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ABSTRACT OF THE DISSERTATION

Estimation in Networked Systems: Power Grid Security and Distributed Hybrid Information
Fusion Algorithm

by

Shaocheng Wang

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, March 2017

Dr. Wei Ren, Chairperson

This dissertation studies two topics related to the problem of estimation in networked

systems, namely, the problem of secure state estimation against possible stealthy false data injection

attacks in electric power network, and the problem of distributed dynamic state estimation using

networked local multi-agents. The two topics are, respectively, presented in Part I and Part II.

The study in Part I is motivated by the importance of the state estimation in electric pow-

er systems as many applications such as Optimal Power Flow, Automatic Generation Control and

Contingency Analysis are highly dependent on the state estimation. Therefore, it is critical to have

an accurate and reliable estimate of the states as bad estimates will offer the system operator with

inaccurate information about the system, which may cause wrong decisions and finally, cause mal-

function or even power blackout in the network. The stealthy attack, as a strategically designed

false data injection attack against the power system state estimation mechanism, is able to let the

corrupted measurements bypass residue-based bad data detectors with the same probability as that

of uncorrupted measurements, and to fool the system operator with the deviated estimates. While

most of the existing articles assume the network topology to be fixed, the effects of switching topolo-
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gies on such an attack is shown in this work. In Part I, a new mechanism is proposed to eliminate

the possibility of such an attack via strategically shutting down some preselected transmission lines

by turns and therefore switching the network topologies. The necessary and sufficient condition to

achieve such elimination, as well as the general form of possible attacks when the elimination is

impossible, are both formulated. The case where the attack is only stealthy in a subset of the prese-

lected is also studied. The general form of the possible estimate deviations caused by this “partially”

stealthy attack is derived. Simulations and case studies are provided using different IEEE bus sys-

tems to show the efficiency of the proposed strategy, to discuss the countermeasures in the case

when there always exist possible stealthy attacks, and to show how the possible deviations intro-

duced by a “partially” stealthy attack could be affected by the decisions made by both the attacker

and the system operator.

Part II studies the problem of distributed dynamic state estimation using networked local

agents with sensing and communication abilities. This problem has become a popular research

area in recent years due to its wide range of applications such as target tracking, region monitoring

and area surveillance. Specifically, Part II considers the scenario where the local agents take local

measurements and communicate with only their nearby neighbors to estimate the state of interest

in a cooperative and fully distributed manner. A distributed hybrid information fusion (DHIF)

algorithm is proposed in the scenario where the process model of the target and the sensing models

of the local agents are linear and time varying. The proposed DHIF algorithm is shown to be fully

distributed and hence scalable, to be run in an automated manner and hence adaptive to locally

unknown changes in the network, to have agents communicate for only once during each sampling

time interval and hence inexpensive in communication, and to be able to track the interested state

viii



with uniformly upper bounded estimate error covariance. It is also explored the very mild conditions

on general directed time-varying graphs and joint network observability/detectability to guarantee

the stochastic stability of the proposed algorithm. Then the DHIF algorithm is extended to two

more general scenarios, namely, the scenario with nonlinearities involved in both the process and

the sensing models, and the scenario with uncertain process models. In the former scenario, a

nonlinear DHIF algorithm is proposed by adopting the unscented transformation approach. In the

latter one, two algorithms are proposed by following the two well-known multiple model (MM)

paradigms, namely, the first order generalized pseudo Bayesian and the interacting MM approaches.

The extended algorithms in both scenarios inherit the aforementioned advantages of the original

DHIF algorithm. The stability is also rigorously analyzed in each extended case with sufficient

conditions formulated.
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Part I

Effects of Switching Network Topologies

on Stealthy False Data Injection Attacks

Against State Estimation in Power Grids
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Chapter 1

Introduction

1.1 Overview & Related Works

The electric power system, as arguably one of the most complicated engineered systems,

plays a vital role in the modern life. As a result, its reliability becomes a big concern. The Supervi-

sory Control and Data Acquisition (SCADA) system is in charge of monitoring and controlling the

power system. The SCADA system obtains measurements through the remote terminal units (R-

TUs), and then sends them to a state estimator. The state estimator processes these measurements,

which are usually redundant, and estimates the unknown states in the network. The system operator

uses these estimated states as a critical reference to gain knowledge of the system and make next-

step decisions. Some applications such as Optimal Power Flow, Automatic Generation Control and

Contingency Analysis are highly dependent on the state estimation [1]. Therefore, it is critical to

have an accurate and reliable estimate of the states. Bad estimates will offer the system operator

with inaccurate information about the system, which may cause wrong decisions and finally, cause

malfunction or even power blackout in the network.
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The idea of the smart grid has gained significant attention and is regarded as the future

tendency of the current electric power network. While it has the advantage of providing a better

“situational awareness” by using communications and intelligent technologies [17, 51], its expan-

sion of the information infrastructures also brings vulnerabilities and shortcomings [54]. The false

data injection attack (FDIA) in power systems, which injects malicious data into the measurements

in order to fool the system operator with the deviated state estimates, was first proposed and studied

in [50]. However, since a power system is usually equipped with a residue-based bad data alarm,

in general, injected false data with a significant magnitude will easily drive the value of the residue

function above the predefined threshold and therefore trigger the alarm. Therefore, the stealthy at-

tack, which is a strategically designed FDIA whose injection is able to bypass the residue-based bad

data alarm whenever the uncorrupted measurements are able to pass it, has gained significant atten-

tion [12,16,41,63,66,67,69]. The authors in [12] considered from the system operator’s perspective

and showed the possibility to disable the stealthy attack by either protecting a set of measurements

or independently verifying a set of states. However, such strategies can be costly since with an

increasing size of the network, they will require an increasing number of either protections on the

measurements or independent verifications of the states.

One of the most well-known topics in the studies of stealthy attacks is the security index

problem first studied in [66]. The security index is a benchmark to quantify the least effort required

in order to corrupt each measurement by stealthy attacks. The authors in [16] proposed algorithms

to maximize the system security against such attacks with a limited encryption source. In [67], the

authors formulated the k-tuple problem, and proved its equivalence with the security index problem

under appropriate assumptions. Both the security index and the k-tuple problems are essentially

3



cardinality minimization problems. Due to the non-convexity of such problems, no solution has

been found that is both accurate and computationally efficient. The authors in [41] accurately char-

acterized the security index via a graphical approach, but it was computationally expensive. An

exact solution via the `1-relaxation was provided in [69], but it was only for a special case where no

power injection measurements were considered. In [67], two approaches, namely, the minimum-cut

and the mixed integer linear programming (MILP), were offered to solve the k-tuple problem. The

former method was computationally efficient but only gave a suboptimal solution while the latter

one returned an exact result but was computationally expensive.

Besides the security index like problems, the authors in [68] proposed schemes to detect

and identify stealthy attacks by considering the information from both active and reactive power

measurements. The possibilities of the stealthy attacks with uncertain knowledge of some transmis-

sion line admittances were studied in [63]. In [86] and [28], the authors showed that the FDIA was

able to lead to financial misconduct in electric market operations and can be used to make profit-

s. Besides the FDIA, some other attacks aimed to waste as much energy as possible are proposed

in [62].

1.2 Motivation

Although most results in the existing literature assume a fixed topology for the power

network, the topology can be changed for multiple reasons. The positions of the transformer taps

may change from time to time, which change the admittance on the transmission lines (see for

example [63]). The connections among the buses can be changed either intentionally (switching

on/off the circuit breakers) or passively (line failures). In recent years, with the trend of including
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more distributed energy sources, the concept of microgrids was proposed. This motivates the study

of intentionally scheduled connection/isolation of the microgrids to/from the main grid (see for

examples [25, 42]).

1.3 Contributions

In Part I of this dissertation, it is assumed that an attacker aims to fool the system operator

with deviated state estimates by launching a stealthy attack. A novel approach is characterized

to eliminate the possibility of such an attack by intentionally switching on/off some preselected

transmission lines by turns and therefore changing the network topologies by expanding on our

preliminary results reported in [78, 79]. Here we assume that the transient stability of the system

can be guaranteed during the alternations among the preselected topologies, and only consider the

network at the steady state for each topology. The necessary and sufficient conditions that the

topologies selected by the system operator have to satisfy to eliminate the existence of stealthy

attacks, are proposed. In the case when these conditions are not satisfied, the general form of all

possible stealthy attacks is formulated. In the case when these conditions are satisfied, a scenario,

where the attacker makes a concession and launches an attack that is only stealthy in some of the

preselected topologies, is further considered. It is analytically shown that as this attack is stealthy in

more topologies, it has increasingly limited flexibilities in deviating the state estimates. The general

form of feasible deviations that can be introduced by this partially stealthy attack is also formulated.

In the end, simulations are provided to show the efficiency of the proposed defense strategy against

stealthy attacks. Several cases are studied to show how the limitation on the deviations that could
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be possibly introduced by the stealthy attacks, is related to the decisions made by both the attacker

and the system operator.

1.4 Organization

The rest of Part I is organized as follows. Chapter 2 provides some preliminary knowledge

on the graph theory, state estimator and attack detections, and formulates the problem of interest.

Chapter 3 proposes a new mechanism to eliminate the possibility of a mutually stealthy attack in

all preselected topologies, and formulates the necessary and sufficient condition to achieve such an

elimination. The impacts of the proposed strategy of switching topologies on the power generation

cost is also discussed. The case where the attack is only stealthy in a subset of the preselected is

then studied in Chapter 4, where the general form of the possible estimate deviations caused by

this “partially” stealthy attack is derived. Simulations and case studies are provided in Chapter 5 to

illustrate the results proposed in Chapter 3 and 4.
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Chapter 2

Background

Notations. Throughout Part I, the notations are defined as follow. The MATLAB tradi-

tions are used to denote the entries of a matrix/vector. For example, X(i, j) is the ith row, jth column

of matrix X. X(:, j) is the jth column of matrix X. y(i) is the ith entry of vector y. 0n ∈Rn is a zero

vector. 0 is a zero matrix with appropriate size. 1 is an all-one vector with appropriate dimension.

| · | denotes the cardinality of a set. blkdiag(·) denotes the block diagonal matrix formed by input

matrices. “∼” denotes the elementary row/column operations of matrices.

2.1 Preliminaries

2.1.1 Graph Theory Background

The topology of a power network can be described by a graph G (V ,E ), where V and

E ⊆ V ×V are, respectively, the set of vertices/nodes which stands for the buses, and the set of

edges/links which stands for the transmission lines. Throughout Part I, the terms bus and node will

be used interchangeably. The terms link and transmission line will also be used interchangeably.
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Due to the fact that power delivered on each transmission line is bidirectional, the graph for de-

scribing the power network is undirected. A path from node vi0 to node vik is a sequence of nodes

vi0 , . . . ,vik such that (vi j ,vi j+1) ∈ E for 0≤ j < k. A circle is a path that starts and ends at the same

node. A graph is connected if there exists at least one path from every node to every other node. A

graph is disconnected if it is not connected. A spanning tree1 is a minimal set of links that connect

all nodes. A graph G (V ′,E ′) is a subgraph of G (V ,E ) if V ′ ⊆ V and E ′ ⊆ E . A component of

G (V ,E ) is a subgraph of G (V ,E ) that is maximal with respect to the property of being connected.

Besides the above well-known concepts used in graph theory, the following two defini-

tions will also be used later on.

Definition 2.1 (Bridge link) A link ei is a bridge link if the graph G (V ,E ) has fewer components

than G (V ,E \{ei}).

Definition 2.2 (Cycle graph [24]) A graph is a cycle graph if it contains the same number of nodes

and links, all on a single circle.

For instance, the graph shown in Figure 2.1(a) is a cycle graph. For another instance,

in the graph shown in Figure 2.1(b), e8 is a bridge link as removing e8 breaks the graph into two

components.

Throughout out Part I, without loss of generality, it is assumed that the power network as-

sociated with G (V ,E ) contains n+1 buses and l transmission lines. Therefore, V = {v1, . . . ,vn+1}

and E = {e1, . . . ,el}. A directed incidence matrix A0 ∈ R(n+1)×l can be defined to describe the

topology. After arbitrarily assigning the direction of each transmission line (without loss of gener-

ality), the entries of A0 are determined in the following way. For each link e j, the entry in the ith

1Here we focus on the spanning tree in an undirected graph.
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Figure 2.1: Examples of network topologies

row and jth column of A0 is A0(i, j) = 1 if the direction of e j starts at bus i, A0(i, j) = −1 if the

direction of e j ends at bus i, and A0(i, j) = 0 otherwise.

In the power network, in order to study the phase angle of each bus, one bus is required

to be arbitrarily selected as the reference bus. The phase angle of the reference bus is assumed to

be zero so that the phase angles of the other buses are measured with respect to the reference bus.

Then the truncated incidence matrix A ∈ Rn×l is defined by removing the row of A0 corresponding

to the reference bus.

Using the topology shown in Figure 2.1(b) as an example, where n = 5 and l = 8. Let

the direction of each link be assigned as shown in the figure. Then the incidence matrix A0 can be

written as

A0 =



1 1 1 0 0 0 0 0

−1 0 0 1 0 0 0 0

0 −1 0 0 1 1 0 0

0 0 −1 −1 −1 0 1 0

0 0 0 0 0 −1 −1 1

0 0 0 0 0 0 0 −1



.
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Let bus 1 be the reference bus. The truncated incidence matrix can be obtained by removing the

first row of A0 shown above.

Some fundamental properties of A and A0 are listed in the following lemma.

Lemma 2.3 (properties of A and A0)

i) rank(A0) = rank(A), where rank(·) denotes the rank of a matrix;

ii) 1 ∈ Null(A>0 ), where 1 ∈ R|V | is an all one vector, and Null(·) denotes the null space of a

matrix;

iii) G (V ,E ) is connected if and only if rank(A0) = n;

iv) G (V ,E ) is disconnected with k components if and only if rank(A0) = n− k+1.

2.1.2 State Estimation in the DC Power Model

The DC power model, which is derived from the AC power model with appropriate as-

sumptions [1], is commonly adopted for the study of power systems [12, 16, 41, 50, 66, 67, 69]. Let

x ∈ Rn be the collection of states of all buses except for the reference bus. Specifically, the states

are the phase angles of all other buses relative to the reference bus. Let z ∈ Rm be the collection of

measurements including both the power flow on each transmission line and the power injection or

load at each bus except for the reference bus. Let H ∈ Rm×n be the measurement matrix associated

with the graph G (V ,E ). Then the relation between the states and the measurements can be written

as

z = Hx+w,
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where w ∈Rm stands for the measurement noise. In this work, it is assumed that only one measure-

ment can be obtained on each transmission line or bus and hence m= l+n. Let D= diag(d1, . . . ,dl)∈

Rl×l be a diagonal matrix with nonzero diagonal entries di. Here di describes the admittance of the

ith transmission line, ∀i ∈ {1, . . . , l}. Then the measurement matrix H associated with the graph

G (V ,E ) has the form of

H ,

 DA>

ADA>

 . (2.1)

The following lemma shows the relation between the ranks of H and A.

Lemma 2.4 rank(H) = rank(A).

Proof. It is clear that each row of ADA> is linear dependent on the rows of DA>.

Thus it follows that rank(H) = rank(DA>). Since D is nonsingular, it follows that rank(DA>) =

rank(A>) = rank(A).

Assume that w is a white Gaussian noise with its covariance matrix R. The weighted

least-square, minimum variance and maximum likelihood estimation criteria will yield the same

estimator as

x̂ = (H>WH)−1H>Wz,

where x̂ ∈ Rn is the estimate of x and W = R−1 is the weighting matrix.

2.1.3 Stealthy Attack against Bad Data Detection

A bad data detector is designed to defend against bad data that may be caused by multiple

reasons such as meter failures or malicious attacks. The residue-based bad data detectors are usually
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denoted as a function J(r), where r is the residue defined as r , z−Hx̂. Examples include the χ2-

detector or the largest normalized residual test (LNRT). The residue-based detectors are proposed

based on the intuition that abnormal data will drive the estimated states away from their true values.

That is, the alarm is triggered if J(r)≥ τ , where the threshold τ is designed according to the desired

percentage of the false alarm rate. When false data are injected to the measurement observed by

the system operator [50], instead of observing the true measurement z, the operator is only able

to observe the corrupted measurement zbad , z+ za, where za is the injected false data. Let x̂bad

be the corrupted estimate of x. Let ∆x̂ be the estimation deviation introduced by the attacker, i.e.,

∆x̂ = x̂bad− x̂. The stealthy attack is defined as a special case of the FDIA when the attacker selects

za = Hδ , where δ ∈ Rn is an arbitrary vector selected by the attacker. It follows that

∆x̂ = x̂bad− x̂ = (H>WH)−1H>Wzbad− (H>WH)−1H>Wz

= (H>WH)−1H>Wza = (H>WH)−1H>WHδ = δ .

That is, by injecting the false data za such that za = Hδ , the attacker is able to deviate the estimated

states away from the uncorrupted estimates by ∆x̂ = δ . Let rbad , zbad−Hx̂bad be the residue when

the measurement is corrupted by the attack. It follows that for any residue-based detector,

J(rbad) = J(zbad−Hx̂bad) = J [(z+ za)−H(x̂+∆x̂)] = J(z−Hx̂) = J(r) .

This implies that zbad will have the same possibility of triggering the bad data alarm, as that of z.

In summary, a stealthy attack requires za ∈ Im(H), where Im(·) stands for the column space of a

matrix.
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2.2 Problem Formulation

2.2.1 Switching Topology Scenario

While the network topology is assumed to be fixed in most existing articles, the scenario

where the network topologies are switching, is considered in this work. In this work, it is assumed

that the system operator is able to purposely switch on/off some of the selected transmission lines

by turns. Therefore, the network topologies can be different over time. Considering the potential

issues on the generation-demand balance that might be caused by switching off some transmission

lines, we do not allow multiple lines to be switched off simultaneously.

Let E\i , E \{ei}. Then G (V ,E \i) is the graph of the network when the ith transmission

line is switched off. Therefore its associated truncated incidence matrix A\i should have one less

column than A. However, to simplify the proof later on, without loss of generality, let A\i be the

same as A except that the ith column has all zeros. With A\i playing the role of A in Eq. (2.1), the

measurement matrix H\i associated with G (V ,E \i) can be defined analogously. Note that the ith

row of H\i has all zeros.

2.2.2 Assumptions & Objectives

In this work, the system operator is assumed to be able to switch the network topologies

by switching off one of the preselected transmission lines (i.e., cutting off one of the preselected

links in G (V ,E )). To the best of the authors’ knowledge, this is the first work to consider the case

where the network topology of the power system is switching. As the first step to study this scenari-

o, it is assumed that the transient stability of the system can be guaranteed during the alternations

among preselected topologies, and only consider the network at the steady state for each topology.
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From the attacker’s perspective, it is assumed that the attacker has full knowledge of all preselected

topologies, but does not know which topology is being adopted. Besides the knowledge of all pos-

sible topologies, the attacker is also able launch an attack by compromising a set of measurements

that are not encrypted [12].

Throughout Part I, let p = {i1, · · · , ip} be a set of link indices such that Ep , {ei|i ∈ p}

denotes the set of links preselected by the operator to cut by turns. Since the attacker does not know

which topology is being adopted, it has to guarantee that za ∈ Im(H\i), ∀i ∈ p, or equivalently,

za ∈
⋂

i∈p Im(H\i). It is clear that if za ∈
⋂

i∈p Im(H\i), the corrupted measurements are able to

pass the residue-based false data detector whenever the uncorrupted measurements could pass it,

regardless of which topology is being adopted. Therefore, from the system operator’s perspective,

in order to guarantee that no such za exists, it has to guarantee the satisfaction of the following

condition:

dim

(⋂
i∈p

Im(H\i)

)
= 0, (2.2)

where dim(·) stands for the dimension of a matrix subspace. Therefore, the selection of the link set

Ep is critical for the system operator. The following questions are considered.

a) Is it possible to find a set of measurement matrices such that Eq. (2.2) can be satisfied? If

yes, what are the conditions on the set of topologies associated with this set of measurement

matrices; and what if the attacker launches only a “partially” stealthy attack? If no, what are

the vulnerable measurements; and whether there exists any countermeasure?

b) In either cases (yes or no), what are the possible estimation deviations?
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Chapter 3

Stealthy Attack in Power Networks with

Switching Topologies

This chapter studies that under what condition(s) there exists an attack that is stealthy

in all preselected switching topologies. It also discusses the impacts of the proposed switching

topologies on the power generation cost.

3.1 Existence of Stealthy Attack in Power Networks with Switching

Topologies

The necessary and sufficient condition for the possibility of a mutually stealthy attack in

all preselected topologies, is formulated in this section. Several lemmas that will be used later on

are stated first.
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Lemma 3.1 ( [71]) The dimension of the intersected column space among k measurement matrices

can be computed by

dim

(
jk⋂

i= j1

Im(H\i)

)
=

jk

∑
i= j1

rank(H\i)− rank(H) , (3.1)

where

H,


H\ j1 H\ j2

...
. . .

H\ j1 H\ jk

 .

The proof of Lemma 3.1 follows from [71]. This lemma is a generalization of the well-

known formula dim(Im(X∩ Im(Y)) = rank(X)+ rank(Y)− rank([X|Y]), which computes the di-

mension of intersected column spaces of two matrices X and Y. Lemma 3.1 offers an efficient tool

for proving our main theorem.

Lemma 3.2 rank([H\i|H\ j]) = rank([A>\i|A
>
\ j]).

Proof. Let ai be the ith column of the truncated incidence matrix A, i.e., ai , A(:, i). Note that

A\iDA>\i =
l

∑
k=1,k 6=i

dkaka>k =
l

∑
k=1,k 6=i

dkaka>k +diai0>n = ADA>\i.

Therefore, it follows from the definition in Eq. (2.1) that,

[
H\i|H\ j

]
=

 DA>\i DA>\ j

A\iDA>\i A\ jDA>\ j

=

 DA>\i DA>\ j

ADA>\i ADA>\ j

 .
By left multiplying −A to the first row block, and adding the obtained row block to the second row

block, it follows that  DA>\i DA>\ j

ADA>\i ADA>\ j

∼
 DA>\i DA>\ j

0 0

 .
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As D is a diagonal matrix with nonzero diagonal entries and therefore full rank, it follows that

rank([H\i|H\ j]) = rank([DA>\i|DA>\ j]) = rank(D[A>\i |A
>
\ j]) = rank([A>\i |A

>
\ j]),

where the fact that, rank(XY) = rank(Y) for any arbitrary matrix Y and full-rank square matrix X,

is used to obtain the last equality.

Lemma 3.3 Let H be the matrix defined in Lemma 3.1. Then rank(H) = rank(A), where

A,


A>\ j1

A>\ j2

...
. . .

A>\ j1
A>\ jk

 .

The proof of Lemma 3.3 can be obtained by applying similar row operations to each row

block of A as in the proof of Lemma 3.2 and is hence omitted here.

Throughout this work, G (V ,E ) is assumed to be connected. We also define a set of link

indices b ⊆ {1, · · · , l} such that, ∀i ∈ {1, · · · , l}, i ∈ b if ei is a bridge link and i /∈ b otherwise.

Note that if i /∈ b, the graph G (V ,E \i) is still connected. Therefore, according to Lemma 2.3,

rank(A\i) = rank(A), ∀i /∈ b. Now the main result is stated as follows.

Theorem 3.4 Suppose that G (V ,E ) is not a cycle graph. Then dim
(⋂

i∈p Im(H\i)
)
= 0 if and only

if Ep contains a spanning tree of G (V ,E ).

Proof. (Sufficiency). Suppose that Ep contains a spanning tree of G (V ,E ), it follows

that p≥ n. Therefore the sufficiency part can be proved by showing dim
(⋂

i∈n Im(H\i)
)
= 0, where

n⊆ p is an index set such that |n|= n and En , {ei|i∈ n} forms a spanning tree in G (V ,E ). Let n=

{ j1, · · · , jn}. Let H and A be the matrices defined in, respectively, Lemma 3.1 and Lemma 3.3 with n

playing the role of k. By applying Lemma 2.4 with H\i and A\i playing the roles of, respectively, H
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and A, one can obtain that rank(H\i) = rank(A\i). By Lemma 3.3, rank(A) = rank(H). Therefore,

by Lemma 3.1, the sufficiency part can be proved by showing ∑i∈n rank(A\i) = rank(A). This is

achieved by three steps.

(Step 1: Elementary row/column operations on A). By subtracting the first column block

of A by its ith block column, for each i ∈ { j2, · · · , jn}, it follows that

A∼


A>\ j1
−A>\ j2

A>\ j2

...
. . .

A>\ j1
−A>\ jn

A>\ jn

, A′.

Note that for each i ∈ { j2, · · · , jn}, A>\ j1
−A>\ ji

contains only two nonzero rows. Specifically, it has

its first row being −a>j1 and the ith row being a>i , where ai is defined in the proof of Lemma 3.2.

Meanwhile, for each i ∈ { j2, · · · , jn}, it is satisfied that A\i(:, j1) = a j1 and A\i(:, i) = 0n. Let B\i ∈

Rn×(l−2) be the matrix obtained by removing the j1th and the ith columns of A\i, ∀i ∈ { j2, · · · , jn}.

Therefore, by collecting the rows in A′ correspond to the j1th and ith row of A>\1−A>\i, for each

i ∈ { j2, · · · , jn}, and rearranging the order of the rows, it follows that

A′ ∼



−a>j1 a>j1
...

. . .

−a>j1 a>j1

a>j2
... 0

a>jn

B>\ j2

0 . . .

B>\ jn



,


A11 A12

A21 0

0 A33

 , (3.2)
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where A11, A12, A21 and A33 are defined by, respectively, each block as shown in Eq. (3.2). Let A1

and A2 be defined as, respectively, A1 , [A11|A12] and A2 , blkdiag(A21,A33). In the proof later

on, a set of k-dimensional vectors, namely, x1, · · · ,xq, are referred as mutually not in Im(X), where

X ∈Rk×r is an arbitrary matrix, if rank([X,x1, · · · ,xq]) = rank(X)+q. Note that A1 is full rank due

to the block diagonal structure of A12. Therefore, the rank of A′ can be computed by adding the

rank of A2 to the number of rows in A1 which are mutually not in Im(A>2 ), denoted as `. It follows

that

rank(A) =rank(A′) = rank(A2)+ `

=rank(A21)+ rank(A33)+ `= rank(A21)+ ∑
i∈n\{ j1}

rank(B\i)+ `. (3.3)

(Step 2: Computation of ∑i∈n\{ j1} rank(B\i)). Let x1 and x2 be, respectively, the index sets

defined as x1 , {i|a1 /∈ Im(B\i)} and x2 , {i|a1 ∈ Im(B\i)}. It follows that x1 ∪ x2 = { j2, · · · , jn}.

Note that the rank of B\i, for each { j2, · · · , jn}, has only two possibilities, namely, rank(B\i) =

rank(A\i)− 1 if i ∈ x1, and rank(B\i) = rank(A\i) if i ∈ x2. Therefore, ∑i∈n\{ j1} rank(B\i) can be

computed as ∑i∈x1 rank(B\i)+∑i∈x2 rank(B\i) = ∑i∈n\{ j1} rank(A\i)−|x1|. It follows from Eq. (3.3)

that

rank(A) = rank(A21)+ ∑
i∈n\{ j1}

rank(A\i)−|x1|+ `. (3.4)

(Step 3: Computation of `). Recall that ` is the number of rows in A1 which are mutually

not in Im(A>2 ). Note that if En forms a spanning tree of G (V ,E ), rank(A21) = n− 1 and a1 /∈

Im(A>21). Also note that |x1|+ |x2|= n−1. It follows from Eq. (3.4) that the sufficiency part can be

proved by showing

rank(A\ j1) = `+ |x2| (3.5)
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so that ∑i∈n rank(A\i) = rank(A). There are two possible cases.

(Case 1). If there exists a link ei such that i /∈ b, without loss of generality, we select this

link to be e j1 . It follows that rank(A\ j1) = n. Note that if i ∈ x2, a1 ∈ Im(B\i). Therefore, each a>j1

in A12 can be eliminated to all zeros through row operations by using the rows of B>\i in the same

column block, for each i ∈ x2. Thus, after the aforementioned eliminations, these |x2| rows in A1

become identical to a>id , [−a>j1 |0
>
n(n−1)], where −a>j1 is from A11. It follows that |x2|− 1 of these

rows are in Im([aid,A2]
>). Therefore, if |x2| ≥ 1, ` can be computed as ` = (n− 1)− (|x|2− 1),

where (n−1) is the total number of rows in A1. This implies that Eq. (3.5) is satisfied.

The last step for this case is to prove that |x2| ≥ 1 so that ` can be computed in the

aforementioned manner. Since e j1 is selected such that j1 /∈ b, e j1 must belong to at least one circle

in G (V ,E ). We select any one of the circles that contain e j1 , and define a index set c ⊂ {1, · · · , l}

which collects the indices of links that form this circle. It is clear that for any i /∈ c, G (V ,E\{ j1,i}) has

the same number of components as G (V ,E\i). Such an i always exists due to the fact that G (V ,E )

is not a cycle graph. Note that B\i can be regarded as the truncated incidence matrix associated with

G (V ,E\{ j1,i}), where the reference bus is the same as that of G (V ,E ). Therefore, according to

Lemma 2.3, there exists i ∈ { j2, · · · , jn} such that rank(B\i) = rank(A\i). This implies that |x2| ≥ 1.

(Case 2). If there exists no link ei such that i /∈ b, G (V ,E ) is a spanning tree itself. In this

case, all rows in A1 are mutually not in Im(A>2 ) and therefore ` = n−1. Moreover, a1 /∈ Im(B\i),

∀i ∈ { j2, · · · , jn}. It follows that |x2| = 0. Note that rank(A\ j1) = n− 1. Therefore, Eq. (3.5) is

satisfied.

(Necessity). If Ep does not contain a spanning tree of G (V ,E ), G (V ,Ep) is not connected.

It follows from Lemma 2.3 that the rank of the matrix formed by each column vector ai, where i∈ p,
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is less than n. Therefore, rank(A21) < n− 1. Then by a similar approach to that used in the proof

of the sufficiency part, it follows that rank(A) = rank(A21)+∑ j∈p\{ j1} rank(A\i)< ∑ j∈p rank(A\i),

where the last inequality is due to the fact that rank(A\i)≥ n−1 for a connected G (V ,E ). It follows

from Lemma 3.1 that dim
(⋂

i∈p Im(H\i)
)
> 0.

Theorem 3.4 formulates the necessary and sufficient condition for the system operator

to select a set of transmission lines to switch off by turns so as to eliminate the possibility of the

stealthy attack in all selected topologies. It turns out that the selected link set has to contain a

spanning tree of G (V ,E ). One one hand, Theorem 3.4 provides a benchmark to judge whether the

selection of a set of topologies generated by cutting each of the preselected links, is able to eliminate

all possible stealthy attacks. Theorem 3.4 also implies that such a selection is usually not unique as

the graph can contain multiple spanning trees, especially when the number of links is much greater

than that of the nodes. Therefore, more flexibilities are left for the operator to consider from other

perspectives, such as the power generation cost, generation-demand or stability issues and select a

proper link set.

On the other hand, if the selected link set does not contain a spanning tree, there always

exist possible stealthy attacks. In some situations, due to constraints posed by, for example, the

network connectivity, or the infeasibility in matching the generation and demand, some links are not

allowed to be switched off. If all possible spanning trees of G (V ,E ) contain such an unremovable

link, there always exists possible stealthy attacks. Later on in Corollary 4.10, we will formulate the

general form of possible attacks in such situations, and discuss possible countermeasures.

Remark 3.5 (Non-conservative assumption on G (V ,E )) In Theorem 3.4, it is assumed that G (V ,E )

is not a cycle graph. This assumption is not conservative as it is automatically satisfied by most of
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the power networks. Thus, Theorem 3.4 is applicable in most cases. The necessary and sufficient

condition for the case when this assumption is violated, is considered by the following corollary.

However, as this is a rare case, we focus on the case when the graph is not a cycle graph, in the rest

of this work.

Corollary 3.6 Suppose that G (V ,E ) is a cycle graph. Then dim
(⋂

i∈p Im(H\i)
)
= 0 if and only if

Ep = E .

Proof. (Sufficiency). Note that when G (V ,E ) is a cycle graph, there are n+ 1 links

in total. It follows that |p| = n+ 1 if Ep = E . Let A, A1, A2, A21, ` and x1 be similarly defined

as in Theorem 3.4. By following the same steps as in the proof of Theorem 3.4 till Eq. (3.4), it

is clear that |x1| = n in the case considered here. Therefore, all rows of A1 are mutually not in

Im(A>2 ). Since A1 ∈ Rn×n(n−1), it follows that ` = n. Moreover, it is clear that rank(A\i) = n,

∀i ∈ p. Therefore, due to the fact that rank(A21) = n, it follows from Eq. (3.4) that rank(A) =

n+∑i∈p\{ j1} rank(A\i)−n+n = ∑i∈p rank(A\i). This implies that dim
(⋂

i∈p Im(H\i)
)
= 0.

(Necessity). If Ep ⊂ E , rank(A21) = |x1| = ` = |p| − 1. It follows from Eq. (3.4) that

rank(A) = ∑i∈p rank(A\i)−1. It follows that dim
(⋂

i∈p Im(H\i)
)
= n−|p|+1 > 0.

3.2 Impacts of Switching Topologies on the Power Generation Cost

As shown in the previous section, the key to eliminate all possible stealthy attacks by

removing one of the preselected links by turns, is that the selected link set contains a spanning tree

of G (V ,E ). This leads to multiple options due to the fact that l > n in most cases. Therefore, it

is better to have a criterion to judge whether the selection of one specific set of links is better than
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another. Motivated by this, in this section, the impact of the switching topologies on the power

generation cost, is considered as a criterion.

The economic dispatch problem (EDP) is a fundamental problem which computes the

minimum generation cost across the network, while satisfying several constraints such as the supply-

demand balance, the generation capacities and the transmission capacities. A typical EDP can be

formulated as:

minimize
PG

i

n+1

∑
i=1

Ci(PG
i ), (3.6)

subject to ∑
i

PG
i = ∑

i
PL

i ; (3.7)

PG
i ≤ PG

i ≤ PG
i , i ∈ {1, ...,n+1}; (3.8)

P jk ≤ Pjk ≤ P jk, j,k ∈ {1, ..., l}. (3.9)

Here Ci(·) stands for the function that computes the generation cost of bus i, PG
i and PL

i stand for,

respectively, the power generation and load on bus i, PG
i and PG

i are, respectively, the lower and

upper limit of the power generation, Pjk stands for the power flow from bus j to bus k, and P jk and

P jk are, respectively, the lower and upper bound of Pjk.

Assuming a fixed power demand on each bus, the optimal value of Eq. (3.6) for each

preselected topology is computed. Intuitively, switching off any transmission line will change the

strategy of power generation and distribution in the network, and therefore change the optimal

solution of Eq. (3.6). Recall that p is the set of indices associated with the links that are selected

to be switched off by turns. We compute the ratio between the weighted average generation cost

among all preselected topologies, and the optimal solution of Eq. (3.6) under the original fixed
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topology by the following equation:

µ =
∑ j∈p w j ∑

n+1
i=1 Ci(P

G∗, j
i )

∑
n+1
i=1 Ci(PG

i
∗
)

, (3.10)

where w j is the percentage of the time that link e j is removed (thus, ∑ j∈p w j = 1), and ∑
n+1
i=1 Ci(P

G∗, j
i )

stands for the optimal generation cost of the power network in the topology with link e j removed,

and ∑
n+1
i=1 Ci(PG

i
∗
) is the optimal solution of Eq. (3.6) with the original fixed topology. It is straight-

forward that µ is highly dependent on the specific cases. If µ is close to (or even less than) 1,

the generation cost under switching topologies is not increased too much (or even decreased) com-

pared to the case of the original fixed topology. Therefore the operator can consider using switching

topologies as a strategy to defend against the stealthy attack. In the extreme case when security

becomes the most critical issue, the system operator may prefer to choose such a strategy to defend

against potential attacks at any expense.

The case that involves time-varying loads can be similarly obtained by repeatedly com-

puting the EDP ahead of time. Different optimal solutions of the EDP with respect to different

loads may contribute to the next-step decisions, such as the switching orders and the frequency of

the switching actions. We leave this for future work.
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Chapter 4

Possible Deviations on the State

Estimates Caused by Partially Stealthy

Attacks

As discussed in Theorem 3.4, if the operator selects a set of links that contains a spanning

tree of G (V ,E ) to switch off by turns, there exists no feasible stealthy attack. However, it is still

possible for a “smart” attacker to design an attack in a way such that the attack is stealthy in the

majority of the preselected topologies. This motivates the work presented in this chapter. Here

we study the case when the attacker makes a concession and designs an attack that is stealthy only

in some of the topologies preselected by the system operator. Note that the probability of being

detected is increasing as the attack is stealthy in fewer topologies.

The objective for the attacker to launch a stealthy attack is to fool the system operator

with a deviated state estimate, i.e., x̂bad, instead of the true estimate x̂. From the attacker’s perspec-
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tive, being stealthy is only to avoid being detected. More importantly, the attacker cares about the

deviation, denoted as ∆x̂, introduced to the system operator because such a deviation is critical for

the operator to make wrong decisions. It is assumed that to achieve some destructive objectives, the

attacker tries to fool the system operator with consistent deviations of the state estimates by inject-

ing the aforementioned “partially” stealthy (i.e., stealthy in a subset of the topologies preselected

by the operator) attack. That is, the deviations of the corrupted estimates from the real estimates of

the states are identical among all topologies in which the attack is stealthy. This is preferable from

the attacker’s point of view, since a consistent deviation from the true state estimates is more likely

to fool the operator. Therefore, in this section, the details of the deviations that could be possibly

introduced by launching a partially stealthy attack, are studied. The following questions are con-

sidered. 1) What is the relation between the estimation deviation and the probability of the attack

being detected? 2) What do the deviations look like? 3) What are the countermeasures to minimize

the effects caused by such an attack?

4.1 Possible Estimation Deviation v.s. Probability of Attack Detection

Since the attacker knows what the preselected topologies are, in this paper, only the sce-

nario in which the attacker tries to launch an attack stealthy in a subset of the topologies preselected

by the system operator, is studied. However, it will be shown that the cases in which the launched

attack is stealthy in some topologies that are not preselected by the operator, can be converted to

the case studied in this section. The detailed explanation is skipped at this point since it requires

the conclusion of Corollary 4.7 that will be given later on. To begin stating the main results in this

section, two definitions, namely, trivial and nontrivial links are given as follows:
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Definition 4.1 (nontrivial links) Let s be a set of indices and Es , {ei|i ∈ s}. Es is a set of non-

trivial links if Es contains no circle.

Definition 4.2 (trivial link) Let Es be a set of nontrivial links. Then ek is a trivial link spanned by

Es, if Es∪ ek contains circle.

In this section, let En , {ei|i ∈ n} with |n| = n be a set of n nontrivial links that forms

a spanning tree of G (V ,E ). Without loss of generality, let the system operator select these n

links and cut by turns. Therefore, according to Theorem 3.4, there exists no stealthy attack in

the corresponding n topologies. Let s be the set of nontrivial links such that za ∈ Im(H\i), ∀i ∈ s.

The following definition will be frequently used in the rest of this paper.

Definition 4.3 ((s,n)-stealthy attack) Suppose that s ⊂ n. Then za is an (s,n)-stealthy attack if

za ∈ ∩i∈sIm(H\i) and za /∈ Im(H\i), ∀i ∈ n\ s.

Note that an (s,n)-stealthy attack is defined only for the case when s⊂ n. The following

lemma will be used to prove our main theorem later on.

Lemma 4.4 Suppose that za ∈ ∩i∈sIm(H\i). Then za(i) = 0, ∀i ∈ s.

Proof. If the ith link is removed, A\i(:, i) = 0n. It follows from (2.1) that H\i(i, :) = 0>n . Therefore,

if za ∈ Im(H\i), za(i) = 0. This has to be satisfied for all i ∈ s.

Theorem 4.5 Suppose that the attacker launches an (s,n)-stealthy attack, where |s|> 1. Let As ∈

Rn×s be a matrix which collects the columns of A whose indices are in s, i.e., ai,∀i ∈ s. Then the

resulting deviation of the state estimates ∆x̂ satisfies ∆x̂ ∈ Null(A>s ).
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Proof. Recall that ∆x̂ is caused by injecting the stealthy attack za. Therefore, za = H\i∆x̂ holds

for all i ∈ s. From Lemma 4.4, za(i) = 0, ∀i ∈ s. Let Hs
\i be the submatrix that collects the rows

of H\i whose indices are in s, i.e., H\i( j, :),∀ j ∈ s. Therefore, since Hs
\i∆x̂ = 0 for each i ∈ s, |s|

independent equations, namely, dia>i ∆x̂ = 0,∀i∈ s, can be obtained. Note that this can be done only

if |s|> 1 so that there exist i, j ∈ s and i 6= j. Since di 6= 0, ∀i, it follows that a>i ∆x̂ = 0,∀i ∈ s. By

writing these |s| equations into a compact matrix form, it is obtained that A>s ∆x̂ = 0. It follows that

∆x̂ ∈ Null(A>s ).

Theorem 4.5 formulates the limitation on the consistent estimation deviation that can be

introduced by the attack za, which is stealthy in |s| topologies generated by removing link in Es. It

is clear as |s| increases, the size of As also increases. Therefore, ∆x̂ has to satisfy more constraints

as the attack is designed to be stealthy in more topologies.

Remark 4.6 When the attack is only stealthy in one of the n preselected topologies (|s|= 1), za can

be designed based on whatever ∆x̂ the attacker wants. This brings us back to the case in which the

topology is fixed. However, this would result in the highest probability of being detected during the

alternations among all preselected topologies.

In summary, there is a trade-off between the flexibility of manipulating the estimation

deviation and the number of nontrivial links preselected to be removed to obtain the topologies

in which the attack is stealthy. On one hand, the attacker prefers to launch an attack that is less

possible to be detected during the alternations among all possible topologies. This requires ∆x̂ to

satisfy more constraints with which the attacker may not be able to fool the system operator in an

expected way. On the other hand, to manipulate the estimation deviation in a more flexible manner,

the attacker has to take the risk and make the attack be stealthy in fewer topologies.
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Corollary 4.7 Suppose that the attacker launches an (s,n)-stealthy attack, where |s|> 1, and devi-

ates the state estimate by ∆x̂. Then, 1) za = H∆x̂. 2) For any trivial link ek spanned by the nontrivial

link set Es, za ∈ Im(H\k).

Proof. Let As be defined in Theorem 4.5. Define Ai , A−A\i. Let Hi be defined by (2.1) with Ai

playing the role of A. It follows that Hi = H−H\i. Therefore, za = H\i∆x̂ = (H−Hi)∆x̂, ∀i ∈ s.

Since ∆x̂∈Null(A>s ) from Theorem 4.5, A>i ∆x̂ = 0,∀i∈ s. Therefore Hi∆x̂ = 0, which implies that

za = H∆x̂.

Since ek is a trivial link spanned by the nontrivial link set Es, ek∪Es contains a circle and

therefore rank([As|ak]) = rank(As). This implies that ak ∈ Im(As) and therefore Null([As|ak]
>) =

Null(A>s ), where ak ,A(:,k). By Theorem 4.5, ∆x̂∈Null(A>s ). It follows that ∆x̂∈Null([As|ak]
>),

and therefore a>k ∆x̂ = 0. Thus, Hk∆x̂ = 0. As a result, za = H∆x̂ = (H−Hk)∆x̂ = H\k∆x̂, which

implies that za ∈ Im(H\k). This is the case for any trivial link spanned by the nontrivial link set Es.

Corollary 4.7 implies that, if an attack is stealthy in all topologies generated by removing

each link of Es, it is also stealthy in any topology generated by removing a trivial link spanned by Es.

We now explain how problems that are not directly considered by our main results can be converted

to problems to which our results are applicable. Definition 4.3 is defined based on the assumption

that s ⊂ n, which might not always be the case. For example in Figure 4.1(a), let n = {3,4,5,6},

as shown by the dashed lines, and s = {1,2,3,4}, as shown by the cross marks. It is clear that

s 6⊂ n in this case. However, it is equivalent to consider the case as shown in Figure 4.1(b), where

s′ = {3,4,5} with s′ similarly defined as that of s in Figure 4.1(a). This is due to the fact that

{e2,e3,e5} forms a circle and hence e2 is a trivial link spanned by {e3,e5}. Also {e1,e3,e4} forms
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Figure 4.1: Example of two equivalent problems with the same n= {3,4,5,6}

a circle and hence e1 is a trivial link spanned by {e3,e4}. It follows from Corollary 4.7 that feasible

za such that za ∈ ∩i∈sIm(H\i) implies that za ∈ ∩i∈s′Im(H\i). Note that s′ ⊂ n in this equivalent

case so that our main theorem is applicable. In general, if En forms a spanning tree of G (V ,E ), for

any s, one can always find an s′ such that s′ ⊂ n as En is able to span any link ei,∀i ∈ {1, . . . , l}.

Therefore, our main results, as will be stated in the next section, are applicable to all possible cases.

4.2 General Form of Possible Estimation Deviations

Theorem 4.8 Suppose that the attacker launches an (s,n)-stealthy attack. Then G (V ,Es) contains

n−s+1 components. Let si be the set collects the indices of nodes in the ith component of G (V ,Es).

Let sn−s+1 be the component contains the reference node without loss of generality. Then ∆x̂ has

the form of ∆x̂ = ∑
n−s
i=1 αiesi , where αi ∈ R is arbitrary, ∀i, and esi ∈ Rn is a vector each entry of

which is one if its index is in si and zero otherwise.

Proof. Let As be defined in Theorem 4.5. Since Es a set of nontrivial links, it follows

that rank(As) = s. Note that As can be regarded as the truncated incidence matrix with respect to
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the graph G (V ,Es). Let Vsi ⊆ V and Esi ⊆ Es be, respectively, the node set and link set of the

ith component of G (V ,Es). Suppose that G (V ,Es) contains k components, namely, G (Vsi ,Esi),

∀i ∈ {1, · · · ,k}. Then according to Lemma 2.3, s = n− k+1 and it follows that k = n− s+1.

Let Asi
0 be the incidence matrix (similar to A0) with respect to G (Vsi ,Esi), for each i ∈

{1, . . . ,n− s}. Let Ask be the truncated incidence matrix (similar to A) with respect to G (Vsk ,Esk)

with the reference node selected the same as that of G (V ,E ). By appropriately reassigning the

indices of buses, without loss of generality, As can be written as As = blkdiag(As1
0 , . . . ,Asn−s

0 ,Ask).

Since for each i ∈ {1, . . . ,n− s}, Asi
0 is the incidence matrix with respect to the graph G (Vsi ,Esi),

which is a connected subgraph of G (V ,Es). It follows from Lemma 2.3 that 1 ∈ Null
(
(Asi

0 )
>) and

rank(Asi
0 ) = |Vsi |−1. Thus, 1 is the only basis of the left null space of Asi

0 , for all i ∈ {1, . . . ,n− s}.

Since Ask is the truncated incidence matrix with respect to G (Vsk ,Esk). As G (Vsk ,Esk) contains

only nontrivial links, Ask is a square matrix with full rank. Therefore Null
(
(Ask)>

)
= /0. Thus, the

general form of the estimation deviation is ∑
n−s
i=1 αiesi .

Theorem 4.8 describes how exactly the flexibility of manipulating the estimation deviation

is limited when the attacker launches an (s,n)-stealthy attack. It is shown that the flexibility can be

judged by checking the graph G (V ,Es). It turns out that the deviation vector can only be designed in

a “component” sense. That is, for each component in the graph G (V ,Es), the corresponding entries

of the deviation vector have to be identical. Moreover, for the component that contains the reference

bus, as a special case, the corresponding entries of the deviation vector have to be identical to zero.

Therefore, even though the attacker takes the risk of being detected and launches an attack that is

stealthy in some of the preselected topologies, it has to confront the limited flexibility of designing

the deviation vector ∆x̂, especially when it tries to “hide” in more topologies. This trade-off turns
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out to be linear, as proved in Theorem 4.8. The conclusions of Theorem 4.8 instantly leads to the

following corollary.

Corollary 4.9 The possibility of a specific (s,n)-stealthy attack is zero if there exists at least one

independently verifiable bus in each component of G (V ,Es) that does not contain the reference bus.

The proof of Corollary 4.9 is straightforward and omitted here for the sake of saving

space. This corollary is motivated by the fact that for all buses in the same component of G (V ,Es),

the corresponding entries of ∆x̂ have to be identical. Therefore by guaranteeing that at least one

state can be independently verified (the state value can be directly obtained by some methods that

are independent from the state estimator, see [12] for details), the system operator is able to know

whether the estimate of the state is deviated, and further know whether the estimates of all other

states in the same component of G (V ,Es) are deviated. Therefore, to avoid being detected, the

attacker cannot deviate the estimates of the states in any component containing buses corresponding

to the independently variable states.

Corollary 4.9 also explains why the estimation deviations of the states that belong to the

component containing the reference bus, have to be identically zero. The reason is that the state

value of the reference bus is assumed to be fixed (usually zero for convenience) to show the phase

angles of other buses relative to it. Therefore, by Theorem 4.8, all states in the same component

of G (V ,Es) containing the reference bus will have zero deviations. From this perspective, the

reference bus plays the role of a verifiable state.

At the end of this chapter, we formulates the general form of the possible stealthy attacks

in the case when the system operator fails to find a set of links that contains a spanning tree of

G (V ,E ), as studied in the previous section.
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Let n′ be a set of indices, where |n′| < n, such that En′ , {ei|i ∈ n′} is a set of nontrivial

links. Assume that the operator is able to find a nontrivial link set En that forms a spanning tree

of G (V ,E ) and n′ ⊂ n. An (n′,n)-stealthy attack can be launched. Now suppose that instead of

En, the operator is only able to select the nontrivial link set E ′n to cut by turns, the aforementioned

(n′,n)-stealthy attack becomes stealthy in all preselected topologies. Therefore, the general form of

all possible stealthy attacks in this case can be obtained by combining the conclusions of Corollary

4.7 and Theorem 4.8, and is summarized in the following corollary.

Corollary 4.10 Let n′ be a set of indices where |n′| < n, such that En′ , {ei|i ∈ n′} is a set of

nontrivial links selected by the system operator to cut by turns. Then the general form of the possible

stealthy attack za is za = ∑
n−n′
i=1 αi ∑ j∈n′i H(:, j), where αi is an arbitrary scalar and n′i is the set of

node indices corresponding to the buses in the ith component of G (V ,En′) that does not contain the

reference bus.

Proof. Let en′i ∈ Rn be a vector each entry of which is one if its index is in n′i and zero otherwise.

It follows from Corollary 4.7 and Theorem 4.8 that za = H∆x̂ = H∑
n−n′
i=1 αien′i = ∑

n−n′
i=1 αiHen′i =

∑
n−n′
i=1 αi ∑ j∈n′i H(:, j).

The general form of the possible attack vector za shown in Corollary 4.10 can be regarded

as a linear combination of a set of basis vectors, each of which is a summation of H’s columns

corresponding to the nodes in one component (that does not contain the reference node) of the

graph formed by all nodes and the selected links, i.e., G (V ,En′).

Note that when n′ = /0, i.e., the system operator does not remove any link. In such a

case, G (V ,En′) is a graph with only n+ 1 nodes but no links. Therefore, besides the reference

bus, each of the other n buses is a component of G (V ,En′). By Corollary 4.10, with ∆x̂ selected as
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∆x̂ = [α1, · · · ,αn]
>, it follows that za = H∆x̂. This brings us back to the case of the fixed topology.

Therefore, even though there exists possible stealthy attack when the link set corresponding to the

preselected topologies does not forms a spanning tree of G (V ,E ), the proposed scenario puts more

constraints on the selection of a possible attack vector za compared to the scenario of the fixed

topology. Let the subspace spanned by all possible attack vectors be the attack space. When the

topology is fixed, each column of H is a basis of the attack space. In the proposed scenario, each

basis of the attack space is a summation of some columns of H corresponding to one component of

G (V ,En′). With the increase of the number of the selected links to cut by turns, the dimension of

the attack space decreases.

Moreover, the general form of za can be used to locate the set of vulnerable measurements.

Each nonzero entry in za implies a measurement that has to be compromised by the attacker in order

to launch a stealthy attack. Therefore, one can adopt the measurement protection mechanism [12] as

an assisting strategy to eliminate the possibilities of stealthy attacks when the condition in Theorem

3.4 is not satisfied.
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Chapter 5

Simulations & Case Studies

In this chapter, we show some simulations as well as case studies to illustrate the analytical

work shown in the previous two chapters.

5.1 Simulation Results

5.1.1 Detection of Stealthy Attacks using Switching Topologies

In this subsection, simulation results about the detection of stealthy attacks in the scenario

of switching topologies, are shown. The simulation is based on a 5-bus system, where n = 4 and

l = 7 as shown in Figure 5.1(a). Note that there is no bridge link in this 5-bus system, i.e., the graph

remains connected with each one of the links removed. Therefore, there are 7 possible topologies

generated by switching off each one of the transmission lines (assume that the EDP is feasible when

any one of the links is removed). We first show that the strategy for designing the stealthy attack

in the scenario of a fixed topology will not be able to launch stealthy attacks in the scenario of
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Figure 5.1: Figures used for the simulations and case studies

switching topologies in general. We then show that an attack that is stealthy in some topologies will

not be able to pass the residue-based detectors in some other topologies. For the sake of convenience

in comparison, the index “8” is assigned to the original topology in which no line is switched off,

and show the simulation results of all 8 topologies for two tests in Figure 5.2. Let the measurement

z, which is originally corrupted with some measurement noise assumed as Gaussian, be further

corrupted with an attack za, i.e., zbad = H\ix+w+ za for each i with w∼N (0,σ2I). Specifically,

to be consistent, let σ = 0.5 and ‖za‖2 = 100 in both tests. Note that the false data has much

greater magnitude than the measurement noise. The residue-based detector Ji(r) for the G (V ,E\i) is

defined as Ji(r), ‖zbad−H\ix̂bad‖2. We check the results of residue tests, as well as the estimation

deviations on all 4 states in the case of each possible topology.

Test 1 is done by designing za as a random linear combination of the columns of H, i.e.,

za ∈ Im(H). The simulation results are shown in Figure 5.2(a), It is clear that with an appropriately

designed threshold τ , even though this attack is stealthy in the original fixed topology (topology 8 in

the figure), it will easily trigger the residue-based detector when any transmission line is switched
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(a) Test 1: za ∈ Im(H)
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Figure 5.2: Two tests on the residue-based detector and estimation deviations under the same attack
with all 8 different topologies (Topology 8 is the original fixed topology)
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off. Moreover, for every possible topology, each of the estimated states can be independently devi-

ated from the true estimates, as shown in the bottom 4 sub-figures in Figure 5.2(a).

Test 2 is done by letting the attacker be ”smarter” in the sense that it launches an attack

that is stealthy in some of the preselected topologies. Specifically, za ∈
⋂

i∈{1,2,6} Im(H\i). It can

be observed from Figure 5.2(b) that such an attack will pass the residue test if the original fixed

topology (topology 8) is selected. Even though such an attack is better designed from the attacker’s

perspective, it will still trigger the alarm in the case when any link in {ei|i ∈ {3,4,5,7}} is removed.

This is because {ei|i ∈ {3,4,5,7}} are not the trivial links spanned by {ei|i ∈ {1,2,6}}. Moreover,

it can be observed that for the topologies in which za is stealthy, only the estimate of state 4 is

deviated. The detailed case studies on the estimation deviations will be given later in this section.

5.1.2 Impacts on Power Generation Cost

In this subsection, the impact of switching topologies on the generation cost is shown. To

avoid potential infeasibilities of the EDP caused by isolating part of the network, in the simulations

presented in this subsection, none bridge link in the graph is allowed to be removed. The following

classical quadratic form to compute the generation cost on each bus is adopted:

Ci(PG
i ) = εi +βiPG

i + γi(PG
i )2.

The first simulation is done on the 5-bus system shown in Figure 5.1(a), where the ratios

of the generation cost in each possible topology over that in the original topology are plotted in

Figure 5.3(a). The required parameters are adopted from [84] and listed in table 5.1, in which the

generation and load are on a 100 MVA base. The admittance on each transmission line is −10 j.
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Figure 5.3: Ratios of the generation cost in the case of different topologies over that of the original
topology in different systems
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Table 5.1: Parameters of 5-bus System

Bus index εi βi γi PG
i (p.u) PG

i (p.u) PL
i (p.u)

1 15.62 792 561 1.5 5.0 0.0
2 19.4 785 310 1.5 5.0 2.0
3 0.0 0.0 0.0 0.0 0.0 4.0
4 0.0 0.0 0.0 0.0 0.0 3.5
5 48.2 792 78 1.5 5.0 0.0

The transmission capacities on e2 and e4 are both 1.5 p.u., and unlimited on other lines. We solve

the EDP for each feasible topology using CVX [23]. The ratios of the generation cost when ei is

removed over the cost when no link is removed, for all i ∈ {1, · · · , l}, are computed and shown in

the Figure 5.3(a). It can be observed that besides e6, whose removal will cause infeasibility (due to

limited transmission capacities) of the EDP, the generation cost is varying when each of the other

links is removed. Therefore, assume that each selected topology is adopted with the same length of

time, i.e., w j = 1/|p|, ∀ j ∈ p, where w j is defined in (3.10), among the rest possible link sets (sets

without e6) that form a spanning tree of G (V ,E ), the optimal link set E ∗p that minimizes the average

cost of generation is selected as E ∗p = {e1,e2,e5,e7}. It follows from (3.10) that µ∗ = 99.5%. This

implies that the generation cost is decreased in this case when the topology is switching.

Based on the data adopted from [88], with the MVA ratings of each transmission line

adopted from [56], the same simulation is done on the IEEE 14-bus system and the IEEE 30-bus

system. The results are shown, respectively, in Figure 5.3(b) and 5.3(c). The topologies of the IEEE

14-bus and IEEE 30-bus system are shown, respectively, in 5.4(a) and 5.4(b), where the bus in red

is selected as the reference bus without loss of generality.

In the IEEE 14-bus system, e14 is a bridge link. Removing e17 will make the EDP in-

feasible. Therefore, the generation cost for the topologies generated by removing either of these
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two links are not shown in Figure 5.3(b). Since e14 is a bridge link, all possible spanning trees of

G (V ,E ) contain e14. Therefore, it is always possible to find a stealthy attack according to Theorem

3.4. In such a case, however, it is still possible to find a link set Ep contains a spanning tree of

G (V \{v8},E \{e14}). Then it follows from Corollary 4.10 that the dimension of the attack space

will be 1. By formulating the general form of this stealthy attack, identifying the vulnerable mea-

surements, and adding protections on these measurements, the possibility of stealthy attacks can be

eliminated. The suboptimal link set which forms a spanning tree of G (V ,E\14) and minimizes the

average generation cost among corresponding topologies is shown as dashed lines in Figure 5.4(a).

The corresponding µ is 100.98%.

Similarly, in the IEEE 30-bus system, the bridge link set b= {13,16,34}. Moreover, the

removal of e27 or e29 will make the EDP infeasible. Therefore, the generation cost in the correspond-

ing 5 topologies are not shown in Figure 5.3(c). Similar to the previous case, assuming the equal

amount of time for each topology adopted by the operator, the suboptimal link set Ep that minimizes

the average generation cost among selected topologies can be selected as shown in dashed lines in

Figure 5.4(b). The value of µ corresponding to Ep is 99.92%. Similar to the previous case, besides

cutting off each link of Ep by turns, the system operator should also consider adding protections to

some of the vulnerable measurements that located by the general attack form obtained by Corollary

4.10. In this case, the dimension of the attack space is 4. Therefore, by adding protection on at least

one measurement in each vulnerable measurement set, which is located by each basis vector of the

attack space, the network will be robust against the stealthy attacks. Note that instead of protecting

a set of basic measurements (contains 29 measurements in this case) as proposed in [12], only 4

measurements are required to be protected.
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Besides adding encrypted measurements, the system operator could also consider verify-

ing some states independently. This strategy will be discussed in the following section.

5.2 Case Studies on Estimate Deviations

According to Theorem 4.8, an (s,n)-stealthy attack is only able to independently deviate

n− s components in G (V ,Es). However, the number of buses in each component of G (V ,Es) is

dependent on both the system operator’s selection of n and the attacker’s selection of s, where s

and n are defined in Section 4. Moreover, since an (s,n)-stealthy attack is not able to deviate the

estimated states of any bus included in the same component with the reference bus, the location

of the reference bus in G (V ,E ) will also contribute to the limitation as described in Theorem

4.8. Motivated by these intuitions, in this section, we use ‖∆x̂‖0, which stands for the number of

nonzero entries in ∆x̂, as a metric to evaluate how the limitation on the estimation deviation vector

∆x̂ is affected by the selection of n, s and the reference bus in G (V ,E ).

5.2.1 Scenario without Verifiable State

We first study the scenarios in which the operator is not able to independently verify any

state value. The parameters of all cases studied in this scenario are listed in Table 5.2, in which the

“Ref” stands for the reference bus for each case. It is assumed that for each case, an (s,n)-stealthy

attack is launched with the listed choice of s and n. ∆x̂i denotes the deviation from the normal

estimate of the ith bus when the measurements are not corrupted by the partially stealthy attack. For

example, ∆x̂ = [∆x̂1,∆x̂2,∆x̂3,∆x̂5]
> if v4 is selected as the reference bus. Note that this deviation is

undefined for the reference bus and therefore marked as “N/A” in the table. α ∈ R is arbitrary.
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Table 5.2: Parameters of studied cases

Case # n Ref s ∆x̂1 ∆x̂2 ∆x̂3 ∆x̂4 ∆x̂5

1 3,4,5,7 v5 3,4,7 0 0 α 0 N/A
2 3,4,5,7 v5 3,4,5 α α α α N/A
3 3,4,5,7 v4 3,4,5 0 0 0 N/A α

4 1,2,4,6 v4 1,2,6 α α α N/A α

The details for Case 1 is shown in Figure 5.1 as an example. Similar figures can be easily

derived for other cases in Table 5.2 and are omitted here for the interest of space. In Figure 5.1(b),

the dashed lines form the link set En, which is decided by the operator. The cross marks show the

link set Es, which is decided by the attacker. Figure 5.1(c) shows the graph G (V ,Es), which is the

critical graph used to judge the general form of ∆x̂.

For all cases in Table 5.2, |s| = 3 and |n| = 4. It follows by Theorem 4.8 that the state

estimates of nodes in only one component in G (V ,Es) can be deviated. In Case 1, as shown in

Figure 5.1(c), bus 3 is the only bus that belongs to the component that does not contain the reference

bus v5. Therefore, only ∆x̂3 can be an arbitrary value α . If follows that ‖∆x̂‖0 = 1. The only

difference of Case 2 from Case 1 is the selection of s. As a result, however, the estimated states of

all buses (except for the reference bus) are deviated with the same value and therefore ‖∆x̂‖0 = 4.

This is because in G (V ,Es) of Case 2, the reference bus is isolated from all other buses. Then

all buses are included in the component that does not contain the reference bus. Therefore, given

the objective of deviating more numbers of states from the attacker’s perspective, the selection of

s in Case 2 is preferred by the attacker. In Case 3, all parameters stay the same as those of Case

2 except that the reference bus is selected as bus 4 instead of bus 5. However, by simply changing

the reference bus, only one estimate of states can be deviated. Actually, in this case, any possible

(s,n)-stealthy attack, where |s| = 3 and |n| = 4, is only able to deviate one estimated state since
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all buses are directly connected to the reference bus in G (V ,Es). Therefore, Case 3 is the most

preferable case from the operator’s perspective. In Case 4, using the same reference bus as that of

Case 3, the selection of n is changed. It turns out that by selecting s listed in Table 5.2, the estimated

states of all buses (except the reference bus) will be deviated, i.e., ‖∆x̂‖0 = 4. Thus, this is the least

preferable case that the operator should consider.

Therefore, using ‖∆x̂‖0 as the metric, the following two criteria are summarized for the

system operator to select the location of the reference bus in G (V ,E ), and the n links to cut by

turns, in the scenario where there is no verifiable state. On one hand, in G (V ,Es), the reference bus

should be directly connected to as many buses as possible. As shown in the comparison between

Case 2 and Case 3. On the other hand, the reference bus should act as the “root” of the spanning tree

formed by En. Moreover, each branch of the spanning tree should have as few nodes as possible, as

shown in the comparison between Case 3 and Case 4.

5.2.2 Scenario with Verifiable State

When there exist independently verifiable states [12], the strategy for the operator to select

n will be changed significantly. A certain (s,n)-stealthy attack will be impossible if n− s verifiable

buses are added in the way described in Corollary 4.9. However, it is the attacker’s decision to

select which |s| of the n topologies to “hide” in. The comparison between Case 1 and Case 2 in

the previous scenario has shown that by selecting different s the attacker will significantly change

the number of estimated states that could be deviated. Therefore, the operator should try to find

a solution to minimize ‖∆x̂‖0 regardless of the selection of s by the attacker. Suppose that bus 5

is verifiable in Case 4 shown in Table 5.2, ‖∆x̂‖0 ≡ 0 for any possible (s,n)-stealthy attack with

|s| = 3 and |n| = 4. Note that in the scenario without any verifiable state, Case 4 is one of the
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least preferable strategies for the operator to select n. Case 3 in Table 5.2, however, which is the

optimal strategy in the former scenario, becomes the last strategy that operator would consider in this

scenario. This is because for the scenario with verifiable states, in order to make ‖∆x̂‖0 ≡ 0 hold for

any possible (s,n)-stealthy attack in Case 3, all buses should be verifiable except for the reference

bus. In summary, the existence of the verifiable states can significantly change the strategies for

selecting n and the reference bus.
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Chapter 6

Conclusion & Future Work

6.1 Conclusion

The existence of possible stealthy attacks in the power system, where the system operator

could purposely switch the network topology by rotationally switching off one of the preselected

transmission lines, is considered. The effects of such a strategy on the stealthy attacks were shown.

It is necessary and sufficient for the system operator to select a set of links to cut by turns while this

preselected link set forms a spanning tree of the network topology. The general form of the possible

stealthy attacks was formulated in the case when there always exists a possible stealthy attack. The

effects on the power generation cost caused by the proposed strategy was also analyzed. Then the

scenario in which the attacker launches an attack that is “partially” stealthy in some of the topologies

preselected by the operator, is studied. It was shown that there will be a linear trade-off between

the flexibility of manipulating the estimation deviation, and the possibility of not being detected.

The general form of the possible deviations of the estimated states was also formulated. It turned

out that the deviations can only be designed in a “component” sense. Simulations results showed
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the efficiency of the proposed strategy in detecting the stealthy attacks, as well as the effects on the

power generation cost. The countermeasures for the case when there always exists possible stealthy

attacks were discussed. Several cases were studied to show how the deviations can be affected by

the decisions made by both the attacker and the system operator.

6.2 Future Work

Our future directions include the transient stability during the transition of topologies, the

impacts on the generation cost caused by the transition from one topology to another, the optimal

order for switching the topologies that maximizes the efficiency of detection from the operator’s

perspective, and the minimum effort required to learn the current topology from the attacker’s per-

spective. Moreover, we would like to take into account, such as meeting the dynamical applications

in the smart grid, in the design of the network switching strategies and study the possible tradeoff

or conflicts between different criteria.
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Chapter 7

Introduction

7.1 Overview & Related Works

The studies of state estimation using networked multi-agents, have a wide range of appli-

cations such as target tracking, region monitoring and area surveillance. The traditional centralized

approaches usually obtain the optimal solution using the collective measurements from every single

sensor in the network. This generally poses heavy burdens in both communication and compu-

tation especially as the size of the network increases. In comparison, distributed strategies use a

so-called peer-to-peer communication schemes and hence, have the advantages of being scalable

for large-scale network and being robust against unexpected node or link failures. Therefore, dis-

tributed strategies using networked multi-agents with capabilities of sensing and communication,

have drawn increasing attention in recent years [2, 7–9, 15, 19, 26, 32, 33, 36, 47, 55, 60, 61, 65]. In

exchange of these advantages, however, due to the difficulties in tracking the cross-covariances be-

tween each pair of local estimates in a scalable manner, the distributed strategies usually compute
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only suboptimal estimates and approximate error covariances due to the difficulties in tracking the

cross-covariances between local estimates in a scalable manner.

The consensus algorithm, as a possible tool to solve the distributed state estimation prob-

lems, is considered from the Kalman filter’s perspective in [65] and [2] to address a static state

estimation problem. The Kalman-consensus filter (KCF) [60], with an average-consensus term

added in the update steps of the local Kalman filter, aims at asymptotically driving the local esti-

mates of each agent to be identical. The KCF assumes that each agent and its neighbors have joint

observability of the state of interest [61]. This is relaxed in [33], where the scenario with locally

unobservable agents is considered, and the generalized KCF (GKCF) is considered. The same sce-

nario is also considered in [36], where the authors propose the information-consensus filter (ICF),

and analytically show that the ICF is able to asymptotically approach the centralized solution, if

the undirected network topology is connected and each agent communicates with its neighbors for

infinite iterations before updating its local estimate at each time instant. Further studies of the ICF

can be found in [32]. Some other consensus-based filtering algorithms can be founded in [52, 53].

Aside from the consensus-based algorithms, which generally requires multiple communi-

cation iterations per time instant, an alternative diffusion-based algorithms, referred as the diffusion

Kalman filter (DKF), is first proposed in [15]. In the DKF, each agent first updates its local esti-

mate using its own and neighbors’ measurements, and then computes a convex combination of the

resulting estimate along with its neighbors’. This requires each agent to communicate only twice

instead of a large number of times with its local neighbors before updating its final local estimate

at each time instant. The boundedness of local estimate errors obtained by the DKF is shown based

on the assumption that the target is jointly detectable in the inclusive neighborhood of every agent.
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This assumption is relaxed in [26], where a Covariance Intersection based DKF (CI-DKF) is pro-

posed. Two algorithms are proposed therein to handle, respectively, the scenario where at least one

agent has local joint observability, and the scenario where each agent can have at most local joint

observability of a subset of state components.

Recently, a notable approach aims at achieving consensus on the probability density func-

tions of local estimates, is proposed in [9], and further studied in detail in [7, 8] for the linear

Gaussian case. The stability condition is also investigated for the case of LTI models and a fixed

topology. Moreover, the local estimates are guaranteed to be consistent, i.e., the approximated error

covariance of the local estimate is lower bounded by the true unknown one [27, 30]. It is shown in

their later work [8] that, however, such consistent estimates might be too conservative. A counter-

measure for such conservatism is also proposed in [8]. However, it might not be applicable to more

general scenarios considered in this work (see Section 9.3 for details). As the follow-up work, the

algorithm is further extended in [10] to the scenario with nonlinearities involved in both the pro-

cess and the sensing models. The extended nonlinear filtering algorithm is based on the extended

Kalman filter (EKF) paradigm, and is shown to enjoy the local stability properties. Different from

the EKF-based approach, the authors in [45, 46] have used the unscented transformation (UT) [29],

and designed the solution to the same scenario.

When the process model of the target is uncertain, the multiple model (MM) estimation

algorithms [6] have been proposed by using a finite set of candidate models and accordingly com-

puting a bank of Kalman filters in parallel to estimate the state of the target with model uncertainties.

By assuming that the exact model at every time instant belongs to a set of finite possible models

and follows a Markov process with known probabilities, it is shown that one is able to identify
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the underlying model and track the state of interest simultaneously. See [48] for a comprehensive

survey and [3, 70] for some further results. Moreover, in recent, distributed approaches in solv-

ing the MM estimation problems also become an active research area [19, 47, 55]. Specifically the

authors [19, 47] use consensus-based approach and the work in [55] is diffusion-based.

Before moving to the next subsection, it is clarified that this work focuses on the ap-

proaches storing only the estimate and associated approximated error covariance at the previous

single time instant. The readers are referred to [20] and the references therein for the approach-

es based on a moving-horizon estimation methodology. Moreover, other than the framework of

discrete-time linear systems in which the results of this work are proposed, the readers are referred

to [75,76] and the references therein for works in the framework of continuous-time linear systems.

7.2 Motivations

The motivations are discussed in the following with respect to each scenario to be consid-

ered by this work.

For the scenario with single linear process and local sensing models, the existing related

literature usually makes some of the following assumptions either explicitly or implicitly. a) Every

agent and its neighbors have joint observability or at least detectability about the target of interest

[15, 61]. b) Some global parameters (the total number of agents, maximum in-degree of the graph,

etc.) are known to each agent [15,26,32,33,36,61]. c) The agents are able to communicate with their

neighbors for multiple (or infinite in the ideal case) iterations before updating their local estimates

at every time instant [26,32,33,36,61]. d) The communication graph is connected (in the undirected

case) or strongly connected (in the directed case) [7–9, 15, 26, 61] and even also balanced [36]. e)
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In the stability analysis, the process model of the target, the sensing model of the local agents,

and/or the communication topology are/is assumed to be time invariant [7–9, 15, 52, 53, 61]. In

general, these assumptions will impose different limitations in a more realistic scenario (detailed

motivations are discussed in Section 9.1.1). This work aims at overcoming these limitations and

propose an algorithm, and analyze the stability in a more general scenario without any of the above

limitation.

Aside from the scenario with linear process and sensing models, this work also aims at

considering the scenario where the models are nonlinear by extending the algorithm proposed in the

linear scenario. Different from the EKF-based extension as did in [10], the unscented transformation

(UT) is adopted for the extension. The UT is better known for its embed in the Kalman filter as a

solution in the case of nonlinear models. Such a solution is referred as the unscented Kalman filter

[29] (UKF). The UKF has been regarded as a superior alternative of the EKF especially when the

systems are highly nonlinear. Compared to the EKF, it requires no computation of Jacobian matrices

at every time instant, and approximates the nonlinear models accurately to the third order [29]. The

existing UT-based algorithms ( [45, 46]) for solving the same problem are also consensus-based

and hence need multiple communication iterations during every sampling time interval. This would

cause heavy communication burdens in general.

While a single model is usually assumed for the target of interest. However, a single

model might not be enough to describe the target of interest in some applications. For example, a

maneuvering target can move along straight or curved trajectories with the model switching over

time. Thus, all single-model based algorithms, either centralized or distributed, will be ineffective

in tracking such a target. Another possible difficulty is that the accurate knowledge (noise level,
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deterministic input) about the target itself might be hard to obtain. To the best of the author’s

knowledge, the very first step that applies the MM approach in the distributed estimation framework,

is taken by [47]. A consensus-based distributed MM Unscented Kalman Filter is proposed therein

to tracking jumping Markov nonlinear systems. A different consensus approach is proposed in

[19], which aims at getting satisfactory performance with a smaller number of consensus iterations

and also takes into account the presence of local agents without sensing ability. Both consensus-

based algorithms intend to have local agents communicate multiple iterations before updating their

local estimates as well as the local mode probabilities during each sampling time interval. Again

as aforementioned for many times, this might cause too much energy consumption and hence be

unrealistic for implementations, as pointed out in [55], where a DKF-based MM adaptive estimation

algorithm is proposed to estimate a dynamic complex-value state with a fixed but unknown process

model. However, the nature of the DKF implies that the algorithm in [55] also requires each local

agent to have joint observability about the target in its inclusive neighborhood. This assumption

does not hold in general (see examples in [26, 33, 36, 80, 81]).

7.3 Contributions & Organization

Before stating the main contributions of this work, preliminaries are stated in Chapter 8.

Then the main contributions, as will be briefly mentioned one by one in the following, are stated in

Chapter 9, 10 and 11. The conclusions and future directions are given in Chapter 12.

In Chapter 9, the scenario with linear process and sensing models is considered. A dis-

tributed hybrid information fusion (DHIF) algorithm, is proposed. The algorithm is unified in the

sense that on one hand, it does not need to treat different situations separately (see [26]); on the

55



other hand, it is able to handle the situation where none of the assumption (discussed at the begin-

ning of Section 7.2) necessarily holds and hence, fits a wide range of scenarios without any ad-hoc

modification of the algorithm. By proposing an innovative approach, namely, the (directed) orderly

appearing path between two agents in a finite time interval, this work explores very mild conditions

on general directed switching graphs and joint network observability/detectability to guarantee that

the local estimate errors of all agents a) are uniformly upper bounded (in the positive definite sense)

in finite time; and b) converge to zero asymptotically in expectation. The conditions are shown to

be “almost” necessary. Specifically, the conditions are necessary in a special case. The comparisons

with existing algorithms are shown both analytically and numerically.

In Chapter 10, In the end, the proposed algorithm is extended to the situation with non-

linearities involved in both the process and the sensing models. A nonlinear DHIF algorithm is

proposed by adopting the unscented transformation approach so that no computation of Jacobian

matrix is needed. The nonlinear DHIF algorithm requires only one communication iteration be-

tween every two consecutive time instants. It is also analytically shown that for the case with linear

sensing models, the local estimate errors are bounded in the mean square sense.

In Chapter 11, the DHIF algorithm is further extended to the scenario where the process

model of interest is not certain to any local agent. Two algorithms are proposed by following

the two well-known multiple model (MM) paradigms, namely, the first order generalized pseudo

Bayesian and the interacting MM approaches. The extended algorithms inherit the advantages of

the original DHIF algorithm for being fully distributed, being robust against agents not directly

sensing the target, and requiring only single communication iteration among agents during each

sampling interval. It is shown in the case when the unknown underlying model is fixed, all local
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agents are able to asymptotically identify the true underlying model and estimate the state of interest

simultaneously. The output local estimate are shown to have uniformly upper bounded estimate

error with sufficient conditions formulated. Simulations are shown to illustrate the analytical results

as well as the performances of the proposed algorithms.
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Chapter 8

Preliminaries

8.1 Notations

The following notations are defined throughout Part II of this dissertation to avoid possible

ambiguities. Denotes Z+ the set of positive integers. Z∗ , Z+∪{0}. E[·] denotes the expectation

of a random variable. Pr(·) is the probability function. The symbol “⊗” denotes the Kronecker

product. The ceil function is denoted as ceil{·}. The super-index k ∈ Z+ in parenthesis, denoted

as {·}(k), denotes the variable at the time instant k. The interval of time instants Ikt
k0

is defined as

Ikt
k0
, [k0, . . . ,kt ] for some kt ≥ k0, where k0, kt ∈ Z+. The block diagonal operator is denoted as

blkdiag{·}. The 2-norm of a vector is denoted as ‖ · ‖.

Moreover, all vectors and matrices are denoted by bold letters in, respectively, lowercase

and uppercase. The n× n identity matrix is denoted as In. The notation 0 is an all-zero matrix

or vector with appropriate dimension according to the context. The notation 1 is an all-one vector

with appropriate dimension according to the context. The “MATLAB” tradition is used to denote

entry/row/column/submatrices of a matrix. For an arbitrary matrix X, {X}(O1,O2) is the sub-matrix

58



formed by the entries with the row and column indices in, respectively, O1 and O2 for some index

sets O1 and O2. The index set can be replaced by a single index to denote a specific row/column, or

be replaced by “:” to denote all rows/columns. If X is a square matrix, the trace and the determinant

of X are, respectively, denoted as tr(X) and ‖X‖. If X is also nonsingular, X−n> , ((Xn)−1)> for

some n∈Z∗. If it is also satisfied that X� 0, it is then defined that
√

X,Y, where Y fulfills YY>=

X. For any arbitrary symmetric matrices X1 and X2 with the same dimension, X1�X2 (respectively,

X1 � X2) denotes that X1−X2 is a positive semi-definite (respectively, positive definite) matrix.

X1 ≥ X2 (respectively, X1 > X2) implies that X1−X2 is a non-negative (respectively, positive)

matrix.

8.2 Graph Theory & Adjacency Matrix

A directed graph G (k)(V (k),E (k)) is used to represent the communication topology of a

large-scale sensor network, where V (k) and E (k) ⊆ V (k)×V (k) are respectively, the set of vertices

that stands for the local agents and edges that stands for the communication channels. As the

total number of agents will not be involved in any result throughout this work, without loss of

generality, it is supposed that there are constantly N agents, i.e., V (k) = V = {1, . . . ,N}, ∀k. For

simplicity, G (k)(V ,E (k)) is sometimes denoted as G (k). An edge (i, j) ∈ E (k) denotes that j can

receive information from i (not necessarily vice versa). Then i is the parent vertex of j, and j is

a child vertex of i. Let N(k)
i,in , { j|( j, i) ∈ E (k), ∀ j 6= i} and N(k)

i,out , { j|(i, j) ∈ E (k), ∀ j 6= i} be

respectively, the set of the in-neighbors and out-neighbors of agent i. Let J(k)i , N(k)
i,in ∪{i} be the

inclusive neighborhood of agent i. A graph is complete if j ∈ N(k)
i,in for any i and j. A directed path

from vertex i0 to vertex i` is an ordered sequence of vertices i0, i1, . . . , i` such that (i j−1, i j) ∈ E (k)
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Figure 8.1: Example of strongly connected component and leader component. The subgraph in red
is a strongly connected component but not a leader component as it has an incoming edge (7,3).
The subgraph in green is a leader component.

for 1≤ j ≤ `. A directed graph is strongly connected if there exists at least one directed path from

every vertex to every other vertex. A subgraph of G (k), denoted as G̃ (k)(Ṽ , Ẽ (k)), is a graph such

that Ṽ (k) ⊆ V and Ẽ (k) ⊆ E (k). A graph G (k) is a directed spanning tree if the graph is a directed

tree that contains all vertices of G (k). A graph G (k) contains a directed spanning tree if there exists

at least one subgraph of G (k) that is a directed spanning tree. A strongly connected component

is a strongly connected subgraph of G (k) such that no additional edges or vertices from G (k) can

be included in the subgraph without breaking its property of being strongly connected. A leader

component is a strongly connected component with no incoming edges. The union graph over a

time interval I is defined as G [I], G (V ,∪k∈IE
(k)).

The adjacency matrix, is used for describing the weights of the edges. Such a matrix

and the described graph are referred as being associated with each other. The adjacency matrix

A(k) ∈ RN×N associated with G (k) is defined as {A(k)}(i, j) > 0 if ( j, i) ∈ E (k), and {A(k)}(i, j) = 0

otherwise. For each i∈ V , a(k)i j is the weight agent i assigned to the information received from agent

j at time instant k. In this chapter, self edges are always assumed. Thus, {A(k)}(i,i) > 0, ∀i ∈ V . A

graph is balanced if ∑
N
j=1 a(k)i j = ∑

N
j=1 a(k)ji . Note that depending on the selections of entries, for a

certain graph, there exist an infinite number of associated adjacency matrices, each of which has the
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same structure (positive or zero entries). In this work, a special adjacency matrix, denoted as D(k),

is usually adopted such that D(k) is row stochastic, which implies that ∑ j∈V {D(k)}(i, j) = 1, ∀i ∈ V .

A row stochastic matrix is primitive if and only if its associated graph is strongly connected. If it

also holds that ∑i{D}(i, j) = 1, ∀ j, then D(k) is a doubly stochastic matrix. A row stochastic matrix

has its largest eigenvalue being 1.

8.3 Consistent Information

In one word, a piece of general information (estimate, measurement etc.) is consistent

if its approximated error/noise covariance is lower bounded by the true unknown one [27, 30], as

defined in the following.

Definition 8.1 ( [30]) Let â and Pa be, respectively, the approximated mean and covariance of a

random variable a, where a = Hbb+n with b and n being, respectively, the unknown quantity of

interest and the associated error/noise. Hb is a matrix with appropriate dimension. The pair (â,Pa)

is consistent if Pa � P̃a, where P̃a , E[(â−Hbb)(â−Hbb)>] is the true error/noise covariance of

â.

Note that in Definition 8.1, the pair (â,Pa) can be either a measurement of b with Pa

being the approximated noise covariance, or an estimate of b (i.e., Hb is identity) with Pa being the

approximated estimate error covariance.

The consistency is a fundamental but critical property that an estimate should have. An

inconsistent estimate is over-confident and hence, its approximated error covariance does not realis-

tically imply its uncertainty [18]. This might cause issues when it is further used for the downstream

functions (data association etc.). The consistency of local estimates is worth paying attention to due
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to the fact that the same process noise corrupts the state of interest, and therefore causes significant

cross-correlations between each pair of the local estimates. The inconsistency of the local estimates

might be caused if such cross-correlations are not well accounted for.

8.4 Observability of Discrete LTV System

The observability property of a discrete linear time-varying (LTV) system is stated as

follows.

Definition 8.2 ( [44]) A discrete LTV system with state propagation matrix F(k) and observation

matrix H(k) is observable on the time interval Il
h if the matrix O[h, l], ∑

l
k=h(FFF

k
h)
>(H(k))>H(k)FFF k

h

is full rank, where FFF k
h is the state transition matrix from h to k and satisfying FFF k+1

k′ = F(k)FFF k
k′ for

some k′ ≤ k, and FFF k
k is identity.

8.5 Unscented Transformation

The unscented transformation (UT) is a method to approximate the statistics of a random

variable undergoing a nonlinear transformation. Given a random variable with known statistics, the

UT can be briefly described as follow. A set of so-called sigma points are deterministically sampled

to parameterize the statistics of this random variable. The details for such parameterizations is

omitted at this point as it will be embedded into our algorithm and hence will be elaborated later in

this work. It is worth mentioning that such parameterizations is done in the way such that the sample

mean and sample covariance coincide with those of the random variable. After the sigma points are

determined, they are individually fed into the nonlinear transformation. A set of transformed points

62



is therefore obtained and is used for characterizing the statistics of the random variable after the

nonlinear transformation. The UT has the advantage of being able to characterize the probability

distribution with only a very small set of points.

The UT has been adopted as a fundamental component by the authors in [29] to propose

the UKF which has equivalent performance to the Kalman filter for linear systems and generalizes

to nonlinear systems. Compared to the EKF – a commonly used nonlinear filter, the UKF requires

no linearization steps which 1) might bring instabilities especially when the assumption of local

linearity is not well fulfilled; 2) requires the derivation of Jacobian matrices that might lead to

implementation difficulties. Moreover, it is analytically shown in [29] that the UKF has better

expected performance than that of the EKF.

8.6 Multiple Model Estimation

The MM approach has been regarded as an efficient estimation method when the target

contains both continuous (process noise) and discrete (mode) uncertainties. The MM approach

assumes the true model (either fixed or switching over time) to be one of a finite number of mod-

els. Each model is separately parameterized and hence can be different in the dynamics, the noise

statistics and/or state space.

It is pointed out in [6] that even with the mode switching process following a jumping

Markov process, the optimal estimate still requires conditioning on each mode history, the number

of which increases exponentially with time. Therefore, suboptimal approaches are used for practical

implementations. In this paper, we are interested in two well-known suboptimal approaches, name-

ly, the first-order generalized pseudo-Bayesian (GPB1) MM approach and the interacting multiple
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model (IMM) approach. Both account for each possible current mode and associate a Kalman filter

to compute the mode-matched estimate. The IMM approach contains all steps of the GPB1 ap-

proach with an extra mixing of the previous model-conditioned estimates depending on the current

model.
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Chapter 9

Distributed State Estimation with Linear

Process and Local Sensing Models

This chapter studies the problem of distributed state estimation in the scenario where the

process model of the target and the local sensing models are linear.

9.1 Problem Formulation

9.1.1 Motivation

The motivations for relaxing the limitations imposed by the assumptions mentioned in the

second paragraph of Section 7.2, are provided in this subsection.

First of all, as large-scale sensor networks are usually deployed to monitor geographically

large areas, it is quite common to encounter a situation where the target of interest is not in the

sensing ranges of a subset of local agents. As a result, the assumption of local joint observabili-
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cameras communication links 

FOVs 

Figure 9.1: Example of time-varying set of agents directly sensing the target. As the target moves
along its trajectory, it passes the field-of-views (FOVs) of only a subset of cameras, which might
change over time.

ty/detectability at every agent is not satisfied in general. Moreover, the status whether each agent

senses the target is generally changing over time, as shown by the example in Figure 9.1.

Second, although some global parameters (total number of agents, graph degree, etc.)

might be learned in off-line manners, it is still possible for these parameters to change during the

filtering process. For example, an unexpected node failure will change the total number of agents

and possibly also the degree of the graph. The performance of local agents without knowing such

changes might be deteriorated if the algorithm depends on these global parameters.

Third, the assumption on the feasibility of multiple communication iterations per sam-

pling time instant might cause too much energy consumption and hence might not hold with limited

energy constraint.

Forth, the assumption of a time-invariant communication topology might not hold in many

scenarios. The causes of switching communication topologies might span from positive reasons,

such as the pre-scheduled communication schemes, to passive reasons, such as unexpected failures

of communication channels, package dropouts, or the changes in the physical distances between

mobile agents.
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Lastly, a time-varying model for the target is more general. Moreover, the local sensing

models can change due to temporary sensor failures or the movement of the target in or out of the

sensing ranges of sensors equipped at agents.

9.1.2 Models & Assumptions

This chapter considers the following linear dynamic system as the process model of the

target of interest:

x(k+1) = F(k)x(k)+w(k), (9.1)

where x(k) ∈ Rn is the state of interest; F(k) ∈ Rn×n is the state propagation matrix. The process

noise w(k) ∈ Rpk is assumed to be white Gaussian, i.e., w(k) ∼ N (0,Q̃(k)), ∀k ∈ Z+. Here Q̃(k)

is the true covariance of the process noise at time instant k. It is assumed that Q̃(k) � 0, ∀k ∈ Z+.

Moreover, it is assumed that E[x(k′)(w(k))>] = 0, ∀k′ ∈ Z∗ and k > k′.

Each agent i ∈ V obtains a local measurement z(k)i ∈Rmi,k , which follows a linear sensing

model:

z(k)i = H(k)
i x(k)+v(k)i , (9.2)

where H(k)
i ∈Rmi,k×n is the local observation matrix; v(k)i ∈Rmi,k is the local measurement noise and

also assumed to be white Gaussian, i.e., v(k)i ∼N (0, R̃(k)
i ) with R̃(k)

i � 0 being the true covariance

of the measurement noise. The following assumption is made throughout this work.

Assumption 9.1.1 For each k ∈ Z+, each agent i ∈ V knows:

(a) the state propagation matrix F(k);

(b) a consistent approximation of the process noise covariance, denoted as Q(k), i.e., Q(k)� Q̃(k);
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(c) a consistent approximation of its local measurement noise covariance, denote as R(k)
i , i.e.,

R(k)
i � R̃(k)

i .

For simplicity, it is assumed in the rest of this chapter that Q(k) = Q and Q̃(k) = Q̃, for

all k ∈ Z+. The same results hold for the case when these variables are time varying. Assump-

tion 9.1.1.(b) and Assumption 9.1.1.(c) are to guarantee that the uncertainty from, respectively, the

process noise and the measurement noise, are not underestimated.

At any time instant, if the target is not directly sensed by a certain agent, either due to the

target being out of the agent’s sensing range, or due to temporary sensor failure at the agent, the

following assumption is made.

Assumption 9.1.2 If the target of interest is not directly sensed by an agent i ∈ V at time instant k,

(R(k)
i )−1 = 0 and z(k)i is arbitrary. Moreover, H(k)

i = 0.

Assumption 9.1.2 essentially states that an agent that does not directly sense the target

assumes infinite uncertainties about its local measurement. This also guarantees the consistency of

the local measurements and matches Assumption 9.1.1.(c) although it is obviously trivial. It is worth

mentioning that assuming H(k)
i = 0 in Assumption 9.1.2 is only for the clarity of the observability

condition later in this work. With only a subset of agents directly sensing the target, the concept of

blind agents is defined as follows.

Definition 9.1 (Blind agents) Let B(k) ⊂ V be the set of blind agents across the network at time

instant k. Then i ∈B(k) if none of j ∈ J(k)i directly senses the target at time instant k.

Note that according to Assumption 9.1.2, if i ∈B(k), one has (R(k)
j )−1 = 0 and H(k)

j = 0, ∀ j ∈ J(k)i .

Here we use the term “blind agent”. Similar terms have been used in the literature [9, 26, 33, 36].
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For example, the “naive agent” in [33, 36], the “communication node” in [9], and the “node with

no local uniform observability” in [26]. However, it is assumed therein that the set of agents not

directly sensing the target are unchanged with time for the simplicity of the stability analysis. As

a result, those terms can be equivalently defined using the time-invariant observability/detectability

conditions in the inclusive neighborhood. In this work, however, as we are interested in a more

general scenario where the set of such agents might subject to changes with time, the term “blind”

is used to reflect only the status whether a certain agent or any of its in-neighbors directly senses the

target at a certain time instant. The change of such status of any agent can be regarded as a change

of the local sensing model, and hence, will be handled by the formulated unified framework.

9.1.3 Objectives

With the motivations provided in Section 9.1.1, the objectives are formulated as follows.

It is aimed to design a unified algorithm such that each agent modeled by Eq. (9.2) cooperates with

its neighbors through communication, and comes up with an estimate of the target modeled by Eq.

(9.1). The local estimates should be as confident as possible while its consistency is guaranteed. The

agents can communicate with local neighbors for only once per time instant. No global parameter is

allowed. The communication topology among agents is modeled as a general directed time-varying

graph. It is aimed to search for very mild conditions to guarantee the convergence of the proposed

algorithm in the considered scenario.
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9.2 Distributed Hybrid Information Fusion (DHIF) Algorithm

At time instant k, let x̂k|k−1
i and x̂k|k

i be, respectively, the prior and posterior estimate of

x(k). Let η̂ηη
k|k−1
i , x̂k|k−1

i −x(k) and η̂ηη
k|k
i , x̂k|k

i −x(k). Let P̂k|k−1
i and P̂k|k

i be the approximations of,

respectively, Pk|k−1
i and Pk|k

i , where Pk|k−1
i , E

[
η̂ηη

k|k−1
i

(
η̂ηη

k|k−1
i

)>]
and Pk|k

i , E
[
η̂ηη

k|k
i

(
η̂ηη

k|k
i

)>]
.

The following assumptions are made throughout this work.

Assumption 9.2.1 At each k ∈ Z+, (a) E
[

v(k)i

(
v(k)j

)>]
= 0, ∀i 6= j; and (b) E

[
η̂ηη

k|k−1
i

(
v(k)j

)>]
=

0, ∀i, j.

9.2.1 An Information Fusion Perspective

Suppose that at k ∈ Z+, agent i aims at updating its local estimate by incorporating the

prior local estimate pair, denoted as
(

x̂k|k−1
j , P̂k|k−1

j

)
, and the local measurement pair, denoted as(

z(k)j ,R(k)
j

)
, received from every j ∈ N(k)

i,in. Suppose that P̂k|k−1
j � Pk|k−1

j , ∀ j ∈ N(k)
i,in. The proposed

updating step can be regarded as a hybrid of two fusion sub-steps.

The first sub-step is to fuse all prior estimate pairs, i.e.,
(

x̂k|k−1
j , P̂k|k−1

j

)
, ∀ j ∈ N(k)

i,in, and

obtain an intermediate estimate pair, denoted as
(

x̌(k)i , P̌(k)
i

)
. Note that due to the same process

noise of the target observed by each local agent, as well as the exchange of local measurements in

previous time instants, the local estimates are highly correlated in general. However, such significant

correlations are difficult to track in a fully distributed framework. Therefore, the CI algorithm [30]

is used for this sub-step to guarantee the consistency of the fused estimate pair. That is,

(
P̌(k)

i

)−1
= ∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
,(

P̌(k)
i

)−1
x̌(k)i = ∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
x̂k|k−1

j ,

(9.3)
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where d(k)
i j ≥ d is the weight that agent i assigns to the information received from agent j ∈ N(k)

i,in

at time instant k, with d > 0 being the uniform lower bound for all weights at any time instant.

Moreover, ∑ j∈J(k)i
d(k)

i j = 1, ∀i ∈ V . The selection of the set of weights
{

d(k)
i j

}
j∈J(k)i

is critical and

will be discussed in detail in Section 9.2.3.

The second sub-step is to fuse all local measurement pairs,
(

z(k)j ,R(k)
j

)
, ∀ j ∈ N(k)

i,in, with

the intermediate estimate pair
(

x̌(k)i , P̌(k)
i

)
. The standard optimal fusion strategy is used for this step.

This requires the information pairs to have mutually uncorrelated errors, as shown in the following

lemma.

Lemma 9.2 Let
(

x̌(k)i , P̌(k)
i

)
be defined in Eq. (9.3). Under Assumption 9.2.1,

(
z(k)j ,R(k)

j

)
, ∀ j ∈ J(k)i

and
(

x̌(k)i , P̌(k)
i

)
have mutually uncorrelated errors.

Proof. With Assumption 9.2.1 (i) satisfied, it suffices to show that for each l ∈ J(k)i ,

E
[(

x̌(k)i −x(k)
)(

v(k)l

)>]
= 0.

This can be verified by using Eq. (9.3) to obtain that

E
[(

x̌(k)i −x(k)
)(

v(k)l

)>]
=E
[(

P̌(k)
i

(
P̌(k)

i

)−1
x̌(k)i − P̌(k)

i

(
P̌(k)

i

)−1
x(k)
)(

v(k)l

)>]

=E

P̌(k)
i

 ∑
j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
x̂k|k−1

j

− P̌(k)
i

 ∑
j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1

x(k)

(v(k)l

)>
=E
[

P̌(k)
i ∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1(
x̂k|k−1

j −x(k)
)(

v(k)l

)>]
=P̌(k)

i ∑ j∈J(k)i
d(k)

i j

(
P̂k|k−1

j

)−1
E
[
η̂ηη

k|k−1
j

(
v(k)l

)>]
= 0,

where Assumption 9.2.1 (ii) is used for the last equality.
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Thus, the second sub-step has the following form

(
P̂k|k

i

)−1
=
(

P̌(k)
i

)−1
+∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
H(k)

j , (9.4)(
P̂k|k

i

)−1
x̂k|k

i =
(

P̌(k)
i

)−1
x̌(k)i +∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
z(k)j .

Combine Eq. (9.3) and Eq. (9.4), the update steps of the proposed algorithm, hereafter referred

as the Distributed Hybrid Information Fusion (DHIF) algorithm, is obtained. By adding standard

prediction steps, the recursive form of the DHIF algorithm is summarized in Algorithm 9.1.

9.2.2 Preservation of Consistency

The consistency, as one of the most fundamental but significant properties of estimates,

has to be preserved during the information fusion process. The approximated error covariance of

an inconsistent estimator is over-confident, and hence does not realistically indicate the uncertainty

of the estimate. In this subsection, it is shown that the consistency of the estimates is preserved in

each recursion of Algorithm 9.1 with the following assumption satisfied.

Assumption 9.2.2 The initialized prior estimate pair of each agent, denoted as (x̂1|0
i , P̂1|0

i ), is con-

sistent, i.e., P̂1|0
i � E[(x̂1|0

i −x(1))(x̂1|0
i −x(1))>], ∀i ∈ V .

Note that Assumption 9.2.2 can be easily satisfied in general. The prior knowledge about the state

of interest can be learned in an off-line manner before the fusion process. In the worst case, each

agent can simply choose (P̂1|0
i )−1 = 0, which indicates the infinite local estimate uncertainty at the

beginning so that Assumption 9.2.2 is satisfied. The preservation of the estimates consistency is

then shown by the following theorem.
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Algorithm 9.1 Linear DHIF algorithm implemented by agent i at time instant k
1: if k = 1 then

2: initializes x̂1|0
i and P̂1|0

i

3: end if

4: obtains the local measurement z(k)i

5: computes ΞΞΞ
(k)
i =

(
P̂k|k−1

i

)−1
, ξξξ

(k)
i =

(
P̂k|k−1

i

)−1
x̂k|k−1

i ,

6: computes S(k)
i =

(
H(k)

i

)>(
R(k)

i

)−1
H(k)

i , y(k)i =
(

H(k)
i

)>(
R(k)

i

)−1
z(k)i

7: sends S(k)
i , y(k)i , ΞΞΞ

(k)
i and ξξξ

(k)
i to agent j, ∀ j ∈ N(k)

i,out

8: receives S(k)
j , y(k)j , ΞΞΞ

(k)
j and ξξξ

(k)
j from agent j, ∀ j ∈ N(k)

i,in

9: selects the set of weights {d(k)
i j } j∈J(k)i

10: computes S̄(k)
j = ∑ j∈J(k)i

S(k)
j , ȳ(k)j = ∑ j∈J(k)i

y(k)j , Ξ̄ΞΞ
(k)
i = ∑ j∈J(k)i

d(k)
i j ΞΞΞ

(k)
i and ξ̄ξξ

(k)
i = ∑ j∈J(k)i

d(k)
i j ξξξ

(k)
i

11: updates local estimate and approximated covariance

P̂k|k
i =

(
S̄(k)

j +Ξ̄ΞΞ
(k)
i

)−1
, (9.5)

x̂k|k
i = P̂k|k

i

(
ȳ(k)j + ξ̄ξξ

(k)
i

)
. (9.6)

12: predicts local estimate and approximated covariance

P̂k+1|k
i = F(k)P̂k|k

i

(
F(k)
)>

+Q, (9.7)

x̂k+1|k
i = F(k)x̂k|k

i . (9.8)
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Theorem 9.3 Suppose that Assumptions 9.1.1, 9.1.2, 9.2.1 and 9.2.2 hold. Then Algorithm 9.1

preserves the consistency at all time instants, i.e., P̂k|k−1
i � Pk|k−1

i and P̂k|k
i � Pk|k

i , ∀k ∈ Z+.

Proof. Note that one can directly observe that the update steps preserve the consistency as

both Eq. (9.3) and Eq. (9.4) preserve the consistency provided consistent estimate and measurement

pairs. Then the proof can be shown by induction. When k = 1, Assumption implies that 9.2.2 that

P̂1|0
i � P1|0

i . As the update steps preserve the consistency, it follows that P̂1|1
i � P1|1

i . Suppose that

P̂k|k−1
i � Pk|k−1

i and P̂k|k
i � Pk|k

i hold for some k = k′ ∈ Z+. When k = k′+1, if follows that

Pk′+1|k′
i = E

[
η̂ηη

k′+1|k′
i (η̂ηη

k′+1|k′
i )>

]
= E

[
(Fη̂ηη

k′|k′
i −w(k′+1))(Fη̂ηη

k′|k′
i −w(k′+1))>

]
= F(k′)Pk′|k′

i

(
F(k′)

)>
+ Q̃−F(k′)E

[
η̂ηη

k′|k′
i

(
w(k′+1)

)>]
−
(

F(k′)E
[
η̂ηη

k′|k′
i

(
w(k′+1)

)>])>
.

Since η̂ηη
k′|k′
i in a linear combination of x(0), {w(l)}k′

l=1 and {v(l)}k′
l=1, each of which is uncorrelated

with w(k′+1) under Assumption 9.2.1, it follows that E[η̂ηηk′|k′
i (w(k′+1))>] = 0. Therefore, the last two

terms in the above equation equal to zeros. Moreover, from Assumption 9.1.1, Q � Q̃. It follows

from Eq. (9.7) that if P̂k′|k′
i � Pk′|k′

i ,

P̂k′+1|k′
i = F(k′)P̂k′|k′

i

(
F(k′)

)>
+Q� F(k′)Pk′|k′

i

(
F(k′)

)>
+ Q̃ = Pk′+1|k′

i .

As a result, P̂k′+1|k′+1
i � Pk′+1|k′+1

i .

9.2.3 Weights Selection

Due to the CI algorithm used in the first fusion step, the update steps in Eq. (9.5) and

Eq. (9.6) only give a suboptimal estimate. Provided that this suboptimal estimate is consistent

(Theorem 9.3), one should improve the confidence as much as possible. As blind agents could
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come up with estimates with very low confidence, if relatively high weights are assigned to such

estimates, the fused estimate through the CI algorithm will become less confident. Therefore, the

selection of the weights for the embedded CI algorithm in Eq. (9.3) should be determined carefully.

This is especially important in the scenario where agents communicate with their neighbors for

only once before their local updates, as the advantages of asymptotic properties brought by the

average consensus algorithm [36] are lost in such a scenario. The optimal set of nonnegative weights

{d(k)
i j } j∈J(k)i

can be determined by minimizing the trace of P̌(k)
i with P̌(k)

i defined in Eq. (9.3), subject

to the constraint that the weights sum up to one. This can be regarded as an A-optimal experiment

design problem [13], which can be further cast as the following Semi-definite Programming (SDP)

problem:

minimize
u∈Rn

u>1, (9.9)

subject to∑ j∈J(k)i
d(k)

i j (P̂k|k−1
j )−1 el

e>l u(l)

� 0, l = 1, . . . ,n,

∑ j∈J(k)i
d(k)

i j = 1, 0 < di ≤ d(k)
i j ≤ 1, ∀ j ∈ J(k)i ,

where el ∈ Rn is the canonical basis vector whose lth entry is one. The sufficiently small constants

di, ∀i are the uniform lower bounds for selecting weights. It will be shown that such a uniform

bound is required for each agent when selecting the weights for the information received. Due

to the convexity of Eq. (9.9), the set of weights can be determined efficiently. In the case where

solving Eq. (9.9) is still considered to be computationally expensive, some suboptimal solutions can

be determined by approximations [22, 57, 83].
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9.3 Comparisons with Existing Algorithms

The comparisons between the proposed DHIF algorithm and some existing algorithms in

the literature are shown in this section.

9.3.1 Robustness against Blind agents

As one of the objectives formulated in Section 9.1.3, the proposed algorithm is robust

against the presence of blind agents. Note that Eq. (9.6) can be written as

x̂k|k
i = x̂k|k−1

i + P̂k|k
i ∑ j∈J(k)i

(
H(k)

j

)>(R(k)
j

)−1
(z(k)j −H(k)

j x̂k|k−1
i )

+ P̂k|k
i ∑ j∈J(k)i

d(k)
i j (P̂k|k−1

j )−1(x̂k|k−1
j − x̂k|k−1

i ). (9.10)

As observed in Eq. (9.10), the matrix P̂k|k
i , which implies the uncertainty of agent i’s local estimate

(given guaranteed consistency), is multiplied to both of the last two terms. On one hand, if agent i is

more confident about its own local estimate, the last two terms in Eq. (9.10) will be attenuated by a

small P̂k|k
i . On the other hand, when agent i is less confident about its own local estimate, its posterior

estimate will be pushed to match i) its in-neighbors’ measurements; and ii) its in-neighbors’ estimate

with higher confidence. If the last term in Eq. (9.10) is replaced with δ P̂k|k
i ∑ j∈J(k)i

(x̂k|k−1
j − x̂k|k−1

i ),

with δ > 0 satisfying certain conditions (see [61]), the update step of the local posterior estimates

proposed by the KCF is obtained. In the KCF, each agent equally weighs its neighbors’ prior

estimates regardless of these estimates’ confidence. The performance is therefore deteriorated when

there exist some blind agents in the neighborhood. In such a situation, even if agent i is able to

directly sense the target, its estimate might be driven toward a bad estimate equally. This will

gradually degrade the performance of the agents in the entire network. More detailed analysis on

the performance of the KCF in presence of blind agents can be found in [33].
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9.3.2 Consistency

As proved in Theorem 9.3, the DHIF algorithm results in consistent estimates. For the

purpose of comparison, let iP̂k|k
i and iP̂k|k−1

i be, respectively, the counterpart of P̂k|k
i and P̂k|k−1

i

obtained by the ICF [36]. In the case where the agents communicate only once before updating

their local estimates, the update steps of the ICF proposed in [36] can be written as

iP̂k|k
i =

[
∑ j∈J(k)i

σi j (
iP̂k|k−1

j )−1 +N∑ j∈J(k)i
σi jS

(k)
j

]−1
, (9.11)

where S(k)
j ,

(
H(k)

j

)>(R(k)
j

)−1H(k)
j and σi j, ∀ j are the weights determined with the knowledge of

the maximum in-degree. Therefore, it is possible that

N∑ j∈J(k)i
σi jS

(k)
j �∑ j∈J(k)i

S(k)
j . (9.12)

Note that if R(k)
j = R̃(k)

j , ∀ j ∈ J(k)i , the right-hand side of Eq. (9.12) is the total information contained

in {z(k)j } j∈J(k)i
. As a result, the information from the measurements in the inclusive neighborhood

might be overused and hence, iP̂k|k
i obtained from Eq. (9.11) is even smaller than the true error

covariance of the local posterior estimates. This implies that the estimates are not consistent. This

is more likely to be the case when N� |J(k)i |, which is usually the case in sparse sensor networks.

9.3.3 Confidence

The DHIF algorithm emphasizes the confidence of the estimates. While maintaining the

consistency, one would like to come up with an estimate that is as confident as possible. For the

purpose of comparison, let kP̂k|k
i and kP̂k|k−1

i be, respectively, the counterpart of P̂k|k
i and P̂k|k−1

i

obtained by the KLA algorithm [9]. In the case where the agents communicate only once before

local updates, the update step of the approximated error covariance in the KLA algorithm [9] has
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the form of:

kP̂k|k
i =

[
∑ j∈J(k)i

σi j
(
(P̂k|k−1

j )−1 +S(k)
j

)]−1
, (9.13)

where σi j, ∀ j are the weights and S(k)
j is defined in Eq. (9.11). In general, given the same set

of prior estimates and local measurements from the inclusive neighborhood, the local posterior

estimate obtained by Eq. (9.5) is more confident than that obtained by Eq. (9.13). This is because

the KLA algorithm does not specify the selection of the weights, which is especially important

when only one communication iteration is feasible. More importantly, even if the same set of

weights are selected for both fusion processes in Eq. (9.13) and Eq. (9.5), the update steps of the

proposed DHIF algorithm are still guaranteed to give more confident estimates since ∑ j∈J(k)i
S(k)

j �

∑ j∈J(k)i
σi jS

(k)
j , which in turn, implies that kP̂k|k

i � P̂k|k
i . This is because when the local measurements

are mutually uncorrelated in errors, the update steps of the KLA algorithm makes the estimates

unnecessarily conservative. This is also identified in a later work [8]. However, the author would

also like to highlight that the KLA algorithm is still guaranteed to give consistent estimates even if

the measurements have correlated noises.

9.3.4 Unification

We would like to point out that, although considered from a different perspective, the CI-

DKF proposed in [26] ends up with a similar structure to the DHIF algorithm. The key difference is

on the weight selection strategy (and hence the resulting theoretical analysis), which might seem to

only affect the confidence of the fused estimate as long as the weights sum up to one. However, we

have to point out that, by simply adopting the prior estimate pair with the highest confidence from

the agent in the inclusive neighborhood and discarding those from the rest, a simplified strategy
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proposed in [26], the theoretical analysis is simplified but the convergence is not guaranteed when

every agent only has at most joint partial detectability. To handle such a situation, another algorithm

is proposed therein with extra consensus-based communication iterations embedded until at least

one agent has local joint detectability and hence the same theoretical analysis can be applied. Aside

from the fact that the communication burden is increased, such a constraint will cause the CI-DKF

to be non-unified. In a distributed network, as the blind agents do not know whether there exists any

agent with local joint detectability, they have to consider the worst case and, hence, implement the

algorithm with multiple communication iterations. In comparison, the DHIF algorithm is unified

and only requires one communication iteration per time instant, regardless of whether there exists

at least one agent with local joint detectability. Actually when each agent uses the priors of all its

in-neighbors, as in the DHIF algorithm, the analysis is more involved. More importantly, instead

of requiring the set of blind agents to be fixed, and the graph to be connected all the time as the

sufficient conditions formulated in [26], this work aims at formulating very mild conditions on the

global joint observability/detectability and the time-varying graphs, and showing the convergence

of the proposed unified algorithm.

9.3.5 Closure

Before wrapping up this section, the authors would like to identify a recent extension of

the KLA algorithm, referred as the Hybrid Consensus on Measurements - Consensus on Information

(HCMCI) algorithm [8]. Let hP̂k|k
i and hP̂k|k−1

i be, respectively, the counterpart of P̂k|k
i and P̂k|k−1

i ob-

tained by the HCMCI algorithm [8]. In the scenario considered in this work (single communication
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iteration), the update steps of the HCMCI can be written as

hP̂k|k
i =

[
∑ j∈J(k)i

σi j
(
(hP̂k|k−1

j )−1 +ω
(k)
i S(k)

j

)]−1
, (9.14)

where ω
(k)
i is a parameter selected by agent i to compensate for the possible conservatism caused

by the embedded CI algorithm. It is worth mentioning that the HCMCI algorithm mathematically

includes a class of distributed filtering algorithms with different selections of ω
(k)
i . For instance,

one can obtain the KLA algorithm Eq. (9.13) with ω
(k)
i = 1, ∀i, k, or the ICF Eq. (9.11) with

ωi = N, ∀i. Note that a small ω
(k)
i might cause unnecessary conservatism but a large ω

(k)
i might

cause the loss of consistency. This is as also identified in [8], where a possible countermeasure is

proposed. The countermeasure is that each agent runs an additional average consensus algorithm

with itself initialized as 1 if directly sensing the target or as 0 otherwise, to obtain the average of

the initialized values, which equals to the ratio of the number of agents directly sensing the target

to that of the total agents. Each agent i then selects ω
(k)
i as the inverse of this ratio, which improves

the confidence and meanwhile guarantees the consistency. Such a countermeasure is valid and

computationally efficient. It is worthwhile to point out that to reach such an average consensus, i)

multiple communication iterations are generally required between every two consecutive sampling

time instants, and ii) additional conditions on the communication graphs
(
e.g., (jointly) connected

undirected graphs or balanced (jointly) strongly connected directed graphs [58]
)

need to be satisfied.

Unfortunately, neither i) nor ii) is satisfied in the general scenario considered in this work, namely,

the presence of only a single communication iteration per time instant and general directed
(
not

necessarily (jointly) strongly connected balanced
)

graphs. As will be shown in the next section,

this work aim at studying very mild conditions on general directed switching graphs. For example,

even in the case of a fixed graph, the condition formulated in the corollary does not even require the
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existence of a directed spanning tree, not to mention being strongly connected and balanced. Note

that in the case of a fixed graph, having a directed spanning tree is a necessary condition to ensure

that the agents reach a weighted (not necessarily average) consensus.

It is also worth mentioning that in Eq. (9.14), if each agent i is allowed to assign a different

ω
(k)
i for each j ∈ J(k)i , denoted as ω

(k)
i j , the DHIF algorithm – although proposed from a different

perspective – can be recovered by letting ωi j = σ
−1
i j with σi j selected at each k as σ

(k)
i j = d(k)

i j , where

d(k)
i j can be determined by following Section 9.2.3. Therefore, the DHIF algorithm actually offers

a reliable and fully distributed solution in selecting ω
(k)
i in Eq. (9.14) in the more general case

with directed time-varying topologies. For the same reason, the convergence analysis in the next

section will not only be applicable to the proposed DHIF algorithm, but also to the entire class of

algorithms formulated in [8]. Different from the analysis in [8], which assumes a fixed set of blind

agents, time-invariant models and a fixed communication topology, the convergence analysis in this

work is laid out without any of these assumptions.

In summary, the proposed unified DHIF algorithm enjoys the property of being fully

distributed as it does not require any global information (e.g., the maximum degree [36, 61] of the

graph or the total number of agents [36]) and hence does not require any parameter determination

or tuning. By using only its own and neighbors’ information, it is run in an automated manner with

a single communication iteration per time instant, and is adaptive to the locally unknown changes

in the network. It also deals with the general case of linear time-varying systems with directed

switching (not necessarily balanced nor jointly strongly connected) communication graphs, as will

be shown in the next section.
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9.4 Case of Multiple Communication Iterations

Although this work focuses on the scenario where each agent communicates with its

neighbors for only once before updating its local posterior estimate, it is still worth exploring the

scenario when it is possible to implement multiple communication iterations, and evaluate the per-

formance of the proposed DHIF algorithm. Intuitively, as each agent indirectly obtains information

from more agents through multiple communication iterations, the performance of local estimators

will be improved in general. In this section, we assume that instead of solving (9.9), the weights are

selected such that the graph is strongly connected and balanced. Therefore, an average consensus

can be achieved at each time instant with infinite communication iterations [58].

The DHIF algorithm in the case where T multiple communication iterations are possible

to be implemented, is summarized in Algorithm 9.2. In Algorithm 9.2, the notation t is the index

of the communication iterations before local updates. The weights φ
(t)
i j , ∀ j are defined similarly to

ω
(k)
i j , ∀ j in the regular DHIF algorithm. As can be observed, the CI algorithm is repeatedly used to

fuse the prior estimates for all t. Note that the consistency is preserved during this process. More-

over, the CI algorithm is also used to fuse measurements obtained in the inclusive neighborhood

when t ≥ 2. This is also necessary to guarantee the consistency during the fusion process.

Note that if the CI algorithm is used to fuse local measurements starting from t = 1,

essentially the KLA algorithm is obtained. As analyzed in the Section 9.3, if the local measurements

have uncorrelated errors, the KLA gives relatively conservative estimates compare to those given by

the DHIF algorithm. This is also true in the scenario of multiple communication iterations. Suppose

that the graph is strongly connected and balanced. In the case considered in this section, as T → ∞,
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Algorithm 9.2 DHIF Algorithm Implemented by Agent i at Time k
1: runs Step 1 to Step 6 in Algorithm

2: computes S(k)
i,t , S(k)

i , y(k)i,t , y(k)i , ΞΞΞ
(k)
i,t ,ΞΞΞ

(k)
i and ξξξ

(k)
i,t , ξξξ

(k)
i

3: for (t = 1, t ≤ T , t = t +1) do

4: selects weights {φ (t)
i j } j∈J(k)i

such that ∑ j∈J(k)i
φ
(t)
i j =1

5: computes ΞΞΞ
(k)
i,t = ∑ j∈J(k)i

φ
(t)
i j ΞΞΞ

(k)
i,t−1, ξξξ

(k)
i,t = ∑ j∈J(k)i

φ
(t)
i j ξξξ

(k)
i,t−1

6: if t = 1 then

7: y(k)i,t = ∑ j∈J(k)i
y(k)i,t−1, S(k)

i,t = ∑ j∈J(k)i
S(k)

i,t−1

8: else

9: y(k)i,t = ∑ j∈J(k)i
φ
(t)
i j y(k)i,t−1, S(k)

i,t = ∑ j∈J(k)i
φ
(t)
i j S(k)

i,t−1

10: end if

11: if t < T then

12: sends ΞΞΞ
(k)
i,t , ξξξ

(k)
i,t , y(k)i,t and S(k)

i,t to j ∈ N(k)
i,out

13: receives ΞΞΞ
(k)
j,t , ξξξ

(k)
j,t , y(k)j,t and S(k)

j,t from j ∈ N(k)
i,in

14: else

15: computes S(k)
i , S(k)

i,T , y(k)i , y(k)i,T , ξξξ
(k)
i , ξξξ

(k)
i,T , ΞΞΞ

(k)
i ,ΞΞΞ

(k)
i,T

16: end if

17: end for

18: runs Step 11 and Step 12 in Algorithm 1
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for the DHIF,

P̂k|k
i →

[
1
N

N

∑
j=1

(
P̂k|k−1

j

)−1
+

1
N

N

∑
j=1

(
1+ |N(k)

j,out|
)(

H(k)
j

)>(
R(k)

j

)−1
H(k)

j

]−1

. (9.15)

Therefore, since |N(k)
j,out| ≥ 1 for any j, the approximated posterior estimate error covariance P̂k|k

i

from (9.15) is guaranteed to be smaller than kP̂k|k
i obtained from (9.13) in the case of infinite com-

munication iterations. This implies that, provided the same set of measurement and communication

scheme, the DHIF algorithm is able to obtain a more confident estimate than the one obtained by

the KLA algorithm.

Eq. (9.15) also implies that, as the graph becomes denser, i.e., |N(k)
j,out| becomes greater,

more differences in confidence between P̂k|k
i and kP̂k|k

i can be obtained. In the extreme case where

the graph is complete, i.e., |N(k)
j,out|= N−1, ∀ j, Eq. (9.15) yields

P̂k|k
i →

[
1
N

N

∑
j=1

(
P̂k|k−1

j

)−1
+

1
N

N

∑
j=1

(
H(k)

j

)>(
R(k)

j

)−1
H(k)

j

]−1

,

which has the same form to what (9.11) will yield in the case of multiple communication iterations.

In summary, although shown to be possibly inconsistent in the case of a single commu-

nication iteration before local updates, the ICF, as analytically shown in [36], will asymptotically

recover the centralized solution with appropriate conditions and therefore, has the best performance

in the ideal case where infinite communication iterations might be implemented before local up-

dates. However, one should note that this recovery requires both a strongly connected and balanced

communication topology and the correct number of the agents (global knowledge), both of which

are subject to possible changes. Using only the local knowledge, the proposed DHIF algorithm,

which cannot asymptotically approach the centralized solution in general though, will come up

with a more confident estimate than that from the KLA algorithm. This confidence is related to
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the density of the graph, as shown above, and the number of non-naive agents, as will be shown

analytically in the next section.

9.5 Main Results

In this section, the convergence of the proposed DHIF algorithm is analyzed based on

none of the assumptions mentioned in Section 7. A key lemma, as one of the main contributions

of this work, is first presented. Then using a similar approach used in [9], the sufficient conditions

for all local estimates to be uniformly upper bounded in finite time, and the local estimate errors

to asymptotically converge to zero in expectation, are formulated. The conditions are shown to be

very mild and “almost” necessary. In the special time-invariant case, which is the focus of [9] with

only sufficient conditions derived, necessary and sufficient conditions are derived here. Then some

insights are addressed.

9.5.1 Multiplication of Stochastic Adjacency Matrices

The properties of the multiplication of a finite number of stochastic adjacency matrices,

is first analyzed in this subsection for the use in the convergence analysis later in this work. A key

concept, namely, the orderly appearing path, is first defined.

Definition 9.4 Let P , {e1, . . . ,ep}, where ei , ( ji−1, ji), ∀i = 1, . . . , p, be a directed path. Then

P is an orderly appearing path in Ikt
k0

, if there exist p time instants k`1 < k`2 < · · ·< k`p in Ikt
k0

such

that ei ∈ E (k`i ), where i = 1, . . . , p.
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1 

3 2 

(a) G (1).

1 

3 2 

(b) G (2).

1 

3 2 

(c) G (1)∪G (2).

Figure 9.2: Example topologies for orderly appearing path.

Note that according to Definition 9.4, any edge (including self edge) that exists at a certain

time instant is naturally an orderly appearing path in a time interval containing that time instant. A

simple example is provided below.

Example 9.5 Two graphs, namely, G (1) and G (2), are shown, respectively, in Figure 9.2(a) and

9.2(b). Then Figure 9.2(c) is the union graph over I2
1, where every agent has a directed path to every

other agent. The path P1→3 , {(1,2),(2,3)} is an orderly appearing path in I2
1. In comparison,

the path P3→2 , {(3,1),(1,2)} is not as the edge (3,1) never appears prior to the edge (1,2) in

I2
1.

The orderly appearing path in a finite interval can be intuitively understood using a parcel

delivery example in analogy. Let P and Ikt
k0

be defined in Definition 9.4. Consider each vertex as

a person and imagine that j0 is holding a parcel at k0. At each time instant k with k ∈ Ikt
k0

, once a

certain edge belonging to P appears, if the person as the parent vertex of that edge is holding the

parcel, must pass it to the person as the child vertex of that edge. By following this rule, if the parcel

is delivered to jn by kt , then P is an orderly appearing path in Ikt
k0

.

Two lemmas on the properties of non-negative matrix multiplications are then stated as

follows.
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Lemma 9.6 Suppose that M1 ≥M2 ≥ 0 and M3 ≥M4 ≥ 0. Then M1M3 ≥M2M4 ≥ 0.

Proof. Note that for each pair of i and j, one has {M1}(i, j) ≥ {M2}(i, j) ≥ 0 and {M3}(i, j) ≥

{M4}(i, j) ≥ 0. It follows that

{M1M3}(i, j) = ∑
l
{M1}(i,l){M3}(l, j) ≥∑

l
{M2}(i,l){M4}(l, j) = {M2M4}(i, j) ≥ 0.

Lemma 9.7 Let p ≥ 2 be a finite integer and let M1, . . . ,Mp be nonnegative square matrices with

positive diagonal entries. Then

MMM 1:p , M1M2 · · ·Mp ≥ γ(Mk1Mk2 · · ·Mkq), γMMM k1:kq , (9.16)

where γ > 0 and the integers k1, . . . ,kq satisfies that 1≤ k1 < · · ·< kq≤ p for some q≤ p. Specifical-

ly, γ = 1 if p= q; γ =∏ j∈K µ j otherwise with K , {1, . . . , p}\{k1, . . . ,kq} and µ j ,mini {M j}(i,i)

for each j ∈K .

Proof. The proof for the case when q = p is trivial and hence omitted. When q ≤ p, one should

note that for each j ∈ K , M j can be written as M j = µ jI + M′j, with µ j being the minimum

diagonal entry of M j and M′j satisfying M′j ≥ 0. Therefore, if substituting each M j, j ∈K in the

multiplication M1 · · ·Mp with (µ jI+M′j), the multiplication after expanding all parentheses can be

written as

M1 · · ·Mp = ( ∏
j∈K

µ j)(Mk1 · · ·Mkq)+K≥ γ(Mk1 · · ·Mkq)

, where K collects all other crossing terms after expanding the parentheses. The last inequality is

due to K≥ 0 because all matrices involved in computing K are nonnegative. Note that the definition

of µ j implies that µ j > 0, ∀i ∈K . Also as K is a set with finite entries. It follows that γ > 0. This

completes the proof.
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Lemma 9.7 essentially states that the matrix, resulting from the multiplication of multiple

nonnegative square matrices with positive diagonal entries, cannot have fewer positive entries than

the matrix, resulting from the multiplication of a subset of these nonnegative matrices. Note that the

parameter γ in Eq. (9.16) can be conservative, i.e., it is possible to replace γ with some γ̄ > γ such

that Eq. (9.16) still holds. This is caused by ignoring all positive entries of the nonnegative matrix

K when obtaining the inequality in Eq. (9.16), where K is defined in the proof Lemma 9.7. Also

note that as the self edge is always assumed in this work, the stochastic adjacency matrix associated

with any graph is nonnegative with positive diagonal entries. Starting from this point, the discussion

will be focused on the stochastic adjacency matrices. In the rest of this work, let G (k)(V ,E (k)) and

D(k) be, respectively, the graph and the associated stochastic adjacency matrix at time instant k. For

each pair of i and j, where i, j ∈ V , {D(k)}(i, j) = d(k)
i j with d(k)

i j being the weights from Algorithm

9.1 if j ∈ J(k)i , and 0 otherwise. Based on Section 9.2.3, the following assumption holds for the rest

of the paper.

Assumption 9.5.1 For each agent i ∈ V at any k ∈ Z+, d(k)
i j ≥ di with di > 0, ∀ j ∈ J(k)i .

Lemma 9.8 Suppose that Assumption 9.5.1 holds. Also suppose that Ikt
k0

is finite. Let DDDkt
k0

,

D(kt) · · ·D(k0+1)D(k0). Then {DDDkt
k0
}( jp, j0) > 0 if and only if there exists an orderly appearing path

from j0 to jp in Ikt
k0

.

Proof. (Sufficiency). Let P, {( j0, j1), . . . ,( jp−1, jp)} be the orderly appearing path in Ikt
k0

. With-

out loss of generality, let k′1, . . . ,k
′
p, where k′1 < · · ·< k′p, be the p time instants belonging to the time

interval Ikt
k0

such that for each k′i, ( ji−1, ji) ∈ E (k′i). It follows from Lemma 9.7 that

DDDkt
k0
= D(kt) · · ·D(k0) ≥ γD(k′p) · · ·D(k′1),
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where γ > 0 can be determined by Lemma 9.7. Thus it suffices to show that {DDDkt
k0
}( jp, j0) > 0 by

showing that {D(k′p) · · ·D(k′1)}( jp, j0) > 0. As Assumption 9.5.1 holds, the fact that ( ji−1, ji) ∈ E (k′i)

implies that ji−1 ∈ J(k
′
i)

ji and hence {D(k′i)}( ji, ji−1)≥ d ji , where d ji > 0, for each i= 1, . . . , p. It follows

that

{D(k′2)D(k′1)}( j2, j0) = {D
(k′2)}( j2,:){D

(k′1)}(:, j0) ≥ {D
(k′2)}( j2, j1){D

(k′1)}( j1, j0) ≥ d j1d j2 ,

where the inequality is due to the fact each entry of each matrix is non-negative. Similarly, one can

prove that

{D(k′3)D(k′2)D(k′1)}( j3, j0)= {D
(k′3)}( j3,:){D

(k′2)D(k′1)}(:, j0)≥{D
(k′3)}( j3, j2){D

(k′2)D(k′1)}( j2, j0)≥ d j1d j2d j3 .

Eventually, it can be shown by induction that {D(k′p) · · ·D(k′1)}( jp, j0) ≥ ∏
p
i=1 d ji > 0, where the last

inequality is due to the fact that d ji > 0, ∀i = 1, . . . , p with p being finite.

(Necessity). The proof of necessity contains two parts. Part A shows that a directed path

from j0 to jp in G [Ikt
k0
] is necessary. Then it is proved in Part B that the path has to be an orderly

appearing path in Ikt
k0

.

(Part A). Suppose that there is no such a path in G [Ikt
k0
]. Let O ⊆ V be the set of vertices

that contains j0 and j0 has a path to in G [Ikt
k0
]. Let Ō , V \O . Then for each k ∈ Ikt

k0
, with loss of

generality, D(k) can be written as

D(k) =

D(k)
O D(k)

OŌ

0 D(k)
Ō

 ,
where the zero block is because there is no edge from any vertex in O to any vertex in Ō at any

k ∈ Ikt
k0

. It follows that

DDDkt
k0
=

D(kt)
O · · ·D

(k0)
O ?

0 D(kt)

Ō
· · ·D(k0)

Ō

 ,
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where the “?” is a matrix block that can be specified. Note that jp ∈ Ō . It follows that {DDDkt
k0
}( jp, j0) =

0.

(Part B). Now suppose that there is no orderly appearing path from j0 to jp in Ikt
k0

. Then

for some km satisfying k0 < km ≤ kt , one has

{DDDkt
k0
}( jp, j0) = {DDD

kt
km
DDDkm−1

k0
}( jp, j0) = {DDD

kt
km
}( jp,:){DDD

km−1
k0
}(:, j0).

Let O1 be the set of vertices that j0 has a directed path to in G [Ikm−1
k0

]. Let Ō1 = V \O1. It follows

from the conclusion of Part A that {DDDkm−1
k0
}(Ō1, j0) = 0. Suppose that every vertex in O1 has an

orderly appearing path from j0 in Ikm−1
k0

. The case when this does not hold will be discussed later.

It follows from the conclusion of the sufficiency part that {DDDkm−1
k0
}(O1, j0) > 0. Similarly, let O2 be

the set of vertices that have a path to jp in G [Ikt
km
]. Let Ō2 = V \O2. It follows from Part A that

{Dkt
km
}(Ō2, j0) = 0. Similar to O1, suppose that every vertex in O2 has an orderly appearing path to jp

in Ikt
km

. The case when this does not hold will be discussed later. As a result, {DDDkt
km
}( jp,O2) > 0. It

follows that

{DDDkt
k0
}( jp, j0) = {DDD

kt
km
}( jp,:){DDD

km−1
k0
}(:, j0) = {DDD

kt
km
}( jp,O1∩O2){DDD

km−1
k0
}(O1∩O2, j0).

Therefore, {DDDkt
k0
}( jp, j0) > 0 if and only if there exists any i ∈ O1 ∩O2 satisfying {DDDkt

km
}( jp,i) > 0

and {DDDkm−1
k0
}(i, j0) > 0. As each directed path to jp (respectively, from j0) in G [Ikt

km
] (respectively,

G [Ikm−1
k0

]) is an orderly appearing path, to satisfy both {DDDkt
km
}( jp,i) > 0 and {DDDkm−1

k0
}(i, j0) > 0 at the

same time, vertex i must have not only an orderly appearing path to jp in Ikt
km

, but also an orderly

appearing path from j0 in Ikm−1
k0

. That is, {DDDkt
k0
}( jp, j0) > 0 if and only if there exists an orderly

appearing path from j0 to jp in Ikt
k0

. This is contradictory to the supposition at the beginning of Part

B. Therefore, {DDDkt
k0
}( jp, j0) = 0 if there is no orderly appearing path from j0 to jp in Ikt

k0
.
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If there exists any vertex, say i′1, in O1 that does not have an orderly appearing path from

j0 in Ikm−1
k0

, one can further select k′m ∈ (k0,km−1] and let k′m, O11,O12, (km−1) and i′1 play the roles

of, respectively km, O1, O2, kt and jp in the proof above, and again suppose that every vertex in O11

(respectively, O12) has an orderly appearing path from j0 in I
k′m−1
k0

(respectively, to i′1 in Ikm
k′m

). Then

using the same aforementioned approach, it can be shown that {DDDk′−1
k0
}(i′, j0) = 0. Similarly, if there

exists any vertex, say i′2, in O2 that does not have an orderly appearing path to jp in Ikt
km

, one can

show that {DDDkt
km
}( jp,i′) = 0. Whenever the supposition does not hold for any path, a similar discussion

can be further addressed on the path by placing the same suppositions on some subintervals, until

the suppositions are satisfied. This concludes the proof.

Remark 9.9 Adopt the notation in Lemma 9.8. Note that Assumption 9.5.1 guarantees that each

positive entry of the stochastic adjacency matrices is uniformly lower bounded above 0. As a result,

if an interval Ikt
k0

is uniformly upper bounded in length, any positive entry of the matrix resulting

from the multiplication of the stochastic adjacency matrices associated with the graphs in Ikt
k0

, is

uniformly lower bounded above 0, i.e., {DDDkt
k0
}( jp, j0) > 0 implies that {DDDkt

k0
}( jp, j0) ≥ ε with ε > 0

being a certain uniform lower bound for all positive entries of DDDkt
k0

. Using an example in the proof

of sufficiency of Lemma 9.8, a uniform lower bound is ε = γ ∏
p
i=1 d ji , which is strictly positive

provided that Ikt
k0

is finite.

From an intuitive perspective, Lemma 9.8 essentially states the necessary and sufficient

condition for one agent to be influenced by another agent within a time interval of finite length,

when the communication graph is time varying. Besides a directed path from one to the other, as

most would expect, two keys are highlighted. On one hand, it is not necessary for such a path to

exist at every time instant within the finite time interval. On the other hand, it is not sufficient for
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the union graph over the time interval to contain this path. The path has to be an orderly appearing

path within this time interval, as shown in the following example.

Example 9.10 Adopt the graphs in Figure 9.2 and notation from Example 9.5 and Lemma 9.8.

Let D(1) and D(2) be the stochastic matrices associated with, respectively, G (1) and G (2). Thus,

DDD2
1 = D(2)D(1). Let “∗” denote the positive entries. It follows that

DDD2
1 =


∗

∗

∗ ∗




∗ ∗

∗ ∗

∗

=


∗ ∗

∗ ∗

∗ ∗ ∗

 .

Recall that in I2
1, P1→3 is orderly appearing but P3→2 is not. This can also be observed from the

fact that {DDD2
1}(3,1) > 0 and {DDD2

1}(2,3) = 0.

Here we would like to emphasize the importance of the assumption on the finiteness of

Ikt
k0

, under which a theoretic positive uniform lower bound ε , can always be found without any fur-

ther condition required from the graphs in Ikt
k0

. Although such a uniform lower bound is generally

conservative as discussed after Lemma 9.7, it is possible that such a positive uniform lower bound

does not exist if Ikt
k0

has an infinite length. For example, when infinite stochastic matrices are mul-

tiplied together, it is possible for some entries to converge to zero, even though the corresponding

entries at the same location in each multiplying matrix are positive. In such a case, there exists no

positive uniform lower bound.
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9.5.2 Convergence Analysis

In this subsection, the convergence of the DHIF algorithm is analyzed. Specifically, the

sufficient conditions for the local estimates of each agent to be uniformly bounded, and the estimate

errors to converge to zero in expectation, are formulated. Then we show that such conditions are

very mild and “almost” necessary. Two lemmas are stated before finally formulating the main

results. The first lemma is directly obtained following Definition 8.2. The second one is originally

proposed in [9] and restated here.

Lemma 9.11 Let V ′ ⊆ V be the set of indices corresponding to a subset of all networked agents.

The discrete LTV system Eq. (9.1) is jointly observable to the agents in V ′ on Ikt
k0

for some integers

0≤ k0 ≤ kt if and only if OV ′ [k0,kt ], col{H(k)
V ′FFF

k
k0
]}k∈Ikt

k0
is full rank, where H(k)

V ′ , col{H(k)
j } j∈V ′ ,

and FFF k
k′ is defined in Definition 8.2.

Proof. Omitted.

Lemma 9.12 ( [9]) Let F be a nonsingular matrix. Then for any Y � 0 and X̌ � 0, there exists a

β ∈ (0,1] such that (FX−1F>+Y)−1 � βF−>XF−1 for any X−1 � X̌−1.

Theorem 9.13 Suppose that Assumption 9.1.1, 9.1.2, 9.2.1, 9.5.1 and 9.2.2 are satisfied. Also

suppose that the state propagation matrix F(k) in Eq. (9.1) is nonsingular, ∀k ∈ Z+. Then,

(i) the approximated error covariance corresponding to the local estimate by each agent is uni-

formly upper bounded (in the PD sense) in finite time, i.e., for each i ∈ V , there exist k̄ ∈ Z+

and P̄i � 0, such that ∀k ≥ k̄, P̂k|k
i � P̄i;

(ii) the local estimate errors at all agents obtained by Algorithm 9.1 asymptotically converge to

zero in expectation, i.e., ∀i ∈ V , E[η̂ηηk|k−1
i ]→ 0, and E[η̂ηηk|k

i ]→ 0, as k→ ∞,
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if for each agent i ∈ V at k ≥ k̄, there exists a set of agents with the vertex set Oi, and τ̄ ≤ k̄ with

τ̄ ≥ 0 being uniformly upper bounded, such that,

(a) Oi has joint observability about the target on Ik−τ̄+p−1
k−τ̄

, where p≤ τ̄ +1; and,

(b) every agent in Oi has an orderly appearing path to agent i in Ik
k−τ̄+p−1.

Proof. As the proof follows a similar approach to the main results in [9], only the parts

contributed by this work are shown in details in the following.

Proof of Part (i). As stated in Theorem 9.3, if Assumptions 9.1.1, 9.1.2 and 9.2.1 hold,

then for any k ∈ Z+, P̂k|k
i � Pk|k

i � 0. Let PPP
(k)
j , F(k)P̂k|k

j (F(k))>, ∀k ∈ Z+. As Q � 0, it follows

from Lemma 9.12 that (PPP(k)
j +Q)−1 � βk

(
PPP

(k)
j

)−1 with βk ∈ (0,1], ∀ j ∈ V and k ∈ Z+. Let

S(k)
i , (H(k)

i )>(R(k)
i )−1H(k)

i , ∀k ∈ Z+. As S(k)
j � 0, ∀ j ∈ V , it follows from Eq. (9.5) that

(
P̂k|k

i

)−1 �∑ j∈V d̄(k)
i j S(k)

j +∑ j∈V d(k)
i j βk(PPP

(k−1)
j )−1, (9.17)

where d̄(k)
i j = ceil{d(k)

i j } and βk ∈ (0,1]. Note that

(PPP
(k−1)
j )−1 �∑l∈V d̄(k−1)

jl (F(k−1))−>S(k−1)
l (F(k−1))−1

+∑l∈V d(k−1)
jl βk−1(F(k−1))−>(PPP

(k−2)
j )−1(F(k−1))−1,

(9.18)

where βk−1 ∈ (0,1]. Let kBτ , ∏
k
i=τ βi for any k ≥ τ . Substitute Eq. (9.18) into Eq. (9.17) and

recursively using Eq. (9.5) and Lemma 9.12, it follows that

(
P̂k|k

i

)−1 �∑
τ̄

τ=1
kBk−τ+1∑ j∈V

[
{DDDk

k−τ}(i, j)(F(k−1))−> · · ·

· · ·(F(k−τ))−>S(k−τ)
j (F(k−τ))−1 · · ·(F(k−1))−1

]
, (9.19)

where DDDk
k−τ̄

, D(k) · · ·D(k−τ̄+1)D̄(k−τ̄) with D̄(k) , ceil{D(k)}. Note that Eq. (9.19) can be equiva-

lently written as (
P̂k|k

i

)−1 � [F(k−1) · · ·F(k−τ̄)]−>ΦΦΦ[F(k−1) · · ·F(k−τ̄)]−1,
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where ΦΦΦ has the form of

ΦΦΦ =∑
τ̄−p
τ=1(

kBk−τ+1)∑ j∈V

[
{DDDk

k−τ}(i, j)(F(k−τ−1) · · ·F(k−τ̄))>

S(k−τ)
j (F(k−τ−1) · · ·F(k−τ̄))

]
+∆∆∆[k0,kt ].

For clarity, let k0 , k− τ̄ and kt , k− τ̄ + p−1. Let FFF k
k0

, k ≥ k0, be defined in Lemma 9.11. The

last term ∆∆∆[k0,kt ] above can be written as ∆∆∆[k0,kt ] = (O[k0,kt ])
>ΨΨΨ[k0,kt ]O[k0,kt ], where

O[k0,kt ],
[
(H(kt)FFF kt

k0
)>, · · · ,(H(k0))>

]>, ΨΨΨ[k0,kt ], blkd{ΓΓΓq}kt
q=k0

,

with H(q) , col{H(q)
j } j∈V and

ΓΓΓq ,
kBq+1blkd

{
{DDDk

q}(i, j)⊗ Im j

}
j∈V blkd{(R(q)

j )−1} j∈V ,

for each q = k0, . . . ,kt . Note that ΨΨΨ[k0,kt ] � 0 due to the special structure of ΓΓΓq and the fact that

(R(q)
j )−1 � 0, for each q. Thus, ∆∆∆[k0,kt ] � 0. Note that this property still holds after removing

some rows of O[k0,kt ] and the corresponding blocks in ΨΨΨ[k0,kt ] with respect to a subset of agents

at any time instants. Specifically, we are interested in the agents in Oi \B(q), at each time instant

q ∈ {k0, . . . ,kt}. By only selecting the blocks corresponding to this subset of agents, it follows that

∆∆∆[k0,kt ]�


H̃(kt)FFF kt

k0

...

H̃(k0)



>

︸ ︷︷ ︸
(Õ[k0,kt ])>


Γ̃ΓΓkt

. . .

Γ̃ΓΓk0 ,


︸ ︷︷ ︸

Ψ̃ΨΨ[k0,kt ]


H̃(kt)FFF kt

k0

...

H̃(k0)


︸ ︷︷ ︸

Õ[k0,kt ]

where H̃(q) , col{H(q)
j } j∈Oi\B(q) . Γ̃ΓΓq is defined similarly to ΓΓΓq by replacing V with Oi \B(q), for

each q = k0, . . . ,kt . If Condition (a) is satisfied, it follows from Lemma 9.11 that Õ[k0,kt ] is full

rank. Therefore, it suffices to prove ∆∆∆[k0,kt ]� 0 by showing ΨΨΨ[k0,kt ]� 0.

Note that ΨΨΨ[k0,kt ] has a block diagonal structure. As for each q = k0, . . . ,kt , it is satisfied

that kBq+1 > 0 and (R(q)
j )−1 � 0, ∀ j ∈ Oi \B(q). The only possibility for ΨΨΨ[k0,kt ] to have a zero
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diagonal block is when there exists j ∈ Oi \B(q) such that {DDDk
q}(i, j) = 0. As kt ≥ k0, it suffices to

excluded this possibility by showing that {DDDk
kt
}(i, j) is uniformly lower bounded above 0, ∀ j ∈ Oi.

If Condition (b) is satisfied, it follows from Lemma 9.8 that {DDDk
kt
}(i, j) > 0, ∀ j ∈ Oi. As

τ̄ is uniformly upper bound by a finite number, say τm, it follows that {DDDk
kt
}(i, j), ∀ j ∈ Oi must be

uniformly lower bounded by some ε > 0. This implies that, ΦΦΦ�∆∆∆[k0,kt ]� 0 and hence,
(
P̂k|k

i

)−1 �

0. As this is the case for all k ≥ k̄ for any k̄ ≥ τm, it follows that there exists a uniform upper bound

P̄i � 0, such that P̂k|k
i � P̄i, ∀k ≥ k̄. This concludes the proof of Part (i).

Proof of Part (ii). By following Eq. (9.6), writing η̂ηη
k+1|k
i in terms of η̂ηη

k|k
j , j ∈ J(k)i , and

taking expectations of both hand-sides of the resulting equation, it follows that

E
[
η̂ηη

k+1|k
i

]
= F(k)P̂k|k

i ∑ j∈J(k)i
d(k)

i j

(
P̂k|k−1

j

)−1E
[
η̂ηη

k|k−1
j

]
.

Let V (k)
i , E[(η̂ηηk|k−1

i )>](P̂k|k−1
i )−1E[η̂ηηk|k−1

i ] be the Lyapnouv function at agent i. With Part (i)

satisfied, a similar approach to that candidate of Theorem 5 of [9] can be followed to obtain that

V (k)
i ≤ β̃ ∑ j∈J(k)i

d(k)
i j V (k)

j , where 0 < β̃ < 1. Let LLL (k) , col{V (k)
i }N

i=1. It follows that LLL (k+1) ≤

β̃D(k)LLL (k), k ∈ Z+. As D(k) is a stochastic matrix, its spectral radius is 1. Thus for 0 < β̃ < 1,

the spectral radius of β̃D(k) is less than 1. The dynamic system with respect to LLL (k) is therefore

stable. As a result, LLL (k) → 0 as k→ ∞. It follows that E[η̂ηηk|k−1
i ]→ 0 as k→ ∞, ∀i ∈ V . Thus,

E[η̂ηηk|k
i ] = (F(k))−1E[η̂ηη i,k+1|k]→ 0 as k→ ∞, ∀i ∈ V . This concludes the proof.

With the guaranteed consistency as stated in Theorem 9.3, Conclusion (i) of Theorem

9.13 essentially implies that the local estimate errors are uniformly upper bounded at steady state.

Moreover, Conclusion (ii) of Theorem 9.13 implies that the local estimates are asymptotically un-

biased.
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Compared with the main theorems in [9], where the sufficient conditions for the same

conclusions are formulated based on the assumptions of a fixed strongly connected graph and time-

invariant process/sensing models, it is worth pointing out that, the conditions formulated in Theorem

9.13 are much milder. Similar to the main theorems in [9], the requirement of joint observability

instead of detectability in Condition (a) of Theorem 9.13 is to simplify the convergence analysis

and will not cause loss of generality. If the system is only jointly detectable but not necessarily ob-

servable to the agents in Oi with Oi defined in Theorem 9.13 for each i ∈ V , one can then apply the

theorem to the subsystem that is jointly observable to Oi after applying the observability decomposi-

tion (see [9] for more details). Therefore, Condition (a) in 9.13 can be easily relaxed to only require

joint detectability. Such a relaxed version of Condition (a) is referred as the “relaxed Condition (a)”

hereafter. Moreover, it will be shown in Corollary 9.15 that the sufficient conditions formulated in

Theorem 9.13 are “almost” necessary with such a relaxation. Specifically, if considering the same

scenario as considered in [9], the relaxed sufficient conditions turn out to be also necessary, as will

be shown in Corollary 9.16.

The differences of the conditions in Theorem 9.13 compared to the main theorem in [26]

can be stated in threefold. First of all, only the conditions for bounded estimate errors are formulated

in [26]. The unbiasedness is not considered therein. Second, the conditions in [26] require the

existence of at least one agent with joint observability in its inclusive neighborhood. In comparison,

the conditions in Theorem 9.13 does not require the existence of such agent. Last but not least,

although the conditions in [26] admit to time-varying undirected communication topologies, the

topology at every time instant is required to be connected. In comparison, Theorem 9.13 does not

formulate any requirement on the communication topology at a single time instant. It studies the

97



most general situation where the graph is directed and any communication link is subject to change

with time.

Instead of requiring specific conditions hold to guarantee the convergence, as did in some

existing literature, Theorem 9.13 studies the essence for the convergence. That is, each agent has

to be able to eventually be influenced by the information about the entire state from somewhere.

This is achieved by two keys. (i) The knowledge about the entire state. This requires the target

state to be jointly observable/detectable by a subset of agents on a time interval. (ii) Each agent

recovers the entire state by either directly or indirectly using such knowledge. This requires each

agent to have an orderly appearing path from at least one subset of agents satisfying Key (i), in

the following time interval with uniformly upper bounded length. Note that for different agents

to recover the entire state, each of them can have multiple or different subsets of agents satisfying

both keys. For a certain agent to have uniformly bounded error covariance at different time instants,

the subsets satisfying both keys can also be different. Even for a certain agent to have uniformly

bounded error covariance at a certain time instant, the agents of the subset satisfying Key (i) are

not necessary to have directly paths to each other in the union graph over the time interval used for

achieving Key (ii). However, each of them should have an orderly appearing path to this certain

agent in the time interval satisfying Key (ii). With these two keys satisfied for each agent, the agents

directly sensing the target either directly or indirectly influence the other agents so that the target

trajectory is cooperatively estimated by each agent with the approximated estimate error covariance

being uniformly upper bounded in finite time, and the estimate being asymptotically unbiased.

Essentially, for both conclusions in Theorem 9.13 to hold, it is sufficient to guarantee

the existence of a sliding window with uniformly upper bounded size, for each agent. The sliding
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window consists of two consecutive sub-windows. The necessary information to recover the entire

state has to be obtained by a subset of agents within the first sub-window, and this subset of agents

have to be able to influence other agents through orderly appearing paths in the second sub-window.

The sizes of both sub-windows, and hence the size of the sliding window, might subject to change

over time. Note that if each agent has such a sliding window with uniformly bounded length, it is

able to be “frequently” influenced by the information about the entire state from somewhere, and

hence, guarantees its local estimates to track the target trajectory with uniformly bounded tracking

errors that asymptotically converge to zero in expectation.

Remark 9.14 Similar to the discussion after Lemma 9.8, the uniform upper bound for the size of

the sliding window is necessary for formulating the uniform upper bound of the local estimate error

covariances. Moreover, if the uniform upper bound for the window size is too large, some entries

of the matrix resulting from multiplying all stochastic matrices in the corresponding time interval,

might be very close to zero. This implies a very large uniform upper bound for the local estimate

error covariances.

Corollary 9.15 Under the same assumptions of Theorem 9.13, if for any agent i ∈ V , either Con-

dition (b) or the relaxed Condition (a) of Theorem 9.13 is not satisfied, ∀τ̄ ∈ Z+, then agent i must

fails to track at least one component of the state of interest.

Proof. Suppose that only the relaxed Condition (a) is not satisfied. That is, there exists at least one

subset of agents with the vertex set Oi, each of which has an orderly appearing path to i within Ik
k−τ̄

.

However, the target is not jointly detectable to Oi over any sub-interval of Ik
k−τ̄

for any possible

τ̄ ∈ Z+. In this case, there exists a mode that is neither internally stable nor observable to agents in

Oi, for all possible Oi. In this case, even a centralized Kalman filter (CKF) with all measurements
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collected from Oi is not able to track the subspace of the interested state with respect to the unstable

and unobservable mode.

Now suppose that only Condition (b) is not satisfied. Without loss of generality, let Oi

be the minimum set of agents to which the target is jointly detectable over any sub-interval of Ik
k−τ̄

That is, removing any agent in Oi will cause the rest agents in Oi the loss of joint detectability about

the state of interest. Suppose that there exists agent j ∈ Oi with no orderly appearing path to agent

i within Ik
k−τ̄

, it follows from the proof of the necessity part of Lemma 9.8 that {DDDk
k−τ̄
}(i, j) = 0. If

this is the case for any τ̄ ∈ Z+ (and hence for any k as τ̄ ≤ k), agent i will never be influenced by

agent j, which has necessary and unique information contributing to the recovery of the entire state

values. Again, with only the measurement collected from Oi \{ j}, even the CKF is not able to track

the subspace of the interested state with respect to the unstable mode that is observable only with

the measurement collected by agent j.

As in both cases, there exists mode, and hence at least one state component such that the

CKF – as the optimal estimator one can has – fails to track, the DHIF algorithm must not able to

achieve the same objective as an suboptimal estimator.

Corollary 9.15 formulates the situations in which the DHIF algorithm does not work.

Essentially, if either the relaxed Condition (a) or Condition (b) in Theorem 9.13 is not satisfied for

a certain agent for any τ̄ , this agent will not be “frequently” influenced by the information about the

state components with respect to a unstable mode. As a matter of fact, the DHIF algorithm fails to

track the corresponding state components.

Corollary 9.15 also implies that the relaxed sufficient conditions in Theorem 9.13 are

“almost” necessary. As previously mentioned, the uniform upper bound of τ̄ in Theorem 9.13 is
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critical for the formulation of the uniform upper bound of the covariances. A limited τ̄ guarantees

the agent is influenced by the information of the entire state for at most every τ̄ time instants. Such

influences, no matter how less frequent (with a larger τ̄), guarantees a theoretical uniform upper

bound for the estimate uncertainties to exist as long as the frequency is uniformly lower bounded.

However, if there exists agent that is never (or not any more) influenced by such information (τ̄ →

∞), the algorithm will simply not work. If all factors are time invariant, as considered in [9], the

conditions formulated in Theorem 9.13 with Condition (a) relaxed, turn out to be not only sufficient,

but also necessary, as stated in the following corollary.

Corollary 9.16 Suppose that F(k) = F, G (k) = G , B(k) = B and H(k)
i = Hi, where i ∈ V , ∀k ∈ Z+.

Also suppose that the same assumptions in Theorem 9.13 hold. Then Conclusion (i) and (ii) in

Theorem 9.13 are true if and only if for each leader component with the vertex set V`, the LTI system

with state propagation F and observation matrix H̃` is detectable, where H̃` , col{H j} j∈V`\B.

Proof. The proof of the sufficiency and necessity part of Corollary 9.16 can be obtained by following

the conclusions of, respectively, Theorem 9.13 and Corollary 9.15.

Note that according to Corollary 9.16, in the special case with all factors being time in-

variant, if a certain agent does not have any directed path from any leader component, it forms a

leader component itself and hence, must have local detectability in order to track the target. In the

extreme case where all agents are isolated, each of them is a leader component. As a result, the

state of interest needs to be detectable to every agent. This also shows the importance of coopera-

tion between local agents. By locally cooperating with other agents, the requirement on the local

detectability of each agent can be dramatically relaxed.
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In summary, the conditions formulated by Theorem 9.13 admit to a much more general

and realistic scenario where any of the factors, namely, the process model of the target, the sensing

model at local agent, and the communication topology, might subject to changes over time. The

sufficient conditions for convergence are much milder compared to those for the algorithms in [9,

15, 26, 61], and “almost” necessary after the relaxation. In the time-invariant case, the relaxed

conditions are also necessary.

9.6 Simulations

In this section, simulations are used to illustrate the analysis in previous sections. The

comparisons with existing algorithms are first shown. Then the main results in section 9.13 are

illustrated. The linear dynamic system in Eq. (9.1) is considered, where the parameters at each

k ∈ Z+ are:

F(k) =

I2 ∆T I2

0 I2

 , Q(k) =

5∆3
T I2/3 5∆2

T I2/2

5∆2
T I2/2 5∆T I2

 ,
with ∆T = 0.05 being the sampling interval. The four state components are, respectively, the po-

sitions along x and y directions, and the velocities along x and y directions. A distributed sensor

network consisting N agents with circular communication topology, as shown in Figure 9.3, is used

to track the state of the target in this subsection. The value of N is different in each simulation, and

will be specified.

Simulation 1. A time-invariant scenario is selected to show the comparisons with existing

algorithms. The circular topology shown in Figure 9.3 is selected with N = 10. It is assumed

that for all k ∈ Z+, H(k)
1 = [1 0 0 0], H(k)

6 = [0 1 0 0], and none of the rest agents can directly
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Figure 9.3: Communication graph for simulations

sense the target. It is selected that R1 = R6 = 25. Note that this sensor network has very weak

connectivity and poor global observability. Aside from the existence of many blind agents, which

makes the KCF [61] and the DKF [15] not work, not a single agent has local joint detectability.

As a result, the algorithm in [26] would require multiple consensus-based communication iterations

per time instant in this scenario. Therefore, two other distributed estimation algorithms are selected

for comparisons. The KLA algorithm, due to its superficially similar form to the proposed DHIF

Algorithm, is selected to show the difference in terms of confidence caused by the different fusion

philosophies as analyzed in Section 9.3. As the selection of weights is not specified in [9], we

let each agent assign equal weights to its in-neighbors’ information. The ICF is also selected for

comparison due to its better performance than the KCF and GKCF especially in presence of blind

agents. The consensus parameter ε used in the ICF is the same to that in [36], i.e., ε = 0.65/∆max.

The proposed DHIF algorithm is implemented with the weights selected using 3 different strategies,

namely, the uniformly equal weights (DHIF1), the Fast CI method [57] (DHIF2), and the optimal

weights by Eq. (9.9) (DHIF*). In all distributed algorithms, each agent communicates with its
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(a) Local posterior estimate error on x-position by Agent 1.
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(b) Local posterior estimate error on y-position by Agent 6.

Figure 9.4: Local posterior estimate error on state components by local agents.

neighbors for only once before its local updates. A hypothetical CKF with collective measurement

across the entire network is used as the benchmark.

The first and the second component of the local posterior estimate errors by, respectively,

agent 1 and 6, obtained by each algorithm, are plotted in, respectively, Figure 9.4(a) and Figure

9.4(b). The corresponding (approximated) 3σ -envelope corresponding to each algorithm, is also

plotted in the same color but dashed lines. Therefore, for a consistent estimator at the steady state,

the error should lie below the 3σ -bound for no less than 99.7% of the time. As observed in both

figures, the posterior estimate errors of the ICF’s exceed its 3σ -bound frequently. In both figures, the
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Figure 9.5: The PRMSE averaged over all 200 trails and all 10 agents.

uncertainty of the ICF is even less than the one obtained by the CKF, which provides the minimum

possible MSE. Therefore, the ICF can be overconfident when the agents communicate with each

other for only once before updating their local estimates, as analyzed in Section 9.3. In both figures,

the DHIF algorithms give a tighter 3σ -envelope compare to the KLA algorithm, which implies a

more confident estimate. These observations match the analysis in Section 9.3. It is also shown that

the DHIF algorithm with the weights by Eq. (9.9) gives the most confident estimates compared with

those with uniform or suboptimal weight selection strategies. The same simulation is run for 200

independent Monte Carlo trails. The position root mean square error (PRMSE), averaged over all

trails and all 10 agents using each algorithm, is plotted with respect to the time instant k in Figure

9.5. As observed, the DHIF algorithm with the optimal weights gives the lowest average PRMSE.

Simulation 2. Now consider an even worse scenario, where the graph shown in Figure

9.3 is only the union communication graph over all time instants, denoted as G [I] with I, {k|k ∈

Z+}. For any single realization, both the status of whether each edge of G [I] exists, and whether

each agent directly senses the target at every time instant, are synthetically generated based on

probabilities. Specifically, for each i = 1, . . . ,N, and k ∈ Z+, Pr
(
e(k)i ∈ E (k)

)
= 0.3 and Pr

(
i ∈
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B(k)
)
= 0.7. If agent i directly senses the target at k, H(k)

i = [I2 0], R(k)
i = 25I2. Some comments

about the communication graph in Figure 9.3 are addressed here. On one hand, one should note that

even the union graph G [I] has very weak connectivity. For any agent at any time instant, it is only

able to receive/send information from/to at most one other agent. On the other hand, even the global

joint observability is quite limited. Note that it is possible for none of the agents to directly sense the

target at some time instants. Suppose that a certain edge exists at a certain time instant, it is possible

that the parent node does not directly sense the target at that time instant so no information about the

current state is received by its child node. Similarly, suppose that an agent directly senses the target

at a certain time instant, it is still possible that the agent cannot send such most recent information

to any other agent. As this chapter aims at studying very mild conditions for the convergence of

distributed filtering using sensor networks, we make up this graph with extremely weak connectivity

and poor global joint observability at any time.

For clarity, a relatively small N = 6 is selected for validating Part (i) of Theorem 9.13. The

statuses of whether each possible edge appears and whether each agent directly senses the target at

the steady state of a random single trail are generated and, respectively, plotted in Figure 9.6(a) and

9.6(b). For example, none of the 6 agents directly senses the target at k = 138 and k = 140. When

k = 125 or k = 129, all agents are isolated as none of the 6 possible edges appears. Note that Figure

9.6 shows that both Condition (a) and (b) formulated in Theorem 9.13 are satisfied for each agent.

Using agent 5 at k = 153 as an example. Agent 4 has observability about the target over I148
146, this

satisfies Condition (a). Also e5 appears at k = 152 and hence, is an orderly appearing path from

agent 4 to agent 5 within I153
148, this satisfies Condition (b). Thus for agent 5 at k = 153, one of the

intervals satisfy both conditions is I153
146.
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(b) Status of whether each possible edge appears at 120≤ k ≤ 160.

Figure 9.6: Statuses of network connectivity and local sensing at each time instant: each black
square implies a positive status at the corresponding k.

The estimated trajectories by local agents and the CKF are plotted along with the true

target trajectory in Figure 9.7. For clarity, only the trajectories estimated by agent 1 and agent 5

are plotted. To show the evolution of each trajectory, checkpoints in the same colors are marked for

every 40 time instants. It is shown in Figure 9.7 that the local estimates are able to track the true

target trajectory. Moreover, the covariance ellipse with the 99.7% confidence of the local estimate

at each checkpoint is plotted in dashed lines. As observed, the true location (star in green) at each

checkpoint is always enclosed by the corresponding ellipse in red (agent 1) or blue (agent 5). This

verifies the consistency of local estimates. The local estimates are more conservative compared to

the one by the CKF. This is intuitive as the graph is very weakly connected and each agent has poor

joint observability in general.
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Figure 9.7: 2D target tracking task: DHIF algorithm v.s. CKF.
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Figure 9.8: Trajectory tracking errors & ±3σ envelopes: DHIF algorithm v.s. CKF.

In Figure 9.8, the local posterior estimate errors (solid lines in colors), as well as the

corresponding ±3σ envelopes (dashed lines in the same color) at each of the 6 agents, are plotted.

As observed in Figure 9.8, the estimate errors by each agent are bounded by the ±3σ envelopes at

the steady-state, which verifies the consistency.

When the agent does not sense the target directly, it can only obtain the information to

recover the entire state by communication. Compared to the time-invariant scenario, where each

agent continuously obtains such information from some leader component at every time instant, in

the time-varying scenario, the agents are only able to obtain such information in a less frequent

manner. Such lower frequencies will also cause the information to become more “outdated”. This

further increases the estimate uncertainties. Therefore, as observed in Figure 9.8, the 3σ -bounds of

local estimates have the “saw-like” shapes. This is because the weakly connected graph, as well as

the poor collective observability in the network at every time instant, might cause the local estimate
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Figure 9.9: Expectations of estimate errors: DHIF algorithm v.s. CKF.

to diverge in short terms. Long-term-wisely, however, as the conditions formulated in Theorem 9.13

are satisfied, the local estimate errors are uniformly bounded.

Simulation 3. To illustrate Part (ii) of Theorem 9.13 in this simulation, a larger N = 40

is selected. The rest parameters are the same as the previous simulation. The expectations of all 4

state components of the local posterior estimate errors by all 40 agents using the DHIF Algorithm,

are plotted along with the one by the CKF in Figure 9.9. Note that similar to the ±3σ envelopes

previously shown, the expectations of the local tracking error on the two position components also

turn to have the “saw-like” shape. This is again, due to the overall weak connectivity and poor

observabilities as previously explained. As observed in Figure 9.9, however, even in such an extreme

scenario, the local estimate errors asymptotically converge to zero in expectations.

110



9.7 Conclusion

In this chapter, the problem of distributed dynamic state estimation using networked

multi-agents is considered in the scenario where the process model of the target as well as the local

sensing models of the local agents are modeled as linear. A distributed hybrid information fusion

algorithm is proposed to solve the problem of dynamic state estimation in the scenario, where the

process model of the target, the sensing models of local agents, and the communication topology

might subject to change with time. The proposed algorithm requires no global parameter and only

one communication iteration at every time instant. It comes up with consistent but confident local

estimates with the estimate errors being uniformly upper bounded in finite time, and asymptoti-

cally converge to zero in expectation. The sufficient conditions to guarantee such convergence are

formulated, and shown to be very mild and “almost” necessary. In the special case where the pro-

cess/sensing models and the topology are both time invariant, the conditions with certain relaxations

are necessary. The outperformance compared with existing algorithms are shown both analytically

and numerically.
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Chapter 10

Distributed State Estimation with

Nonlinear Process and Local Sensing

Models

In this chapter, the DHIF algorithm proposed in Chapter 9 is extended to the scenario with

nonlinear process and local sensing models. The extended nonlinear DHIF algorithm is based on

the Unscented Transformation paradigm.
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10.1 Problem Formulation

10.1.1 Models & Assumptions

Consider the interested process model to be a general nonlinear dynamic system shown

as follows:

x(k+1) = f (x(k),w(k)), (10.1)

where x(k) ∈ Rnx and w(k) ∈ Rnw are, respectively, the state of interest and the process noise. Being

assumed to be known to all agents, the function f : Rnx ×Rnw → Rnx is the transform modeling the

dynamics of the state of interest. It is assumed that for all time instants k ∈ Z+, w(k) ∼N (0,Q(k))

with Q(k) � 0 known to all agents as well. As Q(k) is known to all local agents, for simplicity, we

let Q(k) = Q, ∀k ∈ Z+. It is also assumed that E[x(k′)(w(k))>] = 0, ∀k′ ∈ Z∗ and k > k′.

Let mi be the dimension1 of the local measurement obtained by agent i, denoted as z(k)i .

The local sensing model at each agent i ∈ V is modeled as follows:

z(k)i = hi(x(k))+v(k)i , (10.2)

where v(k)i ∈Rmi is the associated sensing noise. It is assumed that ∀k ∈Z+, v(k) ∼N (0,R(k)) with

R(k) � 0. hi : Rnx → Rmi is the transform modeling the sensing process of agent i.

As discussed in previous chapters of Part II, the networked agents are usually geographi-

cally located in many applications of distributed estimation, it is common to encounter the situation

where the state of interest is directly observed by only a subset of local agents. Moreover, this subset

changes over time in general. Therefore, Assumption 9.1.2 is adopted again in this chapter. The

definition of blind agent (Definition 9.1) is also adopted in this chapter.

1For simplicity, mi is assumed to be time-invariant with out loss of generality.
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10.1.2 Motivation & Objective

Although the distributed linear estimation problem has been extensively studied with the

conditions for the stochastic stabilities being well formulated, the nonlinear case still draws limited

attention. It is intuitive to extend the linear algorithm to their nonlinear analogies using approach

similar to that of extending the Kalman filter to the EKF. Such an extension is achieved in [10] with

the local stability properties shown analytically. However, the EKF-based extension requires the

computation of the Jacobian at every time instant, which might bring difficulties for implementa-

tions. Moreover, the estimation performance could be deteriorated if the assumption of the local

linearity is not well fulfilled (e.g., bearing sensors etc.). An alternative approach to extend the algo-

rithm while avoiding the aforementioned potential drawbacks is to use the Unscented transformation

(UT), as adopted in [45, 46]. However, the algorithms therein both require multiple communication

iterations during every sampling time interval and hence, bring heavy communication burdens in

general. The works also do not explicitly consider the existence of agents sensing no target.

Motivated by the above facts, in this chapter, we aim at extending our previously proposed

DHIF algorithm to the scenario where the process model of the target and the sensing model of the

local agents are nonlinear. The UT approach is adopted to approximate the statistics of random

variables undergoing nonlinear models. The extended algorithm should inherit the advantages of

the original DHIF algorithm for requiring only single communication iteration per each sampling

time instant. It should also be robust against the presence of agents sensing no target. Aside from

extending the DHIF algorithm, we also aim at studying the stochastic stability of the extended

algorithm, and formulating the conditions to fulfill in the case if the local sensing models are linear.
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10.2 The Nonlinear DHIF Algorithm

In this section, we extended the DHIF algorithm to the case with nonlinear models, using

the UT approach.

Suppose that at time k, each agent has an estimated state at time k− 1, as well as an

approximated error covariance, denoted, respectively as x̂k−1|k−1
i and P̂k−1|k−1

i . The recursive al-

gorithm implemented by each agent i ∈ V at k contains four steps, namely, propagation, packing,

communication and update.

Propagation. Each agent i ∈ V propagates its local posterior estimate from the previous

time instant to the current time. This is done by using the UT. Let the augmented state vector as

well as the corresponding augmented covariance matrix for each agent be denoted, respectively, as,

ax̂(k−1)
i ∈ Rna and P(k−1)

i,a ∈ Rna×na , where na = nx +nw,

ax̂(k−1)
i ,

x̂k−1|k−1
i

0

 , and P(k−1)
i,a ,

P̂k−1|k−1
i 0

0 Q

 .
A set of 2na +1 sigma points, denoted as, aXXX

k−1|k−1
i,r , r = 0, . . . ,2na, are selected by the following:

aXXX
k−1|k−1
i,0 = ax̂(k−1)

i ,

aXXX
k−1|k−1
i,r = ax̂(k−1)

i +

{√
(na + γ)P(k−1)

i,a

}
(:,r)

, if r ∈ [1,na],

aXXX
k−1|k−1
i,r = ax̂(k−1)

i −
{√

(na + γ)P(k−1)
i,a

}
(:,r−na)

, otherwise.

Here γ =α2 (na +κ)−na is a scaling parameter with 0≤α ≤ 1 and κ ∈R being a tuning parameter

to be selected. Note that the definition of the sigma points directly implies that

∑
2na

r=0
aXXX

k−1|k−1
i,r = aXXX

k−1|k−1
i,0 = ax̂(k−1)

i ,
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or equivalently,

∑
2na

r=0XXX
k−1|k−1
i,r = x̂k−1|k−1

i , ∑
2na

r=0WWW
k−1|k−1
i,r = 0,

where XXX
k−1|k−1
i,r and WWW

k−1|k−1
i,r , collect the components of aXXX

k−1|k−1
i,r corresponding to, respective-

ly, x(k−1) and w(k−1). The corresponding weights for computing the mean and covariances denoted,

respectively as W m
i,r and W c

i,r, are computed as

W m
i,0 = γ/(na + γ) ,

W c
i,0 = γ/(na + γ)+

(
1−α

2 +β
)
,

W m
i,r =W c

i,r = 1/2(na + γ) , r = 1, . . . ,2na,

where β is used to incorporate extra higher order effects. Then the prior local estimate of the current

state is computed as x̂k|k−1
i = ∑

2na
r=0W m

i,rXXX
(k)
i,r , with

XXX
(k)
i,r = f

(
XXX

k−1|k−1
i,r ,WWW

k−1|k−1
i,r

)
.

The corresponding error covariance is computed as

P̂k|k−1
i = ∑

2na

r=0W c
i,r

(
XXX

(k)
i,r − x̂k|k−1

i

)(
XXX

(k)
i,r − x̂k|k−1

i

)>
.

Packing. After agent i sensing the target and obtaining its local measurement z(k)i , it packs

the local information for the use of transmission in the next step. The local prior estimate pairs can

be easily packed as done in the original DHIF algorithm. i.e.,

ΞΞΞ
(k)
i =

(
P̂k|k−1

i

)−1
, ξξξ

(k)
i =

(
P̂k|k−1

i

)−1
x̂k|k−1

i .

On the other hand, however, one should note that the packing for the local measurement pairs are

not as straightforward as that of the original DHIF algorithm due to the fact that nonlinearities

are involved in the local sensing models. Different from the EKF-based extension [10], where
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the Jacobian matrix is used to replace the measurement matrix, a substitution of the measurement

matrix does not exist in the UT approach. Therefore, to this end, we adopt the formulation used in

the unscented information filter (UIF [43]). That is, each agent i computes,

Y(k)
i =

(
HHH

(k)
i

)>(
R(k)

i

)−1
HHH

(k)
i ,

y(k)i =
(
HHH

(k)
i

)>(
R(k)

i

)−1 [
z(k)i − ẑ(k)i +HHH

(k)
i x̂k|k−1

i

]
,

where HHH
(k)
i ,

(
P̂xz

i,k

)>(
P̂k|k−1

i

)−1
is the pseudo measurement matrix with

P̂xz
i,k =

2n

∑
r=0

W c
i,r

[
XXX

(k)
i,r − x̂k|k−1

i

][
hi

(
XXX

(k)
i,r

)
− ẑ(k)i

]>
and ẑ(k)i = ∑

2na
r=0W m

i,rhiXXX
(k)
i,r .

Communication. Once the local information is packed, each agent i∈ V sends Y(k)
i , y(k)i ,

ΞΞΞ
(k)
i and ξξξ

(k)
i to agent j, ∀ j ∈ N(k)

i,out and receives Y(k)
j , y(k)j , ΞΞΞ

(k)
j and ξξξ

(k)
j from agent j, ∀ j ∈ N(k)

i,in.

Update. After receiving the information transmitted from its in-neighbors, each agent i

selects the set of weights {d(k)
i j } j∈J(k)i

, and updates its local estimate as well as the corresponding

approximated covariance as

P̂k|k
i =

(
∑ j∈J(k)i

Y(k)
j +∑ j∈J(k)i

d(k)
i j ΞΞΞ

(k)
i

)−1
, (10.3)

x̂k|k
i = P̂k|k

i

(
∑ j∈J(k)i

y(k)j +∑ j∈J(k)i
d(k)

i j ξξξ
(k)
i

)
. (10.4)

Remark 10.1 (Weights selection) The weights {d(k)
i j } j∈J(k)i

are determined locally by agent i with-

out using any global information (total number of agents, etc.). The details for determining the

weights is not the focus of this chapter (see Chapter 9 for details). Recall that for all time instants,

the weights {d(k)
i j } j∈J(k)i

are uniformly lower bounded above zero and satisfy that ∑ j∈J(k)i
d(k)

i j = 1,

∀i ∈ V . As a result, the adjacency matrix describing the communication topology at any time in-

stant is row stochastic. For the rest of this chapter, we define D(k) such that {D}(i, j) = d(k)
i j .
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10.3 Stability Analysis

In this section, the stochastic stability of the proposed algorithm is studied for the sce-

nario where the local sensing models are linear. The stability analysis for the scenario with general

nonlinear local sensing models is more mathematically challenging and is left for the future work.

In this section, instead of considering the sensing model in Eq. (10.2), the sensing model in Eq.

(9.2) is considered. In the case considered in this section, the correspondingly packing steps for the

measurement pairs are modified as

Y(k)
i =

(
H(k)

i

)>(
R(k)

i

)−1
H(k)

i ,

y(k)i =
(

H(k)
i

)>(
R(k)

i

)−1
z(k)i .

Specifically, it will be shown in the following that the local prior estimate errors at each

agent, as a stochastic process, is bounded in mean square under some sufficient conditions. To this

end, the following Lemmas are used.

Lemma 10.2 ( [64]) Assume that ξξξ (k) is a stochastic process and there is a stochastic process

V
(
ξξξ (k)

)
as well as real numbers vmin, vmax > 0, µ > 0 and 0 < λ ≤ 1 such that the following

conditions are fulfilled ∀k ∈ Z+.

vmin‖ξξξ (k)‖2 ≤V
(
ξξξ (k)

)
≤ vmax‖ξξξ (k)‖2 (10.5)

E[V
(
ξξξ (k)

)
|ξξξ (k−1)]−V

(
ξξξ (k−1)

)
≤ µ−λV

(
ξξξ (k−1)

)
(10.6)

Then the stochastic process is bounded in mean square, i.e.,

E[‖ξξξ (k)‖2]≤ vmax

vmin
E[‖ξξξ (0)‖2] (1−λ )k +

µ

vmin
∑

k−1
i=1 (1−λ )i . (10.7)
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Lemma 10.3 ( [9]) Given N positive definite matrices M1, . . . ,MN , and N vectors v1, . . . ,vN with

N ≥ 2, the following inequality holds:

(
∑

N
i=1Mivi

)>(
∑

N
i=1Mi

)−1(
∑

N
i=1Mivi

)
≤∑

N
i=1v>i Mivi.

Before stating the main result, some derivations are needed for the notations to be used in

the main theorem. Let η̂ηη
k|k
i , x(k)− x̂k|k

i be the posterior estimate error by agent i at time instant k.

Note that x(k+1) can be approximated by the Taylor series about
(

x̂k|k
i ,0

)
up to the first order:

x(k+1) ≈ f
(

x̂k|k
i ,0

)
+Ox(k) f

(
x̂k|k

i ,0
)

η̂ηη
k|k
i +Ow(k) f

(
x̂k|k

i ,0
)

w(k).

Similarly, each sigma point after the transformation can be approximated using the Taylor series:

XXX
(k+1)
i,r , f

(
XXX

k|k
i,r ,WWW

k|k
i,r

)
≈ f

(
x̂k|k

i ,0
)
+Ox(k) f

(
x̂k|k

i ,0
)(

XXX
k|k
i,r − x̂k|k

i

)
+Ow(k) f

(
x̂k|k

i ,0
)
WWW

k|k
i,r .

As a result, x̂k+1|k
i can be approximated as

x̂k+1|k
i =∑

2na

r=0W m
i,r f
(
XXX

k|k
i,r ,WWW

k|k
i,r

)
≈ f
(

x̂k|k
i ,0

)
+Ox(k) f

(
x̂k|k

i ,0
)(

∑
2na

r=0W m
i,rXXX

k|k
i,r − x̂k|k

i

)
+Ow(k) f

(
x̂k|k

i ,0
)(

∑
2na

r=0W m
i,rWWW

k|k
i,r

)
= f
(

x̂k|k
i ,0

)
.

Let η̂ηη
k+1|k
i , x(k+1)− x̂k+1|k

i be the prior estimate error by agent i at time k+1. It follows that

η̂ηη
k+1|k
i ≈ Fi,kη̂ηη

k|k
i +Bi,kw(k),

where Fi,k = Ox(k) f
(

x̂k|k
i ,0

)
and Bi,k = Ow(k) f

(
x̂k|k

i ,0
)

. Thus, by introducing the unknown instru-

mental diagonal matrices [87], denoted as Ex
i,k ∈ Rnx×nx and Ew

i,k ∈ Rnx×nx , one has

η̂ηη
k+1|k
i = Ex

i,kFi,kη̂ηη
k|k
i +Ew

i,kBi,kw(k). (10.8)
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The true covariance of the prior estimate error η̂ηη
k+1|k
i , denoted as Pk+1|k

i , E[η̂ηηk+1|k
i

(
η̂ηη

k+1|k
i

)>
], is

Pk+1|k
i = Ex

i,kFi,kP̂k|k
i F>i,kEx

i,k +∆Pk+1|k
i +Ew

i,kBi,kQkB>i,kEw
i,k,

where

∆Pk+1|k
i =Ex

i,kFi,kE[η̂ηη
k|k
i

(
η̂ηη

k|k
i

)>
]F>i,kEx

i,k−Ex
i,kFi,kP̂k|k

i F>i,kEx
i,k.

Therefore, let δPk+1|k
i , P̂k+1|k

i −Pk+1|k
i and

Q̂i,k , δPk+1|k
i +∆Pk+1|k

i +Ew
i,kBi,kQkB>i,kEw

i,k, (10.9)

one has P̂k+1|k
i = Ex

i,kFi,kP̂k|k
i F>i,kEx

i,k + Q̂i,k.

Theorem 10.4 Let Fi,k, Ex
i,k, Ew

i,k and Bi,k be defined in Eq. (10.8). Suppose that G (k) is strongly

connected, ∀k ∈ Z+. Then the prior estimate error η̂ηη
k|k−1
i , ∀i ∈ V , is bounded in mean square,

on the condition that the following assumptions are fulfilled for each i ∈ V : there exist positive

numbers pmin, pmax, fmin, fmax, ex,min, ex,max, ew,min, e,wmax, q̂min, rmin, and hmax such that for all

k ∈ Z∗:

pminI� P̂k+1|k
i � pmaxI, (10.10)

fminI� Fi,k (Fi,k)
> � fmaxI, (10.11)

ex,minI� Ex
i,k

(
Ex

i,k

)>
� ex,maxI (10.12)

ew,minI� Ew
i,k

(
Ew

i,k

)>
� ew,maxI (10.13)


bminI� Bi,kB>i,k � bmaxI ,if nx ≥ nw

bminI� B>i,kBi,k � bmaxI ,if nx < nw

(10.14)
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Q̂i,k � q̂minI (10.15)

R(k)
i � rminI (10.16)

H(k)
i

(
H(k)

i

)>
� hmaxI (10.17)

Proof. Let ρ
(k)
i be the ith entry of the ρρρ(k) ∈ RN with ρρρ(k) being the left-eigenvector

associated with the largest eigenvalue (i.e., 1) of the matrix D(k). As the graph G (k) is strongly

connected, ρ
(k)
i > 0, ∀i ∈ V . Let

η̂ηη
k+1|k ,


η̂ηη

k+1|k
1

...

η̂ηη
k+1|k
N

 , P̂k+1|k ,


ρ
(k)
1 P̂k+1|k

1

. . .

ρ
(k)
N P̂k+1|k

N

 ,

Vk+1(η̂ηη
k+1|k) , (η̂ηη

k+1|k
i )>(P̂k+1|k)−1(η̂ηηk+1|k) and Vi,k+1(η̂ηη

k+1|k
i ) , (η̂ηη

k+1|k
i )>(P̂k+1|k

i )−1(η̂ηη
k+1|k
i ). It

follows that Vk+1 , ∑i∈V ρ
(k+1)
i Vi,k+1. If Eq. (10.10) is satisfied, it follows from Lemma 10.2 that

pmax‖η̂ηηk+1|k‖2 ≤Vk+1(η̂ηη
k+1|k)≤ pmin‖η̂ηηk+1|k‖2.

Therefore, η̂ηη
k+1|k can be shown to be bounded in mean square if it is satisfied that

E
[
Vk+1

(
η̂ηη

k+1|k
)
|η̂ηηk|k−1

]
−Vk

(
η̂ηη

k|k−1
)
≤ µ−λVk

(
η̂ηη

k|k−1
)
,

for some µ > 0 and 0 < λ ≤ 1. The rest of the proof will be focused on showing this.

Note that by Eq. (10.8),

Vi,k+1

(
η̂ηη

k+1|k
i

)
=
(

Ex
i,kFi,kη̂ηη

k|k
i

)>(
P̂k+1|k

i

)−1(
Ex

i,kFi,kη̂ηη
k|k
i

)
+
(

Ew
i,kBi,kw(k)

)>(
P̂k+1|k

i

)−1(
Ew

i,kBi,kw(k)
)

+2
(

Ex
i,kFi,kη̂ηη

k|k
i

)>(
P̂k+1|k

i

)−1(
Ew

i,kBi,kw(k)
)
.

(10.18)
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Also note that

η̂ηη
k|k
i =P̂k|k

i ∑ j∈J(k)i
d(k)

i j

(
P̂k|k−1

j

)−1
η̂ηη

k|k−1
j − P̂k|k

i ∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j . (10.19)

Now let us take a look at all three terms on the right-hand side of Eq. (10.18). The

expectation of the last term in Eq. (10.18) conditioned on η̂ηη
k|k−1 with Eq. (10.19) being substituted

in, has the form of

E
[(

Ex
i,kFi,kη̂ηη

k|k
i

)>(
P̂k+1|k

i

)−1(
Ew

i,kBi,kw(k)
)
|η̂ηηk|k−1

]
=E
[(

w(k)
)>
|η̂ηηk|k−1

](
Ew

i,kBi,k
)>(P̂k+1|k

i

)−1
(

P̂k|k
i ∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
η̂ηη

k|k−1
j

)
−E

[(
w(k)

)>
|η̂ηηk|k−1

](
Ew

i,kBi,k
)>(P̂k+1|k

i

)−1
(

P̂k|k
i ∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
E
[
v(k)j |η̂ηη

k|k−1
])

=0,

where the property of mutual independence among w(k), {v(k)j } j∈V and η̂ηη
k|k−1 is used. As each term

on the right-hand side of Eq. (10.18) is a scalar and hence equals to its own trace. It follows that the

expectation of the second term in Eq. (10.18) conditioned on η̂ηη
k|k−1 can be written as

E
[(

Ew
i,kBi,kw(k)

)>(
P̂k+1|k

i

)−1(
Ew

i,kBi,kw(k)
)
|ηηηk|k−1

]
=E
[

tr
{

B>i,k
(
Ew

i,k
)>(P̂k+1|k

i

)−1
Ew

i,kBi,kw(k)
(

w(k)
)>}

|ηηηk|k−1
]

=tr
{

B>i,k
(
Ew

i,k
)>(P̂k+1|k

i

)−1
Ew

i,kBi,kQ
}
,

(10.20)

where the second equality uses again the property of mutual independence.

Now we look at the first term in Eq. (10.18). Note if Eq. (10.11) and Eq. (10.12) are

fulfilled, Ex
i,kFi,k is invertible. Moreover, if Eq. (10.15) is fulfilled, it follows that

(
P̂k+1|k

i

)−1
=
(

Ex
i,kFi,kP̂k|k

i F>i,kEx
i,k + Q̂i,k

)−1

≺
(

Ex
i,kFi,kP̂k|k

i F>i,kEx
i,k

)−1
=
(

F>i,kEx
i,k

)−1(
P̂k|k

i

)−1 (
Ex

i,kFi,k
)−1

.

(10.21)
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As a result, the first term on the right-hand side of Eq. (10.18) satisfies

(
η̂ηη

k|k
i

)>
(Fi,k)

>Ex
i,k

(
P̂k+1|k

i

)−1
Ex

i,kFi,kη̂ηη
k|k
i

<
(

η̂ηη
k|k
i

)>
(Fi,k)

>Ex
i,k

(
F>i,kEx

i,k

)−1(
P̂k|k

i

)−1 (
Ex

i,kFi,k
)−1 Ex

i,kFi,kη̂ηη
k|k
i

=
(

η̂ηη
k|k
i

)>(
P̂k|k

i

)−1
η̂ηη

k|k
i .

Substitute Eq. (10.19) into the above equation, one has

(
η̂ηη

k|k
i

)>(
P̂k|k

i

)−1
η̂ηη

k|k
i

=−2
(

∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j

)>
P̂k|k

i

(
∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
η̂ηη

k|k−1
j

)
+

(
∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j

)>
P̂k|k

i

(
∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j

)
+

(
∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
η̂ηη

k|k−1
j

)>
P̂k|k

i

(
∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
η̂ηη

k|k−1
j

)
.

(10.22)

Note that due to the mutual independence between any prior estimate errors up to the time (i.e.,

η̂ηη
k|k−1
j , ∀ j ∈ N(k)

i,in) and all local measurement noises at the time (i.e., v(k)i , ∀i ∈ V ), the expectation

of the first term in Eq. (10.22) conditioned on η̂ηη
k|k−1 is 0. Moreover, the expectation of the second

term in Eq. (10.22) conditioned on η̂ηη
k|k−1 is

E

[(
∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j

)>
P̂k|k

i

(
∑ j∈J(k)i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j

)
|ηηηk|k−1

]

=E

[
∑ j∈J(k)i

((
H(k)

j

)>(
R(k)

j

)−1
v(k)j

)>
P̂k|k

i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j |ηηη

k|k−1

]
+0

=∑ j∈J(k)i
E
[

tr
{(

R(k)
j

)−1(
H(k)

j

)
P̂k|k

i

(
H(k)

j

)>(
R(k)

j

)−1
v(k)j

(
v(k)j

)>}]
=∑ j∈J(k)i

tr
{(

R(k)
j

)−1(
H(k)

j

)
P̂k|k

i

(
H(k)

j

)>}
,

(10.23)
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where the zero term after the first equality is due to the mutual independence among local measure-

ment noises. Note that the last term in Eq. (10.22) can be written as[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]>
P̂k|k

i

[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]
=

[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]>[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
]−1[

∑ j∈J(k)i
d(k)

i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]
+

[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]> [
∑ j∈J(k)i

d(k)
i j Y(k)

j

]−1
[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]
≤
[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]>[
∑ j∈J(k)i

d(k)
i j

[
P̂k|k−1

j

]−1
]−1[

∑ j∈J(k)i
d(k)

i j

[
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

]
≤∑ j∈J(k)i

d(k)
i j

[
η̂ηη

k|k−1
j

]> [
P̂k|k−1

j

]−1
η̂ηη

k|k−1
j

=∑ j∈J(k)i
d(k)

i j Vj,k,

(10.24)

where the first inequality is due to Eq. (10.3) and the fact that Y(k)
j � 0, ∀ j ∈ V ; and the second

inequality is obtained by following Lemma 10.3. Therefore, by collecting the right-hand side of Eq.

(10.20), Eq. (10.23) and Eq. (10.24), one can summarize that

E
[
Vk+1(η̂ηη

k+1|k)|η̂ηηk|k−1
]

<∑i∈V ρitr
{

B>i,k(E
w
i,k)
>(P̂k+1|k

i )−1Ew
i,kBi,kQ

}
+∑i∈V ρi∑ j∈J(k)i

tr
{(

R(k)
j

)−1(H(k)
j

)
P̂k|k

i

(
H(k)

j

)>}
+∑i∈V ρi∑ j∈J(k)i

d(k)
i j Vj,k.

(10.25)

If Eq. (10.10), Eq. (10.13) and Eq. (10.14) are fulfilled, the first term on the right-hind side of Eq.

(10.25) can be written as

∑i∈V ρitr
{

B>i,k(E
w
i,k)
>(P̂k+1|k

i )−1Ew
i,kBi,kQ

}
≤∑i∈V ρi

ee,maxbmax

p̂min
min(nx,nw)tr{Q}

=
ee,maxbmax

p̂min
min(nx,nw)tr{Q}, µ1.
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Note that as Q � 0, µ1 > 0. Eq. (10.10) gives
(

P̂k|k−1
i

)−1
� 1

p̂max
I, which further implies that

∑ j∈J(k)i
d(k)

i j

(
P̂k|k−1

j

)−1
� 1

p̂max
I and hence

P̂k|k
i �

(
∑ j∈J(k)i

d(k)
i j

(
P̂k|k−1

j

)−1
)−1

� p̂maxI.

It follows that the second term on the right-hind side of Eq. (10.25) can be written as

∑i∈V ρi∑ j∈J(k)i
tr
{(

R(k)
j

)−1(
H(k)

j

)
P̂k|k

i

(
H(k)

j

)>}
=∑i∈V ρi∑ j∈J(k)i \B(k) tr

{(
R(k)

j

)−1(
H(k)

j

)
P̂k|k

i

(
H(k)

j

)>}
≤∑i∈V ρi

hmax p̂max

rmin
max

j∈J(k)i \B(k)
{m j}, µ2,

where the inequality is due to Eq. (10.16), Eq. (10.17). Finally, let Vk , [V1,k, . . . ,VN,k]
>, the last

term on the right-hand side of Eq. (10.25) can be written as

∑i∈V ρi∑ j∈J(k)i
d(k)

i j Vj,k = ρρρ
>D(k)Vk = ρρρ

>Vk =Vk.

Let µ , µ1 +µ2. Then one has µ > 0. It follows from Eq. (10.25) that

E
[
Vk+1

(
η̂ηη

k+1|k
)
|η̂ηηk|k−1

]
−Vk

(
η̂ηη

k|k−1
)
< µ. (10.26)

Note that as Eq. (10.26) holds, we can always define

λ̄ , min

1,
µ +Vk

(
η̂ηη

k|k−1
)
−E

[
Vk+1(η̂ηη

k+1|k)|η̂ηηk|k−1
]

Vk(η̂ηη
k|k−1)


and select a λ satisfying 0 < λ ≤ λ̄ such that,

E
[
Vk+1

(
η̂ηη

k+1|k
)
|η̂ηηk|k−1

]
−Vk

(
η̂ηη

k|k−1
)
≤ µ−λVk

(
η̂ηη

k|k−1
)
.

This concludes the proof.
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Some comments about the conditions formulated in Theorem 10.4 are discussed. In gen-

eral, the conditions are analogous to the original stability results formulated in [87], which is the first

stability analysis on the centralized UKF-based nonlinear filter to the best of the authors’ knowl-

edge. However, the assumptions Eq. (10.13) and Eq. (10.14) have no counterparts therein as the

process noise therein is assumed to be additive to the state vector rather than going through the

nonlinear process model as considered in this chapter. Moreover, the authors would also like to

highlight the assumption in Eq. (10.15). Recall from Eq. (10.9) that Q̂i,k contains three terms. The

last term is always positive definite if Eq. (10.13) and Eq. (10.14) are fulfilled. However, the signs

for δPk+1|k
i and ∆Pk+1|k

i could be possibly opposite and hence the sign of their summation is not

clear. If the last term is dominant, Q̂i,k is more likely to be positive definite. Otherwise, to fulfill Eq.

(10.15), one can always manually add a positive definite matrix and hence guarantee the stability,

as proposed in [77].

Before wrapping up this section, the authors would like to make another point. Note

that the conditions in Theorem 10.4 are formulated using Jacobian matrices. Also note that if the

matrices in the propagation steps of the original DHIF algorithm are replaced with their correspond-

ing Jacobian matrices, the error dynamics derived from the resulting algorithm will end up with the

same forms to those derived at the beginning of Section 10.3. Therefore, as a side product, Theorem

10.4 also applies to the EKF-based extension of the DHIF algorithm.

10.4 Simulation

In this section, the effectiveness of the extended nonlinear DHIF algorithm is illustrated

using a simulation example.
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The target of interest is a unicycle vehicle moving with known constant speed vc and

turning angular velocity dc in a rectangular region monitored by N = 49 agents. It is assumed

that vc = 0.5 (m/s) and dc = π/100 (rad/s). However, the real speed and turning angular veloc-

ity at each time instant, respectively, denoted as, v(k)real and d(k)
real, are subject to uncorrelated white

Gaussian process noise, respectively, denoted as, w(k)
v and w(k)

d , where w(k)
v ∼ N (0,0.022) and

w(k)
d ∼N (0,( π

180)
2). As a result, v(k)real = vc +w(k)

v and d(k)
real = dc +w(k)

d .

The state vector x(k) to be estimated contains three entries, namely, x(k), y(k) and θ (k) rep-

resenting respectively, the x-position, the y-position, and the orientation of the vehicle with respect

to the global frame. It is assumed that the vehicle is at the origin at the initial time instant. The

process model is therefore

x(k+1) ,


x(k+1)

y(k+1)

θ (k+1)

=


x(k)+∆T

(
vc +w(k)

v

)
cosθ (k)

y(k)+∆T

(
vc +w(k)

v

)
sinθ (k)

θ (k)+∆T

(
dc +w(k)

d

)

 ,

where ∆T = 0.5 (s) is the length of sampling time interval.

The 49 networked agents form a rectangular 7×7 array, and are geographically distributed

as shown in Figure 10.1. Each agent is assumed to be static and equipped with only one ranging

sensor with limited sensing radius shown in pink circles in Figure 10.1. The communication links

between local agents are bidirectional and shown in sky-blue dash-dot lines. For agent i, if the target

is in its sensing range at time k, it obtains a scalar measurement

z(k)i = hi(x(k)) =

∥∥∥∥∥∥∥∥
xs

i

ys
i

−
x(k)

y(k)


∥∥∥∥∥∥∥∥+ v(k)i ,
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Figure 10.1: Unicycle mobile vehicle tracking task: the nonlinear DHIF algorithm v.s. UIF.
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where [xs
i ys

i ] is the global position of agent i and v(k)i ∼ N (0,1). Note that as a single ranging

measurement is not able to recover the vehicle state, not any single agent is able to track the target

without cooperating with others. Moreover, at any time instant, the vehicle can be directly sensed

by at most 4 agents, which is less that 10% percent of the total number of agents.

The nonlinear DHIF algorithm proposed in Section 10.2 is used with α = 0.001, κ = 0

and β = 2 for all agents. The prior estimate pairs are initialized as x̂0|0
i ∼N (0,10I), ∀i ∈ V . The

weights for the update steps are determined using the fast Covariance Intersection method [57]. A

hypothetical centralized unscented information filter (UIF) using the collective measurements from

all agents at each time instant, is used as the benchmark.

The estimated trajectories by local agents using the nonlinear DHIF algorithm and by the

hypothetical centralized UIF are plotted along with the true trajectory in Figure 10.1. For clarity,

only the trajectories estimated by three typical agents, namely, agent 1 (corner), agent 4 (side)

and agent 25 (center), are plotted. Note that agent 1 and agent 25 never directly sense the target

during the entire tracking process. The checkpoints, as well as the approximated covariance ellipses

centered at the checkpoints for each estimated trajectory are plotted for every 20 seconds using the

same color but dotted lines. As observed in Figure 10.1, the estimated trajectories by local agents

are able to track the true target trajectory. In Figure 10.2, The local posterior estimate errors (solid

lines in colors) and the corresponding approximated±3σ envelopes (dashed lines in the same color)

at the aforementioned three agents for 50 ≤ k ≤ 400, are plotted. As observed in Figure 10.2, the

estimate errors by each agent is bounded by the ±3σ envelopes at the steady-state.
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Figure 10.2: Trajectory tracking errors & ±3σ envelopes in all 3 state components by the nonlinear
DHIF algorithm and the centralized (ctlz.) UIF: x(k) (top); y(k) (middle); θ (k) (bottom).
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10.5 Conclusion

In this chapter, our nonlinear DHIF algorithm is extended from the algorithm proposed

in Chapter 9 to the scenario with nonlinear models. The extension is achieved by embedding the

UT approach into our distributed estimation framework. The extended algorithm requires only

one communication iteration per sampling time instant and allow the existence of agents sensing

no target. Sufficient conditions to guarantee the stochastic stability of the filtering process are

formulated for the case in which the sensing models are linear. The effectiveness of the nonlinear

DHIF algorithm are also illustrated using a simulation example.
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Chapter 11

Distributed State Estimation with

Uncertain Process Models

In this chapter, the DHIF algorithm proposed in Chapter 9 is extended to the scenario

where the process model of the target of interest is not known to any local agent. Instead, it is

assumed that the agents only know a finite set of possible underlying process models instead of the

exact ones. Two algorithms are proposed based on two well-known centralized MM approaches,

namely, the first order generalized pseudo Bayesian (GPB1) and the interacting multiple model

(IMM) approaches.
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11.1 Problem Formulation

11.1.1 Models & Assumptions

It is assumed in this chapter that the underlying mode of the process model during each

sampling time interval is unknown but belongs to a set of finite possible modes. Throughout the

chapter the sub-script ` , `(k) is used to denote the mode in effect during the time interval starting

at k. It is assumed that during each time interval,

• ` takes value from a finite set M , {1, . . . ,Nm};

• the transition probability between each pair of modes is constant;

• the probability of switching to a certain mode in the following time instant depends only on

the mode at the current time instant.

Assumption 11.1.1 Every agent i ∈ V knows the mode transition matrix ΠΠΠ , [πsr] ∈ RNm×Nm ,

where πsr , Pr{`(k+1) = r|`(k) = s} for some r,s ∈M and ∀k.

Let F` ∈ Rn×n be the state transition matrix if mode ` is in effect. The following process

model is considered to model the target of interest in this chapter:

x(k) = F`x(k−1)+w(k−1)
` , (11.1)

where x(k) ∈ Rn is the state of interest at time k and w(k)
` ∈ Rn is the white process noise associated

with mode ` at time k. It is assumed that w(k)
` ∼N (0,Q`), where Q` � 0. Although ` is unknown

to any local agent, it is assumed that Q`, ∀` ∈M are known to all local agents.
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Correspondingly, suppose that at time k, each agent i ∈ V is able to obtain a local mea-

surement

z(k)i = H(k)
i,` x(k)+v(k)i,` , (11.2)

where H(k)
i,` ∈ Rmi×n and v(k)i,` ∈ Rmi are, respectively, the local observation matrix and the white

local measurement noise of agent i associated with mode `. It is assumed that for each ` ∈M ,

v(k)i,` ∼N (0,R(k)
i,` ), where R(k)

i,` � 0 is known to agent i.

As discussed in Chapter 9, the local agents could be geographically distributed in many

applications, it is common that the target of interest is in the sensing range of only a subset of agents

in the inclusive neighborhood of every agent. In this chapter, let S (k) be the set of agents directly

sensing the target at time k. Let S̄ (k) , V \S (k). The following assumption similar to Assumption

9.1.2 is made throughout this chapter.

Assumption 11.1.2 If agent i ∈ S̄ (k), one has (R(k)
i,` )
−1 = 0 and an arbitrary z(k)i , ∀` ∈M . More-

over, H(k)
i,` = 0, ∀` ∈M .

11.1.2 Motivation & Objective

Although distributed strategies in estimating a single known process model problem have

been extensively studied. The scenarios with multiple process models or model uncertainties are

still not well considered. However, it is not a completely innovative idea to consider the distributed

estimation problem in such a scenario [19, 47, 55]. The authors in [47] propose a consensus-based

distributed MM Unscented Kalman Filter to track a jumping Markov nonlinear system. The authors

in [19] also use the consensus-based approach to propose an algorithm. The work therein takes

into account the presence of local agents without sensing ability and meanwhile aims at obtaining
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a satisfactory performance with a smaller number of consensus iterations. However, the nature of

the consensus algorithms implies that the algorithms in [19, 47] intend to have local agents com-

municate for multiple times during each sampling time interval. This might be energy consuming

and hence becomes unrealistic for implementations. In comparison, the authors in [55] propose

a diffusion Kalman filter (DKF) based MM adaptive estimation algorithm that is able to estimate

a dynamic complex-value state with a fixed but unknown process model. However, the algorithm

therein requires the target to be jointly observable to the inclusive neighborhood of each local agent.

This assumption might not hold in general (see examples in [26, 33, 36, 80, 81]).

In this chapter, we aim at extending the DHIF algorithm proposed in Chapter 9 by taking

into account the uncertainties in the process model/models. The extended algorithms should inherit

the advantages of the original DHIF algorithm for being fully distributed and robust against the

presence of agents not directly sensing the target. More importantly, different from the consensus-

based approaches, the extended algorithm should require only a single communication iteration

during each sampling time interval. We also aim at analyzing the convergence of mode probabilities

at all agents, and proposing conditions under which the estimate error covariance of the output local

estimates are uniformly upper bounded.

11.2 Multiple Model DHIF (MM-DHIF) Algorithms

In this section, we extend the DHIF algorithm to handle the scenarios where the target has

multiple possible models or model uncertainties.

Suppose that at time instant k+ 1, agent i ∈ V has a set of Nm mode-matched estimate

pairs
(

x̂k|k
i,` , P̂

k|k
i,`

)
, ` = 1, · · · ,Nm, where x̂k|k

i,` is the local estimate of agent i assuming ` is the true
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mode. An approximated error covariance P̂k|k
i,` is associated with x̂k|k

i,` , for each i ∈ V and ` ∈M .

The probability that mode ` was in effect at time k, where ` ∈M , believed by each agent i ∈ V ,

referred as the local mode probability hereafter in this chapter, is denoted as µ
(k)
i,` . The algorithm

executed by a certain agent i at time instant k are shown in the following. Two algorithms are

extended from the DHIF algorithm by following, respectively, the GPB1-based and the IMM-based

approaches. Specifically, the IMM-based extension has identical steps to the GPB1-based one with

extra mixing/interacting steps.

11.2.1 GPB1-based DHIF algorithm

Local estimate propagation. This step is identical to that of the original DHIF algorithm

except that it is run for each possible mode. That is, for each ` ∈M ,

x̂k|k−1
i,` = F`x̂

k−1|k−1
i,` ,

P̂k|k−1
i,` = F`P̂

k−1|k−1
i,` (F`)

>+Q`.

(11.3)

Local mode probability update – Step 1. The update step of the local mode probabilities

consists of two steps. Step 1 is executed after a local measurement z(k)i is obtained. Each agent

i ∈ V computes a set of intermediate local mode probabilities, denoted as µ̄
(k)
i,` , `= 1, · · · ,Nm. The

computation is done in a way depending on whether it is able to directly sense the target at time

instant k, i.e., whether i ∈S (k).

If i ∈S (k), the likelihood for each mode `, denoted as Λ
(k)
i,` , is computed as:

Λ
(k)
i,` = (2π)−

n
2
∣∣S(k)

i,`

∣∣− 1
2 exp

{
−1

2
(r(k)i,` )

>(S(k)
i,` )
−1r(k)i,`

}
, (11.4)
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where

r(k)i,` , z(k)i −H(k)
i,` x̂k|k−1

i,` ,

S(k)
i,` , H(k)

i,` P̂k|k−1
i,` (H(k)

i,` )
>+R(k)

i,` .

(11.5)

The pair
(

r(k)i,` ,S
(k)
i,`

)
is referred as the innovation pair hereafter. Note that S(k)

i,` is the approximat-

ed innovation covariance rather than the true one. However,
(

r(k)i,` ,S
(k)
i,`

)
is consistent as long as(

x̂k|k−1
i,` , P̂k|k−1

i,`

)
is consistent, which is guaranteed by the nature of the DHIF algorithm (see [80]

for details). As a result, the value of Λ
(k)
i,` does realistically imply how much the obtained measure-

ment matches the expected measurement, and hence can be used as the metric for the following

computation of the intermediate local mode probabilities:

µ̄
(k)
i,` = c(k)i Λ

(k)
i,` ∑

Nm

`′=1π`′`µ
(k−1)
i,`′ , (11.6)

where c(k)i > 0 is the normalizing factor and is determined such that ∑`∈M µ̄
(k)
i,` = 1.

On the other hand, if i ∈ S̄ (k), no meaningful measurement is obtained by agent i. There-

fore, no mode likelihood can be computed. In this case, the intermediate local mode probabilities

are simply computed as:

µ̄
(k)
i,` = ∑

Nm

`′=1π`′`µ
(k−1)
i,`′ . (11.7)

Packing & Communication. The intermediate local mode probabilities are stacked as

µ̄µµ
(k)
i , col{µ̄(k)

i,` }`∈M . Then z(k)i is packed along with the propagated estimate pair with respect to

each possible mode ` ∈M , using the following equations:

Y(k)
i,` , (H(k)

i,` )
>(R(k)

i,` )
−1H(k)

i,` , ΞΞΞ
(k)
i,` , (P̂k|k−1

i,` )−1,

y(k)i,` , (H(k)
i,` )
>(R(k)

i,` )
−1z(k)i,` , ξξξ

(k)
i,` , (P̂k|k−1

i,` )−1x̂k|k−1
i,` .

(11.8)

After packing, for each ` ∈M , agent i transmits Yi,`, yi,`, ΞΞΞ
(k)
i,` , ξξξ

(k)
i,` and µ̄µµ

(k)
i to agent j, ∀ j ∈ N(k)

i,out,

and receives Y j,`, y j,`, ΞΞΞ
(k)
j,` , ξξξ

(k)
j,` and µ̄µµ

(k)
j from agent j, ∀ j ∈ N(k)

i,in.
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Local estimate updates. The update steps of the original DHIF algorithm are used for

the estimate updates with respect to each possible mode. That is, for each ` ∈M ,

P̂k|k
i,` =

[
∑ j∈J(k)i

Y(k)
j,` +∑ j∈J(k)i

d(k)
i j ΞΞΞ

(k)
j,`

]−1
,

x̂k|k
i,` = P̂k|k

i,`

[
∑ j∈J(k)i

y(k)j,` +∑ j∈J(k)i
d(k)

i j ξξξ
(k)
j,`

]
.

(11.9)

In (11.9), the set of weights {d(k)
i j } j∈J(k)i

satisfies that ∑ j∈J(k)i
d(k)

i j = 1 and d(k)
i j > 0, ∀ j ∈ J(k)i . The

weights can be determined using different approaches, such as solving an A-optimal design problem

[80], using some close-form methods [22, 57, 83], or even simply computing a (weighted) average.

The methods can be used to determine a set of weights for each possible mode. Although the

weight selection is not the focus of this chapter, we would like to emphasize that the weights for all

in-neighbors should be uniformly lower bounded above zero.

Local mode probability update – Step 2. Each agent updates its local mode probabilities

using the previously computed intermediate local mode probabilities from its inclusive neighbor-

hood. Similar to Step 1 of the local mode probability update, each agent also executes different

commends in Step 2 depending on whether it is able to directly sense the target, as described in the

following.

If i ∈S (k), it simply uses the previously computed intermediate local mode probabilities

as the final values, i.e., µµµ
(k)
i = µ̄µµ

(k)
i . On the other hand, if agent i with i ∈ S̄ (k) also updates

in this way, it follows from (11.7) that its local mode probabilities will only follow the trend of

the Markov process and simply converge to constant values related to the mode transition matrix.

This is obviously not preferred. Therefore, if i ∈ S̄ (k), agent i is designed to modify its mode

probabilities as:

µµµ
(k)
i = ∑ j∈J(k)i

ω
(k)
i j µ̄µµ

(k)
j , (11.10)
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where the weights satisfy that ∑ j∈J(k)i
ω

(k)
i j = 1 and ωi j > 0, ∀ j ∈ J(k)i . The weights selection is not

the focus of this chapter, one simple option is ω
(k)
i j = d(k)

i j , ∀ j ∈ J(k)i .

Output. This step is only needed when the overall local estimate is requested. Let µ
(k)
i,`

be the component of µµµ
(k)
i corresponding to mode `. The following output is given when requested:

x̂k|k
i = ∑`∈M µ

(k)
i,` x̂k|k

i,` ,

P̂k|k
i = ∑`∈M µ

(k)
i,`

[
P̂k|k

i,` +
(

x̂k|k
i,` − x̂k|k

i

)(
x̂k|k

i,` − x̂k|k
i

)>]
.

(11.11)

11.2.2 IMM-based DHIF algorithm

In addition to the steps in the GPB1-based DHIF algorithm, the IMM-based DHIF algo-

rithm contains the following extra mixing/interacting steps before the local estimate propagation

step in (11.3). The following value is first computed for each pair of `′ and `, with `′, ` ∈M :

µ
(k−1)
i,`′|` =

π`′`µ
(k−1)
i,`′

∑`′∈M π`′`µ
(k−1)
i,`′

,

where µ
(k−1)
i,`′|` , referred as the local mixing probability, reflects the probability of mode `′ being in

effect at k−1 given that mode ` is in effect at k, computed by agent i. Then the posterior estimate

pairs at k−1 are mixed using the following equations for each ` ∈M :

x̂k−1|k−1
i,0` = ∑`′∈M µ

(k−1)
i,`′|` x̂k−1|k−1

i,`′ ,

P̂k−1|k−1
i,0` = ∑`′∈M µ

(k−1)
i,`′|`

[
P̂k−1|k−1

i,`′ +
(

x̂k−1|k−1
i,`′ − x̂k−1|k−1

i,0`

)(
x̂k−1|k−1

i,`′ − x̂k−1|k−1
i,0`

)>]
.

(11.12)

With x̂k−1|k−1
i,0` and P̂k−1|k−1

i,0` , respectively, playing the role of x̂k−1|k−1
i,` and P̂k−1|k−1

i,` in (11.3), for each

` ∈M , the rest steps of the IMM-based DHIF algorithm are identical to those of the GPB1-based

one.
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11.2.3 Comparisons with Existing Algorithms

The extended algorithms in this chapter inherit the advantages of the original DHIF al-

gorithm. One important feature that is worth emphasizing is that the extended algorithms require

only one communication iteration between neighboring agents during each sampling time interval.

In comparison, the consensus-based algorithms [19,47] require the agents to communicate for mul-

tiple times during each sampling time interval. Such approaches might be expensive in terms of

communication and hence might be impractical for implementations in some applications. More-

over, the algorithm in [47] also assumes that the target is directly seen by all agents, the graph is

balanced, and the total number of agents is known to all agents. Such assumptions actually limit

the algorithms from being fully distributed. For example, if a local agent fails during the estimation

process, the overall performance might be deteriorated if such a change is not known to other local

agents. In comparison, our algorithms do not need such knowledge and hence will adapt to the

locally unknown changes in an automated manner. Different from the consensus-based approaches,

an algorithm based on the DKF [15] is proposed in [55] to handle the case where the true model is

fixed. One advantage of the algorithm proposed therein compared to those of [19, 47] is that, only

two communication iterations are needed during each sampling time interval. However, the main

limitation is the requirement of joint local observability at each agent, due to the nature inherited

from the original DKF algorithm. This requirement might be difficult to satisfy in many applications

(see examples in [26, 33, 36, 80, 81]).

In comparison, our algorithms require only a single communication iteration during each

sampling time interval. By cooperatively estimating the state and diffusing the local mode prob-

abilities from the agents directly sensing the target to the rest, our algorithms do not require any
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global information and have very mild requirements on the joint global observability conditions.

As will see in the following section, it is not necessary for any single agent to have joint local ob-

servability about the target. Different from the work in [19, 47], which uses simulations to verify

the performance, it is analytically shown in the next section that in the scenario with an unknown

but fixed underlying mode, all agents across the network will be able to identify the true underlying

mode and track the target of interest with consistent output local estimates. Sufficient conditions are

formulated.

11.3 Stability Analysis: GPB1-DHIF with the Fixed Unknown Under-

lying Mode

In this section, the stability properties of the proposed GPB1-based DHIF algorithm is

studied. Specifically, we show that if the unknown underlying model is fixed, the output local

estimates obtained from (11.11) have the errors uniformly upper bounded in the positive definite

sense at the steady state. The proof is shown considering the following conditions.

C1. For each mode, the local sensing model of each agent as well as the noise statistics are time

invariant, i.e., H(k)
i,` = Hi,` and R(k)

i,` = Ri,`, for each ` ∈M and all k.

C2. The graph is time invariant, i.e., G (k) = G , ∀k.

C3. The weights selected by each agent in (11.9) are time invariant, i.e., {d(k)
i j } j∈Ji = {di j} j∈Ji , for

each i ∈ V and all k.

C4. For each leader component of G with vertex set Vl , (F`,H̃l,`) is detectable pair, for each

` ∈M , where H̃l,` , col{H j,`} j∈Vl .
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C5. Each agent i ∈ V selects (P̂0|0
i,` )
−1 = 0, ∀` ∈M .

Some comments about the above conditions are given before moving to the proof. Note

that Condition C1 implies that the status, whether each agent is directly sensing the target, is time

invariant, i.e., S (k) = S , ∀k. Condition C2 also implies that the neighboring relations between

agents are time invariant. As a result, the set Ji in Condition C3 is independent of k. Essentially,

Condition C1, C2 and C3 jointly imply that the entire network has the property of time invariance,

which will be used as a key property in the later proof. The same properties has also been used in the

analysis in the centralized case [4]. In joint with Condition C4, it follows from Corollary 9.16 that

one is able to guarantee the boundedness of the local estimate errors, assuming each possible mode

is the true underlying mode. Recall that Condition C4 is very mild in the sense that it requires neither

the graph to contain a directed spanning tree, nor any single local agent to have joint observability

in its inclusive neighborhood. This attributes to the very mild convergence conditions of the DHIF

algorithm. Condition C5 is to guarantee the consistency of the estimate corresponding to the true

mode. Such initializations are also selected in [8, 9] in the single-model scenario.

Now we show that for each possible mode, the approximated innovation covariance ma-

trices in (11.5) are asymptotically independent of time.

Lemma 11.1 Suppose that Conditions C1 – C5 hold. Also suppose that F` is nonsingular, ∀`∈M .

Then for each possible mode, the innovation covariance matrices approximated by all local agents

directly sensing the target, are asymptotically independent of time. That is, as k→ ∞, S(k)
i,` → S̄i,`

with S̄i,` � 0 being constant, for all i ∈S and ` ∈M .

Proof. As the conclusion is shown using the same approach for each ` ∈M , the mode index ` is

omitted in this proof for simplicity.
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With Condition C1 satisfied, one can observe from (11.5) that to show that S(k)
i , ∀i ∈S

are asymptotically time independent, it suffices to shown that P̂k|k−1
i , ∀i ∈ S are asymptotically

time independent. This can be shown by the following two steps.

The first step is to show that if Condition C5 is satisfied, each P̂k|k
i , i∈S is asymptotically

uniformly bounded in the positive definite (PD) sense from both above and below. The uniform

lower bound can be directly observed from (11.3) and the fact that Q � 0, which jointly imply the

existence of uniform lower bound of P̂k|k−1
i (and hence P̂k|k

i due to (11.9) and the fact that di j > 0,

∀ j ∈ Ji), ∀i ∈ V , at all time. On the other hand, as Condition C1, C2 and C4 are satisfied, it follows

from Corollary 9.16 that for each i ∈ V (hence, i ∈S ), P̂k|k
i is also uniformly upper bounded (in

the PD sense) in steady state.

The second step is to show that P̂k|k
i is monotonically non-increasing and hence, must

asymptotically approach some finite (due to the uniform upper bound) constant PD (due to the u-

niform lower bound) matrix. Consider two different solutions of P̂k|k
i with different initializations,

namely, (P̂k0|k0
i )−1 = 0 and (P̂k0−1|k0−1

i )−1 = 0. The two corresponding solutions at any k are dis-

tinguished using, respectively, P̂k|k
i[k0]

and P̂k|k
i[k0−1]. Then we aim at showing that P̂k|k

i,[k0]
� P̂k|k

i,[k0−1], ∀k.

Due to the non-singular property of both matrices, it suffices to show that

(P̂k|k
i,[k0−1])

−1 � (P̂k|k
i,[k0]

)−1, ∀k. (11.13)

This is completed by induction. Note if k = k0, (P̂k0|k0
i,[k0]

)−1 = 0. It follows from (11.9) and (11.3) that

(P̂k0|k0
i,[k0−1])

−1 = ∑ j∈Ji

[
di j(FP̂k0−1|k0−1

j,[k0−1] F>+Q)−1 +Y j

]
= ∑ j∈Ji

Y j � 0 = (P̂k0|k0
i,[k0]

)−1,
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where the second equality uses the facts that (P̂k0−1|k0−1
i,[k0−1] )−1 = 0, ∀i ∈ V and F is non-singular.

Suppose that (11.13) holds for all i ∈ V and k = k0, . . . ,kt −1. When k = kt ,(
P̂kt |kt

i,[k0−1]

)−1
= ∑ j∈Ji

[
di j(FP̂kt−1|kt−1

j,[k0−1] F>+Q)−1 +Y j

]
�∑ j∈Ji

[
di j(FP̂kt−1|kt−1

j,[k0]
F>+Q)−1 +Y j

]
=
(

P̂kt |kt
i,[k0]

)−1
,

where the inequality is due to the induction hypothesis. This proves that (11.13) holds. Due to

the property of time-invariance of all quantities in the covariance matrix equation (Conditions C1,

C2 and C3), Eq. (11.13) directly implies that (P̂k+1|k+1
i,[k0]

)−1 � (P̂k|k
i,[k0]

)−1, ∀k. As k0 is arbitrary, this

indicates that with Condition C5 satisfied, P̂k|k
i and hence P̂k|k−1

i is monotonically non-increasing.

Therefore, there exists Σ̄ΣΣi � 0, such that P̂k|k−1
i → Σ̄ΣΣi as k→ ∞. As this is the case for all i ∈ V , one

has

S(k)
i,` →Hi,`Σ̄ΣΣi(Hi,`)

>+Ri,` , S̄i,` � 0,

for all i ∈S and ` ∈M , as k→ ∞. This concludes the proof.

Remark 11.2 The original proof of Theorem 9.13 (and hence Corollary 9.16) requires the ap-

proximated estimate error covariance P̂k|k
i to be uniformly lower bounded, and uses the consistency

property to satisfy this requirement. However, this is not necessary due to the fact that Q� 0 implies

a uniform lower bound for P̂k|k−1
i and hence P̂k|k

i . That is, the conclusion of Theorem 9.13 holds

even without the guaranteed consistency properties of the local estimates. However, one should

also note that, without consistency, the approximated estimate error covariance no longer implies

the actual uncertainty of the estimate and hence, the approximated estimate error covariance being

upper bounded no longer guarantees the actual estimate error covariance being upper bounded.

As shown in Lemma 11.1, the networked system has the property of being asymptotically

time independent under certain conditions. Based on this result, we are ready to state the following
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main result, assuming ergodicity1 [4] of the local innovations. As stated in [55], as the local inno-

vation matched to the true underlying mode is uncorrelated and white, one can exploit the fact that

the sequence is ergodic. The following lemmas are also used.

Lemma 11.3 ( [4]) Let A, B be two p× p positive definite matrices. Then p + ln(|A|/|B|)−

tr(B−1A)� 0 with the equality holds if and only if A = B.

Lemma 11.4 Given positive semi-definite (respectively, definite) matrices A and B with the same

size, one has tr(AB)≥ 0 (respectively, tr(AB)> 0).

Proof. The fact that A � 0 implies that by the Cholesky decomposition, one can write A as A =

LL>. It follows that tr(AB) = tr(LL>B) = tr(L>BL) ≥ 0, where the last inequality is due to the

fact that B � 0. If A � 0, L is a unique lower-triangular matrix with nonzero diagonal entries. It

follows that tr(L>BL)> 0, where the last inequality is due to the facts that B� 0 and L is full rank.

Theorem 11.5 Suppose that Condition C1 – C5 hold. Also suppose that F` is nonsingular, ∀`∈M .

Let S̄i,` be defined in Lemma 11.1, for each `∈M . Let τ ∈M be the fixed underlying process model.

Then for each i ∈ V , µ
(k)
i,τ → 1 as k→ ∞. If for each ` 6= τ , for a sufficiently large k, as k̄→ ∞,

1
k̄∑

k+k̄−1
κ=k r(κ)i,` (r

(κ)
i,` )

> � S̄i,τ . (11.14)

Proof. Note that when the underlying model is fixed, ΠΠΠ = INm . Also note that if i ∈S , µ
(k)
i,` = µ̄

(k)
i,` .

Thus, with c(k)i in (11.6) being specified, for each i ∈S , one has

µ
(k)
i,` =

Λ
(k)
i,` µ

(k−1)
i,`

∑`′∈M Λ
(k)
i,`′µ

(k−1)
i,`′

. (11.15)

1The same assumption is also made in both the centralized case [4] and the distributed case [55].
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Also from Lemma 11.1, for a sufficiently large k, S(k)
i,` → S̄i,` for all i ∈ S and ` ∈M . Define

L
(k)

i,` , (µ
(k)
i,` )/(µ

(k)
i,τ ). One can instantly have L

(k)
i,` = L

(k−1)
i,` · (Λ(k)

i,` )/(Λ
(k)
i,τ ). Suppose that k is

sufficiently large. Let k̄ be a positive integer and let

Rk+k̄−1
k−1 , ln

L
(k+k̄−1)

i,`

L
(k−1)

i,`

= ln

Λ
(k+k̄−1)
i,` Λ

(k+k̄−2)
i,` · · ·Λ(k)

i,`

Λ
(k+k̄−1)
i,τ Λ

(k+k̄−2)
i,τ · · ·Λ(k)

i,τ

 . (11.16)

It follows from (11.4) and (11.15) that

2
k̄

Rk+k̄−1
k−1 = ln

|S̄i,τ |
|S̄i,`|

− tr

[
1
k̄

k+k̄−1

∑
κ=k

r(κ)i,` (r
(κ)
i,` )

>(S̄i,`)
−1

]
+ tr

[
1
k̄

k+k̄−1

∑
κ=k

r(κ)i,τ (r
(κ)
i,τ )

>(S̄i,τ)
−1

]
. (11.17)

Note that with τ being the true mode, the ergodicity implies that as k̄→ ∞,

1
k̄∑

k+k̄−1
κ=k r(κ)i,τ (r

(κ)
i,τ )

>→ S̃i,τ ,

where S̃i,τ is the true covariance matrix of the innovation sequence at the steady state. Let Si,τ ,

S̄i,τ − S̃i,τ . Then the last term on the right-hand side of (11.17), with a sufficiently large k̄, has the

form of

tr[(S̄i,τ −Si,τ)(S̄i,τ)
−1] = mi− tr[(Si,τ)(S̄i,τ)

−1].

With this combined with (11.17), one has

2k̄−1Rk+k̄−1
k−1 = α +β + γ,

where α =−tr
(
(Si,τ)

(
S̄i,τ
)−1
)

,

β = ln
|S̄i,τ |
|S̄i,`|

+mi− tr
(
(S̄i,`)

−1(S̄i,τ)
)
,

and

γ = tr
([

S̄i,τ −
1
k̄∑

k+k̄−1
κ=k r(κ)i,`

(
r(κ)i,`

)>]
(S̄i,`)

−1
)
.
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Note that S̄i,`� 0, ∀`∈M . The guaranteed consistency implies that S̄i,τ � S̃i,τ , and hence Si,τ � 0. It

follows from Lemma 11.4 that α ≤ 0. Moreover, it follows from Lemma 11.3 that β ≤ 0. Moreover,

if (11.14) holds, it follow from Lemma 11.4 that γ < 0. It follows from (11.16) and (11.17) that

L
(k+k̄−1)

i,` →C exp
{
− k̄c

2

}
L

(k−1)
i,`

for some constants c > 0 and C. Therefore, for each i ∈S and ` 6= τ , (µ(k)
i,` )/(µ

(k)
i,τ )→ 0 or equiv-

alently, µ
(k)
i,` → 0. As a result, for each i ∈S , µ

(k)
i,τ → 1. The conclusion of µ

(k)
i,τ → 1, ∀i ∈ S̄ can

be directed observed from two facts. One one hand, Condition C4 guarantees that each i ∈ S̄ must

have a directed path from at least one agent in S . One the other hand, as the mode probabilities by

each agent in S are never affected by other agents, the nature of the diffusion step (11.10) indicates

that the mode probabilities of all agents in S̄ must eventually approach those of the agents in S .

This concludes the proof.

Throughout the rest of this section, let τ ∈M be defined in Theorem 11.5. Some com-

ments about the sufficient condition (11.14) in Theorem 11.5 are provided here. Note that for each

mode ` 6= τ , if it is not even “close” to the true underlying one, the condition is automatically sat-

isfied in general as the local estimates matched to a very wrong model will be erroneous and even

divergent. As a result, the summation of the products of the corresponding innovation term with its

transpose will be significantly large or even unbounded.

A trickier case is when there exists a certain ` ∈M , denoted as mode `′, such that `′ 6=

τ but mode `′ is “close” to mode τ . For example, mode `′ can have the same state transition

matrix (F`′ = Fτ ), but with wrong but close process noise covariance matrix (Q`′ 6= Q`). In such

cases, the estimates matched to mode `′ also converge and hence for a sufficiently large k̄, one has

1
k̄ ∑

k+k̄−1
κ=k r(κ)i,`′ (r

(κ)
i,`′ )

> → S̃i,`′ . Then (11.14) might not hold as the innovation covariance matched

147



to the true mode is only approximated rather than the true one at the first place. As a result, it

is possible that S̄i,τ � S̃i,`′ although S̃i,τ ≺ S̃i,`′ , where S̄i,τ and S̃i,τ are defined in Theorem 11.5.

Note that this would not be an issue in the centralized scenario [4] because (i) the true innovation

covariance can be computed directly; and (ii) the mode-matched estimate corresponding to the true

mode is the optimal one (due to the optimality of the Kalman filter given accurate models and noise

statistics). Also note that, however, if S̄i,τ is close to S̃i,τ , the sufficient condition (11.14) is more

likely to hold. This also emphasizes the importance of improving the estimate confidence [80]. The

detailed studies for the case where the proposed sufficient condition do not hold are left for future

work.

With the each agent’s local mode probability with respect to the true mode converging to

one, the output local estimate errors at all agents are asymptotically uniformly upper bounded (in

the PD sense), as stated in the following corollary.

Corollary 11.6 Let τ ∈M and S̄i,`, ` ∈M be, respectively, defined in Theorem 11.5 and Lemma

11.1. Suppose that Conditions C1 – C5 hold and F` is nonsingular, ∀` ∈M . Also suppose that the

sufficient condition (11.14) is satisfied. Then, as k→ ∞, there exists P̄� 0 such that

E[(x(k)− x̂k|k
i )(x(k)− x̂k|k

i )>]� P̄, ∀i ∈ V .

Proof. The conclusion can be obtained by following (11.11) and the conclusion of Theorem 11.5.

Since for each i ∈ V , µ
(k)
i,τ → 1 as k→ ∞. It follows from (11.11) that

x̂k|k
i = ∑`∈M µ

(k)
i,` x̂k|k

i,` → x̂k|k
i,τ .
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As a result,

lim
k→∞

E[(x(k)− x̂k|k
i )(x(k)− x̂k|k

i )>]

=E[(x(k)− x̂k|k
i,τ )(x

(k)− x̂k|k
i,τ )
>]� P̂k|k

i,τ , ∀i ∈ V ,

where the last inequality is due to the guaranteed consistency of the mode-matched local estimate

corresponding to the true mode. As P̂k|k
i,τ � 0, ∀i ∈ V , the proof is completed by selecting P̄ such

that P̄� P̂k|k
i,τ , ∀i ∈ V .

Following the discussion in Remark 11.2, when it comes to the scenario of multiple pos-

sible underlying modes, as long as the very mild joint detectability condition in Corollary 9.16 is

satisfied for each possible mode (Condition C4), a uniform upper bound can always be found for the

approximated local estimate error covariance matched to the mode. However, this is not sufficient

to show that the actual error covariance of the output local estimate is uniformly upper bounded as

the actual error covariances of the local estimates matched to wrong/inaccurate modes are in general

not bounded by this uniform bound.

In summary, the uniform upper bound of the actual error covariance of the output local

estimates is guaranteed by two keys. On one hand, the guaranteed consistency of the local esti-

mates matched to the true underlying mode implies that its actual estimate error covariance is upper

bounded by the approximated one, and hence upper bounded by the uniform upper bound. On the

other hand, the guaranteed convergence to the true underlying mode. With these two keys jointly

satisfied, the output local estimates are guaranteed to be consistent and therefore the error covari-

ance of the output local estimate is upper bounded by the approximated error covariance, which is

further uniformly upper bounded.
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11.4 Simulations

In this section, simulations are given to show the performance of the extended algorithms,

and to illustrate the analytical results in previous sections. The target of interest is assumed to move

in the 2D-plane with two possible modes, i.e., M = {1,2}. The state vector

x(k) = [x(k),y(k), ẋ(k), ẏ(k), ẍ(k), ÿ(k)]>,

with x(k) and y(k) being the position at time k along each direction. On each direction, the target

moves with a constant velocity if ` = 1, and a constant acceleration if ` = 2. The state transition

matrices are therefore given as,

F1 =

1 T

0 1

⊗ I2, F2 =


1 T 1

2 T 2

0 1 T

0 0 1

⊗ I2,

where T = 0.2 second is the sampling period. The process noise covariance matrices are, respec-

tively,

Q1 =

1
3 T 3 1

2 T 2

1
2 T 2 T

⊗ I2, Q2 =


1
20 T 5 1

8 T 4 1
6 T 3

1
8 T 4 1

3 T 3 1
2 T 2

1
6 T 3 1

2 T 2 T

⊗ I2.

Note that each mode-matched estimate has different dimension. When outputting the estimate using

(11.11), the estimate based on mode 1 will only affect the first four dimensions of the outputting

estimate. Two simulations are given.

Simulation 1. The first simulation is done for the case where the underlying mode is

fixed as mode 2. A set of 8 agents with topology shown on the top of Figure 11.1 are used to track
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Figure 11.1: Topologies for simulation 1 (top) and 2 (bottom).

the target. Specifically, agent 7 and agent 8 are able to sense only the position of the target along,

respectively, the x and y direction; agent 1 is able to sense both. None of the other agents is able

to directly sense the target, i.e., S̄ = {2,3,4,5,6}. Note that there is not even a direct spanning

tree in this graph. A hypothetic centralized (ctlz.) GPB1 estimator with all measurements collected

from the entire network is used as the benchmark. The trajectories estimated by the centralized

GPB1 estimator and the local agents using the GPB1-based DHIF (GPB1-DHIF) algorithm are

plotted along with the true trajectory in Figure 11.2. As observed, all local agents successfully

track the target. The probabilities of mode 1 being true, computed by the centralized GPB1 and

by the GPB1-DHIF algorithm, are plotted in Figure 11.3. As observed, all agents asymptotically

identify the underlying mode. The errors of the overall local estimates as well as the corresponding

3σ -envelopes, computed by the centralized GPB1 and by the GPB1-DHIF algorithm, for states 2, 3
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Figure 11.2: True trajectory as well as the trajectories estimated by the centralized GPB1 and the
GPB1-DHIF algorithm: overview (top) and zoomed-in view (bottom) at the final location.
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Figure 11.3: Probability of mode 1 computed by the centralized GPB1 and by the GPB1-DHIF
algorithm.
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envelopes (dashed lines in the same colors) by the GPB1-DHIF algorithm and the centralized GPB1
in steady state: y-position (top), x-velocity (middle) and y-acceleration (bottom). The colors are
consistent with Figure 11.3.
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and 6 are plotted in Figure 11.4. As observed, the errors are bounded by in the 3σ -envelopes. This

verifies the conclusion of Corollary 11.6.

Simulation 2. In the second simulation, we let the target have its underlying mode sub-

jected to change over time. The mode transition matrix is

ΠΠΠ =

0.99 0.01

0.01 0.99

 .
A set of 8 agents with topology shown on the right-hand side of Figure 11.1 is used to track the

target. Specifically, only agent 1 and agent 8 are able to sense only the position of the target along,

respectively, x and y direction. Therefore, S̄ = {2,3,4,5,6,7}. Note that the network connectivity

is very week. Moreover, there is not a single agent with joint observability about the target of interest

in its inclusive neighborhood. A hypothetic centralized (ctlz.) IMM estimator with all measurements

across the network is used as the benchmark. The trajectories estimated by the centralized IMM and

by the local agents using the IMM-based DHIF (IMM-DHIF) algorithm are plotted along with the

true trajectory in Figure 11.5. As observed in the figure, all local agents successfully track the

target. The probability of mode 1 being true, computed by the centralized IMM and the IMM-DHIF

algorithm are plotted along with the true underlying mode in Figure 11.6. As observed that the

mode probabilities computed by IMM-DHIF algorithm follow the trend of the true mode switching.

Compared to the centralized IMM estimator, the local agents, especially the ones that are more

“distant” from the agents directly sensing the target, have slower reaction to the mode switching.

This is due to the weak connectivity of the communication graph and poor local joint observabilities

at each agent.
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Figure 11.5: True trajectory as well as the trajectories estimated by the centralized IMM and the
IMM-DHIF algorithm: overview (top) and zoomed-in view at the final location.
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Figure 11.6: Probability of mode 1 computed by the centralized IMM and by the IMM-DHIF algo-
rithm
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11.5 Conclusion

This chapter extends the DHIF algorithm proposed in Chapter 9 to the scenario where

the process model (respectively, models) of interest is (respectively, are) uncertain. Two algorithms

are extended and shown to have the advantages of being fully distributed, robust against agents not

directly sensing the target and require only a single communication iteration during each sampling

interval. When the underlying model is unknown but fixed, all local agents are analytical shown to

asymptotically identify the true underlying mode and hence come up with consistent output local

estimates with sufficient conditions proposed. Simulations are used to illustrate the effectiveness of

the proposed algorithms.
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Chapter 12

Conclusion & Future Work

12.1 Conclusion

Part II studies the problem of distributed dynamic state estimation using networked local

multi-agents. The scenario where the process and sensing models are both linear, is first consid-

ered in Chapter 9. The proposed distributed hybrid information fusion (DHIF) algorithm has the

advantages of being unified, being robust against the presence of local agents sensing no target, and

requiring no global information and only a single communication iteration during each time inter-

val. It is also explored in this work the very mild conditions on general directed switching graphs

and joint network observability/detectability to guarantee the stochastic stability of the proposed

algorithm.

Then the DHIF algorithm is extended to two more general scenarios, namely, the scenario

with nonlinearities involved in both the process and the sensing models, and the scenario with un-

certain process models. In the former scenario, a nonlinear DHIF algorithm is proposed by adopting

the unscented transformation approach. In the latter one, two algorithms are proposed by following

157



the two well-known multiple model (MM) paradigms, namely, the first order generalized pseudo

Bayesian and the interacting MM approaches. The extended algorithms in both scenarios inherit

the advantages of the original DHIF algorithm. The stability is also rigorously analyzed in each

extended case.

12.2 Future Work

There are several potential directions for the future work. First of all, it would be interest-

ing to analytically look into how the network topologies affects the performance difference between

the DHIF algorithm and the centralized Kalman filter. This would be useful in designing the sensor

network that works efficiently yet keeps a low cost. Secondly, it would be useful to analytically

show the time invariance property of the local approximated estimate error covariance given arbi-

trary initial conditions in the case with LTI models and time-invariant communication graph. This

would be the counterpart of the discrete algebraic Riccati equation of the centralized Kalman filter,

in the distributed scenario. Thirdly, the stability analyzes for the IMM-based DHIF algorithm and

the nonlinear-DHIF algorithm with nonlinear sensing model, are still to be explored. Last, it is

also possible to consider the scenario with multiple nonlinear process models, and to combine the

proposed MM-DHIF algorithm with the nonlinear-DHIF algorithm for such a scenario. It would

be interesting yet very challenging to rigorously analyze the stability properties of the combined

algorithm.
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