
UC Riverside
2017 Publications

Title
Neural Network Memory Architectures for Autonomous Robot Navigation

Permalink
https://escholarship.org/uc/item/7tc1q5fp

Authors
Chen, Steven
Atanasov, Nikolay
Khan, Arbaaz
et al.

Publication Date
2017-05-23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7tc1q5fp
https://escholarship.org/uc/item/7tc1q5fp#author
https://escholarship.org
http://www.cdlib.org/

Neural Network Memory Architectures for Autonomous Robot Navigation

Steven W. Chen, Nikolay Atanasov, Arbaaz Khan, Konstantinos Karydis, Daniel D. Lee, and Vijay Kumar

Abstract— This paper highlights the significance of including
memory structures in neural networks when the latter are
used to learn perception-action loops for autonomous robot
navigation. Traditional navigation approaches rely on global
maps of the environment to overcome cul-de-sacs and plan
feasible motions. Yet, maintaining an accurate global map may
be challenging in real-world settings. A possible way to mitigate
this limitation is to use learning techniques that forgo hand-
engineered map representations and infer appropriate control
responses directly from sensed information. An important but
unexplored aspect of such approaches is the effect of memory
on their performance. This work is a first thorough study
of memory structures for deep-neural-network-based robot
navigation, and offers novel tools to train such networks from
supervision and quantify their ability to generalize to unseen
scenarios. We analyze the separation and generalization abilities
of feedforward, long short-term memory, and differentiable
neural computer networks. We introduce a new method to eval-
uate the generalization ability by estimating the VC-dimension
of networks with a final linear readout layer. We validate that
the VC estimates are good predictors of actual test performance.
The reported method can be applied to deep learning problems
beyond robotics.

I. INTRODUCTION

Autonomous robot navigation in real-world settings in-
volves planning and control with limited information in
dynamic and partially-known environments. Traditional ap-
proaches close perception-action feedback loops by main-
taining a global map representation of the environ-
ment and employing feedback motion planning algorithms
(e.g., optimization-based [1], [2], search-based [3], [4], or
sampling-based [5], [6], [7], [8], [9]). While a global map
allows navigation in environments with cul-de-sacs and com-
plex obstacle configurations, maintaining one can be chal-
lenging due to localization drift, noisy features, environment
changes and limited on-board computation [10], [11].

An alternative approach to global mapping and replanning
is to determine a closed-loop policy that maps the history
of sensor positions and observations to the next action at
each time step. The benefit of computing an action directly
from the observation history is that there is no need to
maintain a map, and requires just one function evaluation
as opposed to a computationally-expensive search or opti-
mization. Unfortunately, the state or action spaces in robotics
applications can be very large, to the extent that keeping the
measurement history and representing such policy functions
efficiently (e.g., as a lookup table or a linear function) is

This work is supported in part by ARL # W911NF-08-2-0004, DARPA
HR001151626/HR0011516850, ARO # W911NF-13-1-0350, and ONR
N00014-07-1-0829. The authors are with the GRASP Laboratory, Univer-
sity of Pennsylvania. Email: {chenste, atanasov, arbaazk,
kkarydis, ddlee, kumar}@seas.upenn.edu

infeasible [12]. Due to their representational power, neural-
network-based learning techniques have become increasingly
of interest to the robotics community as a method to encode
such perception-action policies or value functions [13], [14].
Furthermore, traditional methods for navigating in unknown
environments can be used to supervise the training process by
providing action labels to the neural network. Recent work
has shown that neural networks can be used to navigate a
wheeled robot in cluttered environments [15].

Despite their success in several fields, deep learning
techniques have several limitations when considering robot
navigation. Current network architectures are not well-suited
for long-term sequential tasks [16], [17], which typically
appear in robotics (e.g., path planning), because they are
inherently reactive. More precisely, while maintaining the
complete observation history is not feasible, the spatio-
temporal correlation present in observation data necessitates
the use of memory structures that summarize observed
features (e.g., the map plays this role in traditional nav-
igation approaches). However, the effect of memory on
neural network performance and generalization ability is
not well-understood. Current methods for evaluating network
structures are based on empirical performance on a held-out
test set. A limitation of this approach is that it is dependent
on the test set choice and is prone to over-fitting during
the model-selection phase [18]. This limitation is especially
important in a robotics context where the unknowns of real-
world scenarios may not be easily captured by a test set.

This paper investigates the ability of several neural net-
work memory structures to separate action classes and gen-
eralize to unseen environments in the context of robot nav-
igation. Motivated by the reliance of traditional approaches
on accurate global maps, our work seeks to reveal new
directions and limitations of applying deep learning to the
robot navigation problem. We argue that understanding the
effect of memory on separability and generalization ability
is fundamental for successfully applying neural networks to
robotics. Our work makes three main contributions.
• We investigate the relationship between memory, sep-

arability and generalization ability of neural-network
perception-action policies in cul-de-sac environments.

• We estimate the Vapnik-Chervonenkis (VC) dimen-
sion [19] of the last layer of a neural network (after
all upstream layer transformations) as a measure of the
network generalization ability that depends only on the
training set choice.

• We develop a new parallel training algorithm for super-
vised learning of perception-action policies in sequential
prediction problems.

ar
X

iv
:1

70
5.

08
04

9v
1

 [
cs

.R
O

]
 2

3
M

ay
 2

01
7

II. RELATED WORK

Recent works have considered the application of deep
learning techniques to autonomous robot navigation. Tamar
et al. developed Value Iteration Networks (VIN) that out-
perform regular convolutional networks in planning-based
sequential reasoning [20]. However, that work only explored
planning in known maps. Zhang et al. used Model Predictive
Control (MPC) in guided policy search to train a neural
network to navigate a quadrotor using lidar inputs [21]. Ross
et al. used the Dataset Aggregation (DAgger) supervised
learning algorithm to navigate in a dense forest environment
using image inputs, and concluded that incorporating mem-
ory could improve failure cases [22]. Existing works consider
only convex obstacles, and as a result they may have limited
success in autonomous robot navigation in environments
which contain complex obstacles such as cul-de-sacs [23].

These prior works and observations suggest that some
form of memory is necessary. The most commonly used
method to incorporate memory in robotics learning problems
are through Recurrent Neural Networks (RNN) such as
the Long-Short Term Memory (LSTM) [24]. Heess et al.
demonstrate that recurrent neural networks are able to learn
in partially-observable problems [25]. Mnih et al. incorporate
the LSTM layers into their Asynchronous Advantage Actor-
Critic (A3C) algorithm and demonstrate improved perfor-
mance over a feedforward network [26]. Zhang et al. argue
that memory is necessary in partially-observed tasks, and
augment the state space to include memory states [27].

Graves et al. observe that while RNN’s can in principle
be used to simulate arbitrary procedures, learning the opti-
mal network is not easy in practice [28]. This observation
inspired a new family of neural network architectures called
Memory Augmented Neural Networks (MANN) which uti-
lize an explicit memory matrix [29]. Among them, the
Differentiable Neural Computer (DNC) has demonstrated
improved performance over standard RNNs in tasks such
as copying sequences and planning shortest paths [30].
However, MANN structures have been mostly applied to
natural language processing and speech recognition; their
application to robotics has received less attention.

III. PROBLEM FORMULATION

Consider a bounded connected set X representing the
workspace of a robot. Let X obs and X goal, called the
obstacle region and the goal region, respectively, be subsets
of X . Denote the obstacle-free portion of the workspace as
X free := X\X obs. The dynamics of the robot are specified
by the Probability Density Function (PDF) pf (· | xt, ut) of
the robot state xt+1 ∈ X at time t+1 given the previous state
xt ∈ X and control input ut ∈ U . We assume that the control
input space U is a finite discrete set.1 The robot perceives
its environment through observations zt ∈ Z generated from
a depth sensor (e.g., lidar, depth camera), whose model is

1For instance, the control space U for a differential-drive robot in SE(2)
can be a set of motion primitives, parameterized by linear velocity, angular
velocity and duration. For a quadrotor, U may be a set of short-range
dynamically feasible motions.

Fig. 1: Left: Cul-de-sac. Right: Parallel Walls. The type of obstacle
is unknown until the robot reaches the end of the obstacle.

specified by the PDF ph(· | X obs, xt). The information
available to the robot at time t to compute the control input ut
is it := (x0:t, z0:t, u0:t−1,X goal) ∈ I, consisting of current
and previous observations z0:t, current and previous states
x0:t and previous control inputs u0:t−1
Problem. Given an initial state x0 ∈ X free and a goal
region X goal ⊂ X free, find a function µ : I → U , if one
exists, such that applying the control ut := µ(it) results in
a sequence of states that satisfies {x0, x1, . . . , xT } ⊂ X free

and xT ∈ X goal.
In this problem setting, the obstacle region X obs is a

partially observable state. Instead of trying to estimate it
using a mapping approach, our goal is to learn a policy µ̂ that
maps the sequence of sensor observations z0, z1, . . . directly
to control inputs for the robot. The partial observability
requires an explicit consideration of memory in order to
learn µ̂ successfully. A partially observable problem can
be represented via a Markov Decision Process (MDP) over
the information space. More precisely, we consider a finite-
horizon discounted MDP defined by (I,U , T ,R, γ), where
γ ∈ (0, 1] is a discount factor, I is the state space, U is
the action space, T : I × U × I → [0, 1] is the transition
function, and R : I × U × I → R is the reward function.
The latter two are defined as follows:

T (i
(1)
t , u, i

(2)
t+1) := ph(z

(2)
t+1 | X obs, x

(2)
t+1)pf (x

(2)
t+1 | x

(1)
t , u)

R(i
(1)
t , u, i

(2)
t+1) :=

1, if x(2)t+1 ∈ X goal

−1, if x(2)t+1 ∈ X obs

0, otherwise

In the rest of the paper we consider a 2-D grid world, an
instance of the feasible planning problem in which X ⊂
R2 and U := {down, right, up, left}. To investigate the
need for memory, we consider U-shape cul-de-sac maps,
illustrated in Fig. 1. The traditional approach to the feasible
planning problem in this setting is simultaneous mapping and
planning. In contrast, we consider learning a feasible policy
by using the outputs of an A∗ path planner [31] for super-
vision. Let qt :=

(
xt, zt, ut−1,X goal

)
be the information

available at time t and decompose the information state as
it = q0:t. Our idea is to rely on a neural network to estimate
a feasible control policy µ̂ that maps the current information
qt to a control input ut, by computing a |U|-dimensional
probability distribution over the possible controls and re-
turning the maximum likelihood control. Such a network
needs a hidden memory state ht in order to remember past
information q0:t−1 and represents the policy µ̂(qt, ht; θ) via
parameters θ. Our goal is to optimize the network parameters
θ in order to match the output of simultaneous occupancy
grid mapping [32, Ch.9] and A∗ planning.

Fig. 2: Left: We evaluate 4 architectures: FF, LSTM, DNC LSTM,
and regularized DNC LSTM. The regularized parameters that are
regularized are indicated in red. The colors indicate: (yellow) input;
(blue) hidden layers, (green) last upstream layer; (red) linear readout
layer; and (purple) the memory matrix.

IV. MEMORY ARCHITECTURE

We describe three neural network architectures that use
different structures to represent the memory state ht: feed-
forward (FF), long short-term memory (LSTM) and differ-
entiable neural computer (DNC)—see Fig. 2.

Feedforward: Deep FF networks, such as the multilayer
perceptron [33, Ch. 6] and ConvNets, have been very suc-
cessful in various vision and robotic tasks [34][35]. Our first
architecture uses only FF layers to model the mapping from
inputs qt to actions ut. This structure does not include a
memory state ht, and the policy can be rewritten as µ̂(qt; θ).

We hypothesize that the lack of a memory state will be
a problem in the cul-de-sac environment because there exist
two different states i(1)t =q

(1)
0:t and i(2)t =q

(2)
0:t (when the robot

is entering and exiting the cul-de-sac) such that µt(i
(1)
t) 6=

µt(i
(2)
t) but q(1)t = q

(2)
t . In other words, the expert (i.e. the

A∗ planner) maps the same input qt to two different actions,
depending on the history q0:t−1, but the FF network will not
be able to distinguish this based only on qt.

Long Short-Term Memory: The second architecture we
consider remedies the memory problem by introducing a
long-short term memory (LSTM) layer [33, Ch. 10], which
contains an internal state ht. The LSTM has a memory cell
that removes and adds information to the hidden state ht
based on the previous state ht−1 and the current input qt
using the input, forget and update gates.

The hidden recurrent state can thus be seen as a form
of implicit memory since it can read from the inputs (the
tape) to modify its internal state, but cannot write to the tape
to affect future decisions. We hypothesize that the addition
of this memory feature is necessary since, for example,
the previous entering and exiting scenario where µt(i

(1)
t) 6=

µt(i
(2)
t) and q(1)t =q

(2)
t , will not be a problem for the LSTM

network because h(1)t 6=h
(2)
t .

Differentiable Neural Computer: Our third architecture
uses a more explicit representation of memory ht in the
form of a memory matrix, which may provide better memory
features to separate the action classes. The use of external
memory in neural network architectures was inspired by
Turing Machines [28]. Whereas the LSTM can only read

from the tape, the DNC is similar to a Turing Machine in
that it can both read and write to the tape (now the inputs and
the memory matrix) to modify its internal state. An external
memory architecture has been shown to improve perfor-
mance in natural language processing and other fields, but
such an architecture has never been considered in robotics.
We expect that it would be very useful for navigation where
long sequences of actions may have to be backtracked.

The neural network reads from the memory matrix by
first using a set of R read heads to get R read vectors
r1t−1, . . . , r

R
t−1. These read vectors are then concatenated

with the normal inputs (xt, zt) and fed through the neural
network computation graph. The neural network outputs a
vector vt, and an interface vector ξt. The interface vector ξt
is used to update the memory matrix in a write update and
read update step. After the memory matrix is updated, the
neural network reads from the memory matrix again to get
R read vectors r1t , . . . , r

R
t . These read vectors are combined

with vt via a fully connected layer to get the final action
output. The weights that determine the interface vector ξt are
the parameters to be learned.2 We also consider a regularized
version of the DNC architecture, where we incorporate an L2

weight penalty to the parameters that correspond to memory
(external memory and LSTM).

V. ASYNCHRONOUS DAGGER

This section describes how we optimize the parameters
θ of the networks representing the policy µ̂(qt, ht; θ). In
sequential prediction problems, a common concern is the
temporal dependence of the outputs ut on the previous inputs
q0:t. This correlation poses a problem in stochastic gradient
descent methods, as the gradient estimated from the most
recent steps may no longer be representative of the true gra-
dient. Further, the difference between the state distributions
between the expert and the learner is a common concern in
sequential prediction problems. A naive implementation of
supervised learning will have poor performance because the
states and observations encountered by the expert will be
different than those encountered by the policy [36].

The DAgger [36] algorithm addresses both of these prob-
lems. At each training iteration, the current policy collects
a set of new trajectories and aggregates it to a replay data
set. The intuition behind this algorithm is that rather than
training on a distribution of states that the expert encounters,
by sampling with the previous and current policies, the next
policy is being trained on a distribution of states that the
policy is likely to encounter. In addition, this sampling from
an aggregated dataset reduces correlation.

We develop an asynchronous variant of the DAgger al-
gorithm that breaks correlation through asynchronous gra-
dient updates estimated from independent parallel learners.
Asynchronous DAgger is inspired by the Asynchronous Ad-
vantage Actor Critic (A3C) algorithm [26], but differs since
the A3C algorithm is an actor-critic reinforcement learning
algorithm, while ours is a supervised sequential prediction

2See [30] for details on the computations and memory matrix updates.

algorithm. Similar to how our treatment of correlated training
data is the supervised analogue to the A3C reinforcement
algorithm, the original DAgger algorithm is analogous to the
original Deep Q-Network (DQN) algorithm [37] in that both
store an experience replay databank. The pseudo-algorithm
1 describes the developed Asynchronous DAgger algorithm.

Algorithm 1 Asynchronous DAgger (for each learner thread)

1: // Assume global shared parameter vector θ
2: Initialize global shared update counter J ← 0
3: Initialize thread update counter j ← 1
4: Initialize thread episode counter t← 1
5: Initialize thread dataset D ← ∅
6: Initialize thread network gradients dθ ← 0
7: repeat
8: repeat
9: Observe qt

10: Execute action ut sampled from current global
11: action policy µ̂J(qt, ht; θ)
12: Retrieve optimal action µ(it) from expert
13: and convert to standard basis vector eµ
14: Add (µ̂J(qt, ht), eµ) to D
15: j ← j + 1
16: until terminal it or j == jmax
17: for (µ̂J(qt, ht), eµ) ∈ D do
18: Accumulate gradients wrt θ: dθ←dθ +

dH(µ̂J ,eµ)

dθ
19: where H(·, ·) is the cross-entropy loss
20: if terminal it or t == tmax then
21: Reset episode
22: t← 1
23: Perform asynchronous update of θ using dθ
24: Reset thread update counter j ← 1
25: Reset thread dataset D ← ∅
26: Reset thread network gradients dθ ← 0
27: J ← J + 1
28: until J > Jmax

Each parallel learner executes actions in the simulation,
estimates a gradient calculated from its most recent actions,
and applies that gradient asynchronously to the global neural
network. Note that in Asynchronous DAgger, the state dis-
tribution is determined by the current policy µ̂J as opposed
to the optimal policy µ. However, also notice that rather
than accumulating a dataset and sampling randomly from it,
each thread has its own dataset D consisting of its previous
t examples, and this dataset D is reset after applying the
aynchronous gradient. As a result, Asynchronous DAgger
encounters the state distribution of its current policy, as op-
posed to a mixture of its current and previous policies. This
algorithm extends the exploitation of parallel asynchronous
learners to supervised sequential prediction problems.

VI. GENERALIZATION ABILITY

We present a new technique for determining the efficacy of
various neural network architectures. The technique is based
on the maximum margin theory of generalization for Support
Vector Machines (SVM). Given a network, we estimate the
VC-dimension of a similar architecture that combines the
original network with an SVM as the final readout layer.
This estimate is calculated using only training data and can
be used as an alternative to held-out test sets.

The architecture of most deep neural networks can be bro-
ken into two parts: a hierarchy of upstream layers followed
by a single readout layer [38]. The neural network can thus
be viewed as a perceptron in the feature space learned by the
upstream layers. A good neural network architecture contains
upstream layers that effectively “separate” the various classes
with a large margin, which the last linear readout layer can
then easily classify. One specific form of perceptron, the
SVM, can be used to evaluate the generalization ability of the
neural network. Previous works have recognized the benefit
of applying maximum margin SVMs to neural networks by
using them as the final readout layer in tasks such as image
recognition [39], [40], [41], [42]. These works offer small,
but consistent improvement over standard softmax layers.

We employ the SVM to evaluate the generalization ability
of a trained neural network. This is achieved by estimating
the VC-dimension of the neural network with the final
readout layer replaced by a linear SVM. Consider a binary
classification problem and let

Ψ(qi, hi) = (ψ1(qi, hi), . . . , ψD(qi, hi))

be a vector in feature space of dimension D, and w =
(w1, . . . , wD) be the vector of weights determining a hyper-
plane in this space. We use i instead of t to emphasize that all
actions are aggregated into one data set, effectively ignoring
the temporal nature of the sequential prediction. The VC-
dimension η of the maximal margin hyperplanes separating
N vectors Ψ(q1, h1) . . .Ψ(qN , hN) can be estimated by

ηest = R2|w0|2 ,

where R is the radius of the smallest sphere that contains
Ψ(qi, hi) for all i and |w0| is the norm of the optimal weights
[19]. The norm of the weights is related to the optimal margin
∆ = 1

|w0| . Thus good generalizability (low VC-dimension)
occurs when the margin ∆ is large with respect to R.3

Calculating the margin ∆ is trivial based on the norm of
the weights w and comes standard with most SVM packages.
The radius R can be found by using a simple quadratic pro-
gram solved through standard convex optimization packages.

Given the set of N vectors (Ψ(q1, h1) . . .Ψ(qN , hN)) in
D-dimensional feature space, define the D×N matrix C :=
(Ψ(q1, h1), . . .Ψ(qN , hN)), consider the quadratic program

minimize
z

pTCTCp−
N∑
i=1

Ψ(qi, hi)
T Ψ(qi, hi)pi

subject to
N∑
i=1

pi = 1

pi ≥ 0 ∀i,

and let p∗ = (p∗1, . . . , p
∗
n) be some optimal solution. The

vector Ψ∗ =
∑n

i=1 Ψ(qi, hi)p
∗
i is the center of the smallest

enclosing sphere and the squared radius R2 is the negative
value of the objective function at p∗ [44]. The upstream
layers of a neural network thus learn the function Ψ which

3We refer the reader to [19] and [43] for in-depth details and proofs.

Parameter Train Interpolation Test Extrapolation Test

obs. length (m) 2-20 (even) 3-19 (odd) 20-120 (every 1m)

obs. orientation (◦) 0, 90, 180, 270 0, 90, 180, 270 0, 90, 180, 270

TABLE I: Map generation parameters: The interpolation test
parameters interpolate obstacle lengths in between the training
parameters. The extrapolation test parameters extrapolate to longer
obstacle lengths (up to 6× maximum training length).

transforms the raw vectors (qi, hi) from the original feature
space into vectors in the new feature space Ψ(qi, hi). The
linear readout layer learns a hyperplane with weights w in
this feature space, however w is not necessarily optimal.

To estimate the VC-dimension ηest of the optimal hyper-
plane w0 we calculate the margin of the optimal hyperplane
and radius of smallest bounding sphere on the training data
set in this new feature space. Thus, a better neural network
learns a Ψ that results in a lower ηest, so that the linear
readout layer separates the classes with a large margin.

The action policy network takes the form µ̂(qi, hi) :=
σ(AΨ(qi, hi) + b) where A is a matrix representing the
weights of the linear readout layer, b is the bias, and σ is
the softmax function to turn it into a probability vector. This
technique can be applied to analyze linear readout neural
networks in any classification problem such as an image
recognition or text classification. However, the analysis in
our problem is further complicated since we are performing
sequential prediction, and it is unclear what data set D we
need to estimate ηest from. We cannot use the current policies
µ̂J to generate this data set, because each network will
generate a different data set and the ηest of each network
will not be comparable. As a result, we instead generate the
data set by executing the optimal policy µ.

This technique is a new application of maximum margin
theory to estimate the generalization ability of neural net-
works. Compared to traditional empirical test accuracies, the
reported method yields a better estimate of generalization
ability for two reasons. First, it explicitly defines the gen-
eralization ability as opposed to other proxy performance
measures. Second, it is not dependent on the choice of
the test set. This method can be combined with traditional
empirical test measures in any deep learning problem to yield
better insight into the performance of a network.

VII. RESULTS AND ANALYSIS

Our experiments have two purposes: (1) determine the
effect of incorporating neural network memory architectures
in robot navigation; and (2) evaluate the predictive capacity
of our VC dimension estimates on empirical test error. Our
environment is a grid-world involving cul-de-sac obstacles,
and we test for each network’s ability to interpolate and
extrapolate to different length obstacles.

A. Cul-de-sac vs Parallel Walls

In the grid-world environment, the state xt := (xt, yt)
T is

the 2D position of the robot. The goal is denoted by xgt :=
(xgt , y

g
t)T . The robot can take four actions (down, right, up,

left), and moves a distance of 1 m at each step. The robot
cannot turn in place, and starts oriented toward the goal.
The robot is equipped with a laser range finder, with a 360◦

field-of-view, that reports relative distance to any perceived
obstacles within its field of view. The sensor measurement zt
at time t consists of NB = 144 laser beams with maximum
range 5 m that report the distance to the closest obstacle
along the beam. The obstacle structure is either a cul-de-
sac or parallel walls (see Fig. 1), which the robot cannot
determine until it reaches the end of the obstacle.

Neural networks learn to exploit peculiarities in the simu-
lation design. For example, the A∗ expert enters in the center
of the obstacle and exits near the edges, and we found that
the network learns to enter the U-shape if the robot is far
away from the edges, and exit if it is near. This behavior is
analogous to “off-loading” memory onto the physical state
of the system observed by [27], but is not desirable in our
case because it does not actually test the network’s ability to
retain memory. To prevent this memory off-load, we narrow
the width of the obstacle to constrain the laser observations
to be the same while entering and exiting, thus making the
task more challenging by forcing the network to utilize its
memory. Table I contains the map generation parameters.

B. Neural Networks

We evaluate four network architectures: FF, LSTM, DNC
LSTM, and regularized DNC LSTM. The inputs at each
time step are the 144-dimensional LIDAR reading zt, and
the 1-dimensional position heading atan2(yt − ygt , xt − xgt)
representing the heading of the goal from the robot. The
FF and LSTM networks have 3 layers of sizes 128 (fully-
connected), 128 (fully-connected), and 128 (fully-connected
or LSTM respectively). The DNC LSTM network has the
same initial structure as the LSTM, in addition to a memory
matrix and a fourth fully-connected layer of size 128. The
memory matrix is of size 128x32 and has 2 read heads and
1 write head. The original DNC architecture has two final
fully-connected layers (LSTM output and memory matrix
output) that are summed together. We have converted this
architecture into a single linear readout network by com-
bining the LSTM and memory matrix output in the fourth
fully-connected layer. This makes the estimation of the VC
dimension easier. The regularized DNC LSTM network has
the same architecture as the normal DNC LSTM network,
except that we include an L2 regularization penalty on the
parameters that correspond to utilizing or updating the DNC
and LSTM. The regularization penalty used is λ = 0.1. The
last upstream layer for all 4 models has dimension 128.

C. Training Implementation

The Asynchronous DAgger (Alg. 1) is used to train
the neural networks. For the feedforward networks, the
training batch size is 5. For the recurrent networks, the
backpropagation through time (BPTT) algorithm is truncated
at 5 steps. We do not backpropagate the external DNC
memory parameters through time. We use the RMSProp [45]
algorithm with a learning rate of 10−4 to calculate gradients.

Fig. 3: PCA visualization of Last Upstream Layer: These visualizations project the 128 dimensional last upstream space Ψ(qi, hi) to 2
dimensions. The linear readout layer is a perceptron learned in these spaces, and a better neural network separates the different classes
with a large margin. Note the varying axis scales for each network, which correspond to the radius of the smallest bounding sphere.

Model (radius) Measure Down Right Up Left

FF (37.2)

ηest 8,558.6 5,740.4 8,016.7 7,698.9
margin 0.40 0.49 0.42 0.42

nSV 340 432 438 335

Training Err. (%) 6.7 9.0 6.7 9.0

LSTM (4.63)

ηest 165.1 34.8 48.4 170.1
margin 0.36 0.79 0.67 0.36

nSV 39 24 30 38

Training Err. (%) 0.1 0.0 0.0 0.1

DNC LSTM (9.42)

ηest 450.3 659.4 1221.4 386.1
margin 0.44 0.37 0.27 0.48

nSV 33 28 38 26

Training Err. (%) 0.3 0.4 0.4 0.3

regularized
DNC LSTM (0.94)

ηest 14.1 11.2 11.3 11.9
margin 0.25 0.28 0.28 0.27

nSV 34 17 19 33

Training Err. (%) 0.5 0.0 0.0 0.3

TABLE II: VC dimension estimates: Radius is the radius of the
smallest L2 bounding sphere, ηest is the VC-dimension estimate,
nSV is the number of support vectors, and Training Err. is calculated
using the linear SVM. The data set used to estimate these values
was generated by sampling 100 episodes using the train map
generation parameters. We use A∗ to execute the actions in order to
generate the same dataset for each architecture, and this particular
dataset included 492 down, 588 right, 600 up and 500 left actions.
Our method ranks the architectures in the following order: (1)
regularized DNC LSTM; (2) LSTM; (3) DNC LSTM; and (4) FF.

D. Results

We compute three empirical measures of performance: (1)
Success rate; (2) classification accuracy; and (3) ratio of path
lengths compared to A∗. The success rate measures how
often the neural network reaches the goal region. The classi-
fication accuracy measures of how often the neural network
outputs the A∗ action. The path length ratio measures the
quality of the successful paths versus optimal A∗ paths.

In addition, we estimate the VC dimension of our neural
networks, using the method described in Section VI. Our
navigation problem is a multi-classification problem. How-
ever, we follow the strategy in [19] and present our results
in a one-vs-all binary classification framework. We estimate
ηest by training a linear SVM with a slack penalty C = 1.
Table II presents the training and VC-dimension measures.

Separability: The LSTM, DNC LSTM and regularized
DNC LSTM all achieve near-perfect training accuracy, while
the FF does not (∼8% error). This result indicates that
memory-less neural networks do not have the capacity to
correctly separate the action classes and navigate cul-de-sacs.

Generalization ability: Our VC dimension estimates rank
the architectures in the following order: (1) regularized DNC
LSTM; (2) LSTM; (3) DNC LSTM; and (4) FF. Fig. 3 shows
a PCA visualization of the last upstream layer and the neural
networks can be viewed as perceptrons separating the classes
in these spaces. The prediction performance of ηest will be
evaluated on two data sets: interpolation and extrapolation.

Interpolation: The interpolation data set consists of maps
with obstacle lengths that are interpolated in between the
obstacle lengths encountered in the training set. None of
these maps have been encountered in training. Table III
displays the interpolation results and shows that all 3 memory
networks are able to successfully generalize. For the FF
network, it is interesting to note that the A∗ ratio is greater
than 1 for parallel walls, and less than 1 for cul-de-sacs. This
pattern indicates that the FF network turns around before it
reaches the end of the obstacle length, which is not desirable.

Extrapolation: The extrapolation data set consists of maps
with obstacle lengths that range from 20 to 120 m, which
corresponds to 6× the length of the maximum obstacle length
encountered during training. Table IV ranks the architectures
in the following order: (1) regularized DNC LSTM; (2)
LSTM; (3) DNC LSTM; and (3) FF, confirming the predic-
tions made by our VC dimension estimates. The regularized
DNC LSTM is able to generalize almost perfectly. The
LSTM is able to successfully complete all episodes, but it
exhibits the same pattern in the A∗ ratio that indicates it is
turning around before it reaches the end of the obstacle. The
DNC LSTM exhibits similar behavior, but is only able to
successfully complete ∼55% of the episodes. These results
indicate that the LSTM and DNC LSTM have overfit the
training set, with the LSTM generalizing slightly better.

This relative degree of overfitting is reasonable, since the
DNC LSTM has strictly more “memory parameters” than
the LSTM. Overfitting is expected to occur as our networks
are complex, yet the amount of memory to actually navigate
cul-de-sac environments is relatively low. Indeed, we only
need 3 states that determine when the end of the obstacle
has been reached, whether the end is closed or open, and
when the robot has exited the entrance of the obstacle. It is
thus not surprising that regularization greatly improves the
quality of the learned network.

Figure 4 shows the classification accuracy and A∗ path
length ratio of all networks against obstacle length. The reg-
ularized DNC LSTM has 100% classification accuracy and

Model Map Type Success (%) Class. Acc (%) A∗ Ratio

FF Parallel Walls 84.0 61.9 1.194

Cul-de-sac 52.0 54.1 0.709

LSTM Parallel Walls 100.0 100.0 1.000

Cul-de-sac 100.0 98.9 1.011

DNC LSTM Parallel Walls 100.0 100.0 1.000

Cul-de-sac 100.0 98.6 1.020

regularized
DNC LSTM

Parallel Walls 100.0 100.0 1.000

Cul-de-sac 100.0 98.9 1.013

TABLE III: Interpolation Generalization: This data set consists of
100 maps sampled from interpolation map generation parameters
and is shared across all of the networks. Episodes over 200 time
steps were terminated and counted as a failure.

Model Map Type Success (%) Class. Acc (%) A∗ Ratio

FF Parallel Walls 75.5 65.1 1.041

Cul-de-sac 47.5 58.9 0.375

LSTM Parallel Walls 100.0 76.8 1.660

Cul-de-sac 100.0 84.1 0.891

DNC LSTM Parallel Walls 56.5 65.9 1.781

Cul-de-sac 54.5 69.7 0.892

regularized
DNC LSTM

Parallel Walls 100.0 100.0 1.000
Cul-de-sac 100.0 99.9 0.994

TABLE IV: Extrapolation Generalization: This data set consists
of 2 maps at each obstacle length between 20−120 m, resulting in
200 total maps. The remaining map parameters were sampled from
the extrapolation map generation parameter. Episodes over 500 time
steps were terminated and counted as a failure.

an A∗ ratio of 1 for all obstacle lengths, indicating perfect
generalization. The DNC LSTM has perfect classification
accuracy up to obstacle lengths of 30 m (1.5× maximum
training length), while the LSTM has perfect classification up
to obstacle lengths of 50 m (2.5× maximum training length).

For obstacle lengths < 50 m, the A∗ path length ratio
graph shows that the DNC LSTM and LSTM are matching
the A∗ paths. With longer obstacles, we see 2 regimes of
points. The top regime corresponds to the path lengths in the
parallel wall scenarios, while the bottom regime corresponds
to the cul-de-sac scenario. In addition, notice the downward
pattern in these points.

If the robot almost reaches the end of the obstacle before
turning around, it will have entered the obstacle, exited the
obstacle, and gone down the side of the obstacle (1+1+1 =
3). Thus, the A∗ path ratio should be ∼3× and ∼1× for the
parallel wall and cul-de-sac environments, respectively. If the
robot turns around halfway, it would have entered halfway
into the obstacle, exited halfway, and gone down the side of
the obstacle (12 + 1

2 + 1 = 2). As a result, the A∗ path ratio
should be ∼2× for the parallel wall and ∼ 2

3× for the cul-de-
sac. The downward trend in the ratio as the length increases
indicate that in successful episodes, the DNC LSTM and
LSTM seems to always turn around at 60-80 m. Likewise,
we also see 2 regimes of points for the FF A∗ path ratios
centered around 1× and 1/3×. This pattern reveals that
when the FF network is successful, it entirely bypasses the
obstacle. This is also not desirable because the network is
just exploiting another peculiarity in the simulation design.

Fig. 4: Left: Classification Accuracy performance as obstacle length
increases. Right: Ratio to A∗ as obstacle length increases.

The attached video visualizes these behaviors.

E. Discussion

Our empirical test results match the predictions made by
our VC dimension estimation method, indicating that our
method is a good indicator of generalization. One benefit of
our method is that it has a clear measure of generalization
ηest. While a simple classification problem may have a
clear measure of performance, in our sequential prediction
problem, we presented 3 measures of performance which
all captured different behaviors of the network. It is unclear
which one is the most desirable and should be optimized.

More importantly, only the extrapolation data set was able
to differentiate the models in our experiments. All the mem-
ory models had the same performance on the interpolation
data set, highlighting the second benefit of our method.

Remark. Assessing generalization ability from empirical test
sets is dependent on the choice of training set and the testing
set, while our VC dimension estimation method is dependent
only on the choice of the training set.

The standard evaluation method in deep learning uses a
held-out test set that is randomly selected from the training
set. This choice of test set is similar to our interpolation
test set choice. The test error on a poorly chosen test set
may not provide a good metric of generalization because
the distribution is too similar to that of the train set. These
observations highlight the benefits of complementing current
empirical test measures with our VC dimension estimates.

VIII. CONCLUSION

This paper considered the problem of learning closed-
loop perception-action policies for autonomous robot nav-
igation. Unlike traditional feedback motion planning ap-
proaches that rely on accurate global maps, our approach
can infer appropriate actions directly from sensed informa-
tion by using a neural network policy representation. We
argued that including memory in the network structure is
fundamental for summarizing past information and achieving
good performance as measured by its ability to separate
the correct action from other choices and to generalize to
unseen environments. Our main contribution is a method
for estimating the VC dimension of the last network layer
(after all upstream layer transformations) that can be used

as an accurate generalization ability measure that depends
only on the training set choice. Finally, we proposed a new
parallel training algorithm for supervised learning of closed-
loop policies in sequential prediction problems. Our analysis
and results demonstrated the need for and superiority of
including external memory when increasing the depth of the
cul-de-sacs present in the environment.

Future work will focus on transfering learned perception-
action policies to a real robot and evaluating the regret
against simulataneous mapping and planning algorithms in
a physical environment. We are also interested in extending
the approach for robot systems with higher state, control, and
measurement dimensions such as velocity-actuated ground
robots in SE(2) and force-actuated aerial robots in SE(3)
using 3-D depth sensors or image-based information.

REFERENCES

[1] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[2] R. Tedrake, I. Manchester, M. Tobenkin, and J. Roberts, “LQR-trees:
Feedback Motion Planning via Sums-of-Squares Verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[4] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm.” in
ICAPS, 2005, pp. 262–271.

[5] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[7] M. Kobilarov, “Cross-Entropy Randomized Motion Planning,” in
Robotics: Science and Systems (RSS), 2011.

[8] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-
based algorithms for optimal motion planning,” in IEEE Int. Conf. on
Robotics and Automation (ICRA). IEEE, 2013, pp. 2421–2428.

[9] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[10] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation
for quadrotors with limited onboard sensing,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2016, pp. 1484–1491.

[11] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial In-
telligence in the New Millenium, G. Lakemeyer and B. Nebel, Eds.
Morgan Kaufmann, 2002.

[12] G. Tesauro, “Temporal difference learning and td-gammon,” Commun.
ACM, vol. 38, no. 3, pp. 58–68, 1995.

[13] C. Richter and N. Roy, “Learning to plan for visibility in naviga-
tion of unknown environments,” in Intl. Symposium on Experimental
Robotics, 2016.

[14] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[15] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” arXiv preprint
arXiv:1609.07910, 2016.

[16] S. Fusi, P. J. Drew, and L. Abbott, “Cascade models of synaptically
stored memories,” Neuron, vol. 45, no. 4, pp. 599–611, 2005.

[17] S. Ganguli, D. Huh, and H. Sompolinsky, “Memory traces in dynam-
ical systems,” Proc. of the National Academy of Sciences, vol. 105,
no. 48, pp. 18 970–18 975, 2008.

[18] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection
and subsequent selection bias in performance evaluation,” Journal of
Machine Learning Research, vol. 11, no. Jul, pp. 2079–2107, 2010.

[19] V. N. Vapnik, The Nature of Statistical Learning Theory. New York,
NY, USA: Springer-Verlag New York, Inc., 1995.

[20] A. Tamar, Y. WU, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems 29, 2016, pp. 2154–2162.

[21] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning Deep Control
Policies for Autonomous Aerial Vehicles with MPC-Guided Policy
Search,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2016.

[22] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
A. Bagnell, and M. Hebert, “Learning monocular reactive uav control
in cluttered natural environments,” in IEEE Int. Conf. on Robotics and
Automation (ICRA). IEEE, 2013, pp. 1765–1772.

[23] D. Dey, K. S. Shankar, S. Zeng, R. Mehta, M. T. Agcayazi, C. Eriksen,
S. Daftry, M. Hebert, and J. A. Bagnell, “Vision and learning for
deliberative monocular cluttered flight,” in Field and Service Robotics.
Springer, 2016, pp. 391–409.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[25] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based
control with recurrent neural networks,” arXiv:1512.04455, 2015.

[26] V. Mnih, A. Puigdomènech Badia, M. Mirza, A. Graves, T. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous Methods
for Deep Reinforcement Learning,” ArXiv e-print:1602.01783, 2016.

[27] M. Zhang, S. Levine, Z. McCarthy, C. Finn, and P. Abbeel, “Policy
learning with continuous memory states for partially observed robotic
control,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[28] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
CoRR, vol. abs/1410.5401, 2014.

[29] J. Rae, J. J. Hunt, I. Danihelka, T. Harley, A. W. Senior, G. Wayne,
A. Graves, and T. Lillicrap, “Scaling memory-augmented neural
networks with sparse reads and writes,” in Advances In Neural
Information Processing Systems, 2016, pp. 3621–3629.

[30] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. Colmenarejo, E. Grefenstette, T. Ramalho
et al., “Hybrid computing using a neural network with dynamic
external memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[31] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A*
with Provable Bounds on Sub-Optimality,” in Advances in Neural
Information Processing Systems (NIPS), 2004, pp. 767–774.

[32] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press
Cambridge, 2005.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[35] S. Levine and V. Koltun, “Guided policy search.” in Intl. Conf. on
Machine Learning, 2013, pp. 1–9.

[36] S. Ross, G. J. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning.” in
AISTATS, vol. 1, no. 2, 2011, p. 6.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, I. Sadik, A. Antonoglou, H. King, D. Kumaran, D. Wier-
star, S. Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature 518, 529-533, 2015.

[38] S. Chung, D. D. Lee, and H. Sompolinsky, “Linear readout of object
manifolds,” Phys. Rev. E, vol. 93, p. 060301, 2016.

[39] S. Zhong and J. Ghosh, “Decision boundary focused neural network
classifier,” in Intelligent Engineering Systems Through Artificial Neu-
ral Networks, 2000.

[40] R. Collobert and S. Bengio, “A gentle hessian for efficient gradient
descent,” in Acoustics, Speech, and Signal Processing, 2004., vol. 5,
2004, pp. V–517.

[41] J. Nagi, G. A. Di Caro, A. Giusti, F. Nagi, and L. M. Gambardella,
“Convolutional neural support vector machines: hybrid visual pattern
classifiers for multi-robot systems,” in Machine Learning and Appli-
cations (ICMLA), vol. 1, 2012, pp. 27–32.

[42] Y. Tang, “Deep learning using linear support vector machines,” in
Workshop on Representational Learning, ICML, 2013.

[43] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.
[44] S. Schonherr, “Quadratic programming in geometric optimization:

Theory,” Implementation and Applications, 2002.
[45] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, 2012.

	I Introduction
	II Related Work
	III Problem Formulation
	IV Memory Architecture
	V Asynchronous DAgger
	VI Generalization Ability
	VII Results and Analysis
	VII-A Cul-de-sac vs Parallel Walls
	VII-B Neural Networks
	VII-C Training Implementation
	VII-D Results
	VII-E Discussion

	VIII Conclusion
	References

