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Abstract 

Network arrivals are often modeled as Poisson processes for aria­
lytic simplicity, even though a number of traffic studies have shown 
that packet interarrivals are not exponentially distributed. We eval­
uate 21 wide-area traces, investigating a number of wide-area TCP 
arrival processes (session and connection arrivals, FTPDATA con­
nection arrivals within FTP sessions, and TELNET packet arrivals) 
to detennine the error introduced by modeling them using Poisson 
processes. We find that user-initiated TCP session arrivals, such 
as remote-login and file-transfer, are well-modeled as Poisson pro­
cesses with fixed hourly rates, but that other connection arrivals 
deviate considerably from Poisson; that modeling TELNET packet 
interarrivals as exponential grievously underestimates the bursti­
ness ofTELNET traffic, but using the empirical Tcplib[DJCME92] 
interarrivals preserves burstiness over many time scales; and that 
FTPDATA connection arrivals within FfP sessions come bunched 
into "connection bursts", the largest of which are so large that they 
completely dominate FfPDATA traffic. Finally, we offer some pre­
liminary results regarding how our findings relate to the possible 
self-similarity of wide-area traffic. 

1 Introduction 
When modeling network traffic, packet and connection arrivals are 
often assumed to be Poisson processes because such processes have 
attractive theoretical properties [FM94]. A number of studies have 
shown, however, that for both local-area and wide-area netwo.rk 
traffic, the distribution of packet interarrivals clearly differs from 
exponenti~ [JR86, G90, FL91, DJCME92]. Recent work argues 
convincingly that LAN traffic is much better modeled using statisti­
cally self-similar processes [L TWW94 ], which have much different 
theoretical properties than Poisson processes. For self-similar traf­
fic, there is no natural length for a "burst"; traffic bursts appear on a 
wide range of time scales. In this paper we show that for wide-area 
traffic, Poisson processes are valid only for modeling the arrival 

•This work was supp<irted by the Director, Office of Energy Research, 
Scientific Colliputing Staff, of the U.S. Department of Energy under Contract 
No. DE-AC03-76SF00098. 

of user sessions (TELNET connections, FrP control connections); 
that they fail as accurate models for other WAN arrival processes; 
and that WAN packet arrival processes appear better modeled using 
self-similar processes. 

For our study we analyze 21 traces of wide-area TCP traffic. We 
consider both previous and new models of aspects ofFTP and TEL­
NET traffic, discuss the implications of these models for burstiness 
at different time scales, and compare the results ofthe models with 
the trace data. We show that in some cases commonly-used Poisson 
models result in serious underestimations of the burstiness ofTCP 
traffic over a wide range of time scales. (We restrict our study to 
time scales of 0.1 seconds and larger.) 

We first show that for interactive TELNET traffic, connection 
arrivals are well-modeled as Poisson with fixed hourly rates. How­
ever, the exponentially-distributed interarrivals commonly used to 
model packet arrivals generated by the user side of a TELNET con­
nection grievously underestimate the burstiness of those connec­
tions, and high degrees of multiplexing do not help. Using the em­
pirical Tcplib [DJ91, DJCME92] distribution for TELNET packet 
interarrivals instead results in packet arrival processes significantly 
burstier than Poisson arrivals, and in close agreement with traces 
of actual traffic. From these findings we then construct a model of 
TELNEf traffic parameterized by only the hourly connection ar­
rival rate and show that it accurately reflects the burstiness found in 
actual TELNEf traffic. The success with this model of using Tcplib 
packet interarrivals confirms the finding in [DJCME92] that the ar­
rival pattern of user-generated TELNET packets has an invariant 
distribution, independent of network details. 

For small machine-generated bulk transfers such as SMTP 
(email) and NNTP (network news), connection arrivals are not well­
modeled as Poisson, which is not surprising since both types of con­
nections are machine-initiated and can be timer-driven. Previous 
research has discussed how the periodicity of machine-generated 
IP traffic such as routing updates can result in network-wide traf­
fic synchronization [FJ93], a phenomenon impossible with Poisson 
models. 

For large bulk transfer, exemplified by FfP, the traffic struc­
ture is quite different than suggested by Poisson models. As with 
TELNEf connections, user-generated FTP session arrivals are well­
modeled as Poisson with fixed hourly rates. However, we find that 
FTPDATA connections within a single FfP session are clustered 
into bursts. Neither FTPDATA connection nor FfPDATA burst ar­
rivals are well-modeled as Poisson processes. Furthermore, one of 
our key findings is that the distribution of the number of bytes in 
each burst has a very heavy upper tail; a small fraction of the largest 
bursts carries almost all of the FTPDATA bytes. This implies that 
faithful llJ.Odeling of FrP traffic should concentrate heavily on the 
characteristics of the largest bursts. 



Poisson arrival processes are quite limited in their burstiness, es­
pecially when multiplexed to a high degree. Our findings, however, 
show that wide-area traffic is much burstier than Poisson models 
predict, over many time scales. This greater burstiness has im­
plications for many aspects of congestion control and traffic per­
formance. We conclude the paper with a discussion of how our 
burstiness results might mesh with self-similar models of network 
traffic, and then with a look at the general implications of our results. 

2 Traces used 

Dataset Date Duration What 

Bellcore (BC) 100ct89 13 days 17K TCP conn. 
U.C.B. (UC~) 310ct89 24 hours 38K TCP conn. 
U.S.C. (USC) 22Jan91 26 hours 13K TCP conn. 
coNCert (NC) 04Dec91 24 hours 63K TCP conn. 
UK-US (UK) 21Aug91 17 hours 26K TCP conn. 
DEC1-3 See refs. 24hours x3 195K TCP conn. 
LBL 1-8 See refs. 30days x8 3.7M TCP conn. 
LBLPKT-1 17Dec93 2 hours 1.7M TCP pkts. 
LBLPKT-2 19Jan94 2 hours 2.4M TCP pkts. 
LBLPKT-3 20Jan94 2 hours 1.8M TCP pkts. 
LBLPKT-4 21Jan94 1 hour 1.3M pkts. 
LBLPKT-5 28Jan94 1 hour 1.3M pkts. 

Table 1:. Summary of Wide-Area Traces 

Table 1 summarizes the traces of wide-area traffic used in our 
study. The first set of rows represent traces previously analyzed: the 
BC, UCB, and USC traces in [DJCME92]1

, the NC, UK, and.DEC 
traces in [P93], and the LBL traces in [P93, P94]. The "DEC 1-3" 
rows represents three wide-area TCP SYNIFIN traces, each span­
ning 1 day, and the "LBL 1-8" row represents 8 wide-area TCP 
SYNIFIN traces, each spanning 30 days. The final five rows reflect 
new traces we gathered for our study. Each of these traces began at 
2PM; the first three captured all TCP packets, and lasted two hours. 
The final two traces captured all packets and lasted one hour. In 
the first set of traces, the fraction of dropped packets, where known, 
was always~ 5 · 10-6

• For the second set, it was always~ 0.001. 

3 TCP connection interarrivals 
This section examines the connection start times for several TCP 
protocols. The pattern of connection arrivals is dominated by a 
24-hour pattern, as has been widely observed before. We show 
that for TELNET connection arrivals and for FTP session arrivals, 
within one-hour intervals the arrival process can be well-modeled 
by a homogeneous Poisson process; each of these arrivals reflects 
an individual user starting a new session. Over one hour intervals, 
no other protocol's connection arrivals are well-modeled by a Pois­
son process. Even if we restrict ourselves to ten-minute intervals, 
only FTP session and TELNET connection arrivals are statistically 
consistent with Poisson arrivals, though the arrival of SMTP con­
nections and of FTPDATA "bursts" (discussed later in§ 6) during 
ten-minute intervals are not terribly far from what a Poisson pro­
cess would generate. The arrivals of NNTP, FTPDATA, and WWW 
connections, on the other hand, are decidedly not Poisson processes. 

1These traces captured all WAN packets, but our an:ilysis in this paper 
uses only the TCP SYNIFIN connection start/stop packets. 
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Figure 1: Mean, relative, hourly connection arrival rate for 

LBL-1 through LBL-4 datasets. 

Figure I shows the mean hourly connection arrival rate for 
datasets LBL-1 through LBL-4. For the different protocols, we 
plot for each hour the fraction of an entire day's connections of that 
protocol occurring during that hour.2 For example, TELNEf con­
nections occur primarily during normal office hours, with a lunch­
related dip at noontime; this pattern has been widely observed be­
fore. FTP file transfers have a similar hourly profile, but they show 
substantial renewal in the evening hours, when presumably users 
take advantage of lower networking delays. The NNTP traffic 
maintains a fairly constant rate throughout the day, only dipping 
somewhat in the early morning hours (but the mean size of each 
connection varies overthecourseoftheday; see [P93]). The SMTP 
traffic is interesting because it shows a morning bias for the LBL site 
(west-coast U.S.) and an afternoon bias for the Bellcore site (east­
coast U.S.); perhaps the shift is due to cross-country mail arriving 
relatively earlier in the Pacific time zone and later in the Atlantic 
time zone. 

Figure l shows enough daily variation that we cannot reason­
ably hope to model connection arrivals using simple homogeneous 
Poisson processes, which require constant rates. The next sim­
plest model is to postulate that during fixed-length intervals (say, 
one hour long) the arrival rate is constant and the arrivals within 
·each interval might be well modeled by a homogeneous (fixed-rate) 
Poisson process. Telephone traffic, for example, is fairly well mod­
eled during one-hour intervals using homogeneous Poisson arrival 
processes [FL91]. 

To evaluate these Poisson models, we developed a simple statis­
tical methodology (Appendix A) for testing whether arrivals during 
a given one-hour or ten-minute interval are Poisson with a fixed 
rate. We test two aspects of each protocol's interarrivals: whether 
they are consistent with exponentially distributed interarrivals, and 
whether they are consistent with independent interarrivals. If the 
arrivals during the interval are truly Poisson, then we would expect 
95% of the tested intervals to pass each test. Note that we would also 
expect testing ten-minute intervals to perhaps be more successful 
than testing one-hour intervals, because using ten-minute intervals 
allows the arrival rate to change six times each hour rather than 
remaining constant throughout the hour. 

We applied our methodology to all of the TCP connection traces 

21n Figure 1, FfP refers to FfP sessions. 
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shown in the first half of Table 1. For each trace, we separately 
tested the trace's TELNET, FTP, FTPDATA, SMTP, NNTP, and 
WWW (World· Wide Web) connections3. Here FTP refers to an 
FTP session (i.e., an FTP control connection), while FTPDATA 
refers to the data-transfer connections spawned by these control 
connections4

• We also tested arrivals of FTPDATA bursts (see§ 6 
below). 
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Figure 2: Results of testing for Poisson arrivals. 

Figure 2 shows the results of our tests, for both one-hour intervals 
(top plot) and ten-minute intervals (bottom plot). Along the z-axis 
we plot the percentage of tested intervals that passed the statistical 
test for exponentially distributed interarrivals, and along the y-axis 
the percentage that passed the test for independent interarrivals. The 
dashed lines correspond to a 95% pass-rate, which we would expect 
on average if the arrivals were truly Poisson. In general, we expect 
Poisson arrivals to cluster near the upper right corner of the plots. · 

Each letter in a plot corresponds to a single trace's connection 
arrivals for the given TCP protocol. Letters drawn in bold indicate 
that the trace's arrivals are statistically indistinguishable from Pois-

30nlytwo traces had significant WWW traffic. 
4We first removed the periodic "weather-map" FrP traffic discussed 

in [P94]. 
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son arrivals (see Appendix A for details). A+ or- after a letter 
indicates that consecutive interarrival times are consistently either 
positively or negatively correlated, even if the correlation itself is 
not particularly strong (again, see Appendix A). 

We see immediately that TELNET connection arrivals and FTP 
session arrivals are very well modeled as Poisson, both for !-hour 
and 10-minute fixed rates. No other protocol's arrivals are well 
modeled as Poisson with fixed hourly rates. If we require fixed rates 

· only over 10-minute intervals, then SMTP and FTPDATA burst ar­
rivals are not terribly far from Poisson, though neither is statistically 
consistent with Poisson arrivals, and consecutive SMTP interarrival 
times show consistent positive correlation. NNTP, FTPDATA, arid 
WWW arrivals, on the other hand, are clearly not Poisson. 

That NNTP and to a lesser extent SMTP arrivals are not Poisson 
is not too surprising. Because of the flooding mechanism used 
to propagate network news, NNTP connections can immediately 
spawn secondary connections as new network news is received from 
one remote peer and in turn offered to another. NNTP and SMTP 
connections are also often timer-driven. Finally, SMTP connections 
are perturbed by mailing list explosions in which one connection 
immediately follows another, and possibly by timer effects due to 
using the Domain Name Service to locate MX records [S94]. 

That FI'PDATA connection arrivals are clearly not Poisson can 
be readily attributed to the fact that "multiple-get" file transfers often 
result in a rapid succession of FI'PDATA connections, one imme­
diately following another [P93]. Coalescing multiple FI'PDATA 
connections into single burst(§ 6) arrivals improves the 10-minute 
Poisson fit somewhat, but still falls short of statistical consistency. 

The finding that TELNET connection arrivals are well-modeled 
as a Poisson process with fixed hourly rates is at odds with that of 
[MM85], who found that user interarrival times looked "roughly 
log-normal". We believe the discrepancy is due to characterizing 
the distribution of all of the interarrivals lumped together, rather 
than postulating separate hourly rates. 

Given that TELNET connection arrivals appear Poisson over 
one-hour intervals, one might imagine that ·other human-initiated 
traffic such as RLOGIN and Xll will also fit this model. We find 
that RLOGIN does and Xll does not We conjecture that the differ­
ence is that during a single Xll session (corresponding to running 
an instance of xterm, say) a user initiates multiple Xll connections, 
while TELNET and RLOGIN sessions are comprised of a single 
TCP connection. Thus, TELNET connection arrivals correspond to 
users deciding to begin using the network; Xll connection arrivals 
correspond to users deciding to do something new during their use 
of the network. The former behavior is likely to be close to uncor­
related, memoryless arrivals, since each arrival generally involves a 
new user. The latter is much more akin to the creation of FI'PDATA 
connections during a single FTP session, since a single user is in­
volved in generating new arrivals. Because Xll connections are 
created in this way, their arrivals do not have the memoryless prop­
erty and hence are not Poisson. If we could discern between Xll 
session arrivals and Xll connection arrivals, then we conjecture we 
would find the session arrivals to be Poisson. 

4 TELNET packet interarrivals 

The previous section showed that start times for TELNET connec­
tions are well-modeled by Poisson processes. In this section we 
look at the packet arrival process within a TELNET connection. 
We restrict our study to packets generated by the TELNET con-



nection originator; this in general is a user typing at a keyboard. 
Because these packets are initiated by a human, we might hope that 
the arrival process is to some degree "invariant"; that is, the process 
may be independent of network dynamics and instead mainly re­
flect the delays and bursts of activity associated with people typing 
commands to a computer. Indeed, our empirical results of the inter­
arrival times between packets in a single TELNEf connection. are 
consistent with the empirical Tcplib distribution found by previous 
researchers. Unlike the exponential distribution, the empirical dis­
tribution of TELNET packet interarrival times is heavy-tailed; we 
show that using the expOnential distribution results in seriously un­
derestimating the burstiness both ofTELNEf traffic within a single 
connection and of multiplexed TELNEf traffic. Modeling TEL­
NET packet arrivals by a Poisson process, as is generally done, can 
result in simulations and analyses that significantly underestimate 
performance measures such as average packet delay. 

Figure 3: Empirfcal distributions of packet-interarrivals 
within 1ELNET connections. 

Figure 3 shows two empirical distributions of the interarrival 
times of packets within TELNEf connections. The solid line shows 
the distribution used by Tcplib [DJ91, DJCME92]; the dashed line 
shows the same for the PKT-1 trace. Above 0.1 seconds, the agree­
ment is quite good, especially in the upper taiL That different sites 
produce the same distribution argues heavily that the distribution is 
independent of network dynamics and instead reflects human typing 
dynamics. Below 0.1 seconds the interarrival times probably are 
dominated by network dynamics; but, as stated earlier, in this paper 
we are not concerned with time scales below 0.1 seconds. 

Even ignoring the lower tail, the interarrival distribution is not 
even close to exponential in shape (note that the z-axis is loga­
rithmically scaled). To dramatize this fact, we have also plotted 
two logarithmically-scaled exponential distributions. The lefthand 
one ("fit #1") has the same geometric mean as the PKT·l distri­
bution, and the righthand one has the same arithmetic mean. The 
exponential fits are very poor. On the other hand, the main body 
of the distribution fits very well to a Pareto distribution (doubly­
exponential; see Appendix B) with shape parameter /3 ~ 0.9, and 
the upper 3% tail to a Pareto distribution with /3 ~ 0.95. Inter-

. estingly, ·a Pareto distribution with /3 < 1 has infinite mean and 
variance; a very different beast than an exponential distribution. 

It is not surprising that interactive packet arrivals do not fit a 
Poisson model, since earlier work looking at many different compo­
nents of interactive traffic failed to find any statistically significant 
exponential fits to the observed distributions [FJ70]. This leaves 
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the question: What are the consequences of using Poisson packet 
arrivals rather than the Tcplib distribution for TELNET traffic? 

1:~~~:-~-~ ·--- . _·:::= - ---·- ::: ~-~------I 
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rome (m Seconds) 
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Figure 4: Comparisons between Tcplib and exponential in­
terpacket times. 

Figure 4 shows two views of packet arrivals from two simulated 
TELNEf connections, each lasting 2,000 seconds. The first graph 
shows the first 200 seconds, and the second graph the entire 2,000 
seconds. Row 1 for each graph shows a connection using inde­
pendent, identically-distributed (i.i.d.) interpacket times from the 
Tcplib distribution, and row 2 shows a connection using i.i.d. in­
terpacket times from an expOnential distribution with a mean of 1.1 
seconds (to give roughly the same number of packets as the Tcplib 
distribution). We have plotted a dot for each packet arrival, with 
the z-axis giving the time of the arrivaL In all, there were 1,926 
Tcplib interarrivals and 2,204 exponential interarrivals. Over both 
time scales, the packets from the connection with Tcplib interpacket 
times are dramatically more clustered. Simulation also shows that 
the greater burstiness ofTcplib connections persists even with 100 
multiplexed TELNEf connections EPF94]. 

One of the natural performance measures for TELNEf traffic is 
average packet delay. It would not be hard to construct simulations, 
one using Tcplib and the other using exponential interarrivals, where 
making the mistake of using exponential interarrivals instead of 
Tcplib significantly underestimates the average queueing delay for 
TELNET packets. 

The above shows that the Tcplib packet interarrival distribution 
behaves quite differently than a Poisson process, even in the pres­
ence of multiplexing. We now show that for measured network 
traffic, these differences extend far beyond the time scale of indi­
vidual packets. To look at the difference in burstiness at different 
time scales, we first extracted alt'TELNEf originator packets5 from 
the two-hour PKT-2 trace. These packets belonged to 277 sepa­
rate TCP connections. Of these connections, 4 were anomalously 
large and rapid (more than 210 bytes transferred by the Originator at 
sustained data rates exceeding 8 bytes/sec). These are unlikely to 
correspond to human typing, were clear outliers, and are probably 
better modeled as bulk transfer connections. Removing the outliers 
left us with 273 connections. 

We then synthesized several two-hour packet traces as follows. 
For each of the TELNEf connections, we synthesiZed a connection 
with the same starting time within the two-hour period and the same 
size (in packets). One of the synthesized traces used the Tcplib em­
pirical distribution for the packet interarrivals within each connec­
tion (''TCPLIB"); one used exponential interarrivals with mean L 1 
("EXP"); and one uniformly distributed each connection's packet 
arrivals over the interval between when the connection began and 

SExcept for "pure ack" packets, containing no user data. 
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when during the PKT-2 trace the connection terminated ("VAR­
EXP"). This last method corresponds to exponential interarrivals 
with the mean adjusted to reflect the connection's actual observed 
packet rate. Thus, for the TCPLIB and EXP schemes, wegener­
ated connections with the same starting times and sizes (in packets) 
as their counterparts in the PKT-2 trace, but perhaps with different 
durations, while with the VAR-EXP scheme, the generated connec­
tions shared starting time, size, and duration. 

A valuable tool for assessing burstiness over different time-scales 
is the "variance-time plot" [LTWW94, GW94], which we describe 
here by example rather than rigorously. Suppose we have a count 
process consisting of 72,000 observations, corresponding to a two­
hour trace viewed every 0.1 seconds. Each observation gives the 
number of packet arrivals during that 0.1 second interval. If we 
are interested in the process's burst-structure on a time scale of 10 
seconds, we could construct a "smoothed" version of the process 
by averaging the first 100 observations to obtain the process's mean 
value during the first 10 seconds, the next 100 observations for 
the next 10 seconds, and so on. In general we can do this sort 
of smoothing for any aggregation level M, where in the previous 
example M = 100. 

To construct a variance-time plot, we smooth the process for 
different values of M and then plot the variance of the smoothed 
process on the y-axis vs. the aggregation level (M) on the z-axis, 
using logarithmic scales. 

. Variance-time plots are useful for gauging burstiness over many 
different time scales; straight lines on variance-time plots with 
slopes more shallow than -1 are also suggestive of self-similarity 
(see § 7 for further discussion). 

0 2 

c Tracedata 
o VAR-EXP scheme 
" EXPscheme 
+ TCPUB scheme 

3 
log10 M (Aggregation Size) 

4 

Figure 5: Valiance-Time Plot for TELNET packet arrival 
process. The line from the upper left corner has slope -1. 

Figure 5 shows such a plot for the PKT-2 TELNET trace and for 
the three schemes discussed above. Here the unaggregated process 
(M = 1) corresponds to 72,000 observations of the number of 
TELNET originator packets arriving during 0.1-second intervals. 
The y-axis is the variance of the aggregated process normalized by 
dividing by the square of the average number of packets per 0.1-
second. This normalization allows us to compare the variance of 
processes with different numbers of arrivals.6 

From the plot it is immediately clear that the variance of the 
TCPLIB scheme agrees closely with the PKT-2 trace data, while 

6The traces consisted of between 82,500 and 86,000 packets. 
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Figure 6: Comparisons of actual and exponential TELNET 
packet interarrival times. 

both EXPand VAR-EXP exhibit far less variance, indicating they 
are much less bursty over a large range of time scales. 

Figure 6 shows this explicitly. Here we plot the arrival process 
corresponding to 5-second intervals (M = 50) for the PKT-2 trace 
and for the EXP trace. The z-axis shows the time in seconds, and 
the y-axis shows the total number of TELNET packets in each 5-
second interval. The average number of packets in the tWO traees 
are similar; the PKT-2 trace has an average of 59 packets in each 5-
second interval, and the fixed-rate exponential trace has an average 
of 57 packets in each 5-second interval. The variances, however, are 
quite different. With 5-second bins, the PKT-2 trace has a variance 
of 672, while the exponential trace has a variance of 260. 

Clearly, this difference in the packet-generation rate over 5-
second intervals could have consequences for queueing delays in 
simulations using these two different traces. As the variance-time 
plot shows, the PKT-2 trace is more bursty over many time in­
tervals, not only over the five-second intervals shown here. The 
conclusions are that using exponential packet interarrival times for 
TELNET connections results in substantial underestimations of the 
burstiness of multiplexed TELNET traffic, but using i.i.d. interar­
rivals drawn from .the Tcplib distribution faithfully reproduces the 
burst structure. 

5 Fully modeling TELNET originator 
traffic 

Section 3 has shown that over 1-hour periods, TELNET connection 
arrivals are well-modeled as Poisson processes, and § 4 has shown 
that within a TELNET connection, packet interarrival times can be 
modeled using the heavy-tailed distribution in Tcplib. The connec-



tion size in bytes has been previously modeled by a log-extreme 
distribution [P93 ]; the distribution of the connection size in packets 
is somewhat different, and seems to be better modeled by a log­
normal distribution (see below). In this section, we put these three 
pieces together to construct a complete model of TELNET orig­
inator traffic that is parameterized only by the connection arrival 
rate. Variance-time p!Qts show that this model corresponds well to 
empirical measurements. 

First, we look at· the difference in the distributions of origina­
tor bytes per connection vs. originator packets. Previous work re­
ports that the number of bytes sent by the originator in a wide-area 
TELNET connection is well-modeled using a log-extreme distri­
bution with location parameter a = log2 100 and scale parameter 
/3 = log2 3.5 [P93]. We experimented with using this distribution 
to produce sizes for an equal number of TELNET connections as 
appeared in the PKT-2 trace. We found that the distribution con­
sistently generates connection sizes (in bytes) much larger than the 
connection sizes (in packets) observed in the trace. We attribute 
this difference to two effects: 

• The [P93) fit was made using month-long traces ofTELNET 
connections, ·allowing for much longer and larger connec­
tions than are present in our two-hour trace; 

• The [P93] fit models connection size in bytes and not in 
packets. One generally assumes that each TELNET origi­
nator packet conveys one byte of user data, corresponding 
to a keystroke. Often, however, a packet carries more than 
one byte, either due to effects of the Nagle algorithm or be­
cause the TELNET cbnnection is operating in '1ine mode" 
[S94]. For example, the PKT-2 TELNET originator traffic 
comprised about 85,000 packets carrying 139,000 user data 
bytes. 

Given these difficulties, we attempted to fit the observed TELNET 
connection sizes (in packets) with another simple analytic distri­
bution. We found that a log2-normal distribution with log2-mean 
f = log2 100 and log2-standard deviation u = 2.24 fit the con­
nection size in packets well visually1, considefably better than a 
log-extreme distribution with parameters fitted to the data. 8 

Putting all of this· together, we have a complete model for TEL­
NET traffic, FULL-TEL, parameterized only by the TELNET con­
nection arrival rate. FULL-TEL uses Poisson connection arrivals, 
log-normal connection sizes (in packets), and Tcplib packet inter­
arrivals. 

We then used FULL-TEL to generate three synthetic traces of 
TELNET originator traffic, using a connection arrival rate J)f 273 
connectionS in 2 hours. Because such traces start off with no traffic 
and build up to a steady-state corresponding to the connection arrival 
rate, we trimmed the traces to just their second hour. We then used 
variance-time plots to 'compare the traces with the second hour of 
the PKT-2 TELNET trace. 

Figure 7 shows the results of the comparison. In general the 
agreement is quite good, though the models have slightly higher 
variancethanthetracedatafor M > 1<f. WeconcludethatFULL­
TEL faithfully captures TELNET originator traffic, except to be a 
bit burstier on time scales above 10 seconds.9 

7 The exact numerical values of x and u should not be taken too seriously, 
as they came from a small sample. 

8We also found that a log-extreme distribution fit the connection.size in 
bytes better than a log-normal distribution. 

9We also tested the model's fit to the PKT-1 and PKT-3 TELNET traces; 
the results were similar. · 
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Figure 7: Variance-time plot comparing PKT-2 trace data 
with the complete TELNET model, FULL-TEL. 

6 FTPDATA connection arrivals 

This section investigates arrival processes for FfP traffic. Model­
ing FfP is particularly important because FfPDATA connections 
currently carry the bulk of the data .bytes in wide area networks 
([CBP93]). Section 3 showed that while FfP session arrivals can 
be modeled as Poisson processes, this is not the case for FfPDATA 
connection arrivals. This section shows that FfPDATA connections 
within a session are clustered in bursts, and that the distribution of 
burst sizes in bytes is quite heavy-tailed; half of the FfP traffic vol­
ume comes from the largest 0.5% of the FfPDATA bursts. These 
large bursts are likely to completely dominate FfP traffic dynamics. 

In this paper, we do not attempt to model FfPDATA packet ar­
rivals within a connection. Unlike TELNET connections, where 
the originator packet arrival process is largely determined by packet 
generation pattern at the source, the packet arrival process for an 
FfPDATA connection is largely determined by network factors 
such as the available bandwidth, congestion, and details of the 
transport-protocol congestion control algorithms. Previous studies 
have found that FfPDATA packet interarrivals are far from expo­
nential [DJCME92]; this is not surprising, since the above network 
factors lead to a process quite different from memoryless arrivals. 

To begin, § 3 showed that FI'PDATA connection arrivals are not 
well-modeled as Poisson. Each FTP session spawns a number of 
FfPDATA connections; one key question is how these connections 
are distributed within the duration of the FfP session. 

We computed the distribution of spacing between FTPDATA 
connections spawned by the same FTP session for six datasets: 
LBL-1, LBL-5, LBL-6, LBL-7, DEC-1, and UCB. Here,"spacing" 
refers to the amount of ~me between the end of one FfPDATA 
connection within a session and the beginning of the next Fig­
ure 8 plots the results. In each case the upper tail of the distribution 
is much heavier than exponential (the x-axis is logarithmic), and 
is better approximated using a log-normal or log-logistic distribu­
tion. Furthermore, all of the distributions show ·inflection points 
at spacings between 2 and 6 seconds. We conjecture that spacings 
shorter than these points reflect sequential FfPDATA cOnnections 
due to multiple transfers (the FfP "mget" command) or a user is­
suing a "list directory command" very shortly followed by a "get". 
Such closely-spaced connections might well be interpreted as corre­
sponding to a single "burst" of file-transfer activity. We somewhat 
arbitrarily chose a spacing of$ 4 seconds (the dashed vertical line) 
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Figure 8: FrPDATA Intra-session Connection Spacing. 

as defining connections belonging to the same burst, and we note 
that such spacings are not inordinately larger than the 1-2 second 
spacings that can occur internal to a single FfPDATA connection 
due to TCP retransmission timeouts. 
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Figure 9: Percentage of all FTPDATA bytes due to largest 
10% FTPDATA bursts. 

With this definition of a burst ofFfPDATA connections, we ana­
lyzed the same datasets to measure the distribution of the number of 
bytes transferred during a single connection burst. The distribution 
proves to be remarkably heavy-tailed Figure 9 shows percentage of 
all FfPDATA bytes (y-axis) due to the largest 10% of the FfPDATA 
bursts (x-axis). The numbers in parentheses in the legend give the 
total number of FfPDATA bursts occurring during each trace. The 
first vertical line marks the upper 0.5% of the FfPDATA bursts, and 
the line to its right, the upper 2%. 

The key point to draw from this figure is that the upper 0.5% tail 
of the FfPDATA bursts holds between 40% and 60% of all of the 
data bytes. Thus, at any given time FfP traffic will most likely be 
completely dominated by a single or smallluuulful of bursts. This 
finding means that for many aspects of network behavior, modeling 
small FfP sessions or bursts is irrelevant; all that matters is the 
behavior of a few huge bursts. The sizes and durations of these 
bursts will vary considerably from one time to another; but they· 
will be present. 10 

100ur finding that the size of an FfP burst has a heavy tail matches a 
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We did simple fitting of the upper tail of the distribution of data 
bytes per FfPDATA burst and found that for all six datasets, the 
upper 5% tail is fit well to a Pareto distribution with 0. 9 ::; f3 ::; 1.1. 
As the Pareto distribution is heavy~tailed (see Appendix B), this 
agrees with our findings in Figure 9. 11 

PKT-1 FTPDATA (7, 19) PKT-2 FTPDATA (10, 89) 

Minute Minute 

PKT-3 FTPDATA (11, 68) PKT-5 FTPDATA (5, 49) 

Minute Minute 

Figure 10: Proportion of FTPDATA traffic due to largest 2% 
(shaded) and 0.5% (black) connection bursts. 

Figure 10 graphically illustrates the dominance of the upper 
FfPDATA-burst taiL The four plots show the FfPDATA traffic rate 
in bytes/minute for the PKT-1, PKT-2, PKT-3, and PKT-5 datasets. 
The shaded areas represent traffic contributed by the largest 2% of 
the bursts, and the black areas the largest 0.5%. The numbers in 
parentheses give the number of bursts and FfPDATA connections 
comprising the 2% burst upper-taiL (For example, the upper 2% 
tail of the PKT-1 bursts was made up of 7 bursts consisting of a 
total of 19 FfPDATA connections.) We see that sometimes bursts 
contain many separate connections and sometimes not Indeed, the 
distribution of the number of Connections per burst is well modeled 
as a Pareto distribution.12

. 

For PKT-1 (364 bursts) and PKT-3 (552 bursts), the upper 2% 
and 0.5% tails hold around 50% and 15% of all the traffic; for 
PKT-2 (483 bursts) and PKT-5 (238 bursts), 85% and 60%. The 
large degree of difference between PKT-1/PKT-3 and PKT-2/PKT-5 
illustrates how volatile the upper-tail behavior is; a trace comprising 
400 bursts (and substantially more FTPDATA connections) might 
well be completely dominated by 2 of the bursts, or it might not, 
since 2 is a very small sample of the upper-tail behavior. Thus we 

survey conducted by lrlam [193) of the sizes of files in 1,000 file systems 
comprising 12 million files and 250GB of data: 1.9% of the files accounted 
for 71% of the bytes, and 0.5% accounted for 54% of the bytes. 

11 In contrast, the upper 0.5% tail of an exponential distribution always 
holds about 3% of the entire mass of the distribution, regardless of the 
distribution's mean. 

12For example, one of the bursts in the LBL-7 dataset was made up of 
979 separate FfPDATA connections. 



are left in the difficult position of knowing that upper-tail behavior 
dominates traffic, but with such small numbers of bursts that we 
cannot reliably use large-number laws to predict what we are likely 
to see during any given trace. 

We would also like to know whether the arrivals of the upper-tail 
bursts can be modeled as a Poisson process, as that would provide a 
first step toward predicting their effect on network traffic. We ana­
lyzed the 199 upper-0.5%-tail LBL-6 bursts, first removing effects 
due to daily variation in traffic rates by looking at interarrivals in 
terms of number of intervening bursts instead of seconds. We found 
that the dataset failed the statistical test (Appendix A) for exponen­
tial interarrivals at all significance levels. Thus, caution must be 
used if approximating large-burst arrivals using a Poisson process; 
further analysis is needed to model the burst-clustering. 

7 . Large-scale correlations and possible 
connections to self-similarity 

We have argued in the previous sections that on any time-scale 
smaller than user-sessioQ. arrivals, modeling wide-area TCP traffic 
using Poisson processes fails to faithfully capture the traffic's dy­
namics. Recent work [L~94] shows that local-area Ethernet 
traffic (and perhaps wide-area TCP traffic) is much better modeled 
as a self-similar process, which displays substantially more bursti­
ness over a wide range of time scales than do Poisson processes .. 

In this section we discuss the degree of "large-scale correlation" 
present in the PKT-1 through PKT-5 traces of TELNET traffic, 
FfPDATA traffic, and general wide-area traffic. We also consider 
the evidence for whether such correlation is well modeled using 
self-similar process~. We begin with a discussion of the concepts 
of "large-scale correlation", "long-range dependence", and "self­
similarity". We next give an overview of two existing methods 
for generating truly self-similar traffic, along with two new meth­
ods of generating "pseud<rself-similar" traffic. We then discuss 
how the traffic models developed in this paper might match these 
methods. We finish with a preliminary assessment of the possible · 
self-similarity of aggregate wide-area traffic. We find the evidence 
inconclusive, though the traffic clearly exhibits large-scale correla­
tions inconsistent with Poisson processes. 

7.1 Definitions 

We use the term "large-scale correlation" as an informal way of 
describing correlations that persist across large time scales. For 
example, the lower right plot in Figure 10 shows a 40-minute long 
burst of highly correlated traffic. 

A related, more precise notion of sustained correlation is that of 
"long-range dependence". A stationary process is long-range de­
pendent if its autocorrelation function r(k) is nonsummable (i.e., 
L~o r(k) = oo) [C84]. Thus, the definition of long-range depen­
dence applies only to infinite time series. 

The simplest models with long-range dependence are self-similar 
processes, which are characterized by hyperbolically-decaying au­
tocorrelation functions. Self-similar and asymptotically self-similar 
processes are particularly attractive models because the long-range 
dependence can be characterized by a single parameter, the Hurst 
parameter (which can be estimated using Whittle's procedure 
[GW94, LTWW94]). 
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In the following sections, we look at ways in which long-range 
dependence in general, and self-similarity in particular, might arise 
in wide-area network traffic. An important point to bear in mind 
is that, even if the finite arrival process derived from a particular 
packet trace does not appear self-similar, if it exhibits large-scale 
correlations suggestive of long-range dependence then that process 
is almost certainly better approximated using a self-similar process 
than using Poisson processes. Thus, we believe that self-similar 
modeling is a promising successor to Poisson modeling. It may not 
be exactly right, but given our current understanding of networking 
phenomena, it appears in any case a good approximation. 

7.2 Methods for generating self-similar traffic 

There are several methods for producing self-similar traffic that 
could account for self-similarity in wide-area TCP traffic. As dis­
cussed in [LTWW94], self-similar traffic can be produced by multi­
plexing ON/OFF sources that have Poisson start times, a fixed rate 
in the ON periods, and ON/OFF period lengths that are heavy-tailed 
(see Appendix B). 

A second method for generating self-similar traffic that could 
fit TCP traffic is an M/G/oo queue model, where customers arrive 
according to a Poisson process and have service times drawn from 
a heavy-tailed distribution with infinite variance [C84, LTWW94]. 
In this model, Xt is the number of customers in the system at timet. 
The count process { Xt} t=O, 1,2, ... is asymptotically self-similar (see 
[PF94] for further discussion). The M/G/oo model implies that 
multiplexing constant-rate connections with Poisson connection ar­
rivals and a heavy-tailed distribution for connection lifetimes would 
result in self-similar traffic. 

We have found two additional methods of generating arrival pr<r 
cesse5 that possibly exhibit self-similarity. We refer to these meth­
ods as generating "pseudo-self-similar" traffic, because we have not 
shown in any solid way that they are truly self-similar processes. 
Both methods are very fast The first is Fourier-transform based 
(see [PF94] for details). Traffic generated using this method passes 
Beran's goodness-of-fit test for fractional Gaussian noise [B92a]. 
The second method is to construct arrivals using i.i.d. Pareto in­
terarrivals with f3 :::: 1, and to consider the corresponding count 
process (the number of arrivals in consecutive intervals). In [PF94] 
we develop some intuition behind why this method might generate 
asymptotically self-similar traffic. 

7.3 Relating the methods to traffic models 

As explained in [LTWW94], straight lines on variance-time plots 
with slopes more shallow than -1, such as that for the PKT-2 TEL­
NET trace in Figure 5, are suggestive of self-similarity. In general, 
the slope of an arrival process's variance-time plot is a function of 
the process's autocorrelation function [C84], and a long-range de­
pendent process will exhibit slowly-decaying variances on such a 
plot13 . 

In addition to looking at variance-time plots of the TELNET 
traffic, we also applied Whittle's procedure [GW94, LTWW94] and 
Beran's goodness-of-fit test [B92a]. All of the results are consis­
tent with self-similarity on scales of tens of seconds or more. One 
way of explaining such findings of self-similarity is to note that 

13That is, the variance-time plot declines in a more shallow fashion than 
with slope- I, though not necessarily in a straight line. An important point !s 
that such slow decline can also occur due to the presence of non-stationarity. 

.; 



our model of TELNET connections presented in§ 5 in some re­
spects matches the MJG/oo model described in the previous section. 
For example, TELNET connection sizes ·in packets have a long­
tailed [WT92] distribution, in that the tail function of a log-normal 
distribution decreases more slowly than any exponential function 
(although the log-normal distribution is not heavy-tailed [PF94]). 
Thus, the M/G/oo model can give some intuition to the suggested 
self-similarity of our TELNET traces and models. 

Another source of possible TELNET self-similarity arises from 
the fact that within individual TELNET connections, packet inter­
arrivals are well modeled as i.i.d. Pareto (§ 4). Thus, individual 
TELNET connections match the i.i.d. Pareto method of generat­
ing pseudo-self-similar traffic. Since the aggregation of multiple 
self-siinilar traffic sources remains self-similar, this would lead to 
aggregate TELNET traffic appearing self-similar. 

Our model of FfP traffic also fits in some respects to the WG/oo 
model of Poisson arrivals with heavy-tailed lifetimes. The distribu­
tion of bytes per FTPDATA burst is heavy-tailed, and FTP sessions 
have Poisson arrivals. Over larger time scales the packet arrival 
process within an FTPDATA burst can be plausibly approximated 
as constant-rate. If we approximated FTPDATA burst arrivals as 
Poisson (a bit of a stretch, as shown in§ 3 above), and assumed that 
each FTPDATA burst received the same average rate, then the ag­
gregate FTP traffic would fit the WG/oo model above, and should 

· be self-similar. 
' It turns out. though, that variance-time plots, Whittle's procedure, 

and goodness-of-fit tests of our FfP traces all suggest that our FfP 
traces are not self-similar, although the heavy-tailed distribution 
of FTPDATA bursts clearly leads to large-scale correlations. The 
following paragraphs discuss several ways that aggregate FfP traf­
fic differs from the WG/oo model of self-similar traffic described 
earlier. While these ·factors could account for our lack of finding 
self-similarity in our FfP traces, they do not imply the absence of 
long-range dependence. 

First. even in the absence of congestion, different FfP connec­
tions can have quite different average rates; the average rate for a 
particular connection depends on such factors as the TCP window 
and the roundtrip time. This could be a major discrepancy between 
our trace data and the WG/oo model. Of particular relevance would 
be the average rates of the biggest FfP bursts. 

A second factor concerns the effect of bandwidth limitations on 
multiplexed FfP traffic. The simplest way to incorporate the limited 
bandwidth on a congested link would be to assume a limited capacity 
in the WG/oo model for generating self-similar traffic, where the 
actual arrival times of individuals would occasionally have to be 
delayed until there was available capacity. This would transform 
the WG/oo queue into an WG!k queue. While this limited capacity 
would have the effect of reducing the fit of the aggregate traffic to a 
self-similar model, it does not eliminate the underlying large-scale 
correlations. 

A third factor concerns the effect of FTP traffic competing with 
other families of traffic on a congested link. The three main classes 
of traffic in our link traces are TCP, Mbone (primarily multicast 
UDP audio traffic) and DECnet. Because the UDP protocol does not 
incorporate congestion-avoidance mechanisms, when FTP traffic is 
competing for bandwidth with UDP sources, only the FfP traffic 
will adjust to fit the available bandwidth. The UDP traffic will 
continue unimpeded. The effect of this interaction on the overall 
structure of FTP traffic remains an open question. 
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7.4 Large-scale correlations in aggregate 
wide-area traffic 
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Figure 11: Variance-time plot for all TCP I all link-level 

packet arrivals. 

We finish with a preliminary look at whether wide-area traffic ag­
gregated over different protocols appears self-similar. Figure 11 
shows variance-time plots for all of the "PKT'' traces listed in Ta­
ble 1. Here, the unaggregated process (M = !)corresponds to 
observing the packets arriving during each 0.01 second interval. 

Recall that the first three traces captured all TCP packets for two 
hours, and the last two captured all wide-area packets appearing on 
the gateway Ethernet for one hour. The first three traces consist 
of between 1.7 and 2.4 million packets, and the last two traces 
each have around 1.3 million packets. The corresponding rates of 
packets/hour are above those of the "low hours" in [L1WW94), so 
we would hope to find that the traces exhibit exact self-similarity. 

We see in Figure 11 that PKT-4 and PKT-5, the full link-level 
traces, both yield straight lines with shallow slope, consistent with 
asymptotic self-similarity for M ~ 10 (0.1 second). For the TCP 
traces, PKT-1 is concave do\vn for small and large M, inconsistent 
with exact self-similarity, PKT-2 appears consistent with asymptotic 
self-similarity forM ~ 1ol (10 seconds), and PKT-3 has a straight 
section between M = 10 and M = Iol, but not before or after, 
also inconsistent with exact self-similarity. 

In contrast, use of Whittle's procedure and goodness-of-fit tests 
suggest that the link-level PKT-4 trace and the TCP PKT-1 and 
PKT-3 traces are consistent with self-similar processes, while the 
link-level PKT-5 trace and the TCP PKT-2 trace are not As Figure 
10 shows, the FTP traffic in the PKT-5 and PKT-2 traces is heavily 
dominated by a few large FTP bursts. Thus, while large-scale cor­
relations are clearly present in these traces, it might be difficult to 
characterize the correlations over the entire trace with a single Hurst 
parameter. Clearly, further work is required to fully understand the 
correlational structure of wide-area traffic. 



We end with a comment regarding the balance between link­
level modeling and protocol-specific modeling. One approach to 
investigating self-similarity is to model aggregate link traffic as 
self-similar, without attempting to model individual connections. 
This approach could have many uses in simulations and in analysis. 
For example, aggregate self-similar traffic could be used instead of 
Poisson traffic to model cross-traffic, or aggregate self-similar traffic 
could be uSed in simulations investigating link-sharing between two 
different classes of traffic. 

However, for many simulations, the simulator needs to model in­
dividual sources. For example, in simulations that investigate the ef­
fects of different transport protocols or different gateway scheduling 
algorithms on network traffic, the simulator requires source models; 
the traffic patterns on the link will depend on the transport protocols 
and scheduling algorithms that are used in the simulations, as well 
as on the pattern of traffic generated by the source. 

8 Implications 

This paper's findings are summarized in the Introduction. In this 
section we conclude with a look at the implications of our results. 

Several researchers have previously discussed the implications 
of long-range dependence (burstiness across different time scales) 
in network traffic. Modeling TCP traffic using Poisson or other 
models that do not accurately reflect the long-range dependence in 
actual traffic will result in simulations and analyses that significantly 
underestimate performance measures such as average packet delay 
or maximum queue size. 

[FL91] examines the burstiness of data traffic over a wide range of 
time scales, and discusses the impact of this burstiness for network 
congestion. Their eonclusions are that congested periods can be 
quite long, with losses that are heavily concentrated; that, in contrast 
to Poisson traffic models,linear increases in buffer size do not result 
in large decreases in packet dfop rates; and that a slight increase in 
the number of active connections can result in a large increase in 
the packet loss rate. They suggest that, because the level of busy 
period traffic is not predictable, it would be difficult to efficiently 
size networks to reduce congestion adequately. They observe that, 
in contrast to Poisson models, in reality "traffic 'spikes' (which 
cause actual losses) ride on longer-tel:m 'ripples', that in tum ride 
on still longer-term 'swells' ". They suggest that a filtered variable 
can be used to detect the low-frequency component of congestion, 
giving some warning before packet losses become significant. 

[LTWW94] discusses some additional implications oflong-range 
dependence of packet traffic. These include an explanation of the 
inadequacy of many commonly-used notions of burstiness, and the 
somewhat counter-intuitive observation that the modeling of ~ndi­
vidual connections can gain insight from an understanding of the 
fundamental characteristics of aggregate traffic. In this paper ob­
servations of the characteristics of aggregate traffic motivated our 
revisitation of models for individual connections; indeed, we origi­
nally set out to challenge the notion that wide-area traffic might be 
self-similar, and have come full circle. 

[GW94] has examined the long-range dependence of variable­
bit-rate (VBR) video traffic. Their empirical measurements ofVBR 
traffic show strong low-frequency components, and they propose 
source models for video traffic that display the same long-range de­
pendence. Given the likelihood that VBR traffic will soon comprise 
a large fraction of Mbone traffic, we soon will have wide-area traffic 
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of which a substantial portion is perforce self-similar, simply due 
to the source characteristics of its individual connections. 

There are some additional respects in which the burstiness and 
long-range dependence ofTCP traffic can affect traffic performance. 
Consider a link with priority scheduling between classes of traffic, 
where the higher-priority class has no enforced bandwidth limita­
tions (other than the link bandwidth itself). In such a partition, 
interactive traffic such as TELNET might be given priority over 
bulk-data traffic such as FfP. If the higher-priority class has long­
range dependence and a high degree of variability over long time 
scales, then the bursts from the higher-priority traffic could starve 
the lower-priority traffic for long periods of time. 

A second impact of the long-range dependence of packet traffic 
concerns classes with admissions control procedures that are based 
on measurements of -recent traffic, rather than on enforced traffic 
parameters of individual connections. As has been show by numer­
ous researchers, such admissions control procedures could lead to a 
much more effective use of the available bandwidth. Nevertheless, 
if the measured class has high burstiness consisting of both a high 
variance and significant long-range dependence, then an admissions 
control procedure that considers only recent traffic could be easily 
mislead following a long period of fairly low traffic rates. 14 

In summary: we should abandon Poisson-based modeling of 
wide-area traffic for all but user session arrivals. For TELNET 
traffic, we offer a faithful model of originator traffic parameterized 
by only the hourly connection arrival rate. Modeling the TELNET 
responder remains to be done. For FfP traffic, we have shown that 
modeling should concentrate heavily on the extreme upper tail of 
the largest bursts. A busy wide-area link might have only one or 
two such bursts an hour, but they tend to strongly dominate that 
hour's FfP traffic. Finally, our look at aggregate TCP and all­
protocol traffic suggests that anyone interested in accurate modeling 
of wide-area traffic should begin by studying self-similarity. 
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A Methodology for testing for Poisson 
arrivals 

To test whether a trace of connection arrivals corresponds to a non­
homogeneous Poisson process, we first pick an interval length I 
over which we hypothesize that the arrival rate does not change. If 
the trace spans a total of T time units, we divide the entire trace 
into N = T /I intervals each of length I. We then separately test 
each interval to see whether the arrivals during the interval are con­
sistent with arrivals from a Poisson process with rate fixed so that 
the expected number of arrivals is the same as the number actually 
observed. Thus, we reduce the problem of testing for nonhomoge­
neous Poisson arrivals to that of testing a number of intervals for 
homogeneous Poisson arrivals. 

Poisson arrivals have two key characteristics: the interarrival 
times are both exponentially distributed and independent. We dis­
cuss testing for each in tum. 

For each interval, we test the interarrivals for an exponential 
distribution using the Anderson-Darling (A2

) test, recommended 
by Stephens in [DS86] because it is generally much more powerful 
than either of the better-known Kolmogorov-Smimov or x2 tests. 
A 2 is also particularly good for detecting deviations in the tails of 
a distribution. A 2 is an empirical distribution test; it looks at the 
entire observed distribution, rather than reducing the distribution 
into bins as is required by x2

• 

We associate a significance level with each A 2 test. For example, 
a test with a significance level of 5% will correctly confirm the null 
hypothesis (if it is correct) with probability 0.95; with probability 
0.05, the test will erroneously declare the hypothesis false. Thus, 
the significance level indicates the proportion of "false negatives" 
(in general it is difficult to assess the corresponding percentage of 
"false positives"). We can use significance-level testing a5 follows. 
Suppose we test N intervals for exponential interarrivals and K 
of them pass the A 2 test at the 5% significance level. If the null 
hypothesis is correct, then the probability of K successes in N trials 
will be given by a binomial distribution with parameter p = .95. If 
we find that the probability of obser:ving K successes was less than 
5%, then we conclude with 95% confidence that the arrival process 
is inconsistent with exponential interarrivals. 

We also need to test the interarrivals for independence. One indi­
cation of independence is an absence of significant autocorrelation 
among the interarrivals. Autocorrelation can be significant in two 
different ways: it can be too strong in magnitude, or it can be too 
frequently positive or negative. We address each of these in turn. 

Given a time series of n samples from an uncorrelated white­
noise process, the probability that the magnitude of the autocorre­
lation at any lag will exceed 1.96/ ..fii is 5%. Thus we can test 
for independence by observing how often this occurs and using a 
binomial test similar to the one outlined above. 

Because for many non-Poisson processes autocorrelation among 
interarrivals peaks at lag one, to keep our test tractable we restrict 
it to just the lag one autocorrelation: 

We also apply one further test for independent interarrivals. If 
the interarrivals are truly independent, then we would expect their 
autocorrelation to be negative with probability 0.5 and positive with . 
probability 0.5. For Poisson arrivals, then, the number of positive 
lag one autocorrelation values should be binomially distributed with 
parameter p = 0.5. Given this assumption, we assess the proba­
bility of at least the observed number of positive values occurring. 
If its probability is too low ( < 2.5%) then we conclude that the 
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interarrivals are significantly positively correlated. Similarly, if the 
observed number of negative values has probability < 2.5%, then 
the interarrivals are significantly negatively correlated~ 

B Pareto distributions 

In this paper the Pareto distribution plays a role both in TELNET 
packet interarrivals and in the size of FTPDATA bursts. This ap­
pendix discusses the Pareto distribution and its occurrence in the 
physical world. 

The classical Pareto distribution with shape parameter f3 and lo­
cation parameter a has the cumulative distribution function [HK80]: 

F(x) = P[X ~ x] = 1- (a/x)fJ, a,/3;::: 0, .x;::: a, 

with the corresponding probability density function: 

f(x) =f3afJx~tJ-i. 

If f3 ~ 2, then the distribution has infinite variance, and if f3 ~ 1, 
then it has infinite mean. 

The Pareto distribution (also referred to as the power-law dis­
tribution, the double-exponential distribution, and the hyperbolic 
distribution) has been used to model distributions of incomes ex­
ceeding a minimum value, and sizes of asteroids, islands, cities and 
extinction events [K93, M63]. 

In communications, heavy-tailed distributions have been used to 
model telephone call holding times [DMRW94] and frame sizes for 
variable-bit-rate video [GW94]. The discrete Pareto (Zipf) distri­
bution arises in connection with platoon lengths for cars at different 
speeds traveling on an infinite road with no passing [A83, p.95] 
[F66, p.40], a model suggestively arialogous to computer network 
traffic. 

. Following [LTWW94], we define a distribution as heavy-wiled 
if for some constant c, 

P[X ;::: x] "'ex -fJ, as x --> oo, {3 ;::: 0. 

A more general definition of heavy-tailed defines a distribution as 
heavy-tailed if the conditional mean exceedance (CMEx) of the ran­
dom variable X is an increasing function of x [HK80], where 

CMEx = E[X- x!X 2: x]. 

Using this second definition of heavy-tailed, consider a random 
variable X that represents a waiting time. For waiting times with a 
light-tailed distribution such as the uniform distribution, and for x 
such that f( x) > 0, the conditional mean exceedance is a decreas­
ing function of x. For such a light-tailed distribution, the longer 
you have waited, the sooner you are likely to be done. For waiting 
times with a medium-tailed distribution such as the (memoryless) 
exponential distribution, the expected future waiting time is inde­
pendent of the waiting time so far. In contrast, for waiting times 
with a heavy-tailed distribution, the longer you have waited, the 
longer is your expected future waiting time. For the Pareto distri­
bution with f3 > 1 (that is, with finite mean), the conditional mean 
exceedance is a linear function of x [A83, p.70]: 

CMEx:::; x/(/3- I). 

The Pareto distribution is scale-invariant, in that the probability 
that the wait is at least 2x seconds is a fixed fraction of the probability 
that the wait is at least x seconds, for any x ;::: a. A related result 



shows that the Pareto distribution is the only distribution that is 
invariant under truncation from below [M83, p. 383] [A83, p.81]. 
That is, for the classical Pareto distribution, for y ~ x0 , 

P[X > yJX > xo] = P((xo/a)X > y]. 

Mandelbrot argues that because the asymptotic behavior of 
Pareto distributions with {3 ~ 2 is unchanged for a wide variety of 
filters (including aggregation, maximums, and the weighted mixture 
of distributions), and because this is true of no other distribution, 
this could in some respects explain the widespread observance of 
Pareto distributions in the social sciences [M63] [M83, p. 344]. 
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