
UC Irvine
ICS Technical Reports

Title
Computer-assisted fault tree construction using a knowledge-based approach

Permalink
https://escholarship.org/uc/item/7qz702xb

Author
Elliott, Margaret S.

Publication Date
1992-10-15
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7qz702xb
https://escholarship.org
http://www.cdlib.org/


A

Computer-assisted
Fault Tree Construction

Using a Knowledge-based Approach

Margaret S. Elliott
melliott@ics.uci.edu

Technical Report 92-95

October 15, 1992

&Yf
0- 3

no, f



Contents

1 Introduction 4

2 Nomenclature and Assumptions 7
2.1 Nomenclature 7

2.2 Assumptions 8

3 Fault Tree Construction Methodology 8
3.1 Semantics of Failures 8

3.1.1 Multiple Failures 11
3.1.2 Series Failures 12

3.1.3 Switch Failures 13

3.1.4 Combination of Switch and Series Failures 14

3.1.5 A;-out-of-7i:F Failures 15

3.2 Semantics of Fault Tree Construction 15

3.2.1 Multiple Failures Fault Tree 17
3.2.2 Series Failure Fault Tree 18

3.2.3 Switch Failure Fault Tree 19

3.2.4 Combination of Series and Switch Failures Fault Tree 19

3.2.5 ^_out_of_n:F Failure Fault Tree 22

3.3 Fault Tree Construction for Redundant Systems 23

4 System Overview 25
4.1 Fault Tree Reduction 25

4.1.1 Example of Module Identification 28
4.1.2 Analysis of Boolean Reduction 30
4.1.3 Boolean Reduction Algorithm 31

4.2 Minimal Cut Set Algorithm 32

5 Limitations 35

6 RAES Results 36



List of Figures

1 Functional Block Diagram for Multiple Failures 11
2 Functional Block Diagram for Series Failures 12
3 Functional Block Diagram for Switch Failure 13
4 Functional Block Diagram for Series and Switch Combination 14
5 Fault Tree for Multiple Failures 18
6 Fault Tree for Series Failures 19

7 Fault Tree for Switch Failure 20

8 Fault Tree for Series and Switch Combination Failures 21

9 Fault Tree for A;-out-of-ra:F Failure 22

10 Functional Block Diagram for Non-flight Critical AC Mode 23
11 Fault Tree for Multiple Selected Tops 24
12 RAES Architecture 26

13 Reduced Fault Tree with Pointer Nodes 29

List of Tables

1 Reduced Versus Non-reduced Fault Trees 33

2 RAES Electrical Analysis Times 36
3 RAES Hydraulic Analysis Times 37



Computer-assisted Fault Tree Construction Using a
Knowledge-based Approach

Margaret S. Elliott

Department of Information and Computer Science
University of California, Irvine, CA 92717-3425

Electronic Mail: melliottQics.ud.edu

Phone: (714) 856-6226

Fax: (714) 856-4056

Keywords: Rule-based expert systems, knowledge-based systems,
fault tree analysis, reliability analysis

October 13, 1992

Abstract

This paper presents a knowledge-based approach to performing a fault tree anal
ysis of engineering systems. This knowledge-based approach can be used to build a
fault tree from a graphical functional block diagram using reduction for replicated
events, and to compute minimal cut sets. A methodology in predicate calculus for
fault tree synthesis from a functional block diagram is formulated. An implementation
of this methodology in a rule-based language is presented. Results are compared with
manually prepared reliability reports on an electrical power system and a hydraulic
system. The knowledge-based system outperforms the manual procedure in timeliness
and accuracy.



1 Introduction

Fault tree analysis is a widely used technique for obtaining qualitative and quantitative
reliability and system safety assessments of complex systems. This process consists of con
structing a logical diagram (fault tree) that represents the causal relationships of system
events contributing to a predetermined TOP event. Nodes connecting basic events in the
tree are AND and OR gates for coherent trees. For more complex systems, fault trees known
as noncoherent trees may also include NOT and XOR gates. Coherent fault trees represent
systems with failure functions that have monotonic properties, whereas noncoherent fault
trees do not[4, 9, 27]. In either case, TOP events for the tree are preselected from undesired
system states that can occur because of subsystem failures.

The fault tree provides the derivation of the unique set of events that can cause the
occurrence of the TOP event. For coherent fault trees, these sets are called minimal cut
sets. They are minimal when the cut sets are reduced to those mutually exclusive sets not
containing one set within another. In fault trees without replicated events, the cut sets are
minimal. For noncoherent fault trees, the minimal cut sets are replaced by a set of prime
implicants in Boolean algebra[46, 78].

Algorithms for determining the minimal cut sets include a Monte Carlo simulation tech
nique and a deterministic approach. The Monte Carlo simulation method involves the use
of probabilistic information about the tree's basic events to calculate minimal cut sets. The
deterministic method involves the expansion of the top event of a fault tree into its Boolean
algebra equivalent in a sum of products of basic events in the tree.

Computer programs have been developed to compute minimal cut sets from the fault
tree using the Monte Carlo method[71] and using the deterministic approach [31, 33, 51,
56, 59, 61, 64, 70, 71, 77]. The SETS program[77], developed by Sandia Laboratories, finds
minimal cut sets for coherent trees, and prime implicants for noncoherent trees. Several
other computer codes exist for the computation of minimal cut sets but their descriptions
are beyond the scope of this paper. References to these programs may be found in[50, 73].

Fault trees are also used for quantitative evaluations of system unavailability. One means
of measuring system unavailability is to use the minimal cut sets of coherent trees by[5]:

1. Writing the structure function of the tree in Boolean algebra as a sum of products of
basic event failure rates.

2. Applying statistical approximation techniques to basic events.

For noncoherent trees, similar methods apply to the analysis of prime implicants[19]. Direct
evaluation codes, which quantify the system model for unavailability without the use of



minimal cut sets are also available[28, 42, 55, 57]. More references for quantitative evaluation
codes can be found in[50, 73].

The correctness of the fault tree construction directly affects the accuracy of the fault
tree analysis. However, manual fault tree construction is laborious and prone to errors of
omission and inaccuracies. If the fault tree is incorrect, then erroneous qualitative and
quantitative assessments are calculated. Fault tree analysis results need to be precise to
ensure reliable designs, especially where safety factors are essential to the elimination of
catastrophic failures[21].

Onemeans ofreducing fault tree construction errors is to automate the process. Computer-
aided techniques for producing a fault tree from the system design have been successful.
Various data structures are used to represent the input of a system design. For exam
ple, Fussell[29] constructed a fault tree for an electrical system from the tabular input of
the system design, component-transfer functions, mini-trees representing component failure
modes, and system boundary conditions. DeVries[74] developed an Automated Fault-Tree
Generation Methodology that generates a fault tree for electrical systems from the circuit
representation of electrical components, fault models, and component transfer functions.
Lapp and Powers[47, 48, 49] devised a Fault-Tree Synthsis program that constructs fault
trees for chemical processing plants from complex digraphs allowing process feedforward and
feedback loops. A method for on-line hazard aversion and fault tree diagnosis in chemical
processes has been developed by Ulerich and Powers[69], in which digraphs are used for fault
tree construction, diagnosis, and fault detection.

Disadvantages of the digraph techniques are pointed out in [2, 43] including the inability
to correctly modelall types of control loops. Kelly et al.[37, 38,39, 40] report on an alternate
digraph method of fault tree construction applied to a chemical processing plant in which
they correct some of the pitfalls of previous digraph fault tree synthesis methods. Recently,
Andrews and Brennan[3]; Boschefll, 12, 13]; and Change and Hwang[17] have used digraphs
as inputs to fault tree synthesis improving on the original Lapp and Powers method[47, 48,
49]. In the Computer Automated Tree (CAT) code[63, 79], decision tables are used as input
to generate fault trees for electrical, hydraulic and mechanical systems.

In all the aforementioned codes, fault trees are generated from time-consuming tabular
entries of the system configuration, nearly tantamount to the task of creating the fault tree
itself. One method of producing a fault tree is to first build a functional block diagram,
also referred to as a reliability block diagram, for the failure mode associated with the tree's
TOP event. Fault trees can then be readily derived from this diagram as outlined in [73]^.

^See page V-6 to V-11 for a description of the "Immediate Cause" concept, which is analogous to the
functional block diagram method used here.



Using a graphical functional block diagram for computer-assisted fault tree construction
would provide a ready means of performing a fault tree analysis. Taylor[68] reports on
a program that uses graphical input of system flow sheets and circuit diagrams to build
fault trees for multi-state sequential fault trees. Taylor's algorithm is based on Fussell's
approach[29] of storing mini-trees representing component interconnections for fault tree
construction. Camarda et al.[l, 16] present a technique for constructing a fault tree by
converting a reliability block diagram into a probabilistic graph, showing ways of correct
system operation. From this graph, they derive the minimal tie-sets, a set of all possible
paths of system success. These tie-sets are transformed into minimal cut sets by Boolean
algebra laws.

This paper presents a fault tree construction methodology that creates a fault tree from a
graphical functional block diagram using a knowledge-based approach. The manual process
automated is described in [5] and [73]. The contributions of this paper are:

1. A fault tree synthesis methodology intended for 2-state coherent fault trees, adaptable
by program developers to rule-based or logic-based programming languages.

2. A fault tree reduction algorithm incorporated into the methodology reducing a tree
during its construction.

3. A recursive minimal cut set algorithm intended for list-processing languages using hash
tables for efficient processing.

This methodology is demonstrated with first order predicate calculus, mapping blocks
and their connections in a functional block diagram to fault tree nodes. The implementation
of this methodology, in a Reliability Analysis Expert System (RAES)[23, 24, 25] is presented.
The results of benchmark tests on an electrical[65] and hydraulic system are presented show
ing the system eliminating fault tree errors and completing the analysis in less time than the
manual approach.

The errors in the manual approach found by RAES were verified by the engineer respon
sible for the manual report [65]. The amount of time saved was in the fault tree construction
- computerized versus manual. In these experiments, the manually drawn functional block
diagrams were entered graphically into RAES with careful attention given to the authentic
ity of the graphical diagram. Certainly, if one were to enter block diagrams into RAES with
errors incurred during manual drawing or graphical entry, then the fault trees themselves
would be invalid. Thus, correct functional block diagram entry is crucial to obtaining valid
fault trees in RAES.

The RAES system was implemented while the author was employed at Northrop Research
and Technology Center and hence, it is not available as public domain software. However,



the author has recently completed a PROLOG implementation of the fault tree construction
portion of the RAES system. This PROLOG code can be obtained by contacting the author.

Section 2 will present the nomenclature and assumptions related to this article. Section 3
presents the fault tree construction methodology, Section 4 gives the RAES overview with a
discussion of the fault tree reduction and minimal cut set algorithm, Section 5 previews the
RAES limitations. Section 6 presents RAES results, and, finally, conclusions are discussed
in Section 7.

2 Nomenclature and Assumptions

2.1 Nomenclature

• U - representing the logical OR.

• n - representing the logical AND.

representing the logical NOT.

• - representing the implies logical relation between two statements.

• nfc(X) = Set of subsets of size fc of a set X.

• jA^I = Cardinality of set X.

• Functional Block Diagram - A directed graph FBD consisting of two finite sets, a set
B of vertices, also called functional blocks, and a set E of directed edges. We write
FBD = {B, E) in which each edge e = (i,j) has a direction from its initial vertex i to
its end vertex j.

• Fault Tree -

Mathematically, a fault tree can be defined recursively as follows[41]: A fault tree is a
finite set T of one or more nodes such that

—a. There is a node existing as the root of the tree.

—b. The remaining nodes are divided into m > 0 disjoint sets, Ti, and each
of these sets are also a tree. The trees Tj,..., Tm are referred to as subtrees of the
root. Each root is a parent to the roots of its subtrees, also known as branches.
The terminal nodes of a subtree are called leaves, and are referenced as children
of the parent root.



A fault tree may also be defined eis a boolean equation over the failures of X, for
X E B. Nodes in the tree are defined a^:

—Connector Nodes - Roots of the subtrees represented as AND and OR gates.

—Event Nodes - Terminal nodes of subtrees representing the failures of blocks in a
functional block diagram, (i.e. component or event failures).

• Minimal cut sets - Minimal cut sets are the sets of minimum blocks that can cause the

top event of a fault tree to fail.

2.2 Assumptions

• The fault trees considered are coherent with two possible states for events, failed or
functional.

• The failure rates assigned are for nonrepairable failures.

3 Fault Tree Construction Methodology

In this section, we present how a functional block diagram is mapped into its fault tree
representation. First-order predicate calculus[36, 54, 76] provides a means of describing the
semantics of failures and semantics of fault tree construction with defined predicates and
functions. We define a set of formulas for deriving failures from functional block diagrams in
Section 4.1. In Section 4.2, we define a set of rules for constructing fault trees from functional
block diagrams. We show that these rules are complete (i.e. can derive all possible fault
trees from a functional block diagram matching the description in Section 4.1) by examples
of fault trees derived from all possible combinations of functional block diagrams.

3.1 Semantics of Failures

The semantics of failures in a functional block diagram are concerned with the ways in
which block failures can cause a particular system failure. The system failure is identified
by specifying, from the diagram, a block or set of blocks which could fail the system. To
determine the ways that a failure could occur in these blocks, their connections to other
blocks are traced. Each identified system failure constitutes a particular failure mode. For
example, in an electrical power system of an aircraft, the system failure might constitute the



ways that subsystems prevent power to a non-flight critical AC bus. The failure mode here
is the lack of power from a non-flight critical AC bus.

We distinguish between the fundamental failure and the functional failure of a block with
the following definitions:

• Fundamental failure - Block X has physically failed to perform its function such that
any adjoining blocks Yi with edges {A", Vi} € E will functionally fail.

• Functional failure - Block Ws functionality hcis failed such that either a fundamental
failure has occurred at X or a functional failure has occurred at any adjoining blocks
{y^} with {Yi,X} G E.

To illustrate the semantics of failures, we define predicates on the domain of blocks in
functional block diagrams. We then define formulas using those predicates to derive the
cause of fundamental failures. These functions and predicates refer to blocks in the diagram
using unique alphanumeric identifiers and specified types. The type of the block depicts the
functionality of the connections as follows.

• other - a typical block representing a component or event.

• series - a block existing as a member of a series, a set Vj of blocks of type series. The
series blocks between the start other block Z and the end other block X are in two
parallel lines. Block Z is connected to the first two blocks of the series, Yi and Y2, such
that {Yi,Z), {Y2, Z) G E. Block X is connected to the last two series blocks such that

• switch - a block representing a component of type switch. A switch X may have several
input blocks Yi such that (Vi, X) G E, but these input blocks can only be of type other.
A switch transfers control (power, fluid, etc) from one input block to another to avoid
a failure condition (e.g. hydraulic fluid level too low).

• k-out-of-n - a block X with n inputs that fails if at least k of its inputs fail (i.e. k-
out-of-n:F type failure). The input blocks to a k-out-of-n block are of type other or
switch.

Definitions
We define the following functions on blocks:

• After{X) = {Y,,...,Yn\{X,Yi) G E}



. BeforeiX) = {Yi, ...,Yr,\{Yi,X) € E}

• Knum(X) = k where Kjout.ofjn{X) is true.

• MultipleJ)efore{X) = {Y\,...,Yn) GBefore{X) where |Be/ore(A')| > 1.

• SetjofJi.outjof-N[X) - B.k{Btfore{Xy) where k = Knum(X).

We define the following predicates on functional block diagrams:

• Other{X) = True if X is a block of type other.

• Series{X) = True if X is a block of type series.

• Switch(X) = True if X is a block of type switch.

• Fail(X) = True if X is a block with a fundamental failure.

• K.outuof-N(X) = True if X is a block of type k-out-of-n.

• Detect./ail{X) = True if X has been selected cis a block where a detected failure
implies system failure, i.e. a functional failure has occurred at X.

• Singlejafter{X,Y) = true iff \After{X)\ = 1 and Y G After{X).

• SingleJbefore{X,Y) = true iff \Before{X)\ = 1 and Y G Before(X).

• NoneJ)efore{X) = true iff \Before{X) \ = 0.

We define the following formulas to derive the cause of failures from a functional block
diagram:

1. DetectJail(X) n Other{X) f]Y.^Mtiitipie.Before{X) Other{Y) USwitch{Yi) n 3Z3Yj G
Y[Singlejafter{Yj, Z) DOther{Yj) n Switch{Z)
^ Fail{X) U{{Detect./ail{Yj) UFail{Z))
{V\Vi&{Y-Yj)^MuHiple.Before{X)E>etect./ail{Vi)))].

2. Detect./ail{X) D 3Y{SingleJ)e/ore{X., Y)
=>• Fail{X) UDetect./ail{Y)]

3. Detect./ail{X)n Other{X) F\Yi&Muitipie.Beiore(x) Series{Yi)
Fail{X) \}YiZMuitipie.Bejore{X) DetectJ"ail{Y)

10



MAIN BUS 3

Y4

MAIN BUS 4

Y5

MAIN BUS 1

Y1

MAIN BUS 2 AC BUS 1

Y2 X

SWITCH 1

Y3

Figure 1: Functional Block Diagram for Multiple Failures

4. Detect./aU{X) fl {Other{X) USwitch{X))
ore

(X){Other{Y/) USwitch{Yi))
=> FaU{X) U(nyi6M«/tip/e_Be/ore(A-) DetectJ"ail(Yi))

5. Detect./ail{X) D Kuout.o/.n(X)
Fail(X){\JYf^Set.of.K^utuof.n{x){nZjeYi Detect./ail{Zj)))

6. Detect./ail{X) D None.be/ore{X)
Faillx)

In the following examples, these formulas are applied in numerical order.

3.1.1 Multiple Failures

Figure 1 exemplifies the relationship modeled by Formula4. In this functional block diagram,
X is connected to blocks Y1 and Y2of type other, and to block Y3of type switch. Formula
4 shows the ways in which a functional failure can occur at X Since Multiple.Be/ore{X) =
{FI, Y2,F3}, the conclusion shows that either X fundamentally fails or blocks FI, y2, and
F3 have a functional failure.

According to Formula 6,since None.be/ore(FI) is true. Detect./ail{Y\) implies Fail{Yl).
Similarly, Detect./ail{Y2) implies Fail{Y2). Formula 4 applies to Detect./ail{Y2), since
F3, of type switch, is connected to blocks F4 and F5, of type other. These three blocks
expand into: Fail{YS) U{Detect./ail[Y^) fl Detect./ail{Y5)). Applying Formula 6 yields

11



HYD. PUMP

OIL COOLER
^

PLUMBING

VI YS

INTEGRATED RLS
^

FILTER

Y2 YA

RESERVOIR MAN

Figure 2: Functional Block Diagram for Series Failures

the transformation of Detect^fail{Yi) and Detect-fail{Y5) into Fail{Yi) and Fail{Y5).
Thus, a functional failure occurs at X by one of two ways: a fundamental failure of X, or
failure of one of these combinations: {Yl,Y2,Y3} or {Fl,y2, F4, Fb).

3.1.2 Series Failures

Figure 2 shows the series relationship. Ifany of the components between the beginning block
X, and the ending block Z fail, then X will have a functional failure. In this diagram, X is
of type other, the blocks in {Fl, ...,F4} are of type series, and Z is of type other. Consider
the functional failure of the reservoir manifold X. Formula 3 applies since the members of
MultipleJefore{X) = {F3, F4} are of type series. The conclusion of Formula 3 implies
that either a fundamental failure occurs at X, or functional failures occur at either F3 or
F4. Formula 2 applies to SingleJjefore{YZ,Y\) and SingleJbefore{Y4:,Y2).

Next, Formula2 applies to Detect./ail{Yl) withSingleJ)efore{Yl,Z) implyingFai/(F1)U
Detect-/ail{Z). Similarly, Formula 2 implies Fail{Y2) UDetect./ail{Z). However, the first
application ofFormula 2 shows that a functional failure of Z can occur so we do not consider
it again. We see that None-be/ore{Z) is satisfying Formula 6, implying the fundamental
failure of Z. Thus, the functional failure of X in the series relationship in Figure 2 suggests
that a fundamental failure could occur at any one of these blocks: X, Fl, F2, F3, F4, Z.

12



LEFT PLUMBING

4
RIGHT ACTUATOR RIGHT SWITCH

RA '

RIGHT PLUMBING

W

LEFT ACTUATOR

LEFT SWITCH

RIGHT PLUMBING LEFT PLUMBING

Figure 3: Functional Block Diagram for Switch Failure

3.1.3 Switch Failures

Figure 3 shows a portion of a functional block diagram modeling the switch relationship in
a hydraulic system. There are three circuits controlling the flow of hydraulic fluid into each
actuator. Switches, Z and LS, transfer fluid between lines if the hydraulic oil level drops to
a low level. Consider the lack of fluid flow from the left actuator X. We first apply Formula
1 Detect_fail{X) where MultipleJbefore{X) = {Y,LS}. Singlejolfter{Y^ Z) is true for the
left plumbing Y and the right switch Z. The conclusion is that if fluid flow from X fails,
then either the fundamental failure of X occurs, or the functional failure of LS occurs along
with the fundamental failures of either Z or Y.

Next, we apply Formula 4 for Detect_fail(LS) with MultipleJ)efore{LS) returning
{AP,BP}. This implies that if the power from LS fails, then either switch LS funda
mentally fails, or both AP and BP have functional failures. The failure relationship derived
at this point is:

• Fail(X) U ((Detect./ail(Y) UFail(Z)) D (Fail(LS)
U(Detect.fail(AP) fl Detect-fail(BP))))

Formula 6 applies to the remaining Detect.fail relations converting all into Fail relations.
The conclusion is that the functional failure of X can occur with the fundamental failures

of any of these combinations: X; Y and LS', Y, AP and BP] Z and LS] Z, AP and BP.

13



HYD. PUMP

Z2

1OIL COOLER { I PLUMBING 1

Y1 Y3

1INTEGRATED RLS{ 1 FILTER 1
Y2 Y4

RESERVOIR MAN,

XI

LEFT PLUMBING LEFT ACTUATOR

|right actuator| 1 RIGHT SWITCH |
RA Zl

i L I L

RIGHT PLUMBING

W

LEFT SWITCH

|right plumbing) 1LEFT PLUMBING j
BP AP

Figure 4: Functional Block Diagram for Series and Switch Combination

3.1.4 Combination of Switch and Series Failures

Figure 4 illustrates the combination of the series and switch relationships shown in Figure 2
and Figure 3 respectively. Consider the functional failure of the left actuator X in Figure 4.

After application of Formula 1 to Detect./ail{X) whereMultiple.Before{X) = {Y, LS},
the conclusion is that the functional failure of X is caused by the fundamental failure of X,
or the functional failure of LS accompanied by the fundamental failure of Y or Zl. Next, we
apply Formulas 2 and 3 to the series relationship, and Formula 4 to the switch connection
deriving the following equation:

• Fail{X)[J{{Fail{Y)\jFail{Xl)UFail{Yl)
UFail{Y2) UFail{Y3) U Fail{Y4) U Fail{Zl) U Fail{Z2))
n{Fail{LS) U{Fail{AP) D Fail{BP))))

This equation implies that the functional failure of left actuator X is caused by the

14



fundamental failures of one of the following: X] or one of {Y, Yl, F2, Y3, Yi, Zl, Z2} along
with the failure of either LS, or both AP and BP.

3.1.5 A:-out-of-Ti:F Failures

Consider the 2-out-of-3:F relationship for the functional failure of X in the block diagram in
Figure 1. We first apply Formula 5 with Knum{X) = 2. The resultant equation yields all
subsets of size 2 of the set Before{X) as follows:

• Fail[X) U(Detect./ail{Yl) fl Detect./ail(Y2))
\j{Detect./ail(Y2) fl Detect./ail(Y3))
[j(Detect./ail{Y\) fl Detect./ail(Y3))

Formula 4 is applied to both Detect./ail{Y3) predicates. Then, Formula 6 is applied to
the Detect./ail relation for Fl,F2,y4 and Y5. The final equation is:

• Fail(X) U{Fail{Yl) D Fail{Y2))
\j(Fail{Y2) n {Fail(Y3) U{Fail(Y4:) n Fail(Y5))))
U{Fail(Yl) n (Fail(Y3) U{Fail{YA) n Fail(Y5))))

This equation implies that the 2-out-of-3:F type of functional failure for X in Figure 1 is
caused by one of: X; Yl and F2; Y2 and Y3] Y2, F4 and F5; Fl and F3; or Fl, F4 and
F5.

Suppose we were interested in applying these axioms for the l-out-of-3:F relationship.
The resultant equation is:

• Fail(X) U{Fail(Yl) DFail{Y2) n (Fa^7(F3) U(Fa^7(F4) DFail{Y5))))

This equation represents the same set of failures derived in Section 4.1.1 for the multiple
failures example.

3.2 Semantics of Fault Tree Construction

The semantics of fault tree construction involves the relationship between the nodes in the
fault tree with the failures of blocks in the functional block diagram. A fault tree is derived
from the functional block diagram by selecting the block or blocks to be the TOP event
in the tree. The remaining nodes in the tree are formed by recursively tracing the causes
of functional failures of the TOP block or blocks in the diagram. The fault tree presents

15



a measure of the qualitative and quantitative analysis of the functional failure of the TOP
event.

To illustrate the semantics of the fault tree construction, we define predicates and func
tions used to generate fault trees from functional block diagrams. These are combined with
previously defined predicates and functions on blocks in functional block diagrams to form
fault tree construction rules. We use the term ru/e here instead of formula to distinguish
semantics of fault tree construction from semantics of failures. Predicate calculus quantifiers
such as V and 3 are sometimes eliminated for simplification. The existence of a top level
connector node (OR for one top level block and AND for multiple blocks) is assumed.

Definitions

We define the following functions on fault trees:

• NotjinJ;ree{X,Y) = {Zi,..., GMuHipleJ)efore{X) and Tree-fail{Zi) is false
for Zi G T. yZi where Tree^fail{Zi) is true, each Z,- has a parent with a higher level
in T than V, which is parent of X.

• AddendJo^or{X,Y,W) = {Zi,..., Z„}|VZ,- G T there exists a corresponding Xi G B.
W, a connector of type and, is created as the parent of Z and the child of Y, a connector
of type or.

We define the following predicates on functional block diagrams:

• Treejdetect..fail{X) = True iff A" G T and X represents the block A G J3 for which
Detect^fail{X) is true.

• Tree.fail(X) = True iff A is GT and A represents block A G 15 for which Fail[X)
is true.

• Parentjnode{X, Y) = True iff Y is parent of A G T.

• Orjparent{X,Y,Z) = True iff A,of type or, is the parent of Z and Y is set equal to
A; or A,of type and, is parent of Z while Y, of type or, is created as a new child of A
with Z moved as a child of A to a child of Y.

• Length[Z) = \Z\.

• Add.childJojor{X, Y) = true iff A G T is created as the child of connector node Y, of
type or, where A represents A G FED.

We define the following rules to generate a fault tree from a functional block diagram:

16



1. Treejietect.fail{X) fl SingleJ)efore{X, Y) n Parentjnode{X,Par))
Or^parent{Par, Or, X) DAdd^childJ,ojor{Y, Or)r\

Tree.fail{X) DTree^detect^fail{Y)

2. Treejdetect.fail(X) fl Other(X) DParentjnode{X, Par)
r\YieNotJn.tree(x,Par) Ltngth{Y) > 1fl GY[Singlej\.fter\Yj,Z)
r\Switch{Z) n Other(Yj)

Or.parent{Par,Or,X) r\Wi&Adduxnd^ou:,r{Y,Or,And) TreejdetectJail{Wi) nOr.parent{And, Or2,
AddjchildJ,o^or{Z, Or2) fl Tree.fail{X) DTree./ail{Z).

3. Treejletect.fail{X) D{Other{X) USwitch{X)) fl Parentjnode{X, Par)
f]YieNotJn.tTee(x,Par) r\Length{Y) = 1 n {Other(Yi) USwitch{Yi))

Orjparent{Par, Or, X) DAddjchildJ,ojor{Y\, Or)r\
Treejdetect.fail{Yi) DTree^fail{X)

4. Treejdetect-fail{X) fl {Other{X) USwitch{X)) fl Parentjnode{X, Par)
r\YieNotJn-tree(X,Par) Length{Y) = 0

Tree^fail{X)

5. Treejdetect-fail(X) DOther(X) n Parentjnode{X, Par)
C\Yi^Multiple^efoTe(X) Series(Yi)

Orjparent{Par,Or,X)r\Tree.fail{X)
Or) r\Treejietect-fail{Yi))

6. Treejdetect-fail{X) D{Other{X) USwitch(X)) HParentjnode[X, Par)
V\Yi&NotJn.tTee{x,Par) Length{Y) > 1D{Other{Yi) USwitch{Yi))

Or_parent{Par, Or,X) n Tree^fail[X)
(~^Zi^Adducind-to-or{Y,Or,And) Tree^detect^fail{^Zi)

7. Treejdetect.fail{X) fl Kjoutjofjn{X) fl Parentjnode{X, Par)
=> Tree.fail{X) D Orjparent{Par, Or, X)
r^yiG5et_o/_/('_outjo/_n(A')Zj6i4<id_and_to_Dr(yi,Or,/ln(i) TreeJ,etect^fail(^Zj)

8. Treejdetect.faU{X) fl NoheJbefore{X)
Tree-fail{X)

In the following subsections, we apply the fault tree construction rules to build fault trees
for the functional block diagrams presented in Section 4.

3.2.1 Multiple Failures Fault Tree

17



©

(§© ©
0

0 0

Figure 5; Fault Tree for Multiple Failures

18



0 0 0 0 0 0

Figure 6: Fault Tree for Series Failures

To represent multiple failures in a fault tree, weexpand blockX in Figure 1 into the fault tree
in Figure 5. We first apply Rule 6, which results in the formation of AND node G2 as a child
of OR node Gl. Each block returned by the function NotJnJree{X,Gl), {F1,F2, F3}, is
added as a childof AND node G2. The fault tree at this stage is represented by the following
boolean equation:

• Tree_fail(X) + {{Treejdetect^fail{Yl)){Treeudetect-fail{Y2))
{Treejittect.fail{YVji)))

The Tree^detect^fail relations for Y1 and Y2 can be resolved into TreeJ'ail relationsusing
Rule 8. To complete the tree, Rule 6 is applied to Treejdetect.fail{Y3), resulting in the
creation of OR node G3. YS is moved as a child of AND node G2 to a child of OR node G3.
This application also results in the creation of AND node G4, as a child of OR node G3,
with children: Treeudetect-fail{Y4) and Treejietect^fail{Yh). Finally, Rule8 is applied to
create TreeJ'ail relations for F4 and Y5.

3.2.2 Series Failure Fault Tree

To generate a series failure fault tree, we expand block X in Figure 2 into the fault
tree in Figure 6. We first apply Rule 5, forming two nodes, Treejdetect.fail{Y3) and
Treejdetect^fail{Y4), as children of OR node Gl. Rule 1 results in the formation of two
more children to OR node Gl: Y1 and Y2. Rule 1 applies again to the Tree-Detect^fail{Yl)
and Treejletect^fail{Y2) with SingleJ)efore{Yl,Z) and SingleJbefore{Y2,Z) both true.
However, as stated in Section 3.1.2, we only consider the functional failure of block Z once
in the series relationship. Thus, Z is added once as a child of OR node Gl.

19



Figure 7: Fault Tree for Switch Failure

20



©

0 ©0000000

0

Figure 8: Fault Tree for Series and Switch Combination Failures

21



A

Figure 9: Fault Tree for A;-out-of-n:F Failure

has XI supplying it power, Rule 1 applies resulting in the addition of Xl as a child of OR
node G3. Rule 5 is applied next to the expansion of the series beginning with XI, adding
as children of OR node G3: Y1,Y2,Y3,Y4, and Z2. To expand Treejietect-fail(LS), as in
the previous switch fault tree in Figure 7, Rule 6 is applied. Finally, Rule 8 transforms the
remaining Treejietect.fail relations into Tree-fail relations.

3.2.5 ^_out_of_7i:F Failure Fault Tree

To show the construction of the A;-out-of-n:F fault tree in Figure 9, we select X in Figure 1
with attribute Knum{2) as the top event for the 2-out-of-3:F failures fault tree. Initially,
Rule 7 applies resulting in a series of AND nodes under OR node Gl, one for each 2-out-of-
3:F combination. The interim fault tree at this stage is represented by the following boolean
equation:

• Tree-fail{X)
+{Treejdetect-fail{Yl)Treeudetect.fail[Y2))
+{Treejdetect^fail{Yl)Treejdetect-fail{Y3))

22



GCU R1

RAT R1 GEN.
AC BUS 9A

GCU R2

MAIN R2 GEN.
AC BUS g .y V

-/'N-

AC BUS 1 A

AC BUS 2 H

AC BUS 3 I

Figure 10: Functional Block Diagram for Non-flight Critical AC Mode

+{Treejdetect-fail(Y2)Treejdetect-fail{Y3))

To resolve each Treejdetect-fail{Y3) relation, Rule 6 is applied resulting in the creation
of AND nodes G7 and G8 with the formation of their children, Treejietect-fail{YA) and
Treejdetect.fail{Y5). Finally, all remaining
Treejdetect-fail relations satisfy NoneJbefore, and become Tret-fail relations by applica
tion of Rule 8.

3.3 Fault Tree Construction for Redundant Systems

Fault tree construction for redundant systems requires special consideration for the redun
dancy among the blocks in the functional block diagram. Figure 10 portrays a subset of a
functional block diagram representing an aircraft electrical power system with redundancy.
Figure 11 shows the fault tree for the selection of multiple top events from the diagram in
Figure 10. Before the application of the fault tree rules, the initial tree contains top level
AND node Gl with children: A and H. We trace the construction of the subtree under OR

node G3 coinciding with the expansion of Treejdetect-fail{A). Rule 6 applies resulting in
the creation of AND node G5 with children: Treejietect-faU{B) and Treejdetect-fail{E).

Due to redundancy occuring between blocks B and E, the function NotJnJree is essen
tial for proper fault tree construction. For example, Treejietect-fail{B) expands into OR
node G9 with children: Treejietect-fail{B) and AND node G13. G13 has two children:
Treejletect-fail{E) and Treejdetect-fail{C). Then, Rule 3 resolves Treejdetect-fail{E)

23



R

© (^)

©

0 (^0(^ ©(^ (^® (b) ©(^ (5© (i) (i) (o) ©®

Figure 11: Fault Tree for Multiple Selected Tops

24



into TreeJail{E) and adds event node F as a child of OR node G20. The list returned from
NotJnJree for the expansion of E includes only F - not B and F - because the redundant
relationship between E and B has already been resolved in the tree. Rule 1 resolves the
TreejietectJail relations for F and C. Finally, under AND node G5, Treejdetect.faU{E)
is resolved into Tree.fail{E) and AND node G12 with children: B and F. These remaining
Treejdetect.fail relations for B and F are resolved into OR nodes G18 and G19, in the same
fashion as OR nodes G20 and G21. The expansion of the remaining OR node G2 proceeds
similarly as Treejdetect.fail{H) is identical to TreeJtetect.fail{A).

4 System Overview

A reliability analysis expert system (RAES) was developed using KEE[35] and Common
Lisp on a Symbolics 3650 computer. Figure 12 shows the system architecture for RAES.
The fault tree construction methodology presented in Section 3 could be applied using any
computer language. However, the rules presented are conveniently mapped into knowledge-
based system building tools where pseudo-English rules can be used to apply the fault tree
methodology. A subset of RAES includingthe fault tree construction rules was implemented
in the logic programming language PR0L0G[14].^

Designed in a generic style, RAES accepts input of a graphical functional block diagram
for each failure mode of a system design, redundancy requirements for each failure mode,
and the mission time for the fault tree analysis. An optional fault tree reduction algorithm
provides minimization of the fault tree during its creation, while maintaining the boolean
equivalent of the original fault tree. The ^-out-of-ra:F failure modeling, shown in fault tree
construction Rule 7, is intended for a future version of the PROLOG code. The output of
the system includes a graphical fault tree, a boolean equation, a statistical report listing
the minimal cut sets of failure paths for each fault tree with associated failure probabilities,
and a report verifying the system redundancy requirements. For electrical system designs,
recommended design improvements to increase system reliability are produced in a report.
The redundancy and rewiring rules are discussed in [24].

4.1 Fault Tree Reduction

Assumption

^The graphics, reduction algorithm, and minimal cut set algorithm are absent from the current version
but will be added in the future.

25



CRT

DISPLAY USER

TOP OF

FAULT

TREE

EXECUTE

FAULTTREE

CONSTRUCTION

RULES

FAULT TREE KB

CONVERT
FAULT TREE KB

TO BOOLEAN

EQUATION

EXECUTE
RMS

STATISTICAL

ANALYSIS

REPORT REPORT

HLE

FBDK8

FAULT

TREE

STAT.
KB

FILE

CONVERT
FBD BLOCK

TO

FBD KB UNITS

FBDKB

EXECUTE

FAULT TREE
ANALYSIS

RULES

Figure 12: RAES Architecture

26

FBO

BLOCKS

FBD

ACCEPT

FUNCTIONAL

BLOCK

DIAGRAM

PRINT

IMPROVEMENT
SUGGESTIONS

AND

ANALYSIS

RESULTS

REPORT
FILE



• The fault tree, before its reduction, is an AND/OR tree such that AND nodes have
either basic events or OR nodes a^ children, and OR nodes have either basic events or
AND nodes as children.

Definitions

• module - Subtree in the fault tree for which some X has been expanded into its
Treejdetect_fail[X) .

• ANDP - Node in fault tree linked to a duplicate module with identical expansion of
Treejdetect^fail(X) for X ^T.

• node set- Set of{•••, ...,y^} GB\Treejdetect^fail(Xo) orTree^fail{Xo)
is true; G {Xi, ...,Xi}\SingleJ)efore{Xj,Xk) is true, for j — 0, ...,i —1 and
k = Singlejafter{Xo,Yi) is true and VFa, € Singlesfter{Yj,Yk)
is true, for j = 1,..., n - 1 and k = 2,..., n, and Tree.fail{Yk) is true VFfc as children
of an OR node higher in the tree than Xq.

• level - The hierarchical location of a node in the fault tree beginning with the value of
1 for the top level node, 2 for the top level's children, etc.

• node set level - Level of node at the highest position(lowest number) in the node set.

• superior node - Node with a node set level higher in position (lower in number) than
the potential node set level.

• inferior node - Node with a node set level lower in position (higher in number) than
the potential node set level.

A fault tree reduction algorithm is includes in the fault tree construction methodology to
reduce the computational time for fault tree construction and for minimal cut set calculation.
Two methods are used in the reduction:

1. Pointers linking modules to duplicate subtrees in the top eight levels of the tree.

2. Reduction of nodes in subtrees by applying Boolean algebra laws of absorption: X +
XY = X and AA = A for all subtrees.

The identification of modules with replicated events has proven beneficial for fault tree
analysis[18, 44, 52, 62, 75]. The concept of a module for coherent systems was discussed by
Birnbaum and Esary[9] applied to reliability analysis. They defined binary coherentsystems
as those whose performance is enhanced by the improved performance of their components.

27



They defined modules as subsets of the basic components of a system organized into some
substructure (or assembly of components) that can be treated as independent of the system.
Further discussion of coherent systems is given in [6]. Chatterjee[18] decomposes a fault tree
with replicated events into statistically independent modules eliminating duplicated events
or gates.

The concept of modules for noncoherent systems was presented by Locks[52] along with
techniques for minimizing noncoherent fault trees. Wilson[75] presents a computer technique
that modularizes noncoherent systems using a Boolean sum of logical products of basic
events. Modules are identified by Kohda, Henley and Inoue in [44] for both coherent and
noncoherent trees as subtrees consisting of at least two events. These events have no inputs
from the rest of the tree and no outputs except from the module's output event. Their
module definition for coherent trees is similar to our definition. The identification of ANDP

nodes in RAES coincides with the labeling of OR nodes with duplicate children in [44].
Unlike the abovementioned reduction techniques that reduce the fault tree after its con

struction, RAES reduces the fault tree during its generation. We combine a module identi
fication technique for the first eight levels of the fault tree with Boolean algebra reduction
for subtrees at all levels. The limitation of module-identification and pointers to the top
eight levels enabled lower level subtrees to benefit from Boolean algebra reduction. In this
way, the modules used as pointer links are reduced to a manageable size for quantification.
Execution time for fault tree construction was optimum with pointers on the top eight levels
for the fault trees reduced in this study. Experimentation with varying limits on pointer
level versus boolean reductions will continue in future work.

4.1.1 Example of Module Identification

Module identification occurs during a Treejdetect.fail{X) expansion. Instead of adding an
AND node to the tree, the reduction algorithm identifies a Tree^fail relation with an equiv
alent expansion. A pointer node labeled ANDP is formed linking the new Treejdetect^fail
to its duplicate Tree./ail node. Figure 13 shows the reduced version of Figure 11. Since
Treed)electail^H) has a subtree expansion which matches the subtree of AND node G5
(representing expansion of Tree-Detect-fail[A)), an ANDP pointer is formed for H linking
it to AND node G5. The Tree-fail{A) relation is first reduced using Boolean algebra. Not
only do these pointers save computer storage, they also reduce computation time for the
minimal cut set algorithm described in Section 4.2.

28



ANDP

G5

0

©

© © ©

Figure 13: Reduced Fault Tree with Pointer Nodes

29

©



4.1.2 Analysis of Boolean Reduction

Lemma 1 In the Boolean algebra absorption law, XX = X, if X is replaced by a sum of n
products, the absorption law holds for that sum of n products.

Proof: IfX is replaced by a sum of products, (Y + Z), where Y or Z may also be a sum
of products, such that the total products in X is n, then using the distributive postulate of
Boolean algebra, X(Y + Z) = XY + XZ, we show the following reduction when X is replaced
with a sum of 2 products:

• iY+Z){Y+Z) = Y{Y+Z) + Z{Y+Z) = YY+YZ+ZY+ZZ = Y+ZY+Z = F+Z.

Theorem 1 In the AND/OR tree T represented by Boolean equation Z, suppose subtree S
has an AND parent node with children:{Ni, ...,Ni)\Nj € {A2,..., A,} is a basic event or an
OR node, and Ni is a basic event. If a duplicate node D matching Ni is in T as a child of
an AND node 2n{n > 0) levels below one of Nj, then node D can be deleted from T while
maintaining Boolean equivalence in Z.

Proof, by induction on n:
Basis step: We show that for n = 0 and for Boolean equation Z representing T with

duplicate nodes, D and iVi, \i D is an inferior node to Ni by a level difference of 2n(= 0),
D can be deleted from T maintaining Boolean equivalence in Z.

Proof of Basis step: The Z satisfying n = 0 is equivalent to AA, which by the absorption
law is equivalent to A. Hence, we have shown that,for n = 0, one element can be deleted
without loss of Boolean equivalence.

Inductive Step: By the inductive hypothesis, we assume that for n > 1, in Boolean
equation Z representing T with duplicates, D and iVi, if D is lower than Ni at a level
difference of 2n, node D can be deleted from T maintaining Boolean equivalence in Z. We
show that this also holds for 2(n + 1).

Consider this Boolean equation:

Z = (Ai(A2 + A3(A4+,...,+A,„(A,„+i+,...,+(A,_iA0)))) (1)

where Xi = Xm and I is the maximum level (depth) of the corresponding fault tree T.

In fault tree T depicting this Boolean equation, Xm at level m, is the inferior duplicate
of Xi at level 2. Thus, by our inductive hypothesis, we assume that Xm can be deleted from
Z. We show that if Xm is moved to level m + 2 as a child of a deeper AND node, then
Xm+2 can also be deleted. The level diflPerence between Xi and Xm is m —2 = 2n{n >1).

30



Solving for m, we get m = 2n + 2. After moving to level m + 2, the new level difference
is (m+ 2) —2 = m. By the previous equation, m = 2n+ 2 = 2(n+ 1). Thus, we have shown
that the new level difference is 2(n + 1).

We use the distibutive postulate XiY -\-Z) = XY + XZ, and the absorption law, XX =
A", of Boolean algebra to show this deletion process with Boolean equivalence. Using the
distributive postulate, we expand Boolean expression Z, representing tree T, into a sum of
products. Since the AND/OR nodes are nested, as in Equation 1, the higher level event(A'i)
will be distributed over all products in the second sum. If any of those products contains a
duplicate term {X^), then the absorption law eliminates the duplicate term. If we move X^
to level m + 2 under a new AND/OR expression, we use the absorption principle again to
conclude that at a level difference of"2(n + 1), we can delete Xm+2 s-nd maintain a boolean
equivalence.

Using Lemma 1, we can replace A^i and D in this theorem with a sum of products
expression, and apply the absorption prinicple to delete D. Similarly, if Ah was of the form:
X + YZ, using the distributive property, we can expand Wi to: {X+ Y){X + Z). Then if
D is located at a level difference of 2n, and it is of the form {X + Y) or (X + Z), we can
delete D.

4.1.3 Boolean Reduction Algorithm

The general algorithm used to reduce the fault trees was added to RAES by modification of
Rule 6 in the methodology to do the following:

1. Search for any existing OR node whose Tree.fail{Y) node set is identical to the node
set of Treeudetect-fail(X). If a match is found, form a pointer node for the expansion
of Treejdetect.fail(X) labeled ANDP containing the address of the Tree-fail AND
node.

2. If no pointer node is found in Step 1, then do the following:

• Search for any superior OR node whose node set level is higher in the tree than
the potential OR node's level with identical node sets. Do not add the potential
node if a superior node is found.

• If no superior nodes are found, search for all inferior OR nodes whose node set
level is lower than the potential node's level. Delete all inferior nodes found. Add
the Treejdetect-fail[X) expansion to the tree.

31



Figure 13 shows the reduced fault tree for the tree in Figure 11. The reduction algorithm
was applied to the subtree under AND node G5. Referring to nodes in Figure 11, we explain
how the reduction works.

The subtrees below OR node G9 are expanded as shown with no reduction occurring yet.
Then, Treejdetect.fail(E) under AND node G5 is expanded using reduction. As Rule 6 is ex
pandingTreejdetect^fail{E), the search for a superior node begins with Treejdetect^fail{F)
under OR node G19. The node set for F is {E, F, G} and its accompanying node set level
is that of E, level 5. Since no superior node is found, a search for inferior nodes ensues.
A match is found under OR node G20 whose node set is {E,F,G}, with node set level 7.
According to Theorem 1, the node set level difference is 2n(n = 1), so we delete OR node
G20 and its children. Since AND node G13 now has only one child, OR node G21, the
children of OR node G21 become the children of OR node G9. The two nodes, G13 and
G21, are deleted.

The final reduction occurs when Tree.detect.fail(B) under AND node G12 is being
expanded with node set {B, C, D} and node set level7. During the search for superior nodes,
OR node G21 is found with matching node set {B,C,D} at level 5. Applying Theorem 1,
we see that the node set level difference is 2n{n = 1), so OR node G18 is not" added. The
remaining nodes are adjusted to form the reduced subtree in Figure 13.

This reduction algorithm was tested by computing minimal cut sets using both the re
duced and non-reduced rules for the electrical fault trees derived in this study. For the flight
critical and mission critical failure modes the execution of the non-reduced rules was beyond
the scope of the computing power of the Symbolics computer. However, for the non-flight
critical AG and DC failure modes, the reduction data is shown in Table 1. This table reflects
the greater than 50% reduction in fault tree nodes and in time of fault tree construction
using the reduction algorithm.

4.2 Minimal Cut Set Algorithm

Minimal cut set algorithms have been successfully implemented in computer programs. Some
programs such as the PREP code[71, 72] use Monte Carlo techniques, while others use de
terministic algorithms, such a.s M0CUS[31, 32], ELRAFT[64], MICSUP[56], SETS[77], and
PREPE[71]. Detailed discussions about these and many more computer codes can be found
in [50] and [73]. Most computer codes developed using these algorithms analyze coherent
fault trees. Worrell's SETS[77] code handles both coherent and noncoherent fault trees. The
widely used M0CUS[31, 32] algorithm stores the Boolean Indicated Gut Sets(BICS) in a
matrix and then uses a pattern matching technique to determine the minimal cut sets.

Concern for reducing computational time and storage necessary to compute the minimal

32



FAULT TREE DATA AC MODE DC MODE

NON-REDUCED NODES 80 330

NON-REDUCED TIME 15 min. 30 min.

REDUCED NODES 39 146

REDUCED TIME 3 min. 10 min.

Table 1: Reduced Versus Non-reduced Fault Trees

cut sets resulted in the development ofmore efficient algorithms[33, 51, 61]. The DICOMICS
algorithm[33] is based on segmentation of the tree into a fully equivalent forest ofsubtreesfor
expansion into minimal cut sets. The Fatram[61] algorithm uses dynamic storage to increase
the MOCUS algorithm's efficiency. Limnios and Ziani[51] developed an improvement to the
top-down MOCUS algorithm computing the BIOS faster; however, MOCUS is still used for
minimal cut sets. More recently, Vatn[70] developed the CARA algorithm that builds a
virtual cut set tree structure used to obtain minimal cut sets. Vatn's algorithm requires less
storage and is faster than MOCUS.

Of the previously mentioned minimal cut set algorithms, the one closest to the RAES
algorithm is MICSUP[56]. Both use the bottom-up approach to compute minimal cut sets,
using depth-first search to calculate minimal BIOS for each intermediate gate. Unlike MIC-
SUF, RAES uses recursion with a list-processing language and a hash table for intermediate
cut set storage. By manually applying the Fatram[61] algorithm and the one in [51] to
the non-flight critical AC fault tree used in this study, it was determined that RAES makes
more comparisons than these algorithms. However, storage requirementsare no greater using
RAES than Fatram and are less than required in [51].

Fault tree reduction before the minimal cut set computation reduces computer time and
space needed by the minimal cut set algorithm. Furthermore, by using a hash table for
storage of minimal cut sets, the amount of dynamic storage needed is for minimal cut sets
only. This is an improvementover MICSUP whichneeds an array dimensionedto a maximum
expected minimal cut set size.

The recursive algorithm used in RAES to compute the minimal cut sets is defined with

33



two functions: Minjcutset and Computejnin. These functions are defined as:

Function Minjcutset{N)

1. Retrieve the branches of the node N as & list B.

2. If N is an OR node, for each branch Bi do:

• a) If Bi is an AND or OR node, execute L = Min.cutset{Bi). Append L to list
a.

• b) If Bi is an ANDP node, retrieve its minimal cut sets from the knowledge base
and append to C.

• c) If Bi is an EVENT node, append it to C.

3. If N is an AND node, for each branch Bi do:

• a) If Bi is an AND or OR node, execute L = Minjmtset{Bi). Add list L to C as
a new member of C.

• b) If Bi is EVENT node, append it to C.

At end of AND node processing, execute C = Computejmins{C).

4. Return list C as minimal cut sets for N.

Function Computejnins{C)

1. Clear hash table H and add contents of C to hash table H.

2. For first two lists in C do :

• a) Combine each member of Cl with each of 02 into list C3.

• b) Compare each C3,- with each member of H and do:

—Add C3,- to H if 1) No supersets of C3,- are in H, 2) No subsets of C3i are in
H, or 3)No duplicates of (73,- are mH.

—Add C3j to H if supersets of C3,- are in H but delete supersets from H.
— Do not add (73,- to H if subsets of C3,' are in H.

• If there are any remaining lists in C, append list of nodes in H to C and execute
Computejmins{C) recursively.

• After all lists in C have been processed, return contents of as a list.

34



These are the steps taken by the minimal cut set algorithm:

1. Execute Min^cutset{AND) for each AND node with ANDP pointers linked to it. Store
the minimal cut sets for these AND nodes in their knowledge base units.

2. Execute M — Minjcutset{N) for the tree top level connector N. The list of nodes
returned in M contains the minimal cut sets for the failure of N''s top event.

This algorithm is implemented in the Lisp language. Future work includes its addition
to the PROLOG code available from the author. During the experiments of RAES, a hash
table improved computational speed over use of a list to store minimal cut sets. The key
used for hashing is the first element of a sorted cut set list. The cut sets are stored in a
subclass in the RAES knowledge base for further statistical application. The exponential
distribution provides the probabilities of failure for the blocks in each minimal cut set where

A= failure rate is represented as where N is an integer, and where t = mission
time, the probability of failure, for each minimal cut set n is the following:
Fnit) = n.LiCl - where
A,- is the ith block failure rate.

The total failure probability is:
TP 5^71 IP

5 Limitations

The fault tree construction methodology presented in this paper is limited to 2-state co
herent fault trees. Therefore, complex systems with control loops as found in chemical
processing[47], cannot be modeled using this system. The RAES methodology would be en
hanced by inclusion of construction of noncoherent fault trees with control loop structures.
To derive noncoherent fault trees from graphical block diagrams, we need to include addi
tional block types and rules to transform functional block diagrams into noncoherent trees.
The addition of noncoherent fault trees is being considered for future work.

Currently, the knowledge-based system is constrained to the input of a graphical or
tabular functional block diagram. A more flexible approach would be to also allow input
of a fault tree for minimal cut set calculation. Another limitation is that all minimal cut

sets are calculated without consideration given to reducing cut sets via the specification
of a maximum cut set size or of limits on probabilities. In addition, allowing functional
block diagram interconnections to be derived directly from computer-aided design(CAD)

35



FAILURE MODE MANUAL RAES ERRORS IN MANUAL

NON-FLIGHT AC 1 DAY 3 MINS. 0 OUT OF 74

MIN CUT SETS

NON-FLIGHT DC 4 DAYS 10 MINS. 1 OUT OF 116

MIN CUT SETS

MISSION

CRITICAL DC

5 DAYS 45 MINS. 14 OUT OF 140

MIN CUT SETS

FLIGHT

CRITICAL DC

7 DAYS 2.5 HRS. 2 OUT OF 480

MIN CUT SETS

Table 2: RAES Electrical Analysis Times

data would enhance the system's utility. Previous experiments by the author with the use
of CAD data as input to RAES have been attempted with preliminary success[26].

6 RAES Results

RAES was tested with the reliability analysis of two aircraft subsystems: a fault tolerant
electrical power system and a hydraulic system. For the electrical system, four failure modes
were considered - non-flight critical AC mode, non-flight critical DC mode, mission critical
DC mode, and flight critical DC mode. The hydraulic system used one failure mode - the loss
of power to the F-18 aircraft's hydraulic system. The functional block diagrams used to test
RAES were obtained from manual reliability analysis reports on a fault tolerant electrical
power system[65] and hydraulic system designs for an aircraft. The minimal cut sets obtained
using RAES were compared to these manual results showing that RAES performed the same
manual task in less time and without the errors revealed in the manual approach. Table 2
illustrates these flndings for the electrical power system and Table 3 shows similar data for
the hydraulic system.

The meaning of the manual column as shown in Tables 2 and 3 is the amount of time

36



FAILURE MODE MANUAL RAES ERRORS IN MANUAL

HYDRAULIC 2 DAYS 2 HOURS 30 OUT OF 350

POWER MIN CUT SETS

Table 3: RAES Hydraulic Analysis Times

needed by an expert reliability engineer to draw the fault tree, graphically enter the tree into
a computer system for minimal cut set calculation, and obtain the statistical analysis. The
LTG[7] was used in the manual approach for this study. This program uses the M0CUS[31,
32] algorithm and KITT[71] code. Because of limitations on input tree size of the MOCUS
algorithm, sections of the larger fault trees, such as the one for Flight Critical DC mode,
required minimal cut sets to be combined manually from subtrees.

The times in the RAES column in Tables 2 and 3 show the amount of computer time used
to compute the fault tree with reduction on the Symbolics computer. The time needed for
functional block diagram entry was eliminated from the analysis since the point of interest in
this study was improved efficiency in fault tree construction. The RAES time for graphical
entry of a block diagram with 18 blocks was about 30 to 45 minutes.

In Table 2, one can see that there is little difference between the days to perform this
task manually for non-flight DC and mission critical DC, even though the computer time
for RAES to complete this task increased from 10 minutes to 45. This small differential in
the manual approach is due to the functional block diagram and fault tree for non-flight
DC mode containing similar connections to the mission critical DC mode. Hence, moving
manually from one failure mode to the other enabled the engineer to duplicate some of the
tree's nodes. However, RAES does not use historical data from other fault trees for its
computations and consequently, the computation times increase more dramatically.

Many manual errors were found for the hydraulic system. This is because the manual
fault tree contained a major error resulting in 30 minimal cut sets never being calculated.

Acknowledgements

The author also wishes to thank Abas Chasemkhani of Northrop's Aircraft Division
for his help in establishing the reliability engineering requirements for the system, and for
his feedback on the user interface.

37



References

[1] K. K. Aggarwal. Comments on an efficient simple algorithm for fault tree automatic
synthesis from the reliability graph. IEEE Transactions on Reliability, Vol. 28(No.
4):309, October 1979.

[2] P. K. Andow. Difficulties in fault-tree synthesis for process plant. IEEE Transactions
on Reliability, Vol. 29(No. l):2-9, April 1980.

[3] J. Andrews and G. Brennan. Application of the digraph method of fault tree construc
tion to a complex control configuration. Reliability Engineering and System Safety, Vol.
28(No. 3):357-384, 1990.

[4] G. Apostolakis, S. Garribba, and G. Volta, editors. Synthesis and Analysis Methods for
Safety and Reliability Studies. Plenum Press, New York, N.Y., 1980.

[5] R. E. Barlow and H. E. Lambert. Introduction to fault tree analysis. In Reliability
and Fault Tree Analysis, pages 7-35. Society for Industrial and Applied Mathematics,
September 1975.

[6] R. E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing. Holt,
Rinehart and Winston,Inc., New York, N.Y., 1975.

[7] L. Bass, H. W. Wynholds, and W. R. Porterfield. Fault tree graphics. In Reliability
and Fault Tree Analysis. Society for Industrial and Applied Mathematics, Philadelphia,
Penna., 1975.

[8] N. N. Bengiamin, B. A. Bowen, and K. F. Schenk. An efficient algorithm for reducing
the complexity of computation in fault tree analysis. IEEE Transactions on Nuclear
Science, Vol. NS-23:1442-1446, October 1976.

[9] Z. W. Birnbaum and J. D. Esary. Modules of coherent binary systems. Journal of
Society for Industrial and Applied Mathematics, Vol. 13(No. 2):444-462, June 1965.

[10] Z. W. Birnbaum, J. D. Esary, and S.C. Saunders. Multi-component systems and struc
tures and their reliability. Technometrics, Vol. 3(No. l):55-77, February 1961.

[11] A. Bossche. Computer-aidedfault tree synthesis 1. (Systemmodeling and causal trees).
Reliability Engineering and System Safety, Vol. 32(No. 3):217-241, 1991.

38



12] A. Bossche. Computer-aided fault tree synthesis 2. Fault tree construction. Reliability
Engineering and System Safety, Vol. 33(No. 1):1-21, 1991.

13] A. Bossche. Computer-aided fault tree synthesis 3. Real-time fault location. Reliability
Engineering and System Safety, Vol. 33(No. 2):161-176, 1991.

14] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley Publishing
Company, Inc., 1990.

15] K. S. Brown. Evaluating fault trees (and & or gates only) with repeated events. IEEE
Transactions on Reliability, Vol. 39(No. 2):226-235, June 1990.

16] P. Camarda, F. Corsi, and A. Trentadue. An efficient simple algorithm for fault tree
automatic synthesis from the reliability graph. IEEE Transactions on Reliability, Vol.
R-27(No. 3):215-221, August 1978.

17] C. Chang and H. Hwang. New developments of the digraph-based techniques for fault-
tree synthesis. Industrial & Engineering Chemical Research, Vol. 31(No. 6):1490-1502,
June 1992.

18] P. Chatterjee. Modularization offault trees; A methodto reduce the cost ofanalysis. In
Reliability and Fault Tree Analysis, pages 101-126. Society for Industrial and Applied
Mathematics, September 1975.

19] T. L. Chu and G. Apostolakis. Methods for probabilistic analysis of noncoherent fault
trees. IEEE Transactions on Reliability, Vol. R-29:354-360, Dec. 1980.

20] Y. Chunning and S. Dinghua. Classification of fault trees and algorithms of fault tree
analysis. Microelectronics Reliability, Vol. 30(No. 5):891-895, 1990.

21] U.S. Nuclear Regulatory Commission. Reactor safety study - an assessment of accident
risk in U.S. commercial nuclear power plants. Technical Report WASH-1400, Washing
ton, DC, October 1975.

22] D. L. Cummings, S. A. Lapp, and G. J. Powers. Fault tree synthesis from a directed
graph model for a power distribution network. IEEE Transactions on Reliability, Vol.
R-32(No. 2):140-149, June 1983.

23] M. S. Elliott. Knowledge-based systems for reliability analysis in concurrent design. In
IJCAI89 Concurrent Engineering Design Workshop Proceedings. American Association
for Artificial Intelligence, August 1989.

39



[24] M. S. Elliott. Knowledge-based systems for reliability analysis. In 1990 Reliability and
Maintainability Symposium, pages 481-489. IEEE, January 1990.

[25] M. S. Elliott. Reliability analysis expert systemin concurrent engineering. In Proceedings
of the 2nd National Symposium on Concurrent Engineering. Concurrent Engineering
Research Center, February 1990.

[26] M.S. Elliott. Knowledge-based systems in logistics. Independent Research and De
velopment Project Description 90-R-500, Northrop Research and Technology Center,
1989.

[27] J. D. Esary and F. Proschan. Coherent structures of non-identical components. Tech-
nometrics, Vol. 5(No. 2):191-209, May 1963.

[28] T. Feo. PaftTT, prograrn for the analysis offault trees. IEEE Transactions on Reliability,
Vol. R-35(No. l):48-50, April 1986.

[29] J. B. Fussell. Computer aided fault tree construction for electrical systems. In Reliability
and Fault Tree Analysis, pages 37-56. Societyfor Industrial and Applied Mathematics,
September 1975.

[30] J. B. Fussell. How to hand-calculate system reliability and safety characteristics. IEEE
Transactions on Reliability, Vol. R-24(No. 3):169-174, August 1975.

[31] J. B. Fussell, E. B. Henry, and N. H. Marshall. Mocus - a computer program to obtain
minimal sets from fault trees. Technical Report ANCR-1156, Aerojet Nuclear Company,
Idaho Falls, Idaho, March 1974.

[32] J. B. Fussell and W. E. Vesely. A new methodology for obtaining cut sets for fault trees.
Transactions of American Nuclear Society, Vol. 15(No. 1):262, April 1972.

[33] S. Garribba, R. Mussio, F. Naldi, G. Reina, and G. Volta. Efficient construction of
minimal cut sets from fault trees. IEEE Transactions on Reliability, Vol. R-26(No.
2):88-93, June 1977.

[34] E. J. Henley and H. Kumamoto. Probabilistic Risk Assessment Reliability Engineering,
Design, and Analysis. IEEE Press, New York, N. Y., 1992.

[35] Intellicorp Corp. KEE Software Development System User's Manual, 3.0-v-l edition,
1986. KEE is a trademark of Intellicorp.

40



[36] P. C. Jackson. Introduction to Artificial Intelligence. Petrocelli Books., 1974.

[37] B. E. Kelly and F. P. Lees. The propagation of faults in process plants: 1. Modelling
of fault propagation. Reliability Engineering, Vol. 16:3-38, 1986.

[38] B. E. Kelly and F. P. Lees. The propagation of faults in process plants: 2. Fault tree
synthesis. Reliability Engineering, Vol. 16:39-62, 1986.

[39] B. E. Kellyand F. P. Lees. The propagationof faults in process plants: 3. An interactive,
computer bcised facility. Reliability Engineering, Vol. 16:63-86, 1986.

[40] B. E. Kelly and F. P. Lees. The propagation of faults in process plants: 4. Fault tree
synthesis of a pump system changeover sequence. Reliability Engineering, Vol. 16:87-
108, 1986.

[41] D. H. Knuth. The Art of Computer Programming, Vol. 1. Addison-Wesley., 1968.

[42] B. V. Koen and A. Carnino. Reliability calculations with a list processing technique.
IEEE Transactions on Reliability, Vol. R-23(No. l):43-50, April 1974.

[43] T. Kohda and E. J. Henley. On digraphs, fault trees and cut sets. Reliability Engineering
and System Safety, Vol. R-23:35-61, 1988.

[44] T. Kohda, E. J. Henley, and K. Inoue. Finding modules in fault trees. IEEE Transactions
on Reliability, Vol. R-38(No. 2):165-176, June 1989.

[45] M. A. Kramer and Jr. B. L. Palowitch. A rule-based approach to fault diagnosis using
the signed directed graph. AIChE Journal, Vol. 33(No. 7):1067-1078, July 1987.

[46] H. Kumamoto and E. J. Henley. Top-down algorithm for obtaining non-coherent fault
trees. IEEE Transactions on Reliability, Vol. R-27(No. 4):242-249, October 1978.

[47] S. A. Lapp and G. J. Powers. Computer-aided synthesis of fault trees. IEEE Transac
tions on Reliability, pages 2-13, April 1977.

[48] S. A. Lapp and G. J. Powers. The synthesis of fault trees. In Nuclear Systems Reliability
Engineering and Risk Assessment, pages 778-799. Society for Industrial and Applied
Mathematics, 1977.

[49] S. A. Lapp and G. J. Powers. Update of Lapp-Powers fault tree synthesis algorithm.
IEEE Transactions on Reliability, Vol. R-28(No. 1):12-15, 1979.

41



[50] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie. Fault tree analysis, methods, and
applications - a review. IEEE Transactions on Reliability, Vol. R-34(No. 3):194-203,
August 1985.

[51] N. Limnios and R. Ziani. An algorithm for reducing cut sets in fault tree analysis. IEEE
Transactions on Reliability, Vol. R-35(No. 5):559-562, December 1986.

[52] M. 0. Locks. Synthesis of fault trees; an example of noncoherence. IEEE Transactions
on Reliability, Vol. R-28(No. l):2-5, April 1979.

[53] J. S. Mullhi, M. L. Ang, and F. P. Lees. The propagation of faults in process plants: 5.
Fault tree synthesis for a butane vaporiser systems. Reliability Engineering and System
Safety, Vol. R-23:31-49, 1988.

[54] N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company., 1980.

[55] L. B. Page and J. E. Perry. An algorithm for exact fault-tree probabilities without cut
sets. IEEE Transactions on Reliability, Vol. R-35(No. 5):544-558, December 1986.

[56] P.K. Pande, M. E. Spector, and P. Chatterjee. Computerized fault tree analysis TREEL
and MICCSUP. Technical Report ORC 75-3, Operation Research Center, University of
California, Berkeley, April 1975.

[57] F. A. Patterson and B. V. Koen. Direct evaluation of fault trees using object-oriented
programming techniques. IEEE Transactions on Reliability, Vol. R-38(No. 2):186-192,
June 1989.

[58] G. J. Powers, F. C. Tompkins, and S. A. Lapp. A safety simulation languagefor chemical
processes: A procedure for fault tree synthesis. In Reliability and Fault Tree Analysis,
pages 57-75. Society for Industrial and Applied Mathematics, September 1975.

[59] R. A. Pullen. AFTP fault tree analysis program. IEEE Transactions on Reliability,
Vol. R-33(No. 2):171, June 1984.

[60] Jr. R. T. Hessian, B. B. Salter, and E. F. Goodwin. Fault-tree analysis for system
design, development, modification, and verification. IEEE Transactions on Reliability,
Vol. 39(No. 1):87-91, April 1990.

[61] D. M. Rasmuson and N. H. Marshall. FATRAM - a core efficient cut-set algorithm.
IEEE Transactions on Reliability, Vol. R-27(No. 4):250-253, October 1978.

42



[62] A. Rosenthal. Decomposition methods for fault tree analysis. IEEE Transactions on
Reliability, Vol. R-29(No. 2):136-138, June 1980.

[63] S. L. Salem, G. E. Apostolakis, and D. Okrent. A new methodology for the computer-
aided construction of fault trees. Journal of Nuclear Energy, Vol. 4:417-433, 1977.

[64] S. N. Semanderes. ELRAFT a computer program for the Efficient Logic Reduction
Analysis of Fault Trees. IEEE Transactions on Nuclear Science, Vol. NS-18:481-487,
February 1971.

[65] M. Shah and A. Ghasemkhani. Preliminary Redundancy/Reliability Analysis Fault Tol
erant Electrical Power System (fteps). Technical Report Northrop FSCM No. 76823,
Northrop Aircraft Division, 1987.

[66] M. L. Shooman. The equivalence of reliability diagrams and fault-tree analysis. IEEE
Transactions on Reliability, Vol. R-19(No. 2):74-75, May 1970.

[67] K. Stecher. Evaluation oflarge fault-trees withrepeated events using an efficient bottom-
. up algorithm. IEEE Transactions on Reliability, Vol. R-35(No. l):51-58, April 1986.

[68] J. R. Taylor. An algorithm for fault-tree construction. IEEE Transactions on Reliability,
Vol. R-31(No. 2):137-146, June 1982.

[69] N. H. Ulerich and G. J. Powers. On-line hazard aversion and fault diagnosis in chemical
processes: The digraph and fault tree method. IEEE Transactions on Reliability, Vol.
R-37(No. 2):171-177, June 1988.

[70] J. Vatn. Finding minimal cut sets in a fault tree. Reliability Engineering and System
Safety, Vol. 36(No. l):59-62, 1992.

[71] W. E. Vesely. Reliability and fault tree applications at the NRTS. In Proceedings 1970
Reliability and Maintainability Conference, volume Vol. 9, pages 472-480, 1970.

[72] W. E. Vesely and R. E. Narum. PREP and KITT computer code for the automatic
evaluation of a fault tree. Technical Report IN-1349, Idaho Nuclear Corporation, Idaho
Falls, Idaho, 1970.

[73] W.E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree Handbook.
U.S. Nuclear Regulatory Commission, 1981.

43



[74] R.C. De Vries. An automated methodology for generating a fault tree. IEEE Transac
tions on Reliability, Vol. 39(No. l):76-86, April 1990.

[75] J. Wilson. Modularizing and minimizing fault trees. IEEE Transactions on Reliability,
Vol. R-34(No. 4):320-322, October 1985.

[76] P. H. Winston. Artificial Intelligence. Addison-Wesley Publishing Company,Inc., 1984.

[77] R. B. Worrell. Using the set equation transformation system in fault tree analysis. In
Reliability and Fault Tree Analysis, pages 165-185. Society for Industrial and Applied
Mathematics, September 1975.

[78] R. B. Worrell, D. W. Stack, and B. L. Hume. Prime implicants of non-coherent fault
trees. IEEE Transactions on Reliability, Vol. R-3G(No. 2):98-100, June 1981.

[79] J. S. Wu, S. L. Salem, and G. E. Apostolakis. The use ofdecision tables in the systematic
construction of fault trees. In 1977 Nuclear Systems Reliability Engineering and Risk
Assessment, pages 800-824. Society for Industrial and Applied Mathematics, 1977.

44




