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Abstract of the Dissertation

Graph Based Models for Unsupervised

High Dimensional Data Clustering

and Network Analysis

by

Huiyi Hu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Andrea L. Bertozzi, Chair

The demand for analyzing patterns and structures of data is growing dramatically

in recent years. The study of network structure is pervasive in sociology, biology,

computer science, and many other disciplines. My research focuses on network

and high-dimensional data analysis, using graph based models and tools from

sparse optimization. The specific question about networks we are studying is

“clustering”: partitioning a network into cohesive groups. Depending on the

contexts, these tightly connected groups can be social units, functional modules,

or components of an image.

My work consists of both theoretical analysis and numerical simulation. We

first analyze some social network and image datasets using a quality function

called “modularity”, which is a popular model for clustering in network science.

Then we further study the modularity function from a novel perspective: with my

collaborators we reformulate modularity optimization as a minimization problem

of an energy functional that consists of a total variation term and an L2 balance

term. By employing numerical techniques from image processing and L1 com-

pressive sensing, such as the Merriman-Bence-Osher (MBO) scheme, we develop

a variational algorithm for the minimization problem.
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Along a similar line of research, we work on a multi-class segmentation prob-

lem using the piecewise constant Mumford-Shah model in a graph setting. We

propose an efficient algorithm for the graph version of Mumford-Shah model using

the MBO scheme. Theoretical analysis is developed and a Lyapunov functional

is proven to decrease as the algorithm proceeds. Furthermore, to reduce the com-

putational cost for large datasets, we incorporate the Nyström extension method

to efficiently approximates eigenvectors of the graph Laplacian based on a small

portion of the weight matrix. Finally, we implement the proposed method on the

problem of chemical plume detection in hyper-spectral video data. These graph

based clustering algorithms we proposed improve the time efficiency significantly

for large scale datasets. In the last chapter, we also propose an incremental reseed-

ing strategy for clustering, which is an easy-to-implement and highly parallelizable

algorithm for multiway graph partitioning. We demonstrate experimentally that

this algorithm achieves state-of-the-art performance in terms of cluster purity on

standard benchmark datasets. Moreover, the algorithm runs an order of magni-

tude faster than the other algorithms.
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CHAPTER 1

Introduction

One of the most basic unsupervised learning tasks is to automatically partition

data into clusters based on pair-wise similarity. A standard scenario is to use a

weighted graph to represent the data. This thesis particularly focuses on unsu-

pervised, non-overlapping data clustering tasks.

Data clustering has been a widely studied problem in various fields. It takes

different forms depending on the context and application, such as community

detection in network science, segmentation problem in image processing, graph

partitioning in parallel computing. My work starts from a network science point

of view using graph models. Pursuing a similar line of research, we extend the

developed graph tools to a multi-class segmentation model in the context of hyper-

spectral imagery segmentation and general high-dimensional data clustering. At

last, we also study an incremental reseeding strategy for clustering that produces

high performance with very low computational cost.

1.1 Network Community Detection

Networks provide a useful representation for the investigation of complex systems,

and they have accordingly attracted considerable attention in sociology, biology,

computer science, and many other disciplines [70, 71]. Most of the networks that

people study are graphs, which consist of nodes (i.e., vertices) to represent the

elementary units of a system and edges to represent pairwise connections or in-
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teractions between the nodes.

Using networks makes it possible to examine intermediate-scale structure in

complex systems. Most investigations of intermediate-scale structures have fo-

cused on community structure, in which one decomposes a network into (possibly

overlapping) cohesive groups of nodes called communities [76]. There is a higher

density of connections within communities than between them.

In some applications, communities have been related to functional units in

networks [76]. For example, a community might be closely related to a functional

module in a biological system [55] or a group of friends in a social system [88].

Because community structure in real networks can be very insightful [33,37,71,76],

it is useful to study algorithmic methods to detect communities. Such efforts

have been useful in studies of the social organization in friendship networks [88],

legislation cosponsorships in the United States Congress [100], functional modules

in biology networks [39,55], and many other situations.

To perform community detection, one needs a quantitative definition for what

constitutes a community, though this relies on the goal and application that one

has in mind. Perhaps the most popular approach is to optimize a quality function

known as modularity [68,72,73], and numerous computational heuristics have been

developed for optimizing modularity [33,76]. The modularity of a network parti-

tion measures the fraction of total edge weight within communities versus what

one might expect if edges were placed randomly according to some null model.

Modularity gives one definition of the “quality” of a partition, and maximizing

modularity is supposed to yield a reasonable partitioning of a network into disjoint

communities.

Community detection is related to graph partitioning, which has been applied

to problems in numerous areas [74,81,95]. In graph partitioning, a network is di-

vided into disjoint sets of nodes. Graph partitioning usually requires the number

of clusters to be specified to avoid trivial solutions, whereas modularity optimiza-

2



tion does not require one to specify the number of clusters [76]. This is a desirable

feature for applications such as social and biological networks.

The idea of modularity is generalized to a “multi-slice network” version in [64],

which consists of layers of ordinary networks in which vertex x in one slice is con-

nected to the corresponding vertex in other slices, via a coupling constant. Each

layer can represent relationships induced from a different type of feature of the

agents, the status of the network at a different temporal point, or the network

inspected under a different scale. The multi-slice modularity model allows us to

cluster multiple layers of a network simultaneously, while enforcing some consis-

tency in clustering identical vertices similarly across slices. In the work of [47,91],

we implement the multi-slice modularity on a dataset with both geographic and

social information about stops involving street gang members in the Los Angeles

Police Department (LAPD) Division of Hollenbeck [92]. Without prior knowledge

of the number of gangs of the members, we examined network diagnostics over

slices to attempt to estimate the number of gangs that is stable across multiple

scales, which turns out to correspond roughly to the number expected by the

LAPD. We also applied this technique to image segmentation and tried to deter-

mine the number of components in a test image through the multi-slice network

model [47].

Because modularity optimization is an NP-hard problem [12], efficient algo-

rithms are necessary to find good locally optimal network partitions with rea-

sonable computational costs. Numerous methods have been proposed [33, 76].

These include greedy algorithms [23,67], extremal optimization [11,28], simulated

annealing [40, 51], spectral methods (which use eigenvectors of a modularity ma-

trix) [68, 79], and more. The locally greedy algorithm by Blondel et al. [9] is

arguably the most popular computational heuristic; it is a very fast algorithm,

and it also yields high modularity values [33,53].

In [45], we interpret modularity optimization (using the Newman-Girvan null

3



model [71, 73]) from a novel perspective. Inspired by the connection between

graph cuts and the total variation (TV) of a graph partition, we reformulate the

problem of modularity optimization as a minimization of an energy functional that

consists of a graph cut (i.e., TV) term and an L2 balance term. By employing

numerical techniques from image processing and L1 compressive sensing—such as

convex splitting and the Merriman-Bence-Osher (MBO) scheme [62,63]we propose

a variational algorithm to perform the minimization on the new formula. (The

MBO was originally introduced to approximate motion by mean curvature of an

interface in Euclidean space.) We apply this method to both synthetic benchmark

networks and real data sets, and we achieve performance that is competitive with

the state-of-the-art modularity optimization algorithms.

1.2 Hyper-spectral Image Segmentation

Multi-class segmentation has been studied as an important problem for many years

in various areas, such as computer science and machine learning. For imagery data

in particular, the Mumford-Shah model [65] is one of the most extensively used

model in the past decade. This model approximates the true image by an optimal

piecewise smooth function through solving a energy minimization problem. More

detailed review of the work on Mumford-Shah model can be found in the references

of [20]. A simplified version of Mumford-Shah is the piecewise constant model

(also known as the “minimal partition problem”), which is widely used due to its

reduced complexity compared to the original one. For a given contour Φ which

segments an image region Ω into n̂ many disjoint sub-regions Ω = ∪n̂r=1Ωr, the

piecewise constant Mumford-Shah energy is defined as:

EMS(Φ, {cr}n̂r=1) = |Φ|+ λ
n̂∑
r=1

∫
Ωr

(u0 − cr)2 , (1.1)

where u0 is the observed image data, {cr}n̂r=1 is a set of constant values, and

|Φ| denotes the length of the contour Φ. By minimizing the energy EMS over
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Φ and {cr}n̂r=1, one obtains an optimal function which is constant within each

sub-region to approximate u0, along with a segmentation given by the optimal

Φ. In [21], a method of active contours without edges is proposed to solve for

the two-class piecewise constant Mumford-Shah model (n̂ = 2), using a level set

method introduced in [75]. The work in [21] is further generalized to a multi-class

scenario in [93]. The method developed in [21,93] is well known as the Chan-Vese

model, which is a popular and representative method for image segmentation.

The Chan-Vese method has been widely used due to the model’s flexibility and

the great success it achieves in performance.

In the work of [46], we study the multi-class segmentation problem using

the Mumford-Shah model in the context of imagery or general hight-dimensional

datasets, in particular hyper-spectral data. It can be viewed as a clustering prob-

lem with Mumford-Shah model being the quality function (in contrast to modular-

ity). We formulate the piecewise constant MS problem in a graph setting instead

of a continuous one, and propose an efficient algorithm to solve it. Recently the

authors of [8] introduced a binary semi-supervised segmentation method based

on minimizing the Ginzburg-Landau functional on a graph. Inspired by [8], a

collection of work has been done on graph-based high-dimensional data clustering

problems posed as energy minimization problems, such as semi-supervised meth-

ods studied in [35, 59, 60] and an unsupervised network clustering method [45]

known as modularity optimization. These methods make use of graph tools [22]

and efficient graph algorithms, and our work pursues similar ideas. Note that un-

like the Chan-Vese model which uses log2(n̂) many level set functions and binary

representations to denote multiple classes, our model uses simplex constrained

vectors for class assignments representation. To solve the multi-class piecewise

constant MS variational problem in the graph setting, we propose an efficient al-

gorithm adopting the idea of the MBO scheme [62,63]. The MBO scheme is used

on the continuous MS model [29,85] motivated by level set methods. The authors
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of [35,45,59,60] implement variants of the MBO scheme applied to segmentation

problems in a graph setting. Rigorous proofs of convergence of the original MBO

scheme in continuous setting can be found in [5, 31] for the binary case, and [30]

for the multi-class case. An analogous discussion in a graph setting is given in [90].

Inspired by the work of [30, 90], we develop a Lyapunov functional for our pro-

posed variant of the MBO algorithm, which approximates the graph MS energy.

Theoretical analysis is given to prove that this Lyapunov energy decreases at each

iteration of our algorithm, until it converges within finitely many steps.

In order to solve for each iteration of the MBO scheme, one needs to compute

the weight matrix of the graph as well as the eigenvectors of the corresponding

graph Laplacian. However, the computational cost can become prohibitive for

large datasets. To reduce the numerical expenses, we implement the Nyström

extension method [34] to approximately compute the eigenvectors, which only

requires computing a small portion of the weigh matrix. Thus the proposed al-

gorithm is efficient even for large datasets, such as the hyper-spectral video data

considered in [46].

The proposed method can be implemented on general high-dimensional data

clustering problems. However, in this work the numerical experiment is focused on

the detection of chemical plumes in hyper-spectral video data. Detecting harm-

ful gases and chemical plumes has wide applicability, such as in environmental

study, defense and national security. However, the diffusive nature of plumes

poses challenges and difficulties for the problem. One popular approach is to take

advantage of hyper-spectral data, which provides much richer sensing information

than ordinary visual images. The hyper-spectral images used in this work were

taken from video sequences captured by long wave infrared (LWIR) spectrome-

ters at a scene where a collection of plume clouds is released. Over 100 spectral

channels at each pixel of the scene are recorded, where each channel corresponds

to a particular frequency in the spectrum ranging from 7,820 nm to 11,700 nm.
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The data is provided by the Applied Physics Laboratory at Johns Hopkins Uni-

versity, (see more details in [18]). Prior analysis of this dataset can be found in

the works [36, 61, 84, 86]. The authors of [61] implement a semi-supervised graph

model using a similar MBO scheme. In this work, each pixel is considered as a

node in a graph, upon which the proposed unsupervised segmentation algorithm

is implemented. Competitive results are achieved as demonstrated below.

1.3 An Incremental Reseeding Strategy

We propose an easy-to-implement and highly parallelizable algorithm for multiway

graph partitioning. Different from the methods studied in the previous chapters, it

does not have an explicit global quality function. Instead, this heuristic strategy

takes advantage of random sampling in order to reduce the chances that the

solutions get stuck at local minima.

The algorithm proceeds by alternating three simple routines in an iterative

fashion: diffusion, thresholding, and random sampling. We demonstrate experi-

mentally that the proper combination of these ingredients leads to an algorithm

that achieves state-of-the-art performance in terms of cluster purity on standard

benchmark datasets. Moreover, the algorithm runs an order of magnitude faster

than the other algorithms that achieve comparable results in terms of accuracy.

1.4 Outlines

The rest of this thesis is organized as follows. Chapter 2 introduces the background

and preliminaries of the graph setting, the definition and properties of the graph

Laplacians. A few representative quality functions such as the graph cuts and

the modularity are presented for the general clustering problem. In Chapter 3, a

specific method called the multi-slice modularity optimization is implemented on
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social and imagery data to study the network structure, and its performance is

evaluated with statistical network diagnostics.

In Chapter 4, the techniques of variational methods in partial differential equa-

tion and image processing are discussed, so that an alternative approach to the

graph-based clustering problem can be developed. More specifically, the Ginzburg-

Landau functional and the MBO scheme are introduced in Euclidean space. Then

we derive an equivalent formula of modularity optimization as a minimization

problem of an energy functional that consists of a total variation term and an

L2 balance term. A graph version of the MBO scheme is presented for solving

the minimization problem; and numerical tests with our algorithms on several

benchmark and real-world networks are demonstrated.

Chapter 5 introduces the graph formula for the multi-class piecewise constant

Mumford-Shah model and relevant notations. A Mumford-Shah MBO scheme is

presented as well as the theoretical analysis for a Lyapunov functional which is

proven to decrease as the algorithm proceeds; techniques such as Nyström method

are also introduced for the purpose of numerical efficiency. At last, the proposed

algorithm is tested on the hyper-spectral video data for plume detection problem.

The results are then presented and discussed.

Chapter 6 introduces an incremental reseeding strategy for clustering. Com-

parisons on computational time and performance between the proposed algorithm

and several state-of-art methods are presented.
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CHAPTER 2

Preliminary

In this chapter we firstly introduce the basic notations for the graph model and

some useful properties of spectral graph theory [22, 95]. Then we briefly present

several commonly used clustering models based on graphs. The advantage of

graph-based methods is that it can reduce the high-dimensionality of the feature

space via a similarity metric; It can also reflect non-local properties of the data.

2.1 Graph Basics

A graph is a commonly used mathematical tool to represent a network and rela-

tionships between data samples, as illustrated in Figure 2.1. Consider an N -node

graph (G,E), which consists of a node set G = {n1, n2, . . . , nN} and an edge set

E = {wij}Ni=1. Each node ni corresponds to an agent in a given dataset, such

as a pixel in an image, or a person in a social network. In a weighted graph,

each edge is assigned with a non-negative quantity wij, representing the similarity

between a pair of nodes ni and nj. If an edge is not included in the edge set E, it

is assumed to be equivalent to having zero similarity. Let W = [wij] denote the

graph’s N ×N similarity matrix (or weight matrix).

In this work we only focus on undirected graph, i.e. W is symmetric, wij = wji.

Although the directed graph (i.e. wij 6= wij) is also studied in the literature for

relationships that are not mutual, (such as one user “following” another on Twitter

but not the other way around), it is beyond the realm of this work. If not specified
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Figure 2.1: Illustration of an undirected weighted graph.

otherwise, the similarity weight wij is always nonnegative. For unweighted graph,

simply assign wij with value of either one or zero.

2.1.1 Feature vector & similarity metric

In order to build a graph that represents the relationships between agents in

the network, one needs a similarity metric to compute the weight wij, i.e. how

to quantify the similarity between node ni and node nj. In a dataset, usually

each agent (node) comes with a so-called “feature vector” which contains feature

information relevant to the problem. In a social network, a feature vector can

contain entries about age, gender, occupation, etc. Note that each entry of the

feature vector should be normalized accordingly, for example, one person’s age

and salary have quite different ranges of values and it is reasonable to normalize

them to a similar range. A descriptive feature such as gender can be treated as a

binary value in the feature vector.

Let vector vi denotes the feature vector of node ni. A similarity metric is a

mapping from (vi, vj) to wij. A common choice for the similarity metric is

wij = e−
dist2(vi,vj)

2σ2

where dist(vi, vj) can be any suitable metric distance between vi and vj in Eu-

clidean space, such as L1 or L2 norm, or the angle between the two vectors. The
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choice of the similarity metric highly depends on the data and the application.

Note that if the dimension of feature vectors is too high, some algorithms may

not scale well. In that case, one can reduce the dimensionality using principal

component analysis (PCA) [49]. A basic PCA dimension reduction process can

be performed as following.

Given a set of data samples with high-dimensional d × 1 features vectors

x1, x2, . . . , xN ∈ Rd, we want to reduce the dimension from d to d̂:

1. Let µ denote the empirical mean of the feature vectors: µ = 1
N

∑N
i=1 xi.

Build a N × d matrix

X̂ = (x1 − µ, x2 − µ, . . . , xN − µ)T .

2. Compute the d× d scatter matrix S = X̂T X̂.

3. Because S is positive semidefinite, one can compute the eigenvectors of S:

S = UTΛU .

4. Let V = (u1, u2, . . . , ud̂), a N × d̂ matrix, where ui is i-th eigenvector of S

associated with the largest eigenvalues.

5. The 1 × d̂ rows {vi}Ni=1 of V are the new feature vectors with reduced di-

mensions.

2.1.2 Graph functions

Graph functions and operators applied on them are important components when

studying graph models for clustering problems. In order to represent a partition

on the graph, consider a set of graph functions f = (f1, f2, . . . , fn̂) : G→ Rn̂ :

B :=

{
f | f : G→ {0, 1}n̂,

n̂∑
r=1

fr(ni) = 1

}
.
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The simplex constrained vector value taken by f ∈ B can indicate class assign-

ment, i.e. if fr(ni) = 1 for some r, then ni belongs to the r-th class. Thus for each

f ∈ B, it corresponds to a partition of the graph G with at most n̂ classes; and

every partition can be represented by a unique function in B accordingly. One can

think of B as a a set of generalized binary indicator functions. Indeed, the r-th

entry fr of a function f ∈ B is a 1-0 binary indicator function of the r-th class.

Thus, a set B covers all the relvant functions concerning a clustering problem.

However, the strict constraints on B makes it difficult to apply useful operators.

A more general admissible set for graph functions f = (f1, f2, . . . , fn̂) : G → Rn̂

is defined as:

K :=

{
f | f : G→ [0, 1]n̂,

n̂∑
r=1

fr(ni) = 1

}
,

which is a compact and convex set. Note that the set B is a subset of K. The

graph functions in K take values on the boundary of a high dimensional simplex,

while those in B take values on the vertex of a simplex.

2.1.3 Graph Laplacian

One of the most commonly used operator on graph functions is the so-called (un-

normalized) graph Laplacian matrix L := D−W [22], where D is a diagonal matrix

with the i-th entry being the node strength (degree) di =
∑N

j=1wij. A variant of

the Laplacian is the symmetric normalized Laplacian Lsym := I − D−
1
2 WD−

1
2 ,

where I is the identity matrix and assuming every node has nonzero degree (i.e.

di > 0). The Laplacian operators have many useful properties which can give

insights to the graph’s structure, as studied in depth in spectral graph theory [22].

Here we introduce several commonly used observations of the Laplacian operators.

For a real valued graph function a : G→ R, observe that

〈a,La〉 =
1

2

N∑
i,j=1

wij (a(ni)− a(nj))
2 , (2.1)
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where 〈·, ·〉 is the inner product. For vector-valued f = (f1, f2, . . . , fn̂) : G→ Rn̂,

let 〈f,Lf〉 =
∑n̂

r=1〈fr,Lfr〉. One can see from (2.1) that L is positive semidefinite,

so is the operator Lsym = D−
1
2 LD−

1
2 :

〈a,Lsyma〉 =
1

2

N∑
i,j=1

wij

(
a(ni)√
di
− a(nj)√

dj

)2

. (2.2)

The right side of (2.1) is analogous to
∫
|∇a|2dw in Euclidean space, with wij

corresponding to the measure dw. Note that the first order derivative of
∫
|∇a|2dw

yields the negative Laplacian operator −∆ in heat equations, according to the

calculous of variation.

Similar to the Laplacian operator ∆ in partial differential equations (PDE),

the eigen-space of the graph Laplacians L and Lsym can reflect a lot of information

about the graph. People have been using the leading eigenvectors of the graph

Laplacians, (which correspond to the smallest eigenvalues), to partition the graph

into meaningful subgroups [95].

Because the Laplacians are positive semidefinite, the smallest possible eigen-

value is zero. Consider a graph with exactly k connected components:

G = G1 ∪G2 ∪ . . . ∪Gk ,

where any pair of nodes that belong to two different components have zero edge

weight between them. Observe that the indicator function χGs of each connected

component Gs is an eigenvector of L associated with eigenvalue zero. In fact, for

Laplacian L, the eigenvalue zero has the exact algebraic multiplicity of k. In other

words, L’s eigen-space of eigenvalue zero has k dimensions, with the k indicator

functions χG1 , χG2 , . . . , χGk being a set of orthogonal basis. On the one hand, it is

trivial to see that the zero eigenvalue has a multiplicity of at least k; on the other

hand, Proposition 1 shows that the eigen-space of eigenvalue zero is spanned by

the k indicator functions χG1 , χG2 , . . . , χGk , and thus of dimension k.
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Proposition 1. Every eigenvector of the graph Laplacian L associated with eigen-

value zero must have constant value over each connected component of the graph.

Proof. Suppose a graph G has k connected components G = G1 ∪G2 ∪ . . . ∪Gk.

Given an eigenvector a that satisfies La = 0, we want to show that a is constant

over Gs, for any s ∈ {1, 2, . . . , k}.

For fixed s ∈ {1, 2, . . . , k}, without loss of generality, one can assume

n1 = argmaxni∈Gs{a(ni)} .

Because La = 0 and w1j = 0 for nj 6∈ Gs, we have

d1a(n1) =
N∑
j=1

a(nj)w1j =
∑
nj∈Gs

a(nj)w1j

≤
∑
nj∈Gs

a(n1)w1j = a(n1)
N∑
j=1

w1j = d1a(n1) . (2.3)

The equality holds if and only if w1j = 0 or a(nj) = a(n1). It implies that

every node nj in Gs that has non-zero edge connection to n1 must satisfy a(nj) =

a(n1). Hence a takes the constant value a(n1) on Gs, because Gs is a connected

component. Thus a is constant on every connected component of the graph G.

Therefore, by looking at the orthogonal eigenvectors associated with eigenvalue

zero one can obtain the number of connected components in the graph. However,

for real world clustering problems, people are more concerned with less ideal

situations, where the clusters of the graph are not necessarily fully disconnected

from each other. Thus, the goal is to identify the “loosely” connected components

in the graph.

In practice, people find the leading eigenvectors associated with small eigen-

values (close to zero) very useful in determining such components [7,22,24,68,81].
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One way of interpretation is that these leading eigenvectors approximate the zero-

eigen-space in the case discussed above where clusters are fully disconnected, and

thus approximate the indicator functions of the clusters. Another way of un-

derstanding the use of leading eigenvectors is through the equation (2.1). For a

connected graph, the first eigenvector φ1 of the graph Laplacian L is the constant

vector 1 (up to a constant), with value one at each entry. The second eigenvector

φ2 satisfies:

φ2 = argmina⊥1
〈a,La〉
〈a, a〉

= argmin‖a‖=1,a⊥1
1

2

N∑
i,j=1

wij (a(ni)− a(nj))
2 . (2.4)

To minimize the righthand side of equation (2.4), φ2 takes similar value on node

ni and nj when wij has a large value. Therefore intuitively speaking, the values of

φ2 are grouping together nodes with strong connections, and separating the ones

with loose connections. The relation between the graph Laplacian and a quality

function called graph cuts is mentioned in Section 2.2.

In many cases the normalized Laplacian Lsym is preferred because it is more

regularized, (see normalized cuts in Section 2.2). For non-zero eigenvalues, the

corresponding eigenvectors of L denoted by {φs} can not be directly derived from

the eigenvectors of Lsym denoted by {φ̂s}, nor the other way around. However,

for the zero eigenvalue, one can derive:

Lsymφ̂s = φ̂s −D−
1
2 WD−

1
2 φ̂s = 0

⇒ D−
1
2 φ̂s −D−1WD−

1
2 φ̂s = 0

⇒ L(D−
1
2 φ̂s) = D(D−

1
2 φ̂s)−W(D−

1
2 φ̂s) = 0

⇒ φs = D−
1
2 φ̂s . (2.5)

Therefore, L’s eigen-space of eigenvalue zero can be derived directly from that of

Lsym, and vice versa. Results similar to Proposition 1 can be shown for Lsym.
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2.2 Quality Functions

Various approaches have been studied to perform clustering on datasets repre-

sented by graphs. A more detailed review can be found in [33] and its references.

The main work of this thesis (Chapter 3-5) focuses on the type of methods which

is based on a global quality function.

To be more specific, in order to cluster or partition a graph, one needs a quality

function to quantify and measure how “good” a clustering is. The quality function

models how clusters are defined and what properties of a clustering is favored,

which varies depending on different applications at hands. Once a quality function

is chosen, the remaining task is to optimize it over all admissive clusterings, either

maximization or minimization depending on the specific quality function.

Normally a quality function favors clusters that have tight connections within,

but are loosely connected with each other. How to balance these criteria is the

core of a quality function. This section introduces several representative quality

functions: the family of graph cuts and its connection to the graph total variation,

and the modularity function. Note that there are many other quality functions in

the literature other than what is covered in this section, but the graph cuts and

the modularity function can give a good picture of this type of methods.

2.2.1 Graph Cuts

The most common concept in graph based models is perhaps the graph cuts.

Consider a partitioning of the graph G = A1 ∪ A2 ∪ . . . An̂ where {Ar}n̂r=1 are

disjoint subsets of G. Let g : G → {1, 2, . . . , n̂} be the group assignment of each

node, i.e. a node ni belongs to Ar if and only if gi := g(ni) takes the value r. The

graph cuts of this partitioning is defined as the sum of all the edge links one needs
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to cut in order to separate {Ar}n̂r=1 from each other:

Cut(A1, A2, . . . , An̂) :=
∑
gi 6=gj

wij . (2.6)

The graph cuts in the case of n̂ = 2 is illustrated in Figure 2.2 (b), where a red

dash line is splitting the graph into two groups of nodes. The corresponding graph

cuts for this splitting is the sum of the two edges being cut through by the dash

line.

From the definition one can see that the graph cuts is measuring the inter-

connections between clusters. Therefore, if one wants to partition a graph into

loosely connected subgroups, the corresponding graph cuts is preferred to be small.

A general principle of clustering can thus be finding a clustering that minimizes

the graph cuts over all admissive ones.

However, if the quality function is set to be the graph cuts only, it tends to

yield solutions where most clusters contains only one single node while one cluster

contains most of the nodes in the graph. Such solutions are trivial and can not

provide useful information. To resolve this issue, people therefore add certain

balance terms into the graph cuts so that the sizes of clusters are favored to be

similar.

One popular version of modified graph cuts is the normalized cuts [81], usually

in the two-cluster form (i.e. n̂ = 2, G = A1 ∪ A2):

Ncut(A1, A2) :=
Cut(A1, A2)

vol(A1)
+

Cut(A1, A2)

vol(A2)
, (2.7)

where the quantity vol(A) denotes the volume of a subset A ∈ G defined as:

vol(A) :=
∑
ni∈A

di .

In the normalized cuts, the volume terms in the denominators serve the purpose

of balancing the cluster sizes. Because it favors equal volumes on A1 and A2,
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trivial solutions are likely to be avoided. Therefore, using the normalized cuts as

the quality function is more well-posed than the graph cuts itself.

Finding the minimizer of the normalized cuts is NP hard [96]. Therefore

relaxing the problem and solving it approximately is a common option. Among

many approaches explored in the literature, spectral clustering [95] is a popular one

to solve the relaxed version of the normalized cuts. Analysis in [81] shows that the

eigenvectors of the normalized Laplacian Lsym is an approximate solution to the

minimization of Ncut. More specifically, to bipartition the graph the normalized

spectral clustering first computes the second eigenvector

φ̂2 = argmina⊥1
〈a,Lsyma〉
〈a, a〉

, (2.8)

and then cluster the nodes into two groups according to the signs of φ̂2’s value.

This method has been widely used due to its efficiency and relatively good per-

formance.

There are other variants of the graph cuts such as the ratio cut [41] and the

Cheeger cut [15]; and alternative relaxations are explored [15,16].

(a) Indicator function (b) Graph cuts

Figure 2.2: (a). An indicator function f of a set A, illustrating that the length of

A′s perimeter is the total variation of f. (b). Illustration of the graph cuts.

18



2.2.2 Total Variation

In Euclidean space, the total variation (TV) norm of a real valued function f is

defined as the L1 norm of f ’s gradient:

|f |TV :=

∫
|∇f | . (2.9)

The TV norm has been used as a very useful regularizer in image processing and

L1 compressive sensing, such as in the Rudin-Osher-Fatemi denoising model [80].

An intuitive interpretation of TV is illustrated in Figure 2.2 (a): given a subset

A in the problem domain and an indicator function f = χA, the length of region

A’s perimeter equals the TV norm of f :

|f |TV = length(ΓA) ,

where ΓA denotes the boundary of the subset A. Therefore by adding the total

variation term into the energy (quality function) of a minimization problem, one

can enforce a more regular boundary in a segmentation, or a smoother intensity

variation in an image.

Analogously, people define a graph total variation for f : G→ R

|f |TV :=
1

2

N∑
i,j=1

wij |f(ni)− f(nj)| . (2.10)

Interestingly, the total variation on a graph function has very close connection to

the graph cuts introduced in the last section. In fact, we have

Cut(A,Ac) = |χA|TV .

In another words, the graph cuts of a partition can be seen as the boundaries of

the subsets.

Comparing the equations (2.1) and (2.10), one can observe that when f = χA,

the equality holds:

〈f,Lf〉 = |f |TV . (2.11)
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Therefore, 〈f,Lf〉 is an L2 relaxation of |f |TV and hence the graph cuts Cut(A,Ac).

This is an intuitive interpretation of why the spectral clustering method is an ap-

proximate solution to the family of graph cuts problems.

2.2.3 Modularity

From the perspective of network science, the clustering problem is posed as “com-

munity detection” [76]. Communities are functional units of a network which have

close links within but loose connections with the outside. Usually the number of

clusters (communities) is not pre-assigned for community detection.

A popular method for community detection is the modularity optimization

[69,71–73]. The quality function modularity is to be maximized to achieve a good

clustering of a network. The modularity of a partition g is defined as

Q(g) =
1

2m

N∑
i,j=1

(
wij − γ

didj
2m

)
δ(gi, gj) , (2.12)

where gi ∈ {1, 2, . . . , n̂} is the community assignment of ni, and γ is a resolution

parameter [78]. The term δ(gi, gj) = 1 if gi = gj and δ(gi, gj) = 0 otherwise. The

resolution parameter can change the scale at which a network is clustered [33,76].

A network breaks into more communities as one increases γ. The resolution

parameter implicitly controls the number of clusters. In modularity optimization,

there is no fixed number of clusters being enforced directly in the quality function.

The modularity of a graph partition measures the fraction of total edge weight

within each community minus the edge weight that would be expected if edges

were placed randomly using some null model [76]. The most common null model

is the Newman-Girvan (NG) model [73], which assigns the expected edge weight

between ni and nj to be
didj
2m

, recalling that di =
∑N

s=1wis is the strength (i.e.,

weighted degree) of a node ni and the quantity 2m =
∑N

i=1 di is the total volume

(i.e., total edge weight) of the graph (G,E). An advantage of the NG null model

is that it preserves the expected strength distribution of the network. As shown
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in the definition (2.12), we adopt the term
didj
2m

as the null model in this work.

The literature on algorithms of modularity optimization is briefly introduced in

Section 4.1.

2.2.4 Number of clusters

The number of clusters is an important factor of clustering algorithms. In some

methods such as k-means, there is a pre-assigned number of clusters which serves

as an explicit constraint in the quality function. For some other methods such

as the modularity, the number of clusters is not specified, but rather induced

implicitly by other parameters in the quality function. Sometimes a method can

only do a bipartitioning at a time (i.e. partitioning into two subgroups), and

people therefore implement it recursively to achieve a desirable number of clusters.

These methods suit different purposes depending on the applications. For tasks

such as partitioning computer work loads for parallel computing, the number of

clusters is fixed. However, for community detection in social networks, usually

there is no “true” number of clusters in the clustering problem. Because it all

depends on at what scale one examines the network: coarse or fine, high level

structure or low level detail. In network science, it makes more sense to look at a

range of scales in order to understand a fuller picture of the data, rather than a

single fixed scale or a fixed number of clusters.
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CHAPTER 3

Network Analysis using Multi-slice Modularity

Optimization

In this chapter, a generalized modularity function is discussed and implemented

on both social network and imagery datasets. Diagnostic analysis of the data is

performed accordingly to understand the network structure.

3.1 Multi-slice Modularity

As introduced in the previous chapter, the modularity Q defined in the equa-

tion (2.12) is a quality function that measures the “goodness” of a clustering.

Finding a network partition that attempts to maximize Q allows one to probe a

network’s community structure. In contrast to traditional forms of spectral clus-

tering, modularity optimization requires no knowledge of the number or sizes of

communities, and it also allows one to segment a network into communities of

disparate sizes [69,76].

Optimization of modularity was recently generalized to a “multi-slice” network

framework [64]. It consists of layers of ordinary networks, which share the same

node-set but may have different edge-set. In another words, for the s-th slice

there is a similarity matrix Ws representing the intra-slice connections between

nodes {nis}Ni=1. Additionally there are also inter-slice connections linking the

corresponding nodes across slices, such as between nodes nir and nis from the r-th

and the s-th slice respectively. This framework of the multi-slice networks can
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thereby be used to represent time-dependent or multi-scale networks.

Under this framework, the generalized modularity function proposed in [64] is

defined as:

Qmulti(g) =
1

µ

∑
ijsr

[
(wijs − γs

disdjs
2ms

)δsr + δijCjsr

]
δ(gis, gjr) , (3.1)

where gjr indicates that community assignment of node j from slice r, the intra-

slice edge strength of node j in the s-th slice is djs =
∑

iwijs, the corresponding

inter-slice edge strength is cjs =
∑

r Cjsr, and 2µ =
∑

jr djr + cjr. In (3.1), one

can use a different resolution parameter γs in each slice. For a given slice s, the

quantity wijs gives the edge weight between nodes nis and njs. For a given node

j, the quantity Cjsr gives the inter-slice coupling between the rth and sth slices.

In Fig. 3.1, we show a schematic of the multi-slice network.

Figure 3.1: Schematic of a multislice network.

Optimization of the ordinary modularity function (2.12) has been used to

study community structure in myriad networks [76], and it has also been used

in the analysis of hyperspectral images [58] recently. In this work, we optimize

multislice modularity (3.1) to examine community structure in social networks and

segmentation of images. In each case, we start with a static graph, and each layer

of the multi-slice network uses the same adjacency matrix but associates it with
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a different resolution-parameter value γs. We include inter-slice edges between

each node j in adjacent slices only, so Cjsr = 0 unless |r − s| = 1. We set all

nonzero inter-slice edges to a constant value ω. This setup, which was illustrated

using the infamous Zachary Karate Club network in [64], allows one to detect

communities using a range of resolution parameter values while enforcing some

consistency in clustering identical nodes similarly across slices. The strength of

this enforcement becomes larger as one increases ω. To optimize the multi-slice

modularity (3.1), we use a Louvain-like locally-greedy algorithm [9, 50], which is

explained in Section 4.1. In our tests, we use the GenLouvain code (in Matlab)

from Ref. [50]. The GenLouvain code is a modified implementation of the Louvain

locally greedy algorithm [9] so that it applies to the cases with arbitrary values of

resolution parameter, but it was not optimized for speed.

3.2 LAPD Field Interview Data

In [91], we use data with both geographic and social information about stops

involving street gang members in the Los Angeles Police Department (LAPD)

Division of Hollenbeck [92]. We optimize multi-slice modularity (3.1) as a means

of unsupervised clustering of individual gang members without prior knowledge

of the number of gangs or affiliation of the members. We subsequently examine

network diagnostics over slices to attempt to estimate the number of gangs that

is stable across multiple resolution-parameter values and that also corresponds

roughly to the number expected by the LAPD.

3.2.1 Data description

The numerical experiment is tested on the field interview data from Hollenbeck

provided by LAPD. It records the incidents of gang members being stopped while

meeting with each other. In total there are 748 individuals involved, who belong
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Figure 3.2: Hollenbeck gang member distribution.

to 31 different gangs. As shown in Figure 3.2, the 748 colored dots represent

all the interviewed members distributed in Hollenbeck according to their average

location across all the recorded events, with the color indicating their affiliation.

Consider a graph with each node representing a member interviewed. We have

a social-connection adjacency matrix S of size 748×748 satisfying S[i, j] = 1 when

the members associated with nodes ni and nj have been recorded meeting with

each other at some point, and S[i, j] = 0 otherwise, (S[i, i] = 1). Additionally

there is a geographical matrix G of the same size satisfying:

G[i, j] = exp(−dist2(i, j)/σ2) ,

which is derived from the location information of each individual. The quantity

dist(i, j) denotes the physical distance between the individual ni’s average loca-

tion across all the recorded events and that of nj. The term σ is a normalizing

parameter which is hand picked empirically. The gang-affiliation information, i.e.

the ground truth (GT), of each gang member is also known. Each individual

belongs to a unique gang. The goal is to find the community structures of these

748 people based on the matrixes S and G, without any prior knowledge about

25



the their affiliation information or the number of gangs.

3.2.2 Geographical and social matrix

Define a similarity (weight) matrix W which linearly combines both the social

connection S and the geographical information G:

W := αS + (1− α)G .

To implement the multi-slice modularity framework, let the subgraph Ws for the

s-th slice to be the same as W but associated with a different value of resolution

parameter γs = 0.4+0.1s, s=1,2,...,40. In other words, the multi-slice network we

are considering consists of 40 slices, and each one of them is a copy of W indexed

by a different γs. The slices are ordered according to the values of γs. We connect

each node in every slice to the corresponding nodes in neighboring slices, i.e. we

set Cjsr ∈ {0, ω} and it equals to ω if and only if s and r are consecutive slice

index (|s − r| = 1). This way one can detect communities simultaneously over a

range of resolution parameters, while still enforcing some consistency in clustering

identical nodes similarly across slices.

For a specific fixed α, the resulting partition of the multi-slice network using

a Louvain-like algorithm [9, 50] straightforwardly yields partitions on each slice.

Each such partition is a clustering on the group of 748 interviewed members.

Network diagnostics, such as the number of clusters, purity, and zRand-score, are

examined on these clusterings to understand the network structure by comparing

to the ground truth (GT) gang affiliation.

As mentioned before, the modularity optimization determines the number of

clusters as part of its output. The quantities purity and zRand-score are used

to measure how “similar” one clustering is compared to the ground truth. To

compute purity [42], we assign to all nodes in a given community the label of the

gang that appears the most often in that group (in case of a tie between two or
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(a) α=0 (b) α=0.4

(c) α=0.8

Figure 3.3: Partitioning results using the multi-slice modularity optimization,

with ω = 1 and W = αS + (1− α)G. The number of clusters (Nc), zRand-score

(zR) and purity (Prt) for the partition of each slice are plotted as functions of the

resolution parameter γs. Different values of α is used: (a) α = 0, (b) α = 0.4, (c)

α = 0.8.

more gangs, the label of one of these gangs is arbitrarily chosen for all the nodes

in that group). The purity is then given by the fraction of the correctly labeled

individuals in the whole data set. The value of purity ranges from zero to one,

with one indicating a good match.

The quantity zRand-score is a standardized pair counting method measuring
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the similarity of two partitions. To obtain the zRand-score, one computes the

number of pairs w of individuals who belong to the same gang and who are placed

in the same community by a clustering algorithm. One can then compare this

number to its expected value under a hypergeometric distribution with the same

number and sizes of communities. The zRand-score, which is normalized by the

standard deviation from the mean, indicates how far the actual w value lies in the

tail of a distribution [87]. There is no upper bound for the value of zRand-score,

and higher value indicates a good clustering.

In Figure 3.3, the number of clusters (Nc), zRand-score (zR) and purity (Prt)

for the partition of each slice are plotted as functions of the resolution parameter

γs. The inter-slice coupling parameter is set to be a constant ω = 1. Small

variations in the value of ω did not qualitatively change the result.

A plateau in the number of clusters curve may indicate a relatively stable

status of the clustering and hence yields a reasonable number of gangs. Therefore,

from Figure 3.3 we seek plateaus in the number of clusters that are near a local

maximum of the zRand-score. The details differ slightly for different α, but the

general picture that arises is that the optimal number of clusters for our data lies

around 18 clusters with a resulting z-Rand score of about 180. Purity is again

roughly constant and again near 0.5. Note, however, that comparing the purity

scores of two different partitions with different numbers of clusters is not very

meaningful, as purity is biased to favor partitions with more clusters.

3.2.3 Ground truth & geographical matrix

From the previous experiment shown in Figure 3.3, we observe that changing

the value of α ∈ [0, 1] does not have a big influence on the resulting purity and

zRand-score. This suggests that the social component of the data is too sparse to

significantly improve the clustering.
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To test whether an improvement might be expected at all if more information

on social interactions becomes available in the future, we replace the social matrix

S by the ground truth matrix T in formulating the similarity matrix:

WGT = αT + (1− α)G .

The ground true matrix T is derived from the known affiliation of each interviewed

member: T[i, j] = 1 if and only if ni and nj belong to the same gang or i = j, and

T[i, j] = 0 otherwise. Additionally, the nonzero entry of T is randomly switched

to zero with probability 0.1. Therefore we are actually using 90% of the ground

truth in the probability sense.

The multi-slice network is subsequently constructed similar to the previous

section. It consists of 200 slices, and each of them is a copy of WGT associated

with a different value of the resolution parameter γs, s = 1, 2, . . . , 200. The slices

are ordered according to the value of γs. In the tests shown in Figure 3.4 (a),

(b) and (d), the resolution parameter takes value γs = 0.5 + 0.02s, while in (c)

γs = 2 + 0.02s.

In Figure 3.4, the number of clusters (Nc), zRand-score (zR) and purity (Prt)

are plotted as functions of the resolution parameter for partitions on each slice.

One can observe that when α = 1, which means only T (90% GT) contributes,

the Nc perfectly picked up the number 31. As α decreases, more geographical

information is involved instead of the ground truth, and there are increasing un-

stableness in the plots, similar to the real data which is sparse and noisy. For

α = 0.8, one can see that there is a turning point in the Nc curve around γs = 4.9

which corresponds to Nc=31. The number of clusters increases progressively until

γs = 4.9, where it starts increasing dramatically. The zRand-score also starts to

decline right after that point. This suggests that the network breaks into small

pieces which no longer have significant structure meaning after γs = 4.9. Hence

the partition corresponding to this point may give us interesting information.
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(a) α=1 (b) α=0.8

(c) α=0.8 (d) α=0.4

Figure 3.4: Partitioning results using the multi-slice modularity optimization, with

ω = 1 and WGT = αT + (1 − α)G. The number of clusters (Nc), zRand-score

(zR) and purity (Prt) for the partition of each slice are plotted as functions of the

resolution parameter γs. Different values of α is used: (a) α = 1, (b) α = 0.8, (c)

α = 0.8, and (d) α = 0.4.

The specific partition corresponding to α = 0.8, γs = 4.9 is visualized in Figure

3.5. Each pie corresponds to a gang, and the location of each pie is the true

location of that gang (on average). The color indicates the community assignment

of the partition. Most of the gangs are successfully picked up by the partition.

Therefore, the resolution parameter value around γs = 4.9 yields a good clustering

with the number of clusters close to the ground truth. This experiment shows that

30



more social information indeed helps to improve the performance of the method.

Figure 3.5: Visualization of the partitioncorresponding to α = 0.8, γs = 4.9. Each

pie represents one gang, placed according to actual geographical information. The

color indicates partition assignments. Lines connect pies of the same color.

3.3 Cow Image

The modularity function is mostly studied in the network science for community

detection, rarely in image processing. In the few literatures where it is imple-

mented on imaging, such as in [58], only a fixed scale (γ = 1) has been briefly

studied. In this section, the multi-slice modularity is implemented on the task

of unsupervised image segmentation to explore the components of an image at a

range of multiple scales. This work is presented in the paper [47].

The experiment is performed on a cow image showed in Figure 3.6, which

contains about 3×104 pixels. The goal is to segment the image without specifying

the number of image components. A graph is built for this image in which each

node corresponds to a pixel and each edge indicates the similarity between a pair

of pixels. We associate a 3×3 pixel-neighbor patch with each pixel i in the image.
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Figure 3.6: Image of a pair of cows, which we downloaded from the Microsoft

Research Cambridge Object Recognition Image Database (copyright c© 2005 Mi-

crosoft Corporation). It is cropped from the original image to produce the seg-

mentation in Figure 3.7.

By stacking together the three channels (RGB) of the pixel-neighbor patch, one

obtains a 27-dimensional feature vector denoted by vi for each pixel i. Let pD(i, j)

denote the L2 norm of the difference of patches corresponding to the pixels i and

j, i.e.:

pD(i, j) := ‖vi − vj‖2 .

The similarity matrix Ws that is used in each layer of the multi-slice network

is set to be the same with elements:

Ws[i, j] = wij = exp

{
−p2

D(i, j)

τ(i)τ(j)

}
, (3.2)

where τ(i) is the 30th smallest pD between pixel i and other pixels [99], known

as local scaling. By using the pixel-neighbor patch in building the graph, more

non-local and texture information is covered.

We construct a multislice network that consists of six copies of A. We associate

the resolution parameter value γs = 0.04s − 0.03 with slice s ∈ {1, . . . , 6}. We

then optimize multislice modularity and obtain the image segmentations shown

in Fig. 3.7. (Color indicates group assignments.) With this procedure, we are
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(a) (b)

(c) (d)

Figure 3.7: (a) Segmentation of the cow image in Fig. 3.6 obtained using op-

timization of multislice modularity with interslice coupling parameter ω = 0.3.

The horizontal axis shows the slice index s ∈ {1, . . . , 6}, which has an associated

resolution-parameter value of γs = 0.04s−0.03. The vertical axis gives the sorted

pixel index. Color in each vertical stripe indicates the community assignments

of the pixels in the corresponding network slice. We also show the segmentation

that we obtain in the images for (b) γs = 0.05, (c) γs = 0.13, and (d) γs = 0.21.
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able to identify all four components of the image. As indicated in panel (a), we

obtain smaller-scale communities (i.e., groups of pixels) as we increase the value

of the resolution parameter. Importantly (see the discussion in Section 3.1), the

coupling between slices enforces some consistency in clustering identical nodes

similarly across slices. In panels (b) and (c), we observe a good segmentation of

the two cows, the sky, and the background grass. As indicated in panel (d), the

three groups corresponding to the two cows and the sky stay relatively stable,

but the group corresponding to the grass breaks down by the sixth slice. The

computational time using the GenLouvain is about 3 hours. This inspired us to

develop more efficient and scalable algorithms in Chapter 4 and 5.

When building a graph for an image with each pixel being a node, the size of

the graph can easily get very large. This poses challenges upon both computing

the similarity matrix and storing it in computer memory. To deal with the mem-

ory limits, people usually consider a sparse similarity matrix which has nonzero

entries at the order of O(N), instead of a full one which is O(N2). To make a

similarity matrix sparse, one common choice known as the K-Nearest-Neighbor

(KNN) method is to keep K edges with the largest weight for each node and set

the others to zero, where K<< N .

To compute a KNN similarity matrix straightforwardly is still a computation-

ally intensive task. Because it needs to compute O(N2) many pair-wise similarity

to find the K largest ones for each node. Thus it does not scale well when N be-

comes large. For example, it takes 60 hours to straightforwardly build the KNN

similarity matrix for the cow image test. To tackle this difficulty, one option is

to randomly sample a small subset of all the pixels, and compute the K largest

similarity among them instead of the whole set of pixels. In the cow image test,

the time cost can be reduced to about 2 hours by such sub-samplying without af-

fecting the performance significantly. Empirically if the randomly sampled subset

of pixels can reasonably represent the whole pixel set (in terms of their associ-
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ated neighbor patch), then the KNN similarity matrix produced this way would

not affect the performance much. A more sophisticated heuristic for finding the

KNN pixel-patch by random sampling is proposed in [6], which achieved good

performance in industrial application. In Chapter 5, a Nyström method is used

to improve the efficiency of constructing large graph.

This application of multi-slice modularity on image segmentation is computa-

tionally expensive in general due to the large number of pixels. It takes a lot of

computational memory and time to run the optimization using more slices, which

we would like to do in order to investigate how the segmentation evolves over a

larger range of resolution values. Computational improvements will be necessary

to conduct more detailed analysis.
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CHAPTER 4

A Variational Method for Modularity

Optimization

Modularity optimization is a widely adopted method in network science for the

task of community detection. By maximizing modularity, one expects to obtain

a reasonable partitioning of a network. Recall that the modularity of a partition

g is defined as

Q(g) =
1

2m

N∑
i,j=1

(
wij − γ

didj
2m

)
δ(gi, gj) . (4.1)

One can refer to Chapter 2 for detailed definitions and an interpretation of the

modularity function.

In Chapter 3, we have explored several interesting applications of the multi-

slice modularity model. In general, the modularity optimization method has

achieved a lot of success in network science. However, this maximization prob-

lem is NP hard [12], hence considerable effort has been put into the development

of computational heuristics to obtain network partitions with high values of Q.

The background for modularity optimization algorithms is briefly introduced in

Section 4.1.

However, these approaches are either heuristic and not mathematically well

founded (such as the Louvain-like algorithm), or not efficient and accurate enough

for large scale datasets (such as the spectral methods). This chapter is aiming

at developing an alternative approach to solving the modularity optimization in-

spired by variational methods from PDE and image processing, such that the
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proposed approach is both efficient and mathematically well founded. In Section

4.2 certain variational methods in Euclidean space relating to clustering problems

are introduced. Starting from Section 4.3, the modularity optimization problem is

posed as an energy minimization problem in the graph setting; then a variational

scheme is proposed to solve for the minimization problem using a graph version

of the MBO scheme. Numerical experiments are presented after that.

4.1 Background for Modularity Optimization Algorithms

Numerous methods have been proposed [33,76] to approximately solve modularity

optimization. These include greedy algorithms [23, 67], extremal optimization

[11,28], simulated annealing [40,51], spectral methods (which use eigenvectors of

a modularity matrix) [68,79], and more. The locally greedy Louvain-like algorithm

by Blondel et al. [9] is arguably the most popular computational heuristic; it is a

very fast algorithm, and it also yields high modularity values [33, 53].

Section 4.6.3 will discuss more details about the spectral method, where the

leading eigenvectors (associated with the largest eigenvalues) of a so-called modu-

larity matrix B = W−P are used to approximate the modularity function Q. In

the modularity matrix, P is the probability null model and Pij =
didj
2m

is the NG

null model with γ = 1. Ref. [68] gives a very neat mathematical derivation of the

spectral method for bipartitioning, while the authors of [79] generalized it to the

tripartitioning scenario.

The remaining of this section gives a brief description of the Louvain-like

algorithm [9]. Note that the original version of this algorithm only applies to the

particular scenario of γ = 1. Some part of the algorithm efficiency depends on

the fact γ = 1. The GenLouvain code from [50] generalizes it to scenarios with

arbitrary values of γ.

The algorithm alternates between the following two phases:
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1. Assume we have a weighted graph with N nodes at the current stage. Let

each node to be a distinctive cluster by itself. For each node ni, merge

it to its neighbor nj’s cluster that gives the maximum positive increase in

modularity. If none of ni’s neighbor nodes can give a positive increase in

modularity via this process, then leave ni’s group assignment unchanged.

Perform this process for every node in a random order and repeat it until

no more change can be made. Note that the order of nodes in this process

would affect the outcome, but according to [9] it is empirically insignificant.

2. At this phase a new network is constructed where each new node corresponds

to a cluster from the previous phase. The link between a pair of new nodes

is the sum of all the edge weights between the two associated clusters. Self-

loop may occur in this new network. After this phase, the total number of

clusters is reduced.

While iterating between the above two phases, the number of clusters decreases

and the modularity score increases. The algorithm terminates when no more

change can be made and the modularity achieves a (local) maximum value.

4.2 Variational Method

The optimization problem of a graph quality function concerning clustering is

usually NP hard. In order to develop efficient algorithms with reasonable com-

putational costs for the optimization, people have explored various approaches to

approximately solve it. To further study the clustering problem, we explore an

alternative approach to the optimization problem which is mathematically well

founded as well as computationally efficient. In this section, the background of

certain variational methods in Euclidean space relating to clustering problems is

introduced; and in the following sections, we present a graph version variational

method for modularity optimization.
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In the analysis of PDE inn Euclidean space, a variational method refers to

using calculus of variation techniques to find the minimizer (or maximizer) of a

functional (energy) over certain function spaces. Two variational methods that

are closely related to the clustering problem studied in this work are introduced:

the Ginzburg-Landau functional and the MBO scheme.

4.2.1 Ginzburg-Landau functional

The Ginzburg-Landau functional is a widely used energy functional for diffuse

interface models in Euclidean space. In physics, given a region of particles, the

Ginzburg-Landau functional models a competition between two phases of the par-

ticles. The minimizer of the Ginzburg-Landau functional indicates a stable status

of particles’ phases. At this status, the region is separated into two subgroups

according to the two phases, between which there is a phase transition region

(soft boundary). This induced separation is essentially a segmentation of the re-

gion and therefore the Ginzburg-Landau functional is related to our clustering

problem.

Figure 4.1: Illustration of a double well function W (f) = f 2(f − 1)2 with two

equilibrium points at zero and one.

The definition of the Ginzburg-Landau functional in Euclidean space is given

as:

GL(f) =
ε

2

∫
|∇f |2dx+

1

4ε

∫
W (f)dx , (4.2)
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where W (f) is a double well potential function satisfying W (f) = f 2(f−1)2. The

goal is to find a minimizer f ∗ of GL(f). As illustrated in Figure 4.1, the double

well functional
∫
W (f)dx has two minimizers at f = 0 and f = 1. Therefore, by

minimizing the double well function, the value of f is enforced to move towards

either zero or one. Thus a soft phase separation is induced. The first term∫
|∇f |2dx is a regularizer, upon minimizing which the smoothness and regularity

of the function f is favored. The small parameter ε represents the diffuse interface

spacial scale, which relates to how wide the transition region is.

The differentiability of the Ginzburg-Landau functional allows simple algo-

rithms for minimization. To minimizer the energy GL(f), one can use a gradient

descent method in the L2 sense:

fτ = − d

df
GL(f) = ε∆f − 1

ε
W ′(f) , (4.3)

where the quantity τ is the time evolving parameter. Note that the PDE equa-

tion (4.3), the L2 gradient flow of the Ginzburg-Landau energy, is the Allen-Cahn

equation. According to [48], the Allen-Cahn equation converges to motion by

mean curvature, which is a gradient flow of the total variation semi-norm. The

Ginzburg-Landau functional has been used as an alternative for the total vari-

ational semi-norm in image processing (see the references in Ref. [8]) due to its

Γ-convergence to the TV of characteristic functions in Euclidean space [52]. Be-

cause the Ginzburg-Landau functional is not convex, one can only achieve local

minima using the gradient descent method.

4.2.2 MBO scheme

An alternative approach to approximating motion by mean curvature of an in-

terface in Euclidean space is introduced by the authors of [62, 63]: an efficient

algorithm known as the Merriman-Bence-Osher (MBO) scheme using threshold

dynamics. The general procedure of the MBO scheme alternates between solving
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a linear heat equation and thresholding. Because motion by mean curvature is a

gradient flow of the TV semi-norm, the goal of the MBO scheme is to approxi-

mately solve:
δf

δτ
= − d

df
|f |TV = − d

df

∫
|∇f |dx . (4.4)

An L2 relaxation of the equation (4.4) is:

δf

δτ
= − d

df

∫
|∇f |2dx = ∆f , (4.5)

which is the heat equation. The equation (4.5) is a tight approximation when f is

close to a indicator function, because |∇f | = |∇f |2 when f only takes value zero

or one.

Starting from the indicator function f = χA, the MBO scheme first propagates

f according to the heat equation (4.5) by a small time step. After that, the

function f is no longer a binary indicator function and the L2 relaxation is no

longer tight. Therefore, the MBO scheme subsequently performs a hard threshold

on f such that the value of f switches to one if f > 0.5, and zero otherwise.

Consequently, f becomes an indicator function again, with the corresponding

subset modified slightly.

In summary, the MBO scheme alternates between the two steps: propagating f

according to the heat equation by a small time step; and thresholding f to become

an indicator function. Empirically, the MBO scheme converges very quickly, and

the computation cost for each iteration is low because the thresholding step is

a simple operation. Mathematical analysis has been explored to understand the

theoretical connection between the MBO scheme and motion by mean curvature.

It turns out the MBO scheme can be proven to converge to motion by mean

curvature, in the sense of Γ-convergence. See references [5, 30, 31] for discussions

of the convergence of the MBO scheme.

The MBO scheme has a close connection to minimizing the Ginzburg-Landau

functional with a gradient descent (4.3). After all, they are both approximating
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motion by mean curvature, i.e. a gradient flow of the total variation semi-norm.

One interpretation of the connection is that the MBO scheme replaces the non-

linear term of the Allen-Cahn equation with thresholding [29]. The non-linear

term 1
ε
W ′(f) in (4.3) is induced by the double well function, which enforces the

minimizer f ∗ to take binary values, and thus poses a soft constraint for f to be

close to an indicator function. In the MBO scheme however, instead of using the

double well term, the thresholding serves as a hard constraint to enforce f to be

an exact indicator function at the end of each iteration.

4.3 Reformulation of Modularity Optimization

In this subsection, we reformulate the problem of modularity optimization by

deriving a new expression for Q that bridges the network-science and compressive-

sensing communities. This formula makes it possible to use techniques from the

latter to tackle the modularity-optimization problem with low computational cost.

We start by recalling the total variation (TV) and defining a weighted L2-norm,

and weighted mean of a graph function f : G→ R:

|f |TV :=
1

2

N∑
i,j=1

wij |f(ni)− f(nj)| ,

‖f‖2
L2

:=
N∑
i=1

di |f(ni)|2 , (4.6)

mean(f) :=
1

2m

N∑
i=1

dif(ni) .

For a vector-valued function f = (f1, f2, . . . , fn̂): G→ Rn̂, we define

|f |TV :=
n̂∑
l=1

|fl|TV ,

‖f‖2
L2

:=
n̂∑
l=1

‖fl‖2
L2
, (4.7)
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and mean(f) := (mean(f1),mean(f2), . . . ,mean(fn̂)).

Given a partition g = {gi}Ni=1 defined in Section 2.2.1, let Al = {ni ∈ G, gi = l},

where l ∈ {1, 2, . . . , n̂} (n̂ ≤ N). Thus, G = ∪n̂l=1Al is a partition of the network

(G,E) into disjoint communities. Note that every Al is allowed to be empty, so

g is a partition into at most n̂ communities. Let fl : G→ {0, 1} be the indicator

function χAl of community l; in other words, fl(ni) equals one if gi = l, and it

equals zero otherwise. The function f = (f1, f2, . . . , fn̂) is then called the partition

function (associated with g). Because each set Al is disjoint from all of the others,

it is guaranteed that only a single entry of fi equals one for any node ni. Therefore,

f : G→ V n̂ ⊂ Rn̂, where

V n̂ := {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} = {~el}n̂l=1

is the standard basis of Rn̂. It is equivalent to f ∈ B.

The key observation that bridges the network-science and compressive-sensing

communities is the following:

Theorem 1. Maximizing the modularity functional Q over all partitions that have

at most n̂ communities is equivalent to minimizing

|f |TV − γ‖f −mean(f)‖2
L2

(4.8)

over all functions f : G→ V n̂.

Proof. In the language of graph partitioning, vol(Al) =
∑

ni∈Al di denotes the

volume of the set Al, and Cut(Al, A
c
l ) =

∑
ni∈Al,nj∈Acl

wij is the graph cut of Al
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and Acl . Therefore,

Q(g) =
1

2m

(2m−∑
gi 6=gj

wij
)
− γ

2m

n̂∑
l=1

 ∑
ni∈Al,nj∈Al

didj


= 1− 1

2m

(
n̂∑
l=1

Cut(Al, A
c
l ) +

γ

2m

n̂∑
l=1

vol(Al)
2

)

= 1− γ − 1

2m

(
n̂∑
l=1

Cut(Al, A
c
l )−

γ

2m

( n̂∑
l=1

vol(Al) · vol(Acl )
))

, (4.9)

where the sum
∑

gi 6=gj wij includes both wij and wji. As mentioned in Section

2.2.2, one has |χA|TV = Cut (A,Ac). Additionally, one can observe that:

‖χA −mean(χA)‖2
L2

=
N∑
i=1

di

∣∣∣∣χA(ni)−
vol(A)

2m

∣∣∣∣2
= vol(A)

(
1− vol(A)

2m

)2

+ vol (Ac)

(
vol (A)

2m

)2

=
vol(A) · vol (Ac)

2m
. (4.10)

Because f (l) = χAl is the indicator function of Al, it follows that:

|f |TV − γ‖f −mean(f)‖2
L2

=
n̂∑
l=1

{
|fl|TV − γ‖fl −mean(fl)‖2

L2

}
=

n̂∑
l=1

{
Cut(Al, A

c
l )− γ

vol(Al) · vol(Acl )

2m

}
. (4.11)

Combining (4.9) and (4.11), we conclude that maximizing Q is equivalent to

minimizing (4.8).

With the above argument, we have reformulated the problem of modularity

maximization as the minimization problem (4.8), which corresponds to minimizing

the total variation (TV) of the function f along with a balance term. This yields

a novel view of modularity optimization that uses the perspective of compressive

sensing (see the references in [57]). In the context of compressive sensing, one

seeks a solution of function f that is compressible under the transform of a linear
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operator Φ. That is, we want Φf to be well-approximated by sparse functions. (A

function is considered to be “sparse” when it is equal to or approximately equal

to zero on a “large” portion of the whole domain.) Minimizing ‖Φf‖L1 promotes

sparsity in Φf . When Φ is the gradient operator (on a continuous domain) or the

finite-differencing operator (on a discrete domain) ∇, then the object ‖Φf‖L1 =

‖∇f‖L1 becomes the total variation |f |TV [57,66]. The minimization of TV is also

common in image processing and computer vision [21,57,66,80].

The expression in equation (4.9) is interesting because its geometric inter-

pretation of modularity optimization contrasts with existing interpretations (e.g.,

probabilistic ones or in terms of the Potts model from statistical physics [68,76]).

For example, we see from (4.9) that finding the bipartition of the graph G = A∪Ac

with maximal modularity is equivalent to minimizing

Cut(A,Ac)− γ

2m
vol(A) · vol (Ac) .

Note that the term vol(A) · vol (Ac) is maximal when vol(A) = vol (Ac) = m.

Therefore, the second term is a balance term that favors a partition of the graph

into two groups of roughly equal size. In contrast, the first term favors a partition

of the graph in which few links are severed. This is reminiscent of the normalized

cuts problem (Section 2.2.1) in which the objective is to minimize the ratio

Cut (A,Ac)

vol(A) · vol (Ac)
. (4.12)

In recent papers Refs. [14,16,17,43,44,77], various TV-based algorithms are pro-

posed to minimize ratios similar to (4.12).

4.4 Algorithm

Directly optimizing (4.8) over all partition functions f : G → V n̂ is difficult due

to the discrete solution space. A continuous relaxation is thus needed to simplify

the optimization problem.
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4.4.1 Ginzburg-Landau relaxation of the discrete problem

Recall that

B = {f | f : G→ V n̂}

denotes the space of partition functions. Minimizing (4.8) over B is equivalent to

minimizing

H(f) =


|f |TV − γ‖f −mean(f)‖2

L2
, if f ∈ B

+∞ , otherwise

(4.13)

over all f : G→ Rn̂.

As discussed in Section 4.2.1, the Ginzburg-Landau (GL) functional has been

used as an alternative for the TV term in image processing. Reference [8] de-

veloped a graph version of the GL functional and used it for graph-based high-

dimensional data segmentation problems. The authors of reference [35,59] gener-

alized the two-phase graphical GL functional to a multi-phase one.

Following the idea in references [8,35,59], we define the graph Ginzburg-Landau

relaxation of H as follows:

Hε(f) =
1

2

n̂∑
l=1

〈fl,Lfl〉+
1

ε2

N∑
i=1

Wmulti (f(ni))− γ‖f −mean(f)‖2
L2
, (4.14)

where ε > 0. In equation (4.14), Wmulti : Rn̂ → R is a multi-well potential (see

[35, 59]) with equal-depth wells. The minima of Wmulti are spaced equidistantly,

take the value zero, and correspond to the points of V n̂. The specific formula for

Wmulti does not matter for this work, because we will discard it when we implement

the MBO scheme. Note that the purpose of this multi-well term is to force f(ni)

to go to one of the minima, so that one obtains an approximate phase separation.

Our next theorem states that modularity optimization with an upper bound on

the number of communities is well-approximated (in terms of Γ-convergence) by

minimizing Hε over all f : G→ Rn̂. Therefore, the discrete modularity optimiza-

tion problem (4.8) can be approximated by a continuous optimization problem.
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We give the mathematical definition and relevant proofs of Γ-convergence in Sec-

tion 4.5.

Theorem 2 (Γ–convergence of Hε towards H). The functional Hε Γ-converges to

H on the space X = {f | f : G→ Rn̂}.

Proof. As shown in Theorem 3 (in Section 4.5), Hε+γ‖f−mean(f)‖2
L2

Γ-converges

to H + γ‖f −mean(f)‖2
L2

on X. Because γ‖f −mean(f)‖2
L2

is continuous on the

metric space X, it is straightforward to check that Hε Γ-converges to H according

to the definition of Γ-convergence.

By the definition of Γ-convergence, Theorem 2 directly implies the following:

Corollary 1. Let f ε be the global minimizer of Hε. Any convergent subsequence

of f ε then converges to a global maximizer of the modularity Q with at most n̂

communities.

4.4.2 MBO scheme, convex splitting, and spectral approximation

In this subsection, we use techniques from the compressive-sensing and image-

processing literatures to develop an efficient algorithm that (approximately) opti-

mizes Hε.

In Section 4.2.2, we discussed a fast variational method called the MBO

scheme. Inspired by the MBO scheme, the authors of reference [29] developed

a method using a PDE framework to minimize the piecewise-constant Mumford-

Shah functional (introduced in [65]) for image segmentation. Their algorithm was

motivated by the Chan-Vese level-set method [21] for minimizing certain variants

of the Mumford-Shah functional. Note that the Chan-Vese method is related to

our reformulation of modularity, because it uses the TV as a regularizer along

with L2 based fitting terms. The authors of references [35, 59, 60] applied the

MBO scheme to graph-based problems.
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The gradient-descent equation of (4.14) is

∂f

∂t
= −(Lf1, . . . ,Lfn̂)− 1

ε2
d

df
Wmulti(f) +

d

df

(
γ‖f −mean(f)‖2

L2

)
, (4.15)

where d
df
Wmulti(f) : G → Rn̂ is the composition of the functions d

df
Wmulti and

f . Thus, one can follow the idea of the original MBO scheme to split (4.15)

into two parts and replace the forcing part ∂f
∂t

= − 1
ε2

d
df
Wmulti(f) by an associated

thresholding.

We propose a Modularity MBO scheme that alternates between the following

two primary steps to obtain an approximate solution fn : G→ V n̂:

Step 1.

A gradient-descent process of temporal evolution consists of a diffusion term

and an additional balance term:

∂f

∂t
= −(Lf1, . . . ,Lfn̂) +

δ

δf

(
γ‖f −mean(f)‖2

L2

)
. (4.16)

We apply this process on fn with time step τn, and we repeat it for η time

steps to obtain f̂ .

Step 2.

We threshold f̂ from Rn̂ into V n̂:

fn+1(ni) = ~egi ∈ V n̂ , where gi = argmax{1≤l≤n̂}{f̂l(ni)} .

This step assigns to fn+1(ni) the node in V n̂ that is the closest to f̂(ni).

To solve (4.16), we implement a convex-splitting scheme [32, 94]. Equation

(4.16) is the gradient flow of the energy H1 +H2, where H1(f) := 1
2

∑n̂
l=1〈fl,Lfl〉

is convex and H2(f) := −γ‖f−mean(f)‖2
L2

is concave. In a discrete-time stepping

scheme, the convex part is treated implicitly in the numerical scheme, whereas

the concave part is treated explicitly. Note that the convex-splitting scheme for

gradient-descent equations is an unconditionally stable time-stepping scheme.
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The discretized time-stepping formula is

f̂ − fn

τn
= − d

df
H1(f̂)− d

df
H2(fn)

= −(Lf̂1, . . . ,Lf̂n̂) + 2γ ~d� (fn −mean(fn)) , (4.17)

where (~d � f)(ni) := dif(ni), f̂ : G → Rn̂, (di is the strength of node ni), and

fn : G→ V n̂. At each step, we thus need to solve(
(1 + τnL)f̂1, . . . , (1 + τnL)f̂n̂

)
= fn + 2γτn~d� [fn −mean(fn)] . (4.18)

For the purpose of computational efficiency, we utilize the low-order (leading)

eigenvectors (associated with the smallest eigenvalues) of the graph Laplacian L

to approximate the operator L. The eigenvectors with higher order are more

oscillatory, and resolve finer scale. Leading eigenvectors provide a set of basis

to approximately represent graph functions. The more leading eigenvectors are

used, the finer scales can be resolved. In the graph-clustering literature, scholars

usually use a small portion of leading eigenvectors of L to find useful structural

information in a graph [7,22,24,68,81], (note however that some recent work has

explored the use of other eigenvectors [25]). In contrast, one typically uses many

more modes when solving partial differential equations numerically (e.g., consider

a psuedospectral scheme), because one needs to resolve the solution at much finer

scales.

Motivated by the known utility and many successes of using leading eigenvec-

tors (and discarding higher-order eigenvectors) in studying graph structure, we

project f onto the space of the Neig leading eigenvectors to approximately solve

(4.18). Assume that fn =
∑

s φsa
n
s , f̂ =

∑
s φsâs, and 2γτn~d� (fn−mean(fn)) =∑

s φsb
n
s , where {λs} are the Neig smallest eigenvalues of the graph Laplacian L.

We denote the corresponding eigenvectors (eigenfunctions) by {φs}. Note that

ans , âs, and bns all belong to Rn̂. With this representation, we obtain

âs =
ans + bns
1 + τnλs

, s ∈ {1, 2, . . . , Neig} (4.19)
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from (4.18) and are able to solve (4.18) more efficiently.

Algorithm 1 The Modularity MBO scheme.

Set values for γ, n̂, η, and τn = dt.

Input: ← an initial function f 0 : G → V n̂ and the eigenvalue-eigenvector

pairs {(λs, φs)} of the graph Laplacian L corresponding to the Neig smallest

eigenvalues.

Initialization: for n = 0

a0
s = 〈f 0, φs〉;

while fn 6= fn−1 and n ≤ 500: do

Diffusion:

for i = 1→ η do

bns = 〈2γdt~d� (fn −mean(fn)), φs〉;

ans ←
ans+bns
1+dtλs

, for s ∈ {1, 2, . . . , Neig};

fn ←
∑

s φsa
n
s ;

i=i+1;

end for

Thresholding:

fn+1(ni) = ~egi ∈ V n̂, where gi = argmax{1≤l≤n̂}{f̂l(ni)}.

an+1
s = 〈fn+1, φs〉;

n = n+ 1;

end while

Output ← the partition function fn.

We summarize our Modularity MBO scheme in Algorithm 1. Note that the

time complexity of each MBO iteration step is O(N). The choice of the initial

function f 0 can have significant impact on the outcome of the algorithm, because

the modularity function is not convex and different initiation may lead to different

local minima. Unless specified otherwise, the numerical experiments in this work
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using a random initial function f 0.

4.4.3 Two implementations of the Modularity MBO scheme

Given an input value of the parameter n̂, the Modularity MBO scheme partitions

a graph into at most n̂ communities. In many applications, however, the number

of communities is usually not known in advance [33, 76], so it can be difficult to

decide what values of n̂ to use. Accordingly, we propose two implementations of

the Modularity MBO scheme. The Recursive Modularity MBO (RMM) scheme

is particularly suitable for networks that one expects a large number of commu-

nities, whereas the Multiple Input-n̂ Modularity MBO (Multi-n̂ MM) scheme is

particularly suitable for networks that one expects to have a small number of

communities.

Implementation 1. The RMM scheme performs the Modularity MBO

scheme recursively, which is particular suitable for networks that one expects

to have a large number of communities. In practice, we set the value of n̂ to be

large in the first round of applying the scheme, and we then let it be small for the

rest of the recursion steps. In the experiments that we report in this work, we use

n̂ = 50 for the first round and n̂ = min(10, |S|) thereafter, where |S| is the size of

the subnetwork that one is partitioning in a given step. (We also tried n̂ = 10, 20

or 30 for the first round and n̂ = min(10, |S|) thereafter. The results are similar.)

Importantly, the minimization problem (4.8) needs a slight adjustment for

the recursion steps. Assume for a particular recursion step that we perform the

Modularity MBO partitioning with parameter n̂ on a network S ⊂ G containing

a subset of the nodes of the original graph. Our goal is to increase the modularity

for the global network instead of the subnetwork S. Hence, the target energy to

minimize is

H(S)(f) := |f |(S)
TV − γ

m(S)

m

∥∥f −mean(S)(f)
∥∥2

L2
,
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where f : S → V n̂ ⊂ Rn̂, the TV norm | · |(S)
TV is defined as:

|f |(S)
TV :=

1

2

∑
ni,nj∈S

wij|f(ni)− f(nj)|L1 ;

the total edge weight of S is 2m(S) =
∑

ni∈S di, and

mean(S)(f) =
1

2m(S)

∑
ni∈S

dif(ni) .

The rest of the minimization procedures are the same as described previously.

Note that this recursive scheme is adaptive in resolving the network structure

scale. The eigenvectors of the subgroups are recalculated at each recursive step,

so the scales being resolved get finer as the recursion step goes. Therefore Neig

need not to be very large.

Implementation 2. For the Multi-n̂ MM scheme, one sets a search range

T for n̂, runs the Modularity MBO scheme for each n̂ ∈ T , and then chooses the

resulting partition with the highest modularity score. It works well if one knows

the approximate maximum number of communities and that number is reasonably

small. One can then set the search range T to be all integers between two and the

maximum number. Even though the Multi-n̂ MM scheme allows partitions with

fewer than n̂ clusters, it is still necessary to include small values of n̂ in the search

range to better avoid local minimums. (See the discussion of the MNIST “4-9”

digits network in Section 4.6.2.1.) For different values of n̂, one can reuse the

previously computed eigenvectors because n̂ does not affect the graph Laplacian.

Inputting multiple choices for the random initial function f 0 (as described at the

end of Section 4.4) also helps to reduce the chance of getting stuck in a minimum

and thereby to achieve a good optimal solution for the Modularity MBO scheme.

Because this initial function is used after the computation of eigenvectors, it only

takes a small amount of time to rerun the MBO steps. In Section 4.6, we test

these two schemes on several real and synthetic networks.
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4.5 Γ-convergence

The notion of Γ-convergence of functionals is now commonly used for minimization

problems. See reference [26] for detailed introduction. In this section, we briefly

review the definition of Γ-convergence and then prove the claim that the graphical

multi-phase Ginzburg-Landau functional Γ-converges to the graph TV. This proof

is a straightforward extension of the work in [89] for the two-phase graph GL

functional.

Definition 1. Let X be a metric space and let {Fn : X → R ∪ {±∞}}∞n=1 be a

sequence of functionals. The sequence Fn Γ-converges to the functional F : X →

R∪{±∞} if, for all f ∈ X, the following lower and upper bound conditions hold:

(lower bound condition) for every sequence {fn}∞n=1 such that fn → f , we

have

F (f) ≤ lim inf
n→∞

Fn(fn) ;

(upper bound condition) there exists a sequence {fn}∞n=1 such that

F (f) ≥ lim sup
n→∞

Fn(fn) .

Reference [35,59] proposed the following multi-phase graph GL functional:

GLmulti
ε (f̂) =

1

2

n̂∑
l=1

〈f̂l,Lf̂l〉+
1

ε2

N∑
i=1

Wmulti(f̂(ni))

where f̂ : G→ Rn̂ and Wmulti(f̂(ni)) =
∏n̂

l=1 ‖f̂(ni)− ~el‖2
L1

.

Let X = {f̂ | f̂ : G → Rn̂} and Fε = GLmulti
ε for all ε > 0, (we have

B = {f | f : G→ V n̂} ⊂ X). Because f̂ can be viewed as a matrix in RN×n̂, the

metric for space X can be defined naturally using the L2 norm.
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Theorem 3. ( Γ-convergence). The sequence Fε Γ-converges to F0 as ε → 0+,

where

F0(f̂) :=


|f̂ |TV = 1

2

∑N
i,j=1wij|f̂(ni)− f̂(nj)|L1 , if f̂ ∈ B ,

+∞ , otherwise .

Proof. Consider the functional Wε(f) = 1
ε2

∑N
i=1Wmulti(f(ni)) and

W0(f) :=


0 , if f ∈ B ,

+∞ , otherwise .

First, we show that Wε Γ-converges to W0 as ε → 0+. Let {εn}∞n=1 ⊂ (0,∞)

be a sequence such that εn → 0 as n → ∞. For the lower bound condition,

suppose that a sequence {fn}∞n=1 satisfies fn → f as n → ∞. If f ∈ B, then

it follows that W0(f) = 0 ≤ lim infn→∞Wεn(fn) because Wε ≥ 0. If f does

not belong to B, then there exists i ∈ {1, 2, . . . , N} such that f(ni) 6∈ V n̂ and

fn(ni) → f(ni). Therefore, lim infn→∞Wεn(fn) = +∞ ≥ W0(f) = +∞. For the

upper bound condition, assume that f ∈ B and fn = f for all n. It then follows

that W0(f) = 0 ≥ lim supn→∞Wεn(fn) = 0. Thus, Wε Γ-converges to W0.

Because Z(f) := 1
2

∑n̂
l=1〈fl,Lfl〉 is continuous on the metric space X, it is

straightforward to check that the functional Fεn = Z+Wεn satisfies the lower and

upper bound condition and therefore Γ-converges to Z +W0.

Finally, note that Z(f) = |f |TV for all f ∈ B. Therefore, Z + W0 = F0 and

one can conclude that Fεn Γ-converges to F0 for any sequence εn → 0+.

Theorem 4. (Compactness). Let {εn}∞n=1 ⊂ R+ be a sequence such that εn → 0 as

n→∞. {f̂n}∞n=1 ⊂ X is a sequence such that Fεn(f̂n) is uniformly bounded. Then

there exists a subsequence {f̂n′}∞n′=1 ⊂ {f̂n}∞n=1 and f∞ ∈ B such that f̂n
′ → f∞

as n→∞.
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Proof. Since Fεn(f̂n) is uniformly bounded, we have

N∑
i=1

Wmulti(f̂
n(ni)) ≤ Cεn, ∀ n;

for some constant C. Hence for large enough n, {f̂n}∞n=1 is bounded and therefore

has a convergent subsequence {f̂n′}∞n′=1 with limit f∞.

Wmulti is continuous⇒
∑N

i=1 Wmulti(f̂
n′

(ni)) converges to
∑N

i=1Wmulti(f
∞(ni))

⇒
∑N

i=1Wmulti(f
∞(ni)) = 0. Therefore f∞ ∈ B.

Since {f ∈ X : Fε(f) ≤ C} is bounded for any fixed ε and C, Theorem 4 proves

the equi-coerciveness of the sequence Fεn . Combined with the Γ-convergence, one

can conclude the following theorem stated in Chapter 7 of [26].

Theorem 5. Let X be a metric space and {Fn : X → R∪{±∞}}∞n=1 be a sequence

of equi-coerciveness functionals. Fn Γ-converges to F : X → R ∪ {±∞}. Then

there exists a minimizer of F in X and min{F (f) : f ∈ X} = lim infn→∞{Fn(f) :

f ∈ X}. Furthermore, if {f̂n}∞n=1 ⊂ X is a precompact sequence such that

lim
n→∞

Fn(f̂n) = lim inf
n→∞

{Fn(f) : f ∈ X},

then every cluster point of this sequence is a minimizer of F .

4.6 Numerical Results

In this section, we present the numerical results of experiments that we conducted

using both synthetic and real network data sets. Unless otherwise specified, our

Modularity MBO schemes are all implemented in Matlab, (which are not opti-

mized for speed). In the following tests, we set the parameters of the Modularity

MBO scheme to be η = 5 and τn = 1.
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4.6.1 LFR benchmark

In Ref. [54], Lancichinetti, Fortunato, and Radicchi (LFR) introduced an epony-

mous class of synthetic benchmark graphs to provide tougher tests of community-

detection algorithms than previous synthetic benchmarks. Many real networks

have heterogeneous distributions of node degree and community size, so the LFR

benchmark graphs incorporate such heterogeneity. They consist of unweighted

networks with a predefined set of non-overlapping communities. As described in

Ref. [54], each node is assigned a degree from a power-law distribution with power

ξ; additionally, the maximum degree is given by dmax and mean degree is 〈d〉.

Community sizes in LFR graphs follow a power-law distribution with power β,

subject to the constraint that the sum of the community sizes must equal the

number of nodes N in the network. Each node shares a fraction 1−µ of its edges

with nodes in its own community and a fraction µ of its edges with nodes in other

communities. (The quantity µ is called the mixing parameter.) The minimum

and maximum community sizes, qmin and qmax, are also specified. We label the

LFR benchmark data sets by (N, 〈d〉, dmax, ξ, β, µ, qmin, qmax). The code used to

generate the LFR data is publicly available provided by the authors in [54].

The LFR benchmark graphs has become a popular choice for testing com-

munity detection-algorithms, and Ref. [53] uses them to test the performance of

several community-detection algorithms. The authors concluded, for example,

that the locally greedy Louvain algorithm [9] is one of the best heuristics for max-

imizing modularity based on the evaluation of the normalized mutual information

(NMI) (discussed below in this section). Note that the time complexity of this

Louvain algorithm is O(M) [33], where M is the number of nonzero edges in the

network. In our tests, we use the GenLouvain code (in Matlab) from Ref. [50];

this is an implementation of a Louvain-like algorithm. The GenLouvain code is

a modification of the Louvain locally greedy algorithm [9] (introduced in Section

4.1) so that it applies to the cases with arbitrary values of resolution parameter,
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but it was not optimized for speed. We implement our RMM scheme on the LFR

benchmark, and we compare our results against the GenLouvain code. We use

the recursive version of the Modularity MBO scheme because our LFR networks

contain about 0.04N communities.

We implement the modularity-optimization algorithms on severals sets of LFR

benchmark data. We then compare the resulting partitions with the known com-

munity assignments of the benchmarks (i.e., the ground truth) by examining the

normalized mutual information (NMI) [27]. NMI is a similarity measure for com-

paring two partitions based on the information entropy, and it is often used for

testing community-detection algorithms [53, 54]. The NMI equals one when two

partitions are identical, and it has an expected value of zero when they are inde-

pendent. For an N -node network with two partitions, C = {C1, C2, . . . , CK} and

Ĉ = {Ĉ1, Ĉ2, . . . , ĈK̂}, that consist of non-overlapping communities, the NMI is

NMI(C, Ĉ) =
2
∑K

k=1

∑K̂
k̂=1 P (k, k̂)log

[
P (k,k̂)

P (k)P (k̂)

]
−
∑K

k=1 P (k)log [P (k)]−
∑K̂

k̂=1 P (k̂)log
[
P (k̂)

] , (4.20)

where P (k, k̂) =
|Ck∩Ĉk̂|

N
, P (k) = |Ck|

N
, and P (k̂) =

|Ĉk̂|
N

.

We examine two types of LFR networks. One is the 1000-node ensembles used

in Ref. [53]:

LFR1k : (1000, 20, 50, 2, 1, µ, 10, 50) ,

where µ ∈ {0.1, 0.15, . . . , 0.8}. The other is a 50,000-node network, which we

call “LFR50k” and construct as a composition of 50 LFR1k networks. (See the

detailed description below.)

4.6.1.1 LFR1k networks

We use the RMM scheme (with Neig = 80) and the GenLouvain code on en-

sembles of LFR1k(1000, 20, 50, 2, 1, µ, 10, 50) graphs with mixing parameters µ ∈

{0.1, 0.15, . . . , 0.8}. We consider 100 LFR1k networks for each value of µ, and we
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Figure 4.2: Tests on LFR1k networks with RMM and GenLouvain. The ground-

truth communities are denoted by GT.

use a resolution parameter of γ = 1.

In Figure 4.2, we plot the mean maximized modularity score (Q), the number of

communities (Nc), and the NMI of the partitions compared with the ground truth

(GT) communities as a function of the mixing parameter µ. As one can see from

panel (a), the RMM scheme performs very well for µ < 0.5. Both its NMI score

and modularity score are competitive with the results of GenLouvain. However,

for µ ≥ 0.5, its performance drops with respect to both NMI and the modularity
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scores of its network partitions. From panel (b), we see that RMM tends to give

partitions with more communities than GenLouvain, and this provides a better

match to the ground truth. However, it is only trustworthy for µ < 0.5, when its

NMI score is very close to one.

The mean computational time for one ensemble of LFR1k, which includes 15

networks corresponding to 15 values of µ, is 22.7 seconds for the GenLouvain

code and 17.9 seconds for the RMM scheme. As we will see later when we con-

sider large networks, the Modularity MBO scheme scales very well in terms of its

computational time.

4.6.1.2 LFR50k networks

To examine the performance of our scheme on larger networks, we construct syn-

thetic networks (LFR50k) with 50,000 nodes. To construct an LFR50k network,

we start with 50 different LFR1k networks N1, N2, . . . , N50 with mixing parameter

µ, and we connect each node in Ns (s ∈ {1, 2, . . . , 50}) to 20µ nodes in Ns+1 uni-

formly at random (where we note that N51 = N1). We thereby obtain an LFR50k

network of size 50, 000. Each community in the original Ns, s = 1, 2, . . . , 50 is a

new community in the LFR50k network. We build four such LFR50k networks

for each value of µ = 0.1, 0.15, . . . , 0.8, and we find that all such networks con-

tain about 2000 communities. The mixing parameter of the LFR50k network

constructed from LFR1k(µ) is approximately 2µ
1+µ

.

By construction, the LFR50k network has a similar structure as LFR1k. Im-

portantly, simply increasing N in LFR(N, 〈k〉, kmax, ξ, β, µ, qmin, qmax) to 50,000 is

insufficient to preserve similarity of the network structure. A large N results in

more communities, so if the mixing parameter µ is held constant, then the edges

of each node that are connected to nodes outside of its community will be dis-

tributed more sparsely. In other words, the mixing parameter does not entirely
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reflect the balance between a node’s connection within its own community versus

its connections to other communities, as there is also a dependence on the total

number of communities.

The distribution of node strengths in LFR50k is scaled approximately by a

factor of (1+2µ) compared to LFR1k, while the total number of edges in LFR50k

is scaled approximately by a factor of 50(1 + 2µ). Therefore, the probability null

model term
didj
2m

in modularity (2.12) is also scaled by a factor of (1+2µ)
50

. Hence,

in order to probe LFR50k with a resolution scale similar to that in LFR1k, it is

reasonable to use the resolution γ = 50 to try to minimize issues with modularity’s

resolution limit [78]. We then implement the RMM scheme (Neig = 100) and

the GenLouvain code. Note that we also implemented the RMM scheme with

Neig = 500, but there is no obvious improvement in the result even though there

are about 2000 communities. This is because the eigenvectors of the subgroups

are recalculated at each recursive step, so the scales being resolved get finer as

the recursion step goes.

We average the network diagnostics over the four LFR50k networks for each

value of mixing parameter. In Fig. 4.3, we plot the network diagnostics versus the

mixing parameter 2µ
1+µ

for µ ∈ {0.1, 0.15, . . . , 0.8}. In panel (a), we see that the

performance of RMM is good only when the mixing parameter is less than 0.5,

though it is not as good as GenLouvain. It seems that the recursive Modularity

MBO scheme has some difficulties in dealing with networks with very large number

of clusters.

However the computational time of RMM is lower than that of the GenLouvain

code [50]. The mean computational time for an ensemble of LFR50k networks,

which includes 15 networks corresponding to 15 values of µ, is 690 seconds for

GenLouvain and 220 seconds for the RMM scheme. In Table 4.1, we summarize

the mean computational time (in seconds) on each ensemble of LFR data.
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Figure 4.3: Tests on LFR50k data with RMM and GenLouvain.

LFR1k LFR50k

GenLouvain 22.7 s 690 s

RMM 17.9 s 220 s

Table 4.1: Computational time on LFR data.

4.6.2 MNIST handwritten digit images

The MNIST database consists of 70,000 images of size 28 × 28 pixels containing

the handwritten digits “0” through “9” [1]. The digits in the images have been
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normalized with respect to size and centered in a fixed-size grey image. In this

section, we use two networks from this database. We construct one network using

all samples of the digits “4” and digit “9”, which are difficult to distinguish from

each other and which constitute 13782 images of the 70000. We construct the

second network using all images. In each case, our goal is to separate the distinct

digits into distinct communities.

We construct the adjacency matrices (and hence the graphs) W of these two

data sets as follows. First, we project each image (a 282-dimensional datum) onto

50 principal components. For each pair of nodes ni and nj in the 50-dimensional

space, we then let wij = exp
(
− d2ij

3σ2
i

)
if nj is among the 10 nearest neighbors of ni;

otherwise, we let wij = 0. To make W a symmetric matrix, we take W = W+W′

2
.

The quantity dij is the L2 distance between ni and nj, the parameter σi is the

mean of distances between ni and its 10 nearest neighbors.

In this data set, the maximum number of communities is two when considering

only the digits “4” and “9”, and it is 10 when considering all digits. We can thus

choose a small search range for n̂ and use the Multi-n̂ Modularity MBO scheme.

4.6.2.1 MNIST “4-9” digits network

This weighted network has 13782 nodes and 194816 weighted edges. We use the

labeling of each digit image as the ground truth. There are two groups of nodes:

ones containing the digit “4” and ones containing the digit “9”. We use these two

digits because they tend to look very similar when they are written by hand. In

Figure 4.4 (a), we show a visualization of this network, where we have projected

the data projected onto the second and third leading eigenvectors of the graph

Laplacian L. The difficulty of separating the “4” and “9” digits has been observed

in the graph-partitioning literature (see, e.g., Ref. [44]). For example, there is a

near-optimal partition of this network using traditional spectral clustering [81,95]
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(see below) that splits both the “4”-group and the “9”-group roughly in half.

The modularity-optimization algorithms that we discuss for the “4-9” network

use γ = 0.1. We choose this resolution-parameter value so that the network is

partitioned into two groups by the GenLouvain code. The question about what

value of γ to choose is beyond the scope of this thesis, but it has been discussed

at some length in the literature on modularity optimization [33]. Instead, we

focus on evaluating the performance of our algorithm with the given value of the

resolution parameter. We implement the Modularity MBO scheme with n̂ = 2 and

the Multi-n̂ MM scheme, and we compare our results with that of the GenLouvain

code as well as traditional spectral clustering method [81,95].

Traditional spectral clustering is an efficient clustering method that has been

used widely in computer science and applied mathematics because of its simplicity.

It calculates the first k nontrivial eigenvectors φ1, φ2, . . . , φk (corresponding to the

smallest eigenvalues) of the graph Laplacian L. Let U ∈ RN×k be the matrix

containing the vectors φ1, φ2, . . . , φk as columns. For i ∈ {1, 2, . . . , N}, let yi ∈ Rk

be the ith row vector of U . Spectral clustering then applies the k-means algorithm

to the points (yi){i=1,...,N} and partitions them into k groups, where k is the number

of clusters that was specified beforehand.

On this MNIST “4-9” digits network, we specify k = 2 and implement spectral

clustering to obtain a partition into two communities. As we show in Figure 4.4

(b), we obtain a near-optimal solution that splits both the “4”-group and the

“9”-group roughly in half. This differs markedly from the ground-truth partition

in panel (a).

For the Multi-n̂ MM scheme, we use Neig = 80 and the search range n̂ ∈

{2, 3, . . . , 10}. We show visualizations of the partition at n̂ = 2 and n̂ = 8 in Figure

4.4(c,d). For this method, computing the spectrum of the graph Laplacian takes

a significant portion of the run time (9 seconds for this data set). Importantly,

however, this information can be reused for multiple n̂, which saves time. In
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(a) Ground Truth (b) Spectral Clustering with k-Means

(c) Modularity MBO Scheme with n̂=2 (d) Modularity MBO Scheme with n̂ = 8

Figure 4.4: (a)–(d) Visualization of partitions on the MNIST “4-9” digit image

network by projecting it onto the second and third leading eigenvectors of the

graph Laplacian. Shading indicates the community assignment.

Figure 4.5 (a), we show a plot of this method’s optimized modularity scores versus

n̂. Observe that the optimized modularity score achieves its maximum when we

choose n̂ = 2, which yields the best partition that we obtain using this method.

In Figure 4.5(b), we show how the partition evolves as we increase the input n̂

from 2 to 10. At n̂ = 2, the network is partitioned into two groups (which agrees

very well with the ground truth). For n̂ > 2, however, the algorithm starts to pick

out worse local optima, and either “4”-group or the “9”-group gets split roughly

in half. Starting from n̂ = 7, the number of communities stabilizes at about four
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Figure 4.5: Implementation results of the Multi-n̂ Modularity MBO scheme on

the MNIST “4-9” digit images. In panel (b), shading indicates the community

assignment. The horizontal axis represents the input n̂ (i.e., the maximum number

of communities), and the vertical axis gives the (sorted) index of nodes. In panel

(a), we plot the optimized modularity score as a function of the input n̂.

instead of increasing with n̂. This indicates that the Modularity MBO scheme

allows one to obtain partitions with Nc ≤ n̂.

Nc Q NMI Purity Time (seconds)

GenLouvain 2 0.9305 0.85 0.975 110 s

Modularity MBO (n̂ = 2) 2 0.9316 0.85 0.977 11 s

Multi-n̂ MM (n̂ ∈ {2, 3, . . . , 10}) 2 0.9316 0.85 0.977 25 s

Spectral Clustering (k-Means) 2 NA 0.003 0.534 1.5 s

Table 4.2: Computational time and accuracy comparison on MNIST “4-9” digits

network.

The purity score, which we also report in Table 4.2, measures the extent to

which a network partition matches ground truth. Suppose that an N -node net-

work has a partition C = {C1, C2, . . . , CK} into non-overlapping communities

and that the ground-truth partition is Ĉ = {Ĉ1, Ĉ2, . . . , ĈK̂}. The purity of the
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partition C is then defined as

Prt(C, Ĉ) =
1

N

K∑
k=1

maxl∈{1,...,K̂}|Ck ∩ Ĉl| ∈ [0, 1] . (4.21)

Intuitively, purity can by viewed as the fraction of nodes that have been assigned

to the correct community. However, the purity score is not robust in estimating

the performance of a partition. When the partition C breaks the network into

communities that consist of single nodes, then the purity score achieves a value

of one. hence, one needs to consider other diagnostics when interpreting the

purity score. In this particular data set, a high purity score does indicate good

performance because the ground truth and the partitions each consist of two

communities.

Observe in Table 4.2 that all modularity-based algorithms identified the cor-

rect community assignments for more than 97% of the nodes, whereas standard

spectral clustering was only correct for just over half of the nodes. The Multi-n̂

MM scheme takes only 25 seconds. If one specifies n̂ = 2, then the Modularity

MBO scheme only takes 11 seconds.

4.6.2.2 MNIST 70k network

We test our new schemes further by consider the entire MNIST network of 70,000

samples containing digits from “0” to “9”. This network contains about five times

as many nodes as the MNIST “4-9” network. However, the node strengths in the

two networks are very similar because of how we construct the weighted adjacency

matrix. We thus choose γ = 0.5 so that the modularity optimization is performed

at a similar resolution scale in both networks. There are 1001664 weighted edges

in this network.

We implement the Multi-n̂ MM scheme with Neig = 100 and the search range

n̂ ∈ {2, 3, . . . , 20}. Even if Nc is the number of communities in the true optimal

solution, the input n̂ = Nc might not give a partition with Nc groups. The
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modularity landscape in real networks is notorious for containing a huge number

of nearly degenerate local optima (especially for values of modularity Q near

the globally optimum value) [38], so we expect the algorithm to yield a local

minimum solution (such as the merging of groups) rather than a global minimum.

Consequently, it is preferable to extend the search range to n̂ > Nc, so that the

larger n̂ gives more flexibility to the algorithm to try to find the partition that

optimizes modularity.

The best partition that we obtained using the search range n̂ ∈ {2, 3, . . . , 20}

contains 11 communities. All of the digit groups in the ground truth except for

the “1”-group are correctly matched to those communities. In the partition, the

“1”-group splits into two parts, which is unsurprising given the structure of the

data. In particular, the samples of the digit “1” include numerous examples that

are written like a “7”. This set of samples are thus easily disconnected from the

rest of “1”-group. If one considers these two parts as one community associated

with “1”-group, then the partition achieves a 96% correctness in its classification

of the digits. The 4% error rate distributes over each digit group almost evenly.

As we illustrate in Table 4.3, the GenLouvain code yields comparably successful

partitions as those that we obtained using the Multi-n̂ MM scheme. By comparing

the running time of the Multi-n̂ MM scheme on both MNIST networks, one can see

that our algorithm scales well in terms of speed when the network size increases.

While the network size increases five times (5×) and the search range gets doubled

(2×), the computational time increases by a factor of 11.6 ≈ 5× 2.

The number of iterations for the Modularity MBO scheme ranges approxi-

mately from 35 to 100 for n̂ ∈ {2, 3, . . . , 20}. Empirically, even though the total

number of iterations can be as large as over a hundred, the modularity score

quickly gets very close to its final value within the first 20 iteration.

The computational cost of the Multi-n̂ MM scheme consists of two parts: the

calculation of the eigenvectors and the MBO iteration steps. Because of the size
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of the MNIST 70k network, the first part costs about 90 seconds in Matlab.

However, one can incorporate a faster eigenvector solver, such as the Rayleigh-

Chebyshev (RC) procedure of [3], to improve the computation speed of an eigen-

decomposition. This solver is especially fast for producing a small portion (in

this case, 1/700) of the leading eigenvectors for a sparse symmetric matrix. Upon

implementing the RC procedure in C++ code, it only takes 12 seconds to compute

the 100 leading eigenvector-eigenvalue pairs. Once the eigenvectors are calculated,

they can be reused in the MBO steps for multiple values of n̂ and different initial

functions f 0. This allows good scalability, which is a particularly nice feature of

using this MBO scheme.

Nc Q NMI Purity Time (second)

GenLouvain 11 0.93 0.916 0.97 10900 s

Multi-n̂ MM (n̂ ∈ {2, 3, . . . , 20}) 11 0.93 0.893 0.96 290 s / 212 s*

Modularity MBO 3% GT (n̂ = 10) 10 0.92 0.95 0.96 94.5 s / 16.5 s*
∗Calculated with the RC procedure.

Table 4.3: Computational time and accuracy comparison on MNIST 70k network.

Another benefit of the Modularity MBO scheme is that it allows the possibility

of incorporating a small portion of the ground truth in the modularity optimiza-

tion process. In this work, we implement the Modularity MBO using 3% of the

ground truth by specifying the true community assignments of 2100 nodes in the

initial function f 0; we chose the nodes uniformly at random. We also let n̂ = 10.

With the eigenvectors already computed (which took 12 seconds using the RC

process), the MBO steps take a subsequent 4.5 seconds to yield a partition with

exactly 10 communities and 96.4% of the nodes classified into the correct groups.

The authors of Ref. [35, 59] also implemented a segmentation algorithm on this

MNIST 70k data with 3% of the ground truth, and they obtained a partition

with a correctness 96.9% in 15.4 seconds. In their algorithm, the ground truth
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was enforced by adding a quadratic fidelity term to the energy functional (semi-

supervised). The fidelity term is the L2 distance of the unknown function f and

the given ground truth. In our scheme, however, it is only used in the initial func-

tion f 0. Nevertheless, it is also possible to add a fidelity term to the Modularity

MBO scheme and thereby perform semi-supervised clustering.

4.6.3 Network-science coauthorships

Another well-known graph in the community detection literature is the network

of coauthorships of network scientists. This benchmark was compiled by Mark

Newman and first used in [68].

In this work, we use the graph’s largest connected component, which consists of

379 nodes representing authors and 914 weighted edges that indicate coauthored

papers. We do not have any so-called ground truth for this network, but it is useful

to compare partitions obtained from our algorithm with those obtained using more

established algorithms. In this section, we use GenLouvain’s result as this pseudo-

ground truth. In addition to Modularity-MBO, RMM, and GenLouvain, we also

consider the results of modularity-based spectral partitioning methods that allow

the option of either bipartitioning or tripartitioning at each recursive stage [68,79].

In Ref. [68], Newman proposes a spectral partitioning scheme for modular-

ity optimization by using the leading eigenvectors (associated with the largest

eigenvalues) of a so-called modularity matrix B = W − P to approximate the

modularity function Q. In the modularity matrix, P is the probability null model

and Pij =
didj
2m

is the NG null model with γ = 1. Assume that one uses the first p

leading eigenvectors {u1,u2, . . . ,up}, and let βj denote the eigenvalue of uj and

U = (u1|u2| . . . |up). We then define N node vectors ri ∈ Rp whose jth component

is

(ri)j =
√
βj − αUij ,
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where α ≤ βp and j ∈ {1, 2, . . . , p}. The modularity Q is therefore approximated

as

Q ' Q̂ = Nα +
n̂∑
l=1

‖Rl‖2
L2
, (4.22)

where Rl =
∑

gi=l
ri is sum of all node vectors in the lth community (where

l ∈ {1, 2, . . . , n̂}).

A partition that maximizes (4.22) in a given step must satisfy the geometric

constraints Rl · ri > 0, gi = l, and Rl ·Rh < 0 for all l, h ∈ {1, 2, . . . , n̂}. Hence,

if one constructs an approximation Q̂ using p eigenvectors, a network component

can be split into at most p+ 1 groups in a given recursive step. The choice p = 2

allows either bipartitioning or tripartitioning in each recursive step. Reference [68]

discusses the case of general p but reports results for recursive bipartitioning with

p = 1. Reference [79] implements this spectral method with p = 2 and a choice of

bipartitioning or tripartioning at each recursive step.

In Table 4.4, we report diagnostics for partitions obtained by several algo-

rithms (for γ = 1). For the recursive spectral bipartitioning and tripartitioning,

we use Matlab code provided by the authors of Ref. [79]. They informed us that

this particular implementation was not optimized for speed, so we expect it to be

slow. One can create much faster implementations of the same spectral method.

The utility of this method for the present comparison is that Ref. [79] includes a

detailed discussion of its application to the network of network scientists. Each

partitioning step in this spectral scheme either bipartitions or tripartitions a group

of nodes. Moreover, as discussed in Ref. [79], a single step of the spectral triparti-

tioning is by itself interesting. Hence, we specify n̂ = 3 for the Modularity MBO

scheme as a comparison.

From Table 4.4, we see that the Modularity MBO scheme with n̂ = 3 gives

a higher modularity than a single tripartition, and the former’s NMI and purity

are both significantly higher. When we do not specify the number of clusters,
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Nc Q NMI Purity Time (seconds)

GenLouvain 19 0.8500 1 1 0.5 s

Spectral Recursion 39 0.8032 0.8935 0.9525 60 s

RMM 23 0.8344 0.9169 0.9367 0.8 s

Tripartition 3 0.5928 0.3993 0.8470 50 s

Modularity MBO 3 0.6165 0.5430 0.9974 0.4 s

Table 4.4: Computational time and accuracy comparison on network-science coau-

thorships.

the RMM scheme achieves a higher modularity score and NMI than recursive

bipartitioning/tripartitioning, though the former’s purity is lower (which is not

surprising due to its larger Nc). The RMM scheme and GenLouvain have similar

run times. For any of these methods, one can of course use subsequent post-

processing, such as Kernighan-Lin node-swapping steps [68,76,79], to find higher-

modularity partitions.

4.6.4 A note on computational heuristics and time complexity

Numerous computational heuristics have been employed to optimize network mod-

ularity [33, 76]. We have compared our results with implementations of a small

number of popular methods that others have made available. We report compu-

tation times in our discussions. Our results above demonstrate the good speed

of our method, but we have not, for example, included a comparison of its speed

with Blondel et al.’s C++ implementations [10] of the Louvain method [9]. Im-

portantly, the low computational cost of our method is a direct result of its firm

theoretical grounding, and our reformulation of the problem of modularity opti-

mization offers hope for the development of even faster methods in the future.
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4.7 Conclusion and discussion

In summary, we present a novel perspective on the problem of modularity opti-

mization by reformulating it as a minimization of an energy functional involving

the total variation on a graph. This provides an interesting bridge between the

network science and compressive sensing communities, and it allows the use of

techniques from compressive sensing and image processing to tackle modularity

optimization. We propose the MBO scheme that can handle large data at very

low computational cost. Our algorithms produce competitive results compared to

existing methods, and they scale well in terms of speed for certain networks (such

as the MNIST data). After computing the eigenvectors of the graph Laplacian,

the time complexity of each MBO iteration step is O(N).

One major part of our schemes is to calculate the leading eigenvector-eigenvalue

pairs, so one can benefit from the fast numerical Rayleigh-Chebyshev procedure

in Ref. [3] when dealing with large, sparse networks. Furthermore, for a given net-

work (which is represented by a weighted adjacency matrix), one can reuse pre-

viously computed eigen-decompositions for different choices of initial functions,

different values of n̂, and different values of the resolution parameter γ. This

provides welcome flexibility, and it can be used to significantly reduce computa-

tion time because the MBO step is extremely fast, as each step is O(N) and the

number of iterations is empirically small.

Importantly, our reformulation of modularity also provides the possibility to

incorporate partial ground truth. This can be accomplished either by feeding

the information into the initial function or by adding a fidelity term into the

functional. (We only pursue the former approach in this work.) It is not obvious

how to incorporate partial ground truth using previous optimization methods.

This ability to use our method either for unsupervised or for semi-supervised

clustering is a significant boon.

72



CHAPTER 5

Graph Mumford-Shah in Hyperspectral Data

In this chapter we focus on the multi-class segmentation problem using the piece-

wise constant Mumford-Shah model (1.1) in a graph setting. A graph variational

method is developed similarly to the previous chapter. Application of the pro-

posed method on the problem of chemical plume detection in hyper-spectral video

data is presented afterwards.

Recall the definition of the continuous piecewise constant Mumford-Shah model

introduced in Chapter 1:

EMS(Φ, {cr}n̂r=1) = |Φ|+ λ
n̂∑
r=1

∫
Ωr

(u0 − cr)2 , (5.1)

where a given contour Φ segments an image region Ω into n̂ many disjoint sub-

regions Ω = ∪n̂r=1Ωr, u0 is the observed imagery data, {cr}n̂r=1 is a set of constant

values, and |Φ| denotes the length of the contour Φ.

To study the hyper-spectral data via a graph, each node (pixel) ni is associated

with a d-dimensional feature vector (spectral channels). Let u0 : G→ Rd denote

the raw hyper-spectral data, where u0(ni) represents the d-dimensional spectral

channels of ni. In this setting, we present a graph version of the multi-class

piecewise constant Mumford-Shah energy functional:

MS(f, {cr}n̂r=1) :=
1

2
|f |TV + λ

n̂∑
r=1

〈‖u0 − cr‖2, fr〉 , (5.2)

where {cr}n̂r=1 ⊂ Rd, ‖u0 − cr‖2 denotes an N × 1 vector(
‖u0(n1)− cr‖2, . . . , ‖u0(nN)− cr‖2

)T
,
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and 〈‖u0−cr‖2, fr〉 =
∑N

i=1 fr(ni)‖u0(ni)−cr‖2. Note that when ni and nj belong

to different classes, we have |f(ni)− f(nj)| = 2, which leads to the coefficient in

front of the term 1
2
|f |TV .

To see the connection between (5.2) and (5.1), one first observes that fr is the

characteristic function of the r-th class, and thus 〈‖u0−cr‖2, fr〉 is analogous to the

term
∫

Ωr
(u0 − cr)2 in (5.1). Furthermore, the total variation of the characteristic

function of a region gives the length of its boundary contour, and therefore |f |TV
is the graph analogy of |Φ|.

In order to find a segmentation for G, we propose to solve the following mini-

mization problem:

min
f∈B,{cr}n̂r=1⊂Rd

MS(f, {cr}n̂r=1) . (5.3)

The resulting minimizer f yields a partition of G.

One can observe that the optimal solution of (5.3) must satisfy:

cr =
〈u0, fr〉∑N
i=1 fr(ni)

, (5.4)

if the r-th class is non-empty.

Note that for the minimization problem given in (5.3), it is essentially equiv-

alent to the K-means method when λ goes to +∞. When λ → 0, the minimizer

approaches a constant.

5.1 Mumford-Shah MBO and Lyapunov functional

The authors of [62, 63] introduce an efficient algorithm (known as the MBO

scheme) to approximate motion by mean curvature of an interface in Euclidean

space. The general procedure of the MBO scheme alternates between solving a

linear heat equation and thresholding. One interpretation of the scheme is that

it replaces the non-linear term of the Allen-Cahn equation with thresholding [29].
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In this section we propose a variant of the original MBO scheme to approximately

find the minimizer of the energy MS(f, {cr}n̂r=1) presented in (5.2). Inspired by

the work of [30, 89], we write out a Lyapunov functional Yτ (f) for our algorithm

and prove that it decreases at each iteration of the MBO scheme.

5.1.1 Mumford-Shah MBO scheme

We first introduce a “diffuse operator” Γτ = e−τL, where L is the graph Laplacian

defined above and τ is a time step size. The operator Γτ is analogous to the

diffuse operator e−τ∆ of the heat equation in PDE (Euclidean space). It satisfies

the following properties.

Proposition 2. Given Γτ = e−τL, firstly Γτ is strictly positive definite, i.e.

〈f,Γτf〉 > 0 for any f ∈ K, f 6= 0. Secondly, Γτ conserves the mass, i.e.

〈1,Γτf〉 = 〈1, f〉. At last, the quantity 1
2τ
〈1 − f,Γτf〉 approximates 1

2
|f |TV , for

any f ∈ B.

Proof. Taylor expansion gives

e−τL = I − τL +
τ 2

2!
L2 − τ 3

3!
L3 + . . .

Suppose v is an eigenvector of L associated with the eigenvalue ξ. One then has

Γτv = e−τξv ⇒ 〈v,Γτv〉 = e−τξ〈v, v〉 > 0. Let the eigen-decomposition (with

respect to L) for a non-zero f : G → R to be f =
∑N

i=1 aiφi, where {φi}Ni=1 is a

set of orthogonal eigenvectors of L (note that L is positive definite). Because Γτ

is a linear operator, one therefore has 〈f,Γτf〉 =
∑N

i=1 a
2
i 〈φi,Γτφi〉 > 0.

For the second property, L1 = 0⇒ 〈1,Lkf〉 = 0, where 1 is an N-dimensional

vector with one at each entry. Therefore, the Taylor expansion of Γτ gives

〈1,Γτf〉 = 〈1, f〉.

At last, Γτ ' I − τL ⇒ 1
2τ
〈1 − f,Γτf〉 ' 1

2τ
〈1 − f, f〉 − 1

2
〈1,Lf〉 + 1

2
〈f,Lf〉.

Particularly when f ∈ B, we have 1
2τ
〈1 − f, f〉 = 1

2
〈1,Lf〉 = 0 and 1

2
〈f,Lf〉 =
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1
2
|f |TV . Hence 1

2τ
〈1− f,Γτf〉 approximates 1

2
|f |TV in B.

An intuitive interpretation of the third property of Proposition 2 is illustrated

in Figure 5.1. For an indicator function f = χA shown in (a), the diffuse operator

propagates the nonzero support set of f to leak outside of A by the scale of τ

(time step), as shown in (b). The inner product 〈1− f,Γτf〉 gives the shadowed

margin (c) around the boundary, which is an approximation of the perimeter of

set A. Note that the operator (I + τL)−1 also satisfies the above three properties,

and can serve the same purpose as e−τL, as far as this work concerns.

(a) f (b) Γτf (c) 〈1− f,Γτf〉

Figure 5.1: Illustration of the third property of Proposition 2: the quantity 1
2τ
〈1−

f,Γτf〉 approximates 1
2
|f |TV , for any f ∈ B.

The proposed Mumford-Shah MBO scheme for the minimization problem (5.3)

consists of alternating between the following three steps:

For a given fk ∈ B at the k-th iteration and ckr = 〈u0,fkr 〉
〈1,fkr 〉

,

1. Compute

f̂ = Γτf
k − τλ

(
‖u0 − ck1‖2, ‖u0 − ck2‖2, . . . , ‖u0 − ckn̂‖2

)
, (5.5)

2. (Thresholding)

fk+1(ni) = ~er , r = argmaxcf̂c(ni)

for all i ∈ {1, 2, . . . , N}, where ~er is the r-th standard basis in Rn̂, i.e.

fk+1
r (ni) = 1 and fk+1 ∈ B.
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3. (Update c)

ck+1
r =

〈u0, f
k+1
r 〉

〈1, fk+1
r 〉

.

5.1.2 A Lyapunov functional

We introduce a Lyapunov functional Yτ for the Mumford-Shah MBO scheme:

Yτ (f) :=
1

2τ
〈1− f,Γτf〉+ λ

n̂∑
r=1

〈‖u0 − cr‖2, fr〉 , subject to cr =
〈u0, fr〉
〈1, fr〉

. (5.6)

According to the third property of Γτ in Proposition 1, the energy Yτ (f) approx-

imates MS(f, {cr}n̂r=1) for f ∈ B and cr = 〈u0,fr〉
〈1,fr〉 . A similar functional for the

graph total variation is shown and discussed in [90].

Pursuing similar ideas as in [30, 89], we present the following analysis which

consequently shows that the Mumford-Shah MBO scheme (with time step τ) de-

creases Yτ and converges to a stationary state within a finite number of iterations.

First define

Gτ (f, c) :=
1

2τ
〈1− f,Γτf〉+ λ

n̂∑
r=1

〈‖u0 − cr‖2, fr〉 . (5.7)

Proposition 3. The functional Gτ (·, c) is strictly concave on K, for any fixed

{cr}n̂r=1 ∈ Rd.

Proof. Take f, g ∈ K, α ∈ (0, 1). We have (1 − α)f + αg ∈ K, because K is a

convex set.

Gτ ((1− α)f + αg, c)− (1− α)Gτ (f, c)− αGτ (g, c)

=
1

2τ
α(1− α)〈f − g,Γτ (f − g)〉 ≥ 0 . (5.8)

Equality only holds when f = g. Therefore, Gτ (·, c) is strictly concave on K.
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Aside from the concavity of Gτ , we observe that the first order variation of

Gτ (·, c) is given as

δ

δf
Gτ (f, c) =

1

2τ
(1− 2Γτf) + λ

(
‖u0 − c1‖2, ‖u0 − c2‖2, . . .

)
.

Note that since 〈 δ
δf
Gτ (f

k, ck), f〉 is linear, the Step 2 (thresholding) in the

Mumford-Shah MBO scheme is equivalent to

fk+1 := argminf∈K〈
δ

δf
Gτ (f

k, ck), f〉 .

Theorem 6. In the Mumford-Shah MBO scheme, the Lyapunov functional Yτ (f
k+1)

at the (k + 1)-th iteration is no greater than Yτ (f
k). Equality only holds when

fk = fk+1. Therefore, the scheme achieves a stationary point in B within a finite

number of iterations.

Proof.

fk+1 := argminf∈K〈
δ

δf
Gτ (f

k, ck), f〉 (5.9)

⇒ fk+1 ∈ B (due to linearity) and

0 ≥ 〈 δ
δf
Gτ (f

k, ck), fk+1 − fk〉 (5.10)

≥ Gτ (f
k+1, ck)−Gτ (f

k, ck) (concavity)

⇒ Gτ (f
k+1, ck) ≤ Gτ (f

k, ck) = Yτ (f
k). Observe that ck+1

r = 〈fk+1
r ,u0〉
〈fk+1
r ,1〉

is the

minimizer of

argmin{cr}n̂r=1∈RdGτ (f
k+1, c)

⇒ Gτ (f
k+1, ck+1) ≤ Gτ (f

k+1, ck) ≤ Yτ (f
k).

⇒ Yτ (f
k+1) ≤ Yτ (f

k). Therefore the Lyapunov functional Yτ is decreasing on the

iterations of the Mumford-Shah MBO scheme, unless fk+1 = fk. Since B is a

finite set, a stationary point can be achieved in a finite number of iterations.
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Minimizing the Lyapunov energy Yτ is an approximation of the minimization

problem in (5.3), and the proposed MBO scheme is proven to decrease Yτ . There-

fore, we expect the Mumford-Shah MBO scheme to approximately solve (5.3).

In Section 3.3 and Section 3.4, we introduce techniques for computing the MBO

iterations efficiently.

5.1.3 Eigen-space approximation

To solve for (5.5) in Step 1 of the Mumford-Shah MBO scheme, one needs to

compute the operator Γτ , which can be difficult especially for large datasets. For

the purpose of efficiency, we numerically solve for (5.5) by using a small number of

the leading eigenvectors of L (which correspond to the smallest eigenvalues), and

project fk onto the eigen-space spanned from the eigenvectors. By approximating

the operator L with the leading eigenvectors, one can compute (5.5) efficiently.

We use this approximation because in graph clustering methods, researchers have

been using a small portion of the leading eigenvectors of a graph Laplacian to

extract structural information of the graph.

Let {φm}Mm=1 denote the first M (orthogonal) leading eigenvectors of L, and

{ξm}Mm=1 the corresponding eigenvalues. Assume fk =
∑M

m=1 φma
m, where am is

a 1× n̂ vector, with the r-th entry amr = 〈fkr , φm〉. Thus f̂ can be approximately

computed as:

f̂ =
M∑
m=1

e−τξmφma
m − τλ

(
‖u0 − ck1‖2, ‖u0 − ck2‖2, . . . , ‖u0 − ckn̂‖2

)
. (5.11)

The Mumford-Shah MBO algorithm with the above eigen-space approximation

is summarized in Algorithm 1. After the eigenvectors are obtained, each iteration

of the MBO scheme is of time complexity O(N). Empirically, the algorithm

converges after a small number of iterations. Note that the iterations stop when

a purity score between the partitions from two consecutive iterations is greater

than 99.9%. The purity score, as used in [45] and previous chapters, measures
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how “similar” two partitions are. Intuitively, it can be viewed as the fraction of

nodes of one partition that have been assigned to the correct class with respect

to the other partition.

Algorithm 2 Mumford-Shah MBO Algorithm

Input: f 0, u0, {(φm, ξm}Mm=1, τ , λ, n̂, k = 0.

while (purity(fk, fk+1) < 99.9%) do

• cr = 〈u0,fkr 〉∑N
i=1 f

k
r (ni)

.

• amr = 〈fkr , φm〉.

• f̂ =
∑M

m=1 e
−τξmφma

m − τλ (‖u0 − c1‖2, ‖u0 − c2‖2, . . . , ‖u0 − cn̂‖2).

• fk+1(ni) = er, where r = argmaxcf̂c(ni).

• k ← k + 1.

end while

5.1.4 Nyström method

The Nyström extension [34] is a matrix completion method which has been used to

efficiently compute a small portion of the eigenvectors of the graph Laplacian for

segmentation problems [8,35,59,60]. In our proposed scheme, leading eigenvectors

of L are needed, which can require massive computational time and memory. For

large graphs such as the ones induced from images, the explicit form of the weight

matrix W and therefore L is difficult to obtain (O(N2) time complexity). Hence,

we expect to use the Nyström method to approximately compute the eigenvectors

for our algorithm.

Given a similarity matrix W to be computed, the Nyström method only ran-

domly samples a very small number (M) of rows of W, M << N . After reordering
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the rows, one can assume the first M rows are the sampled ones:

W =

 A B

BT C

 ,

i.e. the M ×M matrix A and the M × (N −M) matrix B are computed and

known. The only unknown part of W is the (N −M)× (N −M) matrix C. The

core idea of the Nyström method is to approximate C by BTA−1B. Based on

matrix completion and properties of eigenvectors, ones can approximately obtain

M eigenvectors of the symmetric normalized graph Laplacian Lsym without ex-

plicitly computing C. Detailed descriptions of the Nyström method can be found

in [8, 60].

Note that our previous analysis only applies to L rather than Lsym, and the

Nyström method can not be trivially formularized for L. Therefore this ques-

tion remains to be studied. However, the normalized Laplacian Lsym has many

similar features compared to L, and it has been used in place of L in many seg-

mentation problems. In the numerical results shown below, the eigenvectors of

Lsym computed via Nyström perform well empirically. One can also implement

other efficient methods to compute the eigenvectors for the Mumford-Shah MBO

algorithm.

5.2 Numerical Results

The hyper-spectral images tested in this work are taken from the video recording

of the release of chemical plumes at the Dugway Proving Ground, captured by

long wave infrared (LWIR) spectrometers. The data is provided by the Applied

Physics Laboratory at Johns Hopkins University. A detailed description of this

dataset can be found in [18]. We take seven frames from a plume video sequence

in which each frame is composed of 128× 320 pixels. We use a background frame

and the frames numbered 72 through 77 containing the plume. Each pixel has
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(a) 2nd Eigenvector

(b) 3rd Eigenvector

(c) 4th Eigenvector

(d) 5th Eigenvector

Figure 5.2: The leading eigenvectors of the normalized graph Laplacian computed

via the Nyström method.

129 spectral channels corresponding to a particular frequency in the EM spectrum

ranging from 7,820 nm to 11,700 nm. Thus, the graph we construct from these

seven frames is of size 7 × 128 × 320 with each node ni corresponding to a pixel

with a 129-dimensional spectral signature vi. The metric for computing the weight

matrix is given as:

wij = exp{−
(1− 〈vi,vj〉

‖vi‖‖vj‖)
2

2σ2
} ,

where σ = 0.01 is chosen empirically for the best performance. Note that in this

experiment σ is a robust parameter which gives decent results for a wide range of

values (0.001 < σ < 10).

The goal is to segment the image and identify the “plume cloud” from the

background components (sky, mountain,grass), without any ground truth. As

described in the previous section, M = 100 eigenvectors of the normalized graph

Laplacian (Lsym) are computed via the Nyström method. The computational
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(a)

(b)

Figure 5.3: The segmentation results obtained by the Mumford-Shah MBO

scheme, on a background frame plus the frames 72-77. Shown in (a) and (b) are

segmentation outcomes obtained with different initializations. The visualization

of the segmentations only includes the first four frames.

time using Nyström is less than a minute on a 2.8GHz machine with Intel Core

2Duo. The visualization of the first five eigenvectors (associated with the smallest

eigenvalues) are given in Figure 5.2 for the first four frames, (the first eigenvector

is not shown because it is close to a constant vector).

We implement the Mumford-Shah MBO scheme using the eigenvectors on this

seven frames of plume images, with τ = 0.15, λ = 150 and n̂ = 5. The test is run

for 20 times with different uniformly random initialization, and the segmentation

results are shown in Figure 5.3. Note that depending on the initialization, the

algorithm can converge to different local minimum, which is common for most

non-convex variational methods. The result in (a) occurred five times among the

20 runs, and (b) for twice. The outcomes of other runs merge either the upper

or the lower part of the plume with the background. The segmentation outcome

shown in (a) gives higher energy than that in (b). Among the 20 runs, the lowest

energy is achieved by a segmentation similar to (a), but with the lower part of the

plume merged with the background. It may suggest that the global minimum of

the proposed energy does not necessarily give a desired segmentation.

83



Figure 5.4: Energy MS(f) (blue, solid line) and Yτ (f) (red, dash line) at each

iteration from the same test as shown in Figure 5.3 (a).

Notice that in Figure 5.3 (b), even though there actually exist five classes,

only four major classes can be perceived, while the other one contains only a very

small amount of pixels. By allowing n̂ = 5 instead of n̂ = 4, it helps to reduce

the influence of a few abnormal pixels. The computational time for each iteration

is about 2-3 seconds on a 1.7GHz machine with Intel Core i5. The number of

iterations is around 20-40.

Figure 5.4 demonstrates a plot of the MS(f) and Yτ (f) energies at each itera-

tion from the same test as the one shown in Figure 5.3 (a). The Lyapunov energy

Yτ (f) (red, dash line) is non-increasing, as proven in Theorem 1. Note that all

the energies are computed approximately using eigenvectors.

As a comparison, the segmentation results using K-means and spectral clus-

tering are shown in Figure 5.5. The K-means method is performed directly on

the raw image data (7 × 128 × 320 by 129). As shown in (a) and (b), the re-

sults obtained by K-means fail to capture the plume; the segmentations on the

background are also very fuzzy. For the spectral clustering method, a four-way

(or five-way) K-means is implemented on the four (or five) leading eigenvectors

of the normalized graph Laplacian (computed via Nyström). As shown in (c)
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(a) 4-way K-means

(b) 5-way K-means

(c) Spectral Clustering with 4-way K-means

(d) Spectral Clustering with 5-way K-means

Figure 5.5: K-means and spectral clustering segmentation results. The visualiza-

tion of the segmentations only includes the first four frames.
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(a)

(b)

Figure 5.6: The segmentation results obtained by the Mumford-Shah MBO

scheme, on a background frame plus the frames 67-72. Shown in (a) and (b)

are segmentation outcomes obtained with different initializations.

and (d), the resulting segmentations divide the sky region into two undesirable

components. Unlike the segmentation in Figure 5.3 (a) where the mountain com-

ponent (red, the third in the background) has a well defined outline, the spectral

clustering results do not provide clear boundaries. Our approach performs better

than other unsupervised clustering results on this dataset [36, 84].

Another example of the plume data is show in Figure 5.6, where the 67th to

72nd frames (instead of the 72nd to 77th) are taken along with the background

frame as the test data. The test is run 20 times using different uniformly random

initialization, where τ = 0.15, λ = 150 and n̂ = 5. The result in Figure 5.6 (a)

occurred 11 times among the 20 runs, and (b) for five times. The outcomes from

the other four runs segment the background into three components as in (a), but

merge the plume with the center component. The segmentation result shown in

(a) gives the lowest energy among all the outcomes. The visualization includes all

86



seven frames since the plume is small in the first several frames.

5.3 Conclusion

In this chapter we present a graph framework for the multi-class piecewise con-

stant Mumford-Shah model using a simplex constrained representation. Based

on the graph model, we propose an efficient threshold dynamics algorithm, the

Mumford-Shah MBO scheme for solving the minimization problem. Theoretical

analysis is developed to show that the MBO iteration decreases a Lyapunov energy

that approximates the MS functional. Furthermore, in order to reduce the com-

putational cost for large datasets, we incorporate the Nyström extension method

to approximately compute a small portion of the eigenvectors of the normalized

graph Laplacian, which does not require computing the whole weight matrix of

the graph. After obtaining the eigenvectors, each iteration of the Mumford-Shah

MBO scheme is of time complexity O(n). The number of iterations for conver-

gence is small empirically.

The proposed method can be applied to general high-dimensional data seg-

mentation problems. In this work we focus on the segmentation of hyper-spectral

video data. Numerical experiments are performed on a collection of hyper-spectral

images taken from a video for plume detection; using our proposed method, com-

petitive results are achieved. However, there are still open questions to be an-

swered. For example, the Nyström method can only compute eigenvectors for

the normalized Laplacian, while the theoretical analysis for the Lyapunov func-

tional only applies to the un-normalized graph Laplacian. This issue remains to

be studied. Note that the graph constructed in this work does not include the

spacial information of the pixels, but only the spectral information. One can cer-

tainly build a graph incorporating the location of each pixel as well, to generate

a non-local means graph as discussed in [8].
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CHAPTER 6

An Incremental Reseeding Strategy

This chapter presents the collaborative work in [13], where we propose a resampling-

based spectral algorithm for multiway graph partitioning. The algorithm proceeds

by alternating three simple routines in an iterative fashion: diffusion, thresholding,

and random sampling. On graphs that contain reasonably well-balanced clusters

of medium scale, the algorithm provides a strong combination of accuracy, effi-

ciency and robustness to noise in the graph construction process. The algorithm

is also exceedingly simple, intuitive and trivial to implement. It also parallelizes

trivially, and can therefore scale gracefully to large numbers of clusters as well as

to graphs with large numbers of vertices.

We validate these claims via an extensive experimental evaluation of the algo-

rithm. We exhaustively test our algorithm on a total of 26 real world data sets.

We also provide a detailed algorithmic comparison using four recent clustering

algorithms that claim state-of-the-art results. These experiments demonstrate

that our algorithm achieves state-of-the-art performance in terms of cluster pu-

rity while running an order of magnitude faster than the other highly accurate

clustering methods (e.g. [97]) that we compare against. Moreover, our strategy

performs well using only random initialization. This contrasts with other state-

of-the-art methods that rely on a lower-level algorithm (such as Normalized Cuts)

for initialization. We also provide experiments to demonstrate the robustness of

the algorithm with respect to noise and perturbations in the underlying graph.

While many highly accurate algorithms exhibit a sharp decrease in accuracy if
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Figure 6.1: Illustration of the Incremental Reseeding (INCRES) Algorithm for

R = 3 clusters. The various colors red, blue, and green identify the clusters. (a):

At this stage of the algorithm, s = 2 seeds are randomly planted in the clusters

computed from the previous iteration. (b): The seeds grow with the random walk

operator. (c): A new partition of the graph is obtained and used to plant s + ds

seeds into these clusters at the next iteration.

the input graph is corrupted by noise, our algorithm remains stable: the accu-

racy of our algorithm decays slowly and gracefully with increasing levels of noise.

These results, when taken together, lead to an algorithm with a quite appealing

combination of simplicity, performance and ease in out-of-the-box usage.

6.1 Description of the Algorithm

The main idea behind our algorithm arises from a well-known and widely used

property of the random walk on a graph. Specifically, a random walker started in

a low conductance cluster is unlikely to leave that cluster quickly [56]. This fact

provides the basis for transductive label propagation methods [101] as well as for

“local” clustering methods [83]. In label propagation, for instance, an oracle pro-

vides a set of labeled vertices that are propagated along the graph using a random

walk matrix or a diffusion matrix. Each unlabeled vertex is then associated to the
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label which, after being propagated, best represents the given unlabeled vertex.

Our algorithm simply iterates upon this basic idea. Assume that the graph

has R well-defined clusters of comparable size and low conductance. If we knew

these clusters in advance, we could then select a handful of “seed” vertices in

the center of each cluster. We would then expect to obtain good results from a

transductive label propagation by using these seeds as labels. In an unsupervised

context we cannot, of course, a-priori place seeds in the center of each cluster. To

overcome this, we instead place a handful of seeds at random. We then apply a

random walk matrix or diffusion matrix a few times to propagate these seeds. We

finally obtain a temporary clustering by assigning each vertex to the seed which,

after propagation, best represents the vertex. We then choose new seeds from

these temporary clusters and iterate the process. If the clusters improve then

the seeds will likely improve, and vice-versa. This incites a feed-back loop and

we get a virtuous cycle. We can then excite the speed and improve the quality

of this cycle by gradually drawing more and more seeds throughout the process.

We refer to this idea as an incremental reseeding strategy. Figure 6.1 depicts this

cyclic process graphically.

6.1.1 Basic algorithm

To formalize these ideas, recall that (G,E) denotes a weighted, connected graph

on N vertices G = {n1, . . . , nN} with edge weights E = {wij}Ni,j=1 that encode a

measure of similarity between each pair (ni, nj) of vertices. The algorithm starts

from a random partition P = (C1, . . . , CR), C1 ∪ · · · ∪ CR = G, Cr ∩ Cq = ∅

(r 6= q) of the vertices. In other words, each ni is assigned to one of the R clusters

uniformly at random. Let s = 1 denote the initial number of seeds. At each of the

successive iteration, we update the current partition P = (C1, . . . , CR) according

to the steps outlined in the pseudocode Algorithm 3 for INCRES. The pseudocode

for the INCRES Subroutines is presented in Algorithm 4.
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Algorithm 3 INCRES Algorithm

Input: Similarity matrix W, seed increment ds, number of clusters R.

Initialization: s = 1, random partition P .

repeat

F = PLANT(P , s)

F ← GROW(F,W)

P ← HARVEST(F )

s← s+ ds

until P converges

Output: P

At the beginning of each iteration, the routine PLANT(P ,s) will sample s

seeds from each of the R clusters Cr in the current partition P uniformly at ran-

dom. These Rs seeds furnish the temporary labels that the GROW routine then

propagates along the graph using a random walk matrix. We initialize GROW

with an N × R matrix F, where Fi,r = 1 if vertex vi was drawn from cluster Cr

and Fi,r = 0 otherwise. We then iteratively apply the random walk transition

matrix WD−1 to F until each vertex has a nonzero probability of being visited by

a random walker, i.e. until each entry Fi,r is nonzero. Finally, the routine HAR-

VEST simply assigns each vertex vi to its most likely cluster, or in other words the

cluster for which Fi,r is maximal. This produces a new partition P of the vertices

into R clusters. We then increment s to s+ds, and use this partition and number

of seeds s to initialize PLANT at the beginning of the next iteration. We refer to

this overall procedure as the Incremental Reseeding Algorithm (INCRES).

The overall routine has only a single parameter ds that controls the linear rate

at which the number of seeds drawn at each iteration increases. In practice, we

select

ds = speed× 10−4 × N

R
(6.1)

for some proportionality constant speed between one and ten. By rescaling ds
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Algorithm 4 INCRES Subroutines

function PLANT(P , s)

Initialize F as an N -by-R matrix of zeros.

for r = 1 to R do

for k = 1 to s do

Draw at random a vertex vi in cluster Cr.

Fi,r ← Fi,r + 1

end for

end for

return F .

end function

function GROW(F,W)

while mini minr Fi,r = 0 do

F ←
(
WD−1

)
F

end while

return F .

end function

function HARVEST(F )

for r = 1 to R do

Cr = {i : Fi,r ≥ Fi,s for all s}

end for

return P = (C1, . . . , CR)

end function
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in this way, a constant of proportionality speed=1 corresponds to a total of

s = 0.1N/R seeds planted in each cluster after 1000 iterations. Assuming well-

balanced clusters of roughly equal size, approximately one-tenth of each cluster

is sampled after 1000 iterations. Drawing a significant fraction of each cluster

will cause the subsequent clustering to stabilize, leading to eventual convergence

of the algorithm. Using around 10% of labels in each cluster is a typical level at

which INCRES will stabilize.

The parameter ds therefore represents a “timestep” for INCRES, and the

overall algorithm behaves well with respect to this parameter. In general, small

increments ds will lead to slower convergence at higher accuracy while larger in-

crements ds will lead to faster convergence but potentially less accurate solutions.

Our experiments show that speed = 1 works remarkably well for a large variety

of data sets. We also provide results for speed=5, which yields faster stabiliza-

tion with slightly less accuracy, to show that the algorithm is indeed robust and

predictable with respect to the choice of this parameter.

The general INCRES framework also proves robust to implementation choices

for the three main routines. For instance, in addition to the random walk matrix

WD−1, there exists a variety of alternative means to propagate labels along a

graph. By-and-large, the overall INCRES strategy does not depend heavily upon

the particular implementation of GROW, so long as it realizes the basic idea of

label propagation in one form or another. For instance, we have found that re-

placing the random walk step F ←WD−1F with a diffusion step F ← D−1WF

or F ← D−1/2WD−1/2F will give similar results in many circumstances. Occa-

sionally, we have found that utilizing a “personalized Page-Rank” step

F ← αWD−1F + (1− α)F0 (6.2)

can give better performance on small data sets that contain a large (relative to the

size of the data set) number of clusters. Here the parameter 0 < α < 1 denotes a
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length-scale that controls the extent of diffusion and F0 denotes the input to the

GROW routine. A propagation step of the form (6.2) is also used in Pagerank-

NIBBLE [2] and NMFR [97], up to replacing WD−1 with D−1/2WD−1/2 in the

latter case. As another example, choosing to sample with or without replacement

in the PLANT routine leads to essentially no significant difference in the resultant

clusterings.

6.1.2 Relation with other work

Our methodology relies upon and incorporates number of ideas from transductive

learning. In particular, we leverage the notion of label propagation [101]. In

the standard label propagation framework, an oracle provides a set of labeled

points or vertices. These labeled points form either nonzero initial conditions

or heat sources for a discrete heat equation on the graph. The second step of

the INCRES algorithm (the GROW routine) precisely corresponds with a label

propagation of the random labels returned from the first step of the algorithm

(the PLANT routine).

The NIBBLE algorithm and its relatives [2,56,82,83] use a similar idea to get

an unsupervised clustering method from label propagation by planting random

seeds. These works cluster the entire graph in a sequential manner: at each step

a single random vertex is drawn and propagated. Then a sweep is performed

to extract a small cluster around this vertex. These algorithms function well for

problems aimed at extracting many small clusters from graphs with fine structure.

In contrast, we perform multiway partitioning directly instead of recursively. We

also aim at medium scale clusters instead of small scale clusters. We also utilize

a significantly different random seeding strategy.

The INCRES algorithm also alternates between label propagation (GROW)

and thresholding (HARVEST). The idea of iteratively alternating between a few
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steps of label propagation and subsequent thresholding has also appeared in a

transductive learning context [35,59], although the presence of labeled information

results in a different implementation of the propagation step. The non-negative

matrix factorization method [97] also incorporates random walk information in a

manner that resembles the GROW routine, but otherwise the underlying princi-

ples of the algorithms differ substantially.

Because the GROW function we use iterates the random walk on the graph, our

algorithm is a form of spectral clustering. However, our main contribution to the

clustering problem, and the primary novelty in our algorithm, is the incremental

reseeding process. This process is not fundamentally tied to the INCRES algorithm

presented here — it seems to be quite universal and can be adapted to other

clustering methods. However, combining reseeding with the random walk method

offers an excellent combination of accuracy, speed, and robustness.

6.2 Experiments

We now provide the results of our extensive experimental evaluation of the al-

gorithm. This section shows that our algorithm achieves state-of-the-art perfor-

mance in terms of cluster purity on a variety of real word data sets while running

an order of magnitude faster than the other comparably accurate clustering meth-

ods. Moreover, whereas some of the competing algorithms are initialized with a

partition provided by a low cost algorithm such as NCut, the INCRES algorithm

is initialized with a random partition. Finally we show that INCRES is very

robust to perturbations in the input graph.

The Algorithms: We compare our method against four clustering algorithms

that rely on variety of different principles. We select algorithms that, like our

algorithm, partition the graph in a direct, non-recursive manner. The NCut algo-

rithm [98] is a widely used spectral algorithm that relies on a post-processing of the
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Table 6.1: Algorithmic Comparison via Cluster Purity.

Data size R RND NCut LSD NMFR MTV
INCRES INCRES

(speed 1) (speed 5)

20NEWS 20K 20 6.3% 26.6% 34.3% 60.7% 35.8% 61.0% 60.7%

CADE 21K 3 15.5% 41.0% 41.3% 52.0% 44.2% 52.8% 52.1%

RCV1 9.6K 4 30.3% 38.2% 38.1% 42.7% 42.8% 54.5% 51.2%

WEBKB4 4.2K 4 39.1% 39.8% 45.8% 58.1% 45.2% 57.1% 56.8%

CITESEER 3.3K 6 21.8% 23.4% 53.4% 62.6% 42.6% 62.0% 62.2%

MNIST 70K 10 11.3% 76.9% 75.5% 97.1% 95.5% 96.0% 94.0%

PENDIGIT 11K 10 11.6% 80.2% 86.1% 86.8% 86.5% 88.8% 85.9%

USPS 9.3K 10 16.7% 71.5% 70.4% 86.4% 85.3% 87.8% 87.4%

OPTDIGIT 5.6K 10 12.0% 90.8% 91.0% 98.0% 95.2% 97.4% 94.8%

eigenvectors of the graph Laplacian to optimize the normalized cut energy. The

NMFR algorithm [97] uses non-negative matrix factorization and graph-based

random walk principles in order to factorize and regularize the original input

similarity matrix. The LSD algorithm [4] provides another non-negative matrix

factorization algorithm. It aims at finding a left-stochastic decomposition of the

similarity matrix. The MTV algorithm from [15] provides a total-variation based

algorithm that attempts to find an optimal multiway Cheeger cut of the graph by

using L1 optimization techniques. The last three algorithms (NMFR, LSD and

MTV) all use NCut in order to obtain an initial partition. By contrast, we initial-

ize our algorithm with a random partition. We use the code available from [98]

for NCut, the code available from [97] to test the two non-negative matrix fac-

torization algorithms (NMFR and LSD) and the code available from [15] for the

MTV algorithm.

The Data Sets: We provide experimental results on five text data sets

(20NEWS, CADE, RCV1, WEBKB4, CITESEER) and four data sets contain-
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ing images of handwritten digits (MNIST, PENDIGITS, USPS, OPTDIGITS).

We processed the text data sets by removing a list of stop words as well as by

removing all words with fewer than twenty occurrences (for 20NEWS) and fewer

than five occurrences (for all others) across the corpus. We then construct a 5-NN

graph based on the cosine similarity between tf-idf features. For variety, we in-

clude some weighted graphs (RCV1 and CITESEER) as well as some unweighted

graphs (20NEWS, CADE and WEBKB4). For MNIST, PENDIGITS and OPT-

DIGITS we use the similarity matrices constructed by [97], where the authors

first extract scattering features [19] for images before calculating an unweighted

10-NN graph. For USPS we constructed a weighted 10-NN graph from the raw

data without any preprocessing. The source for these data sets and more details

on their construction are provided in the appendix of [13].

(a) 20NEWS (b) MNIST

Figure 6.2: Purity Distributions

6.2.1 Accuracy comparisons

In Table 6.1 we report the accuracy obtained by the selected algorithms LSD,

NMFR, MTV and INCRES (for two values of the timestep parameter, speed = 1

and speed = 5) on the various data sets. Cluster purity, as mentioned in previ-
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ous chapters, is used to quantify the quality of the calculated partition, defined

according to the relation

Purity =
number of “successes”

N
=

1

N

R∑
r=1

max
1<i<R

nr,i.

Here nr,i denotes the number of data points in the rth cluster that belong to the

ith ground-truth class. In other words, given a computed cluster we count a data

point as a success if it belongs to the ground truth class that best represents

the cluster. We allowed each iterative algorithm a total of 10,000 iterations to

reach convergence. Both INCRES and MTV rely on randomization, so for these

algorithm we report the average purity achieved over 1000 different runs. The

fourth column of the table (RND) provides a base-line purity for reference, i.e.

the purity obtained by assigning each data point to a class from 1 to R uniformly

at random. The boldface numbers in the table indicate the highest purity score

achieved on each data set.

Overall, INCRES and NMFR significantly outperform the other algorithms.

This is especially true for text data sets. Both algorithms utilize a random walk

strategy to help “smooth” irregular graphs, such as the similarity matrices ob-

tained from text data sets. This strategy also contributes to the robustness of

these algorithms and to their solid performance across the full range of data sets.

However, the INCRES algorithm typically runs at least one order of magnitude

faster than the NMFR algorithm. Due to the similarity of their results, we provide

a more exhaustive comparison between these two algorithms in the supplementary

material on 17 additional data sets.

Finally, note that the INCRES algorithm performs comparably when speed =

1 and speed = 5, demonstrating that the algorithm is robust with respect to the

choice of the seed increment parameter ds. The INCRES algorithm also performs

rather consistently across independent runs of the random process. Figure 6.2

provides an experimental validation of this fact. Specifically, this figure displays a

98



histogram of the purity values obtained over 1008 independent trials of INCRES on

both 20NEWS and MNIST (using speed = 1 for this example). On 20NEWS, all

independent trials of the INCRES algorithm converge to a solution with a purity

value between 58% and 64%. The INCRES algorithm converges to one of two

attractors on MNIST, one at roughly 88% purity and one at roughly 97% purity,

with the vast majority of all trials converging to the higher-accuracy attractor.

6.2.2 Speed comparisons

Figure 6.3 illustrates the speed at which the iterative algorithms (LSD, MTV,

NMFR and INCRES) converge toward their respective solutions. We ran each

algorithm for a total of 7 minutes on 20NEWS and for 15 minutes on MNIST. We

report the purity obtained by the algorithm at each iteration. For the randomized

algorithm (INCRES and MTV) the purity curves were obtained by averaging the

results over 240 runs. The overwhelming computational burden for all of these

algorithms arises from the sparse-matrix times full-matrix multiplications required

at each step. Each algorithm is implemented in a fair and consistent way, and the

experiments were all performed on the same architecture.

Table 6.2: Computational Time

Data NMFR MTV
INCRES INCRES

(speed1) (speed5)

20NEWS
3.7mn – 25.4s 5.6s

(57.7%) – (57.7%) (58%)

MNIST
4.6mn 1.8mn 4.8s 3.1s

(92.2%) (90.7%) (91.2%) (89.3%)

In order to give an indication of the speed/accuracy trade-off for each algo-

rithm, in Table 6.2 we record the time it took for the purity obtained by each algo-

rithm to reach 95% of its limiting value on both 20NEWS and on MNIST. Overall,
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(a) 20NEWS (first 90sec) (b) 20NEWS (first 7mn)

(c) MNIST (first 30sec) (d) MNIST (first 15mn)

Figure 6.3: Purity curves for the four algorithms considered on two benchmark

data sets (20NEWS and MNIST). We plot purity against time for each algorithm

over two different time windows. The circular marks on each curve indicate the

point at which the curve reaches 95% of its limiting value. The corresponding

times at which this happens are reported in Table 6.2.

the simple INCRES algorithm provides accuracy comparable to the state-of-the-

art NMF algorithm [97], yet runs an order of magnitude faster. Timing results on

the data sets from table 6.1 are consistent with those obtained for 20NEWS and

MNIST, in the sense that INCRES typically runs one order of magnitude faster

than NMFR on these data sets as well.
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Table 6.3: Robustness Comparisons

Noise NCut LSD MTV
INCRES

(speed1)

20NEWS

+0% edges 27% 34% 36% 61%

+50% edges 21% 27% 20% 52%

+100% edges 18% 22% 11% 44%

+150% edges 15% 20% 10% 34%

+200% edges 14% 18% 9% 27%

MNIST

+0% edges 77% 76% 96% 96%

+50% edges 87% 94% 55% 97%

+100% edges 84% 93% 25% 97%

+150% edges 74% 87% 18% 97%

+200% edges 67% 82% 16% 96%

6.2.3 Robustness experiments

Table 6.3 reports accuracy results of various algorithms on graphs that we cor-

rupted by adding different levels of noise. We began with the original 20NEWS

graph used in Table 6.1 and added additional edges to the graph uniformly at

random. The original graph had e = 144, 632 edges. For the experiment, we

added 0.5e, e, 1.5e and 2e additional noise edges. For each of these four levels of

noise, we randomly generated 144 separate perturbed graphs. The table reports,

for each level of noise, the average purity obtained by each algorithm on the 144

randomly generated matrices. We then proceeded to perturb the original MNIST

graph in a similar fashion. The original graph has e = 1, 027, 412 edges, and we

randomly generated 120 graphs at each level of noise. This gives a total of 1056

randomly generated graphs for this set of experiments. We provide experimental
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results for all algorithms other than NMFR, which simply takes far too much

time to run to convergence on all 1056 adjacency matrices. Nevertheless, given

the similarity in their performace, we expect that NMFR would perform similarly

to INCRES on this set of experiments as well.

The results clearly elucidate the robustness of the INCRES algorithm with

respect to noise in the graph construction process. On the 20NEWS data set, for

example, all other algorithms experience a sharp decrease in accuracy as soon as

noise is added. In contrast, the purity of the INCRES algorithm slowly decreases

in a stable fashion. On the MNIST data sets, the results obtained by INCRES

remain essentially unchanged across all noise levels. The competing algorithms

do not exhibit this behavior. Interestingly, NCut and LSD actually obtain better

results at the 50% and 100% noise levels. Given that LSD relies on NCut for

initialization, it comes as no surprise that gains for NCut produce subsequent gains

for LSD as well. This pathological behavior still indicates a lack of robustness, in

the sense that both algorithms exhibit a high degree of sensitivity to changes in

the underlying graph.
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Chang, Jérôme Gilles, and Andrea L. Bertozzi. Detection and tracking of
gas plumes in LWIR hyperspectral video sequence data. In SPIE Defense,
Security, and Sensing, pages 87430J–87430J. International Society for Op-
tics and Photonics, 2013.

[37] Michelle Girvan and Mark E. J. Newman. Community structure in social
and biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

105



[38] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Per-
formance of modularity maximization in practical contexts. Physical Review
E, 81(4):046106, 2010.

[39] Roger Guimera and Luis A. Nunes Amaral. Functional cartography of com-
plex metabolic networks. Nature, 433(7028):895–900, 2005.
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