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ABSTRACT OF THE DISSERTATION

On the Design and Worst-Case Analysis of

Certain Interactive and Approximation Algorithms

by

Jia Mao

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Ronald L. Graham, Chair

With the speed of current technological changes, computation models are evolv-

ing to become more interactive and dynamic. These computation models often

differ from traditional ones in that not every piece of the information needed for

decision making is available a priori. Efficient algorithm design to solve these

problems poses new challenges.

In this work we present and study some interactive and dynamic computations

and design efficient algorithmic schemes to solve them. Our approach for perfor-

mance evaluation falls within the framework of worst-case analysis. The worst-case

scenarios are analyzed through the incorporation of imaginary adversaries or adver-

sarial input sequences. Worst-case analysis provides safe performance guarantees

even when we have little or no prior knowledge about the input sequences. An-

other natural yet powerful tool we utilize is an auxiliary graph which evolves as the

computation progresses. It helps us to visualize the computation step by step, and

more importantly, offers us powerful mathematical tools from the well-developed

area of graph theory.

We first address a particular computation problem of interactive nature, best

xii



known as the Majority/Plurality game. This interactive game has appeared in sev-

eral different contexts since the 1980s such as system diagnosis and group testing.

We design and analyze optimal strategies to minimize the amount of communica-

tion needed in different settings against an imaginary adversary. We also consider

error-tolerance features to make our strategies robust even in the presence of com-

munication errors.

We then introduce a new variant of the classical bin packing problem that al-

lows arbitrary splitting of the items with the restriction on the number of different

types in each bin. This problem is specifically motivated by a practical problem

of allocating memories to parallel processors in high-speed routers. It is also nat-

ural to other similar resource allocation applications. Even the simplest case of

this problem can be shown to be NP-hard. We design efficient approximation al-

gorithms in the offline, online, and dynamic settings. We also use an interesting

ε-improvement technique to show improved approximation ratios.
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Introduction

The rapid developments of computing device and network technologies have

changed the world around us. One aspect of this change is that traditional com-

putation models have evolved to be increasingly distributive and interactive. In-

evitably, these new computation models are of great importance and have gained

more and more attention in the research community in recent years. However,

our understanding for these models is still quite inadequate and challenging new

problems are emerging on a regular basis. It is common to observe that some of

these problems are interactive in nature and others face the reality that not every

piece of the information needed for decision making is available a priori.

Consequently, algorithm design for these problems is in need of new insight and

new techniques. In this work we present and study some interactive and dynamic

computations and design efficient algorithmic schemes to solve them. A powerful

tool in our analysis is graphical representation which evolves as the computation

progresses, naturally adapting to an interactive or dynamic computation environ-

ment. Graphs not only help us visualize the computations step by step, but more

importantly, offer us powerful mathematical tools from the well-developed area of

graph theory.

1
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To evaluate the performance of the algorithms, a worst-case approach is adopted

through the incorporation of imaginary adversaries or adversarial input sequences.

This is in contrast to another commonly used approach, average-case analysis,

where a distribution of input sequences is hypothesized and the expected total

cost or performance is evaluated. Worst-case analysis attempts to finesse the issue

of little or no prior knowledge about what the input sequences are likely by taking

a pessimistic approach.

1.1 Interactive Computations

A basic theme for interactive computing involves two or more parties and a

sequence of queries/answers where each query or answer can depend on previous

ones. Here by interactive computing, what we mean is different from the operating

system research point of view, where interactive computing usually corresponds to

timesharing and refers to the case that a user can communicate and respond to the

computer’s responses in a way that batch processing does not allow [62]. Unlike

the generic computation models, our understanding for interactive computing is far

from adequate. However, with the convergence of communication, computation,

and large shared information sources, the need for a solid theoretical foundation

for interactive computing is imperative.

In the first part of this dissertation, we focus on a particular type of interactive

game, called the Majority/Plurality game. It is an information-theoretic identifi-

cation problem that first appeared in the 1980s [51]. We encountered this problem

again in a practical context where a good sensor needs to be identified from a

set of sensors in which some are non-operational or corrupted and it is desired

to minimize the amount of intercommunication used in doing so [64] [23]. There

are many interesting variants of the original problem [1]. We will survey related
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literature, discuss these variants and devise effective strategies to solve them.

1.2 Online and Dynamic Computations

Online computations make a sequence of decisions under uncertainty [17]. One

of the most powerful methods of analyzing such problems is competitive analysis,

which is a type of worst-case analysis. The competitive ratio of an algorithm is the

worst-case ratio of its performance to the performance of the best offline algorithm.

In the second part of this dissertation, motivated by a practical problem of al-

locating memories to parallel processors in the context of designing fast IP lookup

schemes [21], we propose a new variant of the classical bin packing problem -

kBPS . This variant can be shown to be NP-hard even in the simplest case. We

will design efficient approximation algorithms for this problem in the offline, on-

line, and dynamic settings. A dynamic setting extends an ordinary online setting

in that real-time resource requests can be allocation or deallocation requests. In

the dynamic setting, we capture the tradeoff between repacking cost and resource

utilization by defining a compaction ratio parameter and devise efficient approxi-

mation algorithm with bounded compaction ratio.

1.3 Game-theoretic Notions

Ben-David, Borodin, Karp, G. Tardos, and Wigderson [11] introduced a general

framework called request-answer games to study online algorithms. In a request-

answer game, an imaginary adversary makes a sequence of requests, which need

to be answered (served) one at a time by the online algorithm.

For interactive games such as the majority game, a similar general framework
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can be proposed, the query-answer game. In a query-answer game, the algorithm

poses a sequence of queries, and an imaginary adversary has to answer these queries

in one or several batches. When only one batch is allowed, this game is in an

oblivious setting. When the query is answered one at a time, this game is in an

adaptive setting.

1.4 Thesis Outline

In Chapter 2, we introduce the majority problem and its game-theoretic notion.

A graphical representation to keep track of the game configuration is described.

Optimal winning strategies are then defined with respect to minimum communi-

cation needed. In Chapter 3, expander graphs are brought in to devise oblivious

strategies for the majority game. This is joint work with Fan Chung, Ron Graham

and Andrew C. Yao [23] [24].

In Chapter 4, a natural variant of the majority game is introduced, namely,

the plurality game. We present upper bounds for optimal winning strategy in the

adaptive setting. We then summarize other known results and discuss the power

of randomization for the strategies. This is joint work with Ron Graham [24] [25].

In Chapter 5, we consider error-resilient strategies for the majority game. This

feature is vital in the presence of possible communication errors. We construct

clever combinatorial gadgets to design optimal winning strategies in both the

adaptive and oblivious settings. This is joint work with Steven Butler and Ron

Graham [18].

The 2BPS problem is introduced in Chapter 6. The NP-hardness result is

recalled [21]. Then a few approximation algorithms are presented and analyzed.

A simple online approximation algorithm for kBPS is also described. This is joint
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work with Fan Chung, Ron Graham and George Varghese [22] [50].

In Chapter 7, we present an improved approximation algorithm INC for 2BPS with

its analysis using an ε-improvement technique. For the general kBPS problem, an

improved approximation algorithm INCk is described and analyzed. This is joint

work with Ron Graham [?].

In Chapter 8, the dynamic setting for 2BPS is introduced. To design efficient

algorithms in this setting, a parameter called the compaction ratio is defined to

capture the tradeoff between repacking and resource utilization. In particular, an

algorithm DYN is given with bounded compaction ratio. This is joint work with

Fan Chung, Ron Graham and George Varghese [22].

We summarize and conclude in Chapter 9.



2

The Majority Problem

2.1 Background

The earliest variant of the Majority problem was proposed by Moore in the

context of fault-tolerant system design in 1982 [51]. The goal was to find the

majority vote among n processors with a minimum number of paired comparisons.

A number of different variants were subsequently proposed and analyzed. This

problem reappeared to us after about twenty years in a military application where

communication needs to be minimized to locate one sensor that has not been

corrupted among a group of sensors [23].

This problem fits nicely into a general game-theoretic framework - the query-

anwer games. The Majority game involves two players: Q, the Questioner, and

A, the Adversary. A holds a set of n elements, each of which is labelled in one

of k ∈ Z+ possible labels φ = {l1, l2, . . . , lk}. Q wants to identify one element of

the majority label (or in the case of a tie, claim that there is none) using only

pairwise equal/unequal label comparisons of elements, i.e., queries of the form “Is

φ(a) = φ(b)?”. A can answer each such query with the hope of extending the

6
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game as long as possible. At the end, Q provides his final identification and then

A reveals the actual labelling of the elements, which must be consistent with all

the answers given. Q wins the game if Q’s identification is correct with respect to

the actual labelling, otherwise A wins. We say Q has a winning strategy of length

q if he/she can always win the game in at most q questions, regardless of what A

does. Our goal is to construct such strategies with the smallest possible q.

In general, two types of settings can be considered, corresponding to two types

of strategies for Q:

Definition 2.1. In the adaptive setting, A answers queries one at a time and

Q’s next query can depend on the answers given to all previous queries.

Definition 2.2. In the oblivious setting, Q has to specify all queries in one batch

for A to answer.

Clearly, in the oblivious case, A has more opportunity to be evasive. Indeed,

our bounds for the minimum length of Q’s winning strategy are much weaker in

the oblivious setting than in the adaptive setting.

2.2 Optimal Winning Strategies

2.2.1 Current best bounds

We are interested in constructing winning strategies for Q with minimum length.

The variants that have been studied in the literature so far can be classified based

on:

(i). k: the number of permissible labels;

(ii). Level of interactivity between Q and A: adaptive or oblivious;

(iii). A majority label is known to exist or not.
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The following notations for the minimum length of Q’s winning strategies will

be used throughout this dissertation:

Table 2.1: Notations for minimum length of Q’s winning strategies for the Majority

Game

Majority game of n elements

MAk(n) Adaptive setting k possible different labels

MA∗(n) Adaptive setting k unknown, can be arbitrary

MOk(n) Oblivious setting k possible different labels

MO∗(n) Oblivious setting k unknown, can be arbitrary

Current best bounds for the minimum length of winning strategies are listed in

Table 2.2, in which the ones in bold are our contributions.

Table 2.2: Current Best Bounds for the Majority Game

Majority Game known existence

yes no

MA2 n− µ2(n)

MO2 2bn/2c − 2 2 bn/2c − 1

MA∗ n− µ2(n) d3n/2e − 2

MO∗ (1 + o(1))21n upper1 (1
4
− o(1))n2 lower

MAk n− µ2(n) linear

MOk linear quadratic

1The coefficient 21 can be further reduced to 19.5 if only existence of such a strategy is desired [25]
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In the adaptive case, Saks and Werman [57] were the first to prove a tight bound

of the minimum length of a winning strategy for Q to be n − µ2(n) when k = 2,

where µ2(n) is the number of 1’s in n’s binary expansion. Different proofs for the

same result were subsequently given in [4] and [67]. When k is unknown, a tight

bound of d3n/2e − 2 was given in [36]. The average case of the same setting was

analyzed in [5]. Similar bounds were proven for randomized algorithms [44].

In the oblivious case, when k is unknown, the optimal winning strategy for Q

is much harder to design or analyze. If the existence of a majority label is not

known a priori, Q needs at least a quadratic number (1
4
− o(1))n2 many questions.

However, if a majority label is known to exist, by using a special type of graphs,

called Ramanujan graphs, we show that there is a constructive strategy for Q that

uses no more than (1+o(1))21n queries. The constant 21 can be further improved

to 19.5 if only existence of such a strategy is desired.

When k is unknown for the Majority game, it is also interesting to observe how

much computation the extra piece of information of just knowing the existence of

a majority can save us in both the adaptive and the oblivious cases.

For fixed k, no explicit bounds for MAk(n) or MOk(n) have been presented

in past literature. However, they can be readily deduced from other bounds for

the Majority and Plurality game. We roughly list their asymptotic behavior in

Table 2.2.

2.2.2 Auxiliary Graphs

We will use an auxiliary graph H to represent the current state of the game at

each time step. The n elements will be the vertices of this undirected (multi)graph.

Any equal/unequal label comparison query corresponds to the selection of two

nodes, and the answer given by A corresponds to a colored edge drawn between
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them. We let color blue represent an equal answer, and red an unequal answer.

So as the game progresses the vertex set of H remains fixed, but the edge set is

growing because every query and answer adds a colored edge to this graph. Note

that there will be no loops in this graph, i.e., any cycle is of length at least 2. See

Figure 2.1 for an example.

Figure 2.1: An auxiliary graph on a set of n = 5 elements {a, b, c, d, e} each

with a binary label (k = 2). The blue edges denote the “equal” answer for label

comparisons and the red edges denote the “unequal” answers. Note that the actual

labelling is not revealed to Q until the end of the game.

The simplest case for the majority game is when k = 2, i.e., the elements have

binary labels. The following definitions and properties apply to the majority game

with binary labels only. Some of them may be extended to general fixed k easily.

Definition 2.3. At any time step, we say an edge coloring of H is valid if there

exists a partition of the vertex set V (H) into (V1, V2) such that:

i. V1 ∩ V2 = ∅,

ii. V1 ∪ V2 = V (H),

iii. For fixed i ∈ {1, 2}, ∀u, v ∈ Vi, the edge (u, v) is either non-existent,

or has color blue

iv. ∀u ∈ V1, v ∈ V2, the edge (u, v) is either non-existent or has color red.

We list some properties of the auxiliary graph H below, all of which are easy to
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verify.

Fact 2.1. The number of queries asked so far is at least (n−m), where m is the

number of connected components of H.

Fact 2.2. At any time step, for any connected component D in G and any valid

edge coloring of G, the corresponding edge coloring of D must also be valid.

Definition 2.4. At any time step, we define a discrepancy value for every con-

nected component D in G as follows:

δ(D) =
∣∣|V1(D)| − |V2(D)|

∣∣
For any vertex v ∈ V (D), define

δ(v) =


|V1(D)| − |V2(D)|, if v ∈ V1(D),

|V2(D)| − |V1(D)|, if v ∈ V2(D).

Definition 2.5. A connected component of G is called odd if it contains an odd

number of vertices, and even otherwise.

Fact 2.3. The δ value of an odd component is always odd; the δ value of an even

component is always even.

Fact 2.4. Whenever a query connects two previously separated components with

discrepancies δ1 and δ2, depending on the answer given by A, the newly formed

component has either δ = δ1 + δ2 or δ = |δ1 − δ2|.

Fact 2.5. When all components are either isolated vertices or paths with all con-

necting edges being red, we have the property that any odd component has δ = 1

and any even component has δ = 0.

2.2.3 Upper bounds for MA2 and MA∗

At any time in the game, the auxiliary graph H has a certain number of con-

nected components. Let us call a connected component Cr of H mixed if it has
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at least one red edge. Otherwise, we say that Cr is pure. Note that with this

definition, an isolated point is a pure component. The size of a component |Cr| is

simply the number of vertices in it.

A simple binary strategy for Q can give us the upper bounds for MA2 in general

and MA∗ when the existence of majority label is known a priori.

Since H initially consists of n pure components of size 1, then in general, any

connected component Cr of H will have |Cr| = 2t for some t ≥ 0.

Q’s Strategy

- Loop until all pure components have distinct sizes

- Ask the query “Is φ(si) = φ(sj)?” where si and sj belong

to two different pure components having the same size.

Let G be the final graph when the process stops, i.e., when all pure components

C1, . . . , Cm of G have distinct sizes, say |Ci| = 2ti with t1 > t2 > . . . > tm ≥ 0.

If G does not have any pure components, Q can declare that there is no majority

label because all mixed components have a perfect balance of the labels. If k ≥ 1,

i.e., G has at least one pure component. we claim that any vertex si ∈ C1 must

have a majority label.

Finally, if G has m components altogether (pure and mixed), then n can be

represented as a sum of m powers of 2. If n =
∑p

j=1 2aj is such a representation

with the minimum possible value of p, then we must have all the aj distinct, since

otherwise we can replace 2aj + 2aj by 2aj+1. Therefore, p = µ2(n), the number of

1’s in the binary expansion of n. Since by the definition of Q’s strategy, all the

components of G are trees, therefore Q asks at most n− µ2(n) queries.

Proofs for the lower bound n − µ2(n) are much more involved. Saks and Wer-

man [57] gave the first such proof. Different proofs for the same result were sub-
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sequently given in [4] and [67]. We include a sketch of Wiener’s proof [67] in

Appendix A for the readers’ benefit.

There is an interesting number-theoretic formulation of the majority game with

binary labels, which is utilized in our earlier experimental implementations as

well as in Wiener’s proof. This formulation still models the problem as a game

played between two players Q and A. At any given point during the game, the

configuration of the game can be uniquely and fully described by a multiset M =

(m1, m2, ...,mt) of nonnegative integers. The starting multiset consists of n 1’s. In

every round, Q picks two members mi, mj from the multiset, and A replaces them

by either their sum or their absolute difference to his will. The game ends when

the largest member of M is greater than the sum of the others or when all members

of M are zero. Q wants to minimize the number of rounds, namely to maximize

|M | and A wants the opposite. It should be clear that the two formulations are

equivalent and that each entry in the multiset M corresponds to the δ value of a

particular connected component at that time.

Remark: It is also worth noting that Fischer and Salzberg [36] proposed an

optimal strategy for MA∗ with a tight bound of (d3n/2e− 2). Compared with the

n − µ2(n), it is interesting to observe how much computation the extra piece of

information of just knowing the existence of a majority can save us.

2.2.4 Bounds for MO2

In the oblivious setting, we have the following result

Theorem 2.1. For n ≥ 3,

MO2(n) = 2bn/2c − 2

assuming a majority label exists.
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Proof. It is easy to see (by induction on |Ci|) that the Adversary can always assign

binary labels to the vertices of a component Ci so that δ(Ci) = 1 if Ci is odd, and

δ(Ci) = 0 (or δ(Ci) = 2) if Ci is even.

First, suppose n is odd. Then H must have an odd number t of odd components.

However, if t ≥ 3 then the Adversary could force t values of δ(Ci) to be 1, in which

case Q cannot conclude. Hence we must have t = 1 when n is odd. We now claim

that H can have at most two components. For suppose to the contrary that H has

m ≥ 3 components Ci, 1 ≤ i ≤ m. Then the Adversary can assign binary labels

so that δ(Ci) = 1 for each odd Ci, and δ(Ci) = 2 for each even Ci. Again in this

case Q cannot conclude. Therefore MO2(n) ≥ n− 2 if n is odd.

A very similar argument applies to the case that n is even to show that m ≤ 3.

Thus, we can conclude that MO2(n) ≥ n− 3 when n is even.

To establish the upper bounds, Q chooses components as follows:

If n is odd, then H = {C1, C2} with |C1| = n− 1, |C2| = 1;

If n is even, then H = {C1, C2, C3} with |C1| = n− 2, |C2| = |C3| = 1.

Since δ(C) = 1 if |C| = 1 and δ(C) is even if |C| is even, then in each case we

can always identify an element of the majority label once the Adversary answers

all the queries. This proves the theorem.

The proof for the bound of MO2 when the existence of a majority label is not

known a priori is entirely analogous. When the labels are no longer binary, the

problem becomes more complicated.
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2.2.5 Lower bound for MO∗ when existence is not known

Theorem 2.2. When a majority label is not known to exist a priori,

MO∗(n) ≥ (
1

4
− o(1))n2

Proof. This proof uses similar argument as in Theorem 4.1. Consider any auxiliary

graph G with n vertices and at most n2

4
edges. Therefore there must exist a vertex

v with deg(v) ≤ n/2. Denote the neighborhood of v by N(v). Let H1 be a set of

exactly bn/2c vertices such that N(v) ⊆ H1 and v /∈ H1. Let H0 = G \ (H1∪{v}).

Therefore, H0 and H1 have exactly the same number of vertices when n is odd, or

off by 1 when n is even.

Now assign label 0 to all vertices in H0 and label 1 to all vertices in H1. For all

queries involving v, let the answers be no so that these edges are colored red, i.e., v

cannot be assigned label 1. A can either assign label 0 to v or assign another label,

say, 3 to v, and Q cannot deduce a correct answer with this piece of information

missing. Hence the bound is proved.

Remark 2.1. When existence of a majority label is known a priori, we will show

that in fact no more than a linear number of queries are needed for Q in the

next chapter. Here we provide some intuitive explanation for such a surprising

result. Intuitively, if more than half of the vertices in G share the same label, any

edge between these vertices have to be colored blue. When G is reasonably well

connected, we should expect to observe a large blue component embedded in G.

And we are done if such a component is unique.
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Expander Graphs to Rescue

3.1 Expander Graphs

Expander graphs were first introduced in the 1970s and have turned out to be

a very useful tool for many theoretical and practical areas. Their applications

span the areas of communication networks, error correcting codes, computational

complexity and number theory. Expander graphs possess seemingly conflicting

properties simultaneously: high connectivity and sparseness.

Given an undirected finite (multi)graph G = (V, E), with vertex set V such

that |V | = n and edge set E, there are a few notions to quantify the expansion

properties:

(i). The edge expansion h(G) of G is defined as

h(G) = min
1≤|S|≤n

2

|∂(S)|
|S|

where S is any nonempty set of at most n/2 vertices and ∂(S) is the edge boundary

of S, i.e., the set of edges with exactly one endpoint in S.

17
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(ii). The α-vertex expansion gα(G) of G is defined as

gα(G) = min
1≤|S|≤αn

|Γ(S)|
|S|

where S is any nonempty set of at most αn vertices and Γ(S) is the vertex boundary

of S, i.e., the set of vertices that are neighbors of S.

Every finite connected graph G has some positive expansion parameters. It is

not obvious whether we can keep the expansion parameters bounded away from

zero when G gets large. Complete graphs have the best possible expansion, but to

achieve sparseness, we are interested in constant degree graphs. Expander graphs

can then be defined accordingly. For example, a family G = {G1, G2, ...} of d-

regular graphs is an edge expander family if there is a constant c > 0 such that

h(G) ≥ c for ∀G ∈ G. Similarly, G is a vertex expander family if there is a

constant c > 1 such that g1/2(G) ≥ c for ∀G ∈ G. These expansion parameters are

interrelated and every vertex expander family is also an edge expander family.

The spectrum of a graph G is the set of eigenvalues of its adjacency matrix. In

many contexts, the normalized adjacency matrix is used instead and all results are

analogous. Let G be a d-regular (multi)graph with adjacency matrix A. Because

A is symmetric, it has n real-valued eigenvalues. The largest eigenvalue of A is

λ0 = d with eigenvector u = (1, . . . , 1). The second largest eigenvalue is given by

λ = max
i6=0

{|λi|}

There is interesting connection between the expansion of G and its spectrum. In

particular, the larger the spectral gap (d− λ) (i.e., small λ), the better expansion

G has. The following theorem holds due to Cheeger & Buser in the continuous

case and to Tanner, Alon & Milman in the discrete case [49].

Theorem 3.1.
d− λ

2
≤ h(G) ≤

√
2d(d− λ)
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Large spectral gap indicates good expansion. However, there is limit on how

large the spectral gap can be [49] due to Alon and Boppana.

Theorem 3.2.

λ ≥ 2
√

d− 1− on(1) (3.1)

With high probability, a random d-regular graph has good expansion. Therefore,

expander graphs exist in abundance. They are all around us but we cannot easily

find or even recognize them. When the spectral limit is achieved, the d-regular

expander graphs have the best expansion in the spectral sense and are called

Ramanujan graphs. Explicit constructions have been found for some Ramanujan

graphs [48].

In the following section, we are going to use Ramanujan graphs Xp,q, which are

defined for any primes p and q congruent to 1 modulo 4.

Xp,q has the following properties:

(i) Xp,q has n = 1
2
q(q2 − 1) vertices;

(ii) Xp,q is regular of degree p + 1;

(iii) The adjacency matrix of Xp,q has the large eigenvalue λ0 = p+1 and all other

eigenvalues λi satisfying |λi| ≤ 2
√

p.

Expander graphs behave very much like random graphs. In fact, λ can be used

to measure how “random” a graph is. The relationships are often referred to as

expander mixing lemmas or discrepancy inequalities. We will use the following

discrepancy inequality (see [3] and [20]) for a d-regular graph H of n vertices with

eigenvalues satisfying λ ≤ δ.

For any subset X, Y ⊆ V (H), we have

| e(X, Y )− d

n
|X| |Y | |≤ δ

n

√
|X|(n− |X|)|Y |(n− |Y |) (3.2)

where e(X, Y ) denotes the number of edges between X and Y .
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3.2 Expanders and Optimal Oblivious Strategy

Consider the case where the number of possible labels k is unrestricted. In

principle, this is a more challenging situation for Q. At least the upper bounds we

have in this case are weaker than those for k = 2 labels. A linear upper bound can

be shown assuming the existence of a majority label. Without such assumption, a

quadratic lower bound is already proven in the previous chapter.

Theorem 3.3. For all n,

MO∗(n) ≤ (1 + o(1))21n,

assuming a majority label exists.

Proof. If the existence of a majority label is known a priori, let us denote the

majority label by l ∈ φ. The set of the remaining possible labels is still unknown.

In the game configuration graph H, the vertices correspond to the elements, the

queries correspond to edges, and the answers are represented by edge colors. The

vertex set of H is V (H) = {v1, . . . , vn}. An edge {vi, vj} in H corresponds to the

query Q(vi, vj) := “Is φ(vi) = φ(vj)?”. The edge is colored blue if they are equal,

and red if they are not equal.

Here by a valid assignment φ on V (H) we mean that:

(i) φ(vi) = φ(vj) ⇒ {vi, vj} is blue,

(ii) φ(vi) 6= φ(vj) ⇒ {vi, vj} is red,

(iii) |φ−1(l)| > n/2.

An oblivious strategy for Q is simply a layout of edges in H such that Q can

correctly identify an element of majority label regardless of the edge coloring A

specifies. Intuitively, H should be reasonably well connected so that the elements

of majority label always form a large embedded blue component. This notion of

good connectivity leads us naturally to expander graphs [3].
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Applying (3.2) to Xp,q, we obtain for all X, Y ⊆ V (Xp,q),

| e(X, Y )− p + 1

n
|X| |Y | |≤

2
√

p

n

√
|X|(n− |X|)|Y |(n− |Y |) (3.3)

where n = 1
2
q(q2 − 1) = |V (Xp,q)|.

The oblivious strategy for Q is first to construct a Ramanujan graph Xp,q on

the vertex set V (H) = {v1, . . . , vn}. Let φ be a valid assignment of V (H) and

consider the subgraph M of Xp,q induced by φ−1(l) (the majority-labelled vertices

of Xp,q under the mapping φ).

Claim: If p ≥ 38, then M has a connected component C with size at least c′n,

where c′ > 1/3.

Proof: We will use (3.3) with X = C, the largest connected component of M , and

Y = φ−1(c) \ X. Write |φ−1(c)| = αn and |C| = βn. Since e(X, Y ) = 0 for this

choice, then by (3.3) we have

(p + 1)2|X| |Y | ≤ 4p(n− |X|)(n− |Y |),

(p + 1)2β(α− β) ≤ 4p(1− β)(1− α + β),

β(α− β) ≤ 4(1− α)p

(p− 1)2
,

There are two possibilities:

β ≥ 1

2

(
α +

√
α2 − 16(1− α)p

(p− 1)2

)
or β ≤ 1

2

(
α−

√
α2 − 16(1− α)p

(p− 1)2

)

Subcase (a).

β ≥ 1

2

(
α +

√
α2 − 16(1− α)p

(p− 1)2

)

>
1

4

(
1 +

√
1− 32p

(p− 1)2

)
since α ≥ 1/2

> 1/3 since p ≥ 38
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as desired.

Subcase (b).

β ≤ 1

2

(
α−

√
α2 − 16(1− α)p

(p− 1)2

)

≤ 8(1− α)p

α(p− 1)2

Thus, we can choose a subset F of some of the connected components whose

union ∪F has size xn = | ∪ F | satisfying

α

2
− 4(1− α)p

α(p− 1)2
≤ x <

α

2
+

4(1− α)p

α(p− 1)2
(3.4)

Now we apply the discrepancy inequality (3.3) again by choosing X = ∪F and

Y = φ−1(l) \X. We have

(p + 1)2x(α− x) ≤ 4p(1− x)(1− α + x)

x(α− x) ≤ 4(1− α)p

(p− 1)2
.

However, it is easily checked that because of (3.4) this is not possible for α ≥ 1/2

and p ≥ 34. Hence, subcase (b) cannot occur. This proves the claim.

Now we are ready to prove Theorem 7.1. We will show that when p ≥ 38,

an element of the majority label can always be identified after all the queries

are answered. Suppose we have an arbitrary blue/red coloring of the edges of

H = Xp,q with p ≥ 38, and φ is a valid assignment on V (H) = V (Xp,q). Consider

the connected components formed by the blue edges of Xp,q. By the Claim there

is at least one blue component of size at least 1
3
n since p ≥ 38. Call any such blue

component large.



23

If there is only one large component then we are done, i.e., every element in

it must be of the majority label. Since p ≥ 38, there cannot be three large blue

components. So the only remaining case is that we have exactly two large blue

components, say S1 and S2. Again, if either S1 ⊆ φ−1(l) or S2 ⊆ φ−1(l) is forced,

then we are done. So we can assume there is a valid assignment φ1 with S1 ⊆ φ−1
1 (l),

S2 ⊆ φ−1
1 (¬l), and a valid assignment φ2 with S2 ⊆ φ−1

2 (l), S1 ⊆ φ−1
2 (¬l) (where

¬l denotes any label in the label set except l).

Let us write S ′
i = φ−1

i (l) \ Si, i = 1, 2. Clearly we must have A := S ′
1 ∩ S ′

2 6= ∅.

Also note that |A| ≤ n− |S1| − |S2| < 16p
(p−1)2

n.

Define B1 = S ′
1 \ A, B2 = S ′

2 \ A. Observe that there can be no edge between

A and S1 ∪ S2 ∪B1 ∪B2. Now we are going to use (3.3) again, this time choosing

X = A, Y = S1 ∪ S2 ∪B1 ∪B2. Note that

n > |Y | = |φ−1
1 (l)| − |A|+ |φ−1

2 (l)| − |A| > n− 2|A|.

Since e(X, Y ) = 0, we have by (3.3),

(p + 1)2|X| |Y | ≤ 4p(n− |X|)(n− |Y |),

(p + 1)2|A|(n− 2|A|) ≤ 4p(n− |A|)2|A|.

However, this implies

(p + 1)2(n− 2|A|) ≤ 8p(n− |A|),

i.e., n((p + 1)2 − 8p) ≤ 2|A|((p + 1)2 − 4p)

≤ 2|A|(p− 1)2

< 32pn

(p + 1)2 − 8p < 32p

which is impossible for p ≥ 38.



24

Setting p = 41 (so that Xp,q = X41,q is regular of degree p + 1 = 42), we see

that X41,q has (1 + o(1))21n edges. This shows that Theorem 7.1 holds when

n = 1
2
q(q2 − 1) for a prime q ≡ 1(mod 4).

If 1
2
qi(q

2
i − 1) < n < 1

2
qi+1(q

2
i+1 − 1) = n′ where qi and qi+1 are consecutive

primes of the form 1(mod 4), we can simply augment our initial set V (H) to a

slightly larger set V ′(H) of size n′ by adding n′ − n = δ(n) additional elements of

the majority label. Standard results from number theory show that δ(n) = o(n3/5),

for example. Since the Ramanujan graph query strategy of Q actually identifies

Ω(n′) elements of the majority label l from V ′(H) (for fixed p) then it certainly

identifies an element of the majority label of our original set V (H).

This proves Theorem 7.1 for all n.

Remark 3.1. Instead of using Ramanujan graphs, we can consider random graphs

G(n, p) on n vertices and the probability of each pair to be chosen as an edge is

p. Because random graphs with best achievable spectral gap are known to exist,

the same proof using discrepancy inequalities still works. For the claims to hold,

the degree for such a random graph only has to be greater than or equal to 39.

So, we can at least reduce the constant 21 to 19.5 if we do not require explicit

constructions.
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From Majority to Plurality

4.1 A Natural Extension of Majority

The Plurality game is a natural generalization of the Majority game where Q

wants to identify one element of the plurality label (most frequently occurring) or

show that there is no dominant label, still using only pairwise equal/unequal label

comparisons of elements. When there are only k = 2 possible labels, the Plurality

problem degenerates to the Majority problem of binary labels, and hence there are

tight bounds for both adaptive and oblivious strategies (see Table 2.2).

In this chapter, we use an equivalent notion for the majority/plurality, which

has been used extensively in the literature. This is the colored-ball setting, where

we are given a set of n balls, each of which is colored in one of k ∈ Z+ possible

colors φ = {c1, c2, ..., ck}. We can choose any two balls a and b and ask questions

of the form: “Do a and b have the same color?”. Our goal is to identify a ball of

the majority color (plurality color, respectively) or determine there is no majority

color (plurality color, respectively), using a minimum possible number of questions.
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4.2 Optimal Winning Strategies

Let k denote the number of permissible labels. Similar to Table 2.1, the following

notations will be used throughout this dissertation:

Table 4.1: Notations for minimum length of Q’s winning strategies for the Plurality

Game

Plurality game of n elements

PAk(n) Adaptive setting k possible different labels

PA∗(n) Adaptive setting k unknown, can be arbitrary

POk(n) Oblivious setting k possible different labels

PO∗(n) Oblivious setting k unknown, can be arbitrary

The current best bounds for minimum length of Q’s winning strategies for the

plurality game are listed in Table 4.2, in which the ones in bold are our contribu-

tions.

Table 4.2: Current Best Bounds for the Plurality Game

Plurality Game (k ≥ 3) upper lower

PAk (k− 1
k
− 1)n upper1 (k − 1)(n− k)/2 lower

POk (1− 1
k

+ ε)
(
n
2

)
upper2 (1

6
− o(1))n2 lower

PA∗ trivial

PO∗
(
n
2

)

1For k ≥ 9, recently improved to ((0.775k + 3.6)n + O(k2)) in [6]
2Non-constructive
3Bounds for POk(n) remain quadratic even when existence is known
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We have designed strategies that give the current best upper bounds for PAk

and PA∗ in general. Using probabilistic arguments, we have also been able to

prove the current best lower bound for PO∗. In the literature, much attention

has also been given to designing adaptive strategies for special cases of fixed or

unknown k (see [2] [6] [32] [44] [63]), deterministic or randomized. Recently,

a few papers have focused on average-case analysis for the plurality game in the

adaptive setting [7] [8].

Lower bound

In general, it seems clear that the k-color Plurality problem should take more

queries than the corresponding Majority problem. But exactly how much more

difficult it is compared with the Majority problem was not so clear to us at the

beginning. Similar arguments using concentration inequalities in random graphs

seemed possible for achieving a linear upper bound. Here we will prove the contrary

by establishing a quadratic lower bound, even for the case when k = 3. Also note

that this lower bound is quadratic even when the existence of a plurality color is

known a priori. Intuitively, this is because the existence of a majority color gives

us much more information than the existence of a plurality color.

Theorem 4.1. For the Plurality problem with k = 3 colors, the number of queries

needed for any oblivious strategy satisfies

PO3(n) >

(
1

6
− o(1)

)
n2

Proof. Consider any query graph G with n vertices and at most n2

6
− 3

2
n edges.

Therefore there must exist a vertex v with deg(v) ≤ n/3 − 3. Denote the neigh-

borhood of v by N(v) (which consists of all vertices adjacent to v in G), and the

remaining graph by H = G\(N(v)∪{v}). Hence, H has at least 2n/3+3 vertices.
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Now split H into three parts H1, H2, and X where |H1| = |H2| and |X| ≤ 1.

Assign color 1 to all vertices in H1, color 2 to all vertices in H2, color 3 to all

vertices in N(v) and X, and color 1 or 2 to v. Note that based on either one of

the two possible color assignments, all query answers are forced.

Since color 3 cannot possibly be the dominant color, we see that whether color

1 or color 2 is the dominant color solely depends on the color of v, which the

Questioner cannot deduce from the query answers.

This proves the lower bound to the number of queries needed for the oblivious

strategy is
(

1
6
− o(1)

)
n2.

This quadratic lower bound also applies to all k ≥ 3 colors for the Plurality

problem using oblivious strategies, since we don’t need to use any additional colors

beyond 3 for this argument.

Notice that when existence of a plurality color is not known a priori, the better

quadratic bound (1
4
− o(1))n2 in Theorem 2.2 also applies here.

Upper bound

A trivial upper bound is the maximum number of possible queries we can ask,

which is
(

n
2

)
. In this section we will show that for fixed k colors and n sufficiently

large, essentially (1− 1/k)
(

n
2

)
queries suffice for oblivious strategies, using proba-

bilistic arguments. Again we use the equivalent element/label setting as specified

in Theorem 7.1 to avoid confusion between edge coloring and vertex coloring.

Let us consider the usual random graph G(n, p) where n is the number of vertices

and p is the probability for any particular edge to be included in the graph. We

also use the standard notion “almost surely” to denote “probability going to 1 as
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n →∞”. Our upper bound is based on the following lemma.

Lemma 4.1. If p ≥ 1 − 1/k + ε for some ε > 0, a random graph G ∈ G(n, p)

almost surely has the property that for any subset S of vertices of size at least n/k,

the graph G(n, p)[S] induced by S is connected.

Proof. Consider G ∈ G(n, 1 − 1/k + ε) where ε > 0. The expected vertex degree

is np = (1 − 1/k + ε)n. With concentration inequalities (see Theorem 4 of [26]),

almost surely the degree for any vertex is lower bounded by (1−1/k+ε/2)n. Given

any subset of vertices S with size |S| ≥ n/k and any vertex v in S, by degree

concentration v must be adjacent to at least ε
2
n other vertices in S. Therefore

there is no connected component of G(n, p)[S] with order smaller than ε
2
n.

Now consider G ∈ G(n, p) with p > 0 fixed. Then almost surely for any two

disjoint vertex sets T and U in G such that |T |, |U | = m = Ω(log n), there is an

edge joining a vertex in T to a vertex in U . This is because the probability that

this fails to hold is upper bounded by

n2m(1− p)m2

= em(2 log n+m log(1−p))

which goes to 0 when n →∞ (because m = Ω(log n)).

Therefore G almost surely has the property that for any S with size at least

n/k, the components in G(n, p)[S] are so large (i.e., of size ε
2
n) that they all have

to be connected. This proves the lemma.

An oblivious strategy for Q can then be specified by a random graph G with this

property. Regardless of how A colors the query edges, for each potential dominant

label (i.e., it has occurred for at least n/k times), A cannot avoid forming an

induced blue component of every vertex with that label and the calculation for Q

to figure out the correct answer is the following:

Q’s calculation



30

- Remove all the red edges from H to obtain H ′ and then remove all

isolated vertices from H ′;

- Identify all connected components in H ′ with size at least n/k;

- If one such component has size strictly bigger than any other component,

all elements in it must have the dominant label; Otherwise, there is no

dominant label.

Hence the following upper bound holds for Q’s oblivious strategies. Note that

the previous probabilistic arguments need n to be sufficiently large. In particular,

the threshold value is a function of ε, say n0(ε).

Theorem 4.2. For every ε > 0

POk(n) < (1− 1/k + ε)

(
n

2

)
provided n > n0(ε).

4.2.1 Adaptive strategies for the Plurality problem

Aigner et al. [2] showed linear bounds for adaptive strategies for the Plurality

problem with k = 3 colors. In this section, we first note a linear upper bound for

general k in this case, and then strengthen it using a generalized argument.

Theorem 4.3. For the Plurality problem with k colors where k ∈ Z+, the minimum

number of queries needed for any adaptive strategy satisfies

PAk(n) ≤ (k − 1)n− k(k − 1)

2

Proof. There are k possible colors for the given n balls. We will use k buckets, each

for a different possible color. All buckets are empty initially. The first ball s1 is put

in the first bucket b1. The second ball is compared against a ball from b1; if they

have the same color, it is put in b1, otherwise, it is put in a new bucket b2. Similarly,
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the ith ball has to be compared against a ball from every non-empty bucket (at

most (i − 1) ≤ k − 1 many of them). Therefore the number of comparisons is no

more than

1 + 2 + ... + (k − 1) + (k − 1)(n− k) = (k − 1)n− k(k − 1)

2

.

In [2], it was proved that PA3(n) ≤ 5
3
n − 2. We will now give a generalized

proof for all k ≥ 3 in this setting.

Theorem 4.4. For the Plurality problem with k colors where k ∈ Z+, the mini-

mum number of queries needed for any adaptive strategy

PAk(n) ≤ (k − 1

k
− 1)n− 2

Proof. Let us denote the comparison of ball a against b by (a : b), and define

a color class to be a set of balls having the same color. There are two phases

in this game. Given n balls {s1, s2, ..., sn}, in Phase I the Questioner handles

one ball at a time (except for the first query) and keeps a state vector vi after

ball si is handled. Each vi is simply the list of color class cardinalities, in non-

increasing order, (ai1, ai2, ..., aik) where ai1 ≥ ai2... ≥ aik. The Questioner also

keeps a representative ball for each of the largest (k − 1) color classes (if they are

nonempty) for comparisons and updates this list accordingly whenever there is a

change in the state vector.

Claim: At every state, the Questioner has a strategy such that the total number

ti of comparisons up to vi (inclusive) satisfies

ti ≤ (k − 1)ai1 + (k − 2)
k−1∑
j=2

aij + (k − 1)aik − 2
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Proof. We proceed by induction. After the first comparison, v2 = (1, 1, 0, ...) or

(2, 0, ...), so t2 = 1 ≤ (k − 1) + (k − 2)− 2 ≤ 2(k − 1)− 2 because k ≥ 3.

For 2 ≤ i ≤ n, let vi = (ai1, ai2, ..., aik) be the state vector and {Ai1, Ai2, ..., Ai(k−1)}

be the set of corresponding representative balls (some may be null if the color class

has cardinality 0). Now, ball si+1 is to be handled as follows:

1. If ai(k−1) 6= aik, we will compare si+1 with the representative balls in the

following order:

(si+1 : Ai2), (si+1 : Ai3), ..., (si+1 : Ai(k−1)), (si+1 : Ai1)

with a total number of no more than (k − 1) comparisons. Note whenever

the Adversary answers Yes, we know to which color class si+1 belongs, and

hence, we can skip the remaining comparisons.

2. Otherwise, compare si+1 with the representative balls in the following order:

(si+1 : Ai1), (si+1 : Ai2), ..., (si+1 : Ai(k−2))

with a total number of no more than (k−2) comparisons. If all these (k−2)

answers are No, we can increment ai(k−1) and set representative ball Ai(k−1) :=

si+1.

After identifying to which color class si+1 belongs, only one of the numbers in vi

gets incremented by 1 and possibly moved forward, to maintain the non-increasing

order in vi+1. Using the above strategy, we can ensure that no more than (k − 2)

comparisons have been used in this round unless ai1 or aik gets incremented, in

which case, their positions in the list do not change. Therefore, by the inductive

hypothesis, we have

ti+1 ≤ (k − 1)a(i+1)1 + (k − 2)
k−1∑
j=2

a(i+1)j + (k − 1)a(i+1)k − 2
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This proves the claim.

At state vi, let ri be the number of the remaining balls that have not been

involved in any queries. Phase I ends when one of the following happens:

(A) ai1 = ai2 = ... = aik

(B) ri = ai1 − ai2 − 1

(C) ri = ai1 − ai2

Note that one of (A), (B), (C) will eventually occur.) To prove the theorem, we

use induction where the cases for n ≤ 3 are easy to verify. More comparisons may

be needed in Phase II depending on in which case Phase I ends. If Phase I ends in

case (A), we use the induction hypothesis; in case (B), no more comparisons are

needed because Ai1 is a Plurality ball; in case (C), we need no more than ri more

comparisons to identify Ai1 or Ai2 as a Plurality ball. In all cases, we can show

(using the claim) with arguments similar to those in [2] that

PAk(n) ≤ (k − 1)n− n/k − 2 = (k − 1

k
− 1)n− 2

This proves the theorem.
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Majority Game with Liars

5.1 Error-tolerance and Rényi-Ulam’s Liar Game

In the current literature, A is always a malevolent but truthful adversary in the

sense that his/her answers must be consistent with all previously given answers.

However, an error-tolerant feature is desired when the answers to the queries in

the application may be faulty due to communication errors, for example. In this

paper we address this issue by putting the Majority game in a broader context

of fault-tolerant communication, namely, searching games with errors. One such

famous game is the Rényi-Ulam liar game. For a comprehensive overview of this

topic, we refer the readers to a recent survey [52]. The Rényi-Ulam liar game is

closely related to fault-tolerant communication and error-correcting codes. The

basic form of this game is as follows.

There are two players: a chooser (also called Carol) and a partitioner (also called

Paul). A game is defined by three nonnegative integers N , k and q that are known

to both players. Carol is assumed to have selected a secret number x from the set

{1, ..., N}. Paul’s goal is to find out what this number is by asking Carol questions

34
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of the form “Is x in S?”, where S is any subset of {1, ..., N}. Carol is required

to answer either “yes” or “no”. However she is allowed to lie up to k times. We

say that Paul wins the (N, k, q) game if and only if he can always identify Carol’s

secret number after at most q questions, regardless of Carol’s strategy.

The many variants of the Rényi-Ulam game have been extensively studied over

the past 50 years, and the term “Rényi-Ulam games” are used to denote all search-

ing games with errors [52]. There is some notable similarity between the Major-

ity/Plurality game and the Rényi-Ulam game. However, we do not yet know

whether it is possible to extend the techniques used for analyzing the Rényi-Ulam

game to gain more understanding for the Majority/Plurality game in the presence

of faulty answers. We take our first step in the following section to analyze the

binary-label Majority game with one lie.

5.2 Majority Game with Liars

We consider bounded error tolerance for the Majority game, where A is allowed

to lie up to a fixed number t times. More precisely, this means that after Q provides

his final identification, A has the freedom to flip up to t answers of the previously

asked queries and reveal a labelling that is consistent with this modified set of

answers. Now that A can lie how much will this handicap Q? What is the new

minimal q∗ and what strategy should Q adopt to achieve this bound?

In this chapter we will begin to answer some of these questions for the Majority

game with binary labels. We will give upper and lower bounds for q∗ by producing

strategies for Q and A in various versions of the game. We summarize our results

in the table below, where t is the number of lies and n is the number of objects.

We only consider the case of binary labels (i.e., k = 2).
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Table 5.1: Current Best Bounds for the Majority Game with Liar (up to t lies,

binary labels)

n odd n even

adaptive, t = 1 (n + 1) upper (n + 2) upper

n lower (n + 1) lower

adaptive, t > 1
(

t+1
2

n + 6t2 + 2t + 3 log n
)

upper

d t+3
4

n− t+1
4
e lower

(
t+1
2

n
)

lower

oblivious, t ≥ 1 d(t + 1
2
)ne

We note that different application contexts may imply different interpretations

of these bounds. For example, the upper bound for the adaptive case with t > 1

holds for t = o(n1/2). When t is large compared to n then the oblivious bound will

give a better result. We can also consider the case when t is upper bounded by

a fixed percentage of n. In this case, the upper bound for the adaptive case with

t > 1 is asymptotically better than the oblivious bound and the general bound

given in Theorem 5.1 when α < 1/12.

Also note that there is a difference between the case when n is odd and n is

even. This is due to the fact that when n is odd there must be a majority element

which gives additional information Q can use in forming a strategy.

5.3 Adaptive Strategies

All previously discussed settings of the Majority game depict A a malevolent

but truthful adversary in the sense that his/her answers must be consistent with all
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previously given answers. In this section, we consider the most limited case of error

tolerance for the Majority game, where A is allowed to lie once. More precisely,

this means that after Q provides his final identification, A has the freedom to flip

zero or one answer of the previously asked queries and reveal a labelling that is

consistent with this modified set of answers. Does A gain by lying? If yes, how

much power does A gain by lying?

If A is allowed to lie for a fixed number t times, Q has a simple winning strategy

of length at most (2t + 1)(n− µ2(n)) in the Majority game of binary labels. This

bound already tells that only lying for no more than a fixed number of times does

not give A too much power since the bound is still linear. When A is truthful

(i.e., no lie is allowed), the coloring of G is always valid. When A is allowed to lie,

this is no longer the case. In fact, validity checking can help us identify the lies.

The following upper bound is based on validity checking through cycles.

There is a simple linear upper bound for any fixed number of lies allowed by A.

Theorem 5.1. In the adaptive Majority game on n elements with binary labels

and at most t lies,

q∗ ≤ (t + 1)(n− µ2(n)) + t.

Proof. Let Q ask the same queries as in the Majority game with no lies allowed,

only that each query is repeated until (t + 1) answers agree before going to the

next query. Because A is not allowed to lie more than t times, the total number

of queries Q needs to ask is (t + 1)
(
n− µ2(n)

)
plus at most t.

This simple linear bound already tells us that lying for no more than a fixed

number of times does not give A too much power. In fact, we will show that

the coefficient of n can be substantially strengthened if Q uses a smarter way of

validity checking.
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5.3.1 Majority Game with at most t = 1 lie

Upper bound

Theorem 5.1 gives a 2(n − µ2(n)) + 1 upper bound for Q’s adaptive winning

strategy when A is allowed to lie once during the game. The oblivious strategy

presented in Section 5.4 supplies a better upper bound d3
2
ne. This bound can be

further improved by validity checking of the coloring in the auxiliary graph.

Recall Definition 2.3, the definition of a valid coloring of the auxiliary graph

G. When A is truthful (i.e., no lie is allowed) the coloring of G is always valid.

When A is allowed to lie, this may no longer be the case. In fact, validity checking

can help us identify the lies. First we make the following observation concerning

possible cycles in this auxiliary graph G.

Observation 5.1. No valid coloring of a cycle can have an odd number of red

edges.

Proof. This observation follows by noting that the number of red edges corresponds

to the number of times that the path crosses between V1 and V2, which for a closed

cycle must be even. From this observation we will say that a cycle is invalid if it

contains an odd number of red edges. It is easy to see that a cycle in the graph is

invalid if and only if it contains an odd number of lies.

Theorem 5.2. In the adaptive Majority game on n elements with binary labels

and at most 1 lie

q∗ ≤

 n + 1 n odd,

n + 2 n even.

Proof. Q’s strategy consists of two stages.
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Stage 1:

• Q asks queries so that the active auxiliary graph consists of only paths and

isolated vertices.

• Initially G consists of n active isolated vertices. Q’s next query is always

connecting two (previously separated) active connected components C1 and

C2 where δ(C1) = δ(C2) UNTIL Q gets a red edge or there are no components

left to join.

• If the newly formed path has a red edge in the middle, Q queries the two end

nodes of the path to form a cycle. If this new query is also colored red, Q can

be sure that there is no lie in this cycle, and it can be marked inactive since

it has an equal number of each label and Q continues in Stage 1. Otherwise,

go to Stage 2.

• If all active components are of different δ value, let C be the component of

largest size. Q asks a query to connect C’s two end nodes to form a cycle.

If this new query is colored red, go to Stage 2. Otherwise, Q can conclude

that any node in C is of the majority label.

Stage 2:

• There is only one active component containing one red edge (the cycle).

Let this component be C and this red edge be e(u, v). Denote all other

active components by Ga \ C. As noted earlier we can ignore any inactive

components since they contain an equal number of each label.

• Q asks one query per each active component besides C to connect it to u.

We now have one active component left which consists of a cycle with a single

red edge with a tree connected to one vertex of the red edge. To get to this

stage Q will have asked exactly n queries.
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• Since the lie is in the cycle the edges of the tree are honest answers, in

particular we can determine how many vertices of C need to have the same

label as u in order for u to have a majority label. Along the cycle C, starting

at u, count (away from v) exactly that many steps and stop at vertex w. Q

then queries u and w. If the new query is colored blue, Q can conclude that

u is of majority label.

• If the new query is colored red and n is odd (i.e., no possibility of a tie), then

it must be that v is of the majority label. When n is even, one more query

in C is needed to deal with the possibility of a tie.

In the worst case, this strategy will use no more than (n + 1) queries for odd n

and no more than (n + 2) queries for even n.

Lower Bound

A has at least as much power as he/she does in the Majority game with no lies,

so n−µ2(n) serves as a lower bound for the Majority game with one lie allowed. In

this section, we will show that this bound can be further strengthened to n when n

is odd and (n+1) when n is even. Thus the upper and lower bounds differ exactly

by 1 in both cases.

Theorem 5.3. In the adaptive Majority game on n elements with binary labels

and at most 1 lie

q∗ ≥

 n n odd,

n + 1 n even.

Proof. The case for n odd will follow from Theorem 5.5 in Section 5.3.2 with t = 1.

Here we only consider the case for n is even, when this theorem improves the bound

given in Theorem 5.5.
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The strategy for A will be to answer the first n − 1 questions consistently in

such a way that the δ value for an even component is 0 and for an odd component

is 1 (that this is always possible is an easy exercise left to the reader). For the nth

question, if the resulting query would result in the graph consisting of disjoint even

cycles then A lies, otherwise A answers as before. After the nth question, A fixes

a possible labelling consistent with the given answers and is truthful afterwards.

It suffices to show that after the nth question that Q cannot distinguish between

the existence of a majority and a tie.

Suppose A did not have to lie at the nth step. Since all of the δ values are

either 0 (for even components) or 1 (for odd components, of which there must

be an even number), A can always produce a labelling that is consistent with the

given answers and is a tie between the two labels. We now show that A can reverse

some portion of this labelling to produce a majority element.

If the graph after the nth question did not consist solely of cycles then there is a

vertex of degree ≤ 1 for which A can reverse the label (since A has a lie available)

and thus produce a labelling with a majority element. Similarly, if the graph after

the nth question solely consists of cycles, some of them odd, then by reversing the

labelling on an odd cycle A can produce a majority element.

Suppose now that A lied at the nth step, i.e., the graph after the nth step

consists of even cycles only. From Q’s point of view, if A had lied at the nth

step then any possible valid labelling consistent with all previously given answers

contains a tie; on the other hand if A had lied at the step corresponding to an

adjacent edge with the nth step in the invalid cycle, then a possible valid labelling

now has a majority element.
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5.3.2 Majority Game with at most t ≥ 2 lies

Upper bound

We now turn to finding an upper bound for the majority game with at most

t ≥ 2 lies.

Theorem 5.4. In the adaptive Majority game on n elements with binary labels

and at most t ≥ 2 lies,

q∗ ≤ t + 1

2
n + 6t2 + 2t + 1 + 2 log n =

(
t + 1

2
+ o(1)

)
n.

Proof. We produce a two round strategy which will establish the bound. The first

round will be “oblivious” in that we will always ask the same set of questions and

not adapt our strategy (this round will use (t+1)n/2 questions). We then use the

answers from the first round to find and correct all lies in o(n) steps establishing

the result.

Let t be fixed and first consider the case n > 2t with n even.

Stage 1:

Q forms an n-cycle with the n vertices and asks bt/2c questions on each edge

of the cycle. Q then makes

t + 1− 2

⌊
t

2

⌋
=

 1 if n even,

2 if n odd,

queries between opposite vertices of the cycles (we will refer to these queries as

spokes). An example is shown in Figure 5.3.2.

Claim: If A has lied we can find an invalid cycle.
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bt/2c

bt/2c

bt/2c
bt/2c

bt/2c

bt/2c

bt/2c
bt/2c

Figure 5.1: “Oblivious” first round queries.

u1

u2

v1

v2

u′
1

u′
2

v′
1

v′
2

Figure 5.2: Looking for lies in the spokes.

To see this we proceed by considering cases.

• There is a lie in the spokes. Since we have assumed that n > 2t then not

all of the spokes can be lies. In particular, visiting the spokes in turn there

will be two consecutive spokes (say, spokes u1u
′
1 and u2u

′
2) so that the first

is not a lie and the second is a lie, then continuing we will find another set of

spokes (say spokes v1v
′
1 and v2v

′
2) so that the first is a lie and the second is

not a lie. (See Figure 5.3.2; note it might happen that u1u
′
1 (u2u

′
2) and v2v

′
2

(v1v
′
1) are the same spoke.)

In order for all cycles of the form u1u2u
′
2u

′
1 to be valid then either all queries

between u1 and u2 were lies or all queries between u′1 and u′2 were lies. Sim-

ilarly in order for all cycles of the form v1v2v
′
2v

′
1 to be valid then either all

queries between v1 and v2 were lies or all queries between v′1 and v′2 were lies.
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In the case that t is even we would need at least 2(t/2) + 1 lies to validate

the cycles which is impossible. In the case that t is odd we would need at

least 2bt/2c + 1 = t lies, and in particular, there could be at most one lie

used in the spokes. However recall that for t odd each spoke is asked twice

and in this case there must be a two-cycle of the form u2u
′
2 which is invalid

and so we can still find an invalid cycle.

• No lies in the spokes but some set of opposite intervals on the cycles are not

fully saturated with lies. In this case we can find some cycle of the form

u1u2u
′
2u

′
1 which is invalid.

• No lies in the spokes and lies only occur in opposite intervals which are fully

saturated. We first point out that it must be the case that only one pair of

opposite intervals are fully saturated (i.e., not enough lies to do this with

more than one pair). In this case we can find a cycle of length n/2 which is

invalid, namely for any spoke u1u
′
1, we form an n/2 cycle by going over the

spoke and then use edges along the original cycle to close our new cycle.

This concludes the proof of the claim.

Stage 2:

We now examine all of the two-cycles and four-cycles of our answered queries.

If we find an invalid cycle we can correct it using at most 6t additional queries

(i.e., make 2t queries on each of 3 edges, and take majority answer on each edge;

if no lie is found among the three edges then the fourth edge was the lie). Since

there are t lies available we need no more than 6t2 queries so that all two-cycles

and four-cycles are valid.

We now check to see if there is an invalid cycle of length n/2 as described in

the claim above. If there is then there is only at most one lie available for A to
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use and so we can use a divide and conquer technique on the cycle of length n/2

as follows. By joining two opposing pairs of vertices we query until we get two

answers which agree, this effectively splits the cycle in half. We then test which

half has an invalid coloring. The lie must be in that half and we continue the

process. In particular in at most 2 log n+1 steps we can find the error in the cycle

of length n/2. Translating back this means we can find the opposing intervals

which are fully saturated with lies and then correct them.

Q is now finished because he can remove all lies given by A and relate all

elements together. In particular, Q has used at most (t + 1)n/2 + 6t2 + 2 log n + 1

queries to accomplish this.

For the case n odd we set aside a single element and run the procedure and

then at the end connect the element back into the graph by making at most 2t+1

queries relating the odd element out with some arbitrary element.

Finally for the case n ≤ 2t we can simply build a tree where we keep asking

questions on each edge until we get t + 1 responses which agree. In particular, we

would need at most 2t2 + t queries in such a case.

Putting this all together gives the desired result.

Lower bound

When we only have binary labels, a majority label does not necessarily exist

when n is even because there may be a tie. If up to t lies are allowed, we make the

following observation:

Observation 5.2. If the coloring is valid (i.e., no lies are detected), then Q will

not be able to determine the correct relationship for an element which is involved

in no more than t queries.
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Proof. This observation follows by noting that since the coloring is valid and A

is allowed to change the color of up to t edges, then A can change all the queries

involved with a vertex of low degree (i.e., no more than t) and still produce an

admissible labelling.

A lower bound for general fixed t when n is even follows:

Theorem 5.5. In the adaptive majority game on n elements with binary labels

and at most t ≥ 2 lies,

q∗ ≥


t + 1

2
n n even,⌈

t + 3

4
n− t + 1

4

⌉
n odd.

Proof. When n is even, A’s strategy is to label half of the elements 0 and the other

half 1 and answer all of the questions truthfully. If Q asks fewer than d( t+1
2

)ne

many queries, by degree considerations there is a vertex with degree at most t.

Based on Observation 5.2, Q cannot distinguish the case as to whether all of the

edges connected to that vertex were lies or were all honest answers. In particular

Q cannot determine the vertex labelling for any vertex with degree at most t and

since A started in an exact balance, Q will not be able to determine the true status

of the labelling.

For n odd, A will try to employ a similar strategy. But now that n cannot be

evenly split, the strategy becomes more involved in trying to keep the labelling in

balance and still forcing Q to make many queries.

As A answers the questions he will keep track of two graphs. The first is

the auxiliary graph which we have been using before. The second is an underlying

“connectedness” graph. The two graphs will always have the same vertex labelling,

but in the connectedness graph we only include an edge if it connects two previously
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disconnected components. Let W be a connected subset of the vertices of the

connectedness graph, W0 be the vertices of W labelled 0 and W1 be the vertices of

W labelled 1. As before δ(W ) =
∣∣|W0| − |W1|

∣∣. We also will consider D(W0) and

D(W1) which are the sum of the degrees of vertices of W labelled 0 and labelled

1, respectively.

A’s Strategy

- A answers so that all even components have δ = 0 and all odd components have

δ = 1. For any query involving only one component A answers consistently with

the already given answers.

- For a query connecting an even component with an odd component, both answers

are allowable (i.e., can be made consistent by perhaps a switching of the labelling

on the even component). In such a case, A will answer so that if W is the newly

formed component then D(W1) ≥ D(W0).

- For a query connecting two odd components or two even components, A will give

an answer so that δ = 0 for the newly formed component, then if D(W1) < D(W0)

will reverse the labelling on the newly formed component.

To verify the second statement we note that if the query involves at least one

vertex with a label of 1 then it easily holds by A answering truthfully. So now

suppose both vertices are labelled 0. If X is the even component and D(X0) =

D(X1) then reverse the labelling on the even component and answer truthfully.

On the other hand if D(X1) ≥ D(X0) + 2 then it is easy to check that A can

answer truthfully without needing to switch the labelling. This covers all possible

conditions since D(X1) 6= D(X0) + 1 (i.e., the sum of degrees would be odd which

is impossible).

Next note that if there are three components for which δ = 1 then it is impossible

for Q to win. So if Q is in a position to win there must be exactly one odd

component. We now will compute the minimum number of queries that Q needs

to ask in order to be in a winning position.
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If there is any vertex of degree at most t in an even component then it is easy

to verify that Q cannot win (i.e., A can, if needed, switch the labelling of the

component containing the vertex of degree at most t and/or change all of the

queries involving that vertex to lies). Therefore if there are m vertices in the

odd component, the sum of the degrees in the even components will be at least

(n−m)(t + 1).

Now let us consider the odd component (denoted W ). By the strategy employed

by A, we know that D(W1) ≥ D(W0). On the other hand D(W1) + D(W0) =

2m−2. Combining these statements we have D(W1) ≥ m−1. Now let us consider

the vertices labelled 0. It is easy to verify that if there are two vertices labelled 0

with degree at most t then Q cannot win. Therefore the sum of the degrees in the

odd component of the auxiliary graph must be at least (t+1)(m−1)/2+1+(m−1).

Thus the minimum number of questions that Q must ask (given that n−m of

the vertices are in even components) is:

1

2

[
(n−m)(t+1)+(t+1)

m− 1

2
+1+(m−1)

]
=

1

2

[
(t+1)n− t + 1

2
+m

(
1− t

2

)]
.

Since this is minimized when m = n (i.e., no even components), it follows that the

fewest possible number of questions that Q needs is (t + 3)n/4− (t + 1)/4, giving

the result.

5.4 Oblivious Strategies

In the oblivious setting, Q has to specify all the edges in the auxiliary graph G

before A colors any of them. This implies that Q has to accomplish detection and

location of lies simultaneously. We have another important observation.

Observation 5.3. In the Majority game of binary labels with at most t lies, if an

edge e is part of 2t cycles that pairwise edge-intersect only at e (though they might
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share many vertices in common), then a lie is located at e if and only if at least

(t + 1) of these cycles are invalid.

Proof. This observation follows by noting that if an edge corresponds to a truthful

answer then there can be at most t of the 2t cycles intersecting at e which can

be invalid (i.e., each invalid cycle would have to involve at least one lie and there

is no other overlap). On the other hand if the edge corresponded to a lie then

there could be at most t− 1 of the 2t cycles intersecting at e which can be valid,

or equivalently, at least t + 1 invalid cycles (i.e., each valid cycle would have to

involve at least one additional lie and there is no other overlap).

Theorem 5.6. In the oblivious Majority game on n elements with binary labels

and at most t ≥ 1 lies,

q∗ =
⌈(

t +
1

2

)
n
⌉
.

Proof. We first establish the upper bound. Observation 5.3 implies that if we can

construct a query graph for Q such that for any particular edge we can find 2t

cycles that are pairwise joined only at that edge, we can correct all possible lies

with no more queries needed.

We handle the base cases first. For n = 2, we use (2t + 1) edges for the same

query. For n = 3, the query graph is a triangle with one query asked for t times

and the other two queries each asked for (t + 1) times.

For even n ≥ 4, we construct a multigraph as shown in Figure 5.4 where all edges

in the outer cycle are multiedges (repeated t times) and single edges (or spokes)

connect each pair of opposite vertices. The total number of edges is therefore

(t + 1
2
)n. For odd n ≥ 3, first construct a graph as in the n + 1 case and then

contract a set of edges on the outer cycle, an example is shown in Figure 5.4. In

this case it can be checked that there are d(t + 1
2
)ne edges in the graph.
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Figure 5.3: Oblivious graph, n even.
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Figure 5.4: Oblivious graph, n odd.

For each spoke, we can find t cycles using one half of the outer cycle and another

t using the other half. For each side edge e, first we can find (t − 1) small cycles

by joining it with the other (t − 1) multiedges with the same endpoints, then we

use edges in the outer cycle to obtain another (t − 1) cycles. We need two more

cycles and these are constructed using the spokes and the remaining unused edges

of the outer cycle as shown in Figure 5.4. Because each edge lies in at least 2t

cycles pairwise joined only at that edge, all lies can be located and hence corrected,

establishing the upper bound.

For the lower bound, we can use a similar argument of degree concentration as

was used in the proof of Theorem 5.5. If Q asks fewer than d(t+ 1
2
)ne then since Q’s

strategy is oblivious, A can examine the entire auxiliary graph and find a vertex

v with degree at most 2t. A can split the remaining vertices into two sets U and

V as equally as possible (i.e.,
∣∣|U |− |V |∣∣ ≤ 1) with labels 0 and 1 respectively. For
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e e

Figure 5.5: The remaining two-cycles for a side edge e.

queries not involving v, A answers truthfully. For queries involving v, A answers

half of the queries as if v is labelled 0 and the other half as if v is labelled 1. This

is possible because A is allowed to lie up to t times. Now Q cannot distinguish

which half are lies and hence cannot determine the label for v which is essential

because the other vertices are in an (almost) exact balance. This establishes the

lower bound and concludes the proof.

5.4.1 Discussion

Motivated by the practical need of an error-tolerant feature, we have concen-

trated on optimizing the questioner’s strategy in the presence of lies (or errors) for

binary labels in the Majority game. We point out that when the number of lies

is upper bounded by a constant t, Q can still win the game with a linear number

of questions. Upper and lower bounds on the length of Q’s optimal strategy were

derived in both the adaptive setting and the oblivious setting.

Consideration of fault-tolerance may also be useful for the many other variants

of the Majority game, such as when the number of different labels is more than two.

A natural generalization of the Majority game is the Plurality game where Q wants

to identify one element of the plurality label (most frequently occurring), still using

only pairwise equal/unequal label comparisons of elements. Much attention has

been given to designing adaptive strategies (deterministic or randomized) for fixed
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or unknown k (see [2] [6] [32] [44] [63]). We remark here that the same reasoning

of Theorem 5.1 applies to existing bounds for all variants of the Majority game

(including the Plurality game) if the maximum number of lies allowed t is fixed.

The new upper bounds will only be at most worse by a multiplicative constant

(t + 1) and an additive constant t.

In this chapter, we gave a complete picture for the oblivious setting in the

Majority game with a constant bounded number of lies. In the adaptive setting,

however, there are still various gaps between the upper and lower bounds obtained.

Proving better lower bounds for error-tolerant strategies in these games is crucial

for evaluating our currently best query strategies. Closing these gaps would be

an interesting direction to pursue. In the meantime, other types of error-tolerance

may also be considered, such as bounded error fraction or random errors.
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The 2BPS Problem

6.1 Motivation and Background

kBPS : Suppose we are given a fixed k ∈ Z+, an unlimited number of unit-size

bins and a list of weights W = {w1, w2, w3, . . . , wn} (wi ∈ R+) of n different types.

Given that we can partition each wi into any pi ∈ Z+ pieces, we are asked to pack

these weights into a minimum number of bins such that no bin contains weight

parts of more than k different types.

Bin packing is one of the fundamental combinatorial optimization problems.

The most elementary form asks to pack a given list of non-splittable weights into

a minimum number of unit-size bins. It has many variants and applications. Al-

though it is NP-hard, it has a PTAS1. We refer the readers to two recent surveys

for a comprehensive overview [27] [28].

The above mentioned kBPS differs from traditional bin packing in two aspects.

1A Polynomial-Time Approximation Scheme is an algorithm which takes an instance of an optimiza-
tion problem of size n and a parameter ε > 0 and produces a solution of an optimization problems that
is within ε factor of being optimal. The running time of a PTAS has to be polynomial in n but can
depend arbitrarily on ε.

53
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One is the k-cardinality constraint for each bin. The other is that the weights can

be split arbitrarily before the actual packing. Cardinality constrained bin packing

kBP first appeared in a 1975 paper by Krause et al. [45] [46]. kBP is the same as

kBPS except that items are not allowed to be split. It was studied as a model for

a machine scheduling problem with multiple processors and a fixed-size memory

bank. More recent results with improved approximation ratios were given for

both the offline and online settings [9] [41]. Although kBP is NP-hard in general,

several known approximation algorithms achieve optimal packing for 2BP such as

the First-Fit-Decreasing (FFD) algorithm.

Another related problem is CCBP , also for non-splittable items. CCBP prob-

lems arise in allocating resources of different types to a set of users. Consider a

set of bins each having capacity v and c compartments. Given n items of unit

size of M different types, the goal is to pack these items (non-splittable) into a

minimum number of bins such that items of different types are packed in different

compartments. PTAS have been designed for CCBP for both the offline and online

settings [59] [60].

kBPS first arose in the context when memories need to be allocated efficiently to

processors in pipelined router forwarding engines for faster IP lookup schemes [21].

Even the simplest variant 2BPS (i.e., k = 2) is NP-hard. This is in surprising

contrast with kBP where optimal algorithms exist for k = 2. Because of the

inherent flexibility to slice items arbitrarily in the kBPS problem, any positive

item size is permissable. This is a vital feature for the manifold optimization

problems in real applications such as resource allocation and job scheduling where

each item can be sliced and then fit into the resource bins.

Since even the most elementary form of bin packing problem is NP-complete,

it is not very surprising that the decisional version of kBPS even for k = 2 is

NP-complete [21].
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Besides the usual offline setting, two other more practical settings can also be

considered. In the online setting, the items arrive one-by-one. A new item needs to

be packed on the spot without knowledge about future items and previously packed

items are not allowed to be moved or removed. In the dynamic setting, items also

arrive one-by-one with the additional flexibility that they can also disappear at a

later time.

NP-completeness of the decisional version of 2BPS is shown in [21] by Chung,

Graham, and Varghese. The transformation is from the 3-PARTITION stated as

follows.

3-PARTITION

Instance: A set A of 3m elements, a bound B ∈ Z+, and a size

s(a) ∈ Z+ for each a ∈ A such that B/4 < s(a) < B/2

and
∑

a∈A s(a) = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am

such that for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B (note that each

Ai must therefore contain exactly 3 elements from A)?

Garey and Johnson [38] showed the 3-PARTITION problem is NP -complete

by using transformation from the problem of 3-dimensional matching. In fact, the

3-PARTITION problem has been shown to be NP -complete in the strong sense

(see [38]).

Theorem 6.1. [21] The decisional version of the 2BPS problem is NP-complete.

Proof. See Appendix B.
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6.2 Simple Greedy Algorithm A

In the offline setting, a simple greedy algorithm A can be given, which resem-

bles the classical First-Fit algorithm for bin packing. Based on Algorithm A, we

give another more sophisticated approximation algorithm B in the next section.

Algorithm B has approximation ratio at least 3/2 but is optimal in the special case

when the total weight is greater than or equal to the number of weight types n.

In our terminology, a new bin refers to an empty bin; a live bin refers to a

partially filled bin with only one type, due to the 2-cardinality constraint. Given

a list of weights, Algorithm A packs the weights in order and places the maximum

possible part of current weight into a live bin if possible or else into a new bin.

Algorithm A achieves an approximation ratio 3/2.

Algorithm A [21]

Given a list of weights W = (w1, w2, . . . , wn),

- For each i = 1, 2, . . . , n, we pack greedily as follows:

- Place the maximum possible part of wi into a live bin if possible;

- Otherwise, put it into one or more new bins.

6.2.1 The packing graphs

For any legitimate2 packing P produced for an instance of 2BPS we can define

a graph G(P ) as follows: [21]

i. n vertices correspond to the n weights.

ii. m edges correspond to the m bins used.

iii. If a bin contains only one type of weight, its corresponding edge is a loop;

2Here legitimate means that the cardinality constraint is respected.
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otherwise, we have an (ordinary) edge.

iv. If a bin is only partially filled, its corresponding edge or loop is weak,

denoted by a dotted line or cycle.

v. We also distinguish between cycles and loops in that a cycle must have

at least two vertices.

For instance, given a list of three weights W = (1
2
, 2

3
, 1

4
), two valid packings and

their corresponding graphs are illustrated in Figure 6.1.

Figure 6.1: Two valid packings with corresponding graphs for a list of three weights

(2/3, 1/2, 1/4)

After we have processed all n weights using Algorithm A, the resulting bin

packing is legitimate and satisfies the following properties:

i. Each connected component is a path with possibly some loops.

ii. There is altogether at most one weak loop (i.e., one live bin) which possi-

bly appears at the end of the last connected component formed during the

algorithm.

iii. Each connected component except for the last one has at most one weak edge

which can only appear at the end of the component.
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These properties are intuitive and easy to verify. Let |OPT | denote the number

of bins used in an optimal packing, it has been shown that:

Theorem 6.2. [21] Algorithm A always generates a bin packing which has size

within a factor of 3/2 of the optimum asymptotically.

Proof. The argument is very similar to Theorem 6.8. We omit it here.

It is worth noting that if the associated graph of the resulted packing does not

have any weak loop, Algorithm A is exactly at most 3
2

from optimal. It is also

clear that Algorithm A runs in time O(n), where n is the number of types.

6.2.2 Better Approximation Ratio for 2BPS for large weights

Given that all bins have uniform size 1, when the average weight has size less

than 1, Algorithms A and B are equivalent. In Subsection 6.2.2 only, we will

confine ourselves to the case where every wi is of size no more than 1. Therefore

all subsequent results in this subsection that hold for Algorithm A hold also for

Algorithm B. We will now proceed with Algorithm A without further mentioning

of Algorithm B.

We will show that Algorithm A has a much better performance guarantee when

all weights are large. Given any list of weights, Algorithm A produces a packing

with its associated graph having r paths, each of which has at most one weak

edge, and perhaps one weak loop in the entire graph. The number of bins used

is therefore (n − r) in which at most (r+1) are partially filled, and so at least

(n− 2r − 1) bins are filled. This gives us:

|A| = n− r

|OPT | ≥ w ≥ n− 2r − 1
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Hence
|A|

|OPT |
≤ n− r

n− 2r − 1

Now letting r = αn for some α ∈ [0, 1], the ratio above becomes

|A|
|OPT |

≤ 1− α

1− 2α
=

1

2
(1 +

1

1− 2α
)

asymptotically.

When the weights are all relatively large, say 1 ≥ wi > 1/2, the above ratio can

be strengthened to

|A|
|OPT |

≤ 1− α

1− 3α/2
=

2

3
(1 +

1

2− 3α
)

We can show that Algorithm A has a much better performance guarantee in this

situation. First we note the following lemma:

Lemma 6.1. Given a list of weights W = (w1, w2, . . . , wn) where wi + wj > 1 for

any i 6= j and each wi ≤ 1, we have |OPT | ≥ 2n/3.

Proof: Among all n weights, we call a weight of Type A if it is all put in one bin,

a weight of Type B if it gets split and put into more than 1 bin. Given an optimal

algorithm, let k denote the number of Type A weights in the packing and (n− k)

the number of Type B weights in the packing. Therefore the total number of parts

are at least k + 2(n− k). We have |OPT | ≥ 2n−k
2

= n− k/2 and also |OPT | ≥ k.

These together give us |OPT | ≥ 2n/3.

Now we are ready to prove the approximation ratio in this case.

Theorem 6.3. Given a list of weights W = (w1, w2, . . . , wn) where each 1 ≥ wi >

1/2, Algorithm A is 7/6-optimal.

Proof: When each wi > 1/2, Lemma 6.3 ensures that

|OPT | ≥ w ≥ 2n/3
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When α ≤ 2/9, we have

|A|
|OPT |

≤ 2

3
(1 +

1

2− 3α
) = 7/6

When α > 2/9, we have

|A|
|OPT |

≤ n(1− α)

2n/3
< 7/6

This 7/6 bound can be shown to be tight given a list of weights {1− 2ε, ..., 1−

2ε, 1
2
+ ε, ..., 1

2
+ ε} where we have n weights of size (1− 2ε) followed by 2n weights

of size (1/2 + ε). An optimal packing would be to pack each one large weight and

two small weights fully into two bins which takes a total of 2n bins and the bins

are all full. Algorithm A however, will pack the large weights first which takes

about n bins, then each three small weights can be put into two bins which takes

about 4n/3 bins. This gives us a 7/6 ratio as desired.

Remark 6.1. Notice that the weaker condition in Lemma 6.3 (i.e., wi + wj > 1

for any i 6= j) would only ensure a 5/4-approximation ratio for Algorithm A.

In fact, we can generalize this bound as follows:

Theorem 6.4. Given a list of weights W = (w1, w2, . . . , wn) where each 1 ≥ wi >

a−1
a

for integer a > 0, Algorithm A is
(
1 + 1

a(a+1)

)
optimal.

This generalization is based on the following lemma:

Lemma 6.2. Given a list of weights W = (w1, w2, . . . , wn) for all 1 ≥ wi > a−1
a

,

we have |OPT | ≥ a
a+1

n.

Proof: Let us consider an optimal packing, in which each weight is either packed

entirely in one bin or is broken into several pieces in several bins. In the latter



61

case, we can write wi = pi(1)+ pi(2)+ ...+ pi(l) to represent that wi is broken into

l pieces in this optimal packing.

Define the value for a weight piece p to be

v(p) =
1

a
dape

and notice the following properties:

Fact 6.1. p ≤ v(p) < p + 1
a

Fact 6.2.
∑

j v(pi(j)) ≥ 1

Fact 6.3. v(p) ≤ 1 for one weight piece p

Fact 6.4. If two pieces from two different weights pi and p′j are in one bin, then

v(pi) + v(p′j) ≤ a+1
a

.

The proofs are straightforward and omitted here. By Fact 6.1, the sum of v(p)

for all weight pieces p in this optimal packing is lower bounded by n. By Fact 6.2

and 6.3, it is also upper bounded by
(

a+1
a
× |OPT |

)
. Combining the two bounds

gives us the desired bound |OPT | ≥ a
a+1

n.

With this lemma, using similar techniques as in the proof of Theorem 6.3, we

can prove Theorem 6.4 which shows that Algorithm A performs well on large

weights in general. Figure 6.2 illustrates this property.

Remark 6.2. Again this bound can be shown to be tight given a list of weights

{1 − aε, ..., 1 − aε, a−1
a

+ ε, ..., a−1
a

+ ε} where we have an weights of size (1 − aε)

followed by (a×n) weights of size
(

a−1
a

+ ε
)
. An optimal packing would be to pack

each one large weight and a small weights fully into a bins which takes a total of

an bins and the bins are all full. Algorithm A however, will pack the large weights

first which takes about n bins, then each (a + 1) small weights can be put into a

bins which takes about (a2n/(a + 1)) bins. This gives us the desired ratio.
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Figure 6.2: Algorithm A achieves a close-to-optimal approximation ratio as all

weights become large.

6.3 Improved Algorithm B

6.3.1 More about the packing graphs

Here we examine several basic properties of the associated graphs of bin packings

for a given list of weights W . These properties provide the foundation for the

reduction steps in the improved approximation algorithm to be discussed later.

Definition 6.1. An associated graph G is said to be stable if and only if all of

the following conditions hold:

(i). G has no cycle;

(ii). Each connected component has at most one weak arc;

(iii). G has at most one weak loop in total.

Given that G has no cycle, each connected component is a tree with some

possible loops. A crucial observation is that if there is a weak edge in this connected

component, we can move it freely within this component. During the moving

process, we might split the original component into two, but the total number of
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bins will never increase.

We describe a few atomic repacking operations here as follows. None of them

requires more bins than originally given in the packing. None of them creates

cycles or strong loops in the associated graph.

Operation 1. If a strong edge e1 = (i, j) and a weak edge e2 = (j, k) are adjacent

(sharing one type j) in a component, we can repack weights so that e1 becomes

weak and e2 becomes strong, or split the component into two with one having a

weak loop e1 and the other having an edge e2 which can be strong or weak.

Operation 2. If two weak edges e1 = (i, j) and e2 = (j, k) are adjacent in one

component, we can repack weights so that e2 becomes strong and e1 stays weak, or

split the component into two with one having a weak loop e1 and the other having

an edge e2 which can be strong or weak.

Operation 3. If a weak loop e1 = (i, i) and a weak edge e2 = (i, j) are adjacent

in a component, we can repack weights so that we only have a single edge e2 (i.e.,

we get rid of one bin e1), or a strong edge e2 and a weak loop e1.

Operation 4. If two weak loops e1 = (i, i) and e2 = (j, j) are in two separate

components C1 and C2, we can repack weights to merge them into one component

C such that we only have a single edge e2 (i.e., we get rid of one bin e1), or a

strong edge e2 and a weak loop e1.

Lemma 6.3. Suppose that P is a packing of a list of weights W = (w1, w2, . . . , wn)

into b bins, where no bin contains weights of more than two types. If the associated

graph GP has a connected component C which contains two weak edges and the rest

of the graph is stable, we can find another packing P ′ which uses no more than b

bins with its entire associated graph stable.

Proof: Suppose a connected component of GP contains two weak edges e1 and e2.
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The two weak arcs cannot have the same vertices, since this would form a 2-cycle,

contradicting our initial hypothesis. There must be a unique path with no loops

(that is, a sequence edges so that two consecutive edges share a common vertex),

say, with edges e1 = f1, f2, . . . , ft = e2. Here e1 and e2 are weak edges while all

other fi’s are strong edges.

Select either weak edge to repack, say e1, and proceed with Operation (1) one

step at a time in order to bring the two weak edges closer together. Now we have

two cases:

If we successfully carry this on until the two weak edges become adjacent, we

then use Operation (2) to get rid of one weak edge or split the component into

two. In the latter case, we need to check whether there are two weak loops in the

entire graph. Operation (4) is needed if this is true. Now the graph is stable.

If during the moving process the component splits into two, one component only

has at most one weak edge while the other component actually has one weak edge

and one newly formed weak loop. For the latter component C ′, we need to check

if there are two weak loops in the entire graph:

Case a. If this is true, Operation (4) is needed to first get rid of the extra weak

loop. This will possibly result in another weak edge in this smaller component and

now it contains two weak edges. Notice however now these two weak edges are

closer compared with the original two weak edges in C. We carry out Lemma 6.3

recursively in this case.

Case b. Otherwise, we select the weak edge in C ′ and move it towards the weak

loop the same way as 6.3 recursively. Use Operation (2) or Operation (3) when

the two partially filled bins become adjacent in the graph.

This process will stop in a finite number of steps and the graph will become
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stable.

Lemma 6.4. Suppose that P is a packing of a list of weights W = (w1, w2, . . . , wn)

into b bins, where no bin contains weights of more than two types. If the associated

graph GP contains a strong loop in one connected component X and a weak edge

in another connected component Y and is stable, we can find another packing P ′

which uses no more than b bins with its associated graph with one fewer strong

loops than packing P and also stable.

Proof: Suppose in X there is a loop that is strong (associated with a filled bin, say

e1, in one type j) and there is a weak edge {k, l} (associated with a partially filled

bin, say e2) in another component Y . We reconfigure the two bins as follows:

Suppose e2 contains parts of weights w′
k and w′′

l . We partition the weight of

type j in e1 into two parts w′
j (of size the same as w′

k ) and w′′
j of size (1−w′

k) and

switch the parts w′
k and w′

j.

Check if there is more than one weak edge in the newly formed connected

component that contains j, k and l. If it does, use the steps as described in

Lemma 6.3 until the graph is stable. The resulting packing has its associated

graph containing one fewer strong loop.

6.3.2 Algorithm B

We now consider a modified version of the simple approximation algorithm A

given above. We will show that the modified algorithm B gives an optimal solution

when the total weight is greater than or equal to the number of types. In general,

the modified algorithm gives an approximation solution within a factor of 3/2 of

the optimum asymptotically.

Theorem 6.5. In O(n) time, Algorithm B generates a bin packing that is optimal
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if the total weight is at least as large as the number of types. In general, the

bin packing using Algorithm B has size within a factor of 3/2 of the optimum

asymptotically.

Before we introduce the improved algorithm B, let us first consider an interme-

diate form of it, say Algorithm A’, which takes the output packing of Algorithm

A as input and processes it using the following steps:

Algorithm A’

Given a list of weights W = (w1, w2, . . . , wn),

- Use Algorithm A to generate a valid packing P .

- While there exists a connected component X containing a strong

loop and another component Y containing a weak edge,

- Use the steps as described in the proof of Lemma 6.4

to merge these two components into one.

The resulting bin packing using AlgorithmA’ has an associated graph G with no

cycle and each connected component having at most one weak edge. In addition,

if there is a strong loop, then all other components have no weak edges.

Suppose the total weight w =
∑

i wi is greater than or equal to n, the number

of types. From the reduction steps in the algorithm, G can have at most n − 1

edges and there is at most one weak loop. Since the total weight is at least n,

there is at least one loop that is strong. Thus there is no weak edge outside of the

connected component C that contains the loop. In C, there is at most one weak

edge. So altogether, there is at most one weak edge. This implies that the number

of bins is exactly dwe which is optimum. When w < n, we can still use Theorem

6.2 to show the resulting packing is within a factor of 3/2 of the optimum.

We have proved the following:



67

Theorem 6.6. Algorithm A’ generates a bin packing that is optimal if the total

weight is at least as large as the number of types. In general, the bin packing using

Algorithm A’ has size within a factor of 3/2 of the optimum asymptotically.

Now let us consider the complexity of Algorithm A’, we note the following:

1). Algorithm A produces a stable packing P in O(n) time.

2). During the execution of the while loop, the number of strong loops is strictly

decreasing. Every time we get rid of one strong loop, at most a linear number

of atomic operations are involved, each taking constant time.

Therefore, Algorithm A’ runs in time O(n2) at most, where n is the number

of types. In fact, if we are a little more careful about the order of the atomic

operations applied, we can achieve a linear time algorithm. To describe it, we

need the following lemma:

Lemma 6.5. Suppose that P is a packing of a list of weights W = (w1, w2, . . . , wn)

into b bins, where no bin contains weights of more than two types. If the associated

graph GP is a forest where some or all of the components have k ≥ 2 weak edges

but are otherwise stable, we can find another packing P ′ which uses no more than

b bins with its associated graph stable in linear time in n.

Proof: Let X be a component which has k ≥ 2 weak edges. Pick an arbitrary

vertex v in X to be the root. If we traverse X using DFS, there is a natural order

O = {v1, v2, ..., vn} of the vertices defined by the last visiting time. In other words,

the time when v1 is last visited is earlier than the time when v2 is last visited and

so on.

For i = 1, ..., n, we consider all the edges that are adjacent to vi, say {e1, ..., es}

in which e1 is the only edge that is closer to the root. If two or more of the other
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(s − 1) edges are weak, we can use Operation (2) to merge them in a pairwise

manner. This process could result in just one weak edge, say ej, in which case we

use Operation (2) or (1) to push the weak edge towards the root, or it may split

this component X into smaller trees but the total number of weak edges will never

increase. Whenever there are two or more weak loops in the entire graph, we use

Operation (4) to get rid of the extra weak loops immediately.

Any component X that has k ≥ 2 weak edges needs to be processed in this way.

If it splits during the process, any newly formed component that has k ≥ 2 weak

edges will also be processed. The total number of atomic operations needed until

no more such component exists is linear in n.

This proves our lemma.

Such a repacking also does not create cycles or more strong loops. Now we have

our linear time algorithm B:

Algorithm B

Given a list of weights W = (w1, w2, . . . , wn),

- Use Algorithm A to generate a valid packing P .

- While there exists a component X containing a strong loop

and another component Y containing a weak edge,

- Use only the first step as described in the proof of

Lemma 6.4 to merge these two components into one,

without taking care of the possible multiple edges in

any one connected component.

- Use the steps as described in the proof of Lemma 6.5

to get rid of the extra weak edges in each component.

Algorithm B produces packings as good as Algorithm A’ with the improvement

that its running time is linear instead of quadratic. Therefore we have the following
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theorem:

Theorem 6.7. In O(n) time, Algorithm B generates a bin packing that is optimal

if the total weight is at least as large as the number of types. In general, the

bin packing using Algorithm B has size within a factor of 3/2 of the optimum

asymptotically.

Here we will give an example which shows that Algorithm A and B can generate

bin packings with the number of bins off by a factor (3/2 + o(1)) of the optimum.

Therefore the approximation ratios shown in Theorem 6.2 and 6.7 are tight.

Suppose that k is an integer. We are given a list W of weights where the first

2(k +1) weights are of size k/(k +1) and then the next 2(k +1) weights are of size

1/(k + 1).

Using Algorithm A or B, we will end up with a packing which uses the first

2k bins to pack the first 2(k + 1) weights fully without any waste. Then the next

group of bins each contain two weights of size 1/(k + 1). Altogether, 3k + 1 bins

are used. Nevertheless, the optimum packing consists of 2(k +1) bins each contain

one weight of size k/(k + 1) and one weight of size 1/(k + 1). Thus we have the

ratio
|A| or |B|
|OPT |

=
3k + 1

2(k + 1)
=

3

2
− 1

k + 1

which is arbitrarily close to 3/2 when k is large.
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6.4 General kBPS

6.4.1 (2− 1/k)-approximation Algorithm Ak

The approximation algorithms A and B presented for the 2BPS problem are

simple and efficient. What is the situation if we consider the general kBPS problem?

This was left open in [21] [22]. Here we present positive answers to this question.

First we notice that given any fixed integer k ≥ 2, there is a simple k-approximation

algorithm for kBPS . This can be easily reasoned using the k-cardinality restric-

tion, and the simple algorithm is just to never share any bin. We also note that

this ratio also holds for online scenarios using the same algorithm. The obvious

drawback is that approximation ratio increases as k increases. A constant bound

on the approximation ratio is more desirable.

Algorithm Ak is a natural generalization of A for any fixed k ∈ Z+. Note that

now a live bin refers to a partially filled bin with fewer than k types. Algorithm

Ak works in both the offline and online settings and achieves an approximation

ratio of (2− 1/k).

Algorithm Ak

Given a list of weights W = (w1, w2, . . . , wn),

- For each i = 1, 2, . . . , n, we pack greedily as follows:

- Place the maximum possible part of wi into a live bin if possible;

- Otherwise, put it into one or more new bins.

Theorem 6.8. For any fixed k ∈ Z+, Algorithm Ak achieves an asymptotic ap-

proximation ratio of (2− 1/k).
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Proof. Given any list of weights W = (w1, w2, . . . , wn) where each wi > 0, let |Ak|

denote the number of bins used in the packing generated by Algorithm Ak and

|OPT | the number of bins used in an optimal packing. Define w =
∑

i=1..n wi and

w∗ =
∑

i=1..n dwie.

Claim 6.1. |OPT | ≥ max {w, w∗

k
}

Proof. Each bin has unit size, so the weight sum w lower bounds |OPT |. Due

to the same reason, each wi has to be decomposed into a least dwie pieces. The

k-cardinality constraint then gives us another lower bound w∗

k
for |OPT |.

Claim 6.2. |Ak| ≤ w∗+(k−1)w+(k−1)
k

Proof. Consider the final packing generated by Algorithm Ak. Define a graph G

as follows. Every vertex represents a bin used in the packing. If two bins contains

weight pieces from the same item wi, we connect the two bins by an edge. It is

clear that G is composed of a set of paths and maybe some isolated vertices.

Consider a connected component A in G (i.e., a path or an isolated vertex),

define wA and w∗
A accordingly. Let A also denote the number of vertices in A. w∗

A

upper bounds A. In the case that A is a path, we have possibly one partially filled

bin, so w ≥ A− 1. Therefore:

w∗
A + (k − 1)w ≥ A + (k − 1)(A− 1)

A ≤ w∗ + (k − 1)w + (k − 1)

k

Summing up this inequality for the connected components in G, we have the

claim.

Claim 6.3. w∗+(k−1)w+(k−1)
k

≤ (2− 1
k
) max {w, w∗

k
}+ k−1

k

Proof. When w ≥ w∗

k
,

w∗ + (k − 1)w + (k − 1)

k
≤ (2− 1

k
)w +

k − 1

k
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When w < w∗

k
,

w∗ + (k − 1)w + (k − 1)

k
< (2− 1

k
)
w∗

k
+

k − 1

k

Hence the claim holds.

From these three claims above, Theorem 6.8 follows immediately.

Note that with the additive term k−1
k

in Claim 6.3, the approximation ratio

(2−1/k) holds only asymptotically and is not exact. This ratio cannot be improved

for Algorithm Ak by considering the weight sequence of t weights each of size

(1− (k − 1)ε) followed by ((k − 1)t) small weights each of size ε.

6.4.2 A lower bound for all online algorithms

In the online scenario, algorithms suffer from the lack of knowledge about future

items to be packed. Intuitively, if k small items are packed into one bin, this bin

is not used efficiently. The following theorem is based on this intuition.

Theorem 6.9. No online algorithm Õ for kBPS can achieve approximation ratio

better than
(
1 + 1

k+ 1
k−1

)
, which is 4/3 for k = 2 and 9/7 for k = 3, etc.

Proof. Consider the following list of items to be packed. Algorithm Õ is first given

(k− 1)n tiny items each of size ε > 0. It is clear that slicing such tiny items would

only deteriorate the packing, so we assume that no slicing has occurred. We say a

used bin is dead if it is not live. Let x denote the total number of bins used, y the

number of live bins and z the number of dead bins in the packing. In this case,

the dead bins are the ones each with exactly k items in them.

Now if z ≥ n
k+ 1

k−1

, we will then give Algorithm Õ a list of n big items each of

size (1 − (k − 1)ε). The optimal algorithm will pack each big item with (k − 1)
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small items and use a total of n bins for the packing. Algorithm Õ however cannot

utilize the z dead bins any more, which gives us the ratio:

|Õ|
|OPT |

≥ y + z + (n− y)

n
≥ 1 +

1

k + 1
k−1

Otherwise we have z < n
k+ 1

k−1

. Consider the approximation ratio at this point.

Currently the most efficient packing for the y live bins is to have (k − 1) small

items in each, so

y(k − 1) + zk = (k − 1)n

xk − y = (k − 1)n

Hence

y >
(k − 1)n− kn

k+ 1
k−1

k − 1
= n− kn

k(k − 1) + 1
=

(k − 1)2n

k(k − 1) + 1

and

|Õ|
|OPT |

=
xk

(k − 1)n

= 1 +
y

(k − 1)n

> 1 +
1

k + 1
k−1
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An ε-Improvement

Approximation

7.1 Algorithm INC

In the offline setting, simple greedy algorithm A already gives a 3
2

approxima-

tion ratio. Can we obtain better approximation ratios with more sophisticated

algorithms in the offline setting? The answer seems very likely to be affirmative.

Given access to the entire input, we know the relative sizes of the weights to be

packed, and can possibly avoid wasting space by putting two small weights into a

bin for example.

In this section, we present a new algorithm INC. The intuition is that small

weights are the troublemakers and need to be taken care of first. This algorithm

performs well on the worst-case example given for Algorithm A and B.

Let L = (w1, w2, . . . , wm) be a given list of weights. The running time of INC

is no longer linear but remains polynomial in the form O(m2 log m).

74
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Algorithm INC

- Sort L into non-decreasing order;

- Loop until all weights are packed:

- Put the current minimum weight into a new bin;

- If this bin is completely filled (so now it becomes dead),

- Insert the possible left-over weight back into the sorted

list with respect to the order;

- Continue;

- Else

- Put the maximum possible part of the current largest weight

into this live bin (so after this step this bin becomes dead);

- Insert the possible left-over weight back into the sorted list

with respect to the order;

7.2 ε-Improvement for 2BPS

The approximation ratio analysis is not straightforward. We circumvent the

difficulty by what is known as the ε-improvement technique, introduced by Yao [68].

Hence we focus on a specific goal to show that INC is at least (3
2
− ε)-optimal

for some positive ε. The idea is to progressively zoom in to the worst-case input

for INC and show that INC performs at least that well with some maximized

ε. This will show that Algorithm INC performs strictly better than previously

proposed algorithms A and B.

Theorem 7.1. There exists ε > 0 such that given any list of positive weights,

Algorithm INC is (3
2
− ε) optimal.

Proof: We will prove the theorem by contradiction. Given a list of weights L =

(w1, w2, . . . , wm), let us assume the INC algorithm is not (3
2
− ε)-optimal for a
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very small ε > 0 to be specified later, i.e.,

|INC(L)|
|OPT (L)|

>
3

2
− ε (7.1)

where INC(L) denotes the packing of L by the INC algorithm and OPT (L)

denotes an optimal packing, and their cardinalities denote the number of bins

used, respectively. L is then the potential worst-case input we like to examine

closely.

In the following, we will denote various functions of ε by εi = fi(ε) where each

εi → 0 as ε → 0.

Claim 7.1. INC(L) cannot have a full bin with just one type of weight.

Proof: If there is such a full bin Bi created at the ith step that only contains weight

from wj, then for ∀u < i, Bu must be full as well because all weights that are packed

earlier than wj have size at least 1. Also at the ith step, wj is the smallest weight

so all weights packed afterwards must also have size at least 1. Therefore every

bin in INC(L), except possibly the last, is full, i.e., INC(L) = OPT (L), which

contradicts with assumption (7.1) if ε < 1/2, for example.

Therefore INC(L) consists of only full bins each with two types and partially

filled bins (each with two types, except possibly for the last bin). Now suppose

INC(L) has n full bins with two types and αn partially filled bins, i.e., |INC(L)| =

(1 + α)n.

Claim 7.2.
1

2
− ε1 < α <

1

2
+ ε2

where

ε1 = ε (7.2)
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and

ε2 =
2ε

1− 2ε
(7.3)

Proof: Consider the packing process of INC(L). When a weight piece is packed

in bin Bi and it is the last piece of its type wj, then we say that Bi retires type

j. We observe that a full bin with two types retires at least the bottom type and

a partially filled bin with two types retires both types. Therefore, we have the

following inequalities regarding the number of types of weight m and the total

weight w:

m ≥ (1 + 2α)n,

w ≥ n

Therefore we must have

|OPT (L)| ≥ max{(1
2

+ α)n, n} (7.4)

On the other hand, Assumption (7.1) implies

|OPT (L)| < |INC(L)|
3
2
− ε

=
(1 + α)n

3
2
− ε

(7.5)

Case 1: If α ≥ 1
2
, (7.4) implies |OPT (L)| ≥ (1

2
+α)n. Combined with (7.1), we

have

1 + α
3
2
− ε

>
1

2
+ α

1 + α >
3

4
− ε

2
+

(
3

2
− ε

)
α(

1

2
− ε

)
α <

1

4
+

ε

2

α <
1 + 2ε

2− 4ε

=
1

2
+

2ε

1− 2ε
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Case 2: If α < 1
2
, (7.4) and (7.1) imply that

1 + α
3
2
− ε

> 1

α >
1

2
− ε

Therefore, we have

1

2
− ε1 < α <

1

2
+ ε2 (7.6)

which proves the claim.

Consequently, from (7.1) and (7.6)

|OPT (L)| <
|INC(L)|

3
2
− ε

<
1 + 1

2
+ ε2

3
2
− ε

n

= (1 + ε3)n (7.7)

where

ε3 =
2ε

1− 2ε
= ε2 (7.8)

Denote the total weight of the αn partially filled bins of INC(L) by w′. Then

we have

w′ < ε3n (7.9)

Claim 7.3. Given any δ ∈ (0, 1), there are at least (1
2
− ε4)n partially filled bins

in INC(L) each having total weight less than δ where ε4 = ε1 + ε3

δ
.

Proof: Suppose INC(L) has βn partially filled bins each with total weight at least

δ. Then

δβn < ε3n

β <
ε3

δ
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Thus, the number of partially filled bins each with weight less than δ is

(α− β)n > (α− ε3

δ
)n

> (
1

2
− ε1 −

ε3

δ
)n

This proves our claim for

ε4 = ε1 +
ε3

δ
(7.10)

Thus, there are many bins in INC(L) with very small total weight (bounded

by δ). During the process in which Algorithm INC generates the packing for L,

when does it start generating these highly wasted bins? We divide the process of

INC(L) into two phases. Phase II begins as soon as a packed (dead) bin has total

weight less than δ. Because INC packs the current largest weight with the current

smallest weight, we can conclude that all remaining weights now must have size

less than δ each and hence all subsequently packed bins will have weight less than

2δ each.

Definition 7.1. We call a weight piece tiny if it has size less than δ.

Claim 7.4. After Phase I, INC(L) must have at least (1−ε7)n tiny weights where

ε7 = ε4 + ε5.

Proof: With a similar argument to that in Claim 7.3, we know that INC(L) has

at least (1
2
− ε4)n bins each with weight less than δ, and has at least (1

2
− ε5)n bins

each with weight less than 2δ, where

ε5 = ε1 +
ε3

2δ
(7.11)

Note that the (1
2
− ε4)n bins will also be counted in the (1

2
− ε5)n bins. A bin with

total weight less than δ contributes two tiny weights. A bin with total weight at
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least δ but less than 2δ contributes at least one tiny weight. So the total number

of tiny weights in INC(L) is

≥ 2

(
1

2
− ε4

)
n + [

(
1

2
− ε5

)
−
(

1

2
− ε4

)
]n

= [1− (ε4 + ε5)]n

Hence the claim holds for

ε7 = ε4 + ε5 (7.12)

Claim 7.5. There are at least (1− ε7)n tiny weights in L originally.

Proof: At each step of INC(L), the smallest weight is eaten and at most one small

weight is created and inserted back into the list. Since at the beginning of Phase

II of INC(L), and by Claim 7.4 there are at least (1 − ε7)n tiny weights, there

must be at least that many tiny weights in L to begin with.

Claim 7.6. There are fewer than (1 + ε8)n tiny weights in L originally where

ε8 = ε3 + ε3

1−2δ
.

Proof: Suppose OPT (L) has γn bins with two tiny weights in each. Because of

(7.4) and (7.7), the total weight packed into OPT (L) w must satisfy

n ≤ w < (1 + ε3 − γ)n + 2δγn

γ <
ε3

1− 2δ

Since each of these γn bins can hold at most two original tiny weights and the

other bins can hold at most one original tiny weight, L must have

≤ (1 + ε3 − γ)n + 2γn

= (1 + ε3 + γ)n

< (1 + ε3 +
ε3

1− 2δ
)n
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tiny weights, which proves our claim with

ε8 = ε3 +
ε3

1− 2δ
(7.13)

Definition 7.2. We call a weight piece large if it has size in (1− δ, 1 + δ).

Claim 7.7. There are at least (1 − ε9)n large weights in L originally where ε9 =

ε7 + ε8.

Proof: Claim 7.6 shows that L has fewer than (1 + ε8)n tiny weights originally.

Claim 7.4 shows that at the beginning of Phase II in INC(L) there are at least

(1 − ε7)n tiny weights. During Phase I, the number of times we enter the loop

of INC has to be at least n, because INC(L) has n full bins. Yet every step of

INC(L) eats the currently smallest weight and creates at most one tiny weight.

Note that no new weight will be created during Phase II.

Suppose x tiny weights are created during Phase I. At the beginning of Phase

II, the number of tiny weights we have is at most ≤ (1 + ε8)n− n + x, which has

to be greater than or equal to (1− ε7)n, and so

x ≥ [1− (ε7 + ε8)]n.

To create a new tiny weight while eating an existing one, the second weight

being put into the bin has to have size in (1− δ, 1+ δ). Hence the claim holds with

ε9 = ε7 + ε8 (7.14)

Claim 7.8. OPT (L) has to pack at least (1− ε10)n original large weights entirely

in one bin (i.e., no splitting) where ε10 = 2ε3 + ε7 + 2ε9.
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Proof: By Claim 7.7, L has at least (1 − ε9)n large weights; by Claim 7.4, L has

at least (1− ε7)n tiny weights. If OPT (L) has split ξn original large weights each

into two or more pieces, then the total number of weight pieces is at least

2ξn + (1− ε9 − ξ)n + (1− ε7)n

By (7.7), we also have

|OPT (L)| < (1 + ε3)n

Hence

2(1 + ε3)n > 2ξn + (1− ε9 − ξ)n + (1− ε7)n

2ε3 > ξ − ε9 − ε7

ξ < 2ε3 + ε7 + ε9

Therefore at least (1 − ε9 − ξ)n original large weights are not split in OPT (L).

The claim holds with

ε10 = 2ε3 + ε7 + 2ε9 (7.15)

Definition 7.3. We call a weight piece a nice large weight if it has size in (1−δ, 1).

Claim 7.9. L must have at least (1− ε10)n nice large weights.

Proof: This is an immediate consequence of Claim 7.8.

This mysterious list L has now unveiled its structure step by step. How does

INC pack these many nice large weights of L? Note that as INC(L) eats the

current tiny weight by putting in a nice large weight into the current bin, the

surplus becomes the current smallest piece in the new list, and we repeat. So

we have these chains of decreasing surplus pieces, with each chain ending with a

complete nice large piece fully into a bin. An example of such a process is depicted

in Fig. 7.2.
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Figure 7.1: A chain of length 4.

Claim 7.10. INC(L) has no more than ε11n chains where ε11 = 2ε3 + 2ε5 + ε10.

Proof: Suppose INC(L) has τn chains. In the proof for Claim 7.4, INC(L) has at

least (1
2
− ε5)n bins each with weight less than 2δ, each of which retires two types.

By Claim 7.9, INC(L) must also have at least (1− ε10)n bins, each holding part

or all of an original nice large weight. Each of these bins retires at least one type,

except that every bin at the end of a chain retires two types. Therefore the total

number of different types in INC(L) is

≥ (1− ε10 + τ)n + (1− 2ε5)n

Together with (7.7), we must have

(1− ε10 + τ) + (1− 2ε5) < 2 + 2ε3,

τ < 2ε3 + 2ε5 + ε10

This proves our claim with

ε11 = 2ε3 + 2ε5 + ε10 (7.16)

Finally, we examine what OPT can do to deal with such a list L that has
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(i). at least (1− ε7)n tiny weights (Claim 7.5);

(ii). at least (1 − ε10)n nice large weights that are not split in OPT (L) (Claim

7.8 and 7.9).

These many nice large weights must remain intact and each occupies one bin.

We also know that tiny weights are troublemakers, in the sense that if two of them

end up in one bin it is a big waste of resources. How many such tiny weights can

be paired with the non-splittable nice large weights in OPT (L)?

Claim 7.11. In OPT (L), no more than ε12n original tiny weights can be paired

up each with an original nice large weight where ε12 = ε3 + (1− δ)ε10 + ε11 + δ.

Proof: We first take a look at the process of INC(L). We can classify all original

tiny weights of L according to INC(L). Given that L has so many tiny weights,

during Phase I, INC packs one such tiny weight at a time and possibly creates

some along the way. These tiny weights will be called Type A. At some point in

Phase I, INC starts packing tiny weights with nice large weights which will create

chains. The tiny weights at the beginning of the chains will be called Type B.

During Phase II, INC still has to pack two tiny weights into one bin. These tiny

weights will be called Type C.

In OPT (L), let’s now consider how many tiny weights of type B or C can be

paired up with nice large weights. Construct a bipartite graph Gb as shown in

Fig. 7.2. All original tiny weights of type B and C are listed on the left-hand

side in non-decreasing order with respect to size. All original nice large weights

are listed on the right hand side in non-increasing order with respect to size. An

edge is drawn between a tiny weight and a nice large weight if they can be packed

together entirely in one bin. According to the chains in INC(L), w1 is connected

only with the last nice large weight in the first chain and all others of equal or

smaller size. Similarly, wi is connected only with the last nice large weight in the
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ith chain and all others of equal or smaller size. Since all original nice large weights

are packed in chains in INC(L), no tiny weights of type C can be connected to any

nice large weights in Gb. Therefore the size of a matching in Gb is upper bounded

by the number of chains in INC(L), which is no more than ε11n.

Figure 7.2: Matching graph of original tiny weights of type B and C and nice large

weights, arranged in non-decreasing size on the left side and non-increasing size on

the right side. The nice large weights are also grouped according to the chains in

INC(L).

Note that type A tiny weights are packed in full bins in INC(L). Then the

number of type A tiny weights is

< (1 + ε3)n− (1− ε10)n(1− δ)

Therefore even if all type A tiny weights can be paired up each with a nice large

weight in OPT (L), our claim holds for

ε12 = ε11 + (1 + ε3)− (1− ε10)(1− δ)

= ε3 + (1− δ)ε10 + ε11 + δ (7.17)
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Now examine OPT (L). By Claim 7.9 and (7.7), the number of bins with two

tiny weights in each cannot be more than (ε10 + ε3)n. By Claim 7.11, the number

of bins each with one tiny weight paired with one nice large weight is no more than

ε12n. The rest of the bins can at most each contribute one original tiny weight.

Therefore the total number of original tiny weights in OPT (L) is no more than

2(ε10 + ε3)n + ε12n +
1− ε10 − ε12

2
n

According to Claim 7.5, this has to be greater than or equal to (1− ε7)n, i.e.,

4(ε10 + ε3) + 2ε12n + 1− ε10 − ε12 ≥ 2− 2ε7

4ε3 + 3ε10 + 2ε7 + ε12 ≥ 1 (7.18)

The εi’s are functions of ε and δ. Fixing some ε ∈ (0, 1) and δ ∈ (0, 1), if this

inequality is false, we have a contradiction, which implies that (7.1) is false, i.e.,

Algorithm INC is at least (3
2
− ε)-optimal for this value of ε.

Assemble all the εi’s from (7.2), (7.3), (7.8), (7.10), (7.11), (7.12), (7.13), (7.14),

(7.15), (7.16), and (7.17). Falsifying (7.18) while maximizing ε, the best ε we can

obtain is at least 0.00232 when δ ' 0.292 as shown in Fig. 7.2. Therefore Algorithm

INC is at least (3
2
− 0.00232)-optimal.

Remark 7.1. The best worst-case example we have, however, can only ensure a

6/5 ratio. Consider a list L′ of weights of increasing size (1
2
− ε1,

1
2
− ε2, ...,

1
2
−

εn; 1
2

+ εn,
1
2

+ 2εn, ...,
1
2

+ ε1,
1
2

+ 2ε1), where 1 > ε1 > ε2 > ... > εn > 0. Algorithm

INC will pack every three weights {1
2
− ε1,

1
2

+ 2ε1,
1
2

+ ε1} into two bins. OPT

however, can pair up each (1
2
−εi) with (1

2
+εi) and then pack every three (1

2
+2εi)’s

into two bins. Therefore

|INC(L′)|
|OPT (L′)|

=
2n

n + 2
3
n

=
6

5
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Figure 7.3: Horizontal axis x = δ. Vertical axis y = 1− (4ε3 + 3ε10 + 2ε7 + ε12).

7.3 Better Approximation Ratio for large Weights

Similar to Algorithms A and B, Algorithm INC also performs better for large

weights. A crucial difference is that it does not need the restriction that upper

bounds all weights by 1. This makes the performance guarantee of Algorithm INC

given below much more attractive.

Theorem 7.2. Given any list of weights L = (w1, w2, . . . , wn) where each wi >

1/4, Algorithm INC is at least 4/3-optimal.

Proof: Classify the bins used in INC(L) into three categories. Let u denote the

number of full bins, g the number of partially filled bins each with total weight

at least 1/2, v the number of partially filled bins each with total weight less than

1/2. Because wi > 1/4, we now have

|INC(L)| = u + g + v

|OPT (L)| ≥ max{u +
1

2
g +

1

2
v,

1

2
u + g + v}

due to the constraints on total weight and cardinality for each bin.
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Case 1: If u > g + v, we have

|INC(L)|
|OPT (L)|

=
u + g + v

u + 1
2
g + 1

2
v

= 1 +
1
2
g + 1

2
v

u + 1
2
g + 1

2
v

= 1 +
1

1 + u
1
2
(g+v)

< 1 +
1

1 + 2
=

4

3

Case 2: If u ≤ g + v, we have

|INC(L)|
|OPT (L)|

=
u + g + v
1
2
u + g + v

= 1 +
1
2
u

1
2
u + g + v

= 1 +
1

1 + g+v
1
2
u

< 1 +
1

1 + 2
=

4

3

This proves our theorem.

7.4 General kBPS

7.4.1 The INCk algorithm

For the general kBPS problem, algorithm Ak has an asymptotic approximation

ratio of (2− 1/k). Using a generalization of Algorithm INC, we can improve the

approximation ratio to 3/2 for k = 3 and to (2 − 2/k) for any k ≥ 4. These

improvements are significant compared with the ε-improvement we presented in

the previous section. However, similar argument fails to achieve improved ratio for

k = 2, therefore suggesting the need for new techniques to demonstrate Algorithm

INC’s good performance for 2BPS .
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Let L = (w1, w2, . . . , wm) be a given list of weights. We give the following

algorithm INCk as a natural generalization of INC. The running time of INCk

is still polynomial in the form O(m2 log m).

Algorithm INCk

- Sort L into non-decreasing order;

- Loop until all weights are packed:

- Start from the smallest, put at most (k − 1) current minimum weights

into a new bin;

- If this bin is completely filled (so now it becomes dead),

- Insert the possible left-over weight back into the sorted

list with respect to the order;

- Continue;

- Else

- Put the maximum possible part of the current largest weight

into this live bin (so after this step this bin becomes dead);

- Insert the possible left-over weight back into the sorted list

with respect to the order;

Algorithm INCk is a natural generalization of INC for any fixed k ∈ Z+.

Note that now a live bin refers to a partially filled bin with fewer than k types.

Algorithm INCk can be shown to achieve an approximation ratio 3/2 for k = 3

and no more than (2 − 2/k) for any k ≥ 4, which improves upon the (2 − 1/k)

approximation ratio of Algorithm Ak.

7.4.2 (2− 2/k)-approximation

Theorem 7.3. Algorithm INCk achieves an asymptotic approximation ratio of

3/2 for k = 3 and (2− 2/k) for any fixed k ≥ 4.
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Proof. Given any list of weights L = (w1, w2, . . . , wm) where each wi > 0, let

INCk(L) denote the packing generated by Algorithm INCk and OPT (L) an opti-

mal packing. We also denote the corresponding number of bins used by |INCk(L)|

and |OPT (L)|.

Suppose INCk(L) consists of n full bins and αn partially filled bins for some

integer n ≥ 0 and some real number α ≥ 0.

Claim 7.12. Asymptotically, all partially filled bins in INCk(L) have k different

types of weights in each.

Proof. Algorithm INCk is done working with a bin only when it becomes dead. If

a dead bin is only partially filled, it has to contain k types of weights in it.

Now we consider the following two cases.

Case 1: There is no bin in INCk(L) with fewer than k types of weights in it.

If this is the case, all (1 + α)n bins in INCk(L) each holds k different types.

Therefore each must retire at least (k−1) types. And the total number of different

types of weight

m ≥ (k − 1)(1 + α)n

Because of the cardinality constraint, we have

|OPT (L)| ≥ m/k ≥ k − 1

k
(1 + α)n

which guarantees an approximation ratio

|INCk(L)|
OPT (L)|

≤ k

k − 1

= 1 +
1

k − 1
(7.19)

Case 2: There is at least one bin Bi in INCk(L) with fewer than k types of

weights in it.
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If this is the case, we claim that

Claim 7.13. Asymptotically, all αn partially filled bins in INCk(L) must have

total weight at least 1
k−1

in each bin.

Proof. Let Bi be the first such bin created in INCk(L) with fewer than k types of

weights in it. From Claim 7.12, Bi must be a full bin. Therefore the largest weight

piece in Bi must have size at least 1
k−1

.

When Bi is created, all weights in Bi are the smallest in the list. With INCk,

all bins created subsequently must have total weight ≥ 1
k−1

in each. For all bins

created prior to Bi, it has to have packed part or whole of the largest weight at the

time of creation. Therefore they also must have total weight ≥ 1
k−1

in each.

From this claim, we can calculate the total weight in INCk(L) is at least

n +
1

k − 1
αn

which guarantees an approximation ratio

|INCk(L)|
OPT (L)|

≤ 1 + α

1 + 1
k−1

α

≤ 2− 2/k (7.20)

Taking the maximum of (7.19) and (7.20), Theorem 7.3 follows immediately.

Algorithm INCk performs well for the general kBPS problem, improving the

approximation ratio from 4/3 to 3/2 for k = 3 and from (2−1/k) to (2−2/k) for k ≥

4. These improvements are quite significant. Unfortunately, the same argument

fails to give an improvement when k = 2 because 1 + 1
k−1

= 2. We conjecture that

the approximation ratio of INC for 2BPS can be improved significantly as well,

but we may need new techniques for that purpose.
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Remark 7.2. The best worst-case example we have for INCk can only ensure a(
k

k−1
− 1

(k−1)2

)
ratio, which is 5/4 for k = 3 and 11/9 for k = 4, etc. Consider

a list L′ consisting of t weights of size ε for some tiny ε > 0, t weights of size

( 1
k−1

− ε) and (k − 2)t weights of size 1
k−1

. An optimal packing is to pack each set

of one weight of size ε with one weight of size ( 1
k−1

− ε) and (k − 2) weights of

size 1
k−1

fully into one bin. Therefore |OPT (L′)| = t. Algorithm INCk however,

will pack every two weights of size ε with one weight of size 1
k−1

. The rest of the

weights can be assumed to pack perfectly. Therefore

|INCk(L
′)| ≥ t

k − 1
+

1

k − 1

(
t + (k − 2)t− t

k − 1

)
=

k

k − 1
t− 1

(k − 1)2
t

which gives us the desired ratio. Notice that this ratio approximates
(
1 + 1

k−1

)
as

k becomes large.

7.4.3 Discussion

The INCk algorithm needs to keep a sorted list of weights at all times, thus

requires an offline setting. Contrary to popular bin packing algorithms that process

the list of weights in the order of non-increasing size such as FFD and BFD, the

INCk algorithm processes in the order of non-decreasing size. The cardinality

constraint makes a vital difference in algorithm design.

Given that Algorithm INCk provides strictly better performance guarantees

with reasonable running time, it is desirable to extend it to the online settings as

well. If some amount of look-ahead is possible in the online setting, we can apply

INCk as a heuristic to the weights we can expect in the look-ahead window. We

believe that such a heuristic would at least be powerful in some real applications

given a suitable amount of look-ahead.
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8

Dynamic Approximation

8.1 Compaction vs. Packing

For optimization problems such as kBPS , offline approximation algorithms are

static. In many real applications, however, allocation requests can come incre-

mentally and have to be handled one at a time without knowledge about future

requests. Online algorithms are designed specifically for this need. A classical

example of online problems is caching and paging. Given a cache that can hold

k pages, the sequence of requested pages are revealed one at a time. For every

requested page, if it is in the cache, we simply return that page, otherwise, we

have to evict one of the pages in the cache and replace it with the requested page.

Requests must be handled one at a time without knowledge of future requests.

In the framework of competitive analysis, solutions computed by the online

algorithms are compared with the best possible solution that could have been

computed with unlimited computational power and complete advance knowledge

of the whole input sequence.

94
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We are in need of yet a more practical setting. Consider 2BPS and the ap-

plication for memory allocation to pipelined processors in high-speed routers. In

addition to the typical online setting where the allocation request comes in in-

crementally, in practice, we would also like to handle deallocation requests which

correspond to the possibility that a previously required memory block may no

longer be needed after some time. This setting is generic for other potential ap-

plications of kBPS and we call it the dynamic setting. To handle deallocation

requests, we analyze the different cases when repacking may be allowed to a dif-

ferent extent depending on the specific application. Therefore another tradeoff

between memory utilization and memory repacking cost needs to be considered.

The question is how can we get good allocation algorithms that maintain overall

efficiency in the dynamic setting.

We define the compaction ratio γ below as a parameter that captures this trade-

off. Depending on the allowable range of γ, the algorithm design criteria change.

In particular, when γ is bounded by a constant from above, a dynamic algorithm

DYN was given that achieves a 3/2 approximation ratio with γC ≤ 1.

Definition 8.1. The compaction ratio of any dynamic kBPS algorithm C is defined

to be

γC = maxt
M
W

= total repacked weight up to time t
total packed weight up to time t

8.2 Algorithm DYN

Depending on what range of γ is allowed, the algorithm design criteria can

change. In particular, when γ is bounded by a constant from above, an online

algorithm DYN is given that achieves a 3/2 approximation ratio with γDYN ≤ 1.

Case a: γ can be arbitrarily large.
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If repacking or compaction is assumed of negligible cost and we have unlimited

computing power, we can just solve the offline packing problem every time a new

memory request comes in using the best approximation algorithm and perform

repacking whenever needed. In practice, however, compaction almost certainly

has a cost that is not negligible, especially in the memory allocation application to

pipelined processors because it has to perform memory operations. Computation

cost should also be taken into consideration since we have already seen that the

offline allocation problem is NP-hard.

Case b: γ is bounded from above. In particular, γ ≤ c where c > 0 is a constant.

We now give an online allocation algorithms subject to the cardinality constraint

with compaction ratio γ ≤ 1.

Algorithm DYN

- Upon any allocation request wi, we say it is large if wi > 1/2,

otherwise we say it is small.

- A large allocation request is always put into a new bin.

- A small request is put into a bin with only one small

request if possible, otherwise it is put into a new bin.

- Upon any deallocation request,

- If it results in two bins each with only one small request,

move the smaller piece to double up the two requests.

Theorem 8.1. Algorithm DYN always generates bin packing of size of size |DYN|

which satisfies

|DYN| ≤ (3/2)|OPT |+ 1

Proof. At any point of time, we can describe the packing produced by Algorithm

DYN as t bins each with one large request, r bins each with two small requests,
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with possibly one more bin with only one small request. Given these requests, how

much better can the optimal packing strategy be?

First, let us suppose there is no bin with only one small request. Algorithm

DYN uses (t + r) bins.

Claim 4:

|OPT | ≥


r + t/2 when r ≥ t/2

2/3(r + t) when r < t/2

Proof of Claim 4: The first inequality |OPT | ≥ r+t/2 always holds because of the

cardinality constraint, since we have a total of (2r + t) different types of weights.

The exact bound could be achieved when each large weight can be paired up with

a small weight into one bin and t = 2r.

When r < t/2, not all large weights can be paired up. The paired up ones

would use 2r bins and the remaining (t− 2r) large weights have to occupy at least

2/3(t − 2r) bins (proved in Claim 5). This adds up to a total of 2/3(r + t) bins

and proves Claim 4.

Case a: r ≥ t/2

|DYN|
|OPT | ≤ r+t

r+t/2

= 1 + t/2
r+t/2

≤ 1 + 1/2

= 3/2

Case b: r < t/2

|DYN|
|OPT | ≤ r+t

2/3(r+t)

= 3/2
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In the case where there is one bin having a single small request, the previous

argument applies replacing |DYN| by |DYN| − 1. It remains to prove Claim 5.

Claim 5: Given m large weights, it is impossible to pack them into fewer than

d2
3
me bins.

Proof of Claim 5: m bins would be necessary if we do not split any weights.

Suppose we break α of the m large weights each into two small pieces. We have a

total of

2α + (m− α) = m + α

pieces in which (m−α) pieces are still large and need (m−α) bins. Therefore we

have

|OPT | ≥ max {(m + α)/2, m− α}

The minimum of the right hand side occurs when (m+α)/2 = m−α and is 2/3m.

This proves our claim.

This completes the proof of Theorem 8.1.

Theorem 8.2. Algorithm DYN has compaction ratio γDYN ≤ 1.

Proof. Call any memory piece that has not been swapped clean and otherwise

dirty. Recall the compaction ratio is defined as γ = M/W . We claim that

W −M ≥
∑

size of all clean pieces

This is because

• Before any deallocation request, our bin packing consists of only clean pieces

which contribute to W .

• If any clean piece is moved due to a deallocation request, it becomes dirty

and contributes to the numerator M .
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• If a dirty piece is deallocated, there is no effect on W −M .

• In a shared bin of one clean piece and one dirty piece, the clean piece always

has size no smaller than the dirty piece according to our algorithm. When

the clean piece is deallocated, the weight it contributes to W is still there,

so instead of throwing it away, we use its weight to recharge the dirty piece

into a clean piece. This would also guarantee that no dirty piece will ever be

moved again.

Note that
∑

size of all clean pieces ≥ 0 at all times so W − M ≥ 0, i.e., γ =

M/W ≤ 1.

We also observe that 1 is a tight bound for γC using the following memory

request sequence. We begin with two allocation requests, each with weight α < 1/2.

We then allocate one more weight of size α, and follow this with a deallocation of

one of the paired weights. This will cause the algorithm to move a weight. We

repeat this process until it has been performed s times altogether. Thus, we will

have allocated s + 2 weights and moved s weights, all of size α. This clearly gives

a compaction ratio arbitrarily close to 1 as s goes to infinity.

Case c: γ = 0, i.e., no compaction is allowed.

When the compaction cost is relatively high and we cannot afford to swap any

memory bits, we first claim that any online algorithm D in this case cannot have an

approximation ratio better than 2. This can be shown using the following memory

request sequence.

For a large integer k, we are first given a list of k memory allocation requests each

with size 1/3. Observing the allocation assignment made by the online algorithm

D, we are then given a list of bk
2
c deallocation requests which remove exactly one

weight from every shared bin. At the end, the online algorithm will have each bin
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holding one weight while the optimum packing uses only half as many bins. This

would give us the lower bound of 2 on the approximation ratio.

A simple online algorithm that achieves approximation ratio 2 in this case is

just to never share any bin. Given the cardinality constraint, the bin packing

generated by this algorithm is always within a factor of 2 from the optimum.
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Summary and Discussion

9.1 Summary

As traditional computation models evolve to become increasingly distributive

and interactive, we need more tools and insight to study the limits of these models

and how to achieve those limits through well-designed algorithms. A central char-

acteristic of these computation models is the restriction that not every piece of the

information needed for decision making is available a priori. In this dissertation,

we study some of these interactive and dynamic computations and design efficient

algorithms to solve them. To measure the performance of these algorithms, we use

a worst-case analysis approach through the incorporation of imaginary adversaries

or adversarial input sequences. This approach gives us better guarantees than

the average-case analysis as we have little or no knowledge about what the input

sequences will possibly be. These computational problems can be conveniently

studied in general game-theoretic frameworks. In particular, the interactive com-

putations can be studied as a query-answer game, while the online computations

can be studied as a request-answer game.

101



102

In our analysis, we extensively use graphical representations to capture the

configuration which evolves as the computation progresses, naturally adapting to

an interactive or dynamic computation environment. Utilizing graphs not only

helps us visualize the actual computations step by step, but also enables us to

incorporate powerful mathematical tools to our advantage.

In the first part of this dissertation, we focus on a particular type of interactive

game, called the Majority/Plurality game. Among the many variants of this game,

we have proven several of the current best bounds on the minimum length of the

questioner’s winning strategies in the adaptive and oblivious settings. We have

also considered error-tolerant strategies to combat possible communication errors

or failures. With a graphical representation of the game configuration, our proofs

are mostly combinatorial, sometimes utilizing powerful tools such as expander

graphs, spectral graph theory, and probabilistic methods.

In the second part of this dissertation, we study a new variant of the classical

bin packing problem - kBPS . It can be shown to be NP-hard even in the simplest

case. With graphical representations of the packings generated, we devise efficient

approximation algorithms for kBPS in the offline, online, and dynamic settings. An

ε-improvement technique is used to prove one of the approximation ratio results.

9.2 Discussion

As we study the limits of these computations, many gaps remain between various

upper and lower bounds. In particular, there is a fairly big gap on the bounds for

MO∗. There is also an interesting gap to be closed for the approximation ratio of

INC for 2BPS and INCk for kBPS .

Consideration of fault-tolerance may also be useful for other variants of the
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majority game such as the plurality game. Consideration of other types of error-

tolerance may also be interesting, such as bounded error fraction or random errors.

There are also numerous possibilities to adapt the different setting parameters of

the majority/plurality games to come up with new models. For example, we

may further generalize the notion of plurality so that the goal is to identify a

representative element for every label that occurs above some percentage threshold.

This has similar flavor with recent research in identifying “hot”(frequency above

some threshold) items in data streams with applications in network congestion

monitoring, data mining and web query log analysis [34] [35] [40].

The ε-improvement technique can only show that Algorithm INC’s perfor-

mance strictly better than Algorithms A and B, although the best worst-case

example we managed to find has a much better ratio. Similarly, the approxima-

tion ratio we proved for Algorithm INCk and the best worst-case examples we

gave also have a gap. Closing the gaps would be interesting directions to pursue.

Algorithm DYN is designed for 2BPS only. Efficient algorithm design for general

kBPS in the dynamic setting can also be of great interest.



APPENDIX A: Proof of Lower Bound of MO2 [67]

First the monotonicity of MO2(n) can be shown, i.e.,

Lemma 9.1.

MO2(n + 1) ≥ MO2(n)

We now prove the bound for even n = 2t. With Lemma 9.1, the bound for odd

n is then implied.

Rules of A’s Strategy

- With the answers given so far, there always exists a labelling

(consistent with all given answers) with exactly t 0-labelled

elements and t 1-labelled elements.

- From sum and absolute difference, choose sum iff P (|JM+ |) < P (|JM− |)

We will specify a strategy for A that forces Q to proceed all the way to the

needed number of rounds. First rule of this strategy is that we should have t 0-

labelled elements and t 1-labelled elements therefore the game ends in configuration

(0, 0, ..., 0).

Let [k] be the shorthand notation for {1, 2, ..., k}, and let mI = Σi∈Imi for

I ⊆ [k]. Then the first rule of our strategy ensures that after each round there

exists a set I of indices such that mI = m[|M |]\I . Denote the set of such index sets

by JM for the current configuration M , so JM 6= φ.

The following lemma can also be proved.

Lemma 9.2. |JM | = |JM+
i,j
|+ |JM−

i,j
| for all i, j ∈ [|M |].
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Now let P (m) denote the largest power of 2 dividing m. It is not difficult to see

that P (a + b) ≥ min(P (a), P (b)) and that P (
(
2m
m

)
) = µ2(m) (i.e., the number of

1’s in the binary expansion of m).

The second rule of A’s strategy is to choose sum iff P (|JM+|) < P (|JM−|).

By Lemma 9.2, we have P (|JM |) = P (|JM−|+ |JM+|) ≥ min(P (|JM−|), P (|JM+|)).

Because of the second rule, P (|JM |) cannot increase during the course of the game.

The beginning configuration has M = (1, 1, ..., 1) with |M | = 2t and |JM | =
(
2t
t

)
;

the terminal configuration has M ′ = (0, 0, ..., 0) with |M ′| = k and |JM | = 2k.

Then we have

k = P (2k) = P (|JM ′|) ≤ P (|JM |) = P

((
2t

t

))
= µ2(t) = µ2(n)

Therefore the number of rounds is

n− k ≥ n− µ2(n).



APPENDIX B: Proof of Theorem 6.1 [21]

3-PARTITION

Instance: A set A of 3m elements, a bound B ∈ Z+, and a size

s(a) ∈ Z+ for each a ∈ A such that B/4 < s(a) < B/2

and
∑

a∈A s(a) = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am

such that for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B (note that each

Ai must therefore contain exactly 3 elements from A)?

For a given instance of the 3-PARTITION problem as described above, we

consider the following decisional version of 2BPS :

(*) We are given a list W of 3m weights

wa =
1

2
+

s(a)

2B

Determine if W can be packed into 2m bins such that no bin contains more than

two types.

It suffices to show that the 3-PARTITION problem has an affirmative solution

if and only if the above problem (*) has a solution.

First we consider the easy direction. Suppose the 3-PARTITION problem has

a solution A1, A2, . . . , Am. For each i, we can pack the weights w(a), for a ∈ Ai

into two bins since ∑
a∈Ai

wa =
3

2
+
∑
a∈Ai

s(a)

2B
= 2

and wi satisfies
3

8
< wi =

1

2
+

s(a)

2B
<

3

4
.
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So, W can be packed into 2m bins when each bin has two types and thus problem

(*) is solved.

Now suppose problem (*) has a solution with a packing into 2m bins. Clearly,

each bin contains parts summing up to 1 since
∑

a wa = 2m.

First, we observe that a weight type can not be partitioned into more than 2

parts. Suppose the contrary. There is a weight type, say w1, that is partitioned

into k parts which are contained in k bins where k ≥ 3. One of the parts is less

than 1/4 since w1 < 3/4. The bin that contains this small part can contain another

part with weight at most 3/4. Thus, this bin can not have parts summing up to

1, which is impossible.

Second, we claim that the number t of types of weights that are packed in two

bins is exactly m. Suppose t is more than m. The total number of parts is more

than 4m. Since at most two parts can be packed into one bin, we need more than

2m bins, which is a contradiction. Now, suppose that t is fewer than m. Since

there are at most 2t bins that can contain parts of two types, there are at least

two bins that can contain at most one type. Those two bins can not have parts

summing up to 1, which is again a contradiction.

Hence, there are exactly m weights S that are each partitioned into two parts.

We write

S = {aj1 , aj2 , . . . , ajm}

We consider Ai consisting of aji
and the types wa that are contained in bins con-

taining parts of waji
. Clearly Ai, i = 1, . . . ,m, is a partition of A. Furthermore,

we have ∑
a∈Ai

wa =
3

2
+
∑
a∈Ai

s(a)

2B
= 2
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This implies that ∑
a∈Ai

s(a) = B

Thus, this gives a solution to the 3-PARTITION problem. This proves Theorem

6.1
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