
UCLA
UCLA Electronic Theses and Dissertations

Title
Integrating 3D and 2D Representations for View Invariant Object Recognition

Permalink
https://escholarship.org/uc/item/7sv1c5w3

Author
HU, WENZE

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sv1c5w3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Integrating 3D and 2D Representations for View
Invariant Object Recognition

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Wenze Hu

2012

c� Copyright by

Wenze Hu

2012

ABSTRACT OF THE DISSERTATION

Integrating 3D and 2D Representations for View
Invariant Object Recognition

by

Wenze Hu
Doctor of Philosophy in Statistics

University of California, Los Angeles, 2012

Professor Song-Chun Zhu, Chair

This thesis presents representations and corresponding algorithms which learn mod-

els to recognize objects in the full continuous view space. Particularly, we propose to

integrate the 3D object-centered representations with 2D viewer-centered representa-

tions, which fills in the representation gap between the sparse and simple 3D shapes

and their view variant appearances observed as image pixels. Towards this goal, this

thesis studies the following models and corresponding algorithms:

1. A mixed model and a pursuit algorithm that integrates 3D object primitives and

2D image primitives according to their information contributions measured as

information gains. This proposed measure is consistently used in subsequent

models, and also provides a numerical answer to the debates over object-centered

representation and viewer-centered representation.

2. A 2D compositional image model and a sum-max data structure which groups

the 2D image primitives to represent middle level image structures, such as line

segments, curves and corners. This middle level image model can be used to find

sparse representations of natural images, and connects the low level 2D image

representations to 3D object representations.

ii

3. A 3D hierarchical compositional object model and an AND-OR tree structure

which represents a huge number of possible 3D object templates using a lim-

ited number of nodes. This AND-OR tree hierarchically quantizes the infinite

and continuous space of object geometry and appearance, and decomposes the

3D object representation into 3D panels, whose appearance on images are fur-

ther decomposed into active curves and the 2D primitives. Though with multiple

hierarchies, learning and inference can be done efficiently by dynamic program-

ming,which is essentially composed of layers of sum and max operations.

iii

The dissertation of Wenze Hu is approved.

Hongquan Xu

Luminita Aura VESE

Ying Nian Wu

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2012

iv

To my parents, my wife and my daughter.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivations and Objective . 1

1.2 Background I: Structural 3D Object Representations 3

1.2.1 Marr’s Theory . 3

1.2.2 Recognition by Components 4

1.3 Background II: Image Representations by Sparse Coding 7

1.3.1 Olshausen-Field Model . 7

1.3.2 Active Basis Model . 8

1.4 Organization . 10

2 A Flat Probabilistic Model Mixing 3D and 2D Primitives 11

2.1 Introduction . 11

2.2 Related Work . 13

2.3 Dictionaries of 3D and 2D Primitives 15

2.3.1 3D Object Primitives . 15

2.3.2 2D Image Primitives . 18

2.4 Probabilistic Image Model . 19

2.5 Learning Algorithm . 21

2.5.1 Evaluate the Information Gain of a Primitive 23

2.5.2 Shared Primitive Pursuit . 26

2.6 Inference Algorithm . 27

2.7 Experiments . 30

vi

2.7.1 Dataset, Image Pre-processing and Parameters 30

2.7.2 Learning Mixed Templates . 32

2.7.3 Learning 3D Templates for Car Recognition and Viewpoint In-

ference . 34

2.8 Discussion . 37

3 Composing Image Primitives to Active Curves 38

3.1 Introduction . 38

3.2 Related Work . 41

3.3 Active Curve and Corner Templates 42

3.3.1 Active Curves . 42

3.3.2 Active Corners . 44

3.4 Image Model and Template Matching Score 45

3.5 Scoring All Templates by Sum-Max Maps 46

3.6 Selection of Corner and Curve Templates for Single Image 50

3.7 Active Curves and Corners as Features for Object Images 51

3.8 Experiments . 51

3.8.1 Implementation and Parameters 51

3.8.2 Sketch Natural Images . 52

3.8.3 Learning from Object Images 53

3.9 Discussion . 64

4 Integrating 3D and 2D Representations by AND-OR Tree 66

4.1 Introduction . 67

4.1.1 Motivation and objective . 67

vii

4.1.2 Overview of the Proposed Method 68

4.1.3 Related Literature . 70

4.1.4 Contributions . 73

4.2 AoT for Space Quantization . 74

4.2.1 G-AoT for Part Geometry . 74

4.2.2 A-AoT for Part Appearance 77

4.2.3 Instantiation of AoT . 82

4.2.4 Parse Trees as Samples of the Quantized Space 83

4.3 Probabilistic Image Model . 84

4.3.1 Probability Density Decomposition 84

4.3.2 Image Modeling by Density Substitution 85

4.4 Template Leraning by Dynamic Programming 86

4.4.1 Information Gain as the Objective for AND-OR Search 87

4.4.2 Information Gain as the Objective for AND-OR Search 87

4.4.3 AND-OR Search Algorithm 88

4.5 Inference Scheme . 91

4.5.1 Converting 3D Template to 2D Templates 91

4.5.2 Feature Weight Adjustment 92

4.5.3 Hypothesis Verification by Color Histogram 92

4.6 Experiments . 93

4.6.1 Image Dataset and Parameters 93

4.6.2 Scales of AoT as a Function of Volume Size 95

4.6.3 Representation Power of AoT and Octree 96

viii

4.6.4 Learning Object Templates . 98

4.6.5 Object Recognition Experiments 98

4.7 Discussion . 101

5 Conclusions and Future Work . 104

5.1 Thesis Summary . 104

5.2 Future Work . 105

ix

LIST OF FIGURES

1.1 Samples of geons and how they are generated 4

1.2 An overview of the 3D approach proposed by Dickinson 6

2.1 An illustration of a template mixing 3D and 2D primitives. 12

2.2 An overview of the mixed template representation 16

2.3 An overview of the image generating model 19

2.4 Primitive information gain as a function of µ
r

. 24

2.5 An illustration of 3D primitive pursuit 26

2.6 The conversion of ⌦ from a set to a 2 dimensional lookup table 29

2.7 A snapshot of the user interface for image view annotation. 31

2.8 Learned object templates for 10 object categories and their pursuit indexes 33

2.9 Results of pose estimation task . 35

2.10 The performance and sample results of detection task 36

3.1 An illustration of proposed visual codeword hierarchy 40

3.2 An illustration of active curve templates 43

3.3 An illustration of active corner templates 46

3.4 How indices of Active Curves are changed 49

3.5 An example of the sum-max data structure 54

3.6 More results on the single image representation 55

3.7 Representing images of objects . 56

3.8 Learned templates by adaBoost, using active basis and active curves as

features. For each case, . 57

x

3.9 AUC curves of boosted classifiers on horse images and leaves images . 58

3.10 A comparison of learned object templates using active basis and active

curves . 59

3.11 Learned object templates and their deformations on training images . . 60

3.12 Sample detection results on ETHZ dataset 62

3.13 The object detection performance on the ETHZ dataset. 63

4.1 An overview of the proposed 3D object representation. 69

4.2 An overview of the AND-OR Tree for the representation space 70

4.3 Volume quantization and decompositions 75

4.4 An Example of the Geometry AND-OR Tree 76

4.5 An example of the Appearance AND-OR Trees 79

4.6 An example of the deformation for shape templates 80

4.7 View distribution and sample images of our new dataset 94

4.8 Comparison of representation power between AoT and octree 97

4.9 Projection of 3D template to 2D templates, their decomposition, and

corresponding detection score maps. 99

4.10 Object detection performance on our proposed dataset 100

4.11 Pose estimation error on our newly collected dataset. 101

4.12 Object recognition performance on the 3D car dataset [Savarese and

Fei-Fei, 2007] . 102

4.13 Results on post estimation task . 102

4.14 Sample object detection and post estimation results 103

xi

LIST OF TABLES

3.1 Parameters for all the experiments on single images 52

4.1 List of visual concepts and their details 78

4.2 The scale of AoT and the number of possible 3D deformable templates

as bounding volume size grows. 95

xii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Song-Chun Zhu, for giv-

ing me the opportunity to conduct fascinating research in computer vision and applied

statistics, as well as his invaluable support and visionary guidance during my study on

this particular research direction.

My gratitude also goes to my other past or current thesis committee members: Pro-

fessors Stefano Soatto, Luminita Vese, Yingnian Wu, Hongquan Xu and Alan L. Yuille.

I thank professor Ying Nian Wu, as he is always happy and open to discuss any issues

related to my research, give me detailed suggestions and share his experience of re-

search. His minimalism style in pursuing simple yet effective models deeply affected

my thinking and practice on the subject of my research. I thank other members, for

their insightful discussions, advice and help in various aspects.

I feel very fortunate to have worked with my excellent fellow group members at

UCLA and collaborators at Beijing Institute of Technology: (in alphabetical order)

Haifeng Gong, Zhi Han,Yi Hong, Jungseock Joo, Bo Li, Amy Morrow, Seyoung Park,

Maria Pavlovskaia, Mingtao Pei, Arash G. Rad, Brandon Rothrock, Kent Shi, Yao

Shi, Zhangzhang Si, Qiongchen Wang, Shuo Wang, Ping Wei, Tianfu Wu, Dan Xie,

Xingyao Ye, Zhenyu Yao, Mingtian Zhao, Yibiao Zhao, Jiangen Zhang and Bo Zheng.

I have benefited greatly from their peer interactions and friendships during the past four

years.

I am also very fortunate to have the help from members in image annotation group

in Lotus Hill Institute. They helped me a lot in collecting and labeling data.

I would also like to thank my past roommates: Liang Lin, Lin Nie, Alan Lee and

Craig Lap-Fai Yu. As graduate students in vision and highly related fields, my dis-

cussions with them give me new knowledge and perspectives about the direction I am

studying.

xiii

Last, but not least, I would like to dedicate this thesis to my parents, my wife Celia

Xiaoyu Xu, for their love, patience, and understanding. During the last month, it is

my wife and parents in law who took care of our one month old Ruby, their offering

allowed me to spend most of the time on this thesis.

xiv

VITA

2006 B.S., Optical Information Science and Technology, Beijing Jiao-

tong University

2008 M.S., Optical Engineering, Beijing Institute of Technology

2009 C.Phil., Statistics, University of California, Los Angeles

2010 M.S., Statistics, University of California, Los Angeles

2009-2012 Graduate Student Researcher, Department of Statistics, University

of California, Los Angeles

PUBLICATIONS

W. Hu, H. Gong, S.-C. Zhu, and Y. Wang. An Integrated Background Model for Video

Surveillance Based on Primal Sketch and 3D Scene Geometry. In Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2008

W, Hu and S.-C. Zhu. Learning a Probabilistic Model Mixing 3D and 2D Primitives for

View Invariant Object Recognition. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2010

W. Hu, Y. N. Wu and S.-C. Zhu. Image Representation by Active Curves. In Proceed-

ings of International Conference on Computer Vision (ICCV), 2011

xv

J. Zhang, W. Hu, B. Yao, Y. Wang, and S.-C. Zhu. Inferring Social Roles in Long

Timespan Video Sequence. In Proceedings of International Workshop on Video Event

Categorization, Tagging and Retrieval for Real World Applications, 2011

W. Hu. Learning 3D Object Templates by Hierarchical Quantization of Geometry

and Appearance Spaces. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2012

xvi

CHAPTER 1

Introduction

1.1 Motivations and Objective

Through retinal images, we can easily perceive and categorize objects regardless of

their views. Starting from 1970s, the vision research community proposed various the-

ories and frameworks, trying to explain the mechanism of view invariant object recog-

nition in human vision and empower the computer similar capability.

With a limited amount of images for validation, researchers at the early stage em-

phasis on developing coherent frameworks and finding principled approaches that offer

invariance to viewpoint and small object structure change, as well as to other factors

such as articulation and occlusion. Many of these early systems employ 3D object

representations, as intuitively the effects of these factors can be synthesized with lim-

ited operations in 3D object space. Despite powerful modeling paradigms, these early

systems lacked the low- and middle-level processing that would recover their assumed

intermediate representations, such as boundaries and junctions from real images of real

objects.

With the increasing interest in getting high performance on large amount of real

images, researchers in current era migrate away from 3D models, and take their object

categorization models more closer to images, using easily extractable image appearance

representations and recent advances from machine learning and optimization. This

trend popularized many image descriptors such as SIFT [Lowe, 1999], SURF [Bay

1

et al., 2008] and HoG[Dalal and Triggs, 2005] etc., which trim the dimension of image

patch sets to the level that optimization methods can process, and offer some level

of invariance to factors such as image noise, contrast change, and local displacement

of certain image features. However, this trend also makes the result classifiers view

specific, because the readily available tools from machine learning do not model this

vision specific effect.

On image datasets with limited views, researchers propose to solve this problem by

combing multiple view-specific classifiers following the theory of aspect graph. How-

ever, a quick review of the aspect graph literature in 90s immediately reveals its prob-

lem: there are simply too many aspects if we extend this approach to model the whole

view sphere.

In this thesis, we want to go back to the 3D representations, and ground them with

image pixels using 2D image appearance models, so that the 3D model can be learned

and applied to recognize objects in real images invariant to view change. We hope that

by having 3D object representations, we can further take advantage of the early research

and better solve other vision problems such as occlusion. Towards this goal, we have

studied the following models:

1. A flat model that integrates 3D object primitives and 2D image primitives, which

combines and selects primitives according to their information gains. This model

and the corresponding algorithm provide a numerical answer to the debates over

object-centered representation and viewer-centered representation.

2. A 2D compositional model (active curves) that groups the 2D image primitives

(active basis) to represent middle level visual concepts, such as line segments,

curves and corners. These middle level concepts connect the low level 2D image

representations to 3D hierarchical compositional object representations.

3. A 3D hierarchical compositional object model and an AND-OR tree structure

2

from which the model can be learned. This AND-OR tree hierarchically quan-

tizes the infinite and continuous space of object geometry and appearance, and

fills in the representation gap between the stylized 3D shape components and

their 2D image observations as pixel intensities.

Before presenting the details of these models and algorithms, we want to first intro-

duce the following models and methods which inspire this thesis.

1.2 Background I: Structural 3D Object Representations

Many early theories of object recognition propose to represent objects in 3D space. In

these theories, objects are composed of parts and represented by these parts and their

spatial relationships. Usually, the used parts are from a small set of stylized 3D shapes.

The idea was first proposed by Binford [Binford, 1971], and are further developed by

lots of researchers including Marr [Marr and Nishihara, 1978], Biederman [Biederman,

1987], and Dikinson [Dickinson et al., 1992] from both human vision and the computer

vision perspective.

1.2.1 Marr’s Theory

In the seminal work by David Marr, the final stage of the proposed vision paradigm

is forming a 3D shape and a 3D model. To represent these shapes, Marr proposed

volumetric features which are called primitives. The complexity of these primitives

varies from simple units such as small cubes, to complex shapes of object parts, such

as limbs of animals.

Marr further argues that these primitives should be organized in modules, represent-

ing the hierarchical relations of the entire 3D object to its parts. For example, a human

body is consisted of several parts such as limbs, a torso, and a head. Each limb is then

3

decomposed into two components: lower and upper limb and are connected by a joint.

The lower arm part has in turn is composed of two parts and so on (see Marr’s figure

5.3 in [Marr, 1982]).

To recognize these models, Marr proposes that the 3D shape of objects is formed

using certain depth cues and a 2-1/2D sketch representation, which in turn uses a primal

sketch representation derived from retinal image. In this process, Marr emphasizes a

transition from image based viewer-centered representation to an object-centered rep-

resentation, where the later one is independent of the view.

1.2.2 Recognition by Components

1.2.2.1 Biederman’s Theory

(a) (b)

Figure 1.1: (a) An illustration of how geons can be germinated by varying attributes of

a cross section. (b) Some examples of proposed geons. Both figures are adapted from

[Biederman, 1987] with permission.

Biederman [Biederman, 1987] proposes that a 3D object of arbitrary shape can

be represented as placements of several simple parts called as ”geons”. The geons

4

resemble cubes, cylinders, cones and spheres. In his recognition by components (RBS)

theory, objects are differentiated from each other by the specific types of geons used

and how they are arranged in 3D space.

By considering all possible compositions of basic geometric features such as junc-

tions, and curvatures of part contours, Biederman derived (though a bit arbitrarily) that

as few as thirty-six geons would be sufficient to model the universe of 3D shapes. This

dramatically reduced the set of infinitely many generalized shapes that were described

by Binford.

Quite different from Marr, Biederman emphasized that the recognition of 3D shape

depends on the recognition of its component geons and their 3D spatial relations. This

argument is quite natural as many objects have parts. It also makes the recognition

scales up easily, as we only need to recognize a fixed set of primitive shapes instead

of a much larger set of object shapes. However, as to recognition of these geons from

images, Biederman simply connects it to the figure-ground organization, and assumes

the components of geons, the curves, and groups of curves as well as junctions could

be recognized easily.

1.2.2.2 Developments by Pentland and Dickinson

Pentland [Pentland, 1986] proposed a set of fifty-six superquadrics as the primitives for

3D object representation. Different from Biederman, these shapes are all characterized

by a small set of parameters. By changing parameters, it was able to produce fifty-six

shape families. Thus this set is able to describe more closely to real 3D shapes, and

categories object shapes according to their shape families.

Dickinson further developed this theory on the modeling and recognition process.

While still keeping the idea of recognition by parts and parametric shape families,

he further proposed an object modeling/recognition framework that used 2D views to

5

134 DICKINSON, PENTLAND, AND ROSENFELD

umetric primitives based on the criteria of accessibility,
scope and uniqueness, and stability and sensitivity is
given by Marr [41].

Many researchers use volumetric primitives to model
objects. An often used class of primitives is the class of
generalized cylinders (e.g., Binford [7], Agin and Binford
[I], Nevatia and Binford [47], Mat-r and Nishihara [40],
Brooks [lo]) whose cross-section, axis, and sweep prop-
erties are arbitrary functions. Superquadrics (Gardiner
[24]) provide a volumetric representation requiring only a
few parameters. Pentland [49] first applied superquadrics
to primitive modeling for object recognition, while
Pentland [50] and Solina [62] have achieved considerable
success in deriving superquadric primitives from range
data. Active or physically-based models have been used
by Terzopoulos et al. [68-701, Metaxas and Terzopoulos
[43,44], and Pentland and co-workers [51-541 to success-
fully recover 3-D shape and nonrigid motion from natural
imagery. Although generalized cylinders, superquadrics,
and active models provide a rich language for describing
parts, their extraction from the image is computationally
complex. In addition, many of the above systems rely on
range data as input, and often require strong initial condi-
tions or even manual intervention.

Given a database of object models representing the do-
main of a recognition task, we seek a set of three-dimen-
sional volumetric primitives that, when assembled to-
gether, can be used to construct the object models.
Whichever set of volumetric modeling primitives is cho-
sen, they will be mapped to a set of viewer-centered as-
pects. Consider, for example, a rectangular block primi-
tive which might be a component of many objects in a
database. Let us assume that for each object of which it is
a component, its dimensions are different. If our aspect
definitions were quantitative, specifying the exact geom-
etry of image features, each instance of the block would
map to a different set of aspects. However, if the aspect
definitions were qualitative, providing stability under mi-
nor changes in the shape of the primitives (e.g., scale,
dimension, and curvature), a single set of aspects might
represent all possible instances of a rectangular block.
Our approach, therefore, has been to select a set of quali-
tatively-defined volumetric primitives, so that their de-
scription will be invariant under such changes in shape.

To demonstrate our approach to primitive recovery,
we have selected an object representation similar to that
used in Biederman’s Recognition by Components (RBC)
theory [6]. RBC suggests that from nonaccidental rela-
tions in the image, a set of contrastive dichotomous (e.g.,
straight vs. curved axis) and trichotomous (e.g., constant
vs. tapering vs. expanding/contracting cross-sectional
sweep) 3-D primitive properties can be determined. The
Cartesian product of the values of these properties gives
rise to a set of volumetric primitives called geons.

1. Block

5. Cylinder

7. Cone

9. Elllpsoid

2 _ Truncated Pyramid

4. Bent Block

6. Truncated Cone

8. Truncated Ellipsoid

18. Bent Cylinder

FIG. 4. The 10 primitives.

Biederman’s geons constitute only one possible selec-
tion of qualitatively-defined volumetric primitives; the
general approach of applying the Cartesian product to a
set of contrastive primitive properties can be used to gen-
erate many different volumetric primitive representa-
tions. For our investigation, we have chosen three prop-
erties: cross-section shape, axis shape, and cross-section
sweep. The values of these properties give rise to a set of
10 qualitative volumetric primitives.2 To construct ob-
jects, the primitives are simply attached to one another
with the restriction that any junction of two primitives
involves exactly one attachment surface from each primi-
tive, i.e., an attachment cannot lie on a surface discontin-
uity.

In our system, these 10 primitives were modeled using
Pentland’s SuperSketch 3-D modeling tool [49], as illus-
trated in Fig. 4.3 We believe that this taxonomy of volu-

* The Cartesian product of the values of these properties results in a
set of 20 primitives; however, to simplify the investigation in terms of
generating the conditional probability tables described in the next sec-
tion, we have chosen a subset of 10 primitives which we believe to be a
good basis for modeling a wide range of objects. If necessary, more
primitives could easily be added to enhance the vocabulary.

3 SuperSketch models each primitive with a superquadric surface that
is subjected to bending, tapering, and pinching deformations.

(a)

FROM VOLUMES TO VIEWS 135

metric primitives is sufficient to model a large number of
objects; however, nothing in our approach is specialized
for this particular set of primitives. If necessary, our ap-
proach can easily accommodate other sets of volumetric
primitives.

2.2. Defining the 2-D Aspects

Traditional aspect graph representations of 3-D objects
model an entire object with a set of aspects, each defining
a topologically distinct view of an object in terms of its
visible surfaces (Koenderink and van Doorn [34]). Our
approach differs in that we use aspects to represent a
(typically small) set of volumetric primitives from which
each object in our database is constructed, rather than
representing an entire object directly. Consequently, our
goal is to use aspects to recover the 3-D primitives that
make up the object in order to carry out a recognition-by-
parts procedure, rather than attempting to use aspects to
recognize entire objects. The advantage of this approach
is that since the number of qualitatively different primi-
tives is generally small, the number of possible aspects is
limited and, more important, independent of the number
of objects in the database. In contrast, the number of
aspects required to model complete objects grows with
the size of the database, and is compounded by articulat-
ing objects. The disadvantage is that if a primitive is oc-
cluded from a given 3-D viewpoint, its projected aspect in
the image will also be occluded. Thus we must accommo-
date the matching of occluded aspects, which we accom-
plish by introducing a hierarchical aspect representation
we call the aspect hierarchy.

The aspect hierarchy consists of three levels, based on
the faces appearing in the aspect set; Fig. 5 illustrates a
portion of the aspect hierarchy.

Primitives

Links indiiate possible
parent ptlmitives of

Links indicate possible

Aspect
Hierarchy

FIG. 5. The aspect hierarchy.

l Aspects constitute the top level of the aspect hierar-
chy; they consist of the possible groups of faces for each
of the primitives. Identification of the aspects can allow
identification of the visible primitives. However, due to
occlusion, some of the faces in an aspect may be partially
or completely missing. When this occurs, we may need to
analyze the arrangement of the remaining faces, and so
we introduce the second level of the aspect hierarchy.

l Faces that make up the various aspects form the sec-
ond level of the aspect hierarchy. Reasoning about the
type and arrangement of visible faces can allow identifi-
cation of an aspect even when it is partially occluded.
However, again due to occlusion, some of the contours
that make up a face may be partially or completely miss-
ing. When this occurs, we may need to analyze the ar-
rangement of the remaining contours bounding the face,
and so we introduce the lowest level of the aspect hier-
archy.

l Boundary Groups are subsets of the faces’ bounding
contours and make up the third and lowest level of the
aspect hierarchy. The boundary groups provide a mecha-
nism for identifying the face type even when the face is
partially occluded.

2.3. Relating the 2-D Aspects to the 3-D Primitives

A given boundary group may be common to a number
of faces. Similarly, a given face may be a component of a
number of aspects, while a given aspect may be the pro-
jection of a number of primitives. To capture these ambi-
guities, we have created a matrix representation that de-
scribes conditional probabilities associated with the
mappings from boundary groups to faces, faces to as-
pects, and aspects to primitives. For example, consider
the mapping between faces and aspects. To describe this
mapping, we create a matrix whose rows represent faces
and whose columns represent aspects. If a particular face
can be a component of 10 different aspects, then those 10
column entries corresponding to the 10 aspects each con-
tain a value from 0 to 1.0, indicating the probability that
the face is part of that particular aspect. Thus, the entries
along each row sum to 1.0.

To generate these conditional probabilities for the
boundary group to face, face to aspect, and aspect to
primitive mappings, we use the following procedure. We
first model our 3-D volumetric primitives using the Su-
pet-Sketch modeling tool [49], as shown in Fig. 4. The
next step in generating the probability tables involves
rotating each primitive about its internal X, y, and z. axes
in lo” intervals. The resulting quantization of the viewing
sphere gives rise to 648 views per primitive; however, by
exploiting primitive symmetries, we can reduce the num-
ber of views for the entire set of primitives to 688. For
each view, we orthographically project the primitive onto

(b)

Figure 1.2: An overview of the 3D approach proposed by Dickinson [Dickinson et al.,

1991]. (a) The proposed 10 qualitative volumetric primitives. (b) The proposed aspect

hierarchy. Both figures are adapted from [Dickinson et al., 1991]. c�[1991] IEEE.

model a finite set of 3D parts. This approach connects to but are also significantly dif-

ferent traditional aspect graph approaches, which model entire objects and where the

number of aspects grows with object complexity and with the number of parts. In his

new approach, the database of views is fixed, and its size is only related to the size of

the 3D shape dictionary.

Moreover, the views of parts are organized into an aspect hierarchy, consisting of

regions, component regions and contours for the component regions. This hierarchy

produces a series of equivalent representations of volumetric parts in different views,

which indicates a perceptual organization process that could assemble local and poten-

tially ambiguous evidence from images.

To summarize, all these theories and frameworks propose representing objects in

3D using a small set of simple and regularized shapes. While constructing interesting

roadmaps to achieving recognition, the details of how these shapes can be recovered

6

from the image are all rather obscure.

1.3 Background II: Image Representations by Sparse Coding

Besides reconstructing 3D shapes, vision researchers also want to find simple models

that reconstruct input images. This leads to the sparse coding models that generate

images using linear addition of a small set of wavelets or image primitives. In this

section, we will briefly review these models as they laid the foundation for the image

appearance part of our 3D object model.

1.3.1 Olshausen-Field Model

Let {I
m

,m = 1, ...,M} be a set of training image patches (e.g. 12 ⇥ 12), Olshausen-

Field model seeks to represent these images by

I

m

=

N

X

i=1

c
m,i

B
i

+ U
m

, (1.1)

where (B
i

, i = 1, · · · , N) is a dictionary of basis elements of the same dimensionality

as I
m

, c
m,i

are the coefficients, and U
m

is the unexplained residual image. N is often

assumed to be greater than the dimensionality of I
m

(e.g. N = 2 ⇥ 12 ⇥ 12), so the

dictionary is said to be overcomplete. On the other hand, the number of coefficients

(c
m,i

, i = 1, ..., N) that are non-zero or significantly different from zero is assumed to

be very small for each image I

m

. The dictionary of (B
i

, i = 1, · · · , N) can be learned

automatically from the training images {I
m

} by imposing a sparsity constraint.

One may also assume that the dictionary of the basis elements are translated, rotated

and dilated version of one another, as in Olshausen et al. [Olshausen et al., 2001], so

that each B
i

can be written as B
x,s,↵

, where x is the location (a two-dimensional vector),

s is the scale, and ↵ is the orientation. We call such a dictionary self-similar, and we

call (x, s,↵) the geometry attribute of B
x,s,↵

.

7

From now on, we assume that the dictionary of wavelets is self-similar, and (B
x,s,↵

, 8(x, s,↵))
is already available. It can either be learned or designed. In the following, we assume

that B
x,s,↵

is a Gabor wavelet, and we also assume that B
x,s,↵

is normalized to have

unit `
2

norm so that |B
x,y,↵

|2 = 1. B
x,s,↵

may also be a pair of Gabor sine and cosine

wavelets, so that for each Gabor wavelet B, B = (B
0

, B
1

). The corresponding coeffi-

cient c = (c
0

, c
1

), and cB = c
0

B
0

+ c
1

B
1

. For projection hI, Bi = (hI, B
0

i, hI, B
1

i),
and |hI, Bi|2 = hI, B

0

i2 + hI, B
1

i2.

Given the dictionary (B
x,s,↵

, 8(x, s,↵)), the image patch I

m

which could be much

larger than 12⇥ 12 can be encoded by

I

m

=

n

X

i=1

c
m,i

B
xm,i,sm,i,↵m,i + U

m

, (1.2)

where n ⌧ N is a small number, and (x
m,i

, s
m,i

,↵
m,i

, i = 1, ..., n) are the geometry

attributes of the selected wavelet elements whose coefficients (c
m,i

) are non-zero.

1.3.2 Active Basis Model

The active basis model is proposed by Wu et al. [Wu et al., 2010] for modeling de-

formable compositional patterns of the selected wavelet elements.

Suppose we have a set of training image patches {I
m

,m = 1, ...,M}. This time

they are defined on the same object bounding box, and the objects in these images come

from the same category. They appear at the same location, scale and orientation, and

in the same pose within the bounding box. The active basis model is of the following

form

I

m

=

n

X

i=1

c
m,i

B
xi+�xm,i,s,↵i+�↵m,i + U

m

, (1.3)

where B = (B
xi,s,↵i , i = 1, ..., n) form the original template. Here the scale s is as-

sumed to be fixed and given. B
m

= (B
xi+�xm,i,s,↵i+�↵m,i , i = 1, ..., n) is the deformed

template for encoding I

m

, where (�x
m,i

, �↵
m,i

) are the perturbations from the nom-

8

inal location and orientation respectively, in order to account for deformation. Both

�x
m,i

and �↵
m,i

are assumed to follow independent uniform distributions within lim-

ited ranges (default values: �x
m,i

2 [�3, 3] pixels, and �↵
m,i

2 [�⇡/16, ⇡/16]).

Sparsification procedures such as matching pursuit [Mallat and Zhang, 1993] usu-

ally select wavelet elements with little correlations. For computational and model-

ing simplicity, the active basis model enforces sparsity directly by assuming that the

wavelet elements in each deformed template B

m

= (B
xi+�xm,i,s,↵i+�↵m,i , i = 1, ..., n)

are orthogonal to each other, so that the coefficient c
m,i

= hI
m

, B
xi+�xm,i,s,↵i+�↵m,ii,

and the coefficients can be denoted as C
m

= (c
m,i

, i = 1, ..., n). In practice, the active

basis model allows small overlaps between the elements of B
m

.

For statistical modeling, the active basis model assumes that the distribution of I
m

given the deformed template B
m

= (B
xi+�xm,i,s,↵i+�↵m,i , i = 1, ..., n), i.e., p(I

m

| B
m

),

is obtained by modifying the distribution of natural images q(I
m

) in such a way that it

only change the distribution of C
m

= (c
m,i

, i = 1, ..., n) from q(C
m

) to p(C
m

), while

leaving the conditional distribution of U
m

given C
m

unchanged. Here p(C
m

) and q(C
m

)

are the distributions of C
m

under p(I
m

| B

m

) and q(I
m

) respectively. Specifically,

p(I
m

| B
m

) = q(I
m

)p(C
m

)/q(C
m

). Such a density substitution scheme was first used

in projection pursuit density estimation [Friedman, 1987].

For computational simplicity, the model further assumes that (c
m,i

, i = 1, ..., n) are

independent given B

m

, under both p and q, so that

p(I
m

| B
m

) = q(I
m

)

n

Y

i=1

p
i

(c
m,i

)/q(c
m,i

), (1.4)

where q(c) is assumed to be the same for i = 1, ..., n because q(I
m

) is stationary. q(c)

can be pooled from natural images in the form of a heavy-tailed histogram of Gabor

filter responses.

For parametric modeling, the following exponential family model is employed:

p
i

(c) =
1

Z(�
i

)

exp{�
i

h(|c|2)}q(c), (1.5)

9

where h(r) is a monotone function of the response r = |c|2 (sum of squares of Gabor

cosine and sine responses) that saturates for large r. Specifically, h(r) = ⇠[2/(1 + e�2r/⇠

)�
1]. h(r) behaves like h(r) ⇡ r for small r, but h(r) ! ⇠ (default value: ⇠ = 6) as

r !1. Z(�) is the normalizing constant.

1.4 Organization

The rest chapters of this thesis are organized as follows: In chapter 2, we describe a

mixed model in reminiscent of active basis mode, through which we introduce the 2D

primitives and 3D primitives, which are building blocks of models in following chap-

ters. This chapter also proposes to use information gain as the evaluation criterion for

the effectiveness of model elements, which are used throughout this thesis. In Chapter

3, we extend the 2D primitives, and formulate models and algorithms for inferring mid-

dle level image concepts, such as curves and corners, which serve as an intermediate

level of representation connecting the image pixels and the 3D hierarchical composi-

tional templates introduced in Chapter 4. Other than the object representation, Chapter

4 also introduces an AND-OR structure that quantize the space of the object represen-

tation, which also give a new view of the approach used in computing the curves and

corners. Chapter 5 summarizes this paper, and discusses about directions that we can

further extend this thesis.

10

CHAPTER 2

A Flat Probabilistic Model Mixing 3D and 2D Primitives

This chapter presents a probabilistic model and a mixed template learning algorithm

for view invariant object recognition. The template is composed of 3D and 2D prim-

itives which are stick like elements defined in 3D and 2D spaces with appearance on

images as Gabor filters. The primitives are allowed to translate within a local range to

account for the object instance variation. Both 3D and 2D primitives have parameters

describing their visible ranges, which models the effect of occlusion and view specific

primitives respectively. We present an algorithm which sequentially selects primitives

to build a mixed template. The selection order of primitives is decided by information

gains, which can be estimated together with the visible range parameters efficiently. In

experiments, we evaluate performance of the learned 3D templates on car recognition

and pose estimation. We also show that the algorithm can learn intuitive mixed tem-

plates on various object categories, which suggests that information gain could be used

as a numerical answer to the debate over viewer-centered representation and object-

centered representation.

2.1 Introduction

This chapter presents a flat model mixing different types of primitives together with a

learning algorithm for view invariant object recognition.

As is illustrated in Fig.2.1, we use a template containing both 3D and 2D primitives

to represent the object images from different views. The 3D and 2D primitives are stick

11

3D primitive 2D primitive

Figure 2.1: An illustration of the learned template for images of a desktop globe (Better

viewed in color). The template has both 3D primitives and 2D primitives, which are

denoted in red and gray respectively. Note that not all primitives are visible across all

views. Our algorithm automatically selects 3D primitives to describe the appearance of

base and handle of the globe, which vary across views, and 2D primitives to describe

the occlusion boundary of the globe, which is a circular pattern across all views.

like elements defined in 3D and 2D spaces. To model object image variation, primitives

are allowed to translate and rotate within a small location and orientation range. We

use a visible range parameter for both 3D and 2D primitives to model the effect of 3D

primitive occlusion and 2D primitives only visible in part of the view space. On images,

the appearances of these primitives are Gabor filters. Due to projection, positions and

orientations of Gabor filters for 3D primitives change across different views.

Starting from a reference image model, we build up our generative probabilistic

model from view variant images of a same object category. For each primitive, we

use different model families to describe its visible and invisible state separately. When

visible, we model the filter response distribution of the primitive using the exponen-

tial model. When it is not, we assume the response follows the distribution of Gabor

filtering responses on natural images.

We learn a sparse model where only a small set of primitives in a primitive pool

12

is selected using a pursuit algorithm. The algorithm sequentially selects independent

primitives using information gain as pursuit index. The key issue in evaluating the in-

formation gain of a primitive is to estimate its visible range parameter. By carefully

analyzing the information gain term in our problem, we are able to avoid enumerat-

ing all the possible visible ranges and apply a very efficient procedure to estimate the

optimal visible range and information gain of a primitive simultaneously.

Selected primitives form intuitive templates as these shown in Fig.2.1, which can

be used in tasks such as object detection and pose estimation. Moreover, experiment

results on various object categories show the learned templates may transit from the

fully 3D to fully 2D, depending on structural complexity of the modeled object cate-

gory. These experiments suggest that there exists a representation spectrum for various

object categories, which also indicates that the information gain could be used as a nu-

merical answer to the debate over viewer-centered representation and object-centered

representation.

This work is inspired by the active basis model [Wu et al., 2010] and recent devel-

opment of learning object template mixing texture and structure [Si et al., 2009]. We

further extend the key ideas in them into learning view variant object images for view

invariant object modeling. We further extend the key ideas in them into learning view

variant object images for view invariant object modeling.

2.2 Related Work

Proposals on how to represent visual knowledge that is invariant of views can be seen

in literature from as early as 1974 [Minsky, 1974]. Through decades of developments,

it gradually evolves to two general alternatives: viewer-centered representation such

as aspect graphs [Koenderink and Doorn, 1979; Minsky, 1974] and object-centered

representation whose early developments include those [Biederman and Gerhardstein,

13

1993; Marr, 1982] reviewed in Section 1.2.

To model view variant object images, an intuitive idea is to learn both the shape and

appearance in the 3D space, so that it forms an object-centered representation. Learning

3D shape and appearance is successfully implemented in [Kushal and Ponce, 2006;

Brown and Lowe, 2005] for multi-view images of a single object, with 3D SIFT [Lowe,

1999] points as primitives. But for images from an object category, previous work either

learns the appearance model [Hoiem et al., 2007; Liebelt et al., 2008] directly by taking

the 3D shape as granted, or learns shape and appearance one after another [Yan et al.,

2007].

Researchers also acknowledge the simplicity of modeling 2D image patterns and the

stability of these patterns on fixed views, so they propose to link 2D features [Thomas

et al., 2006] or find shared features [Torralba et al., 2007] across views to efficiently

build robust models. Researchers further propose to build up image patches composed

of multiple feature points as an intermediate level of object category representation,

then add links and transformations between these patches [Kushal et al., 2007; Savarese

and Fei-Fei, 2007; Sun et al., 2009] or construct hierarchies based on them [Su et al.,

2009] to build better models.

Over the two methods, some researchers have been engaged in a debate well doc-

umented by [Biederman and Gerhardstein, 1995; Tarr and Bülthoff, 1995; Hayward

and Tarr, 1997], but do not get a final conclusion. From our point of view, the answer

to which representation is better varies for different objects, and depends on the effi-

ciency of the representation in explaining object images patterns. Moreover, elements

(primitives) in these representations may be combined to achieve more efficient expla-

nations. The desktop globe case shown in Fig.2.1 serves as such an example. For the

purpose of recognition, a circular pattern template build by a few 2D primitives would

be equivalent to a large amount of 3D primitives forming the 2D ball shape of the globe.

Therefore for the globe part, directly using the 2D representation to model a 2D circle

14

would be more efficient than modeling a 3D shape. Similarly, a 3D template of the

globe’s base and handle would be much simpler and more efficient than 2D templates,

because these patterns change significantly across views.

Based on these observations, we propose to mix the two representations, and use

information gain as a numerical criterion to select primitives from both to get better

representations. With such a criterion, our model can automatically transit between the

two types of representations.

The main contributions of this chapter include:

1. We propose 3D object primitives and 2D image primitives that can be used to

model images of an object category from different views.

2. We propose an efficient algorithm that can compute primitive information gain

and estimate its parameters simultaneously.

3. By using information gain as a criterion to select both 3D and 2D primitives

regardless of their types, the criterion and the proposed model learning algo-

rithm provide a numerical answer to the debate over object-centered and viewer-

centered representation.

2.3 Dictionaries of 3D and 2D Primitives

We propose dictionaries of 3D and 2D primitives, which can be used separately or

combined to represent object images of different views.

2.3.1 3D Object Primitives

To represent the 3D structure of an object category, we propose a type of stick like

3D elements as 3D object primitives, which are shown in Fig.2.2. For a 3D primitive,

15

3D primitive 2D primitive

2D image primitive dictionary

3D object primitive dictionary

Figure 2.2: An illustration of 3D and 2D primitives and how they are used to compose

a mixed representation. The 3D primitives are shown on the lower-right part. A 3D

primitive can be viewed as a stick with selected orientation and rotation in 3D space,

and its appearance is a view dependent Gabor filter placed at its projected position

and orientation. A 2D primitive is a Gabor filter located at a selected 2D position and

orientation.

16

we define its geometry parameter in the 3D space, that is its position (X, Y, Z) and

orientation ⇥. The length of 3D primitives is defined as unit length.

For any given view !, the appearance of such a 3D primitive is a Gabor filter, whose

position and orientation is defined by the projection of the primitive onto that view.

Hence the appearance of a 3D primitive will be different for different views. In this

paper, we use orthographic projection as our projection model, for which the projection

matrix can be expressed as:

P =

2

6

6

6

4

s 0 u

0 s v

0 0 0

3

7

7

7

5

2

6

6

6

4

R
3⇥3

�

�

�

�

�

�

�

�

�

�t
u

�t
v

1

3

7

7

7

5

(2.1)

where s is the scale of object image, (u, v) denote the center of the camera optical axis

on the image, R is a 3 ⇥ 3 rotation matrix parameterized by pan ↵, tilt � and roll �

angle of the camera, and (t
u

, t
v

) denote the object center offset relative to the center of

the image.

Given the projection model, a view ! can be defined as a vector (s,↵, �, �, t
u

, t
v

),

and thus the view space of this corresponding projection model can be defined as the

product space of the ranges of these parameters.

When projecting 3D primitives onto object images, some of them may be occluded.

So we use a parameter ⌦ to denote the set of views in which the corresponding primitive

is visible. For example,

⌦ = {!
m

,m = 1, 2, · · · ,M}, (2.2)

where M is the number of views.

For each projected Gabor filter, we allow it to locally rotate and translate in a small

range, so that it can be adapted to small appearance changes of different object in-

stances.

17

The 3D primitives are instantiated inside an assumed object bounding volume, by

enumerating their parameters. To avoid excessively enumerating them, we segment

the target bounding volume into a set of non-overlapping cubes, and only instantiate

primitives on the centers of each cube. For each point in the sampled centers C, we place

primitives at evenly spaced orientations O, where these orientations are derived by a

sphere equal partitioning method [Leopardi, 2006]. Thus the 3D primitive dictionary

�

3D can be written as:

�

3D
= {B3D

X,Y,Z,⇥ | (X, Y, Z) 2 C, ⇥ 2 O} (2.3)

The primitive response on an image is defined as the Gabor filter response in the

same way as in the active basis model [Wu et al., 2010], and is thus not elaborated.

2.3.2 2D Image Primitives

The 2D primitives used in this thesis are inspired by the active basis model [Wu et al.,

2010]. The key difference between our 2D primitives and the active basis is that we

further add the visible range parameter ⌦. This ⌦ has the same form as the one of 3D

primitives, and is used to model the effect that 2D primitives may only appear in part

of the view space.

As object images are from different views and thus cannot be aligned by assuming a

shared bounding box, we assume there is a virtual shared image lattice ⇤ and construct

the dictionary by enumerating primitives at each position and each of a set of discrete

orientations in this lattice. So,

�

2D
= {B2D

u,v,✓ | (u, v) 2 ⇤, ✓ 2 O}, (2.4)

where the O is a set of K equally spaced orientations O = {0, ⇡/K, · · · , ⇡}.

For each image, we scale and translate primitive positions according to the scale

and offset in its view label !, so that images from similar views can still be aligned.

18

D
es

kt
op

G

lo
be

… …

… …

Invisible

�
3D primitive 2D primitive

Figure 2.3: An overview of the image generating model. When generating object im-

ages at a particular view !, we project the learned 3D primitives and transform the 2D

primitives to generate Gabor filters at corresponding image positions and orientations.

If a primitive is not visible in a particular view, the corresponding Gabor filter will not

be generated.

2.4 Probabilistic Image Model

As is shown in Fig.2.3, given N primitives B = {B
i

, i = 1, · · · , N} as a template

of object images at different views, we assume a specific image I at view ! can be

generated as a linear superposition of these primitives:

I =

N

X

i=1

c
i

B
i

+ U, (2.5)

where c
i

is the coefficient associated with i� th primitive B
i

, and U is the unexplained

part of the image. Note that coefficients c
i

for invisible primitives are zero.

Consider the image I in Eqn. (2.5) as a random variable and following the derivation

19

of active basis model [Wu et al., 2010], the target distribution can be expressed as:

p(I,! | B) = q(I)

N

Y

i=1

p[h(r
i

) | !]
q[h(r

i

)]

(2.6)

where p[h(r
i

) | !] refers to the distribution of the transformed response of B
i

on tar-

get images, h() is a function that performs a sigmoid transform, and q(I) is the ref-

erence image distribution. In the above derivation, we assume the primitive responses

{r
i

, i = 1, · · · , N} are independent of each other, bothp(!) and q(!) follows a uniform

distribution. As q[h(r
i

)] is the distribution of primitive response on reference images,

it is assumed to be independent of ! and Gabor filter position.

Similar to active basis model, we use the natural image distribution as the reference

image model q, thus the q[h(r
i

)] should be the same for all primitives.

Whether a primitive is visible or not significantly affects the distribution of its ob-

served primitive response. Hence, when modeling p[h(r
i

) | !], we model the case of

primitive is visible and invisible separately.

When the primitive is visible, according to maximum entropy principle [Jaynes,

1957; Pietra et al., 1997], the response can be modeled as

p[h(r
i

);�
i

] =

1

Z
exp[�

i

h(r
i

)]q[h(r
i

)], (2.7)

where Z is the partition function. When it is not, the observed response is assumed to

follow reference distribution, thus

p[h(r
i

)] = q[h(r
i

)]. (2.8)

Taking the visible range parameter ⌦
i

into account, the conditional probability of p[h(r
i

) |
!] can be expressed as:

p[h(r
i

) ; �
i

,⌦
i

| !] =

8

>

<

>

:

1

Zi
exp[�

i

h(r
i

)]q(r
i

) ! 2 ⌦

i

q[h(r
i

)] ! /2 ⌦

i

(2.9)

20

To ensure that Eqn. (2.9) fits the target distribution, �
i

should be estimated subject to

the constraint that given M 0 visible responses {r
im

}M

0
m=1

,

1

M 0

M

0
X

m=1

h(r
im

) =

Z

h(r
i

)

1

Z
i

exp [�
i

j(r
i

)] q[h(r
i

)]dh(r
i

) (2.10)

2.5 Learning Algorithm

Given M view labeled training images {(I
m

,!
m

),m = 1, · · · ,M} from the target dis-

tribution p(I,! | B) and a set of N primitives B = {B
i

, i = 1, · · · , N}, the likelihood

model in Eqn. (2.6) can be optimized by maximizing the information gain of each

primitive. This is because:

1. maximizing the log-likelihood of p(I,! | B) is equivalent to maximizing the

information gain of B from reference model q to target model p:

IG(B) =

ZZ

p(I,! | B) log

p(I,! | B)

q(I,!)
dId! (2.11)

⇡
M

X

m=1

log

p(I
m

,!
m

| B)

q(I
m

,!
m

)

(2.12)

=

M

X

m=1

log p(I
m

,!
m

| B)�
M

X

m=1

log q(I
m

,!
m

) (2.13)

where
P

M

m=1

log q(I
m

,!
m

) is a constant and
P

M

m=1

log p(I
m

,!
m

| B) is the log-

likelihood.

2. The information gain of the template B is equal to the sum of that of individual

21

primitives B
i

as:

IG(B) =

ZZ

p(I,! | B)1 log

p(I,! | B)

q(I,!)
dId! (2.14)

=

ZZ

p(I,! | B) log

p(I | !,B)

q(I | !) dId! (2.15)

=

ZZ

p(I,! | B)

N

X

i=1

log

p[h(r
i

) | !]
q[h(r

i

) | !]dId! (2.16)

=

N

X

i=1

ZZ

p(I,! | B
i

) log

p[h(r
i

),!]

q[h(r
i

),!]
dId! (2.17)

=

N

X

i=1

ZZ

p(I,! | B
i

) log

p(I,! | B
i

)

q(I,! | B
i

)

dId! (2.18)

=

N

X

i=1

IG(B
i

) (2.19)

(2.20)

Thus the problem of maximizing the overall information gain can be decomposed into

the problem of maximizing that of each primitive. Note that r
i

is actually a function of

image I as r
i

= khI, B
i

ik2.

In the following, we will first show how to estimate the maximum information gain

together with the parameters � and ⌦ effectively. Then we show how to solve the

problem of finding the best set of primitives B using a shared pursuit algorithm.

22

2.5.1 Evaluate the Information Gain of a Primitive

Using Eqn.(2.16) to (2.19), the information gain of a primitive B
i

by updating its dis-

tribution from p to q is:

IG(B
i

) =

ZZ

p(I,! | B
i

) log

q[h(r
i

),!]

q[h(r
i

),!]
dId! (2.21)

⇡
M

X

m=1

log

p[h(r
im

)|!
m

]

q(r
im

)

(2.22)

=

X

!m2⌦i

[�
i

h(r
im

)� logZ
i

] +

X

!m /2⌦i

0 (2.23)

=

X

!m2⌦i

[�
i

h(r
im

)� logZ
i

] (2.24)

If ⌦
i

is given, the parameter �
i

should be fitted such that

µ̂
r

⇡ 1

M 0

M

0
X

m

0
=1

h(r
im

0
) = E

p

[h(r
i

);�
i

] , (2.25)

where µ̂
r

is the average response of B
i

on samples in visible range ⌦

i

, and M 0 is

the number of these samples. To reduce computation, one can compute a histogram

of E
p

[h(r);�] indexed by � before learning starts, so the best � can be estimated by

searching the histogram and interpolating between the nearest two bins.

In the above derivation, we assume ⌦

i

is given, but our objective is to maximize

the information gain on both �
i

and ⌦

i

. Because ⌦ is defined as a set of views, given

M training images, a naive way to estimate these parameters is to enumerate all the

2

M effectively different ⌦
i

, find the corresponding maximum information gain for each

one by fitting �, and then find the global optimal. This method scales badly as the

complexity grows exponentially with M .

By analyzing the structure of the problem, we can find an algorithm linear in M

that also guarantees the global optimal for this problem. After rearranging the elements

in Eqn.(2.24), maximizing Eqn.(2.24) is equivalent to:

max |⌦
i

|(�
i

· µ̂
r

� logZ
i

) (2.26)

23

0 1 2 3 4 5 6
0

1

2

3

4

5

µ
r

A
ve

ra
ge

IG

Figure 2.4: The relationship of average information gain against µ
r

. This curve shows

that the average information gain is an increasing function of µ
r

. The reason that why

µ
r

is in range [0, 6] is explained in Section 2.7.1.

where |⌦
i

| is the number of training views in ⌦

i

. Eqn.(2.26) indicates that according to

the number of views in ⌦

i

, we can put the 2

M possible visible ranges into M groups.

Benefits of grouping them are led by the following observations:

1. For visible ranges in each group, |⌦
i

| is fixed, so maximizing Eqn (2.26) is re-

duced to maximizing the average information gain (�
i

· µ̂
r

� logZ
i

).

2. For log linear model, it has been proved that the average information gain is an

increasing function of µ̂
r

.

The second observation is proved in [Wu et al., 2010], and here we just show the

corresponding curve in Fig.2.4 as a demonstration.

According to these two observations, in each of the groups of visible ranges, the

optimal ⌦
i

must be the one that leads to largest µ̂
r

, which should be the mean of the

first |⌦
i

| largest of totally M responses.

Therefore, we can avoid enumerating 2

M combinations and instead sort the prim-

itive responses, construct the optimal ⌦
i

in each group by assembling views from the

images with first largest |⌦
i

| responses, and compare corresponding fitted information

gain to find the global optimal. Int this way, we can reduce the 2

M computations to M .

24

Further investigation suggests that the information gain must be a single peak func-

tion of |⌦
i

|, because as |⌦
i

| goes larger, the average information gain will be smaller

as µ̂
r

will be smaller. Thus, we can further reduce the computations by computing the

groups in descending or ascending order on the number of views, and stop once we find

that the information gain stops growing.

The detailed procedure of this evaluation algorithm is shown in Algorithm 2.1. Note

that the step 6 is done in the similar way to computing �.

Algorithm 2.1: Evaluate information gain of a primitive
Input: {h(r

im

),!
m

}M

m=1

Output: Estimated parameter b�
i

, logZ
i

, b⌦
i

, Information gain IG

i

1 . IGmax 0, tmax 0;

2 {h(r0
im

),!0
m

}M

m=1

 descending sort on h(r
im

);

3 for t 1 to M do

4 µt mean[h(r0
i1

), · · · , h(r0
it

)];

5 �t interpolate table E
p

[h(r);�] , s.t. µt ⇡ E
p

[h(r);�t

];

6 logZt search table logZ(�) to get logZ(�t

) ;

7 IG

t t · (�tµt � logZt

);

8 if IGmax < IG

t then

9 b�
i

 �t, IGmax IG

t, tmax t;

10 else

11 Break;

12 logZ
i

 logZ(b�
i

), b⌦
i

 {!0
k

}t

max

k=1

, IG
i

 IGmax ;

13 return ˆ�
i

, logZ
i

, b⌦
i

, IG
i

25

�i

Figure 2.5: An illustration of how 3D primitives are learned from and projected to

images in different views. The learning step can be interpreted as trying all possible

locations and orientations of 3D primitives and keep the independent ones with large

projected responses. In testing stage, the learned 3D model is projected to each possible

view and test if the projected template matches testing image.

2.5.2 Shared Primitive Pursuit

Section 2.5.1 solves the problem of finding the maximum information gain of each

primitive. In this section, we present a shared pursuit algorithm that learns a set of

primitives B which maximize the overall likelihood of our target model in Eqn. (2.6).

The learning algorithm first computes the responses of all Gabor filters on all train-

ing images. Specifically, we compute responses of these filters centered at each pixel

of each input image, and at K = 17 equally spaced orientations. Following [Wu et al.,

2010], we call these filter responses together as SUM1 maps. To account for prim-

itive deformations, we compute for each pixel and orientation the maximum Gabor

filter response in its neighboring locations and orientations, and save these maximized

responses in MAX1 maps.

We then compute the responses of each primitive on training images, by referencing

the projected Gabor responses on MAX1 maps. After that, we can use Algorithm 2.1

26

to compute the information gain for each primitive and then select the primitive with

maximum information gain. At the same time, parameters associated with this primitive

are also stored.

To enforce the independence assumption, we further inhibit primitives with signifi-

cant correlations with the selected one. For each image, we trace the referenced Gabor

filter according to the type of the primitive and the image view !. We then set the re-

sponses of correlated Gabor filters to be 0 and update the corresponding MAX1 maps

on potentially affected areas by re-calculating the local maximum response. Correla-

tions of different Gabor filters are functions of their relative locations and orientations,

thus can be computed before learning. A Gabor filter is considered correlated with the

referenced one if the absolute value of their correlation is greater than a threshold.

After the first primitive is selected, we repeat the process starting from updating the

information gain of each primitive so as to sequentially pursue a collection of primitives

from the enumerated primitive pool. The procedure of this algorithm is summarized in

Algorithm 2.2.

Note that the during primitive pursuit, information gain of a primitive is non-increasing,

hence we only need to compute IG for all primitives in the first iteration, and then delete

primitives lower than a threshold, since they will never be selected.

Also note that in both Section 2.4 and 2.5, there is no assumption on the type of

primitive. Thus depending on the primitive dictionary, the above model and learning

algorithm can be used to learn templates composed of either purely 3D or 2D primitives,

or composed of both.

2.6 Inference Algorithm

In our formulation, ⌦ is defined as a collection of single views. To ensure that our

model can also be used on views not appeared in training set, we further convert this ⌦

27

Algorithm 2.2: Primitive pursuit
Input: M training images {I

m

,!
m

}
Output: N selected primitives with parameter

{[(X
i

, Y
i

, Z
i

,⇥
i

),�
i

, logZ
i

,⌦
i

]}N

i=1

1 Compute SUM1 maps and MAX1 maps.;

2 Enumerate all the possible primitives.;

3 Project each primitive on to the MAX1 maps.;

4 for i 1 toN do

5 Retrieve primitive responses from MAX1 maps.;

6 for each primitive do

7 compute IG

i

, using algorithm 2.1.

8 Find the maximum IG, denote it as IG
max

;

9 Retrieve and save parameters associated with IG

max

to �
i

, logZ
i

and ⌦

i

;

10 (X
i

, Y
i

, Z
i

,⇥
i

) (X
max

, Y
max

, Z
max

,⇥
max

);

11 Local inhibition.;

28

0 1 · · · 1
0 0 · · · 1
...

...
. . .

...
1 0 · · · 1

pan

tilt

pan

tilt

Figure 2.6: Convert ⌦ from a set to a 2 dimensional lookup table (Better viewed in

color). Left: red points represent the views that are in ⌦, gray ones are the rest. Middle:

we segment the view sphere into several view bins. Right: Each bin corresponds to an

entry of a 2D lookup table, where its value is set by the majority of the training views

in that bin.

into a binary lookup table, where each entry denotes the visibility state of a primitive in

a specific and fixed view range. The conversion steps are shown in Fig.2.6. Considering

the fact that in orthogonal projection, image center offset, scale, and roll angle do not

affect occlusion states of primitives, we only need to set up a 2 dimensional lookup

table along the pan and tilt angle. The entry value is set to 1 if a majority (> 50%) of

training images in that bin is included in ⌦.

The inference problem can be formulated as a hypothesis testing problem, where

the testing score is defined as

score = log

p(I | !,B)

q(I)

=

N

X

i=1

(�
i

r
i

� logZ
i

) · 1(! 2 ⌦

i

). (2.27)

As ⌦
i

has already been converted to a lookup table, the function 1(! 2 ⌦

i

) is to simply

index the lookup table.

To perform object recognition, the above score is computed at a large amount of

hypothesized views. The highly scored hypothesized views are then reported through a

non-maximum suppression procedure.

29

2.7 Experiments

2.7.1 Dataset, Image Pre-processing and Parameters

To show that our algorithm can learn intuitive templates for various categories, we use

ETH80 dataset [Leibe and Schiele, 2003], which contains 8 categories with 10 object

instances for each category. We further use soda cans as an object category, and the

desktop globe images used in Fig.2.1. The last two sets of images are taken by ourselves

by capturing objects on a turning table. View labels for images in ETH80 dataset are

already provided, and the images collected by ourselves are shoot in the same angles as

in ETH80 dataset.

To show the effect of our algorithm on uncontrolled images with relatively complex

background, a multi-view car dataset [Savarese and Fei-Fei, 2007] is used. Since view

labels are not provided in this dataset, we label them by imposing a 3D CAD car model

onto images, and save the corresponding virtual camera parameters as views when the

model matches the images. For this purpose, we wrote a Plug-In to extend the freely

available CAD software Google SketchUp, where a snapshot of the image annotation

interface is shown in Fig.2.7

Preprocessing steps used on the Gabor filter responses in SUM1 maps are:

1. We normalize the responses by dividing them with the variance of all Gabor filter

responses on that image.

2. For each image, we perform local normalization, which divides the globally nor-

malized response with an average of that in a local window for each filter. We

use a local window spanning all the K orientations and 32 ⇥ 32 pixels centered

at the target Gabor filter.

3. We further regulate responses using sigmoid function h(r), which is:

r0 = sigmoid(r) = ⇠[2/(1 + e�2r/⇠

)], (2.28)

30

Figure 2.7: A snapshot of the user interface for image view annotation.

31

and ⇠ is set to 6.

Theoretical underpinnings of these preprocessing steps can be found in [Wu et al.,

2010].

In experiments on ETH80 dataset, the location and orientation change for comput-

ing MAX1 maps is ±4 pixels and ±1 orientations. In experiments on dataset [Savarese

and Fei-Fei, 2007], these are ±3 pixels and ±1 orientations. Using a desktop computer

with Intel Core 2 Duo 2.4G processor, the learning stage usually costs about 30 minutes

with a training set of 420 images and about 3 million proposed primitives.

2.7.2 Learning Mixed Templates

To demonstrate the effect of our mixed template learning algorithm, we show the

learned templates for 10 categories in Fig.2.8. The categories are sorted by the pro-

portion of 2D primitives in the template, and are shown in descending order.

From the figure, we can see that our method automatically finds suitable represen-

tations for different object categories, which spans a spectrum from nearly pure 2D to

pure 3D. For object categories with stable 2D shapes, the model automatically selects

2D primitives to form the rough shape of that category. For specific details, like the

top of the tomatoes, and handle of cups and desktop globe, the algorithm will select 3D

primitives, because these details are view specific and only appear on part of the view

sphere.

For categories with complex shapes, coding the general shape for each viewing

angle will be less efficient than coding the general 3D shape using 3D primitives. So,

the algorithm automatically transits to select 3D primitives, which forms an object-

centered representation. With these experiment results, one can see that our model can

learn templates of different mixing proportions, according to the shape and appearance

of different object categories.

32

c
a
n

p
e
a
r

a
p
p
le

c
u
p

g
lo
b
e

to
m
a
to

c
a
r

h
o
r
s
e

c
o
w

d
o
g

0

0
.51

0
5

1
0

1
5

2
0

2
5

3
0

3
5

0

0
.51

1
.52

2
.53

3
.54

4
.55

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

0

0
.51

1
.52

2
.53

3
.54

4
.55

0
5

1
0

1
5

2
0

2
5

3
0

3
5

0

0
.51

1
.52

2
.53

3
.54

4
.55

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0

0
.51

1
.52

2
.53

3
.54

4
.5

0
5

1
0

1
5

2
0

2
5

3
0

0123456

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

0

0
.51

1
.52

2
.53

3
.54

4
.5

0
1

0
2

0
3

0
4

0
5

0
6

0
0

0
.51

1
.52

2
.53

3
.54

4
.5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

0

0
.51

1
.52

2
.53

3
.54

4
.5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

0
.51

1
.52

2
.53

3
.54

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0

0
.51

1
.52

2
.53

3
.54

Fi
gu

re
2.

8:
Le

ar
ne

d
ob

je
ct

te
m

pl
at

es
fo

r1
0

ob
je

ct
ca

te
go

rie
s

an
d

th
ei

rp
ur

su
it

in
de

xe
s

(B
et

te
rv

ie
w

ed
in

co
lo

r)
.

R
ow

.1
-R

ow
.3

:

Le
ar

ne
d

te
m

pl
at

es
fo

rd
iff

er
en

to
bj

ec
ti

m
ag

es
.T

he
gr

ay
ba

rs
re

pr
es

en
t2

D
pr

im
iti

ve
s

an
d

re
d

el
lip

se
s

ar
e

fo
r3

D
pr

im
iti

ve
s,

th
e

in
te

ns
ity

of
th

os
e

sy
m

bo
ls

sh
ow

th
e

co
rr

es
po

nd
in

g
sc

or
e

of
ea

ch
pr

im
iti

ve
.

R
ow

.4
:

Th
e

pr
im

iti
ve

pu
rs

ui
ti

nd
ex

of
ea

ch
ob

je
ct

ca
te

go
ry

.T
he

ho
riz

on
ta

la
xi

s
ar

e
th

e
pu

rs
ui

to
rd

er
of

ea
ch

pr
im

iti
ve

,a
nd

ve
rti

ca
la

xi
s

is
th

e
in

fo
rm

at
io

n
ga

in
of

ea
ch

pr
im

iti
ve

.

A
ga

in
,r

ed
ba

rs
ar

e
fo

r
3D

pr
im

iti
ve

s
an

d
w

hi
te

ba
rs

ar
e

fo
r

2D
pr

im
iti

ve
s.

R
ow

.5
:

Th
e

ra
tio

on
th

e
nu

m
be

r
of

3D
pr

im
iti

ve
s

(r
ed

)a
nd

2D
pr

im
iti

ve
s

(g
ra

y)
fo

re
ac

h
ca

te
go

ry
.

33

Row 4 and 5 of Fig.2.8 shows the selection order of the 3D (red) and 2D (gray)

primitives, their information gains, and their proportion of information contribution in

each template. By sorting these categories according to this proportion, Fig.2.8 clearly

shows that the learned representations reside in different positions on the spectrum, and

their positions are related to the complexity of the object shape.

2.7.3 Learning 3D Templates for Car Recognition and Viewpoint Inference

We further use our learning algorithm to learn 3D car templates on the multi-view car

dataset [Savarese and Fei-Fei, 2007], as Fig.2.8 suggests that car templates is almost

composed of purely 3D primitives. We use the first 5 object instance in the dataset as

training images, and the rest 5 as testing.

We first perform the experiment of object pose inference. In this chapter, this task

is defined as finding the most probable view category given that the object image is in

a bounding box. For this part, we took the images in the given bounding box as input,

and search around views ! to find the one with maximum score. The estimated views

are then converted to view categories as the inputs to compute the confusion matrix.

Specifically, we compute the test scores by enumerating all views at 2� for pan, tilt, and

roll angles, and assume the object offsets are in the center of the bounding box.

The result is shown in Fig.2.9 with both confusion matrix and some of template

matching results. 1

Since the output of our inference algorithm is directly view angles instead of view

category. Our result should be more useful in pose related tasks such as license plate

searching. Also, by projecting the templates, this algorithm roughly traces the bound-

ary of object images, which can be used as a good initial state for tasks like image
1It should be noted that this experiment is not completely the same as in [Su et al., 2009], since 1.)

We test not only on correctly recognized images, but all testing images. 2.) We are also testing images
at scale 3 of the dataset.

34

.67 .10 .10 .13

.10 .63 .10 .17

.03 .90 .07

.03 .07 .53 .33 .03

.10 .03 .87

.23 .07 .67 .03

.03 .97

.10 .10 .17 .63

A1

A2

A3

A4

A5

A6

A7

A8

A
1
A
2
A
3
A
4
A
5
A
6
A
7
A
8

(a)

.81 .19

.04 .53 .35 .08

.77 .03 .20

.06 .41 .53

.16 .82 .02

.03 .10 .09 .71 .07

.34 .66

.11 .27 .62

A1

A2

A3

A4

A5

A6

A7

A8

A
1
A
2
A
3
A
4
A
5
A
6
A
7
A
8

(b)

(c)

Figure 2.9: Result of pose estimation task. (a) Confusion matrix of our method. (b)

Confusion matrix from [Su et al., 2009], which we use as a reference. (c) Projected

templates on testing images of different views.

35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p
re

ci
si

on

recall
(a)

(b)

Figure 2.10: (a) Performance of detection task in terms of precision-recall curves. (b)

Some sample detection results, each from one of the eight poses in the dataset.

36

segmentation.

We also show object detection results on this dataset. The detection task is done

by computing the testing scores at enumerated views at step width 10

� in pan, 5� in

tilt and 2

� in roll, with offsets at all positions in the image. Highest testing scores are

then reported together with their views after non-maximum suppression. Following the

protocol of VOC detection task, we evaluate the performance of our algorithm in the

term of precision-recall (PR) curve. The PR curve together with some detection results

are shown in Fig2.10.

2.8 Discussion

This chapter presents a learning algorithm modeling view variant object images for

object recognition in arbitrary views. The model can automatically transit between and

mix object-centered representation and viewer-centered representation, which together

with the information gain criterion provides a numerical answer to the debate over the

two types of representation. It also provides a foundation for developing compositional

3D and 3D models

37

CHAPTER 3

Composing Image Primitives to Active Curves

In this chapter, we study a problem facilitates the study of view invariant recognition,

which is to find sparse representations of 2D images. We propose to use deformable

templates of simple geometric structures that are commonly observed in images of

objects as well as natural scenes. These deformable templates include active curve

templates and active corner templates. An active curve template is a composition of

active Gabor elements placed with equal spacing on an arc segment, where each Gabor

filter is allowed to locally shift its location and orientation, so that the active curve

template can be deformed to fit the observed image. An active corner template is a

composition of two active curve templates that share a common end point, and the

active curve templates are allowed to vary their overall lengths and curvatures. This

chapter then presents a hierarchical computational architecture of sum-max maps that

pursues a sparse representation of an image by selecting a small number of active curve

and corner templates from a dictionary of all such templates. Experiments show that

the proposed method is capable of finding sparse representations of natural images. It

is also shown that object templates can be learned by selecting and composing active

curve and corner templates.

3.1 Introduction

Finding sparse representations of images is one of the most fundamental problems in

both computer and biological vision, as a sparse representation gives a meaningful

38

interpretation of the image. By varying the attributes of the sparse coding elements, we

can generalize from one image to another, or construct and learn statistical models that

capture the regularities and variabilities of images from various images in an object or

scene category.

This chapter proposes a sparse representation of images using active curve tem-

plates and active corner templates. In an active curve template, the prototype template

is a composition or grouping of a small number of Gabor filter elements placed with

equal spacing on a straight line segment or a circular arc segment of constant curvature.

So the prototype template is parameterized and very simple. However, these filter ele-

ments are allowed to locally shift their locations and orientations so that the prototype

curve template can be deformed to different instances in order to fit observed images.

Thus an active curve template is also flexible enough to account for deviations from the

simple prototype.

Two active curve templates that share a common endpoint can be further composed

into an active corner template, where the two constituent active curve templates are al-

lowed to vary their overall geometric attributes such as lengths and curvatures, so that a

prototype corner template corresponds to many variants. See Fig.3.1 for an illustration.

This chapter then proposes a layered computational architecture of sum-max maps

that pursues a sparse representation of an image by selecting a small number of active

corner templates and active curve templates from a dictionary of all such templates. The

computation has a bottom-up pass and a top-down pass. The bottom-up pass tests all the

possible templates exhaustively but efficiently by parallel recursive computations that

alternate between local sum pooling and local max pooling. The sum pooling scores

the active curve and corner templates by combining the scores of their constituent com-

ponents, while the max pooling optimizes the variations of the constituent components

to infer deformations. After the bottom-up pass, the top-down pass selects the active

corner templates and active curve templates, and deforms them into their optimal vari-

39

Active Corner Templates

Active Curve Templates

Active Gabor Elements

Figure 3.1: (Better viewed in color) An image is represented by a small number of

active corner templates and active curve templates. Top Row, Left: Original image.

Middle: Selected active corner templates, where a corner is illustrated by a red arm

and a green arm. For clarity of illustration, the red and green arms do not cover the

whole extents of the two curves of a corner template. Right: Sketches of the image by

deforming the active curve templates. Bottom Three Rows: Compositional relation

among active Gabor elements, active curve templates and active corner templates.

40

ants to represent the observed image, by retrieving the argmax elements in the local

max pooling.

3.2 Related Work

The proposed representation can be considered a concrete implementation of the idea

of primal sketch [Marr, 1982; Guo et al., 2003]. It is inspired by two theories on the

primary visual cortex or V1. One is the sparse coding theory of Olshausen and Field

[Olshausen and Field, 1996] for the simple cells in V1. The other is the local max

pooling proposed by Riesenhuber and Poggio [Riesenhuber and Poggio, 1999] as a

function of the complex cells in V1.

As is presented in Section 1.3.1, in the sparse coding theory of Olshausen and Field,

an image is represented by a linear superposition of a small number of wavelet elements

selected from a large dictionary. The active curve templates and corner templates in

our work are based on the representation of Olshausen and Field, where each template

is a composition or grouping of a small number of Gabor filters. Because of such

grouping, the representation based on such templates can be considered a further sparse

coding of the selected Gabor filters similar to the wavelets used in the Olshausen-Field

representation.

The proposed architecture of sum-max maps is a variation of the cortex-like struc-

ture of Riesenhuber and Poggio [Riesenhuber and Poggio, 1999]. The difference be-

tween the proposed sum-max architecture and the structure of Riesenhuber and Poggio

is that we test and select explicit geometric templates of curves and corners, and there

is a top-down pass that deforms the templates by retrieving the argmax elements in the

local max pooling, in order to represent and sketch the observed image. This procedure

is also similar to the inference algorithm in hierarchical object models such as [Epshtein

et al., 2008].

41

The proposed representation follows the general principle of hierarchical compo-

sitionality and re-usable parts [Bienenstock et al., 1997]. In terms of detecting large

structures by grouping smaller ones, the proposed sum-max architecture tests all pos-

sible templates exhaustively yet efficiently, instead of resorting to greedy schemes that

make early decisions, which may not be correct. Specifically, no edge detection is per-

formed before the active curve and active corner templates are detected. Decisions on

edges are made after the templates are detected and deformed to match the observed

data.

The proposed representation is different from feature detectors such as edge de-

tectors [Canny, 1986], corner detectors [Harris and Stephens, 1988; Shi and Tomasi,

1994], or invariant features such as SIFT [Lowe, 1999]. The active curve and corner

templates used in our representation are more sparse and usually cover larger ranges

than these feature detectors.

The method of meaningful alignment [Desolneux et al., 2000] also seeks to find

geometric structures in images. The line segments tested by meaningful alignment are

not deformable, and the computation there does not employ recursive schemes such as

those in sum-max maps.

3.3 Active Curve and Corner Templates

3.3.1 Active Curves

Following the active basis model [Wu et al., 2010], an image I is represented by

I =

N

X

i=1

c
i

B
xi+�xi,✓i+�✓i +U, (3.1)

where each B is a Gabor filter with position x and orientation ✓. Each Gabor filter

element has a pair of sine and cosine components, so the coefficient c
i

also has a pair of

components correspondingly. U is the unexplained residual image. In this chapter, we

42

�

� + ��/K

� � ��/K
x

x+
1

x�
1

� � 2��/K

� + 2��/K

x+
2

x�
2

Figure 3.2: An illustration of active curve templates. Left: an example of active curve

template A
x,✓,⇢,2

. Right: the active curve template and one of its possible variants. Blue

arrows indicate the location deformation range of the Gabor elements.

fix the scale of Gabor filters, so this attribute is not shown in the subscript. We allow

each Gabor filter element i to shift from its nominal position x

i

and orientation ✓
i

by

�x
i

and �✓
i

respectively. The nominal positions and orientations are either designed as

in this chapter or learned as in the active basis model, and the perturbations �x
i

and �✓
i

deform the template to fit the image I. These perturbations can be inferred by the local

max pooling of the Gabor filter responses.

As is shown in Fig.3.2, an active curve template A is a composition or grouping

of Gabor filters placed with equal spacing on a straight line segment or a circular arc

segment of a constant curvature. By design, the Gabor filters are placed so that the

distance between two consecutive elements is 0.9 times their length, so these filters are

slightly overlapping. As an approximation, we still treat them as being orthogonal to

each other, so that the coefficients c
i

are simply the projections of the image I on the

Gabor filter elements. As Gabor filters resemble the edge and ridge patches, they are

symbolically illustrated by bars.

We use the center position x, orientation ✓, curvature ⇢ and length l to index each

43

active curve template, which is a composition of Gabor filter elements:

A
x,✓,⇢,l

= {B
x0,✓0 , B

x

+
i ,✓

+
i
, B

x

�
i ,✓

�
i
; i = 1, . . . , l � 1}, (3.2)

where x
0

= x, ✓
0

= ✓, x±
i

refer to the position of the i-th Gabor element, and ± denotes

the two sides relative to the arc center.

We quantize the orientations of Gabor filters into K values equally spaced by ↵ =

⇡/K. The curvature is then quantized such that the orientation difference between

neighboring elements is a multiple of ↵. We use this integer to index the curvature, thus

an active curve template of curvature ⇢ satisfies: ✓+
i

= ✓+
i�1

+⇢·↵, and ✓�
i

= ✓�
i�1

�⇢·↵.

The length is quantized by the length of Gabor filters. A curve of length l has 2l + 1

Gabor filter elements.

The active curve template reduces to a line segment if ⇢ = 0, and it further reduces

to a single Gabor element if l = 0. We use arcs as prototype shapes because they are

more general than straight line segments, yet simpler to parameterize than more general

curves such as those can be represented by splines.

3.3.2 Active Corners

An active corner template is a composition of two active curve templates. As is shown

in Fig.3.3, an active corner template C is defined in terms of two active curve templates

that share a common endpoint x0:

C = {A
x

0
,✓

0
1,⇢1,l1

, A
x

0
,✓

0
2,⇢2,l2

}, (3.3)

where we use superscript 0 to indicate that the curve is indexed by its end point instead

of its center. We require that the curvature ⇢ should be below a threshold b
1

, the length

l
1

and l
2

should be larger than a threshold b
2

, and the angle ↵ = ✓0
2

� ✓0
1

should be

confined to a proper range, e.g. ↵ 2 [⇡/2 � b
3

, ⇡/2 + b
3

], where b
1

, b
2

and b
3

are

parameters. Through these constraints, only long curves with low curvatures can be

composed into corners.

44

3.4 Image Model and Template Matching Score

Following the active basis model, we assume that the probability distribution of the

image, p(I), is specified by tilting a background distribution q(I), which may be con-

sidered as the distribution of natural images. Theoretical underpinnings of this model

can be found in [Wu et al., 2010].

Given the N Gabor elements of a template, the log likelihood ratio of foreground

image versus the background image is:

log

p(I)

q(I)
=

N

X

i=1

[�h(r
i

)� logZ(�)], (3.4)

where h(r
i

) is a monotone increasing transformation of Gabor filter response r
i

= |c
i

|2,

and h(r
i

) saturates for large r
i

. � is a parameter, and Z(�) is the normalizing con-

stant for the corresponding exponential distribution. This is essentially a linear scoring

scheme. If r
i

is small, it will lead to a negative score. We want to detect those curve

templates whose constituent elements contribute large positive scores. Different values

of � correspond to different expectations E[h(r
i

)] on the foreground, and E[h(r
i

)] is

a monotone increasing function of �. We treat all the selected Gabor elements with

equal importance, so we use the same � for all h(r
i

). This � is kept as a parameter in

our model, and the corresponding Z(�) is computed by pooling Gabor responses from

natural images.

With such a model, we can simply define the template matching score of an active

curve template as the log likelihood ratio score:

�

(

h(r
0

) +

l�1

X

i=1

[h(r+
i

) + h(r�
i

)]

)

� (2l + 1) logZ. (3.5)

The template matching score of a corner template is defined by summing the scores of

the two constituent curve templates.

45

�

Figure 3.3: (a) A schematic plot of an active corner at position x

0 and two arm orienta-

tions ✓0
1

, ✓0
2

. (b) By definition, an active corner template corresponds to many possible

instances of corners. For example, we can choose any pair of red and green arms in (b)

to compose them into an instance of the active corner in (a).

3.5 Scoring All Templates by Sum-Max Maps

According to the definition of the active curve templates in Eqn.(3.2), an active curve

template of length l can be composed by an active curve of length l�1, plus two Gabor

filters (i.e., active curves of length 0) at the two ends:

A
x,✓,⇢,l

= {A
x,✓,⇢,l�1

, A
x

+
l ,✓+l·↵,⇢,0, Ax

�
l ,✓�l·↵,⇢,0}. (3.6)

This immediately implies a recursive algorithm to compute the template matching

score Eqn.(3.5) of long active curve templates by first computing the scores of shorter

ones. Scores of length zero active curves are obtained by local maximum pooling of

the Gabor filter responses, because the Gabor elements are allowed to shift their loca-

tions and orientations. The computation can be highly parallel, since scores of active

curves at different positions, orientations and curvatures can be computed indepen-

dently. Based on these two features, the following sum-max maps are proposed to

compute the scores of all active curve and corner templates.

1. S1 maps. S1 maps store the responses of Gabor filters at all positions and orien-

46

tations. It is computed by convolving the Gabor filter with the image, followed

by local normalization and saturation transformation on the responses. The local

normalization step divides the response of a Gabor filter element by the local av-

erage of the responses of all the Gabor elements within a window centered at this

element.

2. M1 maps. To account for the deformations of active curve templates, each el-

ement on M1 maps is computed as the maximum of S1 map values within its

local deformation range:

M1(x, ✓) = max

�x,�✓

S1(x+ �x, ✓ + �✓), (3.7)

where �x = d · (cos ✓, sin ✓), d 2 [�b
4

, b
4

] and �✓ 2 [�b
5

, b
5

].

3. S2 maps. The S2 maps store the scores of all the active curve templates. Ac-

cording to curve length, S2 maps can be further divided into sub-layers. Scores

at different sub-layers are computed as follows:

S2(x, ✓, ⇢, 0) = �M1(x, ✓)� logZ, (3.8)

S2(x, ✓, ⇢, l) = S2(x, ✓, ⇢, l � 1)

+ S2(x

+

i�1

, ✓ + l · ↵, ⇢, 0)
+ S2(x

�
i�1

, ✓ � l · ↵, ⇢, 0), (3.9)

where in Eqn. (3.9), we assume l > 0.

The template matching score of active corner templates can be expressed as

S2(x

0, ✓0
1

, ⇢
1

, l
1

) + S2(x

0, ✓0
2

, ⇢
2

, l
2

). (3.10)

According to Eqn.(3.3), for a given point x0 and a given supporting curve orien-

tation ✓0
1

, there are 2b
1

· (|l| � b
2

) · |�| different corners. If we assume that there

47

can be at most one corner instance among these, we shall choose it by solving the

following problem:

max : S2(x

0, ✓0
1

, ⇢
1

, l
1

) + S2(x

0, ✓0
2

, ⇢
2

, l
2

),

subject to the constraints on the ranges of ⇢ and l for each curve, and � spanned

by the two curves.

Since there is no constraint on the relation between (⇢
1

, l
1

) and (⇢
2

, l
2

), this prob-

lem can be solved by first solving smaller problems. The corresponding compu-

tation steps can be summarized as the sequentially computing of the following

maps:

4. M2 maps

M2(x0, ✓0) = max

⇢,l

S2(x

0, ✓0, ⇢, l), (3.11)

where �b
1

< ⇢ < b
1

and l > b
2

.

5. S3 maps

S3(x0, ✓0
1

, ✓0
2

) = M2(x

0, ✓0
1

) +M2(x

0, ✓0
2

), (3.12)

where S3 maps are the scores for all the possible active corner templates. In com-

puting S3 maps, we should only compute over (✓0
1

, ✓0
2

) pairs so that the spanned

angle ↵ is within the defined range.

In the local maximization steps 2 and 4, the optimal deformations that achieve the

maxima can be obtained by argmax operations.

The sum-max maps score all the active curve and corner templates without early

decisions such as edge detection. The max operations make the scores invariant to

shape deformations.

When converting index of the S2 maps from arc center to two ends, the index entries

will override because each arc now has two indices (shown in Fig. 3.4). We resolve this

48

Algorithm 3.1: Matching Pursuit of Active Curve Templates
Input: S1 maps after inhibition, threshold T .

Output: Selected active curve templates A = {A
1

, · · · , A
N

}
1 repeat

2 Compute M1 and S2 maps.;

3 s⇤ maxS2(x, ✓, ⇢, l);

4 A⇤ argmaxS2(x, ✓, ⇢, l);

5 Decompose A⇤ into a set of Gabor elements B;

6 foreach B
x,✓

2 B do

7 (x

⇤, ✓⇤) argmaxM1(x, ✓) ;

8 foreach B
x

0
,✓

0 correlated with B
x

⇤
,✓

⇤ do

9 S1(x

0, ✓0) 0 ;

10 Update M1 map entries in the neighborhood of B
x

⇤
,✓

⇤ ;

11 A A [{A⇤};

12 until s⇤ < T ;

A
x

�
2

0
,(✓�2⇢↵)

0
,⇢,l

A
x

+
2

0
,(✓+2⇢↵)

0
,⇢,l

A
x,✓,⇢,l

A

B

C

D(a) (b)

Figure 3.4: (a) Three indices of an active corner, by center and two ends. (b) When

changing center point index to end point index, one index will correspond to two curves

(such as A,B or C,D). We solve this overriding issue by extending the orientation index

from [0, K � 1] to [0, 2K � 1], and setting the orientation of one curve to ✓ +K .

49

overriding by doubling the number of orientations from K to 2K, which corresponds

to changing the orientation range from [0, ⇡] to [0, 2⇡].

3.6 Selection of Corner and Curve Templates for Single Image

As can be seen from Fig.3.5, most responses on S3 maps are very low, because corners

are rare events and highly location sensitive. So, after the M3 maps are computed,

we can simply apply a threshold and use non-maximum suppression to select active

corner templates for image representation. Specific curves and their Gabor elements

that belong to these selected corners can then be obtained by a top-down process that

retrieves the optimal deformations from the argmax maps of the local max operations.

To select active curve templates that are not overlapping with the selected active

corner templates, we need to inhibit the scores of those curves that overlap with the

selected corners. To do this, we trace back the active curve templates that belong to

the selected active corner templates, and further trace back the Gabor elements of these

curves. For each Gabor filter of the selected and deformed corner, we let it inhibit its

nearby Gabor filters whose correlations with the current one exceeds a certain threshold,

by setting the responses of those Gabor filters to zero. In practice, the correlations can

be computed before the algorithm starts, so that inhibition can be done very efficiently.

After inhibition, we can select salient active curve templates by sequentially select-

ing the current best curve with the highest score, and let the selected curve inhibit the

overlapping ones. This is essentially a matching pursuit [Mallat and Zhang, 1993] pro-

cess, where in each step, we select a group of Gabor elements packed into an active

curve template. The pursuit algorithm stops once the selected score is lower than a

threshold T . The process is summarized in Algorithm 3.1.

50

3.7 Active Curves and Corners as Features for Object Images

We can also select and compose curve templates and active corner templates into an

object template by learning from multiple images, either generatively or discrimina-

tively. To accommodate geometric variations of active curve templates across multiple

object images, we allow the active curves and active corners to deform at their own

group level, by changing their parameters in a small deformation range. Following the

S2 and S3 maps, the score maps of group deformable templates for active curves can

be computed as:

M2

+

(x, ✓, ⇢, l) = max

�x,�✓,�⇢

S2(x+ �x, ✓ + �✓, ⇢+ �⇢, l) (3.13)

Similarly, for active corner templates:

M3

+

(x

0, ✓0
1

, ✓0
2

) = max

�x

S3(x

0
+ �x, ✓0

1

, ✓0
2

) (3.14)

As the two arms in an active corner template are already allowed to have orienta-

tion deformation, only corner position changes are needed to deform the active corner

template. Note that in the original M2 maps are still computed as they are needed for

the M3

+ maps.

3.8 Experiments

3.8.1 Implementation and Parameters

The recursive and parallel algorithm is mainly composed of the sum and max opera-

tions, which can be computed very efficiently. However, if we keep all the maps and

argmax maps, the memory consumption can be excessive. In practice, since only a

small number of Gabor elements will be backtracked in top-down process, we choose

51

Parameter Notation Value

Gabor Filter Size s 15⇥ 15 pixel

Number of Orientations K 25

Position Change b
4

±1 pixel

Orientation Change b
5

±1 orientation

Curve Curvature Range ⇢ ⇢ 2 [�4, 4]
Curve Length Range l l 2 [0, 3]

Corner Arm curvature Threshold b
1

2

Corner Arm Length Threshold b
2

0

Corner Angle Range b
3

⇡/6, � 2 [⇡/3, 2⇡/3]

Weight � 2.5

Arc Score Threshold T 3{� · E[h(r);�]� logZ}
Corner Score Threshold b

6

2.3T

Table 3.1: Parameters for all the experiments on single images

not to save the argmax maps and instead re-do the local maximum computing for se-

lected corners or curves to retrieve their argmax deformations. For an image of size

341⇥ 512 and parameters in Table.3.1, the algorithm would consume about 1.2 GB of

memory. Although we listed 12 parameters in the table, most of them are not essential,

and only for properly discreitizing the space of possible curves and corners. Only �, T ,

and b
6

are of importance. We calibrate the last three parameters according to the image

in Fig.3.1, and fix these parameters for all the experiments on single images below and

those in the project page.

3.8.2 Sketch Natural Images

Fig.3.5 shows the intermediate results for the example image in Fig.3.1, where each row

shows maps from different layers, and each column corresponds to curves or corners in

different orientations. As the size of active curve and corner templates become lager,

the high scores on the corresponding maps become more sparse and clustered. Maps at

S3 level become very sparse, and high scores only appear around the true corner points

52

on the image. As evidences are accumulated over larger areas, it becomes safer to make

decisions at higher levels. Since the selected templates are much larger than a single

Gabor filter, the resulting representation is more sparse than filter representation.

More results are shown in Fig.3.6 and in our project page1. For each image, we also

show the result from edge link [Kovesi, 2012] as a reference. We would like to stress

that our representation is more sparse than the representation based on edge points, yet

still captures the main structures in the images.

3.8.3 Learning from Object Images

In this section, we explore the possibility of using active curves and active corners as

features for object modeling. For simplicity in implementation, we assume object im-

ages are all from the same view, and use very simple learning and inference algorithms,

only to evaluate the eligibility of using the proposed visual concepts as an intermediate

level representation of objects.

3.8.3.1 Experiments on Single Object Images

On single images with uncluttered background, the proposed representation can be ef-

fortlessly adapted to represent objects. Fig. 3.7 shows that on a single horse image, the

output active corners and their composing active arcs are already able to represent the

specific shape of that object image. Parameters in this example are also the same as in

Table. 3.1, except we changed the size of the Gabor elements because the input image

size is different.
1http://www.stat.ucla.edu/˜wzhu/IRAC

53

S1

M1

S2

M2

S3

Input Result
S1

S2

S3

Figure 3.5: The sum-max data structure, using the image in Fig.3.1 as an example.

Maps for different orientations are laid out horizontally, and maps for different layers

are laid out vertically. Sub-layers in the S2 maps correspond to active curves of dif-

ferent lengths, and depth direction in the S2 maps corresponds to curves of different

curvatures. Depth direction in the S3 maps corresponds to the orientation of the second

arm. Maps on the right are typical maps from each sum layer.

54

(a) (b) (c) (d) (e)

Figure 3.6: More results on the single image representation. (a) Input image. (b)

Selected corners. (c) Selected corners with supporting curves. (d) Deformed curves.

(e) Output from edgelink code.

55

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Representing images of objects. (a) Original Image. (b) Corner saliency

map, defined as max

✓

0
1,✓

0
2
S3(x

0, ✓0
1

, ✓0
2

). (c) Selected corner prototypes. Angles spanned

by the corners are from red arm to green arm. The arms only cover the small portions of

the arc primitives of the corners. (d) Prototypes of the selected corners and their com-

posing active curves. (e) Deformed active curves and their composing active corners.

(f) Deformed corners and arcs.

56

(a) Templates using 5, 10, 15, · · · , 40 active basis elements.

(b) Templates using 5, 10, 15 and 20 active curves.

Figure 3.8: Learned templates by adaBoost, using active basis and active curves as

features. For each case,

3.8.3.2 Discriminative Learning on Multiple Images By AdaBoost

To illustrate the use of the active curves and active corners as features for object cat-

egory modeling, we collect a dataset and compare the testing errors of adaBoost clas-

sifiers [Freund and Schapire, 1996; Viola and Jones, 2001] based on different sets of

features. We collected 280 horse images, 186 leaf images as positive examples, and

559 images as negative examples. The leaf images are from Vision lab of Caltech.

Taking the horse category as an example, we show the learned templates using only

active basis (M1 maps) and only active curves (M2+ maps) in Fig.3.8. Specifically, we

show the active basis templates using 5 to 40 basis at every 5 basis, and the active curve

templates using 5 to 20 curves at every 5 curves.

57

0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

number of featuers

AU
C

active basis
active curves
active curves + corners

(a) Horses

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of featuers

AU
C

active basis
active curves
active curves + corners

(b) Leaves

Figure 3.9: AUC curves of boosted classifiers on horse images and leaves images,

using active Gabor features, active curve templates, and both active corner and curve

templates.

From the figure, we can see that though using the discriminative learning method,

the learned active curve templates still form the shape of a horse, while in the active

basis case, the template becomes much less meaningful. As the active curves structures

are much larger than active basis, the possibility of their frequent occurrence on a shared

location and orientation in the negative image set is much lower than that of active basis.

As a consequence, classifiers using active curves on the aligned object boundary will

become strong classifiers, thus adaBoost will mostly select these classifiers, leading to

a meaningful template many describing the object. On the contrary, the weak classifiers

using active basis may model the accidental alignment of some active basis on negative

images, thus the learned template become noisy and less meaningful.

Using 20% of the images in each category as training examples, we further run

adaBoost to build three discriminative models, by replacing the Haar features with the

feature pools of M1 maps, M2+ maps, and both M2+ and M3+ maps, corresponding

to use only active basis, with active curves and further with active corners.

For each feature combination, we compute the AUC (Area Under the ROC Curve)

58

Templates by Active Curves Templates by Active Basis

Figure 3.10: A comparison of the deer templates generatively learned using active

curves and active basis.

scores of the classification results on the rest 80% of the image dataset. For each cat-

egory, we repeat the above procedure five times by randomly splitting the data at each

time, and show the averaged AUC in Fig.3.9. From the results, we can see that to

achieve the same classification performance (AUC), the number of active corners or

curves used is always less than that of active Gabor filters.

3.8.3.3 Generative Learning Using Shared Matching Pursuit

Object templates can also be learned by assuming generative models. For simplicity,

we directly use the active basis formulation, and learn linear additive image models

composed of active curves instead of active basis. Then we can use the shared matching

pursuit algorithm from active basis to learn the template, by just extending the inhibition

step to inhibition of Gabor elements correlated with each Gabor element composing the

59

Figure 3.11: Learned object templates and their deformations on training images. The

learned template for each category is shown in the first column. The rest of the tem-

plates are deformed versions of images on their left. Grayscale of the strokes in the

deformed templates indicates the strengths of Gabor responses, where darker means

stronger.

selected active curve in each iteration.

Figure.3.10 shows the generatively learned templates composed of active curves,

together with these composed of active basis. From the two sets of templates we can

see that the shapes learned by active curves are less fragmented, as the added hierarchy

of active curves replaces large deformation of individual elements with an intermediate

level of deformation of active curves plus small deformation of individual elements.

3.8.3.4 Object Detection on ETHZ object dataset

We further run experiments on the publicly available ETHZ object dataset [Ferrari et al.,

2010], where templates learned using the first half of images in each category are shown

in Fig.3.11. As object bounding boxes in training images are in different aspect ratios,

60

given the training images, we compute the geometric mean of those aspect ratios, and

resize the cropped images in bounding boxes to the geometric mean.

Since the parameter � on each of the Gabor filters are prefixed before learning, we

want to adjust these weights before the learned templates are used for object detection.

To keep using the generative framework, we use the `
2

regularized logistic regression

for adjustment, which optimize:

min

�1,··· ,�N

1

2

N

X

n=1

�2

n

+ C
M

X

m=1

log

(

1 + exp

"

�y
m

N

X

n=1

�
n

h(r
mn

)

#)

, (3.15)

where y
m

2 {+1,�1} is the label of the m-th example, and r
mn

is the response of n-th

Gabor element in m-th image. In Eqn.(3.15), we assume there are N Gabor element

in the template composed of active curves, and totally M training examples (including

both positive and negative).

We use the LIBLINEAR implementation of this logistic regression, which is pub-

licly available on the web page for [Fan et al., 2008]. In training the weights, the

positive examples are extracted by back tracing the Gabor element responses from im-

ages used in learning the tepmalte, and negative examples are back traced responses

in randomly cropped windows from positive images, regardless of the overlap between

the window and the object bounding box.

We use the sliding window method to perform object detection. Given a testing

image, we first construct the image pyramid, where the image scale change between

consecutive layers is 1.1x. For each layer, we compute the M2+ maps for active curves

whose length, orientation and angle combination matches those of the active curves

used in the learned templates.

For object aspect ratio variation, we choose to change the template aspect ratio

instead of resizing images and re-computing active curve score maps. This is imple-

mented by changing the horizontal axis coordinate of each active curve to {0.9, 1.0, 1.1}
times the original value, while fixing the vertical axis unchanged. The orientation and

61

Figure 3.12: Sample detection results on ETHZ dataset. The blue bounding boxes are

for the ground truths, and green ones are reported by our detection algorithm. For each

reported window, we also retrieve its the deformed template, which is also imposed

onto original images.

curvature of these curves are kept unchanged. For each aspect ratio we run separate

sliding windows using the same weights learned from the logistic regression.

After getting the score for each potential object window in the image pyramid, we

report object detection windows using non-maximum suppression, under the criterion

that reported windows should not have intersection over union area ratios less than

50%. For each reported window, we further go back to retrieve the deformations of

active curves and their composing Gabor filters, which could sketch the detected object.

Examples of detection results are shown in Fig.3.12.

We perform the detection task with 5 repetitions as in the experiments of k-adjacent

segments [Ferrari et al., 2010]. For each repetition, we randomly select half of the

images in the category as training data, and the rest together with all images from all

other categories as testing data. We use the code from [Ferrari et al., 2010] to compute

the detection-rate v.s. FPPI (false positives per image) curves for each repetition and

their averaged curves. The result averaged curves are shown in Fig.3.13. From the

results, we can see that without complicated shape modeling, the simple additive model

using our active curves can already achieve comparable performance as [Ferrari et al.,

2010].

62

0 0.2 0.4 0.6 0.8 1 1.2 1.40
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False−positives per image

D
et

ec
tio

n
ra

te

Bottles

0 0.2 0.4 0.6 0.8 1 1.2 1.40
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False−positives per image

D
et

ec
tio

n
ra

te

Giraffes

0 0.2 0.4 0.6 0.8 1 1.2 1.40
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False−positives per image

D
et

ec
tio

n
ra

te

Mugs

0 0.2 0.4 0.6 0.8 1 1.2 1.40
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

False−positives per image

De
te

ct
io

n
ra

te

Swans

+RXJK�RQO\�
Ferrari et al. PAMI 08
Ferrari et al. IJCV 10
Ours

Figure 3.13: Detection results on the ETHZ dataset. We use the same evaluation pro-

cedure and criterion as [Ferrari et al., 2010]. Blue, green and purple curves are from

[Ferrari et al., 2010]. Note that only one repetition is used in producing the green curve.

63

3.9 Discussion

We propose a sparse image representation based on deformable templates of simple

geometric structures such as curves and corners. We also propose a computational

architecture that exhaustively tests all the possible deformable templates in the bottom-

up pass and then retrieves the deformed templates in the top-down pass. Such templates

can be pursued from single images. They can also be composed into object templates

by learning from multiple images either generatively or discriminatively. The template

matching scores of curve and corner templates can also be used as features for object

modeling.

Besides corners and angles, it is possible to compose the curve templates into tem-

plates of more complex geometric shapes, such as triangles, rectangles and ellipsoids.

And there might be equivalent compositions for these more complex shapes, such as

comping triangles by three corners or tree line segments. While these problems are

certainly interesting for further investigation, on natural images, the complex structures

are much less frequent than curves and corners, which makes exhaustively computing

them less useful.

In our current scheme of template matching, we only include the responses of Gabor

filter elements on the line or arc segments. We should also pool the responses of those

elements that are away from the line or arc segments, in the form of local averages or

local max, which are weighted negatively in order to model the flatness of the regions

around the line or arc segments.

Parameterizing the geometric structures such as curves and corners provides us the

opportunity of quantizing the spaces of these structures. The practical benefit of this

quantization is that instead of assuming infinitely many structures, we can only assume

a subset of them, which could be typical examples representing the whole structure

family, yet small enough so that exhaustive computation over all of them is affordable.

64

Moreover, by assuming these structures are composed of shared substructures, the com-

putation could be more efficient as these for substructures can be reused. The idea of

combining quantization and composition motives the next chapter, which construct a

hierarchical compositional representation that grows from image pixels in 2D images

all the way to 3D object bounding volumes.

65

CHAPTER 4

Integrating 3D and 2D Representations by AND-OR

Tree

This chapter proposes an AND-OR tree structure (AoT) and an efficient algorithm that

learns 3D deformable object templates from view labeled object images. The proposed

AoT is composed of a Geometry AoT (G-AoT) and Appearance AoTs (A-AoTs). The

G-AoT hierarchically partitions the target object volume into sub-volumes, where pan-

els associated with sub-volumes define the geometry of the template. The A-AoT de-

fines hierarchies of stylized visual concepts on these panels and corresponding images

at different views, as well as their equivalence classes as deformations. The AoT quan-

tizes the continuous and infinite space of 3D object geometry and appearance into a

discrete and finite space, which also fills in the gap between stylized 3D object rep-

resentations and their observations as image pixels. With prefixed AoT, the model

structure learning problem is also transformed into a structure search problem, where

an efficient dynamic programming algorithm called AND-OR search can be used. Ex-

periments show that the proposed approach can learn meaningful 3D car template, and

perform object detection and pose estimation tasks. Experiments on a public dataset

also show that the proposed algorithm performs better on object detection and compa-

rable on pose estimation tasks with recent approaches [Liebelt and Schmid, 2010].

66

4.1 Introduction

4.1.1 Motivation and objective

The idea of using 3D models with stylized shape primitives for object recognition has

long been suggested by researchers in both computer vision and psychology [Bieder-

man, 1987; Dickinson et al., 1992; Marr, 1982]. However, little progress has been

made after the its emergence in the early 90’s, because: 1) There is a representation

gap between the hidden concept of stylized 3D shape primitives and their observed ap-

pearance as raw image pixels, due to deformation, projection and lighting etc.; 2) The

number of possible 3D primitive compositions is huge, which makes designing efficient

algorithms a difficult problem.

In this chapter, we take car images as an example, and propose a method that learns

a 3D deformable template from view labeled object images. We propose to address the

above issues using an AND-OR Tree structure, which:

• Quantizes the continuous and infinite space of object geometry and appearance

into a discrete and finite space.

• Hierarchically decomposes this space, so that computational complexity can be

reduced by reusing sub-compositions.

• Poses the model structure learning problem as a structure search problem in a

prefixed search space.

Using the AND-OR Tree (AoT), we are able to learn 3D object templates composed

of stylized planar shapes, such as the one shown in Fig.4.1(a), as well as project and

deform the 3D template to match observed images, such as the examples shown in

Fig.4.1(b)-(d).

67

4.1.2 Overview of the Proposed Method

An overview of the proposed AoT structure is shown in Fig.4.2. We first decompose the

space of our model into geometry and appearance spaces, which are further quantized

by AND-OR Tree for Geometry (G-AoT) and AND-OR Tree for Appearance (A-AOT)

respectively. More detailed illustrations of these AoTs are shown in Fig.4.4 and Fig.4.5

respectively.

In this chapter, geometry refers to the 3D placement of our appearance components

defined in corresponding A-AoTs. The G-AoT quantizes and recursively decomposes

the bounding volume of target object category into smaller volumes. During the decom-

position, each volume can be either split into two smaller volumes or directly connected

to panels on the front surface or inscribing the volume, which serve as root nodes for

A-AoTs.

As is shown in Fig.4.5, each A-AoT defines a regularized and deformable shape

template representing the appearance of a certain area of images decided by the view

and the geometry of corresponding panels. Given the geometry, these A-AoTs are

derived by quantizing the parameters of simple 2D shapes, such as circles, rectangles,

etc. Starting from the root node of an A-AoT, the corresponding shape is decomposed

into parameterized line segments, which are realized by specialized active curves [Hu

et al., 2011] after projection, and further decomposed into deformable Gabor filters

[Daugman, 1985] as active basis [Wu et al., 2010].

The above hierarchy of decompositions constitutes the AND nodes in the proposed

AoT, whereas OR nodes connect the volumes to their alternative decompositions in

G-AoT, and enable deformations for shapes, line segments etc. along the hierarchy of

A-AoT.

Connecting the two types of trees, the G-AoT and A-AoTs construct a coherent

AoT which quantizes the model space spanning from 3D object bounding volume to

68

(b
)

Pr
oj

ec
tio

n
(c

)
D

ef
or

m
at

io
n

(d
)

O
bs

er
va

tio
n

(a
)

3D
 T

em
pl

at
e

Figure 4.1: Overall view of the proposed object representation. (a) A learned 3D car

template, which is composed of planar part templates. (b) At each specific view, the

learned 3D template is projected to derive a 2D template. (c) 2D templates are then

deformed to match observations, which are images shown in (d).

image pixels generated by Gabor filters.

In learning stage, we want to find the best volume decomposition together with their

shape templates which best explain the observed training images. With the proposed

AoT, this learning problem is posed as a structure search problem that finds the best

composition among the possible compositions defined by the AoT. Using the informa-

tion gain as a quantitative measure, this search problem can be solved efficiently by

dynamic programming.

Given a testing image, we generate 2D image templates by projecting the 3D object

template to a set of hypothesized views, and match these 2D templates with the image

using dynamic programming. In this way, the 3D template can be used to detect objects

from arbitrary views in the continuos view sphere, including those might not seen in

69

Figure 4.2: An overview of the AND-OR Tree for the representation space

training examples.

4.1.3 Related Literature

Most models in the 3D object recognition literature can be categorized into two classes:

Object-centered models. Early work proposes to represent 3D objects as a com-

position of stylized volumetric primitives, such as Geons [Biederman, 1987] by Bieder-

man et al., 3D primitives [Dickinson et al., 1992] by Dickinson et al, and the generalized

cylinder representation by Marr [Marr, 1982]. These representations are usually illus-

trative. In fact, many of these primitives are still used as building components in modern

CAD design softwares. However, from object recognition perspective, it is difficult to

learn and recognize those 3D primitives because of the intrinsic ambiguity of inferring

3D shapes from single views and the gap between these hidden concepts and observed

70

image pixels. Though using planar shape templates on planes associated with volumes,

our proposed method resolves view ambiguity by pooling over partial evidence across

views, and also fills in the representation gap by allowing a hierarchy of decomposition

and deformations that fits the regularized shape to its image observations.

Recently, many papers ([Yan et al., 2007; Arie-Nachimson and Basri, 2009; Kushal

et al., 2007; Liebelt et al., 2008; Hsiao et al., 2010]) propose recognizing objects using

point based 3D models, with appearance as a set of SIFT [Lowe, 1999] descriptors,

or its quantized version [Hsiao et al., 2010]. The SIFT descriptor is good at raising

3D hypothesis by creating point correspondences. However, by only extracting SIFT

features, other salient image information is neglected, such as object boundaries. Our

proposed model is complementary to these models, since it mainly relies on boundary

information from images.

Viewer-centered models. Viewer-centered models date back to the aspect-graph

representation by Koenderink and Doorn [Koenderink and Doorn, 1976, 1979]. These

models are becoming popular, as they ([Thomas et al., 2006; Su et al., 2009; Payet and

Todorovic, 2011]) do not need to construct a view consistent 3D model, and can easily

use many developments ([Lazebnik et al., 2006; Dance et al., 2004]) on the widely

studied problem of object recognition on single or a few views. Right because the view

consistency prior is not explicitly used, information in individual images is not fully

shared across views, which suggests more data are required to learn a robust model for

each view.

In terms of model hierarchy, most of the models above are flat. For models with

parts or feature groups, they are either prefixed by creating a grid on object images

[Liebelt and Schmid, 2010; Payet and Todorovic, 2011], or step-wise clustered without

optimizing the global objective of their model [Su et al., 2009].

Recently, there are models assuming a 3D geometry model with 2D view specific

appearances, among them Liebelt and Schmid [Liebelt and Schmid, 2010] construct

71

view specific spatial pyramid models for both the object and its parts using real train-

ing images, and associate them to 3D space by rendered images of CAD models at the

same views; Pepik et.al. [Pepik et al., 2012] extends the deformable part based model

[Felzenszwalb et al., 2010] by heuristically initializing part positions and sizes in dif-

ferent views together in the 3D space, so that part view consistency can be employed.

While achieving high detection performance, both models use quasi-densely sampled

appearance features, resulting in models with high model complexity. While achieving

comparable performance in object recognition tasks, our model uses around 3000 fea-

ture dimensions, which is about the length of 100 HoG [Dalal and Triggs, 2005] cells

in deformable part based model, or 3 cells in spatial pyramids using 1024 codewords

as in [Liebelt and Schmid, 2010]. Our learned sparse templates are also very sparse

and meaningful, which provides clear interpretations of input data about what are the

important features or factors. Besides, as a 3D model, the model complexity does not

scale up as the number of modeled views increases.

The proposed learning framework uses AND-OR tree structures, which resembles

the And-Or Graph by Zhu and Mumford [Zhu and Mumford, 2006], yet instances in

our AND-OR tree do not necessarily represent an object interpretation or parse graph,

and the embedded grammar in our tree is context free, which is just a special case of

the Grammars defining the And-Or Graph.

The space quantization approach similar to our AoT can be seen as the quad-trees

in some image coding methods [Huo and Chen, 2005; Taubman and Marcellin, 2002],

where image lattice is recursively decomposed into equal sized sub-lattices. Instead

of only allowing this dyadic decomposition, our AoT allows multiple possible decom-

positions for each volume, thus embeds more expression power than the quad-tree in

image lattice or octree in the 3D case. Moreover, the OR nodes in our A-AoT allows

explicitly defining equivalence classees of visual concepts, which are shapes subject to

geometric transformations. In this way, the appearance of shapes can be categorized

72

explicitly.

The bottom levels of our AoT are based on the active curves model [Hu et al.,

2011], which composes the deformable Gabor filters in active basis model [Wu et al.,

2010] into middle level image structures such as line segments and efficiently computes

them using dynamic programming. Our statistical model is also consistent with these

models, and are further extended on to modeling 3D templates.

4.1.4 Contributions

The contributions of this chapter include:

• We propose an AND-OR Tree structure which quantizes the space of our model

and fills in the gap in representation between the stylized shapes and their obser-

vations as image pixels.

• We propose to transform the model structure learning problem into a structure

search problem in the AND-OR Tree, which can be efficiently solved by dynamic

programming.

• We present a new 3D car dataset with labeled image views. Compared with ex-

isting 3D car datasets, our dataset features much more widespread views, which

provides a new benchmark to test various 3D object category modeling methods.

Using the newly introduced dataset, we show that the proposed approach can learn

meaningful 3D car templates with less than 100 shapes, draw boundaries of the object

instances on different views, and detect objects and accurately estimate their poses. On

the publicly available 3D car dataset [Savarese and Fei-Fei, 2007], we show that our

model performs better than [Liebelt and Schmid, 2010] in term of object detection and

comparable with it for image view estimation.

73

The rest of the chapter is organized as follows. Section 4.2 introduces the AND-OR

tree design. Section 4.3 explains our information gain criterion and the probabilistic

image model. Section 4.4 and 4.5 presents in detail the bottom-up top-down learn-

ing algorithm and procedures used in inference algorithm. Our proposed datasets and

experiment results are presented in Section 4.6.

4.2 AoT for Space Quantization

As is shown in Fig.4.2, the AoT is composed of three types of nodes: AND nodes, OR

nodes and leaf nodes, and their relations as directed edges. We will introduce these

nodes and their relations in G-AoT and A-AoT separately.

4.2.1 G-AoT for Part Geometry

AND nodes. As is shown in Fig.4.2, the G-AoT roots from an AND node representing

the 3D bounding volume of target car category we want to model. This volume is then

decomposed into 12 Volumes of Interests (VoIs), each representing a bounding volume

of the components extracted from a 3D CAD model representing the typical shape of

the car category. The relative sizes and locations of these components are shown in

Fig.4.3(a).

Other than root, AND nodes in the G-AoT represent the volumes of VoIs or their

sub-volumes, where examples are shown in Fig.4.4. These nodes are indexed by three

sets of parameters, and are denoted as V A
X,D,C , where X is the 3D position of the in-

nermost vertex of the volume, D is the dimension and C is a vector parallel to one of

the three coordinate axis, denoting the relative offset and the surface normal of a plane.

The volume is decomposed into 2 volumes by the plane, which can be expressed as

V A

X,D,C ! V O

X,D1
V O

X+C,D2
, (4.1)

74

(a) (b)

(c) (d)

(e)

Figure 4.3: (a)Initial VoIs. (b) VoI partitioning. The size of each VoI is different from

that in (a) because of volume size rounding. (c) Selected volumes that compose the

VoIs (d) Selected panels in selected VoIs. (e) Selected shape templates which compose

the 3D object template.

75

OR node AND node LEAF node Volume Panel

Figure 4.4: A Geometry AND-OR tree, where AND nodes represent combinations of

two sub-volumes occupying larger sub-volumes, OR nodes connect to multiple AND

nodes representing possible combinations for the same sub-volume, and leaf nodes

represent panels inscribing their parent volumes.

76

where D
1

+ D
2

= D. As a valid decomposition, C should be in range 0 � C � D,

where � denotes the element-wise inequality.

OR nodes. V O
X,D in Eqn.(4.1) denotes the OR nodes in decompositions, which indi-

cates that there are several alternative decompositions of current volume:

V O

X,D ! V A

X,D,C, 0 � C � D (4.2)

Leaf nodes. Each OR node is also connected to a set of leaf nodes, denoting the

options of stop decomposing the current volume and instead put panels on it. The

parameters of panels (positions, sizes, and orientations) define the placements of the

root nodes of A-AoTs into 3D space. We count panels with the same parameters but

connecting to different A-AoTs as different ones, and instantiate two types of panels

for each OR node: those on the frontal surface of the volume, and those connecting

the top-inner edge and the bottom-outer edge of the volume, which are illustrated in

Fig.4.4. The reference point of the positions of inner and outer is the center of the

object volume.

4.2.2 A-AoT for Part Appearance

An A-AoT models the appearance of image areas defined by its corresponding panel

and image view angles. The OR nodes define hierarchies of stylized visual concepts

or visual words, where each one is connected to a set of AND nodes which define its

equivalence class. The equivalence class of a visual concept is the concept and its neigh-

bors in its parameter space, and these concepts can be treated as its deformations. The

AND node further connects it their children OR nodes, which are stylized constituent

concepts. In the following, we define these concepts as layers of visual dictionaries �,

where the AND nodes are those in even number indexed layers, OR nodes are in those

in odd numbered ones, and leaf nodes are in �

(0).

�

(5): Words in �

(5) are defined on the panels in 3D space. The appearance of these

77

Template type Appearance Parameters Deformation Range Instantization

Circles

center u, v @u = {�.1w, 0, .1w} u = w/2, v = h/2

radius r @v = {�.1h, 0, .1h} d = min(w, h)

of segments n r 2 {.9d, 1d, 1.1d}
Parameters of above deformation vL1

= 1/8h, vL2
= 7/8h

Trapezoids parallel lines range with in fixed long line length ◆ = 0.9w

(rectangles) {L
1

, L
2

} plane rotation: shot line length ◆ 2 [.5w, .9w]

{�⇡/⇢, 0, ⇡/⇢} L
3

and L
4

by connecting L
1

and L
2

Parallel Lines same as above same as above

same as above

with no L
3

, L
4

Line Segments

L = {center (u, v) , deformation realized u = w/2, v= h/2

orientation ✓, in Active Curves ✓ = 0

length ◆} ◆ = 0.9w

Active Curves

l = { center (x, y), @x = {�1, 0, 1} pixels (x, y) 2 image lattice ⇤

orientation o, @y = {�1, 0, 1} pixels o 2 O

length l} @o = {�⇡/⇢, 0, ⇡/⇢} l 2 {1, 2, · · · , 5}

Active Basis

B = {center x, y (x, y) 2 ⇤

orientation o same as above o 2 O

scale s} filter size set to 17⇥ 17

Table 4.1: List of visual concepts used in our representation, their parameters, defor-

mation range and instantiation range. w and h in column 4 and 5 denote the width and

height of the panel respectively.

78

Perspective Projection

OR node AND node Line segment Active curve Gabor element

Figure 4.5: In Appearance AND-OR Trees, each panel represents geometry of a shape

template, and are connected to AND-OR Tree for part appearance. Here AND cor-

responds to composition and OR corresponds to deformation. It extends the AoT for

Geometry to image spaces since its leaf nodes are Gabor filters.

words are templates of regularized shapes, which we call shape templates S. As is

shown in Table.4.1, these shapes include circle, trapezoids with rectangles as a special

case, parallel lines and line segments, whereas the trapezoids and parallel lines further

contain 6 sub-types separately.

�

(4): In 3D space, we allow each S to translate along the two axis of the panel sides

and rotate in the panel plane, each at three levels specified in column 4 of Table.4.1. By

combining these transforms, we can derive a set of 27 neighboring shape templates S

for each stylized one, which constructs its equivalence class. As an example, a rotated

and translated trapezoid is shown in Fig.4.6. Combining the equivalence classes for all

79

Figure 4.6: An example of the 3D deformation for shape templates. We allow the

template to rotate round panel center and translate along the axis direction.

stylized shapes,

�

(4)

= {S|S 2 @S
0

, S
0

2 �

(5)} (4.3)

where @S
0

denotes the equivalent class of stylized S
0

.

�

(3): �(3) is defined both on panels and on image planes as �(3)

3D and �

(3)

2D , which

are the line segments L as elements composing shape templates in �

(4), and their real-

izations on images as a subset of active curves A.

For the convenience of parameterizing trapezoid shapes S, line segments L are pa-

rameterized in coordinates of panel plane, with the origin at the center of the panel, and

two axis along the side direction of panels. In this coordinate system, a line segment

is parameterized by (u, v, ✓, ◆), which are center position, line orientation and length

respectively. Trapezoid shape templates can then be easily decomposed and parameter-

ized by those of constituent parallel line segments. For example, as a special case of

trapezoid templates, a rectangular shape template with width and height as (w, h) can

be decomposed into:

S ! L
0,�h

2
,0,w

L
0,

h
2
,0,w

L�w
2
,0,

⇡
2
,h

Lw
2
0,

⇡
2
,h

, (4.4)

and indexed by (0,�h

2

, 0, w, 0, h
2

, 0, w).

80

Thus in 3D space:

�

(3)

3D = {L|L 2 ?S, S 2 �

(4)}, (4.5)

where ?S denotes the set of line segments by applying the rules of decomposition.

On image plane, these line segments are realized by a subset of active curves in-

dexed by their parameters as A
x,y,o,l

, where (x, y, o, l) are for the center position, orien-

tation and length. Thus,

�

(3)

2D =

n

A| A = P(L,!), L 2 �

(3)

3D ,! 2 ⌦

o

(4.6)

where ! denotes a view in the set of views ⌦, and P denotes the projection function

that projects L to A.

�

(2): Elements in �

(2) are equivalent active curves of those in �

(3)

2D . For an ac-

tive curve A
x,y,o,l

, we allow it to translate in the range @x, @y, and rotate in a small

orientation range @o, thus the equivalence classe @A
x,y,o,l

can be defined as

@A
x,y,o,l

=

8

>

>

>

<

>

>

>

:

A
x

0
,y

0
,o

0
,l

�

�

�

�

�

�

�

�

�

x0
= x+ �x cos o0, �x 2 @x

y0 = y + �y sin o0, �y 2 @y

o0 = o+ �o, �o 2 @o

9

>

>

>

=

>

>

>

;

, (4.7)

and

�

(2)

= {@A
x,y,o,l

|A
x,y,o,l

2 �

(3)

2D} (4.8)

�

(1): As in [Hu et al., 2011], an active curve can be decomposed into a series of

weakly overlapping active basis B, which are placed along the curve, and are parame-

terized by position (x, y) and orientation o. As a special case, the active curves used in

this chapter are active basis or equivalently the 2D primitives placed along straight line

segments, and can be decomposed as:

A
x,y,o,l

! B
x,y,o

B
x

+
1 ,y

+
1 ,o

B
x

�
1 ,y

�
1 ,o

· · ·B
x

�
l ,y

�
l ,o

(4.9)

81

In Eqn.(4.9), x±
i

= x±
i�1

± 0.9b cos o and y±
i

= y±
i�1

± 0.9b sin o, and b is the length

of active basis elements B in pixels. Note that the length of the A is measured by the

number of used active basis, which can be converted to pixel units using the length of

B.

Therefore �

(1) is the dictionary of active basis:

�

(1)

= {B|B 2 ?A,A 2 �

(2)} (4.10)

�

(0): Visual elements composing the leaf nodes of A-AoT are Gabor filters at spe-

cific locations (x, y) and orientations o, these filters are translated and rotated versions

of Gabor function G(x, y) ⇡ exp{�[(x/�
x

)

2

+ y/(�
y

)

2

]}eix with �
x

= 5, �
y

= 10,

which are further normalized to have zero mean and unit `
2

norm.

Similar to the active curves, the active basis B in �

(1) are defined as Gabor filters

deformable in ranges @x, @y and @o:

@B
x,y,o

=

8

>

>

>

<

>

>

>

:

B
x

0
,y

0
,o

0

�

�

�

�

�

�

�

�

�

x0
= x+ �x cos o0, �x 2 @x

y0 = y + �y sin o0, �y 2 @y

o0 = ✓ + �o, �o 2 @o

9

>

>

>

=

>

>

>

;

(4.11)

4.2.3 Instantiation of AoT

We instantiate the G-AoT on a set of permissible volumes. For each VoI, we round

its size to multiples of a unit size, and put an equally unit size spaced grid ⌃ onto it,

such as shown in Fig.4.3(b). When generating the AND and OR nodes using rules in

Eqn.(4.1) and (4.2), we start from the rounded VoIs, and restrict C such that generated

sub-volumes must have all vertices on the grid ⌃.

Recursively applying the rules generates layers of AND, OR nodes and their re-

lations as edges. The recursion stops when the volume reaches a size limit. The full

G-AoT can then be instantiated by further adding leaf nodes and corresponding edges.

The leaf nodes of G-AoT are instantiated together with the root nodes of A-AoTs.

82

For each of the two panel types of an OR node, we instantiate a number of shape tem-

plate nodes according to the panel size and the specification in column 5 of Table.4.1.

Using these shape templates S as root nodes, the A-AoTs can be recursively gener-

ated using definitions of dictionaries in Section 4.2.2. Although we use a discrete view

set to define �

3

2D in Eqn.4.6, we do not need to enumerate these views and can still use

continuos view space in practice, as the view ! of image is assumed to be given in the

training stage, and is hypothesized before projecting L in the testing process.

Even given the !, the number of nodes in �

(2) to �

(0) would still be numerous. We

choose to densely instantiate these nodes over the image lattice ⇤ at a set of ⇢ discrete

orientations O = {⇡/⇢, ⇡/⇢, · · · ⇡} and lengths. In this way, we can avoid storing

parameters for these nodes as they are encoded as the order where nodes are stored

in matrix. When referenced by parent nodes, they can be easily accessed using their

parameters.

4.2.4 Parse Trees as Samples of the Quantized Space

The proposed AoT quantizes the infinite continuos space we want to model into a struc-

tured discrete space, where each point corresponds to a view ! and a parse tree pt.

A parse tree pt is a sub-tree of the AoT. Given a view !, a parse tree can be gen-

erated starting from the root node of AoT, by recursively tracing child OR nodes for

AND nodes and keeping only one child node (either AND node or leaf node) at traced

OR nodes. Therefore, a parse tree represents a possible partition of the object bounding

volume, regularized shape templates in these composing volumes and a specific defor-

mation for each of the shape templates for view !. As an illustration, the partition,

panels, and the regularized shape templates for a learned parse tree are shown Fig.4.3

(c) to (e).

83

4.3 Probabilistic Image Model

In this section, we will first define that how the conditional probability of image I given

view ! can be decomposed along the nodes in a parse tree gt. We then introduce how

we model the joint probability p(I,!), and its corresponding information gain.

4.3.1 Probability Density Decomposition

Through the parse tree, the target object volume is first decomposed by layers of AND

and OR nodes in G-AoT. In an OR node, the conditional probability of p(I
⇤V O

|!, V O
)

is equal to that of the traced child node:

p(I
⇤V O

|!, V O
) = p[I

⇤V |!, V 2 ch(V O, pt)], (4.12)

where I

⇤V O
represents the part of image explained by V O, and function ch(V O, pt)

retrieves the traced immediate child node of V O in the parse tree pt, which could be

either an AND node or a leaf node in G-AoT.

In an AND node, its conditional probability is decomposed into the product of that

of its immediate two child nodes:

p(I
⇤V A

|!, V A
) =

Y

V

O2ch(V A
,pt)

p(I
⇤V O

, |!, V O
). (4.13)

In Eqn.(4.13), we assume the areas of the image covered by the child nodes do not over-

lap. This assumption will not hold if the two children OR nodes are its decomposition

along the depth direction. In this case, we enforce this assumption by allowing only

one volume to be active.

The leaf nodes of G-AoT defines a set of shape templates {S
i

}. To model the

effect of object self-occlusion, we assume each S
i

has a visible range, and can only be

projected onto image when it is visible. In practice, we assume a shape template S
i

is visible if the inner product between the panel surface normal and view direction is

smaller than -0.6.

84

If the S
i

is visible, it can be further decomposed along the parse tree as:

p(I
⇤Si

|!, S
i

) =

Y

j

p(I
⇤Lj

|!, L
j

) (4.14)

=

Y

i,j

p(I
⇤Ai,j

|A
j

) =

Y

i,j,k

p(I
⇤Bi,j,k

|B
i,j,k

) (4.15)

where A
i

is the corresponding active curve by projecting L
i

in view !. As we assume

the probability for OR nodes is equal to that of their immediate child AND nodes or

leaf nodes in pt, the node types are not differentiated in Eqn.(4.14) to (4.15).

Cascading decompositions above, the conditional probability of pt can be factorized

into that of its constituting active basis elements in the leaf nodes:

p(I|!, pt) = p(I
⇤pt

, I
⇤pt |!, pt)

= p(I
⇤pt

|!, I
⇤pt)p(I⇤pt |!, pt)

= p(I
⇤pt

|!, I
⇤pt)

Y

ijk

p(I
⇤Bijk

|B
ijk

) (4.16)

where ⇤

pt

refers to pixels not covered by pt, i indexes over visible shape templates

under view !. The terms of invisible shape templates are absorbed to (I

⇤pt
|!, I

⇤pt) as

they do not explain any image pixels.

4.3.2 Image Modeling by Density Substitution

We model our target distribution p(I,!) starting from a reference distribution q(I,!)

using density substitution. This method was first proposed in [Friedman, 1987], and

was used in image modeling by active basis model [Wu et al., 2010]. As the explained

portion of image I

⇤pt is modeled exactly as a set of active basis, the details and proof

of density substitution used here can be derived in the same way as [Wu et al., 2010],

and are thus not repeated.

85

Using density substitution, we get:

p(I,!|pt) = q(I,!)

Q

ijk

p(I
⇤Bijk

|B
ijk

)

Q

ijk

q(I
⇤Bijk

)

= q(I,!)
Y

ijk

p[h(r
ijk

)]

q[h(r
ijk

)]

. (4.17)

In Eqn.(4.17), r is the response of a Gabor filter, defined as the squared inner-

product of the base function B in �

(0) with image I: r = k < I, B > k2. h

is the sigmoid transform that saturates the large Gabor filter response to ⌧ : h(x) =

⌧
⇥

2/(1 + e�2x/⌧

)� 1

⇤

.

For modeling p[h(r)], we assume the following exponential model:

p[h(r)] =
1

Z
q[h(r)] exp[�h(r)] (4.18)

where � is the parameter and Z is the corresponding normalizing constant. The above

model can be justified by maximum entropy principle [Pietra et al., 1997]. The q[h(r)]

can be represented as a histogram pooled over a set of natural images.

In the original active basis model, the parameter � reflects the importance of the

corresponding active basis element in the learned template, and is estimated so that the

expectation E
p

[h(r)] matches the corresponding mean observed from training images.

As we assume that all the basis elements in our template are equally important, the � is

simply set to a constant corresponding to a high expected response. Z is then estimated

using the same method as in active basis.

4.4 Template Leraning by Dynamic Programming

We assume images of a visual object category should share the same geometry and

stylized part appearances. Thus we want to model an image category by a parse tree set

pt in which all pt share the same set of stylized shape template {S
i

}. In the full AoT,

86

this pt corresponds to a parse tree in G-AoT, and visually, they form a deformable 3D

object template.

4.4.1 Information Gain as the Objective for AND-OR Search

We assume images of a visual object category should share the same geometry and

stylized part appearances. Thus we want to model an image category by a parse tree set

pt in which all pt share the same set of stylized shape template {S
i

}. In the full AoT,

this pt corresponds to a parse tree in G-AoT, and visually, they form a deformable 3D

object template.

4.4.2 Information Gain as the Objective for AND-OR Search

Given M view labeled training images {I
m

,!
m

}M

m=1

, these parse trees pt can be learned

by maximizing the corresponding image likelihood, or equivalently maximizing the in-

formation gain of corresponding model p(I,!|pt) over reference model q(I,!):

IG(pt) =

ZZ

p(I,!|pt) log p(I,!|pt)
q(I,!)

dId! (4.19)

⇡
M

X

m=1

log

p(I
m

,!
m

|pt)
q(I

m

,!
m

)

(4.20)

Along the G-AoT, the best pt can be learned recursively, as we can get recursions

among AND and OR node using Eqn.(4.12) and (4.13):

max IG(V A
) = max

X

V

O2ch(V A
,AoT)

IG(V O
) (4.21)

=

X

V

O2ch(V A
,AoT)

max IG(V O
) (4.22)

=

X

V

O2ch(V A
,AoT)

max

V

A02ch(V O
,AoT)

max IG(V A0
) (4.23)

and

87

max IG(V O
) = max

V

A2ch(V O
,AoT)

max IG(V A
) (4.24)

= max

V

A2ch(V O
,AoT)

max

X

V

O02ch(V A
,AoT)

IG(V O0
) (4.25)

= max

V

A2ch(V O
,AoT)

X

V

O02ch(V A
,AoT)

max IG(V O0
) (4.26)

where IG refers to the information gain.

The recursion above will ultimately reach leaf nodes of G-AoT, and for the stylized

shape template S
i

in the leaf node,

max IG(S
i

) ⇡ max

X

m

log

p(I
m

,!
m

|S
i

)

q(I
m

,!
m

)

(4.27)

⇡
X

m

max log

p(I
m

,!
m

|S
i

)

q(I
m

,!
m

)

(4.28)

=

X

m

max

i,j,k

X

i,j,k

�h(r
mijk

)� logZ (4.29)

So the recursion could continue in A-AoTs, which maximize the log-likelihood

ratio of each image I

m

given the visual concepts and their equivalence classes in the

hierarchy.

The recursion above actually reduces to dynamic programming, as it always de-

composes a problem into a few similar sub-problems, and results of sub-problems are

reused because each node in AoT would have multiple parents. In the following, we

call this dynamic programming on the AND-OR Tree as AND-OR search.

4.4.3 AND-OR Search Algorithm

Converting the recursions into iterations, the AND-OR Search algorithm is composed

of one bottom-up pass and one top-down pass, which are listed in Algorithm 4.1 and

4.1 respectively. The bottom-up pass is composed of layers of sum and max operations

at AND and OR nodes respectively, which computes the maximum information gain of

88

Algorithm 4.1: The Bottom-Up Pass of AND-OR Search Algorithm
Input: h[i], t[i], ch[i] as height, type, children index of node i.

Output: The learned template T

1 for m = 1 to M do

2 Compute S1, M1, S2, M2 maps for image I

m

3 end

4 Node layer l 4

5 foreach node i in layer l do

6 if t[i] = ”ROOT” then Root node

7 return GET-TEMPLATE(i)

8 else if l=4 then Deformed shape template

9 IG

im

 P

Lj2Si
M2(I

m

, A
j

)

10 else ther AND nodes

11 IG

i

 P

j2ch(i) IGj

12 end

13 end

14 foreach node i in layer l + 1 do

15 if l=4 then Shape template

16 IG

i

 P

j2ch(i) max

m

IG

jm

17 else Other OR nodes

18 IG

i

 max

j2ch(i) IGj

19 end

20 end

21 l l + 2, go to line 5

89

Algorithm 4.2: The Top-Down Pass of AND-OR Search Algorithm

1 Function GET-TEMPLATE(i)

2 T ;;
3 if t[i] = ”OR” then

4 j = argmax

k2ch(i) IGk

;

5 T GET-TEMPLATE(j);

6 else if t[i] = ”AND” then

7 foreach j 2 ch(i) do

8 T {T , GET-TEMPLATE(j) };

9 else Leaf node of G-AoT

10 T node i;

11 return T ;

all the possible pt or the 3D object templates. The top-down pass is a series of arg-max

operations that retrieve the optimal composition at each activated OR node.

The bottom-up pass starts from computing the log-likelihood ratios of active curves

and active basis in �

(0) to �

(3), which are saved in the form of score maps for retrieval

by L in S. Details of these sum-max operations can be found in Chapter 3 as the steps

of computing S1,M1,S2,M2 maps, thus are not repeated here.

In implementing the AND-OR search algorithm, we need to decide the visiting

order of these nodes so that child nodes are processed before their parents. For G-AoT,

we simply assign the height of AND and leaf nodes to be 2v and that of OR nodes to be

2v+1, where v is the size of the volume. The height of each node in A-AoT is assigned

to the layer index of the vocabulary they belong to. As operations within each layer of

the tree can be computed independently, they can be done in parallel, which makes the

algorithm more efficient.

90

For the special case of AND composition in depth order, we simply use max in-

stead of sum over the two information gains in bottom-up pass, and only retrieve the

maximum node in the top-down pass.

For specific VoIs, we further learn alternative part template combinations, in order

to model large structural variations in various datasets. We use the hard EM clustering

framework to alternatively impute image cluster labels and learn shape template com-

binations for each image cluster iteratively. In the following experiments, we learn two

clusters for the head, tail and each of the four wheel VoIs.

4.5 Inference Scheme

4.5.1 Converting 3D Template to 2D Templates

Given a specific view, the 3D deformable template can be projected to a 2D deformable

template, with 3D in-plane deformation of each shape template realized by 27 differ-

ent image templates. After projection, the sliding window method can be employed to

perform object detection in that view. In each window, the inference problem is still

solved by dynamic programming algorithm, which essentially finds the maximum like-

lihood ratio on a small AoT with root connecting to all the activated shape templates.

Alternative shape template combinations are also treated as deformations: we simply

project both cases to a specific view, and the one with highest likelihood ratio prevails.

As is shown in Fig.4.9, we enumerate discrete views in the view sphere, and use the

approach above to perform object detection in each view. To generate discrete views,

we fix the internal camera parameters by assuming a general focal length, and discretize

the external parameter space of pan, tilt, and camera distance to the world origin. For

simplicity, roll angle of the camera is set to zero.

91

4.5.2 Feature Weight Adjustment

The proposed learning method builds a sparse object model, which in the view of dis-

criminative learning, provides features for object recognition. However, to achieve high

recognition performance on image datasets, the reference distribution q[h(r)] should be

re-calibrated to compensate the error introduced by the position and orientation invari-

ant assumption. This leads to the adjusted weights on the scores of active curves. To

this aim, we lump the scores of all line segments on the learned template into a feature

vector, and use linear SVM to re-train the weights of these features.

We collect negative training examples for the SVM reweighting in the way similar

to the hard negative mining steps in deformable part based model [Felzenszwalb et al.,

2010]. Specifically, we use the equally weighted original model to run sliding windows

on positive examples, crop high score windows whose intersection over union with

true positive window less than 50 percent, and extract line segment scores as negative

examples.

We use LIBSVM [Chang and Lin, 2011] as the implementation of this adjustment

procedure.

4.5.3 Hypothesis Verification by Color Histogram

In experiments, we found that templates only using sketches tend to generate false

positives on textured areas, such as images of fences or brick walls. We use color in-

formation to further suppress these false positives, by re-testing on high score windows

using both sketch and color information.

To this aim, we evenly sample patches in each part template, concatenate their color

histograms into the feature vector, and also feed it into the linear SVM. We allocate 8

bins on each of the 3 color channels, so that for each part template another 24 di-

mensions are added to the feature vector. Note that the color and sketch features are

92

concatenated into one vector and their weights are trained together.

After computing the score maps for the sketch-only templates at enumerated views,

we sequentially select the top 200 highest score windows as highly suspicious windows

in each view, and update the score of these windows using both sketch and color his-

tograms. The object detection windows are then reported using non-maximum suppres-

sion through these highly suspicious windows by the criterion that reported windows

should not overlap more than 50 percent with each other.

4.6 Experiments

4.6.1 Image Dataset and Parameters

There are some widely used datasets emphasizing 3D object recognition [Leibe and

Schiele, 2003; Savarese and Fei-Fei, 2007], but most of them only provide images

from a few specified views or limited ranges of views. This could potentially trivial-

ize the problem of 3D object recognition, as models may simply memorize the object

appearance in these views, thus essentially cast the problem into a multi-class object

recognition problem.

We introduce a new dataset1 of car images, featuring a large variety of views, which

are collected uncontrolled both from Internet and at the intersections and parking lots

on UCLA campus, such as the ones in Fig.4.1. For each image, we label object view by

extending the annotation software provided on the project page of [Hu and Zhu, 2010].

We also labeled views for all images of the car dataset in [Savarese and Fei-Fei, 2007],

and show both of them in Fig.4.7.

In the following experiments, we randomly use 160 of the 360 images dataset as

training data, and the rest as testing data.
1Available at: http://www.stat.ucla.edu/˜wzhu/CVPR12

93

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0

(a)

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0

(b)

(c)

Figure 4.7: Top: View distribution of our dataset (a) and the 3D car dataset (b) in

[Savarese and Fei-Fei, 2007]. The angular direction represents pan angle and radius

direction represents tilt angle. Bottom: Sample images of our dataset.

94

For parameters in G-AoT, we set the minimum volume size to 2⇥2⇥1 in unit size,

where 1 is along the depth direction, and unit size is set to 150 mm.

For parameters in A-AoT, we set the Gabor filter size to b = 17 in pixels, and basis

response saturation threshold ⌧ to 6, which is the same as in [Wu et al., 2010]. The

range of � in [Wu et al., 2010] is in the range [0, 5], with 5 corresponding to the highest

possible expected response, and we set it to 2.0 which corresponds to about 90% of the

highest. Our experiments show that the learned template does not change much when

� is in range [2.0, 3.0].

4.6.2 Scales of AoT as a Function of Volume Size

Volume Size V A V O leaf # of pt

(5, 5, 5) 1,170 270 10,206 2,7969 ⇥106

(8, 8, 8) 99,684 11,340 394,065 7.2096 ⇥1025

(10, 10, 10) 628,540 55,440 1,967,328 2.2061 ⇥1048

(15, 15, 15) 14,517,360 851,760 33,043,920 6.6772⇥ 10

153

Table 4.2: The scale of AoT and the number of possible 3D deformable templates as

bounding volume size grows.

In the first experiment, we want to show how the size of AoT and the number of

possible pt grows as the volume size grows. For this purpose, we set the entire object

volume as one VoI, and grow G-AoT using the rules in Section 4.2.1 and parameters

specified above. For each generated tree, we count the number of AND, OR and leaf

nodes in G-AoT. We also compute the number of possible 3D deformable object tem-

plates(# of pt) for each AoT. This can be computed using the bottom-up pass of the

AND-OR search, with IG replaced by the number of sub-compositions, and sum-max

operations replaced by product-sum operations for AND and OR nodes respectively.

95

The results are shown in Table.4.2. It can be seen that the number of possible 3D

templates is much larger than the number of nodes combined at all volume sizes, and

the number of 3D templates grows much faster than that of the nodes. This shows the

efficiency of AND-OR structure in encoding compositions.

4.6.3 Representation Power of AoT and Octree

To test the expression power of our AoT with the octree in 3D space, we compare the

distortion of learned 3D templates from AoT and octree at different granularities and

for different vehicle types. Since most of the 3D car image datasets only have images of

sedans, we choose to directly use 3D CAD models as both training data and the ground

truth for evaluating the goodness of the learned model.

We collected 5 3D CAD models for each of the following vehicle categories: sedan,

SUV, truck and minivan from Google 3D warehouse. For a given tree structure, we

learn the best 3D panel composition that represents the VoIs using the AND-OR search

specified above, with the information gain of each template replaced by the total area of

facets within a certain distance threshold from the corresponding panel. For simplicity,

we define the distance between the panel and the a facet as the average distance between

the panel and facet vertices, and the distance threshold is set to 1 inch.

We set the volume size limit to 1 ⇥ 1 ⇥ 1 of unit size, generate AoTs and octrees

with different unit sizes, and compute the maximum within threshold areas for each of

the learned panel composition. We compare the results from AoTs and octrees by the

curve of the proportions of within threshold areas v.s. unit sizes, which are shown in

Fig.4.8. It is clear to see that in all cases, the AoT explains more area than the octree,

which justifies our qualitative analysis in literature review.

96

100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Sedan

100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) SUV

100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Truck

100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AoT
Octree

(d) Minivan

Figure 4.8: Comparison of representation power between AND-OR tree and commonly

used Octree. The horizontal axis represents the side length of minimum volumes in

millimeters, and the vertical axis represents the percentage of CAD model surfaces

inside VOI and represented by the computed solution. The AND-OR tree consistently

outperforms Octree across all the 4 vehicle categories at all granularity.

97

4.6.4 Learning Object Templates

Fig.4.1 shows the learned template for car images. From the template, we can clearly

interpret some shape templates as wheels, windows. Even some detailed parts such as

headlights and grills can also be recognized. This is benefited by that fact that the ap-

pearance of the proposed shape templates is composed of large and regularized shapes.

Plus, the combination of these individual shape templates forms a car shape, which

demonstrates that 3D templates represented by AND-OR Tree include meaningful ones,

and they can be searched through by the proposed algorithm. Deformed templates also

demonstrate that the proposed hierarchies of deformations can adapt the regularized

shapes to its variants observed in images.

4.6.5 Object Recognition Experiments

4.6.5.1 Dataset 1: our own dataset

On our newly collected dataset, we run the inference steps in Section 4.5 to perform

object detection. We search pan angle at 15� interval in [0

�, 360�), tilt angle at 5�

interval from [5

�, 90�), and 8 camera distances for each pan and tilt angle combination.

Fig.4.9 shows an example of the projected 2D templates and their score maps at the

detected and its neighboring views. It can be seen that while all three views have high

scores at the object location, the peak at the correct view has significantly higher score

than the others. As we further decompose the templates into VoIs and individual shape

templates, we find that the meaningful parts, such as the windshield and wheels, are

also of very high saliency in their score maps.

We show the object detection performance by precision recall curves as shown in

Fig.4.10, where windows with intersection over union area ratio greater than 0.75 are

considered positive detection. Specifically, we show the performance of our model

using and without using the color features mentioned above. From the curves, we can

98

(a)

(b)

(c)

Figure 4.9: Projection of 3D Template to 2D Templates, their decomposition, and corre-

sponding detection score maps. Left: In inference process, we first project the learned

3D templates into a few view specific 2D templates. For each 2D template, it can be

decomposed into VoI templates, and further into the shape templates. Right: Score

maps for different 2D templates and its elements, each corresponds to the node on the

left. Note that score maps are normalized such that intensities are only comparable on

score maps of the same row.

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RECALL

PR
EC

IS
IO

N

Sketch and color AP=63.4
Sketch only AP = 58.0

Figure 4.10: Object detection performance on our proposed dataset

see that adding color feature help the object recognition performance.

For correctly detected instances, we also plot the histogram of view estimation er-

rors on pan angles, which are shown on Fig.4.11. From the plot, we can see that major-

ity of the instances are detected at the correct angles. We notice that a few of estimates

are totally flipped from head to tail, this suggests we should model more details of the

head and tails at higher resolutions, as the general shape of cars at flipping views are

similar.

4.6.5.2 Dataset 2: the 3D car dataset in [Savarese and Fei-Fei, 2007]

We also tried our method on the 3D car dataset in [Savarese and Fei-Fei, 2007]. We use

the learned model from the experiment above, and retrain feature weights using training

images in this dataset. Object detection performance is evaluated as precision recall

curves, which are shown in Fig.4.12, together with the rest of curves from [Liebelt and

Schmid, 2010].

We also show the performance of the pose estimation task using the confusion ma-

trix, together with that from [Liebelt and Schmid, 2010] in Fig.4.13. From the results,

100

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

PAN ANGLE ERROR

R
A

TI
O

Figure 4.11: Pose estimation error on our newly collected dataset.

we can see that our model achieves higher performance in terms of object detection

and comparable performance in pose estimation. Note that according to the evaluation

criteria in [Sun et al., 2009], only correctly detected samples in the testing set are ac-

counted into the confusion matrix. Our model achieved higher detection rate, so more

images are accounted into the confusion matrix.

By comparing the confusion matrices, we also find that accuracies for different

poses are not as uniform as that in [Liebelt and Schmid, 2010]. We believe this is be-

cause: 1.) our feature weights are shared across views and 2.) in the re-weighting step,

the linear-SVM only optimizes class labeling errors, regardless of the pose estimation

performance. With our continuous view formulation, we believe a structured-SVM

that optimize both class label and view should eliminate this problem. This is worth

investigation in subsequent studies.

4.7 Discussion

In this chapter, we propose a 3D object representation using part templates of geomet-

ric shapes, and a method for learning 3D object templates from images by quantizing

spaces. Experiments show that the proposed method can learn meaningful 3D car tem-

plates from view labeled images, and give comparable performance in object detection

and pose estimation.

101

















Figure 4.12: Object recognition performance on the 3D car dataset [Savarese and Fei-

Fei, 2007]. All curves except the red one are from [Liebelt and Schmid, 2010].

(a) (b)

Figure 4.13: Confusion matrix for pose estimation in dataset [Savarese and Fei-Fei,

2007]. Left: results from [Liebelt and Schmid, 2010], AP = 0.70. Right: ours, AP =

0.69.

102

Figure 4.14: Sample experiment results. Green rectangle: the ground truth object

bounding box. Blue rectangle: reported bounding box. Red rectangle: their inter-

section. 3D wire frame shows estimated object pose. Dots in templates show positions

of sampled color patches.

103

CHAPTER 5

Conclusions and Future Work

5.1 Thesis Summary

Previous chapters of this thesis explore models that integrate 3D and 2D representations

for view invariant object representation.

This thesis first presents the 3D object primitives and 2D image primitives as the

atomic elements of the compositional models introduced in Chapter 3 and Chapter 4,

which alone can already be used to learn meaningful templates from object images with

relatively clean background. We also propose to use information gain as the criterion to

evaluate the information contribution of these elements to their composing models, and

introduce a pursuit algorithm that learns flat models mixing different proportions of 3D

and 2D primitives for different object images, depending on the structural complexity

of the modeled object category.

We further propose to compose the 2D image primitives to middle level visual con-

cepts, such as line segments, curves and corners, which are called active curve templates

and active corner templates. Compared to the 2D primitives, or equivalently active ba-

sis or Gabor wavelets when view are not considered, introducing middle level concepts

would lead to even more sparse image representations, as these concepts can be con-

sidered as further coding of the sparsely selected 2D image primitives. By proposing

these middle leave concepts, we also implicitly introduce the ideas of shape parame-

terization and parameter space quantization. Together with the designed composition

104

hierarchy, an efficient algorithm based on dynamic programming can be used to ex-

haustively compute scores for all the possible active curve and corner templates in the

quantified space.

Finally, we formally introduce the space quantization approach through the AND-

OR Tree (AoT) structure. Based on the hierarchy from 2D primitives to active curves,

the AoT further composes active curves into regularized shapes as appearance of 3D

panels, and compose panels to 3D object templates. By enumerating compositions

(AND) and their equivalents (OR), the AoT quantifies a huge joint space of 3D object

templates using a limited number of nodes, where the space spans from 3D object vol-

ume all the way to observed image pixels. Through this quantization, we are also able

to integrate the compositional 3D object representations and 2D image representations

in a coherent formulation, which leads to consistent learning and inference algorithms

mainly composed of simple sum and max operations.

5.2 Future Work

Based on the current research presented in this thesis, there are still many opportunities

not yet be investigated. In the following, we provide a short outline of future lines of

work which build on the results of the present thesis.

1. Introducing more shapes and alternative paths of shape compositions. The ob-

jects around us are not solely composed of circles, rectangles and trapezoids, and

those shapes can be decomposed to entities other than line segments, where at

least the corners serve as good candidates. Bringing more shapes and more ways

of compositions will definitely increase the representation power of the proposed

visual hierarchy, while the proposed learning and inference algorithms can still

be used without significant modification.

2. Adding other visual cues into the proposed representation hierarchy. Though im-

105

portant, the shape is just one of many visual cues [Livingstone and Hubel, 1987]

which contributes to the robustness of the human vision system. Correspond-

ingly, it would certainly help if our proposed model would also process other

cues such as color, texture or even motion. With the current proposed frame-

work, it is not difficult to add features or primitives capturing these information,

but it would dramatically increase the computational complexity of the algorithm,

as the resulting image representation would not be as sparse as only using shape

cues.

3. Modeling more object categories and their interconnections. In this thesis, the

frequently used term ”car” largely refers to the sedan, whereas other car types

are often neglected. It would be certainly interesting to extend the current model

to more types of cars, in both theory and practical perspectives. As these car types

are closely related, we can further extend the current model to share 3D parts or

even part clusters. In training, the sharing increases the number of effective train-

ing images for each part, and in testing, it will boost the speed of object detection.

Compared with models such as [Liebelt and Schmid, 2010] and [Felzenszwalb

et al., 2010] which model cars regardless of their types, the proposed modeling

approach would describe the image distribution of car images in finer scale, and

provide car type information that is useful in scenarios such as traffic surveys.

4. A more efficient object recognition scheme. In terms of methodologies, this the-

sis mainly proposes approaches which efficiently learn models for view invariant

recognition, and the methods for recognition is largely using dense sliding win-

dow method. Though enough for the purpose of validating learned models, the

method is inefficient in that it tests too many hypotheses. It is definitely worth ex-

ploring algorithms that would dynamically scheduling bottom-up and top-down

process [Wu, 2011] along the hierarchy, which would significantly increase the

speed of recognition.

106

BIBLIOGRAPHY

Arie-Nachimson, M. and R. Basri (2009). Constructing implicit 3d shape models for

pose estimation. In Proceddings of IEEE Int’l Conf. Computer Vision, pp. 1341–

1348.

Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool (2008). Speeded-up robust features

(surf). Computer Vision and Image Understanding 110(3), 346–359.

Biederman, I. (1987). Recognition-by-components: A theory of human image under-

standing. Psychological Review 94, 115–117.

Biederman, I. and P. C. Gerhardstein (1993). Recognizing depth-rotated objects: Ev-

idence and conditions for three-dimensional viewpoint invariance. J. Exp. Psychol.

Hum. Percept. Perform. 19, 1162–82.

Biederman, I. and P. C. Gerhardstein (1995). Viewpoint-dependent mechanisms in

visual object recognition: Reply to tarr and bülthoff (1995). J. Exp. Psychol. Hum.

Percept. Perform. 21(6), 1506–1514.

Bienenstock, E., S. Geman, and D. Potter (1997). Compositionality, mdl priors, and

object recognition. In Advances in Neural Information Processing Systems.

Binford, T. (1971). Visual perception by computer. In Proceddings of IEEE Conf.

Systems and Control.

Brown, M. and D. G. Lowe (2005). Unsupervised 3d object recognition and recon-

struction in unordered datasets. In Proceedings of the Fifth International Conference

on 3-D Digital Imaging and Modeling, pp. 56–63.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. 8(6), 679–698.

107

Chang, C.-C. and C.-J. Lin (2011). LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27. Software

available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Dalal, N. and B. Triggs (2005). Histograms of oriented gradients for human detection.

In Proceddings of IEEE CS Conf. Computer Vision and Pattern Recognition, pp.

886–893.

Dance, C. R., J. Willamowski, L. Fan, C. Bray, and G. Csurka (2004). Visual cate-

gorization with bags of keypoints. In ECCV International Workshop on Statistical

Learning in Computer Vision.

Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency,

and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am.

A 2(7), 1160–1169.

Desolneux, A., L. Moisan, and J.-M. Morel (2000). Meaningful alignments. Int. J.

Comput. Vision 40(1), 7–23.

Dickinson, S., A. Pentland, and A. Rosenfeld (1991, jun). From volumes to views: an

approach to 3-d object recognition. In Workshop on Directions in Automated CAD-

Based Vision, pp. 85 –96.

Dickinson, S. J., A. P. Pentland, and A. Rosenfeld (1992). From volumes to views: An

approach to 3-d object recognition. CVGIP: Image Understanding 55(2), 130 – 154.

Epshtein, B., I. Lifshitz, and S. Ullman (2008). Image interpretation by a single bottom-

up top-down cycle. Proceedings of the National Academy of Sciences 105(38),

14298–14303.

Fan, R., K. Chang, C. Hsieh, X. Wang, and C. Lin (2008). Liblinear: A library for large

linear classification. The Journal of Machine Learning Research 9, 1871–1874.

108

Felzenszwalb, P. F., R. B. Girshick, D. McAllester, and D. Ramanan (2010). Object

detection with discriminatively trained part based models. IEEE Trans. Pattern Anal.

Mach. Intell. 32(9), 1627–1645.

Ferrari, V., F. Jurie, and C. Schmid (2010). From images to shape models for object

detection. Int. J. Comput. Vision 87(3), 284–303.

Freund, Y. and R. E. Schapire (1996). Experiments with a new boosting algorithm. In

Proceedings of Int’l Conf. Machine Learning.

Friedman, J. H. (1987). Exploratory projection pursuit. Journal of the American Sta-

tistical Association 82(397), pp. 249–266.

Guo, C., S.-C. Zhu, and Y. N. Wu (2003). Towards a mathematical theory of primal

sketch and sketchability. In Proceddings of IEEE Int’l Conf. Computer Vision, pp.

1228–1235.

Harris, C. and M. Stephens (1988). A combined corner and edge detector. In Proceed-

ings of Fourth Alvey Vision Conference.

Hayward, W. G. and M. J. Tarr (1997). Testing conditions for viewpoint invariance in

object recognition. J. Exp. Psychol. Hum. Percept. Perform. 23(5), 1511–1521.

Hoiem, D., C. Rother, and J. Winn (2007). 3d layout crf for multi-view object class

recognition and segmentation. In Proceddings of IEEE Int’l Conf. Computer Vision.

Hsiao, E., A. Collet Romea, and M. Hebert (2010). Making specific features less dis-

criminative to improve point-based 3d object recognition. In Proceddings of IEEE

CS Conf. Computer Vision and Pattern Recognition, pp. 2653–2660.

Hu, W., Y. N. Wu, and S.-C. Zhu (2011). Image representation by active curves. In

Proceddings of IEEE Int’l Conf. Computer Vision.

109

Hu, W. and S.-C. Zhu (2010). Learning a probabilistic model mixing 3d and 2d prim-

itives for view invariant object recognition. In Proceddings of IEEE CS Conf. Com-

puter Vision and Pattern Recognition, pp. 2273–2280.

Huo, X. and J. Chen (2005). JBEAM: multiscale curve coding via beamlets. IEEE

Transactions on Image Processing 14, 1665–1677.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106(4),

620–630.

Koenderink, J. and A. Doorn (1976). The singularities of the visual mapping. Biological

cybernetics 24(1), 51–59.

Koenderink, J. and A. Doorn (1979). The internal representation of solid shape with

respect to vision. Biological cybernetics 32(4), 211–216.

Kovesi, P. D. (2012). MATLAB and Octave functions for computer vision and image

processing. <http://www.csse.uwa.edu.au/⇠pk/research/matlabfns/>.

Kushal, A. and J. Ponce (2006). Modeling 3d objects from stereo views and recognizing

them in photographs. In Proceedings of the 9th European conference on Computer

Vision - Volume Part II, ECCV’06, Berlin, Heidelberg, pp. 563–574. Springer-Verlag.

Kushal, A., C. Schmid, and J. Ponce (2007). Flexible object models for category-level

3d object recognition. In Proceddings of IEEE CS Conf. Computer Vision and Pattern

Recognition, pp. 2273–2280.

Lazebnik, S., C. Schmid, and J. Ponce (2006). Beyond bags of features: Spatial pyra-

mid matching for recognizing natural scene categories. In Proceddings of IEEE CS

Conf. Computer Vision and Pattern Recognition, Volume 2, pp. 2169 – 2178.

Leibe, B. and B. Schiele (2003). Analyzing appearance and contour based methods

110

for object categorization. In Proceddings of IEEE CS Conf. Computer Vision and

Pattern Recognition, Volume 2, pp. 409–415.

Leopardi, P. (2006). A partition of the unit sphere into regions of equal area and small

diameter. Electronic Transactions on Numerical Analysis 25, 309–327.

Liebelt, J. and C. Schmid (2010). Multi-view object class detection with a 3D geometric

model. In Proceddings of IEEE CS Conf. Computer Vision and Pattern Recognition,

pp. 1688–1695.

Liebelt, J., C. Schmid, and K. Schertler (2008). Viewpoint independent object class

detection using 3d feature maps. In Proceddings of IEEE CS Conf. Computer Vision

and Pattern Recognition.

Livingstone, M. and D. Hubel (1987). Psychophysical evidence for separate channels

for the perception of form, color, movement, and depth. The Journal of Neuro-

science 11(1), 3416–3468.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proced-

dings of IEEE Int’l Conf. Computer Vision, pp. 1150–1157.

Mallat, S. and Z. Zhang (1993). Matching pursuits with time-frequency dictionaries.

IEEE Trans. on Sig. Proc. 41(12), 3397–415.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation

and Processing of Visual Information. San Francisco, CA, USA: W.H. Freeman.

Marr, D. and H. K. Nishihara (1978). Representation and recognition of the spatial

organization of three-dimensional shapes. In Proceedings of the Royal Society of

London., Volume 200 of B, pp. 269–294.

Minsky, M. (1974). A framework for representing knowledge. Technical report, Mas-

sachusetts Institute of Technology.

111

Olshausen, A. B., P. Sallee, and M. S. Lewicki (2001). Learning sparse image codes

using a wavelet pyramid architecture. In Advances in Neural Information Processing

Systems, Volume 13, pp. 887–893.

Olshausen, B. A. and D. J. Field (1996, 06). Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature 381(6583), 607–609.

Payet, N. and S. Todorovic (2011). From contours to 3d object detection and pose

estimation. In Proceddings of IEEE Int’l Conf. Computer Vision.

Pentland, A. P. (1986). Perceptual organization and the representation of natural form.

Artificial Intelligence 28(3), 293 – 331.

Pepik, B., M. Stark, P. Gehler, and B. Schiele (2012). Teaching 3d geometry to de-

formable part models. In Proceddings of IEEE CS Conf. Computer Vision and Pat-

tern Recognition, pp. 3362–3369.

Pietra, S. D., V. D. Pietra, and J. Lafferty (1997). Inducing features of random fields.

IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 380–393.

Riesenhuber, M. and T. Poggio (1999). Hierarchical models of object recognition in

cortex. Nature Neuroscience 2, 1019–1025.

Savarese, S. and L. Fei-Fei (2007). 3d generic object categorization, localization and

pose estimation. In Proceddings of IEEE Int’l Conf. Computer Vision.

Shi, J. and C. Tomasi (1994). Good features to track. In Proceddings of IEEE CS Conf.

Computer Vision and Pattern Recognition, pp. 593–600.

Si, Z., H. Gong, Y. N. Wu, and S.-C. Zhu (2009). Learning mixed image templates for

object recognition. In Proceddings of IEEE CS Conf. Computer Vision and Pattern

Recognition, pp. 272–279.

112

Su, H., M. Sun, F.-F. Li, and S. Savarese (2009). Learning a dense multi-view repre-

sentation for detection, viewpoint classification and synthesis of object categories. In

Proceddings of IEEE Int’l Conf. Computer Vision, pp. 213–220.

Sun, M., H. Su, S. Savarese, and F.-F. Li (2009). A multi-view probabilistic model for

3d object classes. In Proceddings of IEEE CS Conf. Computer Vision and Pattern

Recognition.

Tarr, M. J. and H. H. Bülthoff (1995). Is human object recognition better described

by geon structural descriptions or by multiple views? comment on biederman and

gerhardstein (1993). J. Exp. Psychol. Hum. Percept. Perform. 21(6), 1494–1505.

Taubman, D. S. and M. W. Marcellin (2002). JPEG2000: Image Compression Funda-

mentals, Standards and Practice. Springer.

Thomas, A., V. Ferrar, B. Leibe, T. Tuytelaars, B. Schiel, and L. Van Gool (2006). To-

wards multi-view object class detection. In Proceddings of IEEE CS Conf. Computer

Vision and Pattern Recognition, pp. 1589–1596.

Torralba, A., K. P. Murphy, and W. T. Freeman (2007). Sharing visual features for mul-

ticlass and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(5),

854–869.

Viola, P. A. and M. J. Jones (2001). Rapid object detection using a boosted cascade

of simple features. In Proceddings of IEEE CS Conf. Computer Vision and Pattern

Recognition, Volume 1, pp. 511–518.

Wu, T. (2011). Integration and Goal-Guided Scheduling of Bottom-Up and Top-Down

Computing Processes in Hierarchical Models. Ph. D. thesis, University of California,

Los Angeles.

113

Wu, Y. N., Z. Si, H. Gong, and S.-C. Zhu (2010). Learning active basis model for

object detection and recognition. International Journal of Computer Vision 90(2),

198–235.

Yan, P., S. M. Khan, and M. Shah (2007). 3d model based object class detection in an

arbitrary view. In Proceddings of IEEE Int’l Conf. Computer Vision.

Zhu, S.-C. and D. Mumford (2006). A stochastic grammar of images. Found. Trends.

Comput. Graph. Vis. 2(4), 259–362.

114

