (uses a single
priority queue). Updates will be scheduled for later
and limited to fixed budget per frame.

6. Swap the display buffers. Upload new frustum to
graphics hardware. Launch rendering of unchanged
patches (nonblocking calls).

7. Perform scheduled paging/upload operations (con-
current with rendering of unchanged patches).

8. Launch rendering of updated patches (this render-
ing will be performed concurrent with phases 1
through 5).

}

In order to realize this overall optimization and render-

ing strategy, it is important to understand:

. The core data structure for diamonds: While several
data structures have been devised to support 4-8
refinement, e.g., [8], [11], [2], we found that addi-
tional streamlining and unification was possible.
This paper introduces a diamond data structure in
which each diamond element simultaneously has
unique associations with a vertex (its center), an
edge (its distinguished diagonal), and a quadrilat-
eral face of a 4-8 refinement mesh. A diamond
represents the pairing of two right isosceles triangles

at the same level of detail in the 4-8 mesh that share a
base edge. Since basic operations on the 4-8 mesh
must treat these diamonds as a unit, it is logical and
efficient to use the diamond as the backbone data
structure rather than bintree triangles. Section 3
provides details on the diamond structure and its
use in 4-8 incremental mesh adaptation.

. Standard diamond parameterizations and level-to-
level mappings: Both geometry and textures are
treated as small regular grids, called tiles, defined for
each diamond in the hierarchy. Tiles at a level of
resolutionmatching the inputdata are either copiedor
resampled.Coarser tiles are computedusing low-pass
filtering in an out-of-core traversal. Finer tiles can be
obtained using 4-8 subdivision [31] with the optional
addition of procedural detail. The basic properties of
tiles, including standard orientations and level-to-
level mappings, are described in Section 4.

. Out-of-core indexing using Sierpinski curves: For
efficient input and output, files and disk blocks are
laid out using a diamond indexing scheme based on
the Sierpinski space-filling curve. Sierpinski index-
ing and basic data traversals for out-of-core pre-
processing are described in Section 5.

. Filtering operations using diamond raster tiles: The
technique for computing coarser and finer tiles and
generally computing local image-processing opera-
tions is based on a simple neighborhood-gathering
procedure and least-recently-used caching strategy.
When combined with tile traversal in Sierpinski
order, very efficient and general preprocessing of
planetary data can be performed using a small, fixed
memory footprint. An extensive sequence of image
processing operations, used for automated lake
detection, demonstrates the flexibility of this ap-
proach. The filtering and caching mechanism for
preprocessing is covered in Section 6.

. Geometry-specific filtering, layouts, and per-frame
optimization: For geometric rendering, patches of
256, 1,024, or more triangles are stored as indexed
vertex arrays in Sierpinski order for highly efficient
rendering on graphics hardware. Using uniform
refinement, any power of four increase in triangle
count will result in conformant meshes [26], [18]. We
are able to achieve triangle throughput close to the
practical limits on recent PC video cards. Section 7
outlines how patches are laid out and updated via
the cache of elevation tiles. Dual priority queues,
similar to those of the ROAM algorithm [8], drive the
frame-to-frame updates of the adaptive refinement
of displayed patches.

. Texture-specific filtering and optimization: The
adaptive 4-8 textures, defined in detail in Section 8,
fill each diamond area with a regular-grid image
raster, rendered using bilinear interpolation. Neigh-
boring tiles share boundary samples on their mutual
edges. We allow each ROAM leaf triangle patch to
independently choose which texture level-of-detail to
map to, based on its estimated pixel area for the
current view transform. Amapping from the triangle

HWA ET AL.: REAL-TIME OPTIMAL ADAPTATION FOR PLANETARY GEOMETRY AND TEXTURE: 4-8 TILE HIERARCHIES 357

patches’ parameterization to the texture diamond’s
parameter space is computed as needed when this
level-of-detail selection changes. This change requires
an update of the vertex array texture coordinate data
stored in special graphics hardware memory. Since
this is an expensive operation, updates are budgeted
per frame based on a simple priority queue. The
texture-object refinement is updated independently
from the triangle-patch hierarchy, using a second,
similar dual-queue optimizer.

. Adding procedural detail: Finally, additional geo-
metric detail is added using a smooth interpolatory
subdivision scheme on tiles, combined with random
displacements. These operations are shown to be fast
enough to adequately feed view-dependent refine-
ment during rapid fly-overs at low altitudes and
provides a fair quality procedural terrain. The
procedural refinement scheme is covered in Section 9.

Overall, this approach to forming tile hierarchies and
accessing them during frame-to-frame incremental updates
results in a visually seamless, high quality display of
arbitrarily large terrain and imagery databases. Some
implementation details and numerical results are presented
in Section 10, but the ultimate proof is to see the system in
action on a huge data set. The visual appearance is, in our
experience, consistently very high. Indeed, we were
pleasantly surprised that neither per-pixel blending of
texture level-of-detail nor per-vertex blending of geometric
data seems to be needed; we believe this is largely due to
the gradual factor-of-two changes in information content
between levels.

2 RELATED WORK

Our previous paper, which introduces the basic diamond
data structure and the 4-8 texture hierarchies is [16], and
this provides a more detailed review of the related work.
An overview of geometric level-of-detail algorithms can be
found in [24], where notable categories are Triangulated
Irregular Networks (TINs) [13], [28], [15], and Hierarchies of
Right Triangles (HRTs) [23], [10], and Nested Regular-Grid
(NRG) methods [22]. HRT and NRG methods generally
have greater speed and lower memory use, but require
more triangles for the same quality [10]. For the reasons
outlined earlier, we focus on HRT schemes, such as
Lindstrom et al. [19], Duchaineau et al. [8], Lindstrom and
Pascucci [20], [21], Gerstner [14], and Pajarola [25].

A number of view-dependent optimizers have been
devised that use coarse-grained selective refinement, in-
cluding an early formal treatment by De Floriani and Puppo
[12], Pomeranz’s [26] ROAM algorithm extended to use pre-
computed HRT patches, Levenberg’s [18] extensions to
allow runtime HRT patch updates, and Cignoni et al.’s [3]
use of TIN patches within an HRT region. The basic large-
texture processing algorithms are mipmaps [32] and
clipmaps [29]. Two algorithms on out-of-core view-depen-
dent geometry are DeCoro andd Pajarola’s XFastMesh [6]
and El-Sana and Chiang [9].

Methods that combine texture and geometry view-
dependent refinement include Ulrich’s quadtree-chunk

method [30], the multiresolution terrain and clipmap-like
texture system of Döllner et al. [7], the geometry plus
texture clipmaps of Losasso and Hoppe [22], and the BDAM
system of Cignoni et al. [3], [4], [5] that uses HRTs of TIN
patches and a quadtree of texture tiles.

In contrast to this previous work, we seek to maximally
exploit frame-to-frame coherence with view-dependent
refinement, similarly to the ROAM algorithm, but with
chunked/patch geometry and texture tiles paging in from
disk. High-quality low-pass filtering is applied to geometry
tiles in addition to textures so as to minimize geometric
aliasing artifacts and to reduce average geometric error. A
new Sierpinski disk layout improves the coherence of tile
access and caching, while the 4-8 textures minimize visible
seams at patch boundaries. Like ROAM, our algorithm can
maintain near-constant frame rates by optimizing to a
triangle budget in addition to selecting a desired screen
error tolerance.

3 THE DIAMOND DATA STRUCTURE

Underlying all the work in this paper is the notion of a
diamond, which is uniquely associated with one vertex, one
edge, and one quadrilateral face in a 4-8 mesh hierarchy.
Fig. 4 depicts a diamond d with a standard orientation and
labeling of its ancestors a0...3 and children c0...3. By a parent of
diamond d, we mean a diamond one level coarser in the
4-8 mesh whose area overlaps d. Similarly, a child of d is one
level finer and overlaps d.

After experimenting with a number of implementations
of 4-8 mesh data structures that support selective refine-
ment, including pointer-free “pure index” schemes, we
found after performance profiling that the fastest choice is
simply to keep pointers to the children and ancestor, and
allocate diamond records in arrays of several thousand at a
time to avoid per-record heap allocation overhead. Naviga-
tion to a diamond’s parent, quadtree, and older corner
ancestors, as well as children, is then a matter of following
single links, which will be denoted d ! ai and d ! ci,
respectively, for i ¼ 0 . . . 3. Traversing to neighbors at the
same level of resolution turns out to be simple as well.

358 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 4. A diamond d (yellow) is shown with respect to its ancestors (left)
and its children (right). By numbering each of these counterclockwise
around d and by placing the quadtree ancestor (green) as a0 and the first
child c0 just after this, navigation through the 4-8 mesh becomes
straightforward. Note that the two parent diamonds (blue outline) are the
right parent, a1, and the left parent, a3. The children of d are c0...3,
outlined in red.

To get to diamond d’s neighbor d0 across the child d ! c0
edge, Fig. 5 shows that both d and d0 are children of d’s right
parent d ! a1. Indeed, d0 is the child of d ! a1 just
counterclockwise of d. Since moving to neighbors is a
frequent operation, it can improve performance to store d’s
index as a child with respect to both parent a1 and a3; these
indices will be referred to as d ! i1 and d ! i3, respectively.
This means that the assertion d ¼ d ! a1 ! cd!i1 should
always hold for the right parent and similarly using a3 and
i3 for the left parent. The pseudocode for moving to the
c0 neighbor of d is then simply

i (ðd ! i1 þ 1Þmod 4
d0 (d ! a1 ! ci:

Child edges d ! c1...3 are treated similarly.
Now that neighbor-finding is established, the process of

adding a child diamond, say c ¼ d ! c0, begins by finding
the neighbor d0 as above, which is the other parent of c. If d0
is missing, then it should be recursively added to its parent,
d ! a1, at the expected child index. To hook up c properly,
first note that its quadtree ancestor c ! a0 is d ! a1, the
mutual parent of c’s two parents, d and d0. This determines
the exact orientation of c (just rotate Fig. 5 135� clockwise)
and thus indicates how all of its ancestors should be filled
in, as well as its parent’s back pointers:

c ! a0 (d ! a1 d ! c0 (c
c ! a1 (d c ! i1 (0
c ! a2 (d ! a0 d0 ! c3 (c
c ! a3 (d0 c ! i3 (3:

The last two assignments follow from the observation that d
and d0 both have d ! a0 as their quadtree ancestor. As
before, similar procedures exist for creating children c1...3 of
diamond d.

To delete a childless diamond d, the pointers to d from its
parents must be cleared:

d ! a1 ! cd!i1 (null
d ! a3 ! cd!i3 (null:

Any adaptive 4-8 mesh may be constructed by sequences
of child additions and childless-diamond deletions.

Convenience operations, such as deleting a diamond with

children, may be implemented easily using these basic

operations.
The final idea required to begin using diamond meshes is

the method to hook up the initial base (i.e., coarsest-level)

mesh. Given any manifold polygonal mesh, a diamond base

mesh may be constructed by creating a diamond per vertex,

face, and edge. Vertex diamonds exist only to supply their

centerpoint coordinate—no use is made of their child or

ancestor links. Facediamonds link to their children,whichare

the edge diamonds. Conversely, the edge diamonds link to

their parents, the face diamonds, as well as their other

ancestors, which are vertex diamonds. For polygonal meshes

with nonquadrilateral faces, the number of children of face

diamonds will not be four and neighbor-finding will require

arithmetic modulo the number of edges in the face. Indeed,

the neighbor of d (e.g., d0) in the child-addition procedure

mayneed to examinewhichof its parents is in commonwith d

in order to select its appropriate child index. In contrast, for

the non-base-mesh case of Fig. 5 and for cubical base meshes

laid out carefully, d0 always uses child index 3. For this

reason, we choose a cubical base mesh for planetary

geometry, which has all quadrilateral faces.
The proper layout for a base cube divides the edge

diamonds into four sets of three, as shown in Fig. 6, with

each 3-set sharing a common vertex diamond as their

“quadtree” ancestor.

4 GEOMETRY AND TEXTURE TILES

Given the basic diamond structures just outlined, it is

possible to create selectively refinable objects by associating

spatial coordinates and colors to the vertex of each

diamond. However, this kind of fine-grained treatment of

geometry and color is very inefficient for paging from disk

and for rendering on newer graphics hardware. To over-

come this, small regular grids of points and colors, called

tiles, will be associated with each diamond. The central

ideas required to work with tiles are to:

1. Set up a parametric coordinate system within a
diamond and determine the mapping from child to
parent diamond parameters,

2. Perform low-pass filtering to create high-quality
coarsened tiles, and

3. Create additional detail through 4-8 subdivision and
optional procedural displacements.

HWA ET AL.: REAL-TIME OPTIMAL ADAPTATION FOR PLANETARY GEOMETRY AND TEXTURE: 4-8 TILE HIERARCHIES 359

Fig. 5. To get to neighbor d0 of diamond d across its child c0 edge, first
walk up to its right parent d ! a1. Now, d0 is the child of a1 that is one
step counterclockwise from d. For faster computation, d’s child index i1
within a1 is kept in d’s record. The counterclockwise child index is i1 þ 1,
taken mod 4.

Fig. 6. For planetary base meshes, a cube is used, with diamonds for
each vertex, face and edge. The edge diamonds should be oriented as
shown so that their a0 (quadtree) ancestors are one of the four red
vertex diamonds and the face diamonds are their parents. Three edge
diamonds sharing the centermost vertex diamond are highlighted in
blue.

For each diamond, define its local coordinate system
ðu; vÞ 2 ½0; 1�2 to have its origin at the quadtree ancestor
vertex d ! a0, the u axis moving from the origin to the right
parent d ! a1, and the v axis moving from the origin to the
left parent d ! a3. A diamond d overlaps one half of each of
its children in the shape of a right isosceles triangle. The
relationship between d’s ðu; vÞ coordinates and those in each
child is depicted in Fig. 7.

To move information from finer to coarser tiles for low-
pass filtering, the tile for d must collect information from
half of each child. An affine mapping from child ci’s
parameters ðui; viÞ to d’s parameters ðu; vÞ would then be

ðu; vÞ ¼ ðuc; vcÞ þ uiðua; vaÞ þ við�va; uaÞ;

where the origin ðuc; vcÞ and ui direction vector ðua; vaÞ are
given in Table 1. These child-to-parent mappings may be
composed together to map to coarser ancestors, a process
which will be used to obtain texture coordinates in Section 8.

Low-pass filtering for diamond d can now be defined as
collecting tile array entries from the appropriate half of each
of the four children and placing these into two arrays
arranged according to the local coordinate system of d. As
shown in Fig. 8, one set of values will be the cell-centered
entries (hollow dots), while the other values are vertex
centered (solid dots). The new vertex-centered values will
be stored in d’s tile and are computed using weighted
averages of the old cell and vertex-centered values obtained
from the children. Note that, for the weighting mask
chosen, there are four cell-centered values (each marked
with an X) that are needed, but are outside those available
from the four children. While it is possible to query four
additional tiles to obtain these values, only a single value
from each tile would be used and has only a tiny impact on
quality. Therefore, we choose instead to use a slightly
altered weight mask for the four corners of d (Section 6

avoids the special case on the corners and supports much
wider stencils for low-pass filtering). For geometry tiles to
avoid cracks on patch boundaries, Section 7 discusses
which parent values must be subsamples (simple copies) of
the vertex-centered values from the children.

Performing 4-8 mesh refinement with tiles is very similar
to low-pass filtering, only performed in reverse. The main
difference is that a new diamond child tile must collect
values from its two parents and, for subdivision schemes
smoother than linear or bilinear interpolation, ghost values
are needed. Section 6 discusses out-of-core processing for
coarse-to-fine refinement in general (without ghost cells),
while Section 9 covers the special case of fast procedural
terrain generation using ghost cells.

5 DIAMOND SIERPINSKI INDICES AND PAGING

When accessing a large terrain database from disk during
interaction, performance is highly sensitive to the spatial
coherence of the data layout and is improved by the use of
hierarchical space-filling curves [21]. With the kind of tile-
based, explicit paging scheme that we are pursuing, we
need a fast and local means of mapping diamonds to
indices that provides such a good layout and works well
with incremental selective refinement (i.e., diamond child
additions and deletions driven by dual priority queues).
The most natural and coherent of the space-filling curves to
apply to 4-8 meshes is the Sierpinski curve, depicted in
Fig. 9. Recall from Knuth [17] that any complete binary tree
may be assigned unique indices by setting the root node to 1

360 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 7. The mapping of diamond ðu; vÞ parameters between a diamond d
and its children is depicted using arrows to indicate the u axes. These
coordinate systems are standardized to be right-handed, with the origin
at the quadtree ancestor vertex. Each diamond’s parametric coordinates
are in the unit square, that is, ðu; vÞ 2 ½0; 1�2.

TABLE 1
Origin and ui Axis for Child-to-Parent Mapping

Fig. 8. Low-pass filtering is performed by collecting both cell-centered

values (hollow dots) and vertex-centered values (solid dots) from the

four children of a diamond. One child is highlighted and the weight

masks for the interior and corner cases are given.

Fig. 9. Sierpinski indices for bintree triangles are computed recursively

from their parent index. While the layout is highly coherent, the indices

are mapped to triangles, not diamonds.

and then, for every node with index k, recursively set its
child indices to be 2k and 2kþ 1, respectively. Performing
this for the triangle bintree gives the indices shown (note
that left branches are taken first on even levels and right
branches first on odd levels).

A challenge with these Sierpinski indices is that they are
associated with the triangles of a 4-8 mesh, not the
diamonds (or, equivalently, the vertices). The most obvious
choice, associating the index with the triangle’s split point,
creates two indices per diamond. Associating with any of
the three corners results in even worse duplication. It turns
out that associating the triangle’s index with one of the
midpoints of the shorter edges, say the left side, provides
the one-to-one and onto mapping that is needed. Fig. 10
provides a visual proof that all diamonds at a given level of
resolution are covered exactly once by the left edges of
bintree triangles one level coarser in the 4-8 mesh.

To compute the Sierpinski index of a diamond d

efficiently during selective refinement, the diamond must
be mapped to its Sierpinski triangle, namely, the bintree
triangle whose left edge has the diamond vertex at its
center. From this Sierpinski triangle, its parent Sierpinski
triangle is determined and then the diamond of its left edge
is the “Sierpinski parent” dS of d. There are two cases, as
shown in Fig. 11, depending on whether the distinguished
diagonal of d’s quadtree parent d ! a0 is horizontal or
vertical. The pseudocode to compute d’s Sierpinski index
d ! k is then:

d3 (d ! a3
if d3 ! a1 ¼ d ! a0, then

dS (d3 ! a1 ! cðd3!i1þ1Þmod4

...create dS as needed...

d ! k (2dS ! kþ x

otherwise
dS (d3
d ! k (2dS ! kþ y

where, for even levels of the 4-8 mesh, ðx; yÞ ¼ ð1; 0Þ and, for
odd levels, ðx; yÞ ¼ ð0; 1Þ.

A diamond’s index is stored in 64-bits, where the upper
bits represent the Sierpinski index followed by a one and a
string of zeros to the end. To map a Sierpinski index to
input and output of files, blocks, and tiles, we consider a
Sierpinski index to be left-shifted so that the leading “1” bit
is just removed in a 64-bit register and place that bit just to

the right of the least significant bit of the index in order to
mark the end of the relevant bits:

i (ði � 1Þj1
MSB ¼ 1 � 63

while (ði&MSBÞ ¼ 0) i (i � 1

i (i � 1

The bits are now of the following form:

b63b62b61 . . . bN100 . . . 0;

where N is the least significant bit of the Sierpinski index
after the left-shift procedure.

This bit string can now be treated like a generalized
directory path name, at first literally describing directory
branches, then a file name, followed by the block index and
tile number within the block. We explain using the case
N ¼ 37:

b63b62b61b60 } directory branch 1

b59b58b57b56 } directory branch 2

b55b54b53b52 } directory branch 3

b51b50b49b48 } file name

b47b46b45b44b43b42b41b40 } block within file
b39b38b3710 } tile within block

The “1” mark bit is allowed to be in any of the rightmost
four tile bit positions. A special root file is made in the top-
level directory to catch all the blocks and tiles that have
insufficient bits to define a full 4-bit file index. This leads to
directories with up to 16 subdirectories and 16 files each,
where each file contains up to 256 read/write blocks, each
of which contains up to 30 tiles from four different levels of
detail. Branching factors, block sizes, and so on can be
tuned for performance, but we found the arrangement
given here to be very effective on the systems we tested.

When a tile is requested, it is returned immediately if it is
in main memory. If it is in a compressed read/write block
in memory, the tile is decompressed and placed in the tile
cache. If the block is missing from the cache, it is read into

the block cache from disk and the tile is extracted. If this
process fails to find a tile, the tile is manufactured using
4-8 subdivision and optional procedural displacements.
Since elevation and texture tiles are simple 2D rasters, any
number of known compression schemes can be applied.

For this system, we use a least-recently-used strategy for
tile and block cache replacement decisions. Cache sizes

HWA ET AL.: REAL-TIME OPTIMAL ADAPTATION FOR PLANETARY GEOMETRY AND TEXTURE: 4-8 TILE HIERARCHIES 361

Fig. 10. The 4-edge neighborhood shown is covered exactly once by the
diamonds associated with the left edges of the bintree triangles. This
pattern repeats to cover the plane. The triangles are shown in outline,
the diamond areas in alternating shades, and the diamond centers by
marking the inside of their respective triangle’s left edge.

Fig. 11. The Sierpinski parent dS of a diamond d is determined based on
two cases, depending on the orientation of d’s quadtree ancestor’s
distinguished edge. On the left, this edge is vertical and the counter-
clockwise neighbor of d’s left parent is the Sierpinski parent. On the
right, the Sierpinski parent is simply d’s left parent.

should be determined by balancing various application and
system memory needs since, of course, there is incremental
gain for any increase in a particular cache as long as another
cache is not decreased. For our system, we found a total
cache size of a hundred megabytes, divided evenly between
compressed-tile blocks and uncompressed tiles, provides
excellent performance.

6 OUT-OF-CORE PREPROCESSING OF PLANETARY

DATA

Beyond the simple low-pass filtering mechanism given in
Section 4, it is important for applications to be able to
perform geometry and image-processing operations on tile
hierarchies that involve local computations (convolutions,
min/max, differences, cross products, etc.). Operations can
generally be classified into three types: fine-to-coarse (e.g.,
low-pass filtering, wavelet analysis), same-level (e.g.,
shading, image analysis operations like median filtering),
and coarse-to-fine (e.g., surface refinement, wavelet recon-
struction, procedural terrain generation). All operations are
envisioned as reading from an input variable (or variables)
and writing to an output variable one tile at a time.
Generally, these local operations involve some stencil size,
such as a 3� 3 neighborhood of elements from the same
level for simple median filtering. To perform these opera-
tions, the out-of-core process is to:

. Traverse output tiles in Sierpinski order: For same-
level operations, output tiles may be processed at
any level of detail first, or indeed in parallel, since
levels do not depend on each other. For fine-to-
coarse operations, processing must start with the
finest level, then proceed coarser. The order is not
strictly fixed, but may be performed on demand for
particular subregions of more urgent interest to an
application. The gathering operations described

below can be used to induce the minimum necessary
tile computations for a desired set of output tiles.
Similarly, for fine-to-coarse operations, gathering
operations can be recursively applied to perform the
minimum required work for a desired subset of the
possible outputs. In all cases, when multiple output
tiles are selected, they are traversed in Sierpinski
order to maximize tile-cache coherence.

. Gather dependent input tiles for the output tile:
The coarse-to-fine, same-level, and fine-to-coarse
operations require that certain input tiles in the tile
neighborhood be recursively computed first. These
dependent tiles are computed one-by-one and
copied with appropriate reorientation and transla-
tion into a temporary buffer, forming a single raster.
These dependencies and mappings involve simple
traversals using the diamond data structure.

. Perform local operations to create output tile: Once
the input tile information has been gathered into a
single temporary raster, the requested operation is
performed. A wide variety of operations will fit
within this framework and can be implemented
through call-backs so that applications can extend
the set of operations.

. Maintain a cache of recently used tiles: All tile
access is performed through a fetch system that
looks first in cache (keyed by the variable name and
Sierpinski index of the tile), then on disk, and, if both
of these fail, compute the tile using whatever
dependent tiles must be recursively computed.
Newly computed tiles are marked so that they will
be written to disk when they are about to be recycled
from the cache. Overall, any dataflow that can be
described as a directed, acyclic graph on variable
names and operations can be evaluated through this
mechanism.

In the previous section, the standard tile parameterization

was given for diamonds. These mappings allow the three

gathering operations (fine-to-coarse, same-level, and coarse-

to-fine) to be implemented with neighbor finding and fixed

tables of level-to-level parameter mapping origins and u-axis

vectors. For local-operation stencils that do not exceed about

half thewidth of a single tile, only the immediate neighbors of

a diamond or its parents are accessed.
Fine-to-coarse tile gathering is depicted in Fig. 12, with

the mappings spelled out explicitly in Table 2. The values in

this table are the origin and u axis vector of the various

362 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 12. General fine-to-coarse processing is performed by collecting both
cell-centered values and vertex-centered values for the region outlined in
pink, processing these according to the operation desired, then storing
the results at the vertex-centered locations for the output tile d, shown in
yellow. Diamond d’s four neighbors d0...3 (shown in green) as well as d are
used to navigate to the 12 child tiles required. The u; v parameter axes of
each tile are shown to explain the mappings in Table 2.

TABLE 2
Fine-to-Coarse Tile Mappings (Origin and ui Axis Shown)

child diamond coordinate systems with respect to the
output diamond d’s coordinate system. Twelve tiles at the

child level are read for a particular output diamond and are
copied to a temporary raster (outlined in pink) for use by
the local-operation processing. The mappings in Table 2
must be scaled and biased appropriately for the tile raster

sizes used in the application. Stencils that extend up to half
the width of the output diamond are supported. This avoids
the corner cases that were dealt with in an ad hoc fashion
previously in Fig. 8.

The mappings in Table 2, as with Table 1 given earlier,
are defined by the origin and one axis vector of a child’s

parameterization given with respect to output diamond d’s
parameterization. The neighbors d0...3 can be obtained as
follows:

i0 (ðd ! i1 þ 1Þmod 4; d0 (d ! a1 ! ki0
i1 (ðd ! i1 � 1Þmod 4; d1 (d ! a1 ! ki1
i2 (ðd ! i3 þ 1Þmod 4; d2 (d ! a3 ! ki2
i3 (ðd ! i3 � 1Þmod 4; d3 (d ! a3 ! ki3 :

The various child tiles may be accessed directly from these

neighbors, while Table 2 provides the transformation into
the output tile d’s parameter space so that values may be
gathered in the right locations.

A similar mapping is obtained for same-level processing,
as shown in Fig. 13. The same-level mappings require

accessing neighbors of neighbors. Let d ! di denote the
neighbor of d across child i’s edge, i.e., the neighbor that has
that child in common. The pseudocode given earlier shows
how to determine these neighbors. The neighbors d4...7 can
now be determined as:

d4 (d ! d0 ! d2
d5 (d ! d1 ! d1
d6 (d ! d2 ! d0
d7 (d ! d3 ! d3

or, using modulo arithmetic:

d4þi (d ! di ! dð2�iÞmod4:

There is a second way to get to each of these neighbors,

namely,

d4þi (d ! dðiþ1Þmod4 ! d3�i:

Typically, this gives exactly the same diamond. However,
note that, when one of d’s ancestors does not have valence 4
(for example, the cube corners in the planetary base mesh),
then the two methods of computing d4...7 will yield different

answers. Ideally, the filtering operations should be adjusted
to handle these cases, but, for simplicity, we just blend
between the two possible diamond rasters so as to create a
seamless function in these neighborhoods. This situation

unfortunately arises at all levels ofdetail aroundnon-valence-
four base-mesh vertices.

There are six parent-level tiles that must be gathered to
form an input raster for general coarse-to-fine processing, as
depicted in Fig. 14.

6.1 Out-of-Core Preprocessing Example: Lake
Detection

Lake detection can be performed automatically using
image-processing operations in sequence. For the Washing-
ton-state 10 meter data set, we use a flatness detector to

indicate all potential lake cells, followed by several image
erosion steps (eliminating lake cells where not all of the
eight neighbors are lake cells), and ending with a large
number of image dilation steps (adding back flat-neighbor-

hood cells that are adjacent to the current lake cells). This
processing was performed on the complete data set in well
under an hour, including shading and hierarchy building,
using only a small memory footprint of less than 100 mega-

bytes for this 2.4 gigabyte data set. Results of the detection
and shading process are shown in Fig. 15.

7 GEOMETRY PATCHES AND FRAME-TO-FRAME

UPDATES

When replacing individual leaf triangles with small patches
of, say, 1,024 triangles, a natural concern is that a loss of
adaptivity will result. However, modern graphics hardware
can render thousands of such patches at 50-100 frames per

second, which is similar to the performance for thousands
of single triangles reported for view-dependent HRT
algorithms less than a decade ago.

HWA ET AL.: REAL-TIME OPTIMAL ADAPTATION FOR PLANETARY GEOMETRY AND TEXTURE: 4-8 TILE HIERARCHIES 363

Fig. 13. Same-level processing is performed by collecting vertex-
centered values for the region outlined in pink, processing these
according to the operation desired, then storing the results at the vertex-
centered locations for the output tile d, shown in yellow. Diamond d’s
four neighbors d0...3 (shown in green) as well as four of their neighbors
are used as input with the mappings shown.

Fig. 14. Coarse-to-fine processing is performed by collecting the cell and
vertex-centered values available from the parent-level tiles in the region
outlined in pink, processing these according to the operation desired,
then storing the results at the vertex-centered locations for the output tile
d, shown in yellow. Diamond d’s two parents and four of their neightbors
are used as input with the mappings shown. The two cases are shown
on the left and right.

From [26], we know that, for any uniform refinement of a
right isosceles triangle that is a power of four, such as 256 or
1,024, the patches of an adaptive 4-8 mesh will be without
cracks. For most efficient rendering, these patches are laid
out as vertex and indexed-triangle arrays, where both the
vertices and triangles are listed in Sierpinski order, as
shown in Fig. 16 for the case of 256 triangles per patch. Note
that the 256-triangle patch has 16 triangle edges per patch
edge, thus ensuring crack-free selective refinement.

For geometry, the triangular patches are best taken as only
a small fraction of a CPU-cache tile since the optimal
granularity of these two objects is quite different. After
testinganumberof sizes,we foundagood trade-off tobe a tile
with 129 or 257 vertices (elevation samples) per side. For
triangular patches, either 256 or 1,024 triangles are used.
Fig. 16 shows a 256-triangle patch in relation to a tile with
129� 129 vertices. Note that, for these sizes, the tile diamond
is the third quadtree ancestor of the patches’ diamond.

The low-pass filtering scheme from Section 4 is used for
elevation tiles, but with some vertices being subsampled to
avoid creating cracks during selective refinement. It is
sufficient to subsample the vertices on the four outer edges
of the patch diamonds and allow their interiors to be
smoothed out through low-pass filtering. For example, in
Fig. 16, the four sides of diamond d (in yellow) should be
subsampled.

Frustum culling for triangle patches is identical to the
system used in ROAM, but we simplify the method to use
bounding spheres rather than pie-wedge bounds, thus
reducing by about six the per-plane floating-point in/out
tests. In addition, since the core data structure is now a
diamond rather than a bintree triangle, it is natural to pass
frustum-cull in/out flags down from the quadtree ancestor,
which have a nesting relationship, rather than the parent,
which doesn’t. We can avoid getting overly conservative
culling by indicating a triangular patch is out if either its
diamond is out or the parent diamond on that patches’ side
is out. As with ROAM, entire subtrees of in/out labels will

remain constant from frame to frame if its root diamond
stays either out or all in from the previous to the current
frames and, hence, no subtree work is needed.

Similarly to ROAM, dual-queues are used to prioritize,
respectively, diamond split and merge activity. Unlike the
ROAMbase priority, which is sensitive to surface roughness,
we only use the estimated screen size of the diamond as its
split/merge priority so as to perform geometric antialiasing
given the extremely high triangle counts available.

8 4-8 TEXTURES FOR TRIANGLE PATCHES

Most multiresolution texture algorithms use a prefiltered
quad-tree of textures, where tiles all have the same number
of texels, but where quadtree children cover one fourth the
area of their parent. Selecting adjacent tiles where the texels
per unit area differ by a factor of four can produce visual
discontinuities. Our method creates twice as many detail
levels, allowing a smoother transition between levels (only
factors of two), while effectively using the diamond
hierarchy for level traversal.

The initial data set texture is diced into 1282 or 2562 size
tiles, which represent the texture at the finest level. Low-
pass filtering is performed as described in Section 4. The
filtering approach from level-to-level preserves the average
energy of the original signal to minimize level-of-detail
transition artifacts. Unlike geometry filtering, which must
subsample on the boundaries of patch diamonds, texture
tiles appear more visually seamless without any subsam-
pling (subsampling can alter the average energy near
boundaries, thus producing visual artifacts).

Each displayed triangle patch is evaluated to determine its
optimal texture resolution. Since patches are drawn using a
single rendering call, no more than one texture tile can be
associated with a triangle patch. Hence, the finest resolution
texture that can be accessedwill be at the samediamond level
as a patches’ diamond. For a 1282 texture tile and a 256-
triangle patch, this means a maximum of 32 texels per
triangle. Since graphics hardware will exhibit differences in
relative texel and triangle rendering performance, we
decouple the geometry and texture levels of detail. For high
triangle performance relative to texture performance or
memory availability, fewer than 32 texels per triangle may
be desired. Ideally, if texture performance were not a
bottleneck, we would choose a texel-to-pixel ratio near one

364 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 15. Detail from the lake detection processing results for the 10 meter
Washington state data set, just north of the peak of Mount Rainier. Small
lakes are a challenge to the noise reduction scheme employed so that
two lakes in the upper right were missed (Adelaide and Marjorie) due to
the number of erosion steps. Lakes Oliver, Ethel James, and Crescent
were detected properly. Elysian Fields was detected as a much larger
body of water than it actually is, probably because that area is flat. The
second image outlines the fine-resolution raster tiles on which the
operations were performed, demonstrating that tile-based processing
does not create boundary artifacts.

Fig. 16. The Sierpinski layout of a triangle patch, with the mapping of
the patch to its elevation tile. If d is the diamond of the triangle patch,
then the child-to-parent mappings of Section 4 can be composed to
locate the appropriate elevation values in the third quadtree ancestor,
d ! a0 ! a0 ! a0.

and determine the texture level of detail using this. Using the

child-to-parent parameter mapping from Section 4, one can

iterativelywalk to the diamond parent on the side containing

the triangle patch until the desired texture level is reached.

The texture coordinates for the patch vertices can then be

easily computed using the resulting composite mapping.
Using the bounding sphere radius previously calculated

for frustum culling, we compute an upper bound on the

possible screen area covered by the triangle-patch diamond.

The maximum screen space coverage occurs when looking

at a diamond oriented perpendicular to the view direction.

We use as the upper bound on pixel area 2R2, where R is

the projected radius of the diamond’s bounding sphere.

Using the number of texels in the texture diamond covered

by the triangle patch, the texel-to-pixel ratio � is computed.

Frame-to-frame, the patch-to-texture level-of-detail associa-

tions are adjusted incrementally using a single priority

queue, so as to keep � close to 1:0. Higher priority is given

to coarsening a patches’ texture association as � becomes

greater than one and refining becomes a higher priority as �

becomes less than one. This is summarized by defining the

update priority as

pð�Þ ¼ k��
ffiffiffi
2

p
k if � � 1

k1=��
ffiffiffi
2

p
k if � < 1:

�

No updates should be taken for priorities pð�Þ � 0 since this

is the threshold at which the update would result in �

farther from 1:0 than the current mapping. We keep to a

budget of four to eight patch-to-texture updates per frame

to maintain high frame rates since each update can be

expensive.
If the desired texture is not cached in texture memory,

we use the next coarser texture level that is available. When

finer texture objects are loaded, we keep coarser textures so

that the system can always instantly coarsen as desired. The

texture-object diamonds are optimized frame-to-frame

using a similar dual-queue optimization loop that was

used for triangle patches, using pð�Þ as the split/merge

priority, where � is computed for an entire texture object as

a conservative estimate of the worst-case patch that might

map to it. As with the dual-queue triangle-patch optimiza-

tion, tile access and texture upload operations are sched-

uled for a subsequent load phase and are limited by a per-

frame budget.
In the case of pure height maps (as opposed to full

planetary geometry), it is possible to use automatic texture

coordinate generation (OpenGL’s glTexGen call or texture

coordinate transforms, for example). Our experience with

implementations indicates that explicit texture coordinates

per vertex have higher performance, at some increase in

vertex-memory use. This performance penalty is due to the

expensive state changes thatmust bemade per texture object,

given that textures are broken up into many tiles with

independent coordinate systems. Also, actual hardware and

drivers generally run slower when nonidentity texture

coordinate transforms or glTexGen is used. Finally, the use

of these automatic texture coordinate schemes is not applic-

able to planetary geometry or other nonplaner base meshes.

9 PROCEDURAL TERRAIN REFINEMENT

The basic one-dimensional interpolatory refinement used is

the following: Let fi be values before refinement, where i is

an integer. There will be twice as many refined values gj
defined by copying the old values verbatim and using

weighted averaging to get new midpoints:

g2i ¼ fi
g2iþ1 ¼ � 1

16 fi�1 þ 9
16 fi þ 9

16 fiþ1 � 1
16 fiþ2:

To perform two-dimensional refinement, one can concep-

tually apply the one-dimensional refinement along each

row in a raste, and then along each resulting column. For

4-8 refinement, the midpoints are added every odd level

and the edge points are then added the next even level.

After two steps, this exactly reproduces the output of the

computation that works on one axis at a time. The smooth

basis function that results is shown in Fig. 17.
To speed up the refinement processing in this case, it is

possible to avoid the general gather operation described in

Section 6 by adding ghost values to each tile (raster

elements that are duplicated a little ways into the neighbor

tile and maintain the same values as their duplicate

elements). It turns out to be impossible to maintain

sufficient neighbors if a tile gathers from its two parents,

but only two ghost values must be added beyond the

common tile edge values if the tile information is gathered

from the next-coarser even-level tile, due to the two-stage

subdivision process.
Additional geometric detail is added using a smooth

interpolatory subdivision scheme on tiles, as just described,

combined with random displacements that grow smaller

exponentially as the level-of-detail becomes finer. Random

displacements are only added at even-level tiles, consistent

with the implementation of the interpolatory refinement

with ghost values (note that the ghost values should be

displaced the same as their duplicates in the neighbor tile).

An example of terrain generated completely using these

procedural constructions is shown in Fig. 18. The use of

procedural detail to aid visualization of actual terrain data

(a Mars polar region) is shown in Fig. 19.

HWA ET AL.: REAL-TIME OPTIMAL ADAPTATION FOR PLANETARY GEOMETRY AND TEXTURE: 4-8 TILE HIERARCHIES 365

Fig. 17. This figure depicts the relative effect of one random
displacement in the procedural terrain generation. It is the smooth
interpolatory basis resulting from 4-8 refinement, pseudocolored to
highlight the negative lobes in the displacement field as blue. The quality
of this basis, namely, its symmetry, smoothness, and lack of excessive
oscillations, are fundamental to the overall perceived (and statistically
measured) qualities of a procedural terrain.

10 RESULTS

Our performance results were measured using a 3Ghz Xeon

processorwith 1GB of RAMand aGeForce FX 5900Ultra.We

ran the tests at a resolution of 640� 480, utilizing the Nvidia

vertex array range specification combined with chunked

triangle patches to exploit the graphics-card capabilities.

These results are based on a flight path through the 10-meter

data of Washington state [27] with around 1.4 billion

elevation and texel values at the finest resolution. The source

elevation data totals 2.7 gigabytes on disk before preproces-

sing. Textureswereprocedurally generated and colored from

the original geometry and stored in RGB-565 format.
The out-of-core preprocessing step for this particular

data set took approximately 53 minutes, including the

calculation of the shaded texture map from the geometry.

Without the shading step, preprocessing texture and

geometry data into tiles took 33 minutes.

In the rendering application, approximately 53 percent of

the time for a given frame is spent preparing the vertex

array data. During this time, vertex pointers are set up and

triangle patches that need to be updated either due to

geometry updates or texture coordinate updates are

transferred to AGP memory to be pulled by the GPU.

Around 45 percent is spent managing vertex and texture

366 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

Fig. 18. A screen shot during navigation through a completely
procedural (synthetic) landscape, used to demonstrate the feasibility
of the proposed method for more than just adding detail to actual
elevation databases. A fast, smooth, interpolatory subdivision method
was used, along with random displacements produced so that the terrain
is fully deterministic (the same frustum will produce the same view
regardless of the navigation history). This screenshot (actual size 739�
541 pixels) was taken on a Linux PC with a 2.53GHz Pentium 4 with
RDRAM 1066 memory and an Nvidia GF4 Ti4600 graphics card. This
view displays 1.56 million triangles at 25.6 frames per second, totaling
40 million triangles per second rendering rate. This is slightly under the
maximum possible rate for this particular hardware, view frustum,
screensize, and collection of textured triangles. This reduction is due to
use of small 256-triangle patches to achieve higher adaptivity.

Fig. 19. Procedural detail is added here to a Mars polar region to aid in
the visualization of this data set by adding visual cues to what would
otherwise be an unrealistically smooth surface that would be hard to
discern. The elevations in this case are highly exaggerated, as
requested by the planetary geologists examining this data.

Fig. 20. Screen shots of our test flight showing the overall Washington

state data set, the San Juan islands, a view facing Victoria, and Mount

Rainier with Mount Adams behind.

coordinate cache allocation and traversing the hierarchy to
evaluate when triangle patches or texture coordinate
updates are necessary. The time taken by the split/merge
optimization loops is a user-defined parameter, but, in this
test, less than 2 percent time was spent on this. Less than
1 percent each was spent on fetching geometry and texture
from disk, priority updates, coordinate mapping calcula-
tions, triangle patch building, frustrum culling, and new
texture loading. Our results show that the main bottleneck
lies in the graphics-card upload bandwidth and the loop for
determining appropriate triangle patch updates to geome-
try and texture.

Performance statistics for our implementation are shown
in our previous paper [16], including detailed performance
graphs over a test flight. Snapshots from the flyover are
highlighted in Fig. 20.

11 CONCLUSION

The paper has studied the use of a new diamond data
structure to represent view-dependent adaptations of
4-8 meshes. Tiles are used per diamond for both geometry
and texture and show very high quality antialiasing
through precise low-pass filtering, given that diamond
hierarchies have twice as gradual stepping to lower-
frequency representations as conventional quadtree-like
schemes. Sierpinski out-of-core indexing is introduced and
was shown to facilitate massive-data preprocessing as well
as runtime paging during frame-to-frame view-dependent
optimization. A general framework for batch preprocessing
of raster hierarchies was presented that utilizes coarse-to-
fine, same-level, and fine-to-coarse tile gather operations.
Preprocessing was shown to be fast on massive data sets
using only a small, fixed memory footprint. A simple but
visually pleasing procedural terrain generation method was
described and shown to be very fast to compute during a
real-time fly-though.

Future work based on this terrain system can be
expanded to include dual queues at all levels of cache, for
both geometry and texture. This would replace the reactive,
least-recently-used strategy with a system that supports
prefetching and optimized priority modeling. Anisotropic
filtering could help with highly warped terrain data, such
as near cliffs, and with the horizon aliasing for near-planar
regions. Further experimentation with different types of
texture maps, such as normal maps for lighting calculations,
may enhance the visual quality of a scene and allow
dynamic lighting. As memory bandwidth increases, it may
also be possible to play animated textures of certain areas in
a scene to demonstrate time-varying properties like plant
life or erosion. The development of real-time, high quality
procedural detail is also of interest, beyond the simple
random displacement scheme used here.

ACKNOWLEDGMENTS

This work was performed under the auspices of the US
Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48. This work was supported by the US
National Science Foundation under contracts ACR 9982251

and ACR 0222909, through the National Partnership for
Advanced Computing Infrastructure (NPACI), and by
Lawrence Livermore National Laboratory (LLNL) under
contract B523818. The authors thank the members of the
Visualization and Graphics Group of the Institute for Data
Analysis and Visualization (IDAV) at the University of
California, Davis, and the visualization researchers within
the Center for Applied Scientific Computing at LLNL. They
especially thank the anonymous reviewers, whose thought-
ful suggestions for improvements to the paper have been of
great value.

REFERENCES

[1] Nat’l Aeronautical and Space Administration, “MOLA Data Set,”
http://pds-geosciences.wustl.edu/missions/mgs/megdr.html,
2003.

[2] L. Balmelli, J. Kovacevic, and M. Vetterli, “Quadtrees for
Embedded Surface Visualization: Constraints and Efficient Data
Structures,” Proc. IEEE Int’l Conf. Image Processing (ICIP), pp. 487-
491, Oct. 1999.

[3] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R.
Scopigno, “BDAM: Batched Dynamic Adaptive Meshes for High
Performance Terrain Visualization,” Proc. Eurographics 2003,
pp. 505-514, Sept. 2003.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R.
Scopigno, “Interactive Out-of-Core Visualization of Very Large
Landscapes on Commodity Graphics Platforms,” Proc. Int’l
Computer Vision Symp. (ICVS 2003), pp. 21-29, Nov. 2003.

[5] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R.
Scopigno, “Planet-Sized Batched Dynamic Adaptive Meshes
(P-BDAM),” Proc. IEEE Visualization, pp. 147-155, Oct. 2003.

[6] C. DeCoro and R. Pajarola, “XFastMesh: Fast View-Dependent
Meshing from External Memory,” Proc. IEEE Visualization, pp. 363-
370, 2002.

[7] J. Döllner, K. Baumann, and K. Hinrichs, “Texturing Techniques
for Terrain Visualization,” Proc. IEEE Visualization, pp. 227-234,
2000.

[8] M.A. Duchaineau, M. Wolinshy, D.E. Sigeti, M.C. Miller, C.
Aldrich, and M.B. Mineev-Weinstein, “ROAMing Terrain: Real-
Time Optimally Adapting Meshes,” Proc. IEEE Visualization,
pp. 81-88, Oct. 1997.

[9] J. El-Sana and Y.J. Chiang, “External Memory View-Dependent
Simplification,” Computer Graphics Forum, vol. 19, no. 3, pp. 139-
150, Aug. 2000.

[10] W. Evans, D. Kirkpatrick, and G. Townsend, “Right Triangular
Irregular Networks,” Technical Report TR97-09, Dept. of Compu-
ter Science, Univ. of Arizona, May 1997.

[11] W. Evans, D. Kirkpatrick, and G. Townsend, “Right-Triangulated
Irregular Networks,” Algorithmica, vol. 30, 2001.

[12] L. De Floriani and E. Puppo, “Hierarchical Triangulation for
Multiresolution Surface Description,”ACMTrans. Graphics, vol. 14,
no. 4, pp. 363-411, 1995.

[13] R.J. Fowler and J.J. Little, “Automatic Extraction of Irregular
Network Digital Terrain Models,” Computer Graphics (SIGGRAPH
’79 Proc.), vol. 13, no. 3, pp. 199-207, Aug. 1979.

[14] T. Gerstner, “Multiresolution Compression and Visualization of
Global Topographic Data,” GeoInformatica, vol. 7, no. 1, pp. 7-32,
2003.

[15] H. Hoppe, “Smooth View-Dependent Level-of-Detail Control and
Its Application to Terrain Rendering,” Proc. IEEE Visualization,
pp. 35-42, Oct. 1998.

[16] L.M. Hwa, M.A. Duchaineau, and K.I. Joy, “Adaptive 4-8 Texture
Hierarchies,” Proc. IEEE Visualization, pp. 219-226, Oct. 2004.

[17] D.E. Knuth, The Art of Computer Programming, Sorting and
Searching, second ed., 1975.

[18] J. Levenberg, “Fast View-Dependent Level-of-Detail Rendering
Using Cached Geometry,” Proc. IEEE Visualization, pp. 259-266,
Oct. 2002.

[19] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hughes, N. Faust, and
G. Turner, “Real-Time, Continuous Level of Detail Rendering of
Height Fields,” SIGGRAPH 96 Conf. Proc., pp. 109-118, Aug. 1996.

[20] P. Lindstrom and V. Pascucci, “Visualization of Large Terrains
Made Easy,” Proc. IEEE Visualization, pp. 363-370, 2001.

HWA ET AL.: REAL-TIME OPTIMAL ADAPTATION FOR PLANETARY GEOMETRY AND TEXTURE: 4-8 TILE HIERARCHIES 367

[21] P. Lindstrom and V. Pascucci, “Terrain Simplification Simplified:
A General Framework for View-Dependent Out-of-Core Visuali-
zation,” IEEE Trans. Visualization and Computer Graphics, vol. 8,
no. 3, pp. 239-254, July-Sept. 2002.

[22] F. Losasso and H. Hoppe, “Geometry Clipmaps: Terrain Render-
ing Using Nested Regular Grids,” SIGGRAPH 2004 Conf. Proc.,
pp. 769-786, Aug. 2004.

[23] A. Mirante and N. Weingarten, “The Radial Sweep Algorithm for
Constructing Triangulated Irregular Networks,” IEEE Computer
Graphics and Applications, vol. 2, no. 3, pp. 11-13, 15-21, May 1982.

[24] T. Möller and E. Haines, Real-Time Rendering, second ed.
A.K. Peters Limited, 1999.

[25] R. Pajarola, “Large Scale Terrain Visualization Using the
Restricted Quadtree Triangulation,” Proc. IEEE Visualization ’98,
pp. 19-26, 515, 1998.

[26] A. Pomeranz, “ROAM Using Surface Triangle Clusters
(RUSTiC),” MS thesis, Dept. of Computer Science, Univ. of
California, Davis, June 2000.

[27] US Geological Service, “State of Washington Data Set,” http://
rocky.ess.washington.edu/data/raster/tenmeter/onebytwo10/
index.html, Dec. 2001.

[28] C.T. Silva, J.S.B. Mitchell, and A.E. Kaufman, “Automatic
Generation of Triangular Irregular Networks Using Greedy Cuts,”
Proc. IEEE Visualization, pp. 201-208, 1995.

[29] C.C. Tanner, C.J. Migdal, and M.T. Jones, “The Clipmap: A Virtual
Mipmap,” SIGGRAPH ’98 Conf. Proc., pp. 151-158, July 1998.

[30] T. Ulrich, “Rendering Massive Terrains Using Chunked Level of
Detail Control,” SIGGRAPH Course Notes, 2002.

[31] L. Velho, “Using Semi-Regular 4-8 Meshes for Subdivision
Surfaces,” J. Graphics Tools, vol. 5, no. 3, pp. 35-47, 2000.

[32] L. Williams, “Pyramidal Parametrics,” SIGGRAPH ’83 Proc.,
vol. 17, no. 3, pp. 1-11, July 1983.

Lok M. Hwa recently received the MS degree
from the Department of Computer Science at the
University of California, Davis, within the Insti-
tute for Data Analysis and Visualization (IDAV).
His interests include real-time display of large
texture and geometry databases, film-making,
visual effects, and realistic rendering. He is
pursuing a career in the film industry.

Mark A. Duchaineau received the PhD degree
in computer science from the University of
California, Davis, in 1996 and joined Lawrence
Livermore National Laboratory (LLNL) the same
year. He is the project leader for scientific
visualization within the Center for Applied
Scientific Computing (CASC). He is the author
of numerous research papers in the areas of
scientific visualization and multiresolution meth-
ods, among which are included wavelet analysis

of large semistructured grids, real-time optimization of grids for display
on graphics hardware, large-scale compression for visualization, and
hierarchical splines with output sensitive approximation. He is active in
reviewing papers for several journals and conferences, including IEEE
Visualization (program committee), ACM SIGGraph, and IEEE Transac-
tions on Visualization and Computer Graphics, and is a member of the
IEEE, ACM, and SIAM.

Kenneth I. Joy is a professor of computer
science at the University of California at Davis,
where he is codirector of the Institute for Data
Analysis and Visualization (IDAV). He joined UC
Davis in 1980 in the Department of Mathematics
and was a founding member of the Computer
Science Department in 1983. He is a faculty
computer scientist at the Lawrence Berkeley
National Laboratory and a participating guest
researcher at the Lawrence Livermore National

Laboratory. His primary research interests are in the areas of
visualization, multiresolution representation of data, geometric model-
ing, and computer graphics. He serves on the editorial board of the IEEE
Transactions on Visualization and Computer Graphics and served as a
papers cochair and proceedings coeditor for the IEEE Visualization
conferences in 2001 and 2002. He is a member of the IEEE and the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

368 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005

