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ABSTRACT OF THE DISSERTATION

Studies of Residual Diffusivity and Curvature Dependent Effective Velocity in Fluid Flows
by Analytical and Mechine Learning Methods

By

Jiancheng Lyu

Doctor of Philosophy in Mathematics

University of California, Irvine, 2018

Professor Jack Xin, Chair

In chaotic advection generated by a class of time periodic cellular flows, the residual diffusion

refers to the non-zero effective (homogenized) diffusion in the limit of zero molecular diffusion

as a result of chaotic mixing of the streamlines. We study the residual diffusion phenomenon

computationally and analytically.

We make use of the Poincaré map of the advection-diffusion equation to bypass long time

simulation and gain accuracy in computing effective diffusivity and learning adaptive basis.

We observe a non-monotone relationship between residual diffusivity and the amount of

chaos in the advection, though the overall trend is that sufficient chaos leads to higher

residual diffusivity. The adaptive orthogonal basis with built-in sharp gradient structures is

constructed by taking snapshots of solutions in time, preprocessing with deep neural network

(DNN) if necessary and performing singular value decomposition of the matrix consisting of

those snapshots as column vectors. The trained orthogonal adaptive basis makes possible

low cost computation of the effective diffusivities at smaller molecular diffusivities. The

testing errors decrease as the training occurs at smaller molecular diffusivities.

We also study the enhanced diffusivity in the so called elephant random walk model with

stops by including symmetric random walk steps at small probability ε. At any ε > 0, the

ix



large time behavior transitions from sub-diffusive at ε = 0 to diffusive in a wedge shaped

parameter regime where the diffusivity is strictly above that in the un-perturbed model in the

ε ↓ 0 limit. The perturbed model is shown to be solvable with the first two moments and their

asymptotics calculated exactly in both one and two space dimensions. The model provides

a discrete analytical setting of the residual diffusion phenomenon as molecular diffusivity

tends to zero. On a related nonlinear case, we give theoretical proof that the turbulent flame

speed as an effective burning velocity is decreasing with respect to the curvature diffusivity

(Markstein number) for shear flows in the well-known G-equation model. Besides, we solve

the selection problem of weak solutions when the Markstein number goes to zero and solutions

approach those of the inviscid G-equation model. The limiting solution is given by a closed

form analytical formula.

Finally for the dimensionality reduction on DNNs, we propose BinaryRelax, a simple two-

phase algorithm, for training DNNs with quantized weights. We relax the hard constraint

that characterizes the quantization of weights into a continuous regularizer via Moreau enve-

lope, which turns out to be the squared Euclidean distance to the set of quantized weights.

The pseudo quantized weights are obtained by linearly interpolating between the float weights

and their quantizations. A continuation strategy is adopted to push the weights towards the

quantized state by gradually increasing the regularization parameter. We test BinaryRelax

on the benchmark CIFAR and ImageNet color image datasets to demonstrate the superior-

ity of the relaxed quantization approach and the improved accuracy over the state-of-the-art

training methods. Moreover, we prove the convergence of BinaryRelax under an approximate

orthogonality condition.
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Chapter 1

Introduction

1.1 Residual Diffusion and Turbulent Flame Speed

Diffusion enhancement in fluid advection has been studied for nearly a century, dating back

to the pioneering work of Taylor [66] in 1921. It is a fundamental problem to characterize and

quantify the large scale effective diffusion (denoted by DE) in fluid flows containing complex

and turbulent streamlines. Much progress has been made based on the passive scalar model

[47]:

Tt + (v ·D)T = D0 ∆T, (1.1)

where T is a scalar function (e.g. temperature or concentration), D0 > 0 is a constant (the

so-called molecular diffusion), v (x, t) is a prescribed incompressible velocity field, D and ∆

are the spatial gradient and Laplacian operators.

When the flow is steady, periodic and two dimensional, precise asymptotics of DE are known.

A prototypical example is the steady cellular flow [17, 26], v = (−Hx2 , Hx1), H = sinx1 sinx2,

1



see also [53, 70, 71] for its application in effective speeds of front propagation. The asymp-

totics of the effective diffusion along any unit direction in the cellular flow obeys the square

root law in the advection dominated regime: DE = O(
√
D0) � D0 as D0 ↓ 0, [26, 29].

However, if the streamlines are fully chaotic (well-mixed), the enhancement can follow a

very different law. The simplest example is the time periodic cellular flow:

v = (cos(x2), cos(x1)) + θ cos(t) (sin(x2), sin(x1)), θ ∈ (0, 1]. (1.2)

The first term of (1.2) is a steady cellular flow with a π/4 rotation, and the second term

is a time periodic perturbation that introduces an increasing amount of disorder in the

flow trajectories as θ becomes larger. At θ = 1, it is fully mixing, and empirically sub-

diffusive [85]. The flow (1.2) has served as a model of chaotic advection for Rayleigh-Bénard

experiment [8]. Numerical simulations [5, 51] suggest that at θ = 1, the effective diffusion

along the x1-axis, DE
11 = O(1) as D0 ↓ 0, the so called residual diffusion arises. As D0 ↓ 0,

the solutions develop sharp gradients, and render accurate computation costly, especially if

one is interested in DE parametrized by θ.

Recall the formula for effective diffusivity tensor [5]:

DE
ij = D0 (δij + 〈Dwi ·Dwj〉) , (1.3)

where w is a mean zero space-time periodic vector solution of:

wt + (v ·Dw)−D0∆w = −v, (1.4)

and the bracket denotes space-time average over the periods. The solution of (1.4) is unique

by the Fredholm alternative. The correction to D0 is positive definite in (1.3). We will be

focusing on the singular solutions of (1.4) at small D0. In Chapter 2, we compute w by

the spectral method since Fourier basis can represent cellular flow with few modes [44]. By

2



truncating the Fourier expansion, we find an approximate system of ordinary differential

equations (ODEs). The time periodic solution is constructed as the unique fixed point of

the Poincaré map of the ODE’s time 2π flow. Formula (1.3) is then used to calculate DE.

The motion of a diffusing particle in the flow (1.2) also satisfies the stochastic differential

equation (SDE):

dXt = v(Xt, t) dt+
√

2D0 dWt, X(0) = (x0, y0) ∈ R2, (1.5)

where D0 > 0 is molecular diffusivity as above, Wt is the standard 2-dimensional Wiener

process. The effective diffusivity in the unit direction e can be given by mean square dis-

placement at large times [3]:

DE (D0, e, θ) = lim
t↑+∞

E(|(X(t)−X(0)) · e|2)/t. (1.6)

In Chapter 3, we analyze the residual diffusion phenomenon in a random walk model which is

solvable in the sense of moments and has certain statistical features of the SDE model (1.5).

The baseline random walk model is the so-called elephant random walk model with stops

(ERWS) [35] which is non-Markovian and exhibits sub-diffusive, diffusive and super-diffusive

regimes. The ERWS plays the role of flow (1.2) in that there is a sub-diffusive statistical

regime, which is absent in the earlier version of the ERW model without stops [63]. Stops in

random walk models are often interpreted as occasional periods of rest during an animal’s

movement [68]. Recall that the chaotic system from (1.5) is sub-diffusive [85] at D0 = 0

and transitions to diffusive with residual diffusion at D0 > 0. To mimic this in the ERWS

model, we add a small probability of symmetric random walk in the sub-diffusive regime

and examine the large time behavior of the mean square displacement [45]. Interestingly,

the sub-diffusive regime also transitions into diffusive regime and a wedge shaped parameter

region appears where the diffusivity is strictly above that of the baseline ERWS model in

3



the zero probability limit of the symmetric random walk (analogue of the zero molecular

diffusivity limit). In the context of animal dispersal in ecology, the emergence of residual

diffusion indicates that the large time statistical behavior of the movement can pick up

positive normal diffusivity when the animal’s rest pattern is slightly disturbed consistently

in time. We also extend our analysis to a two dimensional ERWS model (see [20] for a

related solvable model).

A nonlinear case in multi-scale fluid dynamics is the propagation of flame, which can be

formulated as the following G-equation model

Gt + V (x) ·DG+ sl |DG| = 0 in Rn × (0,∞).

Here the zero level set of G(x, t) represents the flame front, and the burnt and unburnt

regions are {G(x, t) < 0} and {G(x, t) > 0}, respectively, see Figure 1.1. The velocity of

ambient fluid V : Rn → Rn is assumed to be smooth, Zn-periodic and incompressible (i.e.

divV = 0). The G-equation follows from a simple motion law: ~vn = sl + V (x) · n, i.e. the

normal velocity is the laminar flame speed sl plus the projection of V along the normal

direction.

unburned 

fluid 

burned

fluid 

flame 

front 

 

 

G > 0  G(x,t)=0  G < 0 

 

 

 

 

 

Figure 1.1: Level-set formulation of front propagation and curvature effect.

The curvature effect in turbulent combustion was first studied by Markstein [48], which says

that if the flame front bends toward the cold region (unburned area, point C in Figure 1.1),

4



the flame propagation slows down. If the flame front bends toward the hot spot (burned area,

point B in Figure 1.1), it burns faster. An empirical linear relation proposed by Markstein

[48] to approximate the dependence of the laminar flame speed on the curvature (see also

[56], [64], etc) is

sl = s0
l (1− d̃ κ). (1.7)

Here s0
l , the mean value, is a positive constant. The parameter d̃ > 0 is the so-called

Markstein length proportional to the flame thickness. The mean curvature along the flame

front is κ. κ changes sign along a curved flame front in general. Plugging the expression of

the laminar flame speed (1.7) into the G-equation and normalizing the constant s0
l = 1, we

obtain a mean curvature type equation

Gt + V (x) ·DG+ |DG| − d̃ |DG| div

(
DG

|DG|

)
= 0. (1.8)

A mathematically interesting and physically important question is: how does the “averaged”

flame propagation speed depend on the curvature term? There is a consensus in combustion

literature that the curvature effect slows down flame propagation [61]. Heuristically, this

is because the curvature term smooths out the flame front and reduces the total area of

chemical reaction [64]. However, this folklore has never been rigorously justified mathemati-

cally. The decrease of turbulent flame speed with respect to the Markstein number has been

experimentally observed (e.g., [15]). In Chapter 4, we consider the shear flow:

V (x) = (v(x2), 0) for x = (x1, x2) ∈ R2,

where v : R→ R is a smooth periodic function. Establishing a highly sophisticated class of

inequalities, we prove the average flame speed (an effective burning velocity) is decreasing

with respect to the curvature diffusivity (Markstein number) for shear flows [46].

5



1.2 Adaptive Basis Learning and Dimensionality Re-

duction on DNNs

In Chapter 5, we shall do dimensionality reduction on solving the cell problem (1.4) and con-

struct adaptive basis functions to handle the singular solutions. The snapshots of solutions

of (1.4) in the time interval [0, 2π] are saved into columns of a matrix W . Adaptive basis

can be learned from W at a few sampled D0 or θ values. The equation (1.4) at other D0 or

θ ∈ (0, 1] will be solved in terms of the adaptive basis trained at the closest sample D0 or

θ value. We shall see that the number of adaptive basis functions is under a few hundred,

much less than that of Fourier basis by several orders of magnitude. The relative error of the

adaptive solution from a resolved spectral solution is under 6.5 % when testing at D0 = 10−5

and training at D0 = 10−4. Thus we manage to achieve accurate enough solutions at much

lower costs in the regime of small D0 where the number of Fourier basis functions grows

rapidly.

A straightforward way to find adaptive basis functions is to compute left singular eigenvectors

corresponding to the top singular values of W [44]. The procedure of taking snapshots and

performing singular value decomposition (SVD) is standard in reduced order modeling [57]

and is known as proper orthogonal decomposition (POD) in the fluid dynamics literature

[43, 30]. The residual diffusivity problem we study here however offers an ideal testing ground

for the evaluation of POD which lacks theoretical guarantees in general. The success of POD

relies on the underlying dynamics being governed by a unique low dimensional attractor. In

our case, the time periodicity of v helps to reduce the evolution problem (1.4) to a Poincaré

map problem. The snapshots (training data) are directly drawn from the time periodic

solution, hence more effective for learning.

It is observed that as D0 gets smaller, thinner structures arises in the solution. A natural

approach to improve the adaptive basis learning is to incoperate in the basis functions that
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characteristic. In other words, we would like to have adaptive basis with thinner layer

structures. One way to get sharpened adaptive basis is to compute modified “sparse PCA”

of solution matrix W , where the L1 norm of the gradient of basis functions is added as a

penalty. However, the modified “sparse PCA” usually involves convergence issue and is not

efficient especially when the orthogonality constraint is imposed. Here we try pre-processing

of W instead and map W to its counterpart with thinner structures. That procedure is quite

similar to super-resolution [72, 84, 58], i.e. reconstructing a high-resolution image from its

low-resolution counterpart. Thus we modify a generative adversial network based super-

resolution [37] (SRGAN) and apply it to the preprocessing, where W ’s at larger D0 and

smaller D0 are used for input and target data respectively during training. Hence instead

of computing SVD for some particular W itself, we feed the trained deep neural network

(DNN) model with W and find singular vectors of the output.

We are also interested in dimensionality reduction on DNNs themselves. There is a growing

interest in deploying DNNs on low-power embedded systems with limited memory storage

and computing power, such as cell phones and other battery-powered devices. However,

DNNs typically require hundreds of megabytes of memory storage for the trainable full-

precision floating-point parameters or weights, and need billions of FLOPs to make a single

inference. Recent efforts have been devoted to the training of DNNs with coarsely quantized

weights which are represented using low-precision (8 bits or less) fixed-point arithmetic

[31, 19, 39, 81, 82, 76, 80, 54, 7, 79, 41]. Quantized neural networks enable substantial

memory savings and computation/power efficiency, while achieving competitive performance

with that of full-precision DNNs. Moreover, quantized weights can exploit hardware-friendly

bit-wise operations and lead to dramatic acceleration at inference time.

The simplest way to perform quantization would be directly rounding the weights of a pre-

trained full-precision network, which often leads to poor accuracy at bit-width under 8.

From the perspective of optimization, the training of quantized networks can be naturally

7



abstracted as a constrained optimization problem of minimizing some empirical risk subject

to a set constraint that characterizes the quantization of weights:

min
x∈Rn

f(x) :=
1

N

N∑
j=1

`j(x) subject to x ∈ Q. (1.9)

Given a training sample of input Ij and label uj, the corresponding training loss is

`j(x) = `(σl(xl ∗ · · · σ1(x1 ∗ Ij)), uj),

where x = [x>(1), . . . , x
>
(l)]
> and x(i) ∈ Rni contains the ni weights in the i-th linear (fully

connected or convolutional) layer with
l∑

i=1

ni = n, σi is some element-wise nonlinear function.

“∗” denotes either matrix-vector product or convolution operation; reshaping is necessary

to avoid mismatch in dimensions. For layer-wise quantization, the set Q takes the form of

Q1 × · · · × Ql, where x(i) ∈ Qi := R+ × {±q1,±q2, . . . ,±qm}ni . Here R+ denotes the set

of nonnegative real numbers and 0 ≤ q1 < q2 < · · · < qm represent the m quantization

levels and are pre-determined. The weight vector in the i-th layer enjoys the factorization

x(i) = si · Q(i) for some Q(i) ∈ {±q1,±q2, . . . ,±qm}ni and some trainable layer-wise scalar

si ≥ 0. si is shared by all weights across the i-th linear layer and will be stored separately

from the quantized numbers qi for deployment efficiency. The storage for the scaling factors

is negligible as there are so few of them. Weight quantization has two special cases as follows.

• 1-bit binarization: m = 1 and Qi = R+ × {±1}ni . The storage of Q(i)’s only needs

1 bit for representing the signs. Compared to the full-precision model, we have 32×

memory savings.

• 2-bit ternarization: m = 2 and Qi = R+ × {0,±1}ni . The storage needs 2 bits for the

signs and the binary numbers {0, 1}, which gives 16× model compression rate.

On the computational side, with sampled mini-batch gradient ∇fk at the k-th iteration, the
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classical projected stochastic gradient descent (PSGD) [18, 62]


yk+1 = xk − γk∇fk(xk)

xk+1 = projQ(yk+1),

(1.10)

performs poorly however, and gets stagnated when updated with a small learning rate γk.

It is the quantization/projection of weights that “rounds off” small gradient updates and

causes the plateau as explained by Li et al. in a recent study [40]. Instead of using the

standard gradient step in (1.10), a hybrid gradient update, referred as BinaryConnect [40]

yk+1 = yk − γk∇fk(xk)

was adopted by Courbariaux et al. [19] and has become the workhorse algorithm for training

quantized DNN models such as Xnor-Net [59] and TWN [39]. By introducing the augmented

Lagrangian of (1.9), more complicated algorithms based on alternating minimization were

proposed in [11] and [38]. Despite the succinctness and effectiveness of BinaryConnect, the

only convergence analysis of it appeared in [40] under convexity assumption on the loss

function. Different quantizers have also been explored [19, 59, 81, 39, 76, 54, 80, 12, 36], all

of which maintain a sequence of purely quantized weights during the training.

In Chapter 6, we propose a novel relaxed quantization approach called BinaryRelax, to

explore more freely the non-convex landscape of the objective function of the DNNs un-

der the discrete quantization constraint [75]. We relax the set constraint into a continuous

regularizer, which leads to a relaxed quantization update. Besides, we set an increasing regu-

larization parameter, driving xk slowly to the quantized state. When the training error stops

decaying at small γk, we switch to regular quantization to get genuinely quantized weights

as desired. By exploiting the structure of quantization set Q, we prove the convergence of

BinaryRelax in the non-convex setting, which naturally covers that of BinaryConnect.
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Chapter 2

Computing Residual Diffusivity via

Spectral Method

2.1 Effective Diffusivity

2.1.1 Multi-scale analysis

Let v (x, t) be a velocity flow periodic in x ∈ R2 and t, ∇ · v = 0 and have mean zero. The

advection-diffusion (passive scalar) equation is

ut + (v · ∇)u = D0∆u, (2.1)

where D0 > 0 is a constant.

Remark 2.1. Since v (x, t) is incompressible and has mean zero in space, there exists a

2 × 2 skew-symmetric matrix H = (Hij (x, t)) such that ∇ ·H = v. In fact, without loss of

generality, suppose v (x, t) is 2π-periodic in spatial and temporal variables, and v = (v1, v2).
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Define

Hpq (x, t) =
1

i

∑
k 6=0

eik·x
kpvq,k (t)− kqvp,k (t)

|k|2
,

for p, q = 1, 2, where vp (x, t) =
∑
k∈Z2

eik·xvp,k (t), p = 1, 2. It follows from ∇ · v = 0 that

∇ ·H = v. Hence equation (2.1) can be written in the form

ut −
(
aij (x, t)uxj

)
xi

= 0,

where

aij (x, t) = D0δij +Hij (x, t) .

The matrix (aij (x, t)) is periodic and uniformly elliptic for D0 > 0.

In the large-distance and large-time scaling x→ x/ε, t→ t/ε2, equation (2.1) becomes

uεt (x, t) +
1

ε

(
v

(
x

ε
,
t

ε2

)
· ∇
)
uε (x, t) = D0∆uε (x, t) .

Initial data are independent of ε,

uε (x, 0) = U (x) .

Solution can be sought as a multi-scale expansion of the form:

uε (x, t) = u(0) (x, t; y, τ) + εu(1) (x, t; y, τ) + ε2u(2) (x, t; y, τ) + · · · ,

where y = x/ε and τ = t/ε2.
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Let ∂ and ∇ denote gradient operator with respect to fast and slow space variables respec-

tively, w (x, t) be the periodic solution with vanishing average over periodicities to the cell

problem

wt (x, t) + (v (x, t) · ∇)w (x, t)−D0∇2w (x, t) = −v (x, t) . (2.2)

It can be calculated directly that u(0) and u(1) are in the form

u(0) (x, t; y, τ) = u(0) (x, t) ,

u(1) (x, t; y, τ) = u(1) (x, t) +w (y, τ) · ∇u(0) (x, t) .

Solvability of the equation

u(2)
τ + (v ·∂)u(2) −D0∂

2u(2) = −u(0)
t − (v ·∇)u(1) +D0∇2u(0) + 2D0∂ ·∇u(1)

implies the zero average of the right-hand side, so u(0) satisfies the effective equation

u
(0)
t (x, t) = DE

ij∇2u(0) (x, t) ,

u(0) (x, 0) = U (x) ,

where the effective diffusivity tensor

DE
ij = D0 (δij + 〈∂wi · ∂wj〉) ,

and 〈·〉 denotes space time average. Given (aij (x, t)) defined in Remark 2.1 being periodic

and uniformly elliptic, Theorem 2.1 in Chapter 2 of [3] says that uε converges to u(0) weakly

in the L2 sense as ε ↓ 0.

Explicit upper and lower bounds of DE are known [29] when v (x, t) = ∇⊥H (x) is time
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independent. Under appropriate assumptions on H (x), in particular for steady cellular

flows ( Eqn. (1.2) with θ = 0),

DE
ii = O

(√
D0

)
, i = 1, 2, D0 ↓ 0.

For n-dimensional steady flow, n ≥ 2, see [83] for the asymptotic limit of D0D
E as D0 tends

to zero. Shear layer structure is the typical case when the limit is not zero. Numerical results

[5, 51] suggest that if the streamlines of the flow are chaotic,

DE
11 = O (1) , D0 ↓ 0.

We shall recover this result and compute also DE
12 with our method.

2.1.2 ODEs from Fourier basis

Let us write v = (v, ṽ) and w = (w, w̃) in component form. Consider the first equation in

the cell problem (2.2):

wt + (v · ∂)w −D0∂
2w = −v. (2.3)

Equation (2.3) can be rewritten as an infinite system of ODEs of Fourier modes

dwk
dt

+D0 |k|2wk + i
∑
j∈Z2

[(k1 − j1) vj (t) + (k2 − j2) ṽj (t)]wk−j = −vk (t) ,

where w =
∑
k∈Z2

wk (t) eik·x, v =
∑
k∈Z2

vk (t) eik·x, and ṽ =
∑
k∈Z2

ṽk (t) eik·x.
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Set ‖k‖ = max {|k1| , |k2|}. A truncated solution with (2N + 1)2 modes

wN (x, t) =
∑
‖k‖≤N

wNk (t) eik·x (2.4)

solves

dwNk
dt

+D0 |k|2wNk + i
∑

‖k−j‖≤N

[(k1 − j1) vj (t) + (k2 − j2) ṽj (t)]wNk−j = −vk (t) . (2.5)

Thus DE
11 is approximated by

DE
11,N = D0

1 +
∑
‖k‖≤N

|k|2
〈
wNk w

N
k

〉 .

2.1.3 Poincaré map

Vectorize
{
wNk (t)

}
‖k‖≤N column-wise and denote the vector by w (t), then

dw

dt
= A (t) w + v (t) , (2.6)

where A is a (2N + 1)2 × (2N + 1)2 matrix and v is a (2N + 1)2 × 1 vector determined by

(2.5).

Define the Poincaré map P : R(2N+1)2 → R(2N+1)2 as:

P (x) = x (2π) , x ∈ R(2N+1)2 ,
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where x (t) solves


dx

dt
= A (t) x + v (t) ,

x (0) = x.

(2.7)

Also define P0 : R(2N+1)2 → R(2N+1)2 ,

P0 (x) = x (2π) , x ∈ R(2N+1)2 ,

where x (t) solves


dx

dt
= A (t) x,

x (0) = x.

(2.8)

Let e1, e2, . . . , e(2N+1)2 be the standard basis of R(2N+1)2 ,

M =
[
P0 (e1) P0 (e2) . . . P0

(
e(2N+1)2

)]
, b = P (0) ,

then

P (x) = Mx+ b, x ∈ R(2N+1)2 .

Let us impose

∫
[0,2π]2

wN (x, t) dx = 0, then wN0 (t) = 0. Hence the initial value of w (t) is

the solution to

x = Mx+ b

with x2N2+2N+1 = 0.

15



2.2 Numerical Method

We shall use Nt + 1 equally spaced grid points in the time interval [0, 2π].

2.2.1 Assemble matrices in the Poincaré map

Apply the classical Runge-Kutta method (e.g. RK4) to ODE (2.7) with zero initial value

for Nt steps,

x̂0 = 0,

x̂n+1 = L (A,v; x̂n, tn) ,

where L is the induction operator in RK4. Approximate b by b̂ = x̂Nt . Similarly, apply RK4

to ODE (2.8) with initial value ej,

x̂j,0 = ej,

x̂j,n+1 = L (A,0; x̂j,n, tn) ,

for j = 1, . . . , (2N + 1)2. Approximate P0 (ej) by m̂j = x̂j,Nt and M by

M̂ =
[
m̂1 m̂2 . . . m̂(2N+1)2

]
.

In practice, only half of m̂j’s are computed since wN−k = w̄Nk . It follows from (2.5) that

m̂2N2+2N+1 = e2N2+2N+1. Let j1, j2, . . . , jl be the vector indices corresponding to Fourier

modes indices

{k = (k1, k2) |k 6= 0, k1 ≤ k2} ,
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where l = 2N2 + 2N , and

X̂0 = [ej1 ej2 . . . ejl ] ,

then the following iteration for matrix

X̂n+1 = L
(
A,0; X̂n, tn

)

gives

[m̂j1 m̂j2 . . . m̂jl ] = X̂Nt .

For j /∈ {j1, j2, . . . , jl},

m̂j = F
(
m̂2l+1−j

)
, (2.9)

where F is to flip components of a vector. Thus the matrix M in the Poincaré map is

assembled. We note that the assembling of matrix M can be implemented in parallel.

2.2.2 Solve ODE and estimate effective diffusivity

The initial data x̂ for discretized form of ODE (2.6) is solved from the linear system

x̂ = M̂x̂+ b̂.
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Again by RK4, the numerical periodic solution to ODE (2.6) is computed as

ŵ0 = x̂,

ŵn+1 = L (A,v; ŵn, tn) .

The entire algorithm can be summarized as below.

Algorithm 1 Solving cell problem with Fourier basis.

1. Set l = 2N2 + 2N , X̂0 = [ej1 ej2 . . . ejl ] to be rearrangement of ek with
{k = (k1, k2) |k 6= 0, k1 ≤ k2}.
for n = 0, 1,. . . , Nt − 1 do

X̂n+1 = L
(
A,0; X̂n, tn

)
end for
Assemble M̂ using [m̂j1 m̂j2 . . . m̂jl ] = X̂Nt and (2.9).
2. Set x̂0 = 0.
for n = 0, 1,. . . , Nt − 1 do

x̂n+1 = L (A,v; x̂n, tn)
end for
b̂ = x̂Nt .
3. Solve x̂ = M̂x̂+ b̂.
Set ŵ0 = x̂.
for n = 0, 1,. . . , Nt − 1 do

ŵn+1 = L (A,v; ŵn, tn)
end for

For n = 0, 1, . . . , Nt, reorder ŵn as Fourier modes {ŵk,n}‖k‖≤N , then DE
11,N is estimated by

D̂E
11,N = D0

1 +
1

Nt

Nt∑
n=1

∑
‖k‖≤N

|k|2 |ŵk,n|2
 .

2.3 Numerical Results

In this section, we first present computational results of DE
11 by spectral method and Poincaré

map for small D0, recovering the early finding in [5] on time periodic cellular flows. We then
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perform a parameter dependence study of DE
11 on a family of such flows, and discover a non-

monotone relationship between DE
11 and the amount of chaos in the flows. Similar results

hold for DE
12.

2.3.1 Two-dimensional time-dependent flow

As in [5], we consider the time periodic cellular flow with chaotic Lagrangian trajectories:

v (x, t) = cos (x2) + sin (x2) cos (t) ,

ṽ (x, t) = cos (x1) + sin (x1) cos (t) .

(2.10)

Rewrite

v (x, t) =
1

2
(1− i cos t) eix2 +

1

2
(1 + i cos t) e−ix2 ,

ṽ (x, t) =
1

2
(1− i cos t) eix1 +

1

2
(1 + i cos t) e−ix1 .

Set e1 = (1, 0), e2 = (0, 1), then

v±e2 (t) = ṽ±e1 (t) =
1

2
(1∓ i cos t) ,

vk (t) = 0, k 6= ±e2,

ṽk (t) = 0, k 6= ±e1.

Hence (2.5) is reduced to

dwNk
dt

+D0 |k|2wNk +
1

2

[
k1 (i+ cos t)wNk−e2 + k1 (i− cos t)wNk+e2

+k2 (i+ cos t)wNk−e1 + k2 (i− cos t)wNk+e1

]
+ vk = 0.

Both A and v are sparse. Estimates of DE
11,N for some varied D0/N/Nt’s are shown in Table
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2.1-2.5. DE
11,N ’s vs. D0 are plotted in Figure 2.1 which resembles Figure 4 of [5] in the regime

D0 ≤ 0.1.

Nt

D̂E
11,N

N
30 35 40 45 50

1000 1.3412 1.3412 1.3412 1.3412 1.3412
1500 1.3412 1.3412 1.3412 1.3412 1.3412

Table 2.1: D̂E
11,N for flow (2.10) with D0 = 10−2.

Nt

D̂E
11,N

N
40 45 50 55 60

1000 1.3847 1.3787 1.3790 1.3795 1.3778
1500 1.3790 1.3795 1.3778 1.3773 1.3772

Table 2.2: D̂E
11,N for flow (2.10) with D0 = 10−3.

Nt

D̂E
11,N

N
40 45 50 55 60

1000 1.5448 1.5961 1.5087 1.5035 1.4936
1500 1.5459 1.5971 1.5099 1.5050 1.4949
2000 1.5460 1.5972 1.5101 1.5051 1.4951

Table 2.3: D̂E
11,N for flow (2.10) with D0 = 10−4.

2.3.2 Two-dimensional time-dependent flow with θ ∈ (0, 1]

Let us consider now the one parameter family of time periodic cellular flows

v (x, t) = cos (x2) + θ sin (x2) cos (t) ,

ṽ (x, t) = cos (x1) + θ sin (x1) cos (t) .

(2.11)
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Nt

D̂E
11,N

N
55 60 65 70 75 80

2000 1.6774 1.6268 1.7604 1.7528 1.8265 1.6984
2500 1.6793 1.6301 1.7651 1.7558 1.8336 1.7056

Table 2.4: D̂E
11,N for flow (2.10) with D0 = 10−5.

Nt

D̂E
11,N

N
55 60 65 70 75 80

2000 1.5676 1.6114 1.7351 1.7074 2.0494 1.5528
2500 1.6270 1.7410 1.8016 1.7882 2.1849 1.6831

Table 2.5: D̂E
11,N for flow (2.10) with D0 = 10−6.

As θ increases, the flow trajectories are more and more mixing and chaotic [85]. The Fourier

modes for the flow are:

v±e2 (t) = ṽ±e1 (t) =
1

2
(1∓ iθ cos t) ,

vk (t) = 0, k 6= ±e2,

ṽk (t) = 0, k 6= ±e1.

Similarly, (2.5) is reduced to

dwNk
dt

+D0 |k|2wNk +
1

2

[
k1 (i+ θ cos t)wNk−e2 + k1 (i− θ cos t)wNk+e2

+k2 (i+ θ cos t)wNk−e1 + k2 (i− θ cos t)wNk+e1

]
+ vk = 0.

A and v are still sparse. Estimates D̂E
11,N are shown in Table 2.6 and plotted in Figure 2.2.

These results are computed according to numerical parameters in Table 2.7. Larger values

of N/Nt did not alter the results significantly. We observed a non-monotone dependence of

DE
11 vs. θ in the small D0 regime, though the overall trend is that DE

11 increases with the

amount of chaos in the flows.
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Figure 2.1: Computed DE
11,N vs. D0 for flow (2.10), resembling Fig. 4 of [5] in the regime

D0 ≤ 0.1.

2.3.3 Estimates of DE
12

The second component of w = (w, w̃) can be approximated by Fourier modes in a similar

way to (2.4),

w̃N (x, t) =
∑
‖k‖≤N

w̃Nk (t) eik·x.

Hence an estimate of DE
12 is

DE
12,N = D0

∑
‖k‖≤N

|k|2
〈
wNk w̃

N

k

〉
.

Computed DE
12,N ’s vs. D0 for flow (2.10) are plotted in Figure 2.3. DE

12,N ’s vs. θ for flow

(2.11) with the same numerical parameters in Table 2.7 are plotted in Figure 2.4.
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θ

D̂E
11,N

D0
10−2 10−3 10−4 10−5 10−6

0.1 0.1625 0.0733 0.0466 0.0560 0.0954
0.2 0.2079 0.1507 0.1270 0.1054 0.1573
0.3 0.3020 0.3754 0.5615 0.7544 1.0406
0.4 0.3967 0.3921 0.3887 0.3820 0.4040
0.5 0.4315 0.3348 0.3432 0.3063 0.2563
0.6 0.4129 0.2823 0.2425 0.2120 0.2934
0.7 0.3954 0.2177 0.1708 0.1612 0.2156
0.8 0.5740 0.4902 0.5625 0.5708 0.5497
0.9 0.9543 1.1608 1.3140 1.2939 1.1494
1.0 1.3412 1.3778 1.4951 1.6301 1.7410

Table 2.6: Computed DE
11,N vs. θ for the time periodic cellular flow (2.11).

D0 10−2 10−3 10−4 10−5 10−6

N 50 60 60 60 60
Nt 1500 1500 2000 2500 2500

Table 2.7: Numerical parameters for computing D̂E
11,N .
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Figure 2.2: DE
11,N vs. θ for flow (2.11) with numerical parameters in Table 2.7.
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Figure 2.3: Computed DE
12,N vs. D0 for flow (2.10).
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Figure 2.4: DE
12,N vs. θ for the time periodic cellular flow (2.11) with numerical parameters

in Table 2.7.
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Chapter 3

Residual Diffusivity in Elephant

Random Walk Models with Stops

3.1 Perturbed ERWS Model and Moment Analysis

Consider a random walker on a one-dimensional lattice with unit distance between adjacent

lattice sites. Denote the position of the walker at time t by Xt. Time is discrete (t =

0, 1, 2, . . . ) and the walker starts at the origin, X0 = 0. At each time step, t→ t+ 1,

Xt+1 = Xt + σt+1,

where σt+1 ∈ {−1, 0, 1} is a random number depending on {σt} = (σ1, . . . , σt) as follows. Let

p, q, r, ε ∈ (0, 1) and p+q+r = 1. The process is started at time t = 0 by allowing the walker

to move to the right with probability s and to the left with probability 1− s, s ∈ (0, 1). For

t ≥ 1, a random previous time k ∈ {1, . . . , t} is chosen with uniform probability.
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(i) If σk = ±1,

P (σt+1 = σk) = p, P (σt+1 = −σk) = q,

P (σt+1 = 0) = r.

(ii) If σk = 0,

P (σt+1 = 1) = P (σt+1 = −1) = ε/2,

P (σt+1 = 0) = 1− ε.

When ε = 0, the model is reduced to the elephant random walk model with stops (ERWS)

[35].

3.1.1 First moment 〈Xt〉

At t = 0, it follows from the initial condition of the model for σ = ±1 that

P (σ1 = σ) =
1

2
[1 + (2s− 1)σ] .

Let γ = p − q, for t ≥ 1, it follows from the probabilistic structure of the model and

σk ∈ {1,−1, 0} that

P (σt+1 = 1| {σt}) =
1

t

t∑
k=1

[
σ2
k (1+σk)

p

2
+ σ2

k (1−σk)
q

2
+
(
1−σ2

k

) ε
2

]
=

1

t

t∑
k=1

[
σ2
k

1− r
2

+ σk
γ

2
+
(
1− σ2

k

) ε
2

]

=
1

2t

t∑
k=1

[
σ2
k (1− ε− r) + σkγ

]
+
ε

2
,
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P (σt+1 = −1| {σt}) =
1

t

t∑
k=1

[
σ2
k (1−σk)

p

2
+ σ2

k (1+σk)
q

2
+
(
1−σ2

k

) ε
2

]
=

1

t

t∑
k=1

[
σ2
k

1− r
2
− σk

γ

2
+
(
1− σ2

k

) ε
2

]

=
1

2t

t∑
k=1

[
σ2
k (1− ε− r)− σkγ

]
+
ε

2
,

P (σt+1 = 0| {σt}) =
1

t

t∑
k=1

[
σ2
kr +

(
1− σ2

k

)
(1− ε)

]
=

1

t

t∑
k=1

[
−σ2

k (1− ε− r)
]

+ 1− ε

=
1

2t

t∑
k=1

[
−2σ2

k (1− ε− r)
]

+ 1− ε.

Therefore, for σ = ±1, 0,

P (σt+1 = σ| {σt}) =
1

2t

t∑
k=1

[
σ2
k

(
3σ2 − 2

)
(1− ε− r) + σσkγ

]
+
σ2

2
ε+

(
1− σ2

)
(1− ε) .
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The conditional mean value of σt+1 for t ≥ 1 is

〈σt+1| {σt}〉 =
∑

σ=±1,0

σP (σt+1 = σ| {σt})

=
∑
σ=±1

σ

{
1

2t

t∑
k=1

[
σ2
k

(
3σ2 − 2

)
(1− ε− r) + σσkγ

]
+
σ2

2
ε+

(
1− σ2

)
(1− ε)

}
=
∑
σ=±1

σ

{
1

2t

t∑
k=1

[
σ2
k (1− ε− r) + σσkγ

]
+
ε

2

}

=
∑
σ=±1

1

2t

t∑
k=1

σ2σkγ,

hence,

〈σt+1| {σt}〉 =
γ

t
Xt. (3.1)

It follows that

〈σt+1〉 =
γ

t
〈Xt〉,

therefore

〈Xt+1〉 =
(

1 +
γ

t

)
〈Xt〉.

By the initial condition 〈X1〉 = 2s− 1,

〈Xt〉 = (2s− 1)
Γ (t+ γ)

Γ (1 + γ) Γ (t)
.
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Since lim
t→∞

Γ (t+ α)

Γ (t) tα
= 1, ∀α,

〈Xt〉 ∼
2s− 1

Γ (1 + γ)
tγ, t→∞.

From this point on, we shall take s = 1/2, and so 〈Xt〉 = 0, the mean square displacement

agrees with the second moment.

3.1.2 Second moment 〈X2
t 〉

The conditional mean value of σ2
t+1 for t ≥ 1 is

〈σ2
t+1

∣∣ {σt}〉 =
∑

σ=±1,0

σ2P (σt+1 = σ| {σt})

=
∑
σ=±1

σ2

{
1

2t

t∑
k=1

[
σ2
k

(
3σ2 − 2

)
(1− ε− r) + σσkγ

]
+
σ2

2
ε+

(
1− σ2

)
(1− ε)

}
=
∑
σ=±1

{
1

2t

t∑
k=1

[
σ2
k (1− ε− r) + σσkγ

]
+
ε

2

}

=
∑
σ=±1

{
1

2t

t∑
k=1

σ2
k (1− ε− r) +

ε

2

}

=
1− ε− r

t

t∑
k=1

σ2
k + ε.

It follows that

〈σ2
t+1

∣∣ {σt}〉 =
1− ε− r

t

t−1∑
k=1

σ2
k +

1− ε− r
t

σ2
t + ε

=
t− 1

t

(
1−ε−r
t− 1

t−1∑
k=1

σ2
k + ε

)
− t− 1

t
ε+

1− ε− r
t

σ2
t + ε

=
t− 1

t
〈σ2

t

∣∣ {σt−1}〉+
1− ε− r

t
σ2
t +

ε

t
,
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so

〈σ2
1〉 = 1,

〈σ2
t+1〉 =

(
1− ε+ r

t

)
〈σ2

t 〉+
ε

t
.

(3.2)

Since

〈X2
t+1

∣∣ {σt}〉 = X2
t + 2Xt〈σt+1| {σt}〉+ 〈σ2

t+1

∣∣ {σt}〉,
by (3.1),

〈X2
t+1〉 =

(
1 +

2γ

t

)
〈X2

t 〉+ 〈σ2
t+1〉. (3.3)

To motivate the solution we shall present, let us consider the ODE analogue of the difference

equations (3.2) and (3.3).


x′ = −ε+ r

t
x+

ε

t
,

y′ = x+
2γ

t
y.

(3.4)

The solution to (3.4) is


x (t) =

C

tε+r
+

ε

ε+ r
,

y (t) =
ε

(1− 2γ) (ε+ r)
t+

C

1− ε− r − 2γ
t1−ε−r +Dt2γ,
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if γ 6= 1

2
, and


x (t) =

C

tε+r
+

ε

ε+ r
,

y (t) =
ε

ε+ r
t ln t− C

ε+ r
t1−ε−r +Dt,

if γ =
1

2
, where C and D are constants.

Proposition 3.1. The solution to (3.2) is

〈σ2
t 〉 = C

Γ (t− ε− r)
Γ (t)

+
ε

ε+ r
, (3.5)

where

C =
r

(ε+ r) Γ (1− ε− r)
.

Proof. Clearly,

ε

ε+ r
=

(
1− ε+ r

t

)
ε

ε+ r
+
ε

t
,

Γ (t+ 1− ε− r)
Γ (t+ 1)

=

(
1− ε+ r

t

)
Γ (t− ε− r)

Γ (t)
,

so a general solution to the recurrence equation in (3.2) is given by (3.5). The initial condition

〈σ2
1〉 = 1 implies C =

r

(ε+ r) Γ (1− ε− r)
.

It follows from Proposition 3.1 and (3.3) that

〈X2
1 〉 = 1,

〈X2
t+1〉 =

(
1 +

2γ

t

)
〈X2

t 〉+ C
Γ (t+ 1− ε− r)

Γ (t+ 1)
+

ε

ε+ r
.

(3.6)

Theorem 3.1. Let C =
r

(ε+ r) Γ (1− ε− r)
.
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(1) If γ 6= 1

2
, the solution to (3.6) is

〈X2
t 〉 =

ε

(1− 2γ) (ε+ r)
t+

C

1−ε−r−2γ

Γ (t+1−ε−r)
Γ (t)

+D
Γ (t+ 2γ)

Γ (t)
, (3.7)

where

D = − 1

Γ (2γ)

[
ε

(ε+ r) (1− 2γ)
+

r

(ε+ r) (1− ε− r − 2γ)

]
.

(2) If γ =
1

2
, the solution to (3.6) is

〈X2
t 〉 =

ε

ε+ r
t

t∑
k=1

1

k
− C

ε+ r

Γ (t+ 1− ε− r)
Γ (t)

+Dt, (3.8)

where

D =
ε

(ε+ r)2 − 1.

Proof. Motivated by the ODE solution, we check the formula of the solution to (3.6).

If γ 6= 1

2
, by the identity Γ (x+ 1) = xΓ (x),

ε

(1− 2γ) (ε+ r)
(t+ 1) =

(
1 +

2γ

t

)
ε

(1− 2γ) (ε+ r)
t+

ε

ε+ r
, (3.9)

C

1−ε−r−2γ

Γ (t+2−ε−r)
Γ (t+ 1)

=

(
1 +

2γ

t

)
C

1−ε−r−2γ

Γ (t+1−ε−r)
Γ (t)

+ C
Γ (t+ 1− ε− r)

Γ (t+ 1)
, (3.10)

Γ (t+ 1 + 2γ)

Γ (t+ 1)
=

(
1 +

2γ

t

)
Γ (t+ 2γ)

Γ (t)
. (3.11)

Hence a general solution to the recurrence equation in (3.6) is given by (3.7) for some constant
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D. Then 〈X2
1 〉 = 1 and C =

r

(ε+r) Γ (1−ε−r)
imply

ε

(1−2γ) (ε+r)
+

rΓ (2−ε−r)
(ε+r) (1−ε−r−2γ) Γ (1−ε−r)

+DΓ (1+2γ) = 1,

so

D = − 1

Γ (2γ)

[
ε

(ε+ r) (1− 2γ)
+

r

(ε+ r) (1− ε− r − 2γ)

]
.

If γ =
1

2
, (3.10) and (3.11) still hold,

− C

ε+ r

Γ (t+ 2− ε− r)
Γ (t+ 1)

=

(
1 +

1

t

)(
− C

ε+ r

Γ (t+ 1− ε− r)
Γ (t)

)
+ C

Γ (t+ 1− ε− r)
Γ (t+ 1)

,

t+ 1 =

(
1 +

1

t

)
t.

For the recurrence relation

at+1 =

(
1 +

1

t

)
at +

ε

ε+ r
,

suppose at = tbt, then

bt+1 = bt +
ε

ε+ r

1

t+ 1
,

so for t ≥ 1,

bt = b0 +
ε

ε+ r

t∑
k=1

1

k
.
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Set b0 = 0, then

at =
ε

ε+ r
t

t∑
k=1

1

k
.

Hence a general solution to the recurrence equation in (3.6) in this case is (3.8). Similarly,

the initial condition gives

D =
ε

(ε+ r)2 − 1.

The corollary below follows from (3.7) and (3.8).

Corollary 3.1. Let C and D be the same as in Theorem 3.1.

(1) If γ 6= 1

2
,

〈X2
t 〉 ∼

ε

(1− 2γ) (ε+ r)
t+

C

1− ε− r − 2γ
t1−ε−r +Dt2γ, t→∞.

(2) If γ =
1

2
,

〈X2
t 〉 ∼

ε

ε+ r
t ln t− C

ε+ r
t1−ε−r +Dt, t→∞.

3.2 Residual Diffusivity

The occurrence of residual diffusivity relies on the choice of γ as a function of ε. To this

end, we show three cases: 1) case 1 only recovers the un-perturbed diffusivity, 2) case 2

reveals the residual diffusivity exceeding the un-perturbed diffusivity in the limit of ε ↓ 0, 3)
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case 3 results in residual super-diffusivity. The cases 2 and 3 are illustrated in Figure 3.1.

As ε → 0, the parameter region of the residual diffusion shrinks towards γ =
1

2
while the

enhanced diffusivity remains strictly above the un-perturbed diffusivity.

3.2.1 Regular diffusivity

Let γ =
1− ε

2
, then D = 0 and

〈X2
t 〉 =

1

(ε+ r)
t− 1

(ε+ r) Γ (1− ε− r)
Γ (t+ 1− ε− r)

Γ (t)
,

so

〈X2
t 〉 ∼

1

(ε+ r)
t− 1

(ε+ r) Γ (1− ε− r)
t1−ε−r, t→∞,

and diffusivity equals
1

ε+ r
.

For fixed r ∈
(

0,
1

2

)
, let ε ∈ (0, 1), then

p =
3− ε− 2r

4
, q =

1 + ε− 2r

4
.

Recall the second moment formula of [35] (equation (18)),

〈X2
t 〉 =

1

(2γ + r − 1) Γ (t)

(
Γ (t+ 2γ)

Γ (2γ)
− Γ (1 + t− r)

Γ (1− r)

)
∼ 1

(2γ + r − 1)

(
t2γ

Γ (2γ)
− t1−r

Γ (1− r)

)
, (3.12)

which is diffusive at γ = 1/2 with diffusivity 1/r.
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We see that for γ = (1− ε)/2, ε ∈ (0, 1) and the above (p, q), the diffusivity of the perturbed

ERW problem 1/ (ε+ r) approaches 1/r, the diffusivity of the un-perturbed model as ε ↓ 0.

Hence no residual diffusivity exists.

3.2.2 Residual diffusivity

Let γ =
1− εr

2
, then

〈X2
t 〉 =

1

r (ε+ r)
t− rΓ (t+ 1− ε− r)

(ε+ r) (ε+ r − εr) Γ (1− ε− r) Γ (t)

− 1

Γ (1− εr)

[
1

r (ε+ r)
− r

(ε+ r) (ε+ r − εr)

]
Γ (t+ 1− εr)

Γ (t)
,

and

〈X2
t 〉 ∼

1

r (ε+ r)
t− r

(ε+ r) (ε+ r − εr) Γ (1− ε− r)
t1−ε−r

− 1

Γ (1− εr)

[
1

r (ε+ r)
− r

(ε+ r) (ε+ r − εr)

]
t1−εr, t→∞.

Hence

lim
t→∞

〈X2
t 〉
t

=
1

r (ε+ r)
.

The diffusivity
1

r (ε+ r)
can be much larger than

1

r
in the un-perturbed model. In particular,

given any δ > 0, let r0 = min

{
1

3
,
1

δ

}
, then for r ∈ (0, r0), ε ∈

(
0,

1

6

)
,

1

r (ε+ r)
− 1

r
=

1

r

(
1

ε+ r
−1

)
>

1

r0

(
1

1
6

+ r0

−1

)
≥ δ

(
1

1
6
+ 1

3

−1

)
= δ.

The new diffusive region with residual diffusivity is the wedge to the left of γ = 1/2
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covered by the dashed lines in Figure 3.1.

3.2.3 Residual super-diffusivity

If γ =
1 + εr

2
, then

〈X2
t 〉 =− 1

r (ε+ r)
t− rΓ (t+ 1− ε− r)

(ε+ r) (ε+ r + εr) Γ (1− ε− r) Γ (t)

+
1

Γ (1 + εr)

[
1

r (ε+ r)
+

r

(ε+ r) (ε+ r + εr)

]
Γ (t+ 1 + εr)

Γ (t)
,

and

〈X2
t 〉 ∼ −

1

r (ε+ r)
t− r

(ε+ r) (ε+ r + εr) Γ (1− ε− r)
t1−ε−r

+
1

Γ (1 + εr)

[
1

r (ε+ r)
+

r

(ε+ r) (ε+ r + εr)

]
t1+εr, t→∞.

Thus at any ε > 0, super-diffusion arises and

lim
t→∞

〈X2
t 〉

t1+εr
=

1

Γ (1 + εr)

[
1

r (ε+ r)
+

r

(ε+ r) (ε+ r + εr)

]
.

As ε ↓ 0, the super-diffusivity tends to r−2 + r−1 > r−1 the limiting super-diffusivity of the

un-perturbed model as seen from (3.12). The residual super-diffusive region is the wedge

covered by lines to the right of γ > 1/2 in Figure 3.1.
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Figure 3.1: Regions of residual diffusivity and residual super-diffusivity covered by the dashed
lines at ε = 0.4, 0.2, 0.1.

3.3 2D Perturbed ERWS Model

In this section, we generalize our model to the two dimensional square lattice. Let i, j be the

standard basis in 2D. Denote the position of the walker at time t by X t,

X t+1 = X t + σt+1,

where σt+1 ∈ {i, j,−i,−j}. Let si ∈ (0, 1), i = 1, . . . , 4 and the process is started by allowing

the walker to move to the right, upward, to the left, downward with probability s1, . . . , s4.

Let p, q, q′, r, ε ∈ (0, 1) and p+ q + q′ + r = 1,

A =

0 −1

1 0

 .
For t ≥ 1, a random k ∈ {1, . . . , t} is chosen with uniform probability.
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(i) If |σk| = 1,

P (σt+1 = σk) = p,

P (σt+1 = −σk) = q,

P (σt+1 = Aσk) = p′,

P
(
σt+1 = A−1σk

)
= q′,

P (σt+1 = 0) = r.

(ii) If |σk| = 0,

P (σt+1 = i) = P (σt+1 = j) = P (σt+1 = −i) = P (σt+1 = −j) = ε/4,

P (σt+1 = 0) = 1− ε.

Let γ = p− q, γ′ = p′ − q′, then for t ≥ 1,

P (σt+1 =σ|{σt}) =
1

t

t∑
k=1

[
σk ·σ (σk ·σ+1)

p

2
+ σk ·σ (σk ·σ−1)

q

2

+ σk ·Aσ (σk ·Aσ+1)
p′

2
+ σk ·Aσ (σk ·Aσ−1)

q′

2

+
(
1− |σk|2

) ε
4

]
=

1

2t

t∑
k=1

[
σk ·σγ + σk · Aσγ′ + (σk ·σ)2 (p+ q)

+ (σk ·Aσ)2 (p′ + q′)− 1

2
|σk|2 ε

]
+
ε

4
,
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for |σ| = 1, and

P (σt+1 = 0| {σt}) =
1

t

t∑
k=1

[
|σk|2 r +

(
1− |σk|2

)
(1− ε)

]
=

1

t

t∑
k=1

|σk|2 (r + ε− 1) + 1− ε.

The conditional mean of σt+1 for t ≥ 1 is

〈σt+1| {σt}〉 =
∑
|σ|=1

P (σt+1 = σ| {σt})σ

=
1

2t

t∑
k=1

∑
|σ|=1

[
σk · σγ + σk · Aσγ′ + (σk · σ)2 (p+ q)

+ (σk · Aσ)2 (p′ + q′)− 1

2
|σk|2 ε

]
σ

=
1

2t

t∑
k=1

∑
|σ|=1

(σk · σγ + σk · Aσγ′)σ

=
1

2t

t∑
k=1

∑
|σ|=1

(σk · σγ + Aσk · σγ′)σ

=
1

2t

t∑
k=1

2 (γσk + γ′Aσk)

=
1

t
(γ + γ′A)X t.

Here the symmetry of ±i, ±j is used. Thus,

〈X t+1〉 =

(
1 +

γ

t
+
γ′

t
A

)
〈X t〉.
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The conditional mean of |σt+1|2 for t ≥ 1 is

〈|σt+1|2
∣∣ {σt}〉 =

∑
|σ|=1

P (σt+1 = σ| {σt}) |σ|2

=
1

2t

t∑
k=1

∑
|σ|=1

[
σk · σγ + σk · Aσγ′ + (σk · σ)2 (p+ q)

+ (σk · Aσ)2 (p′ + q′)− 1

2
|σk|2 ε

]
+ ε

=
1

2t

t∑
k=1

2 (p+ q + p′ + q′ − ε) |σk|2 + ε

=
1− ε− r

t

t∑
k=1

|σk|2 + ε.

Similar to the 1D case,

〈|σt+1|2
∣∣ {σt}〉 =

t− 1

t
〈|σt|2

∣∣ {σt−1}〉+
1− ε− r

t
|σt|2 +

ε

t
,

so

〈|σ1|2〉 = 1,

〈|σt+1|2〉 =

(
1− ε+ r

t

)
〈|σt|2〉+

ε

t
.

Moreover,

〈|X t+1|2
∣∣ {σt}〉 = |X t|2 + 2X t · 〈σt+1| {σt}〉+ 〈σ2

t+1

∣∣ {σt}〉
= |X t|2 + 2X t ·

1

t
(γ + γ′A)X t + 〈σ2

t+1

∣∣ {σt}〉
=

(
1 +

2γ

t

)
|X t|2 + 〈σ2

t+1

∣∣ {σt}〉,
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hence

〈|X t+1|2〉 =

(
1 +

2γ

t

)
〈|X t|2〉+ 〈σ2

t+1〉.

By Proposition 3.1 and Theorem 3.1,

〈|σt|2〉 = C
Γ (t− ε− r)

Γ (t)
+

ε

ε+ r
,

〈|X t|2〉 =
ε

(1−2γ) (ε+r)
t+

C

1−ε−r−2γ

Γ (t+1−ε−r)
Γ (t)

+D
Γ (t+2γ)

Γ (t)
,

where

C =
r

(ε+ r) Γ (1− ε− r)
,

D = − 1

Γ (2γ)

[
ε

(ε+ r) (1− 2γ)
+

r

(ε+ r) (1− ε− r − 2γ)

]
.

Due to the above moment formulas, the residual diffusivity results in 1D extend verbatim

to the 2D model.
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Chapter 4

Curvature Dependent Flame Speed in

Shear Flow

4.1 Curvature Dependent Flame Speed

Let V : Rn → Rn be smooth, Zn-periodic and incompressible (i.e. divV = 0), the G-equation

with mean curvature is

Gt + V (x) ·DG+ |DG| − d̃ |DG| div

(
DG

|DG|

)
= 0, (4.1)

where d̃ > 0 is the Markstein length proportional to the flame thickness.

Turbulent combustion usually involves small scales. As a simplified model, we rescale V as

V = V (
x

ε
) and write d̃ = dε. Here ε denotes the Kolmogorov scale (the small scale in the

flow). The diffusivity constant d > 0 is called the Markstein number. The dimensionless

Markstein number is d· δL
ε

with δL denoting the flame thickness [56]. In the thin reaction zone

regime, δL = O(ε), see Equation (2.28) and Figure 2.8 of [56]. Without loss of generality, let
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δL
ε

= 1. Then (4.1) becomes

Gε
t + V (

x

ε
) ·DGε + |DGε| − d ε |DGε| div

(
DGε

|DGε|

)
= 0. (4.2)

Since ε� 1, it is natural to look at lim
ε→0

Gε, i.e. the homogenization limit. If for any p ∈ Rn,

there exists a unique number Hd(p) such that the following cell problem has (approximate)

Zn-periodic viscosity solutions in Rn:

−d |p+Dw| div

(
p+Dw

|p+Dw|

)
+ |p+Dw|+ V (y) · (p+Dw) = Hd(p), (4.3)

then standard tools in the homogenization theory imply that

lim
ε→0

Gε(x, t) = Ḡ(x, t) locally uniformly in Rn × [0,+∞).

Here Ḡ is the unique solution to the following effective equation, which captures the propa-

gation of the mean flame front (see Figure 4.1 below).


Ḡt +Hd(DḠ) = 0,

Ḡ(x, 0) = G0(x).

(4.4)

Solution to the cell problem (4.3) formally describes fluctuations around the mean flame

front,

G(x, t) = Ḡ(x, t) + εw(x,
x

ε
) +O(ε2).

Here for fixed location-time (x, t) and p = DḠ(x, t), w(x, ·) is a solution to (4.3) with mean

zero, i.e.

∫ 1

0

w(x, y) dy = 0. The quantity Hd(p), if it exists, can be viewed as the turbulent
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Figure 4.1: Average of fluctuations in the homogenization limit.

flame speed sT (p) along a given direction p.

For general V , we do not even know the existence of Hd(p), i.e. the well-posedness of (4.3).

In fact, given the counter-example in [6] for a coercive mean curvature type equation, the

cell problem (4.3) and the homogenization in our non-coercive setting is very likely not

well-posed in general. To avoid this existence issue, we consider the shear flow

V (x) = (v(x2), 0) for x = (x1, x2) ∈ R2,

where v : R → R is smooth and periodic. For p = (γ, µ) ∈ R2, the cell problem (4.3) is

reduced to the following ODE:

− dγ2w′′

γ2 + (µ+ w′)2
+
√
γ2 + (µ+ w′)2 + γv(y) = Hd(p). (4.5)

It is then easy to show that there exists a unique number Hd(p) such that the ODE (4.5)

has a C2 periodic solution. Throughout this chapter, we denote w as the unique solution

satisfying w(0) = 0. To simplify notations, we omit the dependence of w on d.
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4.2 Slowdown of Flame Propagation

4.2.1 Key inequalities

Let n ∈ N, {bik}1≤i,k≤n and {b̃ik}1≤i,k≤n be two sequences of positive numbers such that

i∑
l=1

bil +
n∑
l=i

b̃il =
n∑
l=k

blk +
k∑
l=1

b̃lk = c, ∀i, k,

where c is a constant independent of i and k,

min{ min
1≤k≤i≤n

bik, min
1≤i≤k≤n

b̃ik} ≥ τ > 0. (4.6)

Lemma 4.1. Assume L > 0 and g ∈ C((0, L]) satisfies

g′(a) ≤ −θ for some θ ≥ 0,

then

n∑
i=1

ai

i∑
k=1

g(ak)bik +
n∑
i=1

ai

n∑
k=i

g(ak)b̃ik ≥ c
n∑
i=1

aig(ai) +
θτ

2

∑
1≤i,k≤n

(ai − ak)2.

for all (a1, a2, ..., an) ∈ (0, L]n. Here τ is from (4.6). Moreover, if θ > 0, the equality holds

if and only if a1 = a2 = · · · = an.

Proof. By approximation, we may assume that θ > 0. Define

W (a1, a2, . . . , an) =
n∑
i=1

ai

i∑
k=1

g(ak)bik +
n∑
i=1

ai

n∑
k=i

g(ak)b̃ik,

H(a1, a2, . . . , an) = c
n∑
i=1

aig(ai) +
θτ

2

∑
1≤i,k≤n

(ai − ak)2.
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It suffices to show that for any fixed r ∈ (0, L)

min
[r,L]n

(W −H) = 0, (4.7)

and the minimum is attained when all ai are the same.

Choose (â1, â2, â3, . . . ân) ∈ [r, L]n such that

W (â1, â2, â3, . . . ân)−H(â1, â2, â3, . . . ân) = min
[r,L]n

(W −H).

Let âj = max1≤i≤n{âi}. If âj = r, then â1 = â2 = · · · = ân = r and (4.7) holds. Assume

âj > r, then

Waj −Haj ≤ 0 at (â1, â2, â3, ..ân).

Here we include “< 0” since âj might be equal to L. Accordingly,

j∑
k=1

g(âk)bjk +
n∑
k=j

g(âk)b̃jk + g′(âj)
n∑
k=j

âkbkj + g′(âj)

j∑
k=1

âkb̃kj

≤ c(g(âj) + âjg
′(âj)) +

∑
k 6=j

θτ(âj − âk).

On the other hand, since g′ ≤ −θ < 0,

j∑
k=1

g(âk)bjk +
n∑
k=j

g(âk)b̃jk + g′(âj)
n∑
k=j

âkbkj + g′(âj)

j∑
k=1

âkb̃kj

≥ c(g(âj) + âjg
′(âj)) +

∑
k 6=j

θτ(âj − âk).

Hence all equalities should hold and â1 = â2 = · · · = ân follows from that g is strictly

decreasing. Therefore W (â1, â2, â3, . . . ân)−H(â1, â2, â3, . . . ân) = 0.

Theorem 4.1. Let T > 0 and f ∈ C([0, T ]) be a continuous positive function. Suppose that
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g ∈ C1((0, L]) for L = max[0,T ] f .

(1) If g′ ≤ −θ for some θ ≥ 0, then

eT
∫ T

0

f(x)e−x
∫ x

0

g(f(y))ey dydx+

∫ T

0

f(x)e−x
∫ T

x

g(f(y))ey dydx

≥ (eT − 1)

∫ T

0

f(x)g(f(x))) dx+
θ

2

∫
[0,T ]2

|f(x)− f(y)|2 dxdy.

(2) If g′ ≥ θ for some θ ≥ 0, then

eT
∫ T

0

f(x)e−x
∫ x

0

g(f(y))ey dydx+

∫ T

0

f(x)e−x
∫ T

x

g(f(y))ey dydx

≤ (eT − 1)

∫ T

0

f(x)g(f(x))) dx− θ

2

∫
[0,T ]2

|f(x)− f(y)|2 dxdy.

Proof. (1) For n ∈ N, let xi =
iT

n
for i = 1, 2, . . . , n. Note that for i, k = 1, 2, 3, . . . , n,

i∑
l=1

eT−xi+xl +
n∑
l=i

exl−xi =
eT+T

n − 1

e
T
n − 1

=
n∑
l=k

eT−xl+xk +
k∑
l=1

exk−xl .

Then desired inequality in (1) follows from Lemma 4.1 and Riemann sum approximation by

taking ai = f(xi), c =
eT+T

n − 1

e
T
n − 1

, τ = 1,

bik = eT−xi+xk and b̃ik = exk−xi for 1 ≤ i, k ≤ n.

(2) follows immediately from (1) by considering −g.
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4.2.2 Strict decreasing of Hd(p)

Lemma 4.2. Let d > 0 and φ be a non-constant C1 periodic function. If the following

equation has a mean-zero, periodic solution F

−dF ′ + b(x)F = φ′ + α(1 + φ2) in R

for some α ∈ R and

b(x) =
2dφ′φ

1 + φ2
+ φ
√

1 + φ2,

then

α < 0.

Proof. It suffices to prove this for d = 1. The proof for other d’s is similar. F can be solved in

terms of φ and α. Since F is periodic and mean zero (i.e. F (0) = F (1) and

∫ 1

0

F (s) ds = 0),

α = −
eg(1)

∫ 1

0
φ′e−g(x) dx

∫ 1

0
eg(x) dx− (eg(1) − 1)

∫ 1

0
eg(x)

∫ x
0
φ′e−g(y) dydx

eg(1)
∫ 1

0
(1 + φ2)e−g(x) dx

∫ 1

0
eg(x) dx− (eg(1) − 1)

∫ 1

0
eg(x)

∫ x
0

(1 + φ2)e−g(y) dydx
.

Here

g(x) =

∫ x

0

b(y) dy = log(1 + φ2(x))− log(1 + φ2(0)) +

∫ x

0

φ
√

1 + φ2 dx.

In particular, g(1) =

∫ 1

0

φ
√

1 + φ2 dx. The denominator is obviously positive. Hence α < 0

is equivalent to proving the inequality

eg(1)

∫ 1

0

φ′e−g(x) dx

∫ 1

0

eg(x) dx > (eg(1) − 1)

∫ 1

0

eg(x)

∫ x

0

φ′e−g(y) dydx.
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for every non-constant C1 periodic function φ. Denote that

h(x) =

∫ x

0

φ
√

1 + φ2 dy,

then it is equivalent to showing that

eh(1)

∫ 1

0

φ′

1 + φ2
e−h(x) dx

∫ 1

0

(1 + φ2)eh(x) dx

> (eh(1) − 1)

∫ 1

0

(1 + φ2)eh(x)

∫ x

0

φ′

1 + φ2
e−h(y) dydx.

Write λ(φ) = arctanφ. Using integration by parts and φ(0) = φ(1), we have

LHS =eh(1)

(
λ(φ(1))e−h(1) − λ(φ(1)) +

∫ 1

0

λ(φ)e−h(x)φ
√

1 + φ2dx

)∫ 1

0

(1 + φ2)eh(x)dx,

RHS =(eh(1) − 1)

(∫ 1

0

λ(φ)(1 + φ2) dx− λ(φ(1))

∫ 1

0

(1 + φ2)eh(x) dx

)
+ (eh(1) − 1)

(∫ 1

0

(1 + φ2)eh(x)

∫ x

0

λ(φ)e−h(y)φ
√

1 + φ2 dydx

)
.

By Fubini Theorem,

∫ 1

0

(1 + φ2)eh(x)

∫ x

0

λ(φ)e−h(y)φ
√

1 + φ2 dydx

=

∫ 1

0

λ(φ)e−h(x)φ
√

1 + φ2

∫ 1

x

(1 + φ2)eh(y) dydx,

then LHS −RHS is A+B − C where

A(φ) = eh(1)

∫ 1

0

λ(φ)e−h(x)φ
√

1 + φ2

∫ x

0

(1 + φ2)eh(y) dydx,

B(φ) =

∫ 1

0

λ(φ)e−h(x)φ
√

1 + φ2

∫ 1

x

(1 + φ2)eh(y) dydx,

C(φ) = (eh(1) − 1)

∫ 1

0

λ(φ)(1 + φ2) dx.
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If h(1) = 0, then A + B − C = A + B ≥ 0 since sλ(s) ≥ 0. Cleary, “= 0” if and only if

φ ≡ 0. Hence we assume

h(1) 6= 0.

Also, for φ̃(x) = −φ(−x), the correspsonding

b̃(x) =
2φ̃′φ̃

1 + φ̃
2 + φ̃

√
1 + φ̃

2
= −b(−x)

and F̃ (x) = −F (−x) satisfy

−F̃ ′ + b̃(x)F̃ = φ̃′ + α(1 + φ̃
2
).

Without lost of generality, we may further assume

h(1) > 0.

Let φ+ = max{φ, 0}, φ− = min{φ, 0} and

h±(x) =

∫ x

0

φ±

√
1 + φ2

± dy,

then h(x) = h+ + h−.

Moreover,

A(φ) +B(φ)− C(φ) ≥ eh
−(1) (A(φ+) +B(φ+)− C(φ+)) , (4.8)
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and equality holds if only if φ ≥ 0, i.e. φ− = 0. In fact,

A(φ) ≥ eh(1)

∫ 1

0

λ(φ+)e−h(x)φ+

√
1 + φ2

+

∫ x

0

(1 + φ2
+)eh(y) dydx

= eh(1)

∫ 1

0

λ(φ+)e−h
+(x)φ+

√
1 + φ2

+

∫ x

0

(1 + φ2
+)eh

+(y)eh
−(y)−h−(x) dydx

≥ eh
−(1)A(φ+), (since h−(x) ≤ h−(y) for x ≥ y)

B(φ) ≥
∫ 1

0

λ(φ+)e−h(x)φ+

√
1 + φ2

+

∫ 1

x

(1 + φ2
+)eh(y) dydx

= eh
−(1)

∫ 1

0

λ(φ+)e−h
+(x)φ+

√
1 + φ2

+

∫ 1

x

(1 + φ2
+)eh

+(y)eh
−(y)−h−(1)e−h

−(x) dydx

≥ eh
−(1)B(φ+), (since 0 ≥ h−(y) ≥ h−(1) for y ∈ [0, 1])

C(φ) ≤ (eh(1) − 1)

∫ 1

0

λ(φ+)(1 + φ2
+) dx

=
(eh(1) − 1)

(eh+(1) − 1)
C(φ+)

≤ eh
−(1)C(φ+),

and for all inequalities to hold, we must have h− ≡ 0 and φ− ≡ 0.

Since h(1) > 0, that φ is not constant implies φ+ is not constant either. By a small pertur-

bation like φ+ + ε, we may assume φ+ > 0. Then h+ is strictly increasing. After changing

of variables h+(x)→ x and writing ψ(h+(x)) = φ+(x) and T = h+(1), we obtain that

A(φ+) = AT,ψ = eT
∫ T

0

λ(ψ)e−x
∫ x

0

√
1 + ψ2

ψ
ey dydx,

B(φ+) = BT,ψ =

∫ T

0

λ(ψ)e−x
∫ T

x

√
1 + ψ2

ψ
ey dydx,

C(φ+) = CT,ψ = (eT − 1)

∫ T

0

λ(ψ)

√
1 + ψ2

ψ
dx.
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Hence

AT,ψ +BT,ψ − CT,ψ =eT
∫ T

0

λ(ψ)e−x
∫ x

0

√
1 + ψ2

ψ
ey dydx

+

∫ T

0

λ(ψ)e−x
∫ T

x

√
1 + ψ2

ψ
ey dydx

− (eT − 1)

∫ T

0

λ(ψ)

√
1 + ψ2

ψ
dx.

Let M = max[0,T ] ψ = max[0,1] φ+ > 0. According to Theorem 4.1 by taking f(x) = λ(ψ) =

arctan(ψ), g(y) =
1

sin y
, L = arctan(M) and θ =

1√
1 +M2

, we have

√
1 + ψ2

ψ
= g(f) and

AT,ψ +BT,ψ − CT,ψ ≥
1

2
√

1 +M2

∫
[0,T ]2

|λ(ψ(x))− λ(ψ(y))|2 dxdy

=
1

2
√

1 +M2

∫
[0,1]2
|λ(φ+(x))− λ(φ+(y))|2J(x)J(y) dxdy

> 0,

since φ+ is not constant. Here J(x) = φ+(x)
√

1 + φ2
+. It follows from (4.8) that A(φ) +

B(φ)− C(φ) > 0.

The following is our main result.

Theorem 4.2. Assume that v = v(y) is not a constant function.

(1) Hd(0,±µ) = |µ|.

(2) (Major Part). If γ 6= 0, then

∂Hd(p)

∂d
< 0,

so Hd is strictly decreasing with respect to the Markstein number d.
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(3) lim
d→0+

Hd = H0. Here H0(p) is the unique number (effective Hamiltonian) such that the

following inviscid equation admits periodic viscosity solutions

√
γ2 + (µ+ w

′
0)2 + γv(y) = H0(p) in R.

(4) lim
d→+∞

Hd = |p|+ γ

∫ 1

0

v(y) dy and lim
d→+∞

w = 0 uniformly in R.

Proof. (1) is trivial.

(2) Fix (γ, µ). Denote φ =
µ+ w′

γ
. Then φ is the unique periodic solution to

− dφ′

1 + φ2
+
√

1 + φ2 + v(y) = E(d) =
Hd(p)

γ
in R

subject to

∫ 1

0

φ(x) dx =
µ

γ
. To prove (2) is equivalent to showing that

E ′(d) < 0.

Taking derivative on both sides of the above equation with respect to d, we obtain

−dF ′ + b(x)F = E ′(d)(1 + φ2) + φ′,

where b(x) =
2dφ′φ

1 + φ2
+ φ
√

1 + φ2 and F (x) = φd(x), i.e. the derivative of φ with respect to

d. Clearly, F is periodic and has zero mean, i.e.

∫
[0,1]

F = 0. Note that v is not constant is

equivalent to saying the φ is not constant. Then (2) follows immediately from Lemma 4.2.

(3) Integrating both sides of (4.5), we have

Hd(p) =

∫ 1

0

√
γ2 + (µ+ w′)2 dy + γ

∫ 1

0

v(y) dy. (4.9)
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Due to the convexity of s(t) =
√
γ2 + t2,

Hd(p) ≥ |p|+ γ

∫ 1

0

v(y) dy.

Also, by maximum principle,

Hd(p) ≤ |p|+ max
R

γv

and

max
R
|µ+ w′| ≤ Hd(p)−min

R
γv ≤ |p|+ 2 max

R
|γv|.

Hence, up to a sequence, we may assume that

lim
d→0

Hd = H0 and lim
d→0+

w = w0 uniformly in R.

The stability of viscosity solution immediately implies that w0 is a continuous periodic vis-

cosity solution to

√
γ2 +

(
µ+ w

′
0

)2
+ γv(y) = H0(p) in R.

Note that H0(p) is unique number such that the above equation has a periodic viscosity

solutions w0 although w0 might not be unique.

(4) If γ = 0, this is trivial. We assume γ 6= 0. Note that estimates of Hd and µ + w′ in (3)

are independent of d. Since

w′′ =
1

dγ2
(γ2 + (µ+ w′)2)

(√
γ2 + (µ+ w′)2 + v −Hd(µ)

)
,
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max
R
|w′′| ≤ C

d

for a constant C independent of d. Due to the periodicity of w and w(0) = 0, it is obvious

that

lim
d→+∞

w = lim
d→+∞

w′ = 0 uniformly in R.

(4) follows from (4.9).

4.3 Selection of Physical Fluctuations as d→ 0

To have a more complete picture, it is also interesting to ask what is the limit of solutions

of (4.5) as d→ 0+ (the vanishing curvature limit). When d = 0, equation (4.2) becomes the

inviscid G-equation

Gε
t + V (

x

ε
) ·DGε + |DGε| = 0.

It is proved in [69] and [10] independently that there exists a unique H0(p) such that the

corresponding cell problem

|p+Dw|+ V (y) · (p+Dw) = H0(p) in Rn (4.10)

admits a periodic (approximate) viscosity solution, which implies

lim
ε→0

Gε(x, t) = Ḡ(x, t) locally uniformly in R× [0,+∞).
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As in the curvature case, Ḡ is the unique solution to the following effective equation, which

captures the propagation of the mean flame front:


Ḡt +H0(DḠ) = 0

Ḡ(x, 0) = G0(x) initial flame front.

The formal two-scale expansion says that

Gε(x, t) = Ḡ(x, t) + εw(x,
x

ε
) +O(ε2),

where the fluctuation w(x, ·) is a solution to (4.10) with p = DḠ(x, t) for fixed (x, t). Nev-

ertheless, solutions to (4.10) are in general not unique even up to a constant. To find the

physical solution that captures the fluctuation of flame front, a natural approach is to look

at the limit of solutions to (4.3) (if it exists uniquely) as d→ 0. The limit is however, very

challenging and unknown in general. In this section, we identify the limit for the equation

(4.5) under some non-degeneracy conditions.

It is easy to show that as d → 0+, the solution w to (4.5), up to a subsequence, converges

to a periodic viscosity solution w0 of

√
γ2 + (µ+ w

′
0)2 + γv(y) = H0(p) in R. (4.11)

When γ = 0, w = w0 ≡ 0. Without loss of generality, we set γ = 1 in this section and denote

H0(µ) = H0(p).

We also assume

max
R

v = 0.
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4.3.1 Uniqueness case

If |µ| ≥
∫ 1

0

√
(1− v)2 − 1 dy, H(µ) ≥ 1 is the unique number such that

|µ| =
∫ 1

0

√
(H(µ)− v(y))2 − 1 dy.

Also, the inviscid equation (4.11) has a unique solution up to a constant, i.e.

w0(x) = (sign(µ))

∫ x

0

√
(H(µ)− v(y))2 − 1 dy − µx+ c

for some c ∈ R since w′0 + µ can not change signs. By w(0) = 0,

lim
d→0+

w = (sign(µ))

∫ x

0

√
(H(µ)− v(y))2 − 1 dy − µx.

4.3.2 Non-uniqueness case

When |µ| <
∫ 1

0

√
(1− v)2 − 1 dy, Hd(µ) = 1. Solutions to the inviscid equation (4.11) are

not unique if the set

M0 = {x ∈ [0, 1)| v(x) = max
R

v = 0}

has multiple points. For example, assume that xi ∈M0 for i = 1, 2. Choose xµ,i ∈ (xi, xi+1)

such that

∫ xµ,i

xi

√
(1− v)2 − 1 dy −

∫ xi+1

xµ,i

√
(1− v)2 − 1 dy = µ,
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then

wi(x) =


∫ x

xi

√
(1− v(y))2 − 1 dy − µx, ∀x ∈ [xi, xµ,i]∫ xµ,i

xi

√
(1− v(y))2 − 1 dy −

∫ x

xµ,i

√
(1− v(y))2 − 1 dy − µx, ∀x ∈ [xµ,i, xi + 1]

(extended periodically) are both viscosity solutions to (4.11) and w1 −w2 is not a constant.

Hence a very interesting problem is to identify the solution selected by the limiting process,

i.e. the physical fluctuation associated with the inviscid G-equation model. We assume that

M0 is finite and v′′(x) is distinct for x ∈M0 (4.12)

Choose the unique x̄ ∈M0 then xµ ∈ (x̄, x̄+ 1) such that

v′′(x̄) = min
x∈M0

{−v′′(x)},∫ xµ

x̄

√
(1− v)2 − 1 dy −

∫ x̄+1

xµ

√
(1− v)2 − 1 dy = µ.

Clearly, such xµ is unique.

Theorem 4.3.

lim
d→0+

w = w0(x)− w0(0) uniformly in R.

Here

w0(x) =


∫ x

x̄

√
(1− v)2 − 1 dy − µx, ∀x ∈ [x̄, xµ]∫ xµ

x̄

√
(1− v)2 − 1 dy −

∫ x

xµ

√
(1− v)2 − 1 dy − µx, ∀x ∈ [xµ, x̄+ 1].

(4.13)
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We would like to point out that selection problems of similar spirit have been studied for the

vanishing viscosity limit ([33], [1], [2], etc), after which the viscosity solution was originally

named. The authors aim to identify lim
ε→0+

vε, where vε is the unique smooth solution to

−ε∆vε +H(p+Dvε, x) = H(p, ε) in Rn.

The most important case is the mechanical Hamiltonian H(p, x) = |p|2 + G(x) with a po-

tential function G. The limiting process resembles the passage from quantum mechanics to

classical mechanics ([1], [24]). The works [1] and [2] deal with some special cases in high di-

mensions by employing advanced tools from dynamical systems and random perturbations.

Assumptions therein are very hard to check. The method in [33] is purely 1D. Based on

simple comparison principles of PDEs/ODEs, our arguments are simpler and more robust.

In particular, they can be easily extended to handle certain cases in high dimensions.

Lemma 4.3. Assume that M0 = {x̄}, i.e. it contains a single element, then

lim
d→0+

Hd(µ)− 1

d
= −

√
−v′′(x̄).

Proof. SinceM0 has only one element, 1− v > 1 in (x̄, x̄+ 1). It is easy to see that periodic

viscosity solutions to

√
1 + (µ+ w

′
0)2 + v(y) = 1 in R

are unique up to a constant. Hence, since w(0) = 0,

lim
d→0+

w = w0(x)− w0(0) uniformly in R. (4.14)
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Here w0 is given by (4.13). Fix δ > 0 and let

uδ,±(x) =


∫ x

x̄

√
(1− (1± δ)v)2 − 1 dy for x ≥ x̄,∫ x̄

x

√
(1− (1± δ)v)2 − 1 dy for x ≤ x̄.

Apparently,

uδ,−(x) < u0(x) = w0(x) + µx < uδ,+(x) for x ∈ [xµ − 1, xµ]\{x̄}

and uδ,−(x̄) = u0(x̄) = uδ,+(x̄) = 0. See Figure 4.2. Denote

eδ = min
x=xµ or xµ−1

{u0(x)− uδ,−(x), uδ,+(x)− u0(x)} > 0,

and let

ud,δ,±(x) = w(x)− w(x̄) + µ(x− x̄)± 1

2
eδ.

By (4.14), when d is small enough, there exist xd,δ,± ∈ (xµ − 1, xµ) such that

ud,δ,+(xd,δ,+)− uδ,+(xd,δ,+) ≥ ud,δ,+(x)− uδ,+(x) ∀x ∈ (xµ − 1, xµ),

ud,δ,−(xd,δ,−)− uδ,−(xd,δ,−) ≤ ud,δ,−(x)− uδ,−(x) ∀x ∈ (xµ − 1, xµ).

Maximum principle implies that

−
du
′′

δ,+

1 + (u
′
δ,+)2

+
√

1 + (u
′
δ,+)2 + v ≤ Hd(µ) at xd,δ,+.

Hence

−
du
′′

δ,+

1 + (u
′
δ,+)2

≤ Hd(µ)− 1 + δv ≤ Hd(µ)− 1 at xd,δ,+.
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Let d→ 0 first then δ → 0, we have xd,δ,+ → x̄ and

lim inf
d→0+

Hd(µ)− 1

d
≥ −

√
−v′′(x̄).

Similarly with xd,δ,−, we can obtain that

lim sup
d→0+

Hd(µ)− 1

d
≤ −

√
−v′′(x̄).

xO

uδ,+

uδ,−

u0

x̄ xµxµ − 1
xO x′

ũ0

Figure 4.2: Graphes of uδ,±, u0, and turning point.

Remark 4.1. The above proof based on comparison and maximum principle also shows that

for any subsequence {dm} → 0, if

lim
dm→0+

w(x) = w̃0(x)

and ũ0 = µx + w̃0(x) has turning point at some x′ ∈ M, i.e there exists τ > 0 (see Figure

4.2) such that

ũ0(x)− ũ0(x′) =


∫ x

x′

√
(1− v)2 − 1 dy for x ∈ [x′, x′ + τ ],∫ x′

x

√
(1− v)2 − 1 dy for x ∈ [x′ − τ, x′],
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then

lim
m→+∞

Hdm(µ)− 1

dm
= −

√
−v′′(x′).

Lemma 4.4. Suppose that w̃ is a periodic viscosity solution to the inviscid equation

√
1 + (µ+ w̃′)2 + v = 1 in R,

then x0 is a turning point of ũ(x) = µx+ w̃ if and only if ũ(x) attains local minimum at x0.

Proof. “⇒” is obvious. We only need to show that any local minimum point x0 must be a

turning point. By the definition of viscosity solutions,

1 + v(x0) ≥ 1,

so v(x0) = 0 and x0 ∈M0. Choose τ > 0 such that (x0, x0 + τ) ∩M0 = ∅ and ũ′(x0 + τ) =

p+ w̃′(x0 + τ) > 0, then

ũ′(y) > 0 for any y ∈ (x0, x0 + τ) where ũ′ exists.

Otherwise there will be a local mimimum point in (x0, x0 + τ). Since any local minimum

point belongs to M0, that contradicts to the choice of τ . Thus,

ũ′ =
√

(1− v)2 − 1 in (x0, x0 + τ).

Similarly,

ũ′ = −
√

(1− v)2 − 1 in (x0 − τ ′, x0),
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for some τ ′ > 0.

Proof of Theorem 4.3. We first show that

lim inf
d→0+

Hd(µ)− 1

d
≥ −

√
−v′′(x̄). (4.15)

In fact, let h(x) be a smooth periodic function such that h(x̄) = 0 and h(x) > 0 for x /∈ x̄+Z.

For ε > 0, let

vε(x) = v(x)− εh(x)

and Hd,ε(p) from the cell problem (4.5) with γ = 1 and v replaced by vε. Clearly,

Hd(µ) ≥ Hd,ε(µ).

Choose ε small enough such that

|µ| <
∫ 1

0

√
(1− vε)2 − 1 dx,

then max
R

vε = 0 and the maximum is only obtained at x̄ + Z. (4.15) follows immediately

from Lemma 4.3.

Suppose ũ = µx + w̃ is the limit of a subsequence of µx + w as d → 0. Combining with

the above Remark 4.1 and assumption (4.12), (4.15) implies that ũ can only have a turning

point at x̄. By Lemma 4.4, ũ does not have local minimum points in (x̄, x̄ + 1). Since

|µ| <
∫ 1

0

√
(1− v)2 − 1 dx, there exists a unique xµ ∈ (x̄, x̄+ 1) such that ũ is increasing in

(x̄, xµ) and is decreasing in (xµ, x̄+ 1). Hence w̃ is uniquely given by the formula (4.13).
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Chapter 5

Adaptive Basis Learning

5.1 Orthogonal Adaptive Basis Learning

5.1.1 Snapshots of periodic solutions and SVD

Recall the truncated ODE system (2.5) in Chapter 2,

dwNk
dt

+D0 |k|2wNk + i
∑

‖k−j‖≤N

[(k1 − j1) vj (t) + (k2 − j2) ṽj (t)]wNk−j = −vk (t) , (5.1)

and its matrix form

dw

dt
= A (t) w + v (t) . (5.2)

For some fixed N , let {ŵ∗n}
Nt
n=0 be a numerical periodic solution to (5.1) for some D∗0. Define

the solution matrix

W =
[
ŵ∗0 ŵ∗1 . . . ŵ∗Nt

]
, (5.3)
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and apply singular value decomposition to W ,

W = UΣV.

Consider SVD of numerical solutions for the time periodic cellular flow

v (x, t) = cos (x2) + sin (x2) cos (t) ,

ṽ (x, t) = cos (x1) + sin (x1) cos (t) .

(5.4)

Snapshots of numerical solutions to (2.3)

wt + (v · ∂)w −D0∂
2w = −v.

at D∗0 = 10−3, 10−4 are shown in Figure 5.1-5.2 where we see thinner layered structures arise

as D0 becomes smaller. Singular values of W for several D0’s are plotted in Figure 5.3 which

shows rapid decay beyond 250 out of 2500 modes, uniformly as D0 ↓ 0.

5.1.2 ODEs from adaptive basis and Poincaré map

Denote by uj the jth column of U . For m > 0, the adaptive orthogonal basis consists of the

columns of the matrix:

Um = [u1 u2 . . . um] .

Figure 5.4-5.5 are visualizations of u1, u2, u5, u6 for the flow (5.4).
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Figure 5.1: Sampled snapshots of solution to (2.3) with D∗0 = 10−3, appearance of layered
structures.

Given D0 > 0, let us write the solution to (5.2) in the orthogonal adaptive basis as:

w (t) = Uma (t) ,

where a (t) = [a1 (t) , a2 (t) , . . . , am (t)]T is periodic, then

da

dt
= ŪT

mA (t)Uma + ŪT
mv (t) . (5.5)

Hence an approximation of solution to (5.2) can be obtained by solving (5.5).

Similar to the approach used for the Fourier modes, let us define the Poincaré map associated
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Figure 5.2: Sampled snapshots of solution to (2.3) with D∗0 = 10−4, formation of thin layers.

to the ODE (5.5)

P (x) = Mx+ b, x ∈ Rm,

where M is an m×m matrix and b is an m× 1 vector. Denote the RK4 operator by L, the

algorithm is shown below.

Reorder ŵN
n as Fourier modes

{
ŵNk,n

}
‖k‖≤N , then DE

11,N is estimated by

D̂E,a
11,N = D0

1 +
1

Nt

Nt∑
n=1

∑
‖k‖≤N

|k|2
∣∣ŵNk,n∣∣2

 .
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Figure 5.3: Singular values of numerical periodic solution matrices, rapid decay uniformly
in D0 ↓ 0.

5.1.3 Experimental results of orthogonal adaptive basis

We show computational results on residual diffusion from the orthogonal adaptive basis on

time periodic cellular flows. The main goal is to maintain enough accuracy at low costs.

Two-dimensional time-dependent flow (5.4)

• D∗0 = 10−3, N = 60, Nt = 1500 with m = 100 (the number of adaptive basis functions).

In Table 5.1, DE
11,N from the Fourier basis (with Nt = 2000) for flow (2.10) at varied D0’s are

shown along with those from the orthogonal adaptive basis, denoted by D̂E,a
11,N . To measure

the reduction in the number of basis functions, we define r = m/ (2N + 1)2 as the ratio of the

number of adaptive basis functions and that of the Fourier basis functions. The estimates by

adaptive basis are close to those from the Fourier basis when D0 is not far from D∗0 = 10−3

(the D0 value where the adaptive basis is constructed or trained). The robustness of adaptive
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Figure 5.4: Sampled singular vectors with D∗0 = 10−3, N = 60, Nt = 1500.

basis hinges on how fast the error grows as the testing occurs at a D0 value deviating from

the training value D∗0.

The energy of a truncated Fourier expansion is:

E

 ∑
‖k‖≤N

zNk (t) eik·x

 = D0

∑
‖k‖≤N

|k|2
〈
zNk z

N
k

〉
.

Let
{
ẑNk,n
}Nt+1

n=1
be the numerical approximation of zNk (t), then the energy for

∑
‖k‖≤N

zNk (t) eik·x

can be approximated by

E

 ∑
‖k‖≤N

zNk (t) eik·x

 ≈ D0

Nt

Nt∑
n=1

∑
‖k‖≤N

|k|2
∣∣ẑNk,n∣∣2 .
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Figure 5.5: Sampled singular vectors with D∗0 = 10−4, N = 60, Nt = 2000.

Figure 5.6 shows the energy vs. the number of modes in the solutions solved by Fourier

basis (solid, blue) and the learned orthogonal adaptive basis (dashdot, red). Clearly, a much

smaller number of basis functions is needed to represent the same level of energy by the

adaptive basis than by the Fourier basis.

• D∗0 = 10−4, N = 60, Nt = 2000 with m = 200

Computations of DE
11,N and D̂E,a

11,N for the flow (2.10) at smaller D0’s are shown in Table 5.2.

The comparisons of energy growth vs. the number of adaptive (dashdot, red) and Fourier

(solid, blue) basis functions are shown in Figure 5.7. Here Nt = 2500 in computation of

D̂E
11,N with the Fourier basis. Interestingly, the relative errors of solutions via the orthogonal
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Algorithm 2 Solving cell problem with SVD.

1. Set X̂0 = [e1 e2 . . . em] to be the matrix of standard basis of Rm.
for n = 0, 1,. . . , Nt − 1 do

X̂n+1 = L
(
ŪT
mA

NUm,0; X̂n, tn

)
end for
M̂ = X̂Nt .
2. Set x̂0 = 0.
for n = 0, 1,. . . , Nt − 1 do

x̂n+1 = L
(
ŪT
mA

NUm, Ū
T
mvN ; x̂n, tn

)
end for
b̂ = x̂Nt .
3. Solve x̂ = M̂x̂+ b̂.
Set â0 = x̂.
for n = 0, 1,. . . , Nt − 1 do

ân+1 = L (A,v; ân, tn)
end for
4. ŵN

n = UmâNn for n = 0, 1, . . . , Nt.

D0 10−3 9× 10−4 8× 10−4 7× 10−4 6× 10−4

D̂E,a
11,N 1.3772 1.4050 1.4337 1.4632 1.4931

D̂E
11,N 1.3772 1.3765 1.3763 1.3772 1.3796

relative error 0 2.1% 4.2% 6.3% 8.2%

D0 5× 10−4 4× 10−4 3× 10−4 2× 10−4 10−4

D̂E,a
11,N 1.5229 1.5515 1.5775 1.6047 1.7191

D̂E
11,N 1.3847 1.3940 1.4105 1.4395 1.4951

relative error 10.0% 11.3% 11.8% 11.5% 15.0%

Table 5.1: D̂E,a
11,N and D̂E

11,N for flow (5.4) with D∗0 = 10−3, r = 0.68%.

adaptive basis drop considerably at smaller D0, suggesting that the basis learning is effective

for computing residual diffusion.
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Figure 5.6: Energy growth vs. the number of adaptive and Fourier basis functions for
D0 = 9× 10−4 and D0 = 5× 10−4.

D0 10−4 9× 10−5 8× 10−5 7× 10−5 6× 10−5

D̂E,a
11,N 1.4951 1.5042 1.5129 1.5208 1.5272

D̂E
11,N 1.4951 1.5036 1.5131 1.5236 1.5355

relative error 0 0 0 0.2% 0.5%

D0 5× 10−5 4× 10−5 3× 10−5 2× 10−5 10−5

D̂E,a
11,N 1.5314 1.5313 1.5242 1.5107 1.5243

D̂E
11,N 1.5492 1.5649 1.5834 1.6052 1.6301

relative error 1.1% 2.1% 3.7% 5.9% 6.5%

Table 5.2: D̂E,a
11,N and D̂E

11,N for flow (5.4) with D∗0 = 10−4, r = 1.37%.

Two-dimensional time-dependent flow with θ

Recall the time-dependent flow with θ ∈ (0, 1]

v (x, t) = cos (x2) + θ sin (x2) cos (t) ,

ṽ (x, t) = cos (x1) + θ sin (x1) cos (t) .

(5.6)

Adaptive orthogonal basis can also be trained from a periodic solution at a θ value and

applied to another flow at a nearby θ value. For instance, assemble W in Section 5.1.1

with snapshots of a periodic solution for some D∗0 and flow (5.6) with parameter θ∗. Periodic

solutions as well as effective diffusivities at the same D∗0 but different θ’s can be approximated
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Figure 5.7: Energy growth vs. the number of adaptive and Fourier basis functions for
D0 = 9× 10−5 and D0 = 5× 10−5.

as in Section 5.1.2. However, the dependence of DE
11 on θ seems very sensitive especially at

small D0, as the test results indicate below.

In the following experiments, N = 60, m = 100 and r = 0.68%.

• θ∗ = 0.7, D0 = 10−3, 10−4 with m = 100

Estimates of DE
11,N for flow (5.6) with D0 = 10−3, 10−4 and varied θ’s by reduced basis

trained with θ∗ = 0.7, denoted by D̂E,a
11,N , as well as results from Fourier basis, are presented

in Tables 5.3-5.4.

θ 0.7 0.71 0.72 0.73 0.74 0.75

D̂E,a
11,N 0.2177 0.2138 0.2101 0.2065 0.2029 0.1993

D̂E
11,N 0.2177 0.2251 0.2368 0.2509 0.2715 0.2978

relative error 0 5.0% 10.9% 17.7% 25.3% 33.1%

Table 5.3: D̂E,a
11,N and D̂E

11,N for flow (5.6) with D0 = 10−3 and θ∗ = 0.7, Nt = 1500.

θ 0.7 0.71 0.72 0.73 0.74 0.75

D̂E,a
11,N 0.1725 0.1636 0.1571 0.1536 0.1518 0.1491

D̂E
11,N 0.1708 0.1838 0.1957 0.2063 0.2360 0.2849

relative error 1.0% 10.1% 19.7% 25.5% 35.7% 47.7%

Table 5.4: D̂E,a
11,N and D̂E

11,N for flow (5.6) with D0 = 10−4 and θ∗ = 0.7, Nt = 2000.
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• θ∗ = 0.4, D0 = 10−3, 10−4 with m = 100

Estimates of DE
11,N for flow (5.6) with D0 = 10−3, 10−4 and varied θ’s by reduced basis

trained with θ∗ = 0.4 as well as results from Fourier basis are shown in Tables 5.5-5.6.

θ 0.4 0.41 0.42 0.43 0.44 0.45

D̂E,a
11,N 0.3921 0.3700 0.3523 0.3380 0.3261 0.3161

D̂E
11,N 0.3921 0.3772 0.3637 0.3528 0.3451 0.3405

relative error 0 2.0% 3.1% 4.2% 5.5% 7.2%

Table 5.5: D̂E,a
11,N and D̂E

11,N for flow (5.6) with D0 = 10−3 and θ∗ = 0.4, Nt = 1500.

θ 0.4 0.41 0.42 0.43 0.44 0.45

D̂E,a
11,N 0.3888 0.3795 0.3788 0.3810 0.3823 0.3792

D̂E
11,N 0.3887 0.3516 0.3187 0.3027 0.3041 0.3195

relative error 0 8.0% 18.9% 25.9% 25.7% 18.7%

Table 5.6: D̂E,a
11,N and D̂E

11,N for flow (5.6) with D0 = 10−4 and θ∗ = 0.4, Nt = 2000.

5.2 Construction of Adaptive Basis via DNNs

5.2.1 Learning thinner structures

Consider the numerical solution to the problem with flow (5.4). It can be seen from Figure

5.1-5.2 that layers in snapshots get thinner as D0 becomes smaller. In the prediction of the

singular solutions at D0 much smaller than D∗0, it would be helpful to have the adaptive basis

learned at D∗0 demonstrate the thinner layered structures. Particularly, given the solution

matrix W at D∗0 as (5.3), we are looking for a transform T such that snapshots of Fourier

coefficients T (W ) have sharpened layers.

Suppose D1
0 > D2

0 and W i is the solution matrix at Di
0 for i = 1, 2. Let F be column-

wise Fourier transform on matrices, then columns of F−1 (W i) are snapshots of solution W i.
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When W i’s are known, we may use certain DNN to train a map T for the following regression

problem

T : F−1
(
W 1
)
→ F−1

(
W 2
)
.

D2
0 < D1

0 implies F−1 (W 2) has thinner layered structures than F−1 (W 1) and so does

T (F−1 (W 1)). Hence T can be applied to solution matrix W at some D∗0 and T (F−1 (W ))

is expected to have thinner structures. Thus the adaptive basis with thinner structures will

be obtained from SVD of

F
(
T
(
F−1 (W )

))
.

5.2.2 Adversarial network

We apply the super-resolution generative adversarial network (SRGAN) [37] to the construc-

tion of map T . As a generative adversarial network (GAN), SRGAN consists of a generator

network G and a discriminator network D. The two networks are competing in a way that

D is trained to distinguish the real high-resolved images and images generated from low-

resolved images, while G is trained to create fake high-resolved images from low-resolved

images to fool D.

We train the SRGAN with F−1 (W 1) as input data and F−1 (W 2) as target data so that

the generator G can learn to generate thinner structures when it is fed with F−1 (W ). With

that approach we may implement T by G.
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Network architecture

As shown in Figure 5.8, the generator network G starts with a convolutional block with

kernel size 9× 9, followed by a few residual blocks. Here a convolutional block consists of a

convolutional layer and a PReLU layer, a residual block is a convolutional block with kernel

size 3× 3 followed by a convolutional layer of the same kernel size and a shortcut from the

input to output. There are two more convolutional layers with kernel size 3 × 3 and 9 × 9

after the residual blocks at the end of the network. The number of filters in all convolutional

blocks are the same except for the last one. Note that we remove the two upscale layers in

[37] since the sizes of slides of F−1 (W 1) and F−1 (W 2) are the same.

The discriminator network D is defined by the architectural guidelines summarized in [52],

see Figure 5.8. It has eight convolutional blocks with PReLU layers replaced by LeakyReLU

layers with α = 0.2. Moreover, there is a batch normalization layer before each LeakyReLU

in the convolutional blocks. The kernel size is 3 × 3 in all convolutional blocks and the

number of filters is doubled in the 3rd, 5th and 7th block. Those blocks are followed by a

fully connected layer, a LeakyReLU layer and one more fully connected layer. Finally the

feature map is fed in a sigmoid layer which gives the probability of real high-resolved image

and reconstructed one.

Loss function of generator network

As a binary classifier, the discriminator network is equipped with the cross entropy loss. We

are focusing on the loss function of the generator network.

Suppose F−1 (W 1) and F−1 (W 2) are real matrices of dimension (2N + 1)2 × Nt, columns

of F−1 (W 1) and F−1 (W 2) are xi and yi, i = 1, 2, . . . , Nt. Following the formulation in [37],

77



Generator Network Discriminator Network

Input (LR image)

Conv (k9n64s1)

PReLU

Conv (k3n64s1)

PReLU

Conv (k3n64s1)

Element-wise sum

Conv (k3n64s1)

Element-wise sum

Conv (k9n3s1)

Output (HR image)

Input (HR image)

Conv (k3n64s1)

LeakyReLU

Conv (k3n64s2)

BN

LeakyReLU

(k3n128s1)

(k3n128s2)

(k3n256s1)

(k3n256s2)

(k3n512s1)

(k3n512s2)

FC

LeakyReLU

FC

Sigmoid

Output (real or fake)

Figure 5.8: Architecture of the generator (left) and discriminator (right) network.
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we define the loss function of the generator network as

l (G) = lMSE (G) + 10−2lV GG (G) + 10−3lGen (G) . (5.7)

In (5.7), lMSE is the pixel-wise MSE loss defined as the sum of the squares of error at each

pixel,

lMSE (G) =
Nt∑
i=1

‖yi −G (xi)‖2
2 .

lV GG is the VGG loss based on layers of the pre-trained VGG-19 network [65]. Let φ be a

feature map of VGG-19 and sφ be its size, then the VGG loss is the average of squares of

Euclidean distances between the feature representations of yi and G (xi)

lV GG (G) =
1

sφ

Nt∑
i=1

‖φ (yi)− φ (G (xi))‖2
2 .

The generator network is expected to fool the discriminator network, so (5.7) contains lGen

called generative loss. lGen is defined based on the cross-entropy loss of the discriminator

network

Nt∑
i=1

log [1−D (G (xi))] . (5.8)

Here D (G (xi)) means the binary classification result of the reconstructed high-resolved

image by the generator network G in (5.8). In practice, we define

lGen (G) =
Nt∑
i=1

− logD (G (xi)) ,

for better gradient behavior.
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5.2.3 Experimental results of adaptive basis from SRGAN

Let D1
0 = 10−2, D2

0 = 10−3. We solved for both W 1 and W 2 with N = 50 and Nt = 1500,

then train SRGAN with input data F−1 (W 1) and target data F−1 (W 2). We set D∗0 = D2
0

in the following experiments.

Figure 5.9 shows a time slide of the input F−1 (W 1) (top left), target F−1 (W 2) (top right),

output G (F−1 (W 1)) (bottom left) and G (F−1 (W 2)) (bottom right). It can be seen that

thinner layers are created by the network G.
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Figure 5.9: Input and Output of the SRGAN with D1
0 = 10−2, D2

0 = 10−3.

Set D1
0 = 10−2 and D2

0 = 10−3, the comparison of predictions of DE
11 by direct SVD and

SRGAN assisted SVD is shown in Table 5.7. The number of adaptive basis used is m = 100

for both method.
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D0 5× 10−4 4× 10−4 3× 10−4 2× 10−4 10−4

D̂E
11,60 1.3847 1.3940 1.4105 1.4395 1.4951

D̂E,a
11,50

SVD 1.5258 1.5597 1.5969 1.6381 1.6854
SRGAN 1.2429 1.2663 1.3056 1.3786 1.5293

relative error
SVD 10.2% 11.9% 13.2% 13.8% 12.7%

SRGAN 10.2% 9.2% 7.4% 4.2% 2.3%

Table 5.7: Comparison of D̂E,a
11,N for flow (5.4) with D1

0 = 10−2, D2
0 = 10−3.

When D1
0 is closer to D2

0, SRGAN assisted SVD may have even better predictions at smaller

D0. In Table 5.8, D1
0 = 5 × 10−3, D2

0 = 10−3 and N = 50 and we predict the D̂E
11,60

for D0 = 3 × 10−4, 2 × 10−4 and 10−4. For D1
0 = 5 × 10−3, D2

0 = 10−3, singular vectors of

F (G (F−1 (W 2))) also have thinner structures than that of W 2, as shown in right column and

left column of Figure 5.10 respectively. Table 5.9 summarizes predictions for D0 = 2× 10−5

and 10−5 from D1
0 = 10−3, D2

0 = 10−4 and N = 60.

D0 3× 10−4 2× 10−4 10−4

D̂E
11,60 1.4105 1.4395 1.4951

D̂E,a
11,50

SVD 1.5969 1.6381 1.6854
SRGAN 1.3111 1.3862 1.5015

relative error
SVD 13.2% 13.8% 12.7%

SRGAN 7.0% 3.7% 0.4%

Table 5.8: Comparison of D̂E,a
11,N for flow (5.4) with D1

0 = 5× 10−3, D2
0 = 10−3.

D0 2× 10−5 10−5

D̂E
11,60 1.6052 1.6301

D̂E,a
11,60

SVD 1.5107 1.5243
SRGAN 1.6234 1.7120

relative error
SVD 5.9% 6.5%

SRGAN 1.1% 5.0%

Table 5.9: Comparison of D̂E,a
11,N for flow (5.4) with D1

0 = 10−3, D2
0 = 10−4.
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Figure 5.10: Singular vectors of solution matrix W 2 (left column) and F (G (F−1 (W 2)))
(right column).
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Chapter 6

Quantization of Deep Neural

Networks

6.1 BinaryRelax

The training of DNNs with quantized weights can be written as a constrained optimization

problem:

min
x∈Rn

f(x) :=
1

N

N∑
j=1

`j(x) subject to x ∈ Q. (6.1)

Without loss of generality, we assume the set of quantized weights

Q = R+ × {±q1, . . . ,±qm}n

throughout the chapter. Hence we only consider the case for simplicity that a single ad-

justable scaling factor is shared by all weights in the network.

83



6.1.1 Quantization

For general b-bit quantization,

Q =

p⋃
i=1

Li

is the union of p distinct one-dimensional subspaces Li ⊂ Rn, i = 1, 2, . . . , p, where

Li = {s · Li : s ∈ R}

for some Li ∈ {±q1, . . . ,±qm}n \ {0} ⊂ Rn [38]. Figure 6.1 shows an example of Q =

R+ × {0,±1}2, i.e. the ternarization of two weights.

Figure 6.1: Graphic illustration of Q = R+ × {0,±1}2. In this case, b = n = 2, p = 4.

Given a float weight vector y, its quantization x is the projection of y onto the set Q

x = arg min
z∈Q
‖z − y‖2 = projQ(y). (6.2)

Q is a non-convex set, so the projection may not be unique. In that case, we just assume x
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is one of them. The projection/quantization problem can be reformulated as

(s∗, Q∗) = arg min
s,Q
‖s ·Q− y‖2 subject to Q ∈ {±q1, . . . ,±qm}n, (6.3)

The quantization of y is then given by projQ(y) = s∗ ·Q∗. (6.3) is essentially a constrained

K-means clustering problem of 1-D points. The centroids are of the form ±(s · qj) with

1 ≤ j ≤ m, and they are determined by a single parameter s since qj’s are fixed. For uniform

quantization where qj = j − 1, these centroids are equi-spaced. Given s, the assignment of

float weights is then governed by Q. Thus the problem (6.3) can be solved by a variant of

Lloyd’s algorithm [42], which iterates between the assignment step (Q-update) and centroid

update step (s-update). In the Q-update of the l-th iteration, fixing the scaling factor sl−1,

each Ql
i is chosen from {±q1, . . . ,±qm} so that sl−1Ql

i is the nearest centroid to yi. In the

s-update, a quadratic problem

min
s∈R
‖s ·Ql − y‖2

is solved by sl = 〈Ql,y〉
‖Ql‖2 .

The above procedure however, is impractical here, as the quantization is needed in every

iteration of training. It has been shown that the closed form (exact) solution of (6.3) can be

computed at O(n) complexity for binarization [59] where Q ∈ {±1}n:

s∗ =
‖y‖1

n
, Q∗i =


1 if yi ≥ 0

−1 otherwise.

(6.4)

In the case of ternarization where Q ∈ {0,±1}n, an O(n log n) exact formula [76] is

t∗ = arg max
1≤t≤n

‖y[t]‖2
1

t
, s∗ =

‖y[t∗]‖1

t∗
, Q∗ = sign(y[t∗]), (6.5)

85



where y[t] ∈ Rn keeps the t largest component in magnitude of y, while zeroing out the

others. For quantization with wider bit-width (b > 2), accurately solving (6.3) becomes

computationally intractable [76]. Empirical formulas have thus been proposed for an ap-

proximate quantized solution [39, 76, 80], and they turn out to be sufficient for practical use.

For example, a thresholding scheme of O(n) complexity for ternarization [39] is

δ =
0.7‖y‖1

n
, s∗ =

∑n
i=1 |yi| · 1|yi|≥δ∑n

i=1 1|yi|≥δ
, Q∗i =


sign(yi) if |yi| ≥ δ,

0 otherwise.

(6.6)

For b > 2, Yin et al. [76] proposed to just perform one iteration of Lloyd’s algorithm with a

carefully initialized Q.

In this work, we assume that the quantization projQ(y) can be computed precisely, regardless

the choice of qj’s.

6.1.2 Relaxed Quantization

Moreau [50] introduced what is now called the Moreau envelope and the proximity operator

(proximal mapping) that generalizes the projection. Let g : Rn → (−∞,∞] be a lower

semi-continuous extended-real-valued function. For t > 0, the Moreau envelope function is

gt(x) := inf
z∈Rn

g(z) +
1

2t
‖z − x‖2.

In general, gt is everywhere finite and locally Lipschitz continuous. Moreover, gt converges

pointwise to g as t→ 0+. Moreau envelope is closely related to the inviscid Hamilton-Jacobi

equation [14]

ut +
1

2
| ∇xu |2 = 0, u(x, 0) = g(x),
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where u(x, t) = gt(x) is the unique viscosity solution of the above initial-value problem via

the Hopf-Lax formula

u(x, t) = inf
z

{
g(z) + tH∗

(
z − x
t

)}

with the Hamiltonian H(t, x, v) = 1
2
‖v‖2 and its Fenchel conjugate H∗ = H. The proximal

mapping of g is defined by

proxg(x) := arg min
z∈Rn

g(z) +
1

2
‖z − x‖2.

It is frequently used in optimization algorithms associated with non-smooth optimization

problems such as total variation denoising [27].

In particular, if g = χA is the indicator function of a close set A ⊂ Rn, where

χA(x) =


0 if x ∈ A,

∞ otherwise,

the Moreau envelope is well defined for t > 0

gt(x) = inf
z
χA(z) +

1

2t
‖z − x‖2 = inf

z∈A

1

2t
‖z − x‖2 =

1

2t
dist(x,A)2,

and the proximal mapping proxg(x) is reduced to the projection projA(x).

Consider an alternative form of DNNs quantization problem (6.1)

min
x∈Rn

f(x) + χQ(x), (6.7)

When both the objective function f(x) and the set Q are non-convex, the discontinuity of χQ

poses an extra challenge in minimization since a continuous gradient descent update can be
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made stagnant when projected discontinuously. The Moreau envelope of χQ is 1
2t

dist(x,Q)2,

which is continuously differentiable almost everywhere, except at points that have at least two

nearest line subspaces, i.e. there exist two different ways to quantize x. We use 1
2t

dist(x,Q)2

as the approximant of the discontinuous χQ(z) and minimize the relaxed training error

min
x∈Rn

f(x) +
λ

2
dist(x,Q)2, (6.8)

where λ = t−1 > 0 is the regularization parameter. When λ → ∞, λ
2
dist(x,Q)2 converges

pointwise to χQ(x), and the global minimum of (6.8) converges to that of (6.7).

Proposition 6.1. Suppose f(x) is continuous. Let f ∗Q = minx∈Q f(x) be the global minimum

of (6.7) and x∗λ be the global minimizer of relaxed quantization problem (6.8). Then

dist(x∗λ,Q)→ 0 and f(x∗λ)→ f ∗Q, as λ→∞.

Proof. Since x∗λ is the global minimizer of (6.8),

f ∗Q ≥ f(x∗λ) +
λ

2
dist(x∗λ,Q)2 ≥ f ∗ +

λ

2
dist(x∗λ,Q)2,

where f ∗ = min
x∈Rn

f(x) > −∞, so

dist(x∗λ,Q) ≤
√

2(f ∗Q − f ∗)
λ

→ 0, as λ→∞.

Denote x∗λ,Q = projQ(x∗λ), then ‖x∗λ,Q − x∗λ‖ → 0 as λ→∞. Since f ∗Q is the minimum in Q,

f(x∗λ) +
λ

2
dist(x∗λ,Q)2 ≤ f ∗Q ≤ f(x∗λ,Q)→ f(x∗λ), as λ→∞.

Therefore, lim
λ→∞

f(x∗λ) = f ∗Q.
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6.1.3 Algorithm

Inspired by the hybrid gradient update proposed in [19], we write a two-line solver for the

minimization problem (6.8):


yk+1 = yk − γk∇fk(xk)

xk+1 = arg min
x∈Rn

1

2
‖x− yk+1‖2 +

λ

2
dist(x,Q)2.

(6.9)

The algorithm constructs two sequences: an auxiliary sequence of float weights {yk} and a

sequence of nearly quantized weights {xk}. The mismatch of discontinuous projection and

continuous gradient descent is resolved by the relaxed quantization step in (6.9), which calls

for computing the proximal mapping of the function
λ

2
dist(x,Q)2. This can be done via the

following closed-form formula.

Proposition 6.2. Let projQ(yk+1) = arg minx∈Q ‖x − yk+1‖2 be the quantization of yk+1,

then the solution to relaxed quantization subproblem in (6.9) is

xk+1 =
λ projQ(yk+1) + yk+1

λ+ 1
. (6.10)

Proof. Problem (6.9) is equivalent to

min
x

min
z∈Q

1

2
‖x− yk‖2 +

λ

2
‖z − x‖2 = min

z∈Q
min
x

1

2
‖x− yk‖2 +

λ

2
‖z − x‖2.

With fixed z ∈ Q, the inner problem is minimized at x = λ z+yk

λ+1
, then

z∗ = arg min
z∈Q

1

2

∥∥∥∥λz + yk

λ+ 1
− yk

∥∥∥∥2

+
λ

2

∥∥∥∥z − λz + yk

λ+ 1

∥∥∥∥2

= arg min
z∈Q
‖z − yk‖2 = projQ(yk).

Therefore, xk =
λ projQ(yk) + yk

λ+ 1
is the optimal solution.

89



We still need the exact quantization projQ(yk+1) to perform relaxed quantization. The up-

date xk+1 is essentially a linear interpolation between yk+1 and its quantization projQ(yk+1),

and λ controls the weighted average. xk+1 is thus not quantized because xk+1 6∈ Q, but xk+1

approaches Q as λ increases. Hereby we adopt a continuation strategy and let λ grow slowly.

Specifically, we inflate λ after a certain number of epochs by a factor ρ > 1. Intuitively, the

relaxation with continuation will help skip over some bad local minima of (6.7) located in

Q , because they are not local minima of the relaxed formulation in general.

Proposition 6.3. Suppose f(x) is differentiable. Any point x∗ ∈ Q is not a local minimizer

of the relaxed quantization problem (6.8) unless ∇f(x∗) = 0.

Proof. Proof by contradiction. Assume x∗ ∈ Q is a local minimizer of problem (6.8) and

∇f(x∗) 6= 0, then for any point x in the neighborhood of x∗,

f(x∗) ≤ f(x) +
λ

2
dist(x,Q)2 ≤ f(x) +

λ

2
‖x− x∗‖2.

Set x = x∗ − β∇f(x∗) with a small β > 0. The above inequality is reduced to

f(x∗) ≤ f(x∗ − β∇f(x∗)) +
λβ2

2
‖∇f(x∗)‖2. (6.11)

On the other hand, by Taylor’s expansion,

f(x∗ − β∇f(x∗)) = f(x∗)− β‖∇f(x∗)‖2 + o(β). (6.12)

(6.11) and (6.12) imply

‖∇f(x∗)‖2 ≤ λβ

2
‖∇f(x∗)‖2 + o(1),

which leads to a contradiction as we let β → 0.
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In order to obtain quantized weights in the end, we turn off the relaxation mode and enforce

quantization. The BinaryRelax algorithm is summarized in Algorithm 3.

Algorithm 3 BinaryRelax.

Input: number of epochs for training, batch size, schedule of learning rate {γk}, growth
factor ρ > 1.

for i = 1, 2,. . . , nb-epoch do
Randomly shuffle the data and partition into batches.
for j = 1, 2, . . . , nb-batch do
yk+1 = yk − γk∇fk(xk)
if i ≤ T then

xk+1 =
λkprojQ(yk+1)+yk+1

λk+1
// Phase I

if increase λ then
λk+1 = ρλk

else
λk+1 = λk

end if
else
xk+1 = projQ(yk+1) // Phase II

end if
k = k + 1

end for
end for

Remark 6.1. For BinaryRelax, we replace a discrete quantization constraint with a con-

tinuous regularizer. The similar idea of relaxing the discrete sparsity constraint ‖x‖0 ≤ s

into a continuous and possibly non-convex sparse regularizer has been long known in the

contexts of statistics and compressed sensing [67, 25, 9]. For example, compressed sensing

solvers for minimizing the convex `1 norm [27] or non-convex sparse proxies, such as `1/2

(with smoothing) [13] and `1−2 [73], often empirically outperform those directly tackling the

nonzero counting metric `0. Similar to the quantization set Q, the sparsity constraint set

{x ∈ Rn : ‖x‖0 ≤ s} is also a finite union of low-dimensional subspaces in Rn,

{x ∈ Rn : ‖x‖0 ≤ s} =
⋃

S⊂{1,...,n}, |S|=s

{x ∈ Rn : supp(x) ⊆ S}.

Remark 6.2. BinaryRelax resembles the linearized Bregman algorithm proposed by Yin et
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al. [77, 78] for solving the basis pursuit problem [16, 9]

min
x∈Rn

‖x‖1 subject to Ax = b,

by iterating


yk+1 = yk − τkA>(Axk − b)

xk+1 = δ · shrink(yk+1, µ)

where δ, µ, τk > 0 are algorithmic parameters. In linearized Bregman, A>(Ax − b) is the

gradient of sum of squares error
1

2
‖Ax− b‖2, and shrink(y, µ) is the proximal mapping of `1

norm (soft-thresholding operator [23]):

shrink(y, µ) := arg min
u

1

2µ
‖u− y‖2 + ‖u‖1.

Linearized Bregman also iterates between hybrid gradient step and proximal mapping, but is

not exactly the same as BinaryRelax since there is a scaling by δ in the proximal step.

6.2 Experimental Results

We tested BinaryRelax on benchmark CIFAR [34] and ImageNet [21] color image datasets.

The two baselines are the BinaryConnect framework combined with the exact binarization

formula (6.4) (BWN) [59] and the heuristic ternarization scheme (6.6) (TWN) [39]. We used

the same quantization formulas for BinaryRelax in the relaxed quantization update (6.10).

Both algorithms were initialized with the weights of a pre-trained float model.

The relaxation parameter is initialized with λ0 = 1. We split into roughly 4/5 and 1/5 of the

training epochs for Phase I and Phase II. To guarantee the smooth transitioning to Phase II
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from Phase I, a proper growth factor ρ > 1 is chosen so that λ ∈ (100, 300) at the moment

Phase I ends. Small λ is likely to results in noticeable drop in accuracy when Phase II starts.

6.2.1 CIFAR datasets

The CIFAR-10 dataset consists of 60,000 32×32 color images in 10 classes, with 6,000 images

per class. There are 50,000 training images and 10,000 test images. CIFAR-100 dataset is

like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500

training images and 100 test images per class. Figure 6.2 shows some sample images from

CIFAR datasets. In the experiments, we used the testing images for validation. We coded

up the BinaryRelax in PyTorch [55] platform. The experiments were carried out on two

desktops with Nvidia graphics cards GTX 1080 Ti and Titan X.

CIFAR-10 CIFAR-100

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

apple

aquarium fish

baby

bear

beaver

bed

bee

beetle

bicycle

bottle

Figure 6.2: Sample images from CIFAR datasets.

We ran 300 epochs. The initial learning rate γ0 = 0.1 with decay by a factor of 0.1 at epochs

{120, 220}. Phase II starts at epoch 240. λ increases by a factor of ρ = 1.02 after every

epoch. In addition, we used batch size = 128, `2 weight decay = 10−4, batch normalization

[32], and momentum = 0.95.
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We tested the algorithms on the popular VGG [65] and ResNet[28] architectures, and the

validation accuracy for CIFAR-10 and CIFAR-100 is summarized in Table 6.1 and Table 6.2.

ResNet-18 and ResNet-34 tested here were originally constructed for the more challenging

ImageNet classification [21] and then adapted for CIFAR datasets. They have wider channels

in the convolutional layers and are much larger than the other ResNets. For example, ResNet-

18 has ∼ 11 million parameters, whereas ResNet-110 has only ∼ 1.7 million. This explains

their higher accuracies. All quantized networks were initialized from their full-precision

counterparts whose validation accuracies are listed in the second column.

Figure 6.3 shows the validation accuracies for CIFAR-100 tests with VGG-16 and ResNet-34

during the training process. The initial learning rate γ0 = 0.1 and decays by a factor of 0.1

at epoch 120 and 220. The initial regularization parameter λ0 = 1 and grows by a factor of

ρ = 1.02 after each epoch until epoch 240 where Phase II starts. For the VGG-16 tests, we

notice the decay of the validation accuracies of BinaryRelax occurs in Phase I training. This

is due to the increase of the parameter λ, which makes the regularization more and more

stringent. With approximately the same training cost, our relaxed quantization approach

consistently outperforms the hard quantization counterpart in validation accuracies. As seen

from the tables and figure, the advantage of relaxed quantization is particularly clear when it

comes to the large nets ResNet-18 and ResNet-34, where we have more complex landscapes

with spurious local minima. In this case, our accuracies of binarized networks even surpass

that of TWN. The relaxation indeed helps skip over bad local minima during the training.

CIFAR-10 Float
Binary Ternary

BWN Ours TWN Ours
VGG-11 91.93 88.70 89.28 90.48 91.01
VGG-16 93.59 91.60 91.98 92.75 93.20

ResNet-20 92.68 87.44 87.82 88.65 90.07
ResNet-32 93.40 89.49 90.65 90.94 92.04
ResNet-18 95.49 92.72 94.19 93.55 94.98
ResNet-34 95.70 93.25 94.66 94.05 95.07

Table 6.1: CIFAR-10 validation accuracy.
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CIFAR-100 Float
Binary Ternary

BWN Ours TWN Ours
VGG-11 70.43 62.35 63.82 64.16 65.87
VGG-16 73.55 69.03 70.14 71.41 72.10

ResNet-56 70.86 66.73 67.65 68.26 69.83
ResNet-110 73.21 68.67 69.85 68.95 72.32
ResNet-18 76.32 72.31 74.04 73.15 75.24
ResNet-34 77.23 72.92 75.62 74.43 76.16

Table 6.2: CIFAR-100 validation accuracy.

6.2.2 ImageNet

ImageNet (ILSVRC12) dataset [21] is a benchmark for large-scale image classification task,

which has 1.2 million images for training and 50, 000 for validation of 1,000 categories. We

quantize ResNet-18 at bit-widths 1 (binary) and 2 (ternary). The experiments were carried

out on a machine with 8 Nvidia GeForce GTX 1080 Ti GPUs.

We initialized BinaryRelax with the pre-trained full-precision (32-bit) models available from

the PyTorch torchvision package [55]. We trained in total 70 epochs, with phase II starting

at epoch 55. The initial learning rate γ0 = 0.1 and decays by a factor of 0.1 at epochs

{30, 40, 50}. Relaxation parameter λ starts at 1 and increases by a growth factor of ρ = 1.045

after each half (1/2) epoch. In all these experiments, we used momentum= 0.9 and weight

decay = 10−4. The comparison results with BWN and TWN are listed in Table 6.3.

Network Bit-width Method Top-1 Top-5

ResNet-18

32 (float) 69.6 89.0

1 (binary)
BWN 60.8 83.0
Ours 63.2 85.1

2 (ternary)
TWN 61.8 84.2
Ours 66.5 87.3

Table 6.3: ImageNet validation accuracy.
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VGG-16 Binary VGG-16 Ternary

ResNet-34 Binary ResNet-34 Ternary

Figure 6.3: Validation accuracy curves for CIFAR-100 using VGG-16 and ResNet-34.

6.3 Convergence Analysis

Consider Phase II of BinaryRelax (i.e. BinaryConnect):


yk+1 = yk − γk∇fk(xk)

xk+1 = projQ(yk+1).

(6.13)

Although the convergence of BinaryConnect at a small learning rate is observed empirically,

the only convergence results, to our knowledge, were proved in [40], in terms of the objective

value of float ergodic averages

{
f

(∑k
i=1 y

i

k

)}
under convexity assumption. Moreover, the
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quantization set Q considered in [40] is quite different. They constrain the quantized weights

to {0,±∆,±2∆, . . . }, where ∆ > 0 is some fixed resolution, hence Q is an unbounded ∆-

lattice in Rn. In section 6.1.1 Q takes the form of ∪pi=1Li with each Li being a line passing

through the origin. This assumption on Q generalizes the binary and ternary cases in the

existing literature such as [59, 39]. Without assuming the convexity of f , we will show the

sequence {xk} generated by the iteration (6.13) subsequentially converges in expectation to

an approximate critical point. To establish the convergence, we need to exploit the property

of the set Q being the union of line subspaces by introducing several technical lemma.

6.3.1 Preliminaries

We have the following basic assumptions.

(i) f(x) is bounded from below. Without loss of generality, we assume f (x) ≥ 0.

(ii) f(x) is L-Lipschitz differentiable, i.e. for any x, y ∈ Rn, we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

(iii) E[‖∇f(xk) − ∇fk(xk)‖2] ≤ σ2 for all k ∈ N, where the expectation is taken over the

stochasticity of the algorithm (i.e. random selection of fk).

Our proof relies on the following technical lemma that exploit the structure of set Q.

Lemma 6.1 (Approximate orthogonality). Let {yk}, {xk} be defined in (6.13). There exists

αk ≥ 0, such that

αk‖xk+1 − xk‖2 + ‖yk − xk‖2 = ‖yk − xk+1‖2.
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Proof. Since xk, xk+1 ∈ Q and xk = projQ(yk), ‖yk − xk‖2 ≤ ‖yk − xk+1‖2, i.e. αk ≥ 0.

Proposition 6.4. Let θmin be the smallest angle formed by any two line subspaces in Q. If

‖xk+1−xk‖ < ‖xk‖ sin θmin, then αk = 1 in Lemma 6.1. Moreover, αk may have to be 0 only

when ‖yk − xk‖ = ‖yk − xk+1‖ and ∇fk(xk) ⊥ Li with Li containing xk+1.

Proof. Since the only intersection of the line subspaces is the origin, the distance between

xk and any other line is at least ‖xk‖ sin θmin. If ‖xk+1 − xk‖ < ‖xk‖ sin θmin, then xk and

xk+1 must lie in the same line, and therefore αk = 1. On the other hand, if αk can only be

0, then it must hold that ‖yk − xk‖ = ‖yk − xk+1‖ and xk 6= xk+1, meaning that xk+1 is a

different projection of yk onto Q. Moreover, since the projection of yk+1 = yk − γk∇fk(xk)

onto Q is also xk+1. Suppose xk+1 ∈ Li ⊂ Q, then ∇fk(xk) ⊥ Li.

Lemma 6.2 (Alternative update). Let {xk} be defined in (6.13). Suppose xk+1 ∈ Li ⊂ Q

with Li being some line subspace and define x̃k := projLi(y
k), then

xk+1 = arg min
x∈Li
‖x− (x̃k − γk∇fk(xk))‖2.

Moreover, xk+1 is a local minimizer of the following problem

min
x∈Q
‖x− (x̃k − γk∇fk(xk))‖2. (6.14)

Proof. By the assumption,

xk+1 = projLi(y
k − γk∇fk(xk)) = projLi(x̃

k − γk∇fk(xk) + yk − x̃k).

Since yk − x̃k ⊥ Li (see Figure 6.4),

xk+1 = projLi(x̃
k − γk∇fk(xk)),
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so xk+1 is the closest point to x̃k−γk∇fk(xk) on Li. If x̃k−γk∇fk(xk) = 0, then xk+1 = 0 is

the global minimizer of (6.14). Otherwise, xk+1 6= 0. Since the line subspaces that constitute

Q only intersect at the origin, there exists a neighborhood N of xk+1 such that N ∩Q ⊂ Li.

Therefore, xk+1 is a local minimizer of problem (6.14).

Figure 6.4: Illustration of Lemma 6.2. yk+1 = yk − γk∇fk(xk).

Lemma 6.3. Let αk and x̃k be defined in Lemma 6.1 and 6.2, resp., it holds that

‖xk+1 − x̃k‖2 ≤ αk‖xk+1 − xk‖2.

Proof. By the facts xk = projQ(yk), x̃k = projLi(y
k) ∈ Q, xk+1 ∈ Li and Lemma 6.1,

‖xk+1 − x̃k‖2 = ‖yk − xk+1‖2 − ‖yk − x̃k‖2

≤‖yk − xk+1‖2 − ‖yk − xk‖2 = αk‖xk+1 − xk‖2.

Lemma 6.4 (Descent lemma [4]). For any x, y, it holds that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2.
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Definition 6.1 (Subdifferential [49, 60]). Let h : Rn → (−∞,+∞] be a proper and lower

semicontinuous function. Define dom(h) := {x ∈ Rn : h(x) < +∞}. For a given x ∈

dom(h), the Fréchet subdifferential of h at x, written as ∂̂h(x), is the set of all vectors

u ∈ Rn which satisfy

lim
y 6=x

inf
y→x

h(y)− h(x)− 〈u, y − x〉
‖y − x‖

≥ 0.

When x /∈ dom(h), we set ∂̂h(x) = ∅. The (limiting) subdifferential, or simply the subdiffer-

ential, of h at x ∈ Rn, written as ∂h(x), is defined through the following closure process

∂h(x) := {u ∈ Rn : ∃xk → x, h(xk)→ h(x) and uk ∈ ∂̂h(xk)→ u as k →∞}.

6.3.2 Main results

Theorem 6.1. Let {xk} be the sequence generated by (6.13). Suppose there exist
¯
α, ᾱ, γ > 0

such that
¯
α ≤ αk ≤ ᾱ and γk+1 ≤ γk ≤ γ <

ᾱ

2L
for all k ∈ N, then

lim
k→∞

E
[
‖xk+1 − xk‖2

]
= 0,

if
∞∑
k=0

γ2
k <∞. If further

∞∑
k=0

γk =∞, we have

lim inf
k→∞

E[dist(0, ∂h(xk))2] ≤ 3σ2

(
4ᾱ

¯
α2

+ 1

)
,

where h = f + χQ is the overall objective function.
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Proof. By Lemma 6.4,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

=f(xk) + 〈∇fk(xk), xk+1 − xk〉+ 〈∇f(xk)−∇fk(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2.

(6.15)

The cross terms need care. Rewrite the update xk+1 = projQ(yk − γk∇fk(xk)) as

xk+1 = arg min
x∈Q
〈∇fk(xk), x〉+

1

2γk
‖x− yk‖2.

Since xk ∈ Q,

〈∇fk(xk), xk+1〉+
1

2γk
‖xk+1 − yk‖2 ≤ 〈∇fk(xk), xk〉+

1

2γk
‖xk − yk‖2.

By Lemma 6.1,

〈∇fk(xk), xk+1 − xk〉 ≤ 1

2γk
(‖xk − yk‖2 − ‖xk+1 − yk‖2) ≤ − ¯

α

2γk
‖xk+1 − xk‖2. (6.16)

By Young’s inequality,

〈∇f(xk)−∇fk(xk), xk+1 − xk〉 ≤ γk

¯
α
‖∇f(xk)−∇fk(xk)‖2 + ¯

α

4γk
‖xk+1 − xk‖2. (6.17)

Combining (6.15), (6.16) and (6.17) and taking the expectation gives

E[f(xk+1)] ≤ E[f(xk)]− ¯
α− 2γkL

4γk
E[‖xk+1 − xk‖2] +

γkσ
2

¯
α

. (6.18)
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Multiplying (6.18) by γk and using αk ≥
¯
α > 0, γk+1 ≤ γk ≤ γ < ¯

α

2L
and f ≥ 0, we obtain

γk+1E[f(xk+1)] ≤ γkE[f(xk+1)] ≤ γkE[f(xk)]− (
¯
α− 2γL)E[‖xk+1 − xk‖2] +

γ2
kσ

2

¯
α

.

Rearranging terms in the above inequality and taking the sum over k yields

(
¯
α− 2γL)

∞∑
k=0

E[‖xk+1 − xk‖2] ≤ γf(x0)− lim
k→∞

γkE[f(xk)] +
σ2

¯
α

∞∑
k=0

γ2
k <∞.

Therefore, lim
k→∞

E[‖xk+1 − xk‖2] = 0.

By Lemma 6.2, the first-order optimality condition of (6.14) holds at xk+1, so

0 ∈ ∇fk(xk) +
xk+1 − x̃k

γk
+ ∂χQ(xk+1),

which implies

−x
k+1 − x̃k

γk
−∇fk(xk) +∇f(xk+1) ∈ ∇f(xk+1) + ∂χQ(xk+1) = ∂h(xk+1).

By Lemma 6.3 and the assumption that f is L-Lipschitz differentiable,

E[dist(0, ∂h(xk+1))2]

≤E

[∥∥∥∥−xk+1 − x̃k

γk
−∇fk(xk) +∇f(xk+1)

∥∥∥∥2
]

≤3

(
E

[
‖xk+1 − x̃k‖2

γ2
k

]
+ E[‖∇fk(xk)−∇f(xk)‖2] + E[‖∇f(xk)−∇f(xk+1)‖2]

)
≤3

(
ᾱE

[
‖xk+1 − xk‖2

γ2
k

]
+ σ2 + L2E[‖xk+1 − xk‖2]

)
. (6.19)

It follows from (6.18) that

γk

(
(
¯
α− 2γkL)E

[
‖xk+1 − xk‖2

4γ2
k

]
− σ2

¯
α

)
≤ E[f(xk)− f(xk+1)].
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Summing the above inequality over k yields

∞∑
k=0

γk

(
(
¯
α− 2γkL)E

[
‖xk+1 − xk‖2

4γ2
k

]
− σ2

¯
α

)
≤ f(x0) <∞.

Since γk > 0 and
∞∑
k=1

γk =∞,

lim inf
k→∞

(
¯
α− 2γkL)E

[
‖xk+1 − xk‖2

4γ2
k

]
− σ2

¯
α
≤ 0,

thus

lim inf
k→∞

E

[
‖xk+1 − xk‖2

γ2
k

]
≤ lim

k→∞

4σ2

¯
α(

¯
α− 2γkL)

=
4σ2

¯
α2

.

It follows from (6.19) that

lim inf
k→∞

E[dist(0, ∂h(xk))2] ≤ 3σ2

(
4ᾱ

¯
α2

+ 1

)
,
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Chapter 7

Conclusions

We have studied the residual diffusion arising from the singularly-perturbed advection dif-

fusion equations. Due to the periodic property of the model, we were able to apply spectral

method to solving for the singluar solutions. By constructing the Poincaré map of the

truncated system, we found the numerical periodic solution and computed the effective

diffusivity in the frequency domain. Numerical results indicate the existence of residual dif-

fusivity in time periodic cellular flow as well as the non monotone dependence on the chaotic

terms. However, as the cellular diffusivity D0 becomes smaller, much more Fourier modes

are needed to approximate the singular solution, which result in more computational cost.

Hence a challenge is to find effective ways to solve the singular problem. We constructed or-

thogonal adaptive basis functions based on learning from the fully resolved spectral method

at sampled small D0 to aid the low cost computation of residual diffusivity. Even though

solutions develop large gradients and demand a large number of Fourier modes to resolve, the

adaptive basis functions maintain accuracy of residual diffusivity at much smaller number of

basis functions, uniform in the limit of zero molecular diffusivity. We have tested the straight

forward SVD of solution matrix and it achieves satisfactory performance in certain regimes.

We have also applied deep neural network, namely SRGAN, to the adaptive basis learning
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in order to capture the structural characteristics of singular solutions. The SRGAN assisted

learning actually gives better predictions of residual diffusivity than straight forward SVD

for some D0. Moreover, there is a lot of freedom in exploring the network model so to refine

the training for adaptive basis and increase the robustness of the learning.

We have investigated the residual diffusion phenomenon in random walk as well. We found

that residual diffusivity occurs in ERWS models in one and two dimensions with an inclusion

of small probability of symmetric random walk steps. A wedge like sub-diffusive parameter

region in the (r, γ) plane transitions into a diffusive region with residual diffusivity in the

sense that the enhanced diffusivity strictly exceeds the un-perturbed diffusivity in the limit

of vanishing symmetric random walks. It would be of great interest to identify other discrete

stochastic models for residual diffusivity so that the region where this occurs remains distinct

from the un-perturbed diffusivity region in the limit of vanishing diffusive perturbations. A

recent work along this line is a study on perturbed senile reinforced random walk models

where the enhanced diffusivity is near residual diffusivity within poly-logarithmic factors

[22]. For the nonlinear case of the curvature dependent flame propagation, we studied the

effective burning velocity. We have proved that the turbulent flame speed is decreasing with

respect to the Markstein number for shear flows in the G-equation model. In the proof, we

have established several novel and rather sophisticated inequalities arising from the nonlinear

structure of the equation. We also found the “physical fluctuations” when the Markstein

number goes to zero, and the analytical formula of the limiting solution.

In the end, we have done dimensionality reduction for general DNNs. From optimization

point of view, we proposed BinaryRelax, a novel relaxation approach for training quantized

neural networks. Our algorithm iterates between a hybrid gradient step for updating the

float weights and a weighted average of the computed float weights and their quantizations.

We increase slowly the parameter that controls the average to drive the weights to the

quantized state. In order to get the purely quantized weights, exact quantization replaces
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the weighted average in the second phase of training. Extensive experiments show that with

about the same training cost, BinaryRelax is consistently better than its BinaryConnect

counterpart in terms of validation accuracy. It has clearer advantage on larger networks,

which yield more complex landscape of the training loss with spurious local minima. In

addition, our convergence analysis shows BinaryRelax is provably convergent in expectation

under an approximate orthogonality condition. It is natural to ask if we can compress DNNs

even more, which motivates the construction of fully quantized DNNs that have both weights

and activation functions quantized. Our most recent work has proposed a blended method

to train DNNs with full quantization [74].
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[62] L. Rosasco, S. Villa, and B. C. Vũ. Convergence of stochastic proximal gradient algo-
rithm. arXiv preprint arXiv:1403.5074, 2014.

[63] G. Schuetz and S. Trimper. Elephants can always remember: exact long-range memory
effects in a non-markovian random walk. Physical Review E, 70(4 Pt 2):045101, 2004.

[64] J. A. Sethian. Curvature and the evolution of fronts. Communications in Mathematical
Physics, 101(4):487–499, 1985.

[65] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

[66] G. I. Taylor. Diffusion by continuous movements. Proceedings of the London Mathe-
matical Society, 2:196–211, 1922.

[67] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.
Ser. B., 58:267–288, 1996.

[68] P. F. C. Tilles, S. V. Petrovskii, and P. L. Natti. A random walk discription of indi-
vidual animal movement accounting for periods of rest. Royal Society Open Science,
3(11):160566, 2016.

[69] J. Xin and Y. Yu. Periodic homogenization of inviscid g-equation for incompressible
flows. Communications in Mathematical Sciences, 8(4):1067–1078, 2010.

[70] J. Xin and Y. Yu. Sharp asymptotic growth laws of turbulent flame speeds in cellular
flows by inviscid hamilton-jacobi models. Annales de l’Institut Henri Poincare (C) Non
Linear Analysis, 30(6):1049–1068, 2013.

[71] J. Xin and Y. Yu. Front quenching in g-equation model induced by straining of cellular
flow. Archive for Rational Mechanics and Analysis, 214:1–34, 2014.

[72] Q. Yang, R. Yang, J. Davis, and D. Nister. Spatial-depth super resolution for range
images. CVPR, pages 1–8, 2007.

[73] P. Yin, Y. Lou, Q. He, and J. Xin. Minimization of `1−2 for compressed sensing. SIAM
J. Sci. Comput., 37:A536–A563, 2015.

111



[74] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Blended coarse gradient descent
for full quantization of deep neural networks. arXiv:1808.05240, 2018.

[75] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Binaryrelax: a relaxation
approach for training deep neural networks with quantized weights. SIAM Journal on
Imaging Sciences, to appear (arXiv:1801.06313, 2017).

[76] P. Yin, S. Zhang, Y. Qi, and J. Xin. Quantization and training of low bit-width convo-
lutional neural networks for object detection. J. Comput. Math., to appear, 2018.

[77] W. Yin. Analysis and generalizations of the linearized bregman method. SIAM J.
Imaging Sci., 3(4):856–877, 2010.

[78] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for `1-
minimization with applications to compressed sensing. SIAM J. Imaging Sci., 1(1):143—
-168, 2010.

[79] Y. Yoshida, R. Oiwa, and T. Kawahara. Ternary sparse xnor-net for fpga implementa-
tion. In International Symposium on Next Generation Electronics (ISNE), pages 1–2.
IEEE, 2018.

[80] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044,
2017.

[81] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv: 1606.06160, 2016.

[82] C. Zhu, S. Han, H. Miao, and W. Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.
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