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Particle-Filter-Enabled Real-Time Sensor Fault Detection Without a
Model of Faults

Matthew A. Wright and Roberto Horowitz

Abstract— We are experiencing an explosion in the amount
of sensors measuring our activities and the world around us.
These sensors are spread throughout the built environment
and can help us perform state estimation and control of
related systems, but they are often built and/or maintained
by third parties or system users. As a result, by outsourcing
system measurement to third parties, the controller must accept
their measurements without being able to directly verify the
sensors’ correct operation. Instead, detection and rejection
of measurements from faulty sensors must be done with the
raw data only. Towards this goal, we present a method of
detecting possibly faulty behavior of sensors. The method does
not require that the control designer have any model of faulty
sensor behavior. As we discuss, it turns out that the widely-
used particle filter state estimation algorithm provides the
ingredients necessary for a hypothesis test against all ranges of
correct operating behavior, obviating the need for a fault model
to compare measurements. We demonstrate the applicability of
our method by showing its ability to reject faulty measurements
and accuracy in state estimation of a nonlinear vehicle traffic
model, without information of generated faulty measurements’
characteristics. In our test, we correctly identify nearly 90% of
measurements as faulty or non-faulty without having any fault
model. This leads to only a 3% increase in state estimation
error over a theoretical 100%-accurate fault detector.

I. INTRODUCTION

Much ado has been made about the contemporary ex-
plosion of ubiquitous sensors and actuators in engineered
artifacts and the built environment. “Big data,” the “Inter-
net of Things” - these and other recently-coined, oft-heard
phrases call back to the idea that, in the past few years, a sea
change has occurred in our ability to measure the world. For
control and systems engineers, these new data increase the
ability to measure and precisely control built-environment
systems, with applications like localized responsive building
HVAC regulation, connected vehicles for traffic management
and accident reduction, and power systems, up to and in-
cluding automated coordination between power producers,
consumers, and storers in a “smart” grid. When third-party
measurements are collected and submitted by end users of
Internet-of-Things devices and the like, fusion of these data
can enhance the estimation and control of these sorts of
highly-sensed and/or highly-actuated systems.

However, these new data can present their own problems.
Like any sensor, these third-party sensors cannot always
behave perfectly, and data may be collected and submitted by
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a sensor that is faulty, overly noisy, tampered-with, or other-
wise misreporting. This problem of sensor fault detection is
a problem as widespread and highly-studied across industries
as the use of sensors themselves. Some fault detection
methods attempt general applicability to large classes of
systems, while others take advantage of application-specific
knowledge to detect failures along known failure modes.
See [1] for a recent survey that covers both general and
specific methods in the literature. For the example application
considered in this work, that of vehicle speed measurements
for traffic control, we show a general algorithm. Since third-
party sensors in this example vary widely, it was necessary
to focus on a generally-applicable scheme.

In particular, we make use of the particle filter, a widely-
used state estimator for general stochastic nonlinear systems
[2]. We are not the first authors to use a particle filter state
estimator for sensor fault detection purposes. The particle
filter is a flexible and widely-applicable state estimator, and
it has been used for fault detection by providing “analytical
redundancy” [1]. This means its estimate is used to produce
a predicted sensor reading that is compared to received
measurements, with any difference being potential evidence
of faults. Often, however, it is assumed that the engineer
has models for sensor faults, and the particle filter estimate
is used to select a maximum-likelihood estimate among the
known types of sensor modes (cf. interacting-multiple-model
estimators, and e.g., [3]–[6]). Some recent works have con-
sidered a more probabilistic handling of potential faults, in
keeping with the particle filter’s nature as a probabilistic state
estimator. In [6], for example, when a sensor measurement
diverges from the particle filter estimate, the errors between
the observed and predicted measurements over the next few
timesteps are collected. After a while, a hypothesis test is
performed to determine whether the errors are large and
consistent enough to confirm a sensor fault, and which (if
any) known fault models are active.

Two common threads among these particle-filter-based
methods are assumptions of knowledge of fault models and
that the sensors will repeatedly report so that potential faults
can be examined over time. However, when dealing with
third-party sensors, we cannot guarantee these assumptions:
sensors may start and stop reporting uncontrollably, and the
engineer may not have the opportunity to examine the sensors
and see how they may fail before having to use their readings.

In contrast to these previous works, the present paper
presents a method for sensor fault detection where no model
of faulty behavior is available. As we shall see, the con-
struction of the particle filter gives us the data to perform a



particular hypothesis test for sensor fault detection. This test
forms the basis of our fault detection method. This particular
form of hypothesis test is nonparametric, as opposed to [6]’s
parametric hypothesis test, and only needs a model of non-
faulty sensor behavior. This method can be used in real-time
to detect faults in third-party sensors that may not have a
fault model, and may sporadically or unpredictably report.

Section II gives a mathematical statement of the fault
detection problem, and Section III discusses the extension
of filtering and state estimation to include our fault detection
formulation. Section IV introduces the constraint of a lack
of a fault model, and outlines where, mathematically, this
prevents us from both state estimation and fault detection.
Section V introduces the particle filter, and Section VI
discusses how its structure allows us to naturally overcome
the lack-of-fault-model problem. Section VII describes an
example application, where faulty speed measurements from
third-party global navigational satellite system (GNSS) de-
vices are detected in a particle filter for estimating vehicle
density on a freeway.

II. PROBLEM STATEMENT

Let xk ∈ RN denote the state vector of our system at time
k, and yk ∈ RMk denote the measurement vector at time k
(note that yk may be of different size at different times k).
The state and observation vectors evolve over time through
discrete-time stochastic state and output equations, denoted
Fθ(·) and Gθ(·) respectively,

xk = Fθ (xk−1)
yk = Gθ (xk) ,

(1)

with θ a parameter vector describing the randomness or
process/measurement noise of F and G. An alternative
probabilistic notation may rewrite (1) as

Xk| (Xk−1 = xk−1) ∼ f (xk|xk−1, θ) (2a)
Yk| (Xk = xk) ∼ g (yk|xk, θ) , (2b)

where Xk (Yk) denotes a random vector and xk (yk) the
value of a particular realization. The functions f(·) and
g(·) are the probability density functions (PDFs) induced
by Fθ(·) and Gθ(·), respectively. The initial condition of the
system, x0, is assumed fixed or distributed with some known
density p(x0|θ). More precisely, f(xk|xk−1, θ) is a Markov
transition kernel with a distribution on the random vector
Xk|(Xk−1 = xk−1), and g(yk|xk, θ) is a typical observation
likelihood. To reduce notational clutter, we omit the symbol
θ from now on.

In (2), the observation PDF is a joint PDF over all elements
of the observation vector Yk. This is the most general
formulation of this PDF, and allows for all elements of Yk
to be statistically dependent. This would be appropriate, if,
for example, the entire vector Yk was reported by a single
sensor, and the noise in measuring one element of Yk was
correlated with the noise in measuring the other elements.

In our setting, however, we are dealing with many different
sensors and reporting devices. Say that Yk contains mea-
surements from mk different sensors (like Mk (the length

of Yk), mk may be different at different timesteps k), and
let j ∈ {1, . . . ,mk} index the sensors that report at time k
(we will not have mk =Mk if any sensor reports more than
one measurement). Say that Ykj is the random vector that
contains the element(s) of Yk from sensor j at time k. Now,
if we assume that individual sensors j have independent
measurement noises, we may rewrite (2b) as

Yk| (Xk = xk) ∼ g (yk|xk) =
mk∏
j=1

gkj
(
ykj |xk

)
, (3)

where ykj is the measurement(s) received from sensor j at
time k (i.e., a realization of the random vector Ykj ), and
gkj (·) is the PDF for Ykj . Equation (3) is an assumption
on the form of the joint sensing PDF and is a common
assumption in multisensor filtering and sensor fusion (e.g.,
[7, (6)], [8, (9)], [9, (35.3)], [10, Section 2.2])). We have
factored g(·) into its component per-sensor PDFs.

As written in (3), gkj (·) is in a general form, with no
explicit model of faulty vs. non-faulty measurements. For
our purposes, “faulty” means any measurement that does
not provide information about xk and that we would like to
discard. We now describe how we handle faulty sensors by
explicitly indicating whether sensor j at time k is reporting
in either a valid (i.e., as-intended) mode, or a faulty mode.
To this end, we introduce a Bernoulli random variable Zkj ,
which takes value 1 in the event that a measurement from
sensor j is not faulty, and 0 in the event that a measurement
is faulty. Written as a probability mass function (PMF),

p(zkj |xk) =
(
φkj (xk)

)zkj
(
1− φkj (xk)

)(1−zkj )

for zkj ∈ {0, 1},
(4)

where φkj is a weight equal to the prior probability that
sensor j reports a measurement in a valid, as-intended
manner. It is a prior probability, in that it is the probability
that any given measurement is non-faulty before we actually
see the measurement. It can be based on prior knowledge,
or estimated in real time.

The parameter φkj being a function of xk allows for the
possibility that the Zkj are dependent on Xk; that is, that
certain areas of the state space for xk could lead to a greater
likelihood of faulty measurements than others. This is the
most general formulation, and we may simplify the problem
by assuming independence of Zkj from Xk later.

Now, we can condition gkj (·) from (3) on Zkj ,

gkj (ykj |zkj , xk) , g
zkj

kj
(ykj |xk), (5)

where g1kj (·) is the PDF for the valid sensor behavior, and
g0kj (·) is the PDF for faulty measurements. In practice, we
should have a model for g1kj (·), the expected behavior of the
sensor, but g0kj (·) may be unknown if we cannot predict every
way in which the sensor may fail and/or the probabilities of
each failure mode.

III. EXTENDING FILTERING TO INCLUDE Zk

In this Section, we reintroduce recursive, or Bayesian,
filtering in a form that includes the variable Zk we have just



defined. At this point we do not consider the unavailability
of g0kj (·): that will be considered beginning in Section IV.

A. Reformulation of Bayesian Filtering

In this formulation, detecting a fault for a particular sensor
j at time k means determining whether zkj is equal to 0 or
1. Of course, zkj is not directly observable, and its value
must be estimated alongside xk from the observed ykj .

This can be written as a slight extension of traditional
recursive Bayesian filtering. This extension is very similar
to filtering for a hybrid system as used in, e.g., [4]. Let
Zk represent the collection of random variables Zkj at time
k, and let yK = {yk, yk−1, . . . , y1}, i.e. the set of all
measurements up to time k. Assume that at time k we have
an estimate of the PDF p(zk−1, xk−1|yK−1). Then, we can
predict Zk and Xk before observing measurements Yk,

p(zk, xk|yK−1) =p(zk|xk) p(xk|yK−1)

=p(zk|xk)
(∑
zk−1

∫
p(zk−1, xk−1|yK−1)

× f(xk|xk−1)dxk−1
)
, (6)

where we have used the Markov property of our system to
have p(zk|xk) = p(zk|xk, yK−1), and marginalized out the
variables Xk−1 and Zk−1. Often, when f(·) is nonlinear,
computing the integral in closed form in (6) is difficult,
and an approximation is used. One such approximation, the
particle filter approximation, is discussed in Section V.

After computing (6), we update our predictions once
measurements Yk have been received,

p(zk, xk|yK) =
p(zk, xk, yk|yK−1)

p(yk|yK−1)

=
p(zk, xk|yK−1)p(yk|xk, zk)

p(yk|yK−1)
(7)

where we again use the Markov property in writing
p(yk|xk, zk) = p(yk|xk, zk, yK−1). Equations (6) and (7) are
the prediction and filtering steps, respectively, of recursive
Bayesian filtering [2, Section 2.2], with a slight modification
in that Zk is added. We will outline how these equations and
PDFs are different from the standard formulation.

The function p(zk|xk) is the prior PMF of fault/non-fault
sensor behavior (prior, in that it is the PMF of Zk before
the measurement vector Yk is seen). The PDF p(yk|xk, zk)
is the joint likelihood of this measurement vector Yk from
our unobserved system variables Xk and Zk. Since, in (3),
we assumed that the sensors j at time k had independent
measurement noises, and could factor the observation model
across sensors, we will do the same thing with these two
functions,

p(zk|xk) =
mk∏
j=1

p(zkj |xk)

p(yk|xk, zk) =
mk∏
j=1

g
zkj

kj
(ykj |xk),

with p(zkj |xk) and g
zkj

kj
(ykj |xk) given by (4) and (5),

respectively.
The marginal likelihood,

p(yk|yK−1) =
∑
zk−1

∑
zk

∫∫
p(zk−1, xk−1|yK−1)f(xk|xk−1)

× p(zk|xk)p(yk|xk, zk)dxk−1dxk, (8)

plays the role of a normalizing constant.

B. Relevant conditional and marginal PDFs

The PDFs (6) and (7) are the joint PDFs of the state Xk

and sensor fault probabilities Zk conditioned on measure-
ments. These joint PDFs, however, are high dimensional,
which presents two important drawbacks.

First, the PDFs can become very large. If the size of an
estimate of p(xk|yk) is proportional to N (the dimensionality
of Xk), the size of an estimate of the joint PDF p(zk, xk|yK)
will be proportional to N · 2Mk (recall Mk is the length of
Yk), since a different estimate of Xk will exist for every
combination of faulty/not faulty of all sensors (cf. [3]). For
all but trivial problems, this may be infeasible.

Second, they are difficult to interpret: these large joint
probabilities do not immediately answer the questions “what
is the probability that sensor j at time k is faulty” or “what is
the best estimate of the state Xk after accounting for potential
faults.”

Both concerns are answered with marginal or conditional
PDFs for Zkj and Xk, respectively. We discuss how to
compute these marginal and conditional PDFs in this Section.

One of these values, the posterior probability that a par-
ticular sensor j at time k is faulty for a particular value of
Xk has the PMF

p(zkj |xk, yK) = p(zkj |xk, ykj ) =
p(zkj |xk)p(ykj |xk, zkj )

p(ykj |xk)

=
p(zkj |xk)g

zkj

kj
(ykj |xk)

p(ykj |xk)

=

(
φkj (xk)

)zkj
(
1− φkj (xk)

)(1−zkj ) g
zkj

kj
(ykj |xk)

p(ykj |xk)
for zkj ∈ {0, 1},

(9)

where in the first equality we have again used the assumption
that the sensors j at time k have independent measurement
noises and the Markov property of f(·), and the final two
equalities use (4) and (5).

From (9), we can see that determining the probability that
a sensor is faulty is itself a Bayesian inference problem,
with p(zkj |xk) being a prior distribution and g

zkj

kj
(ykj |xk)

a likelihood. The marginal likelihood in the denominator,

p(ykj |xk) =
∑
zkj

p(zkj |xk)p(ykj |xk, zkj )

=
∑
zkj

p(zkj |xk)g
zkj

kj
(ykj |xk), (10)

again acts as a normalizing constant.



The PMF (9) is a conditional probability on Xk: it gives
the probability that sensor j at time k is faulty for a
particular value of Xk. The marginal PMF p(zkj |yK), which
averages the fault probability over all possible values of Xk;
and PDF p(xk|yK), which weights our state estimate by the
estimated probability of fault for each sensor; are easy to
calculate from (7),

p(zkj |yK) =

∫ ∑
zk\zkj

p(zk, xk|yK)dxk (11a)

p(xk|yK) =
∑
zk

p(zk, xk|yK). (11b)

IV. PROBLEM STATEMENT WITHOUT A MODEL OF FAULTS

Recall from Section II that we may only have a model of
g
zkj

kj
(ykj |xk) of the case Zkj = 1 (the measurement PDF of

a sensor operating correctly), if we cannot predict every way
a measurement might be faulty. This Section discusses how
not having a model of faulty behavior stymies Section III’s
straightforward attempts at filtering.

Note that g0kj (·) appears in all of the PDFs of interest in
Section III: explicitly as in (9) or within the summations over
zk that appear in the marginal likelihoods (8) and (10). Not
having a model of g0kj (·) means that these equations cannot
actually be computed. In the case of p(zkj |xk, ykj ), it is
simple enough to restrict ourselves to Zkj = 1 and compute
(9) in that special case,

P (Zkj =1|Xk=xk,Ykj =ykj )=
φkj (xk)g

1
kj
(ykj |xk)

p(ykj |xk)
.

However, the denominator p(ykj |xk), the marginal like-
lihood and normalizing constant, still requires g0kj (·) to
compute it from (10). With what we have so far, the best
we can do is to emphasize that the marginal likelihood is a
constant since it does not vary with Zkj ,

P (Zkj = 1|Xk = xk, Ykj = ykj )

= Ckjφkj (xk)g
1
kj (ykj |xk),

(12)

for some scalar constant Ckj .
Parallel analyses are possible for the joint PDF

p(zk, xk|yK) and the marginals in (11), with the unsolvable
marginal likelihood in these cases being p(yk|yK−1) in (8).

In (12), we have replaced the normalizing denominator
containing g0kj (·) with a constant that must be estimated.
This can be thought of as a general, and difficult, parameter
estimation or adaptive control problem. The best parameter
estimation method for Ckj will vary on a case-by-case basis
with the particular system considered and available data.

As it turns out, though, the inability to calculate nor-
malizing denominators is a particularly common issue in
Bayesian filtering: marginal likelihoods like (8) and (10)
often cannot be computed when the PDF f(xk|xk−1) is not
available in closed form or not easily integrable. In these
situations, the particle filtering algorithm is appropriate, as
it can approximate the prediction and filtering steps without
computing p(yk|yK−1). The next Section introduces the

particle filtering algorithm, and Section VI discusses how
to extend it to deal with the inability to directly compute (8)
or (10) due to a lack a model of faults.

V. PARTICLE FILTER IMPLEMENTATION

The methods discussed so far make use of many PDFs
(and integrals thereof). These operations may be performed
in closed form when the integrals are relatively simple, but
this is often not the case when the system (1) is nonlinear.

For these situations, state estimation is often performed
using Monte Carlo methods, with perhaps the most widely-
used method being the particle filter [2]. A particle filter
may be used when no closed-form model for f(·) exists (but
the PDF may be sampled from by, e.g., running a stochastic
simulation many times), or when numerically computing the
integrals in (6) and (8) is computationally expensive.

A particle filter is constructed by replacing PDFs for Xk

and Zk with approximate PDFs (denoted with a hat) made
up of many discrete samples (also called particles) from the
continuous PDF. We extend a traditional particle filter by
including the random variable Zk from (6) (again, this is
similar to previous works, e.g., [4]). Starting with an approx-
imate PDF from the previous timestep, p̂(zk−1, xk−1|yK−1),

p(zk, xk|yK−1) = p(zk|xk)
(∑
zk−1

∫
p(zk−1, xk−1|yK−1)

× f(xk|xk−1)dxk−1
)

≈ p(zk|xk)
P∑
p=1

(∑
zk−1

p(zk−1, x
p
k−1|yK−1)δf (x

p
k|x

p
k−1)

)
= p(zk|xk)p̂(xk|yK−1)
= p̂(zk, xk|yK−1), (13)

where P is an integer denoting the total number of particles
drawn from f(·), p ∈ {1, . . . , P} indexes individual particles
(or atoms of the probability distribution), and δf

(
xpk|x

p
k−1
)

is a Dirac delta, which places a unit mass on the point
xpk|x

p
k−1, which is in turn equal to F(xpk−1) for the pth

particle. The term p(zk−1, x
p
k−1|yK−1) refers to the proba-

bility for this particle p from our approximate PDF from the
prior timestep, p̂(zk−1, xk−1|yK−1). The final two equalities
indicate that the empirical PDF p̂(zk, xk|yK−1) consists of a
weighted sum of P points (zk|xpk, x

p
k|x

p
k−1), with individual

weights p(xpk|yK−1), where the weights sum to one.
The corresponding particle filter update equation comes

from plugging (13) into (7),

p(zk, xk|yK) =
p(zk, xk|yK−1)p(yk|xk, zk)

p(yk|yK−1)

≈ p̂(zk, xk|yK−1)p(yk|xk, zk)
p(yk|yK−1)

=
1

p(yk|yK−1)

( P∑
p=1

p(zk|xpk)p(yk|x
p
k, z

p
k)δf (x

p
k|x

p
k−1)

×
∑
zk−1

p(zpk−1, x
p
k−1|yK−1)

)



=

∑P
p=1 p(z

p
k, x

p
k|yk)δf (x

p
k|x

p
k−1)

p(yk|yK−1)
(14)

= p̂(zk, xk|yK).

This posterior empirical PDF p̂(zk, xk|yK) is thus made of
the same collection of Dirac deltas as in p̂(zk, xk|yK−1),
but with updated weights to reflect each point’s updated
probability (i.e., the prior probability times the likelihood).

As mentioned above, use of a particle filter also allows
us to avoid having to calculate the marginal likelihood
p(yk|yK−1) using (8). Instead, after p(zpk, x

p
k|yK) is cal-

culated for every particle p in (14), we normalize these
probabilities so that they sum to one,

p(yk|yK−1) ≈
P∑
p=1

p(zpk, x
p
k|yK). (15)

Equations (14)-(15) make up the update computation that is
used in practice. However, for fault detection we will use a
different update step, detailed in the next Section.

For brevity, we omit discussion of the particle filter’s post-
update resampling step. See, e.g., [2], for details.

VI. PARTICLE-FILTER-ENABLED NONPARAMETRIC
HYPOTHESIS TESTING

A. Estimating the PDF of our null hypothesis

We now discuss the use of particle filter for sensor
fault detection without a model of faults, g0kj (·). To do so,
we propose a modification described in this Section. Once
we have computed a prediction step (13), instead of the
traditional update step (14), we examine individually whether
each sensor j at time k can be determined to be faulty. For
every sensor, we can find

p(ykj |Zkj = 1, yK−1) =

∫
p(ykj , xk|Zkj = 1, yK−1)dxk

=

∫
p(ykj |Zkj = 1, xk)p(xk|Zkj = 1, yK−1)dxk

=

∫
g1kj (ykj |xk)

p(xk, Zkj = 1|yK−1)
P (Zkj = 1|yK−1)

dxk

=

∫
g1kj (ykj |xk)

P (Zkj = 1|xk)p(xk|yK−1)
P (Zkj = 1|yK−1)

dxk

≈
∑P
p=1 g

1
kj
(ykj |x

p
k)φkj (x

p
k)p(x

p
k|yK−1)

P (Zkj = 1|yK−1)
(16)

= p̂(ykj |Zkj = 1, yK−1),

where, now, with ykj not being conditioned on, g1kj (ykj |x
p
k)

means the actual PDF for Ykj |(X
p
k = xpk, Zkj = 1).

Therefore, the PDF p̂(ykj |Zkj = 1, yK−1) is now a sum
of non-delta PDFs; it can be compared to a kernel density
estimate [11, Ch. 6]. The term p(xpk|yK−1) in (16) is just
the particle p’s prior probability from p̂(zk, xk|yK−1).

The sum over p(xpk|yK−1) for particles p weighs this PDF
by the probabilities of particular values of xk. Note that,
since we have conditioned on Zkj = 1, the constant Ckj from
(12) does not appear. The denominator P (Zkj = 1|yK−1) is
unknown, and computing it in closed from requires integrals

over xk. However, taking advantage of the particle filter
structure, we can approximate this term similarly to (15),

P (Zkj = 1|yK−1) ≈
P∑
p=1

φkj (x
p
k)p(x

p
k|yK−1). (17)

The empirical PDF in (16)-(17) is an estimate of
p(ykj |Zkj = 1, yK−1), the PDF of sensor j at time k’s
measurements under non-faulty sensor behavior. We will use
this PDF to evaluate whether specific sensors might be faulty.

B. Performing the hypothesis test
Plugging a particular value of ykj into p(ykj |Zkj =

1, yK−1), assuming Ykj is a continuous random variable or
vector, gives (loosely speaking) P (Ykj ∈ Bε(ykj )|Zkj =
1, yK−1), where Bε(ykj ) is an ε-ball centered at ykj . Finding
the value of our estimate p̂(ykj |Zkj = 1, yK−1) at an
observed ykj , then, gives P̂ (Ykj ∈ Bε(ykj )|Zkj = 1, yK−1).

At this point, we have established the necessary com-
ponents to conduct a hypothesis test for a null hypothesis
H0 : Zkj = 1. For some α ∈ (0, 1), we can reject H0 and
conclude that Zkj = 0 (that is, that the sensor is faulty and
should be excluded) if

P̂ (Ykj ∈ Bε(ykj )|Zkj = 1, yK−1) < α (18)

for the observed value of ykj .
The α here plays the role of a significance level for the

hypothesis test, which is the maximum acceptable probability
of declaring a sensor faulty when it is actually non-faulty.
Here, the test in (18) is a nonparametric hypothesis test, as
we use a nonparametric model of p(ykj |Zkj = 1, yK−1) as
given by (16)-(17)1.

Once we have rejected sensors that meet (18), the remain-
ing sensors (those for which we could not reject H0) can be
concluded to be non-faulty and their measurements can be
used in a particle filter update equation that takes Zkj = 1
for these remaining sensors:

p̂(xk|yK) =
1

p(yk|yK−1)

×
P∑
p=1

( ∏
kj∈H0

g1kj (ykj |x
p
k)

)
δf (x

p
k|x

p
k−1)p(x

p
k−1|yK−1)

=

∑P
p=1 p(x

p
k|yK)δf (x

p
k|x

p
k−1)

p(yk|yK−1)
, (19)

where H0 is the set of sensors that did not meet (18), and
the denominator p(yk|yK−1) is estimated via (15).

A higher value of α leads to more aggressive rejection
of measurements. Also note that in general we do not
have P̂ (Ykj ∈ Bε(ykj )|Zkj = 0, yK−1) = 1 − P̂ (Ykj ∈
Bε(ykj )|Zkj = 1, yK−1). The RHS, the true probability that
a sensor j at time k is taken to be non-faulty when it is
actually faulty, needs knowledge or estimation of g0kj (·).

1 Note that, strictly speaking, (18)’s hypothesis test is not tied to a particle
filter as we have developed it in this paper. The particle filter, though, gives
us a generally-applicable nonparametric hypothesis test. If we have a system
where we know a parametric filter (such as a Kalman or Extended Kalman
Filter) is appropriate (i.e., if we have a closed-form, easily-integrable f(·)),
we could derive (16) and (18) for the alternative filter’s parametric PDFs.



C. Algorithm

Our particle filter method with real-time fault detection
without fault models can be summarized as:

1) Perform a prediction step as normal, using (13).
2) For each sensor j at time k, calculate

p̂(ykj | Zkj = 1, yK−1) using (16).
3) For each sensor, determine whether to reject it as faulty

using (18) for the observed ykj .
4) Perform an update step with the non-rejected measure-

ments using (19) (and, if desired, a resampling step).
5) Advance in time, k ← k + 1, return to step 1, repeat.
In summary, repurposing of the particles we already have

when we use a particle filter allows us to perform hypothesis
tests, and detect faults of unknown form, for free.

VII. A CASE STUDY: GNSS SENSOR FUSION FOR
HIGHWAY TRAFFIC STATE ESTIMATION

Our case study concerns a traffic control system that
takes possibly-faulty third-party data from connected vehi-
cles’ global navigational satellite system (GNSS) devices to
estimate the state of a road network. Accurate knowledge
of traffic systems’ operations is needed for reactive traffic
control, and gaining this knowledge from third-party data
is a goal of modern intelligent transportation system “smart
city” applications [12], [13].

A. System model equations for our case study

In [14, Section IV-B], we presented results obtained using
a particle filter that used the techniques detailed in Section
V. We demonstrated the particle filter’s performance on a
19-mile portion of I-210 West in southern California. As our
system model f(·), we make use of the macroscopic Cell
Transmission Model (CTM) [15], which approximates traffic
as compressible fluid flows. This type of model can capture
important nonlinear emergent features in traffic flows like
traffic jams and congestion waves.

In the CTM, the freeway is discretized into a sequence of
finite-volume cells, also called links. The state vector xk is
the vector of link densities ρ`,k. The state update equation
for link ` is

ρ`,k+1 = ρ`,k +
1

L`
(q`−1,k − q`,k + r`,k − s`,k), (20)

where L` is the length of link `, q`,k denotes the vehicle
flow leaving link ` to link ` + 1 at time k, r`,k is the flow
entering link ` from an onramp (if any) at time k, and s`,k
is the flow leaving link ` to an offramp (if any) at time k.
When there is no onramp entering link ` + 1, the inter-link
flows in (20) are given by

q`,k = min(vf,` · ρ`,k · L`, Qmax,`,
w`+1 · L`+1 · (ρJ,`+1 − ρ`+1,k)),

(21)

where vf,` is the freeflow speed of link `, Qmax,` is the
capacity, or maximum possible flow over a time period,
of link `, w`+1 is the speed at which congestion waves
propagate upstream in link ` + 1, and ρJ,`+1 is the jam
density, or maximum possible density, of link `+1. The third

TABLE I
SIMULATED GNSS MEASUREMENT FAULT DETECTION RESULTS

α = 0.001 α = 0.01 α = 0.1 No Faults

True Positives 1092 1340 1994 -
False Positives 88 95 2868 -
True Negatives 4506 4499 1726 -
False Negatives 914 666 12 -
Labeling Error 15.18% 11.53% 43.64% -

Density MAPE 3.81% 3.51% 4.63% 3.43%

In these results, an incorrect φkj
= 0.3 is used (see text). “Positives” refer

to sensors for which we accepted H1, i.e., sensors that our fault detection
hypothesis test (18) concluded were faulty. “True” and “False” refer to
correct and incorrect decisions, respectively, of whether a sensor is faulty.
MAPE = mean absolute percentage error.

term in the min(·) function in (21) lets the downstream link
`+ 1 refuse to accept flow from link ` if `+ 1 is too full.

When there is an onramp entering link `+1, its available
supply (the third argument to (21)’s min(·) function) is
distributed among link ` and the onramp according to the
junction model of [16]. The ramp flows themselves, s`,k
and r`,k in (20), are random variables. See [14] for full
implementation details of these last two points.

A common type of first-party sensor for freeway traffic
are inductive loop detectors buried in the pavement. These
detectors can noisily measure density. A third-party source of
data are vehicle-carried GNSS devices that report the speed
of individual vehicles. In the CTM, the speed of traffic in
link ` at time k is v`,k = Ll ·ρ`,k/q`,k. A high vehicle density
leads to congestion, and hence low speeds. We can use speed
measurements to estimate density using this relationship in
a Rao-Blackwellized particle filter, as discussed in [14].

To test our fault detection method, we simulated a real-
ization of our freeway model, with randomness introduced
by the random onramp, offramp, and upstream boundary
flows. In addition to noisy density measurements from 41
loop detectors, we simulated GNSS speed measurements
with a simulated penetration rate of 2%. To generate the
faulty third-party measurements, we used φkj (xk) = 0.7
for all j, k, and xk, i.e., each speed measurement had a
30% probability of being faulty. We used two fault models:
a faulty measurement had a 1/3 probability of reporting
zero (i.e., a stopped car misreporting its location), and a
2/3 probability of drawing from a Gaussian distribution with
mean 30 m/s and standard deviation 10 m/s. The non-fault
model for velocity measurements, g1kj (·), was Gaussian with
a mean of the true link velocity and standard deviation of
10% of the mean (similar to [12]). Fig. 1 shows the true state
and velocity measurements used. Note that the particle filter
state estimator/fault detector has no information of which
measurements might be faulty or what faults may look like.

B. Results

Table I presents the results of estimation with our fault
detection method for several levels of α, as well as a “best
case” state estimator where the faulty measurements are not
present. In these fault detection tests with our previously-
generated measurements, we used φkj = 0.3 in the estimation
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(c) Non-faulty speed subset (m/s)

Fig. 1. Simulated true density state trajectory (a), speed measurements (b), and non-faulty subset of speed measurements (c) used in simulation. Traffic
moves to the right, and the time period considered is midnight to noon (as marked on the vertical axis). In (a), the links instrumented with loop detectors
that noisily measure density are marked with red ticks. At peak morning demand, bottlenecks near links 30, 70, and 110 lead to traffic jams that propagate
upstream (i.e., they extend to the left as time advances), leading to increased density and lower speed. The jams later dissipate as demand falls.

algorithm. This φkj value was chosen as an arbitrary example
of an incorrect φkj value, since the true φkj for this example
problem was 0.7 (as set in the problem specification). By
running our algorithm with an incorrect φkj value, we
demonstrate that the hypothesis test (18) is robust to very
large uncertainty in this prior probability in this application.
Each state estimator used 1000 particles.

We see the influence of α that we would expect: higher
values lead to more aggressive flagging of measurements
as faults, with both true and false positives increasing as
α increases. The state estimation error is represented by
the mean absolute percentage error (MAPE), the average of
|ρ̂`,k − ρ`,k|/ρ`,k for all ` and k, with ρ̂`,k the `th entry of∑P
p=1 x

p
k · p(x

p
k|yk), i.e., the mean of the posterior particle

filter PDF. No state estimators that saw faulty data were able
to match the MAPE of the faultless estimator. However, the
estimation error decreases with fault labeling error, and the
α with the lowest fault labeling error (11.53% for α = 0.01)
has only a 3% increase in MAPE over the fault-free case.

VIII. CONCLUSION

This paper considered a problem where state estimation
is desired, but some measurements may be faulty in un-
known ways. Our method for handling this problem takes
advantage of a particle filter’s structure to perform real-
time nonparametric hypothesis tests against the known non-
faulty mode. Now that we have a tool that can pick out
faulty sensors, next steps include convergence analysis or
inclusion of adaptive control techniques for estimation of
unknown values, including the faulty sensor PDF g0kj (·)
and the optimum α in (18). For example, to estimate the
Bernoulli probability of a sensor fault, φkj , one could model
it as being drawn from a beta distribution (the conjugate prior
of the Bernoulli distribution). Then, as sensors are marked
as faulty or not in (18), φkj ’s distribution can be updated
based on standard Bayesian inference [17].

Our discussion was in the context of sensors that are
unintentionally faulty, but these methods should also be
applicable for robustness to falsified sensors. If a third party
has control of sensors used by a control system, a malicious
actor may feed spoofed measurements to the system to pur-

posely manipulate its operation. Our fault-model-free method
may complement existing defenses that actively search for
patterns indicative of spoofed data: perhaps the lack of an
explicit model for faulty or spoofed data may make it harder
for attacks to be tailored to evade such a detector.
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