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ABSTRACT OF THE DISSERTATION

Learning and Inference in Latent Variable Graphical Models

By

Wei Ping

Doctor of Philosophy in Computer Science

University of California, Irvine, 2016

Professor Alexander Ihler, Chair

Probabilistic graphical models such as Markov random fields provide a powerful framework

and tools for machine learning, especially for structured output learning. Latent variables

naturally exist in many applications of these models; they may arise from partially labeled

data, or be introduced to enrich model flexibility. However, the presence of latent variables

presents challenges for learning and inference.

For example, the standard approach of using maximum a posteriori (MAP) prediction is

complicated by the fact that, in latent variable models (LVMs), we typically want to first

marginalize out the latent variables, leading to an inference task called marginal MAP. Un-

fortunately, marginal MAP prediction can be NP-hard even on relatively simple models such

as trees, and few methods have been developed in the literature. This thesis presents a class

of variational bounds for marginal MAP that generalizes the popular dual-decomposition

method for MAP inference, and enables an efficient block coordinate descent algorithm to

solve the corresponding optimization. Similarly, when learning LVMs for structured pre-

diction, it is critically important to maintain the effect of uncertainty over latent variables

by marginalization. We propose the marginal structured SVM, which uses marginal MAP

inference to properly handle that uncertainty inside the framework of max-margin learning.

xii



We then turn our attention to an important subclass of latent variable models, restricted

Boltzmann machines (RBMs). RBMs are two-layer latent variable models that are widely

used to capture complex distributions of observed data, including as building block for

deep probabilistic models. One practical problem in RBMs is model selection: we need to

determine the hidden (latent) layer size before performing learning. We propose an infinite

RBM model and apply the Frank-Wolfe algorithm to solve the resulting learning problem.

The resulting algorithm can be interpreted as inserting a hidden variable into a RBM model

at each iteration, to easily and efficiently perform model selection during learning. We also

study the role of approximate inference in RBMs and conditional RBMs. In particular, there

is a common assumption that belief propagation methods do not work well on RBM-based

models, especially for learning. In contrast, we demonstrate that for conditional models and

structured prediction, learning RBM-based models with belief propagation and its variants

can provide much better results than the state-of-the-art contrastive divergence methods.

xiii



Chapter 1

Introduction

Probabilistic approaches play central roles in modern developments and analyses of machine

learning methods [e.g., Murphy, 2012, Friedman et al., 2001]. Among all probabilistic tech-

niques, probabilistic graphical models, such as Markov random fields (MRFs) and Bayesian

networks, provide a unified framework and powerful computation tools for probabilistic mod-

eling. In real-world modeling applications, a large part of useful graphical models are latent

variable models (LVMs). This is mainly because (1) partially labeled data or missing val-

ues widely exist in practice, and (2) latent variables have been widely used to capture the

complex high-order correlations among observable data. The presence of latent variables

presents challenges for learning, inference and model selection. In this chapter, we give an

overview of the topics and methodologies that are covered in this thesis.

1.1 Inference in Graphical Models

A graphical model defines a probability distribution over a set of random variables, which uses

a graph-based representation to encode the relationships among variables (i.e, conditional

independences) and organize the required computation. Given a graphical model, inference

refers to answering probabilistic queries about the model. There are three common types of

inference tasks. The first are max-inference or maximum a posteriori (MAP) tasks, which

1



aim to find the most probable state of the joint probability; exact and approximate MAP

inference is widely used in structured prediction, as we will discuss later. Sum-inference tasks

include calculating marginal probabilities and the normalization constant of the distribution,

and play a central role in many learning tasks (e.g., maximum likelihood estimation of

MRFs). Finally, marginal MAP tasks naturally arise in latent variable models (LVMs) [e.g.,

Ping et al., 2014, Naradowsky et al., 2012], in which one need to find the optimal MAP

prediction or estimation with latent variables marginalized. They are “mixed” inference

problems, which generalize the first two types by marginalizing a subset of variables (i.e.,

latent variables) before optimizing over the remainder. 1 All three inference types are

generally intractable but marginal MAP is more challenging on both theoretical and practical

side; the computational complexity of marginal MAP is NPPP-complete [Park and Darwiche,

2004], which is believed to be harder than MAP inference (NP-hard) and sum-inference (#P-

complete), and marginal MAP tasks can be intractable even on tree structured model. As a

result, approximate inference, particularly convex relaxations or upper bounding methods,

are of great interest.

Dual decomposition methods for MAP [e.g., Sontag et al., 2011] give a class of fully de-

composed upper bounds which can be directly optimized using coordinate descent algo-

rithms [e.g., Werner, 2007, Globerson and Jaakkola, 2008]. It is easy to ensure both conver-

gence, and that the objective is monotonically decreasing (so that more computation always

provides a better bound). Given these desirable properties, it is of great interest to investi-

gate dual decomposition methods for other inference tasks. In particular, marginal MAP is

significantly more difficult than MAP and pure marginalization task, and far fewer methods

have been developed. In this thesis, we propose a full decomposition bound which is appli-

cable for both marginal inference and marginal MAP inference. We derive block coordinate

descent algorithm which ensures convergence and monotonicity.

1In some literature [e.g., Park and Darwiche, 2004], marginal MAP is simply called MAP, and the joint
MAP task is called MPE.
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1.2 Structured Output Learning

Structured output learning or structured prediction is one of the most important application

domain of graphical models in machine learning, where one need predict a set of correlated

variables. In specific, one need to learn a structured predictor f : x→ y using some training

data {xn,yn}Nn=1, while both the mapping between input-output pair (x,y) and correlations

among the output variables are modeled by a probabilistic graphical model. For example,

in semantic segmentation task from computer vision, given an input image x, we need to

classify each pixel as a semantic category. The semantic labels y of these pixels are highly

correlated, so we need to make joint predictions. See Figure 1.1(a)-(b) for an example from

Microsoft Research Cambridge (MSRC) dataset [Winn et al., 2005]. In part-of-speech (POS)

tagging from natural language processing, given a sequence of words, one need to classify

each word into a particular POS, and those POS tags are also highly correlated.

Conditional random fields (CRFs) [Lafferty et al., 2001] and structured support vector ma-

chines (SSVMs) [Taskar et al., 2003, Tsochantaridis et al., 2005] are standard tools for

structured prediction in many important domains, such as computer vision [Nowozin and

Lampert, 2011], natural language processing [Getoor and Taskar, 2007] and computational

biology [e.g., Li et al., 2007, Sato and Sakakibara, 2005]. See Figure 1.1(c) for an illustration

of the popular CRF model for image segmentation, which explicitly encodes the correlations

among the pixels through the grid structure. However, many practical cases are not well

handled by these tools, due to the presence of latent variables. We will discuss the latent

variable problem in next section.
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(a) input image x (b) pixel-wise labellings y (c) grid structured CRF

Figure 1.1: (a) An example image from MSRC dataset. (b) Pixel-wise labellings including
sky, grass and tree. (c) Grid structured CRF in which the hatching nodes x represent input
features, and white nodes y represent output variables.

1.3 Latent Variable Models

Latent variables exist in many practical applications of graphical models. They may come

from the missing information of partially labeled data; in previous image segmentation exam-

ple, while it is really expensive to collect labels for every single pixel, especially for boundaries

of objects and ambiguous regions (see Figure 1.2(a)-(b) for an example), partially labeled

data are relatively easy to obtain [e.g., Verbeek and Triggs, 2007]. On the other hand, latent

variables are very important for modeling purpose, because they can either capture the high-

order correlations between the observed variables, or they directly represent some important

latent/unobserved factors in real world.

LVMs for Structured Prediction. Many latent variable models (LVMs), such as hidden

conditional random fields [e.g., Quattoni et al., 2007b], have been proposed for structured

prediction. See Figure 1.2(c) for an illustration of CRF with hidden variables h.

Latent structured SVMs (LSSVMs) [Yu and Joachims, 2009a], which are extended from

structured SVMs [Taskar et al., 2003, Tsochantaridis et al., 2005], are among the most

popular learning methods for these models. It often outperforms its counterparts in many

practical applications, especially when the model assumptions are violated or the number

of training data is limited [e.g., Taskar et al., 2003]. However, LSSVM relies on a joint
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(a) input image x (b) pixel-wise labellings y (c) CRF with hidden variables h

Figure 1.2: (a) An example image from MSRC dataset. (b) Pixel-wise labellings including
cow, grass and tree. The black region represents missing labels. (c) CRF with hidden
variables (shaded nodes) representing missing labels.

maximum a posteriori (MAP) inference which assigns the latent variables h to deterministic

values, and does not take into account their uncertainty. It can produce poor predictions

of output variables y even for exact models [Liu and Ihler, 2013] at test phase, and does

not maintain the uncertainty of latent variables during learning. A better approach for

prediction is marginal MAP inference that averages over possible states of latent variables

before optimizing over output variables. In this thesis, we propose a marginal structured

SVM framework, which properly accounts for the uncertainty of latent variables during

learning by incorporating the marginal MAP inference into the max-margin paradigm.

Restricted Boltzmann Machines. Another popular class of latent variable models are

restricted Boltzmann machines (RBMs). RBMs are two-layer models that use a layer of

hidden variables to model the distribution of observable variables [Smolensky, 1986, Hinton,

2002b]. In the literature on RBMs, hidden and observable variables are referred to as hidden

units h and visible units v, respectively. RBMs have been widely used to capture complex

distributions in numerous application domains, including image modeling [Krizhevsky et al.,

2010], human motion capture [Taylor et al., 2006b] and collaborative filtering [Salakhutdinov

et al., 2007b], and are also widely used as building blocks for deep generative models, such

as deep belief networks [Hinton et al., 2006b] and deep Boltzmann machines [Salakhutdinov

and Hinton, 2009]. Due to the intractability of the likelihood function, RBMs are usually

learned using the contrastive divergence (CD) algorithm [Hinton, 2002b, Tieleman, 2008],
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which approximates the gradient of the likelihood using a Gibbs sampler.

An important model selection problem for RBM is that we need to determine the size of the

hidden layer (number of hidden units), and it is challenging to decide what is the optimal

size. One heuristic is to search the “best” size of hidden layer using cross validation or

testing likelihood within a pre-defined candidate set. Unfortunately, this is extremely time

consuming; it involves running a full training algorithm (e.g., CD) for each possible size, and

thus we can only search over a relatively small set of sizes using this approach. In this thesis,

we propose an infinite RBM model, whose maximum likelihood estimation (MLE) can be

solved by an efficient, greedy algorithm by inserting one hidden unit at each iteration. This

can be used to easily identify an appropriate number of hidden units during learning.

Conditional RBM A conditional restricted Boltzmann machine (CRBM) is the discrimi-

native extension of RBM to include observed features x; CRBM is used in deep probabilistic

model for supervised learning [Hinton et al., 2006a], and also provides a stand-alone solu-

tion to a wide range of problems such as classification [Larochelle and Bengio, 2008], human

motion capture [Taylor et al., 2006a], collaborative filtering [Salakhutdinov et al., 2007a],

and structured prediction [Mnih et al., 2011, Yang et al., 2014]. For structured prediction,

a CRBM need not make any explicit assumptions about the structure of the output vari-

ables (visible units v). This is especially useful in many applications where the structure

of the outputs is challenging to describe (e.g., multi-label learning [Li et al., 2015]). In im-

age denoising or object segmentation, the hidden units can encode higher-order correlations

of visible units (e.g. shapes, or parts of object), which play the same role as high-order

potentials but can improve the statistical efficiency.

Loopy belief propagation (BP) [Pearl, 1988] is a very popular approximate inference algo-

rithm and usually provides a good approximation of marginals for loopy graphical model. It

can be used as inference routine in learning as well as for making predictions after the CRBM

6



has been learned. However, it was found to be slow on CRBMs for structured prediction

and only considered practical on problems with relatively few visible and hidden units [Mnih

et al., 2011]. More importantly, there is a pervasive opinion that belief propagation does not

work well on RBM-based models, especially for learning [Goodfellow et al., 2016, Chapter

16]. In this thesis, we present a very efficient implementation of BP, and demonstrate that

training conditional RBMs with BP as the inference routine can provide significantly better

results than current state-of-the-art algorithms.

1.4 Outline and Contributions

The general outline and contributions of this thesis are summarized as follows:

Chapter 3 generalizes dual decomposition to a generic power sum inference task, which

includes marginal MAP, along with pure marginalization and MAP, as special cases. Specific

contributions include:

• We propose a new convex decomposition bound, which is fully decomposed over the

individual cliques of graph.

• Based on the full decomposition, we develop a block coordinate descent algorithm

which is guaranteed to converge monotonically, and can be parallelized efficiently.

• Our method is faster and more reliable than previous methods on various inference

queries defined on real-world problems from the UAI approximate inference challenge.

This Chapter is based the work originally published in Ping et al. [2015].

Chapter 4 proposes the marginal structured SVM (MSSVM) for structured prediction

with hidden variables. MSSVM properly accounts for the uncertainty of hidden variables

by incorporating the marginal MAP inference into the max-margin learning framework, and

can significantly outperform the previously proposed latent structured SVM (LSSVM; Yu
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and Joachims [2009a]) and other state-of-art methods, especially when that uncertainty is

large. Specific contributions include:

• Our method results in a smoother objective function, making gradient-based optimiza-

tion of MSSVMs converge significantly faster than for LSSVMs.

• Our method consistently outperforms hidden conditional random fields (HCRFs; Quat-

toni et al. [2007a]) on both simulated and real-world datasets.

• We propose a unified framework that includes both our and several other existing

methods as special cases, and provides insights into the comparison of different models

in practice.

This chapter is based on the work originally published in Ping et al. [2014].

Chapter 5 investigates the important model selection problem with restricted Boltzmann

machine (RBM); that is finding the appropriate size of hidden layer. To that end, we

proposes an infinite RBM model, whose maximum likelihood estimation (MLE) corresponds

to a constrained convex optimization. We apply the Frank-Wolfe algorithm to solve the

program, which provides a solution that can be interpreted as inserting a hidden unit at

each iteration, so that the optimization process takes the form of a sequence of finite models

of increasing complexity. Specific contributions include:

• Our method can be used to easily and efficiently identify an appropriate number of

hidden units during the optimization.

• The resulting model can also be used as an initialization for typical state-of-the-art

RBM training algorithms such as contrastive divergence, leading to models with con-

sistently higher test likelihood than random initialization.

This chapter is based on the work that is originally published in Ping et al. [2016].
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Chapter 6 presents a matrix-based implementation of belief propagation algorithms on

CRBMs, which is easily scalable to tens of thousands of visible and hidden units. In addition,

our algorithms uses standard matrix product and element-wise operations, and is thus highly

suitable for modern high performance computing architecture (e.g., GPU). We demonstrate

that, in both maximum likelihood and max-margin learning, training conditional RBMs with

BP as the inference routine can provide significantly better results than current state-of-the-

art contrastive divergence methods on structured prediction problems. We also include

practical guidelines on training CRBMs with BP, and some insights into the interaction

between learning and inference algorithms for CRBMs. This chapter is based on the work

in submission [Ping and Ihler, 2017].

Chapter 7 concludes this thesis and gives some open directions for future research. The

Appendix contains proofs and additional details omitted from the main chapters.
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Chapter 2

Background

In this chapter we review some background knowledge which is required in this thesis. We

organize the chapter as follow. Section 2.1 reviews various types of probabilistic graphical

models. Section 2.2 reviews different types of inference tasks and presents a unified inference

framework on graphical models. We review variational inference techniques at Section 2.3

and parameter estimation methods at Section 2.4.

2.1 Graphical Models

In this section, we review some background material on various types of graphical models

used in this thesis.

2.1.1 Markov Random Fields

A Markov random field (MRF), Markov network or undirected graphical model on discrete

random variables x = [x1, . . . , xn] ∈ X is a probability distribution,

p(x; θ) =
1

Z(θ)
exp

[∑
α∈F

θα(xα)
]
; Z(θ) =

∑
x∈Xn

exp
[∑
α∈F

θα(xα)
]
, (2.1)
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where F is a set of subsets of the variables, each associated with a factor θα(xα), over a

subset of the variables α ⊂ {1, . . . , n}, 1 and Z(θ) is the normalization constant, or partition

function. We associate an undirected graph G = (V,E) with p(x) by mapping each xi to a

node i ∈ V , and adding an edge ij ∈ E if and only if there exists α ∈ F such that {i, j} ⊆ α.

We say node i and j are neighbours if ij ∈ E. Then, F is a set of cliques (fully connected

subgraphs) of G.

We can rewrite the factorized MRF in Eq. (2.1) more compactly as,

p(x; θ) = exp
(
θ(x)− Φ(θ)

)
; θ(x) =

∑
α∈F

θα(xα) (2.2)

where θ(x) are called the natural parameters, and the log partition function Φ(θ) = logZ(θ).

Pairwise Model

A special class of models within the family of MRFs that have received considerable attention

are pairwise models. Pairwise models only include singleton and pairwise factors on the graph

G = (V,E); that is, F = V ∪ E, and we can write

p(x; θ) = exp
[∑
i∈V

θi(xi) +
∑

(ij)∈E

θij(xi, xj)− Φ(θ)
]
, (2.3)

where each singleton factor θi(xi) is associated with a node i ∈ V , and each pairwise factors

θij(xi, xj) correspond to an edge (i, j) ∈ E. It is also commonly written as,

p(x; θ) ∝
∏
i∈V

ψi(xi)
∏

(ij)∈E

ψij(xi, xj)

where ψi(xi) = exp
[
θi(xi)

]
and ψij(xi, xj) = exp

[
θij(xi, xj)

]
.

1θα(xα) is also called log potential function.
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Log-linear Form

One equivalent representation of an MRF is the log-linear form,

p(x; θ) =
1

Z(θ)
exp

[∑
α∈F

θ>α φ(xα)
]

where we arrange the values of the log potential function θα(xα) over each possible config-

uration into a vector θα ∈ R|xα|, 2 whose dimension |xα| is the number of configurations for

xα. The vector φ(xα) ∈ R|xα| corresponds to the features of xα, where each element of the

vector corresponds to an indicator function 1(xα = xα
′) for a configuration xα

′. One can

rewrite it more compactly as,

p(x; θ) =
1

Z(θ)
exp

[
θ>φ(x)

]
; Z(θ) =

∑
x

exp
[
θ>φ(x)

]
(2.4)

by concatenating all {θα} into the model parameter θ and {φ(xα)} into the sufficient statistics

φ(x) (also called the joint feature map), respectively. This log-linear form is convenient in

parameter estimation, because the information of the data is summarized in the sufficient

statistics. It also leads to concise notations when extending MRF models into conditional

random fields as we discussed in the following part.

2.1.2 Conditional Random Fields

Conditional random fields (CRFs) [Lafferty et al., 2001], or undirected conditional models

define a conditional distribution on discrete random variables y = [y1, . . . , ym] ∈ Y given the

observed variables x = [x1, . . . , xn] ∈ X (which can be either discrete or continuous),

p(y | x; θ) =
1

Z(x; θ)
exp

[
θ>φ(x,y)

]
(2.5)

2We slightly abuse the notation θα here to represent both the parameter vector and the log-potential
function.
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(a) chain CRF (b) grid CRF

Figure 2.1: Graphical illustration of (a) chain structured CRF, and (b) grid structured CRF
with y as output variables (white nodes), x as observed input features (nodes with hatching).

where φ(x,y) : X × Y → RD is a set of features which describe the relationships among

the (x,y), and θ ∈ RD are the corresponding log-linear weights, or model parameters. The

function Z(x; θ) is the x-dependent normalization constant,

Z(x; θ) =
∑
y

exp [θ>φ(x,y)].

CRFs are standard tools for structured prediction in many domains. For example, in se-

quence labeling (e.g., part-of-speech tagging), the chain structured CRF is a standard prac-

tice (see Figure 2.1 (a) for a graphical illustration). Also, the grid structured CRF (see

Figure 2.1 (b) for an illustration) is widely applied in semantic image segmentation. These

discriminative models make them feasible to incorporate rich and overlapping features x

without modeling their distribution, which can significantly improve the accuracy in struc-

tured prediction [Lafferty et al., 2001].

2.1.3 CRF with Hidden Variables

As we discussed in Chapter 1, latent (hidden) variables are useful in representing many

structured prediction tasks; they may arise either from missing values in partially labeled

datasets, or be introduced to enrich the model’s flexibility. One can extend the definition in
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(a) CRF with hidden variable (b) CRF after marginalization

Figure 2.2: Graphical illustration of (a) CRF with one hidden variable (shaded nodes), y as
output variables (white nodes), x as observed input features (nodes with hatching). (b) After
marginalization of hidden variable, the output variables become fully connected.

Eq. (2.5) to include hidden variables h ∈ H,

p(y,h | x; θ) =
1

Z(x; θ)
exp

[
θ>φ(x,y,h)

]
, (2.6)

where φ(x,y,h) is the joint feature map which describes the relationships among the (x,y,h).

The marginal distribution over y is,

p(y | x; θ) =
1

Z(x; θ)

∑
h

exp
[
θ>φ(x,y,h)

]
. (2.7)

Note, after marginalizing out hidden variables, the log-linear model (2.6) becomes a non-

linear model (2.7), which can capture high-order correlations among the output variables.

The effect of marginalizing hidden variable is illustrated in Figure 2.2.

2.1.4 Restricted Boltzmann Machine

Another popular class of latent variable models are restricted Boltzmann machines (RBMs)

[Smolensky, 1986, Hinton, 2002b]. In the following subsections, we review background on

RBMs and conditional RBMs. In the literature, people commonly use visible units v to

represent the observable variables, and hidden units h to represent the latent variables. We

follow this convention across the whole thesis.

An RBM is a special undirected graphical model (see Figure 2.3(a)) that defines a joint
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distribution over the vectors of visible units v ∈ {0, 1}|v|×1 and hidden units h ∈ {0, 1}|h|×1,

p(v,h|θ) =
1

Z(θ)
exp

(
− E(v,h; θ)

)
, (2.8)

where |v| and |h| are the number of visible units and hidden units respectively; E(v,h; θ)

is the energy function,

E(v,h; θ) = −v>Wh− v>bv − h>bh;

and θ = {W, bv, bh} are the model parameters, including pairwise interaction terms W ∈

R|v|×|h|, and bias terms bv ∈ R|v|×1 for visible units and bh ∈ R|h|×1 for hidden units. The

function Z(θ) is the normalization constant,

Z(θ) =
∑
v

∑
h

exp
(
− E(v,h; θ)

)
.

Conditional Distribution Because RBMs have a bipartite structure, the conditional dis-

tributions p(v|h; θ) and p(h|v; θ) are fully factorized and can be calculated in closed form,

p(h|v, θ) =

|h|∏
j=1

p(hj|v), with p(hj = 1|v) = σ
(
v>W•j + bhj

)
,

p(v|h, θ) =

|v|∏
i=1

p(vi|h), with p(vi = 1|h) = σ
(
Wi•h+ bvi

)
, (2.9)

where σ(u) = 1/(1 + exp(−u)) is the logistic function, and W•j and Wi• are the j-th column

and i-th row of W respectively. The fully factorized conditional distribution in Eq. (2.9)

allows us to derive an efficient blocked Gibbs sampler that iteratively alternates between

drawing v and h. This Gibbs sampler is the key component of contrastive divergence learning

algorithm for RBM [Hinton, 2010].
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Marginal Distribution Because the energy function of an RBM can be written as the

summation of terms associated with each hidden units hj

−E(v,h; θ) =

|h|∑
j=1

(
v>W•jhj + hjb

h
j

)
+ v>bv,

and each hj takes values in {0, 1}, the marginal distribution of visible units v has the

analytical form,

p(v | θ) =
∑
h

p(v,h; θ) =
1

Z(θ)

{∑
h

exp
[ |h|∑
j=1

(
v>W•jhj + hjb

h
j

)]}
exp

[
v>bv

]

=
1

Z(θ)

{ |h|∏
j=1

1∑
hj=0

exp
(
v>W•jhj + hjb

h
j

)}
exp

[
v>bv

]

=
1

Z(θ)

{ |h|∏
j=1

(
1 + exp(v>W•j + bhj )

)}
exp

[
v>bv

]

=
1

Z(θ)
exp

[ |h|∑
j=1

log
(
1 + exp(v>W•j + bhj )

)
+ v>bv

]
, (2.10)

where W•j is the j-th column of W and corresponds to the weights connected to the j-th

hidden unit. We take advantage of this nice form in Chapter 5.

RBMs have several desirable properties made it very popular in machine leaning commu-

nity: (1) The hidden units in an RBM can encode higher-order correlations of visible units,

which play the same role as high order potentials but can improve the statistical efficiency.

This is because the high order potential function requires a large number of parameters to

describe. 3 (2) The bipartite structure enables efficient inference algorithm as indicated

by blocked Gibbs sampling through Eq. (2.9). (3) The model is compactly represented by

matrix parameters and enables matrix-based implementation of learning and inference algo-

rithms. It should be noted, matrix product and element-wise operations are highly optimized

3For example, a high order potential function over 10 binary units requires up to 210 = 1024 parameters.
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(a) RBM (b) conditional RBM

Figure 2.3: Graphical illustration of (a) a RBM with |v| = 5 visible units and |h| = 4 hidden
units, and (b) the extended CRBM with v as output variables, x as observed input features.

in modern high-performance computing architecture. We take advantage of properties (2)

and (3) in Chapter 6. (4) The two layer structure is convenient for constructing deep proba-

bilistic models, such as deep Boltzmann machines [Salakhutdinov and Hinton, 2009], which

are constructed by a stack of RBMs.

2.1.5 Conditional RBM

The conditional RBM (CRBM) extends RBMs to include observed features x (see Figure

2.3(b) for an illustration),4 and defines a joint conditional distribution over v and h given

input features x ∈ R|x|×1,

p(v,h|x; θ) =
1

Z(x; θ)
exp

(
− E(v,h,x; θ)

)
, (2.11)

where the energy function E is defined as,

E(v,h,x; θ) = −v>W vhh− v>W vxx− h>W hxx− v>bv − h>bh,

4One can view an RBM as a special CRBM with x ≡ 0.
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and θ = {W vh,W vx,W hx, bv, bh} are model parameters. Z(x; θ) is the x-dependent partition

function,

Z(x; θ) =
∑
v

∑
h

exp
(
− E(v,h,x; θ)

)
.

Conditional RBM can be viewed as a particular type of CRF with hidden variables in

Eq (2.6), because the visible units v in CRBMs play the same role as y in in Eq (2.6).

Conditional Distribution Because CRBMs still have a bipartite structure given the ob-

served features, the conditional distributions p(v|h,x) and p(h|v,x) are fully factored and

can be written as,

p(v|h,x) =

|v|∏
i=1

p(vi|h,x), with p(vi = 1|h,x) = σ
(
W vh
i• h+W vx

i• x+ bvi
)
,

p(h|v,x) =

|h|∏
j=1

p(hj|v,x), with p(hj = 1|v,x) = σ
(
vTW vh

•j +W hx
j• x+ bhj

)
, (2.12)

where σ(u) = 1/(1 + exp(−u)) is the logistic function, W vh
i• and W vh

•j are the i-th row and

j-th column of W vh respectively, W vx
i• is the i-th row of of W vx, and W hx

j• is the j-th row

of W hx. Eq. (2.12) allows us to derive a blocked Gibbs sampler that iteratively alternates

between drawing v and h.

Marginal Distribution Similar to standard RBMs, the marginal distribution of the visible

units v given observed features x is,

p(v|x) =
∑
h

p(v,h|x) =
1

Z(x; θ)
exp

[
− F (v,x; θ)

]
, (2.13)
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where the negative energy function has analytic form,

−F (v,x; θ) =

|h|∑
j=1

log
[
1 + exp

(
v>W vh

•j +W hx
j• x+ bhj

)]
+ v>W vxx+ v>bv.

Note that, after marginalizing out hidden variables, the log-linear model (2.11) becomes a

non-linear model (2.13) (since F (v,x; θ) is non-linear), which can capture high-order corre-

lations among visible units. This property is essentially important in many applications of

CRBMs with structured output [e.g., Salakhutdinov et al., 2007a, Mnih et al., 2011].

2.2 Inference Tasks

The use and evaluation of a given graphical model often involves different types of inference

tasks. Given the observed features in conditional models, such as generic CRFs or CRBMs,

the inference tasks are analogous to their generative counterparts. Without loss of generality,

we present the definitions of different inference task in the language of generic MRF (2.1).

2.2.1 Marginalization Inference

Marginalization, or sum-inference tasks perform a sum over the configurations to calculate

the log partition function (2.1),

Φ(θ) = logZ(θ) = log
∑
x∈Xn

exp
[∑
α∈F

θα(xα)
]
,

or marginal probabilities of one or a few variables,

p(xi) =
∑
x\i

p(x) =
1

Z

∑
x\i

exp
[∑
α∈F

θα(xα)
]
;
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Marginal inference is useful in many settings; for example, marginal probabilities can be

used to make Bayes-optimal prediction under Hamming loss (element-wise). In addition,

they are required when calculating the data likelihood and its derivative. It is easy to show

∂Φ(θ)

∂θα(xα)
= p(xα) =

∑
x\α

p(x), (2.14)

which connects the log partition function to the marginal probability, and plays a central

role in maximum likelihood estimation (MLE).

2.2.2 MAP Inference

On the other hand, the maximum a posteriori (MAP), or max-inference tasks performs joint

maximization to find the configuration with the highest probability, that is,

Φ0(θ) = max
x

∑
α∈F

θα(xα). (2.15)

where, since the maximization does not involve the partition function Z, it can be dropped.

In the literature of Bayesian networks, the MAP inference tasks corresponds to optimizing

the configuration of the unobserved variables given some observed evidence, and is often

referred to as the most probable explanation (MPE).

The MAP is widely used in structured prediction applications, e.g., image denoising and se-

mantic segmentation in computer vision [Nowozin and Lampert, 2011]. In these application,

one has a conditional random field (CRF) defined in (2.5), and makes a prediction by

ŷ(θ) = argmax
y∈Y

θTφ(x,y), (2.16)

where x are the input features and y are the output variables.
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2.2.3 Marginal MAP

A generalization of max- and sum- inference is marginal MAP, or mixed-inference, in which

we are interested in first marginalizing a subset A of variables (e.g., hidden variables), and

then maximizing the remaining variables B (whose values are of direct interest), that is,

ΦAB(θ) = max
xB

Q(xB) = max
xB

log
∑
xA

exp
[∑
α∈F

θα(xα)
]
, (2.17)

where A ∪B = V (all the variables) and A ∩B = ∅. The objective function

Q(xB) = log
∑
xA

exp
[
θ(xA,xB)

]
= log

∑
xA

exp
[
θ(x)

]
can be used to measure the quality of a particular decoding xB. Obviously, both sum- and

max- inference are special cases of marginal MAP when A = V and B = V , respectively.

Marginal MAP inference is particularly useful in systems defined with latent variables or

missing information. In fact, it provides Bayes optimal prediction of xB measured by zero-

one loss.

2.2.4 A Unified Inference Framework

It will be useful to introduce an more general inference task, based on a power sum operator:

τi∑
xi

f(xi) =
[∑

xi

f(xi)
1/τi
]τi ,

where f(xi) is any non-negative function and τi is a temperature or weight parameter. The

power sum reduces to a standard sum when τi = 1, and approaches maxx f(x) when τi → 0+,

so that we define the power sum with τi = 0 to equal the max operator.

The power sum is helpful for unifying max- and sum- inference [e.g., Weiss et al., 2007],
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as well as marginal MAP [Liu, 2014]. Specifically, we can apply power sums with different

weights τi to each variable xi along a predefined elimination order (e.g., [x1, . . . , xn]), to

define the weighted log partition function:

Φτ (θ) = log
τ∑
x

exp
[∑
α∈F

θα(xα)
]

= log
τn∑
xn

. . .

τ1∑
x1

exp
[∑
α∈F

θα(xα)
]
, (2.18)

where we note that the value of (2.18) depends on the elimination order unless all the weights

are equal. Obviously, (2.18) includes marginal MAP (2.17) as a special case by setting weights

τA = 1 and τB = 0. We will demonstrate in Chapter 3 that this representation provides

a useful tool for understanding and deriving new algorithms for general inference tasks,

especially marginal MAP, for which relatively few efficient algorithms exist.

2.3 Approximate Inference and Variational Methods

The computational complexity of three common inference tasks are in order of increas-

ing difficulty: MAP is NP-complete, sum-inference is #P-complete, and marginal MAP is

NPPP-complete [Park and Darwiche, 2004]. Thus, they are intractable on loopy graphs, and

marginal MAP can be intractable even for trees [Koller and Friedman, 2009a]. As a result,

approximate inference algorithms, particularly efficient variational methods, are of great

interest. This section reviews the variational inference framework and several important

approximate inference algorithms.

2.3.1 Exponential Family and Exact Variational Form

Given this exponential family representation in Eq. (2.2), we have the following important

properties about the log-partition function Φ(θ), which are central to both inference and

learning [Wainwright and Jordan, 2008]:
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Proposition 2.3.1. (1) Φ(θ) can be represented using the variational form,

Φ(θ) = log
∑
x

exp(θ(x)) = max
b∈M(G)

{
〈θ, b〉+H(x; b)

}
(2.19)

where the marginal polytope M(G) is the set of all possible marginal distributions b = {bα(xα) :

α ∈ F} that are consistent with a valid joint distribution q(x), that is,

M(G) = {b | bα(xα) =
∑
x\α

q(x) for ∀α ∈ F , ∀xα ∈ Xα}, (2.20)

and 〈θ, b〉 is the inner product,

〈θ, b〉 =
∑
α∈F

∑
xα

bα(xα)θα(xα).

H(x; b) is the entropy of b(x),

H(x; b) = −Eb(x) log b(x) = −
∑
x

b(x) log b(x),

We slightly abuse the notation b(x) to represent an unique joint distribution that achieves

the maximum entropy among all the joint distributions whose marginals are equal to b =

{bα(xα) : α ∈ F}. 5

In addition, the maximum of Eq. (2.19) is attained when b is equal to the marginals of

p(x) = exp(θ(x)− Φ(θ)), that is, bα(xα) = p(xα) for ∀α ∈ F ,∀xα ∈ Xα.

(2) Φ(θ) is a convex function with θ.

Proof. (1) See [Wainwright and Jordan, 2008, Chapter 3].

5 There are many joint distributions {q(x)} whose marginals equal to {bα}. According to the maximum
entropy principle [Jaynes, 1957], there is an unique joint distribution q∗(x) which achieves maximum entropy.
In addition, q∗(x) is in the exponential family.
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(2) From Eq. (2.19), Φ(θ) is the supremum of a set of linear functions with θ, thus it is

convex.

The form (2.19) plays the central role for the development of variational inference meth-

ods. It transform the marginalization inference task, i.e., calculating the log-partition func-

tion Φ(θ) into a continuous optimization problem. However, it should be noted that the

form (2.19) does not decrease the computational complexity of sum inference, because (1)

the entropy H(x; b) is generally intractable to calculate exactly from the marginals b, and (2)

the marginal polytope M may require an exponential number of linear constraints to charac-

terized exactly. Although exact calculation remains intractable, the variational from (2.19)

provides a powerful framework for deriving a spectrum of variational inference algorithms

by approximating both the marginal polytope M(G) and the entropy H(x; b) using various

techniques. In the subsequent sections, we will introduce the local consistency polytope for

approximating the marginal polytope M, Bethe and various convex approximation for the

the entropy H(x; b).

Before that, we first generalize the variational form of marginalization inference to other

different inference task. For any scalar ε > 0 (including ε→ 0+), we have

Φε(θ) = ε log
∑
x

exp(
θ(x)

ε
) = εmax

b∈M

{
〈θ
ε
, b〉+H(x; b)

}
(according to (2.19))

= max
b∈M

{
〈θ, b〉+ εH(x; b)

}
.

When ε→ 0+, we have the variational form of MAP inference

Φ0(θ) = max
b∈M

{
〈θ, b〉

}
. (2.21)

As demonstrated in [Liu, 2014, Liu and Ihler, 2011], one can further generalize the variational
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form of the above scalar-weighted log partition function to the vector-weighted log partition

function in Eq. (2.18).

Proposition 2.3.2. The weighted log partition function can be represented using the varia-

tional form,

Φτ (θ) = log
τn∑
xn

. . .

τ1∑
x1

exp(θ(x)) = max
b∈M(G)

{
〈θ, b〉+

∑
i

τiH(xi|xi+1:n; b)
}
, (2.22)

where H(xi|xi+1:n; b) is the conditional entropy on b(x), and is defined as H(xi|xi+1:n; b) =

−
∑

x b(x) log(b(xi|xi+1:n)). The maximum is attained when

b(x) =
n∏
i=1

b(xi|xi+1:n); b(xi|xi+1:n) = (Zi−1(xi:n)/Zi(xi+1:n))1/τi ,

where Zi is the partial powered-sum up to x1:i,

Zi(xi+1:n) =

τi∑
xi

. . .

τ1∑
x1

exp(θ(x)).

Proof. See Theorem 4.1 of [Liu, 2014].

A notable special case of (2.22) is the variational form of marginal MAP [Liu and Ihler,

2013],

ΦAB(θ) = max
xB

log
∑
xA

exp
(
θ(x)

)
= max

b∈M(G)

{
〈θ, b〉+H(xA|xB; b)

}
, (2.23)

where H(xA|xB; b) is a conditional entropy,

H(xA|xB; b) = −
∑
x

b(x) log b(xA|xB) = H(x; b)−H(xB; b)

It can be directly obtained from (2.22) by setting weights τA = 1 and τB = 0.
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2.3.2 Loopy Belief Propagation and Bethe Approximation

An complete approximating treatment of the exact variational form Eq. (2.19) includes three

components: (1) an approximation to the marginal polytope; (2) an approximation to the

joint entropy H(x; b); and (3) an efficient message-passing algorithm solving the continuous

optimization with approximations (1)–(2). In this subsection, we review the local consistency

polytope, Bethe entropy approximation and loopy belief propagation (BP) algorithm, which

fulfill the goals of (1), (2) and (3), respectively.

Local Consistency Polytope

As we mentioned before, it is intractable to specify the marginal polytope M(G) on general

graphs, that is, it requires an exponential number of linear constraints to characterize it

exactly. The local consistency polytope provides a convenient approximation for M(G), and it

is a shared component of most belief-propagation-style algorithms. For notational simplicity,

we restrict our discussion to pairwise graphical models defined on graph G = (V,E) as in

Eq. (2.3),

p(x; θ) = exp
[∑
i∈V

θi(xi) +
∑

(ij)∈E

θij(xi, xj)− Φ(θ)
]
.

The marginal polytope of pairwise model G is the set of all possible marginal distributions

(including only singleton marginals and pairwise marginals),

b =
{
bi(xi), bij(xi, xj) : ∀i ∈ V, ∀(i, j) ∈ E

}
,
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that are consistent with a valid joint distribution q(x) (i.e., q(x) ≥ 0 and
∑
x q(x) = 1),

that is,

M(G) =
{
b | bi(xi) =

∑
x\i

q(x), bij(xi, xj) =
∑
x\ij

q(x), for ∀i ∈ V, ∀(i, j) ∈ E
}
.

Note that for any b ∈ M, the singleton marginals and pairwise marginals should be consistent

with each other, that is, the marginalization constraints bi(xi) =
∑

xj
bij(xi, xj) are naturally

hold, because they are both the marginals of a valid joint distribution q(x). This motivates

the definition of the local consistency polytope,

L(G) =
{
b | bi(xi) =

∑
xj

bij(xi, xj),
∑
xi

bi(xi) = 1, bij(xi, xj) ≥ 0, for ∀i ∈ V, ∀(i, j) ∈ E
}
.

(2.24)

For any b ∈ M, we have that b ∈ L, and thus M(G) ⊆ L(G).

In addition, M = L when G is a tree [Wainwright and Jordan, 2008]. In fact, on tree

structured model, an valid joint distribution q(x) can be explicitly constructed from the

local consistent marginals {bi, bij} by the junction tree theorem [Wainwright and Jordan,

2008],

q(x) =
∏
i∈V

bi(xi)
∏

(ij)∈E

bij(xi, xj)

bi(xi)bj(xj)
,

One can easily verify that bi(xi) =
∑
x\i
q(x) by treating i ∈ V as the root of tree, and

always eliminating leaf/child nodes at first when performing the summation:
∑
x\i
q(x). See

Proposition 4.1 in Wainwright and Jordan [2008] for more details.
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Bethe Entropy Approximation

The exact joint entropy H(x; b) is intractable on general graph G. However, when G is a tree,

the joint entropy can be represented exactly using a linear combination of local entropies

defined on singleton marginals and pairwise marginals. This representation motivates the

Bethe entropy approximation on general graph.

Proposition 2.3.3. On a tree structured model G, the joint entropy H(x; b) can be calculated

exactly using the local entropies H(xi; bi) and H(xi, xj; bij) defined on the local marginals

bi(xi) and bij(xi, xj), respectively, that is,

H(x; b) =
∑
i∈V

(1− |∂(i)|)H(xi ; bi) +
∑

(i,j)∈E

H(xi, xj ; bij),

where ∂(i) = {j | (i, j) ∈ E}, so that |∂(i)| is the degree or number of neighbors of node i,

and

H(xi ; bi) = −
∑
xi

bi(xi) log bi(xi), H(xi, xj ; bij) = −
∑
xi

∑
xj

bij(xi, xj) log bij(xi, xj).

It can be equivalently written as

H(x; b) =
∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

Iij(bij), (2.25)

because the mutual information Iij(bij) is

Iij(bij) =
∑
xi,xj

bij(xi, xj) log
bij(xi, xj)

bi(xi)bj(xj)
= H(xi; bi) +H(xj; bj)−H(xi, xj; bij)

Proof. According to the junction tree theorem [Wainwright and Jordan, 2008], when G is a

28



tree, the joint distribution b(x) can be explicitly written as 6

b(x) =
∏
i∈V

bi(xi)
∏

(ij)∈E

bij(xi, xj)

bi(xi)bj(xj)
.

Thus, joint entropy H(x; b)

H(x; b) = −Eb(x)

[
log b(x)

]
= −Eb(x)

[∑
i∈V

log bi(xi) +
∑

(ij)∈E

log
bij(xi, xj)

bi(xi)bj(xj)

]
=
∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

Iij(bij),

This completes the proof.

The entropy decomposition in Eq. (2.25) does not hold in loopy graphs, but it provides a

well-defined approximation on general graphs,

H(x; b) ≈ Hbethe(x; b)
def
==

∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

Iij(bij), (2.26)

which is referred to as the Bethe entropy approximation. It should be noted that, although the

exact joint entropy H(x; b) is concave w.r.t. b, the Bethe entropy Hbethe is not guaranteed to

be concave, except on tree structured models. We will discuss convex entropy approximations

in Section 2.3.3.

6We slightly abuse the notation b to represent both the joint distribution and marginals.
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Algorithm 2.1 Loopy sum-product BP on pairwise models

Input: Pairwise model p(x) ∝
∏

i∈V exp
[
θi(xi)

]∏
(ij)∈E exp

[
θij(xi, xj)

]
on undirected

graph G = (V,E). Let ∂(i) be the neighborhood of i ∈ V .

Output: Approximate marginals {bi(xi), bij(xi, xj) : i ∈ V, (ij) ∈ E}.

1. Pass messages between the nodes until convergence:

mi→j(xj) ∝
∑
xi

exp
[
θij(xi, xj)

]
exp

[
θi(xi)

] ∏
i′∈∂(i)\{j}

mi′→i(xi). (2.27)

2. Calculate the approximate marginals,

bi(xi) ∝ exp
[
θi(xi)

] ∏
i′∈∂(i)

mi′→i(xi),

bij(xi, xj) ∝ exp
[
θij(xi, xj) + θi(xi) + θj(xj)

] ∏
i′∈∂(i)\{j}

mi′→i(xi)
∏

j′∈∂(j)\{i}

mj′→j(xj),

and the approximated log-partition function,

Φ(θ) ≈ 〈θ, b〉+
∑
i∈V

Hi(bi)−
∑

(ij)∈E

Iij(bij).

Loopy Belief Propagation

Applying the local consistency polytope (2.24) and the Bethe entropy approximation (2.26),

we obtain the following Bethe variational optimization,

Φbethe(θ)
def
== max

b∈L(G)

{
〈θ, b〉+

∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

Iij(bij).
}

(2.28)

This continuous optimization is non-convex in general because the Bethe entropy can be

non-concave. An elegant and well known result by Yedidia et al. [2000] is that the stationary

points (including local optima) of Eq. (2.28) are fixed points of the popular loopy sum-

product BP algorithm [Pearl, 1988], which is summarized in Algorithm 2.1. In fact, the

fixed-point updates in Eq. (2.27) can be derived using a Lagrangian method, in which case the

messages correspond to the Lagrange multipliers that enforce the local consistency condition.
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For more details of the derivation, we refer the reader to Theorem 4.2 in Wainwright and

Jordan [2008].

2.3.3 Tree-reweighted Variational Method

In the following sections, we review convex variational methods, especially the tree-reweighted (TRW)

variational bound [Wainwright et al., 2005].

Convex Variational Methods

The variational optimization Eq. (2.28) is generally non-convex, because the Bethe entropy

approximation is non-concave with b. A large spectrum of concave entropy approxima-

tions have been proposed by using more general counting numbers, or coefficients in the

linear combination of the local entropies. In general, they can be constructed by taking the

non-negatively weighted sum of joint/conditional entropies, ensuring that they are provably

concave because both the joint and conditional entropy are concave functions.

TRW Variational Bound

Wainwright et al. [2005] propose an important class of provably concave entropy approxima-

tions, referred to as TRW, which is also guaranteed to give an upper bound of the exact joint

entropy. The basic idea is reparameterize the loopy graph as an combination of spanning

trees. Let T is the set of spanning trees of G, and wT = {wT > 0 : T ∈ T } is a set of positive

weights associated with T , such that
∑

T∈T w
T = 1, that is, wT defines a distribution over

the set of spanning trees. One can define ρij to be the edge appearance probabilities under

this distribution,

ρij =
∑

T :(ij)∈T

wT , (2.29)
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which is the sum of weights of spanning trees that include (ij) as an edge.

The TRW entropy approximation Htrw(x; b) is defined as,

Htrw(x; b)
def
==

∑
T∈T

wTHbethe(x; b, T ); (2.30)

where Hbethe(x; b, T ) is the Bethe entropy defined on the spanning tree T, that is,

Hbethe(x; b, T ) =
∑
i∈V

H(xi; bi)−
∑

(i,j)∈T

Iij(bij). (2.31)

We have the following properties for Htrw(x; b) : (1) According to Proposition 2.3.3, the

Bethe entropy Hbethe(x; b, T ) is exact on the tree model defined by corresponding marginals

{bi(xi), bij(xi, xj) | i ∈ V, (i, j) ∈ T )}, thus it is concave w.r.t. b. As a result, Htrw(x; b) in

Eq. (2.30) is also concave ; (2) If b ∈ M(G), then Hbethe(x; b, T ) ≥ H(x; b) [Wainwright and

Jordan, 2008]. Therefore,

Htrw(x; b) =
∑
T∈T

wTHbethe(x; b, T ) ≥
∑
T∈T

wTH(x; b) = H(x; b).

As a result, Htrw(x; b) is both a concave approximation and an upper bound of the exact

joint entropy.

One can substitute Eq. (2.31) into Eq. (2.30), and use {ρij} from (2.29) to rewrite Htrw(x, b)

as,

Htrw(x, b) =
∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

ρijIij(bij). (2.32)
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Combined with the local consistency polytope, the TRW variational optimization is

Φtrw({ρij}; θ)
def
== max

b∈L(G)

{
〈θ, b〉+

∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

ρijIij(bij)
}
, (2.33)

which is analogous the the Bethe variational optimization Eq. (2.28). After maximizing

the right-hand side, it will provide an upper bound on the log-partition function, that is,

Φtrw({ρij}; θ) ≥ Φ(θ), because it maximizes an upper bound approximation on a lager set

L(G) ⊇ M(G), in contrast to the exact variational optimization Eq. (2.19). This convex op-

timization (2.33) can be efficiently solved by the tree-reweighted belief propagation (TRBP)

algorithm [Wainwright et al., 2005], which iteratively passes the messages and is analogous

to loopy BP in Algorithm 2.1, but uses power sum in the message updates.

One can also optimize the edge appearance probabilities {ρij} to minimize Φtrw({ρij}; θ) and

obtain the tightest upper bound. Wainwright et al. [2005] presents a double-loop conditional

gradient descent algorithm for this minimization, in which the inner-loop optimizes b with

fixed {ρij} via TRBP, and the outer-loop takes conditional gradient descent updates on {ρij}.

Unfortunately, this double-loop procedure is very slow due to the expensive inner-loops; be-

cause it is a min{ρij}maxb saddle point problem, and the gradient of weights {ρij} is only valid

when then inner maximization is completely solved. Thus, most TRW implementations [e.g.,

Mooij, 2010] simply adopt fixed {ρij}. In Chapter 3, we present a fully decomposed upper

bound on which we can simultaneously perform message-passing iterations and update the

weights.

TRW Primal Bound

In the above, we interpret the tree-reweighted method as a convex entropy approximation in

variational (dual) form. Another equivalent derivation is directly bounding the log-partition

function Φ(θ) via Jensen’s Inequality in primal form.
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We denote a set of reparameterization parameters {θT : T ∈ T } on the set of spanning

trees T , such that (1) θ(x) =
∑

T∈T θ
T (x) for ∀x, and (2) the Markov random field of

p(x|θT ) = exp
(
θT (x)− Φ(θT )

)
is a tree structured model defined on the spanning tree T .

Because Φ(θ) is a convex function with θ (see Proposition 2.3.1) and
∑

T∈T w
T = 1, we have

Φ(θ) = Φ
(∑
T∈T

wT
θT

wT

)
≤
∑
T∈T

wTΦ(
θT

wT
)

def
== Ltrw({θT}, {wT}), (2.34)

by Jensen’s inequality. It is easy to show that the upper bound Ltrw({θT}, {wT}) is jointly

convex with {θT} and {wT}, because one can rewrite it into

∑
T∈T

wTΦ(
θT

wT
) =

∑
T∈T

wT max
bT∈M(T )

{
〈 θ

T

wT
, bT 〉+H(x, bT )

}
(by applying Eq. (2.19))

=
∑
T∈T

max
bT∈M(T )

{
〈θT , bT 〉+ wTH(x, bT )

}
,

and notice that it is a supremum of a set of linear function over {θT} and {wT}.

The tightness of the upper bound Ltrw depend on the choice of {θT} and {wT}, and one

can optimize them to get the tightest bound. Wainwright et al. [2005] showed the following

important proposition:

Proposition 2.3.4. The TRW variational optimization in Eq. (2.33) is the dual problem of

minimizing primal TRW bound in Eq. (2.34) with {θT} given fixed weights {wT}, that is,

min
{θT }

{∑
T∈T

wTΦ(
θT

wT
)
}

= max
b∈L

{
〈θ, b〉+

∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

ρijIij(bij)
}
. (2.35)

where
∑

T∈T θ
T = θ,

∑
T∈T w

T = 1 on the left-hand side, and {ρij} on the right hand side

are induced from {wT} by definition Eq.(2.29).
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As a result, the tightest upper bound obtainable by TRW is,

min
{wT }

min
{θT }

Ltrw({θT}, {wT}) = min
{ρij}

max
b∈L

{
〈θ, b〉+

∑
i∈V

H(xi; bi)−
∑

(i,j)∈E

ρijIij(bij)
}
. (2.36)

The two forms of TRW bound have their own pros and cons:

• The primal bound Ltrw({θT}, {wT}) on the left-hand side (LHS) provides an “any-time”

bound for log-partition function with any values of {θT}, {wT}, while the variational

form at right-hand side (RHS) is only guaranteed to be an upper bound when b is fully

optimized.

• The joint minimization on the LHS enables simultaneous optimization over the repa-

rameterization {θT} and weights {wT}, while the saddle point problem on the RHS

needs a double loop algorithm with an expensive inner-loop maximization.

• On the other hand, it is computationally intractable to fully optimize the primal bound

Ltrw({θT}, {wT}) directly, because the number of spanning trees T on the graph G can

be extremely large. For efficiency reasons, some methods [e.g., Jancsary and Matz,

2011] heuristically select a small subset of trees, but if too few trees are included, the

bound will be loose.

In Chapter 3, we introduce a full decomposition bound, which has (1) much more compact

representation compared to the primal TRW, and (2) an any-time property in the sense that

it provide a bound at any point of the optimization, also (3) joint minimization over all

parameters compared to variational form of TRW.

2.3.4 Dual Decomposition for MAP

This subsection reviews the dual decomposition method for MAP inference [e.g., Komodakis

et al., 2007, Sontag et al., 2011]. In MAP, linear programming methods and their related

dual decomposition methods have become a dominant approach in the last decade, with
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numerous optimization methods such as coordinate descent [Werner, 2007, Globerson and

Jaakkola, 2008], subgradient descent [Komodakis et al., 2011], and alternating direction

methods [Meshi and Globerson, 2011, Forouzan and Ihler, 2013].

One can directly obtain the following upper bound of MAP inference (2.15), 7

Φ0(θ) = max
x

[∑
i∈V

θi(xi) +
∑
α∈F

θα(xα)
]
≤
∑
i∈V

max
xi

θi(xi) +
∑
α∈F

max
xα

θα(xα), (2.37)

which is a application of the inequality: maxx
[∑

k fk(x)
]
≤
∑

k maxx fk(x).

To increase the flexibility of the upper bound, one can introduce a set of cost-shifting or repa-

rameterization variables δ = {δαi (xi) | ∀(i, α), i ∈ α} on each variable-factor pair (i, α) [e.g.,

Ihler et al., 2012], and rewrite Φ0(θ) as,

Φ0(θ) = max
x

[∑
i∈V

(
θi(xi) +

∑
α∈Ni

δαi (xi)
)

+
∑
α∈F

(
θα(xα)−

∑
i∈α

δαi (xi)
)]

(2.38)

by noticing that:
∑
i∈V

∑
α∈Ni

δαi (xi) =
∑
α∈F

∑
i∈α

δαi (xi)

where Ni = {α | α 3 i} is the set of cliques incident to i. Then, one can simply apply the

inequality (2.37) on Eq.(2.38) and obtain the fully decomposed upper bound,

L(δ)
def
==

∑
i∈V

max
xi

[
θi(xi) +

∑
α∈Ni

δαi (xi)
]

+
∑
α∈F

max
xα

[
θα(xα)−

∑
i∈α

δαi (xi)
]
≥ Φ0(θ). (2.39)

Note, L(δ) gives a class of easy-to-evaluate upper bounds, because it decomposes the joint

max on x into a sum of independent max over nodes xi and smaller cliques xα, which

significantly reduces computational complexity. In addition, one can optimize the cost-

shifting variables δ to get a much tighter upper bound minδ L(δ), where the objective is

convex w.r.t. δ because it is the supremum over sets of linear functions.

7Following Sontag et al. [2011], we add singleton factors {θi(xi)} on each node i ∈ V for the purpose of
illustration. Obviously, these node factors can be absorbed into clique factors {θα(xα)}.
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In the above, we directly derive the dual-decomposition bound (2.39) from an “primal”

bound (2.37) of MAP value Φ0(θ). Another equivalent derivation is starting from the linear

programming (LP) relaxation of MAP inference [e.g., Globerson and Jaakkola, 2008],

Φ0(θ) = max
b∈M(G)

〈θ, b〉 ≤ max
b∈L(G)

〈θ, b〉,

where M(G) = {b | ∃ valid joint distribution q(x), bα(xα) =
∑
x\α

q(x)} is the marginal

polytope, and L(G) = {b | bi(xi) =
∑

xα\i
bα(xα),

∑
xi
bi(xi) = 1} is the local consistency

polytope. The first equality is from Eq. (2.21), and the second inequality naturally holds

because of M(G) ⊆ L(G). Note,

max
b∈L(G)

〈θ, b〉 = max
b∈L(G)

{∑
i∈V

∑
xi

θi(xi)bi(xi) +
∑
α∈F

θα(xα)bα(xα)
}
. (2.40)

We derive the Lagrangian dual problem of this LP relaxation. 8 We first introduce Lagrange

multipliers δ = {δαi (xi) | ∀(i, α), i ∈ α} associated with each marginalization constraint of

L(G), and frame the Lagrangian function of Eq.(2.40) as

LG(b, δ) =
∑
i∈V

∑
xi

θi(xi)bi(xi) +
∑
α∈F

∑
xα

θα(xα)bα(xα) +
∑
α∈F

∑
i∈α

∑
xi

δαi (xi)
(
bi(xi)−

∑
xα\i

bα(xα)
)

=
∑
i∈V

∑
xi

[(
θi(xi) +

∑
α∈Ni

δαi (xi)
)
· bi(xi)

]
+
∑
α∈F

∑
xα

[(
θα(xα)−

∑
i∈α

δαi (xi)
)
· bα(xα)

]
.

It should be noted that, since we do not introduce Lagrange multipliers for the normalization

constraint, b still needs to satisfy {b |
∑

xi
bi(xi) = 1,

∑
xα
bα(xα) = 1}. As a result, it is

straightforward to see that

max
b
LG(b, δ) =

∑
i∈V

max
xi

[
θi(xi) +

∑
α∈Ni

δαi (xi)
]

+
∑
α∈F

max
xα

[
θα(xα)−

∑
i∈α

δαi (xi)
]

= L(δ),

8The term “dual” in dual-decomposition indeed refers to the dual of LP relaxation.
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because the maximum can be attained by setting

b∗i (xi) = 1(xi = x∗i ), where x∗i = argmax
xi

[
θi(xi) +

∑
α∈Ni

δαi (xi)
]

b∗α(xα) = 1(xα = x∗α), where x∗α = argmax
xα

[
θi(xα)−

∑
i∈α

δαi (xi)
]

where 1 is the indicator function. According to the strong duality of linear program-

ming [Boyd and Vandenberghe, 2004],

max
b∈L(G)

〈θ, b〉 = max
b

min
δ
LG(b, δ) = min

δ
max
b
LG(b, δ) = min

δ
L(δ),

we obtain the same dual-decomposition bound as Eq. (2.39).

One can apply the subgradient algorithm to solve the optimization minδ L(δ). Suppose the

decoded value on node i and the decoded values on clique α are,

x∗i = argmax
xi

[
θi(xi) +

∑
α∈Ni

δαi (xi)
]

and x∗α = max
xα

[
θα(xα)−

∑
i∈α

δαi (xi)
]
, (2.41)

respectively. We also denote x∗α[i] as the value of xi in x∗α where i ∈ α. Then, one can show

that the subgradient of L(δ) (2.39) w.r.t. δαi (xi) is

∂L(δ)

δαi (xi)
=



0, xi 6= x∗i and xi 6= x∗α[i]

−1, xi = x∗i and xi 6= x∗α[i]

1, xi 6= x∗i and xi = x∗α[i]

0, xi = x∗i and xi = x∗α[i]

thus the subgradient descent algorithm is directly applicable. A well known result about

the subgradient descent method is that it is guaranteed to converge to optimality whenever

the step sizes are chosen such that limt→∞ ηt = 0 and
∑∞

t=0 ηt = ∞ [e.g., Anstreicher and

38



Wolsey, 2009].

A more popular approach for minimizing L(δ) (2.39) is the coordinate descent algorithm (e.g.,

max-product linear programming (MPLP) [Globerson and Jaakkola, 2008]). In Chapter 3,

we propose the generalized dual-decomposition algorithm, which extends previous block

coordinate descent algorithms to summation and marginal MAP inference.

2.4 Learning Methods

This section reviews different parameter estimation methods for graphical models.

2.4.1 MLE for Graphical Models

Maximum likelihood estimation (MLE) is the single most common parameter estimation

method for probabilistic graphical models. We review MLE for generic Markov random

fields (MRFs) and conditional random fields (CRFs).

MLE for Markov Random Fields

Assume we have a training set S = {xn}Nn=1 ∈ XN , and we use the following undirected

model defined in (2.4),

p(x; θ) =
1

Z(θ)
exp

[
θ>φ(x)

]
; Z(θ) =

∑
x

exp
[
θ>φ(x)

]
The maximum of (averaged) log-likelihood is, 9

max
θ
L(θ) =

1

N

N∑
n=1

log p(xn; θ) =
1

N

N∑
n=1

θ>φ(xn)− logZ(θ). (2.42)

9One can also introduce the regularization term, e.g., a 2-norm of θ, to avoid overfitting.
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One can do gradient descent or stochastic gradient descent for this optimization, and one

can easily verify the gradient of this log-likelihood function is

∇θL =
1

N

N∑
n=1

φ(xn)− 1

Z(θ)

∑
x

{
exp

[
θ>φ(x)

]
· φ(x)

}
=

1

N

N∑
n=1

φ(xn)− Ep(x;θ)

[
φ(x)

]
,

(2.43)

where Ep(x;θ)

[
φ(x)

]
=
∑
x p(x; θ)φ(x) is the model expectation of the sufficient statistics.

Note, the stationary point (zero-gradient) enforces an intuitive matching between the empir-

ical moment and the model moment, which is commonly referred to as moment matching.

The model expectation is generally intractable, and for φ(x) taken to be the set of indicator

functions, it reduce to marginal probabilities (i.e., over-complete representation [Wainwright

and Jordan, 2008], and can be approximated using the “pseudo” marginals obtained from

belief propagation algorithms, e.g., Algorithm 2.1.

MLE for Conditional Random Fields

Suppose we have a training set S = {(xn,yn)}Nn=1 ∈ (X × Y)N , and we use the CRF model

in (2.5) for structured prediction on y. The maximum conditional log-likelihood CL(θ) is

max
θ
CL(θ) =

1

N

N∑
n=1

log p(yn|xn; θ) =
1

N

N∑
n=1

{
θ>φ(xn,yn)− logZ(xn, θ)

}
. (2.44)

One can solve this optimization by gradient descent or stochastic gradient descent, and the

gradient is

∇θCL =
1

N

N∑
n=1

{
φ(xn,yn)− Ep(y|xn;θ)

[
φ(xn,y)

]}
, (2.45)

where Ep(y|xn;θ)

[
φ(xn,y)

]
=
∑
y p(y|xn; θ)φ(xn,y) is the conditional expectation, which is

generally intractable and can be approximated using belief propagation algorithms. The
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moment matching condition (zero-gradient) is analogous to the MLE of MRF (2.43).

2.4.2 Structured SVM

In this subsection we review the structured SVM (SSVM), or max-margin Markov network

method [Taskar et al., 2003, Tsochantaridis et al., 2005], which is a popular learning method

in structured prediction. Suppose we use the undirected conditional model defined in (2.5),

and we have a training set S = {(xn,yn)}Nn=1 ∈ (X × Y)N . The structured SVM minimizes

an upper bound of the empirical risk function. The risk is measured by an user-specified

empirical loss function ∆(yn, ŷn), which quantifies the difference between an predictor ŷn

and the ground truth output yn. It is usually difficult to directly minimize this loss func-

tion because it is typically non-convex and discontinuous with the model parameter θ (e.g.,

Hamming loss). Instead, one adopts surrogate upper bounds to overcome this difficulty.

Assume ŷn(θ) is the MAP prediction on instance xn as defined in (2.16). One can upper

bound the empirical loss function ∆(yn, ŷn(θ)) as follows,

∆(yn, ŷn(θ)) ≤ ∆(yn, ŷn(θ)) + θ>φ(xn, ŷn(θ)))− θ>φ(xn,yn)

≤ max
y

{
∆(yn,y) + θ>φ(xn,y)

}
− θ>φ(xn,yn),

where the first inequality holds because ŷn(θ) is the MAP prediction (2.16), and the second

because it jointly maximizes two terms. Minimizing this upper bound over the training set

with a L2 regularization, one obtain the following objective function SL for structured SVM,

min
θ

1

2
‖θ‖2 + C

N∑
n=1

{
max
y

{
∆(yn,y) + θ>φ(xn,y)

}
− θ>φ(xn,yn)

}
, (2.46)

which is often referred to as structured hinge-loss, because it generalize the hinge-loss func-

tion in standard SVMs. Note that this objective is convex w.r.t. θ because the supremum
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over sets of linear functions is always convex. Because SSVM explicitly minimizes a surro-

gate of the desired loss function, it often outperforms the CRF model learned by MLE in

many practical applications, especially when the model assumptions are violated or one have

limited training data [e.g., Taskar et al., 2003].

One can also use the sub-gradient descent to solve this optimization [Ratliff et al., 2007],

and the sub-gradient of the SSVM objective (2.46) is:

∇θSL = θ + C

N∑
n=1

φ(xn, ŷn)− C
N∑
n=1

φ(xn,yn), (2.47)

where ŷn = argmax
y∈Y

{
∆(yn,y) + θ>φ(xn,y)

}
(2.48)

where ŷn is the loss-augmented MAP prediction, which can be approximate via max-product

belief propagation or dual-decomposition if the loss function ∆(yn,y) is decomposed over the

undirected model G = (V,E); for example, Hamming loss ∆hamm(yn,y) :=
∑

i∈V 1(yni = yi)

is decomposed over the nodes.

SVMs are often formulated in terms of a quadratic program (QP) called the constraint form.

The constraint form of structured SVM (2.46) is,

min
θ,{ξn≥0}

1

2
‖θ‖2 + C

N∑
n=1

ξn, (2.49)

s.t. ∀ n, ∀ y ∈ Y , θ>φ(xn,yn)− θ>φ(xn,y) ≥ ∆(yn,y)− ξn,

where the slack variable ξn enforces a soft constraint that the “score” of training instance

(xn,yn), 10 must be larger than the score of (xn,y) with arbitrary y ∈ Y by a large margin

∆(yn,y). Intuitively, the larger difference between y and the ground truth yn, the larger

margin it will enforce. It is also referred to as the margin rescaling form of the SSVM because

10In the literature of structured SVM, s(x,y)
def
== θ>φ(x,y) is also referred to as score function.
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it rescales the margin of the regular support vector machine to ∆(yn,y) [Tsochantaridis et al.,

2005]. It is straightforward show that the optimal {ξ∗n}Nn=1 satisfy,

ξ∗n = max
y

{
∆(yn,y) + θ>φ(xn,y)

}
− θ>φ(xn,yn),

which obtains the same objective value as its unconstrained form (2.46). One can use the

cutting plane training algorithm [Joachims et al., 2009] for this constraint optimization.

Note, Eq. (2.49) is a quadratic program (QP) with an exponential number (N · |Y|) of

constraints. The cutting plane algorithm actively maintains a working set of constraints by

adding the most violated constraint at each iteration, then it updates the current parameter

θ by solving the QP with the working set constraints.

Another interesting formulation of structured SVM is slack rescaling,

min
θ,{ξn≥0}

1

2
‖θ‖2 + C

N∑
n=1

ξn,

s.t. ∀ n, ∀ y ∈ Y , θ>φ(xn,yn)− θ>φ(xn,y) ≥ 1− ξn
∆(yn,y)

,

where the slack variable ξn itself is rescaled by the loss function ∆(yn,y). Although it is

believed to be more accurate and better-behaved than margin rescaling, it results in a more

challenging inference problem which needs to be carefully approximated [e.g., Sarawagi and

Gupta, 2008]. In this thesis, we focus on the margin rescaling framework.
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Chapter 3

Dual-decomposition Bounds

for Marginal MAP

Marginal MAP inference involves making MAP predictions in systems defined with latent

variables or missing information. It is significantly more difficult than pure marginalization

and MAP tasks, for which a large class of efficient and convergent variational algorithms, such

as dual decomposition, exist. In this chapter, we generalize dual decomposition to a generic

power sum inference task, which includes marginal MAP, along with pure marginalization

and MAP, as special cases. Our method is based on a block coordinate descent algorithm on

a new convex decomposition bound, that is guaranteed to converge monotonically, and can

be parallelized efficiently. We demonstrate our approach on marginal MAP queries defined

on real-world problems from the UAI approximate inference challenge, showing that our

framework is faster and more reliable than previous methods. This chapter is based on our

work [Ping et al., 2015].

3.1 Introduction

Decomposition methods provide a useful and computationally efficient class of bounds on

inference problems. As we reviewed in Section 2.3.4 of Chapter 2, dual decomposition meth-

44



ods for MAP [e.g., Sontag et al., 2011] give a class of easy-to-evaluate upper bounds, which

decompose the graphical model into independent components (see Eq. (2.39)). In addition,

these full decomposition bounds can be directly optimized using coordinate descent [Werner,

2007, Globerson and Jaakkola, 2008], subgradient updates [Komodakis et al., 2011], or other

methods [e.g., Meshi and Globerson, 2011]. It is easy to ensure both convergence, and that

the objective is monotonically decreasing (so that more computation always provides a bet-

ter bound). The resulting bounds can be used either as stand-alone approximation methods

[Globerson and Jaakkola, 2008, Komodakis et al., 2011], or as a component of search [Ihler

et al., 2012].

In summation problems, a notable decomposition bound is tree-reweighted BP (TRW), which

bounds the partition function with a combination of trees [e.g., Wainwright et al., 2005,

Meltzer et al., 2009, Jancsary and Matz, 2011, Domke, 2011]. See our detailed review of

TRW in Section 2.3.3 of Chapter 2. These bounds are useful in joint inference and learning

(or “inferning”) frameworks, allowing learning with approximate inference to be framed as

a joint optimization over the model parameters and decomposition bound, often leading

to more efficient learning [e.g., Meshi et al., 2010]. However, far fewer methods have been

developed for marginal MAP problems.

In this chapter, we present a decomposition bound that has a number of desirable properties:

• (1) Generality : our bound is sufficiently general to be applied easily to marginal MAP.

• (2) Any-time: it yields a bound at any point during the optimization (not just at

convergence), so it can be used in an any-time way.

• (3) Monotonic and convergent : more computational effort gives strictly tighter bounds;

note that (2) and (3) are particularly important for high-width approximations, which

are expensive to represent and update.

• (4) Allows optimization over all parameters, including the “weights”, or fractional
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counting numbers, of the approximation; these parameters often have a significant

effect on the tightness of the resulting bound.

• (5) Compact representation: within a given class of bounds, using fewer parameters to

express the bound reduces memory and typically speeds up optimization.

We organize the rest of the chapter as follows. Section 3.2 reviews connections to related

work. We derive our decomposed bound in Section 3.3, and present a (block) coordinate

descent algorithm for monotonically tightening it in Section 3.4. We report experimental

results in Section 3.6 and conclude this chapter in Section 3.7.

3.2 State of the Art

Variational upper bounds on MAP and the partition function, along with algorithms for

providing fast, convergent optimization, have been widely studied in the last decade. In

MAP, dual decomposition and linear programming (LP) methods have become a dominant

approach, with numerous optimization methods [Werner, 2007, Globerson and Jaakkola,

2008, Sontag and Jaakkola, 2009, Komodakis et al., 2011, Yarkony et al., 2010, Ruozzi and

Tatikonda, 2013, Meshi and Globerson, 2011]. In particular, the dual of LP enables mono-

tonic techniques to tighten the loose approximations by adding cycles into the relaxation

[Sontag et al., 2008, Komodakis and Paragios, 2008].

For summation problems, most upper bounds are derived from the tree-reweighted (TRW)

family of convex bounds [Wainwright et al., 2005], or more generally conditional entropy

decompositions [Globerson and Jaakkola, 2007]. TRW bounds can be framed as optimizing

over a convex combination of tree-structured models, or in a dual representation as a message-

passing, TRW belief propagation algorithm. This illustrates a basic tension in the resulting

bounds: in its primal form Eq. (2.34) 1 (a combination of trees), TRW is inefficient: it

1Despite the term “dual decomposition” used in MAP tasks, in this work we refer to decomposition
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maintains a weight and O(|V |) parameters for each tree, 2 and a large number of trees may

be required to obtain a tight bound; this uses memory and makes optimization slow. On

the other hand, the dual, or free energy, form Eq. (2.33) uses only O(|E|) parameters (the

TRW messages) to optimize over the set of all possible spanning trees – but, the resulting

optimization is only guaranteed to be a upper bound at convergence, making it difficult

to use in an anytime fashion (we will demonstrate this point in Experiment Section 3.6.1).

Similarly, the gradient of the weights is only correct at convergence, making it difficult to

optimize over these parameters; most implementations [e.g., Mooij, 2010] simply adopt fixed

weights.

Thus, most algorithms do not satisfy all the desirable properties listed in the introduction.

For example, many works have developed convergent message-passing algorithms for convex

free energies [e.g., Hazan and Shashua, 2008, 2010]. However, by optimizing the dual they

do not provide a bound until convergence, and the representation and constraints on the

counting numbers do not facilitate optimizing the bound over these parameters. To optimize

counting numbers, Hazan et al. [2012] adopt a more restrictive free energy form requiring

positive counting numbers on the local entropies; but this cannot represent marginal MAP,

whose free energy involves conditional entropies (equivalent to the difference between two

entropy terms; see Eq. (2.23)).

On the other hand, working in the primal domain ensures a bound, but usually at the cost of

enumerating a large number of trees. Jancsary and Matz [2011] heuristically select a small

number of trees to avoid being too inefficient, while Meltzer et al. [2009] focus on trying

to speed up the updates on a given collection of trees. Another primal bound is weighted

mini-bucket (WMB, [Liu and Ihler, 2011]), which can represent a large collection of trees

bounds as “primal” bounds, since they can be viewed as directly bounding the result of variable elimination.
This is in contrast to, for example, the linear programming relaxation of MAP, which bounds the result only
after optimization.

2In graphical model G = (V,E), |V | is the number of nodes and |E| is the number of edges.
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compactly and is easily applied to marginal MAP using the weighted log partition function

viewpoint [Liu, 2014, Marinescu et al., 2014]; however, existing optimization algorithms for

WMB are non-monotonic, and often fail to converge, especially on marginal MAP tasks.

While our focus is on variational bounds [Liu and Ihler, 2011, 2013], there are many non-

variational approaches for marginal MAP as well. Park and Darwiche [2003] and Yuan and

Hansen [2009] provide upper bounds on marginal MAP by reordering the order in which

variables are eliminated, and using exact inference in the reordered join-tree; however, this

is exponential in the size of the (unconstrained) treewidth, and can easily become intractable.

Meek and Wexler [2011] give an approximation closely related to mini-bucket [Dechter and

Rish, 2003] to bound the marginal MAP value; however, unlike (weighted) mini-bucket,

these bounds cannot be improved iteratively. The same is true for the algorithm of Maua

and de Campos [2012], which also has a strong dependence on treewidth. Other examples of

marginal MAP algorithms include local search [e.g., Park and Darwiche, 2004] and Markov

chain Monte Carlo methods [e.g., Doucet et al., 2002, Yuan et al., 2004]. Most recently,

Xue et al. [2016] solve the marginal MAP by transforming the intractable inner sum into

a series of optimization problems with parity constraints, which in turn are folded into the

joint optimization task.

Another popular class of methods for solving marginal MAP as well as sum-inference, are

search based. For example, Marinescu et al. [2014], Lou et al. [2017], Lee et al. [2016],

Marinescu et al. [2017] apply heuristic search on AND/OR search trees (or graphs) to pro-

vide deterministic bounds. In particular, they use some variational bounds (e.g., WMB) as

heuristics to guide the search algorithm (e.g., best-first search), thus a monotonic variational

algorithm providing high-quality bound is highly desirable.
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3.3 Fully Decomposed Upper Bound

In this section, we develop a new general form of upper bound and provide an efficient,

monotonically convergent optimization algorithm. Our new bound is based on fully decom-

posing the graph into disconnected cliques, allowing very efficient local computation, but

can still be as tight as WMB or the TRW bound with a large collection of spanning trees

once the weights and shifting variables are chosen or optimized properly. Our bound reduces

to dual decomposition for MAP inference, but is applicable to more general mixed-inference

settings.

Our main result is based on the following generalization of the classical Hölder’s inequal-

ity [Hardy et al., 1952]:

Theorem 3.3.1. For a given graphical model p(x; θ) as defined in Eq. (2.1),

p(x; θ) = exp
[∑
α∈F

θα(xα)− Φ(θ)
]
,

with cliques F = {α}, and the generic power sum inference as defined in Eq. (2.18),

Φτ (θ) = log
τ∑
x

exp
[∑
α∈F

θα(xα)
]

= log
τn∑
xn

. . .

τ1∑
x1

∏
α∈F

exp
[
θα(xα)

]
,

with a elimination order [x1, · · · , xn] and a set of non-negative weights τ = {τi ≥ 0, i ∈ V },

we define a set of “split weights” wα = {wαi ≥ 0, i ∈ α} on each variable-clique pair (i, α),

that satisfies
∑

α|α3iw
α
i = τi. Then we have

τ∑
x

∏
α∈F

exp
[
θα(xα)

]
≤
∏
α∈F

wα∑
xα

exp
[
θα(xα)

]
, (3.1)

where the left-hand side is the powered-sum along order [x1, . . . , xn] as defined in (2.18), and

the right-hand side is the product of the powered-sums on subvector xα with weights wα along
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the same elimination order; that is,

wα∑
xα

exp
[
θα(xα)

]
=

wαkc∑
xkc

· · ·
wαk1∑
xk1

exp
[
θα(xα)

]
,

where xα = [xk1 , . . . , xkc ], and k1 < · · · < kc are ranked to be consistent with the elimination

order [x1, . . . , xn] as used in the left-hand side.

Proof. Note that Hölder’s inequality is

[∑
x

∏
j

fj(x)1/ξ0
]ξ0 ≤∏

j

[∑
x

fj(x)1/ξj
]ξj ,

where {fj(x)} are arbitrary positive functions, and {ξj} are non-negative numbers that

satisfy
∑

j ξj = ξ0. Note we extend the inequality by defining power sum with ξj = 0

to equal the max operator. Our result follows by applying Hölder’s inequality on each xi

sequentially along the elimination order [x1, x2, · · · , xn].

A key advantage of the bound (3.1) is that it decomposes the joint power sum on x into

a product of independent power sums over smaller cliques xα, which significantly reduces

computational complexity and enables parallel computation.

3.3.1 Including Cost-shifting Variables

In order to increase the flexibility of the upper bound, we introduce a set of cost-shifting or

reparameterization variables δ = {δαi (xi) | ∀(i, α), i ∈ α} on each variable-factor pair (i, α),

which can be optimized to provide a much tighter upper bound. Note that Φτ (θ) can be

rewritten as,

Φτ (θ) = log
τ∑
x

exp
[∑
i∈V

∑
α∈Ni

δαi (xi) +
∑
α∈F

(
θα(xα)−

∑
i∈α

δαi (xi)
)]
,
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where Ni = {α | α 3 i} is the set of cliques incident to i. Applying the inequality (3.1), we

have that,

Φτ (θ) ≤
∑
i∈V

log

wi∑
xi

exp
[ ∑
α∈Ni

δαi (xi)
]

+
∑
α∈F

log

wα∑
xα

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

def
== L(δ,w), (3.2)

where the nodes i ∈ V are also treated as cliques within inequality (3.1), and a new weight

wi is introduced on each variable i; the new weights w = {wi, wαi | ∀(i, α), i ∈ α} should

satisfy

wi +
∑
α∈Ni

wαi = τi, wi ≥ 0, wαi ≥ 0, ∀(i, α). (3.3)

The bound L(δ,w) is convex w.r.t. the cost-shifting variables δ and weights w, enabling

an efficient optimization algorithm that we present in Section 3.4. As we will discuss in

Section 3.4.1, these shifting variables correspond to Lagrange multipliers that enforce a

moment matching condition.

3.3.2 Variational Form and Connection With Existing Bounds

It is straightforward to see that our bound Eq.(3.2) reduces to dual decomposition bound

Eq. (2.39) when applied on MAP inference with all τi = 0, and hence wi = wαi = 0, that is, 3

L(δ) =
∑
i∈V

max
xi

[ ∑
α∈Ni

δαi (xi)
]

+
∑
α∈F

max
xα

[
θα(xα)−

∑
i∈α

δαi (xi)
]
.

On the other hand, its connection with sum-inference bounds such as WMB and TRW is

seen more clearly via a dual representation of Eq. (3.2):

Theorem 3.3.2. The tightest upper bound obtainable by Eq.(3.2), that is,

3In compare to Eq. (2.39), we omit the singleton potentials θi(xi) here because they can be absorbed into
θα(xα).
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min
w

min
δ
L(δ,w) = min

w
max
b∈L(G)

{
〈θ, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
, (3.4)

where b = {bi(xi), bα(xα) | ∀(i, α), i ∈ α} is a set of pseudo-marginals (or beliefs) defined on

the singleton variables and the cliques, and L is the corresponding local consistency polytope

defined by L(G) = {b | bi(xi) =
∑

xα\i
bα(xα),

∑
xi
bi(xi) = 1}. Here, H(·) are their cor-

responding marginal or conditional entropies, and paαi is the set of variables in α that rank

later than i, that is, for the global elimination order [x1, . . . , xn], paαi = {j ∈ α | j � i}.

The proof details can be found in Appendix A.1. It is useful to compare Theorem 3.3.2

with other dual representations. As the sum of non-negatively weighted conditional en-

tropies, the bound is clearly convex and within the general class of conditional entropy

decompositions (CED) [Globerson and Jaakkola, 2007], but unlike generic CED it has a

simple and efficient primal form Eq. (3.2). In contrast, the primal form derived in Globerson

and Jaakkola [2007] (a geometric program) is computationally infeasible. Comparing to the

dual form of WMB in Theorem 4.2 of Liu and Ihler [2011], our bound is as tight as WMB,

and hence the class of TRW / CED bounds attainable by WMB [Liu and Ihler, 2011]. In

Appendix A section A.1.2, we describe a simple weight setting method which matches our

bound to WMB with uniform weights on each mini-bucket.

Most duality-based (free energy) forms are expressed in the following linear combination of

local joint entropies rather than conditional entropies [e.g., Yedidia et al., 2005, Hazan and

Shashua, 2010],

〈θ, b〉+
∑
β

cβH(xβ; bβ), (3.5)

where β refers the region, cβ refers the general counting number, and bβ(xβ) is the local

belief. Although our dual representation Eq. (3.4) can be converted into the joint entropy

representation (3.5), the converted one has some undesirable properties. To see this, we first
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(a) 3× 3 grid (b) WMB: covering tree (c) Full decomposition (d) TRW

Figure 3.1: Illustrating WMB, TRW and our bound on (a) 3 × 3 grid. (b) WMB uses
a covering tree with a minimal number of splits and cost-shifting. (c) Our decomposition
Eq.(3.2) further splits the graph into small cliques (here, edges), introducing additional cost-
shifting variables but allowing for easier, monotonic optimization. (d) Primal TRW splits
the graph into many spanning trees, requiring even more cost-shifting variables. Note that
all three bounds attain the same tightness after optimization.

rewrite our dual representations (3.4) as,

〈θ, b〉+
∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi
(
H(xi, xpaαi

; bα)−H(xpaαi
; bα)

)
,

where paαi is the set of variables in α that rank later than i. Without loss of generality,

assuming xα = [x1, · · · , xi, xj, · · ·xc], and [i, j] are the pairs that are adjacent in the order,

we can obtain

〈θ, b〉+
∑
i∈V

wiH(xi; bi) +
∑
α∈F

{
wα1H(xα; bα) +

∑
[i,j]vα

(wαj − wαi )H(xpaαi
; bpaαi

)
}

(3.6)

where belief bpaαi
is defined by bpaαi

(xpaαi
) =

∑
xα\paα

i

bα(xα). One can view Eq. (3.6) in terms

of Eq. (3.5), by selecting the region β ∈ {i ∈ V } ∪ {α ∈ F} ∪ {paαi | ∀(i, α)}. However, the

resulting counting numbers cβ will be the differences of weights wαj − wαi , which obfuscates

its convexity, makes it harder to maintain the relative constraints on the counting numbers

during optimization, and makes some counting numbers negative (rendering some methods

inapplicable [e.g., Hazan et al., 2012], which requires positive counting numbers).

Finally, like most variational bounds in dual form (e.g., the dual form of TRW on the right-

hand side of Eq. (2.36)), the right-hand side of Eq.(3.4) has an inner maximization and

hence guaranteed to bound Φτ (θ) only at its optimum. In contrast, our Eq. (3.2) is a primal
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bound (hence, a bound for any δ). It is similar to the primal form of TRW on the left-

hand side of Eq. (2.36), except that (1) the individual regions are single cliques, rather than

spanning trees of the graph, 4 and (2) the fraction weights wα associated with each region

are vectors, rather than a single scalar. The representation’s efficiency can be seen with an

example in Figure 3.1, which shows a 3 × 3 grid model and three relaxations that achieve

the same bound. Assuming d states per variable and ignoring the equality constraints,

our decomposition in Figure 3.1(c) uses 24d cost-shifting parameters (δ), and 24 weights.

WMB (Figure 3.1(b)) is slightly more efficient, with only 8d parameters for δ and and 8

weights, but its lack of decomposition makes parallel and monotonic updates difficult. On

the other hand, the equivalent primal TRW uses 16 spanning trees, shown in Figure 3.1(d),

for 16 · 8 · d2 = 128d2 parameters, and 16 weights. The increased dimensionality of the

optimization slows convergence, and updates are non-local, requiring full message-passing

sweeps on the involved trees (although this cost can be amortized in some cases [Meltzer

et al., 2009]).

3.4 Monotonically Tightening the Bound

In this section, we propose a block coordinate descent algorithm (Algorithm 3.1) to minimize

the upper bound L(δ,w) in Eq.(3.2) w.r.t. the shifting variables δ and weights w. Our

algorithm has a monotonic convergence property, and allows efficient, distributable local

computation due to the full decomposition of our bound. Our framework allows generic

powered-sum inference, including max-, sum-, or mixed-inference as special cases by setting

different weights.

4While non-spanning subgraphs can be used in the primal TRW form, doing so only leads to loose bounds;
in contrast, our decomposition’s terms consist of individual cliques.
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3.4.1 Moment Matching and Entropy Matching

We start with deriving the gradient of L(δ,w) w.r.t. δ and w. We show that the zero-

gradient equation w.r.t. δ has a simple form of moment matching that enforces a consistency

between the singleton beliefs with their related clique beliefs, and that of weights w enforces

a consistency of marginal and conditional entropies.

Theorem 3.4.1. (1) For L(δ,w) in (3.2), its zero-gradient w.r.t. δαi (xi) is

∂L

∂δαi (xi)
= µi(xi)−

∑
xα\i

µα(xα) = 0, (3.7)

where µi(xi) ∝ exp
[

1
wi

∑
α∈Ni δ

α
i (xi)

]
can be interpreted as a singleton belief on xi, and

µα(xα) can be viewed as clique belief on xα, defined with a chain rule (assuming xα =

[x1, . . . , xc]), µα(xα) =
∏c

i=1 µα(xi|xi+1:c); µα(xi|xi+1:c) = (Zi−1(xi:c)/Zi(xi+1:c))
1/wαi , where

Zi is the partial powered-sum up to xi on the clique, that is,

Zi(xi+1:c) =

wαi∑
xi

· · ·
wα1∑
x1

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
, Z0(xα) = exp

[
θα(xα)−

∑
i∈α

δαi (xi)
]
,

where the summation order should be consistent with the global elimination order o =

[x1, . . . , xn].

(2) The gradients of L(δ,w) w.r.t. the weights {wi, wαi } are marginal and conditional en-

tropies defined on the beliefs {µi, µα}, respectively,

∂L

∂wi
= H(xi;µi),

∂L

∂wαi
= H(xi|xi+1:c;µα) = −

∑
xα

µα(xα) log µα(xi|xi+1:c). (3.8)

Therefore, the optimal weights should satisfy the following KKT condition

wi
(
H(xi;µi)− H̄i

)
= 0, wαi

(
H(xi|xi+1:c;µα)− H̄i

)
= 0, ∀(i, α) (3.9)
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Algorithm 3.1 Generalized Dual-decomposition (GDD)

Input: weights {τi | i ∈ V }, elimination order o.
Output: the optimal δ∗,w∗ giving tightest upper bound L(δ∗,w∗) for Φτ (θ) in (3.2).

initialize δ = 0 and weights w = {wi, wαi }.
repeat

for node i (in parallel with node j, (i, j) 6∈ E) do
if τi = 0 then

update δNi = {δαi |∀α ∈ Ni} with the closed-form update (3.10);
else if τi 6= 0 then

optimize δNi and wNi with gradient-based methods using (3.7) and (3.11), combined
with a backtracking line search;

end if
end for

until convergence
δ∗ ← δ, w∗ ← w, and evaluate L(δ∗,w∗) by (3.2);

Remark. GDD solves MAP, marginalization and marginal MAP inference by setting dif-
ferent values of weights {τi}.

where H̄i =
(
wiH(xi;µi) +

∑
αw

α
i H(xi|xi+1:c;µα)

)
/τi is the average entropy on node i.

The proof details can be found in Section A.2 of the Appendix A. The matching condition

(3.7) enforces that µ = {µi, µα | ∀(i, α)} belong to the local consistency polytope L as defined

in Theorem 3.3.2; similar moment matching results appear commonly in variational inference

algorithms [e.g., Wainwright et al., 2005]. As we reviewed in Section 2.3.3, Wainwright et al.

[2005] also derive a gradient of the weights, but it is based on the free energy form Eq. (2.33),

and is correct only after full message-passing optimization; our form holds at any point,

enabling efficient joint optimization of δ and w.

3.4.2 Block Coordinate Descent

We derive a block coordinate descent method in Algorithm 3.1 to minimize our bound, in

which we sweep through all the nodes i and update each block δNi = {δαi (xi) | ∀α ∈ Ni} and

wNi = {wi, wαi | ∀α ∈ Ni} with the neighborhood parameters fixed. Our algorithm applies

two update types, depending on whether the variables have zero weight: (1) For nodes i
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with τi = 0 and i ranks later than {j | τj 6= 0 and (i, j) ∈ E} in elimination order o (e.g.,

max nodes i ∈ B in marginal MAP), we derive a closed-form coordinate descent rule for the

associated shifting variables δNi ; these nodes do not require to optimize wNi since it is fixed

to be zero. (2) For nodes with τi 6= 0 (e.g., sum nodes i ∈ A in marginal MAP), we lack a

closed form update for δNi and wNi , and optimize by local gradient descent combined with

line search.

The lack of a closed form coordinate update for nodes τi 6= 0 is mainly because the order

of power sums with different weights cannot be exchanged. However, the gradient descent

inner loop is still efficient, because each gradient evaluation only involves the local variables

in clique α.

Closed-form Update. For any node i with τi = 0 and i ranks later than {j | τj 6=

0 and (i, j) ∈ E} in elimination order o (e.g., max nodes i ∈ B in marginal MAP), and its

associated δNi = {δαi (xi) | ∀α ∈ Ni}, the following update gives a closed form solution for

the zero (sub-)gradient equation in (3.7) (keeping the other {δαj | j 6= i,∀α ∈ Ni} fixed):

δαi (xi)←
|Ni|
|Ni|+ 1

γαi (xi)−
1

|Ni|+ 1

∑
β∈Ni\α

γβi (xi), (3.10)

where |Ni| is the number of neighborhood cliques, and

γαi (xi) = log

wα
\i∑

xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
,

where xα\i = {xj : j ∈ α, j 6= i}, wα
\i = {wαj : j ∈ α, j 6= i}. Note that the update in (3.10)

works regardless of the weights of nodes {τj | ∀j ∈ α, ∀α ∈ Ni} in the neighborhood cliques;

when all the neighboring nodes also have zero weight (τj = 0 for ∀j ∈ α, ∀α ∈ Ni), it is

analogous to the “star” update of dual decomposition for MAP [Sontag et al., 2011]. The

detailed derivation is shown in Proposition A.5.1 and A.5.2 in Appendix A.
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The update in (3.10) for whole δNi can be calculated with a cost of only O(|Ni| · d|α|),

where d is the number of states of xi, and |α| is the clique size, by computing and saving

all the shared {γαi (xi) | ∀α ∈ Ni} before updating δNi . Furthermore, the updates of δNi

for different nodes i are independent if they are not directly connected by some clique α;

this makes it easy to parallelize the coordinate descent process by partitioning the graph

into independent sets, and parallelizing the updates within each set. More elaborate update

scheduling, such as the priority queue based schemes in residual BP [Elidan et al., 2006] or

residual splash [Gonzalez et al., 2009], can be applied to improve empirical convergence and

parallelism. We leave them for future work.

Local Gradient Descent. For nodes with τi 6= 0 (or i ∈ A in marginal MAP), there

is no closed-form solution for {δαi (xi)} and {wi, wαi } to minimize the upper bound. How-

ever, because of the fully decomposed form, the gradient w.r.t. δNi and wNi , (3.7)–(3.8),

can be evaluated efficiently via local computation with O(|Ni| · d|α|), and again can be

parallelized between nonadjacent nodes. To handle the normalization constraint (3.3) on

wNi , we use an exponential gradient descent: let wi = exp(vi)/
[

exp(vi) +
∑

α exp(vαi )
]

and

wαi = exp(vαi )/
[

exp(vi)+
∑

α exp(vαi )
]
; taking the gradient w.r.t. vi and vαi and transforming

back gives the following update

wi ← wi exp
[
− ηwi

(
H(xi;µi)− H̄i

)]
, wαi ← wαi exp

[
− ηwαi H(xi|xpaαi

;µα)
]

then, wi ← wi/
(
wi +

∑
α∈Ni

wαi
)
, wαi ← wαi /

(
wi +

∑
α∈Ni

wαi
)

(3.11)

where η is the step size, paαi ={j∈α | j� i} and the entropy terms are defined at Eq. (3.9).

In our implementation, to avoid numerical issues with very small positive weights wi and

wαi , we always make them larger than a small constant ε = 0.002. We use the minFunc

package [Schmidt, 2005] and try different options. We find that (1) a few local gradient

steps (e.g., 5) with the backtracking line search can work well in practice. and (2) a few

local quasi-Newton steps (e.g., 5) of L-BFGS will give the best result. The Newton’s method
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are also applicable, but one need carefully regularize the near-singular Hessian cases. See

our derivation of Hessian matrix in Appendix A.4.

3.5 Extensions to Junction Graph

Our bound (3.2) uses a standard “factor graph” representation in which the cost-shifts

{δαi } are defined for each variable-factor pair (i, α), and are functions of single variables xi.

We can extend our bound to use more general shifting parameters using a junction graph

representation; this allows us to exploit higher order clique structures, leading to better

performance.

Let (C,S) be a junction graph of p(x; θ) where C = {c | c ⊂ V } is the set of clusters, and

S = {s = ck∩cl | ck, cl ∈ C} is the set of separators. Assume p(x; θ) can be reparameterized

into the form,

p(x; θ) = exp
[∑
c∈C

θc(xc)− Φ(θ)
]
, (3.12)

and the weighted log partition function is rewritten as Φτ (θ) = log
∑τ
x exp

[∑
c∈C θc(xc)

]
.

Similar to the derivation of bound (3.2) in the main text, we can apply Theorem 3.3.1, but

with a set of more general cost-shifting variables δcs, defined on each adjacent separator-

cluster pair (s, c); this gives the more general upper bound,

Φτ (θ) ≤
∑
s∈S

log
ws∑
xs

exp
[∑
c⊇s

δcs(xs)
]

+
∑
c∈C

log
wc∑
xc

exp
[
θc(xc)−

∑
s⊆c

δcs(xs)
]
, (3.13)

where we introduce the set of non-negative weights ws = {wsi | i ∈ s} on each separator and

wc = {wci | i ∈ c} on each cluster, which should satisfy
∑

s∈Nse
i
wsi +

∑
c∈Nc

i
wci = τi, where

N se
i = {s | i ∈ s} are all the separators that include node i, and N c

i = {c | i ∈ c} are all
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the clusters that include node i. Obviously, our earlier bound (3.2) in the main text can be

viewed as a special case of (3.13) with a special junction graph whose separators consist of

only single variables, that is, S = V .

A block coordinate descent algorithm similar to Algorithm 3.1 can be derived to optimize

the junction graph bound. In this case, we sweep through all the separators s and perform

block coordinate update on all {δcs|∀c ⊇ s} at each iteration. Similarly to Algorithm 1, we

can derive a closed-form update for separators with all-zero weights (that is, τi = 0, ∀i ∈ s,

corresponding to s ⊆ B in marginal MAP), and perform local gradient descent otherwise.

3.6 Experiments

In this section, we compare our algorithm with other state-of-the-art inference algorithms on

both toy Ising model and real-world graphical models from recent UAI inference challenges,

3.6.1 Ising Model

Our GDD directly optimizes a primal bound, and is thus guaranteed to be an upper bound of

the partition function even before the algorithm converges, enabling a desirable “any-time”

property. In contrast, typical implementations of tree reweighted (TRW) belief propagation

optimize the dual free energy function [Wainwright et al., 2005], and are not guaranteed to

be a bound before convergence. We illustrate this point using an experiment on a toy 5× 5

Ising grid, with parameters generated by normal ditribution N(0, 2) and half nodes selected

as max-nodes for marginal MAP. Figure 3.2(a)-(b) shows the TRW free energy objective

and GDD, WMB upper bounds across iterations; each iteration of the different algorithms

corresponds to a full sweep over the graph. Note that the dual formulation (TRW) is not a

bound until convergence; for example, at iteration 1, its objective function is below the true

Φ. We can see that GDD and WMB always give valid upper bounds.
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(a) sum-inference (b) marginal MAP

Figure 3.2: Sum-inference and marginal MAP results on a toy Ising model (5×5 grid). Both
(a) and (b) show the TRW free energy and GDD, WMB bounds across iterations. The TRW
free energy does not provide a bound until convergence. Instead, GDD and WMB provide
valid upper bound at any time. (best viewed in color)

3.6.2 UAI Inference Challenges

In this subsection, we demonstrate our algorithm on a set of real-world graphical models

from recent UAI inference challenges, including two diagnostic Bayesian networks with 203

and 359 variables and max domain sizes 7 and 6, respectively, and several MRFs for pedigree

analysis with up to 1289 variables, max domain size of 7 and clique size 5.5 We construct

marginal MAP problems on these models by randomly selecting various percentages of the

variables to be max nodes, and the rest as sum nodes.

We implement several algorithms that optimize the same primal marginal MAP bound,

including our GDD (Algorithm 3.1), the WMB algorithm in [Liu and Ihler, 2011] with

ibound = 1, which uses the same cliques and a fixed point heuristic for optimization, and an

off-the-shelf L-BFGS implementation [Schmidt, 2005] that directly optimizes our decomposed

bound. For comparison, we also computed several related primal bounds, including standard

mini-bucket [Dechter and Rish, 2003] and elimination reordering [Park and Darwiche, 2003,

Yuan and Hansen, 2009], limited to the same computational limits (ibound = 1). We also

tried MAS [Meek and Wexler, 2011] but found its bounds extremely loose.6

5See http://graphmod.ics.uci.edu/uai08/Evaluation/Report/Benchmarks.
6The instances tested have many zero probabilities, which make finding lower bounds difficult; since MAS’

bounds are symmetrized, this may contribute to its upper bounds being loose.
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Decoding (finding a configuration x̂B) is more difficult in marginal MAP than in MAP. We

decode each node i ∈ B locally on its reparametrization

x̂i = argmax
xi

[ ∑
α∈Ni

δαi (xi)
]
,

which is standard in dual decomposition [Sontag et al., 2011]. However, evaluating the

objective, Q(x̂B) = log
∑
xA

exp
[
θ(xA, x̂B)

]
in Eq. (2.17), involves a potentially difficult

sum over xA, making it hard to score each decoding. For this reason, we evaluate the score

of each decoding, but show the most recent decoding rather than the best (as is standard in

MAP) to simulate behaviour in practice.

Figure 3.3 and Figure 3.5 compare the convergence of the different algorithms, where we

define the iteration of each algorithm to correspond to a full sweep over the graph, with

the same order of time complexity: one iteration for GDD is defined in Algorithm 3.1; for

WMB represents a full forward and backward message pass, as in Algorithm 2 of Liu and

Ihler [2011]; and for L-BFGS is a joint quasi-Newton step on all variables. The elimination

order that we use is obtained by a weighted-min-fill heuristic [Dechter, 2013] constrained to

eliminate the sum nodes first.

Diagnostic Bayesian Networks.

Figure 3.3(a)-(b) shows that our GDD converges quickly and monotonically on both the

networks, while WMB does not converge without proper damping; we experimented different

damping ratios for WMB, and found that it is slower than GDD even with the best damping

ratio found (e.g., in Figure 3.3(a), WMB works best with damping ratio 0.035 (WMB-0.035),

but is still significantly slower than GDD). Our GDD also gives better decoded marginal MAP

solution xB (obtained by rounding the singleton beliefs). Both WMB and our GDD provide

a much tighter bound than the non-iterative mini-bucket elimination (MBE) [Dechter and
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(a) BN-1 (203 nodes) (b) BN-2 (359 nodes)

Figure 3.3: Marginal MAP results on BN-1 and BN-2 with 50% randomly selected max-
nodes. We plot the upper bounds of different algorithms across iterations; the objective
function Q(xB) (2.17) of the decoded solutions xB are also shown (dashed lines). At the
beginning, Q(xB) may equal to −∞ because of zero entries in BN-1 and BN-2 model. (best
viewed in color)
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Figure 3.4: More marginal MAP results with various percentages of randomly selected max-
nodes on two diagnostic Bayesian networks. Note that 0% of max-nodes corresponds to sum-
inference, and 100% max-nodes corresponds to MAP. We report the best results obtained
by GDD and WMB with 20 iterations. (Best viewed in color)

Rish, 2003] or reordered elimination [Park and Darwiche, 2003, Yuan and Hansen, 2009]

methods.

In addition to the marginal MAP results with 50% max-nodes on BN-1 and BN-2, we vary

the percentage of max-nodes when generating the marginal MAP problems; the reported

results in Figure 3.4(a)-(b) are the best bound obtained by the different algorithms within

the first 20 iterations. In all cases, GDD’s results are as good or better than WMB. WMB-
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Figure 3.5: Marginal MAP inference on nine pedigree linkage analysis models. We randomly
select half the nodes as max-nodes in these models. We tune the damping rate of WMB from
0.01 to 0.06, but we omit WMB-0.06 in the plot if WMB-0.05 is already diverged. (Best
viewed in color)

0.5 (WMB with damping ratio 0.5) appears to work well on sum-only and max-only (MAP)

problems, i.e., when the percentage of max-nodes equals 0% and 100% respectively, but

performs very poorly on intermediate settings. The far more heavily damped WMB-0.04 or

WMB-0.02 work better on average, but have much slower convergence.
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Genetic Pedigree Instances.

Figure 3.5 shows similar results on a set of pedigree instances from the UAI08 inference

challenge. We construct marginal MAP problems by randomly selected 50% of nodes to

be max-nodes. Again, GDD outperforms WMB even with the best possible damping, and

out-performs the non-iterative bounds after only one iteration (a single pass through the

graph).

3.7 Conclusion

In this chapter, we propose a new class of decomposition bounds for general powered-sum

inference, which is capable of representing a large class of primal variational bounds but is

much more computationally efficient. Unlike previous primal sum bounds, our bound decom-

poses into computations on small, local cliques, increasing efficiency and enabling parallel and

monotonic optimization. We derive a block coordinate descent algorithm for optimizing our

bound over both the cost-shifting parameters (reparameterization) and weights (fractional

counting numbers), which generalizes dual decomposition and enjoy similar monotonic con-

vergence property. Taking the advantage of its monotonic convergence, our new algorithm

can be widely applied as a building block for improved heuristic construction in search, or

more efficient learning algorithms.
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Chapter 4

Marginal Structured SVM

In this chapter, we propose a marginal structured SVM (MSSVM) model for structured

prediction with hidden variables. MSSVM properly handles the uncertainty of hidden

variables, and can significantly outperform the previously proposed latent structured SVM

method (LSSVM; Yu and Joachims [2009a]) and other state-of-art methods, especially when

the uncertainty of hidden variables is large. Our method also results in a smoother objective

function, making gradient-based optimization of MSSVMs converge significantly faster than

for LSSVMs. We also show that our method consistently outperforms hidden conditional

random fields (HCRFs; Quattoni et al. [2007a]) on both simulated and real-world datasets.

Furthermore, we propose a unified framework that includes both our and several other exist-

ing methods as special cases, and provides insights into the comparison of different models

in practice. This Chapter is based on our work [Ping et al., 2014].

4.1 Introduction

Conditional random fields (CRFs) [Lafferty et al., 2001] and structured SVMs (SSVMs)

[Taskar et al., 2003, Tsochantaridis et al., 2005] are standard tools for structured prediction.

However, many practical cases are not well handled by these tools, due to the presence of

latent variables or partially labeled datasets. For example, one approach to image segmen-
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tation classifies each pixel into a predefined semantic category. While it is expensive to

collect labels for every single pixel (perhaps even impossible for ambiguous regions), par-

tially labeled data are relatively easy to obtain [e.g., Verbeek and Triggs, 2007]. Examples

also arise in natural language processing, such as semantic role labeling, where the semantic

predictions are inherently coupled with latent syntactic relations [Naradowsky et al., 2012].

However, accurate syntactic annotations are unavailable in many language resources.

In past few years, several solutions have been proposed to address hidden variable problems

in structured prediction. Perhaps the most notable of these are hidden conditional random

fields (HCRFs) [Quattoni et al., 2007a] and latent structured SVMs (LSSVMs) [Yu and

Joachims, 2009a], which are derived from conditional random fields and structured SVMs,

respectively. However, both approaches have several shortcomings. CRF-based models often

perform worse than SSVM-based methods in practical datasets, especially when the number

of training instances is small or the model assumptions are heavily violated [e.g., Taskar et al.,

2003]. On the other hand, LSSVM relies on a joint maximum a posteriori (MAP) procedure

that assigns the hidden variables to deterministic values, and does not take into account

their uncertainty. Unfortunately, this can produce poor predictions of the output variables

even for exact models [Liu and Ihler, 2013]. A better approach is to average over possible

states, corresponding to a marginal MAP inference task [Koller and Friedman, 2009a, Liu

and Ihler, 2013] that marginalizes the hidden variables before optimizing over the output

variables.

Contributions. We propose a novel structured SVM algorithm that takes into account the

uncertainty of the hidden variables, by incorporating marginal MAP inference that “aver-

ages” over the possible hidden states. We show that our method performs significantly better

than LSSVM and other state of art methods, especially when the uncertainty of the hidden

variables is high. Our method also inherits the general advantages of structured SVMs and

consistently outperforms HCRFs, especially when the training sample size is small. We also
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study the effect of different training algorithms under various models. In particular we show

that gradient-based algorithms for our framework are much more efficient than for LSSVM,

because our objective function is smoother than that of LSSVM as it marginalizes, instead of

maximizes, over the hidden variables. Finally, we propose a unified framework that includes

both our and existing methods as special cases, and provide general insights on the choice

of models and optimization algorithms for practitioners.

We organize the rest of the chapter as follows. In Section 4.2, we introduce related work. We

present background and notation in Section 4.3, and derive our marginal structured SVM

in Section 4.4. The unified framework is proposed in Section 4.5. Learning and inference

algorithms for the model are presented in Section 4.6. We report experimental results in

Section 4.7 and conclude the chapter in Section 4.8.

4.2 Related Work

HCRFs naturally extend CRFs to include hidden variables, and have found numerous ap-

plications in areas such as object recognition [Quattoni et al., 2004] and gesture recognition

[Wang et al., 2006]. HCRFs have the same pros and cons as general CRFs; in particular,

they perform well when the model assumptions hold and when there are enough training

instances, but may otherwise perform badly. Alternatively, the LSSVM [Yu and Joachims,

2009a] is an extension of structured SVM that handles hidden variables, with wide appli-

cation in areas like object detection [Zhu et al., 2010], human action recognition [Wang

and Mori, 2009], document-level sentiment classification [Yessenalina et al., 2010] and link

prediction [Xu et al., 2013]. However, LSSVM relies on a joint MAP procedure, and may

not perform well when a non-trivial uncertainty exists in the hidden variables. Recently,

Schwing et al. [2012] proposed an ε-extension framework for discriminative graphical models

with hidden variables that includes both HCRFs and LSSVM as special cases.
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A few recent works also incorporate uncertainty over hidden variables explicitly into their op-

timization frameworks. For example, Miller et al. [2012] proposed a max margin min-entropy

(M3E) model that minimizes an uncertainty measure on hidden variables while performing

max-margin learning. They assume that minimizing hidden uncertainty will improve the

output accuracy. This is valid in some applications, such as object detection, where reduc-

ing the uncertainty of object location can improve the category prediction. However, in

cases like image segmentation, the missing labels may come from ambiguous regions, and

maintaining that ambiguity can be important. In another work, Kumar et al. [2012] pro-

poses a learning procedure that encourages agreement between two separate models – one for

predicting outputs and another for representing the uncertainty over the hidden variables.

They model the uncertainty of hidden variable during training, and rely on a joint MAP

procedure during prediction.

Our proposed method builds on recent work for marginal MAP inference [Koller and Fried-

man, 2009a, Liu and Ihler, 2013], which averages over the hidden variables (or variables

that are not of direct interest), and then optimizes over the output variables (or variables of

direct interest). In many domains, marginal MAP can provide significant improvement over

joint MAP estimation, which jointly optimizes hidden and output variables; recent exam-

ples include blind deconvolution in computer vision [Fergus et al., 2006, Levin et al., 2011]

and relation extraction and semantic role labeling in natural language processing [Narad-

owsky et al., 2012]. Unfortunately, marginal MAP tasks on graphical models are notoriously

difficult; marginal MAP can be NP-hard even when the underlying graphical model is tree-

structured [Koller and Friedman, 2009a]. Recently, Liu and Ihler [2013] proposed efficient

variational algorithms that approximately solve marginal MAP. In our work, we use their

mixed-product belief propagation algorithm as our inference component.

Sub-gradient decent (SGD) [Ratliff et al., 2007] and the concave-convex procedure (CCCP)

[Yuille and Rangarajan, 2003] are two popular training algorithms for structured prediction
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problems. Generally, SGD is straightforward to implement and effective in practice, but may

be slow to converge, especially on non-convex and non-smooth objective functions as arise

in LSSVMs. CCCP is a general framework for minimizing non-convex functions by trans-

forming the non-convex optimization into a sequence of convex optimizations by iteratively

linearizing the non-convex component of the objective. It has been applied widely in many

areas of machine learning, particularly when hidden variables or missing data are involved.

We explore both these training methods and compare them across the various models we

consider.

4.3 Structured Prediction with Hidden Variables

In this section we review the background on structured prediction with hidden variables.

Assume we have structured input-output pairs (x,y) ∈ X ×Y , where X , Y are the spaces of

the input and output variables. In many applications, this input-output relationship is not

only characterized by (x,y), but also depends on some unobserved hidden or latent variables

h ∈ H. Suppose (x,y,h) follows a conditional model, 1

p(y,h|x; θ) =
1

Z(x; θ)
exp [θ>φ(x,y,h)], (4.1)

where φ(x,y,h) : X×Y×H → RD is a set of features which describe the relationships among

the (x,y,h), and θ ∈ RD are the corresponding log-linear weights, or model parameters. The

function Z(x; θ) is the normalization constant, or partition function,

Z(x; θ) =
∑
y

∑
h

exp [θ>φ(x,y,h)].

1See more illustration in Section 2.1.3 of Chapter 2.
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Assuming the weights θ are known, the LSSVM of Yu and Joachims [2009a] decodes the

output variables y given input variables x by performing a joint maximum a posteriori

(MAP) inference,

[ỹ(θ), h̃(θ)] = argmax
(y,h)∈Y×H

p(y,h|x) = argmax
(y,h)∈Y×H

θ>φ(x,y,h).

This gives the optimal prediction of the (y,h)-pair, and one obtains a prediction on y by

simply discarding the h component. Unfortunately, the optimal prediction for (y, h) jointly

does not necessarily give an optimal prediction on y; instead, it may introduce strong biases

even for simple cases (e.g., see Example 1 in Liu and Ihler [2013]). Intuitively, the joint MAP

prediction is “overly optimistic”, since it deterministically assigns the hidden variables to

their most likely states; this approach is not robust to the inherent uncertainty in h, which

may cause problems if that uncertainty is significant.

To address this issue, we use a marginal MAP predictor,

ŷ(θ) = argmax
y∈Y

∑
h

p(y,h|x; θ) = argmax
y∈Y

log
∑
h

exp [θ>φ(x,y,h)], (4.2)

which explicitly takes into account the uncertainty of the hidden variables. It should be

noted that ŷ(θ) is in fact the Bayes optimal prediction of y, measured by zero-one loss.

The main contribution of this work is to introduce a novel structured SVM-based method

for learning the models with marginal MAP predictor, which significantly improves over

previous methods.

4.4 Marginal Structured SVM

In this section we derive our main method, the marginal structured SVM (MSSVM), which

minimizes an upper bound of the empirical risk function. Assume we have a set of training
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instances S = {(xn,yn)}Nn=1 ∈ (X×Y)N . The risk is measured by an user-specified empirical

loss function ∆(yn, ŷn), which quantifies the difference between an estimator ŷn and the

correct output yn. It is usually difficult to exactly minimize the loss function because it is

typically non-convex and discontinuous with θ (e.g., Hamming loss). Instead, one adopts

surrogate upper bounds to overcome this difficulty.

Assume ŷn(θ) is the marginal MAP prediction on instance xn as defined in (4.2). We upper

bound the empirical loss function ∆(yn, ŷn(θ)) as follows,

∆(yn, ŷn(θ)) ≤ ∆(yn, ŷn(θ)) + log
∑
h

exp
[
θ>φ(xn, ŷn(θ)),h)

]
− log

∑
h

exp[θ>φ(xn,yn,h)]

≤ max
y

{
∆(yn,y) + log

∑
h

exp [θ>φ(xn,y,h)]
}
− log

∑
h

exp
[
θ>φ(xn,yn,h)

]
,

where the first inequality holds because ŷn(θ) is the marginal MAP prediction (4.2), and the

second because it jointly maximizes the two terms.

Minimizing this upper bound over the training set with a L2 regularization, we obtain the

following objective function for our marginal structured SVM,

1

2
‖θ‖2 + C

N∑
n=1

{
max
y

{
∆(yn,y) + log

∑
h

exp
[
θ>φ(xn,y,h)

]}
− log

∑
h

exp
[
θ>φ(xn,yn,h)

]}
.

(4.3)

Note that the first part of the objective (except the regularization term) requires a loss-

augmented marginal MAP inference, which marginalizes the hidden variables h and then

optimizes over the output variables y, while the second part only requires a marginalization

over the hidden variables. Both these terms and their gradients are intractable to compute

on loopy graphical models, but can be efficiently approximated by mixed-product belief prop-

agation [Liu and Ihler, 2013] and sum-product belief propagation [Wainwright and Jordan,

2008], respectively. We will discuss training algorithms for optimizing this objective in Sec-
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tion 4.6. Similar to the constraint form of the structured SVM in Eq. (2.49), the constraint

form of our MSSVM (4.3) is,

min
θ,{ξn≥0}

1

2
‖θ‖2 + C

N∑
n=1

ξn, (4.4)

s.t. ∀n, ∀y ∈ Y , log
∑
h

exp
[
θ>φ(xn,yn,h)

]
− log

∑
h

exp
[
θ>φ(xn,y,h)

]
≥ ∆(yn,y)− ξn,

where {ξn}Nn=1 are the slack variables. One can show that the optimal {ξ∗n}Nn=1 satisfy,

ξ∗n = max
y

{
∆(yn,y) + log

∑
h

exp
[
θ>φ(xn,y,h)

]}
− log

∑
h

exp
[
θ>φ(xn,yn,h)

]
,

which gives the same objective value as the the unconstrained form (4.3). The cutting plane

training algorithm [Joachims et al., 2009] is applicable for this constraint optimization. It

actively maintains a working set of constraints by adding the most violated constraint in

(4.4) at each iteration. However, one need to minimize a quadratic objective with nonlinear

constraints, which is more challenging than the standard SSVM situation. In this work, we

focus on the unconstrained form (4.3) and its related training algorithms.

4.5 A Unified Framework

In this section, we compare our framework with a spectrum of existing methods, and intro-

duce a more general framework that includes all these methods as special cases. To start,

note that the objective function of the LSSVM [Yu and Joachims, 2009a] is

1

2
‖θ‖2 + C

N∑
n=1

{
max
y

max
h

{
∆(yn,y) + θ>φ(xn,y,h)

}
−max

h

[
θ>φ(xn,yn,h)

]}
. (4.5)

Our objective in (4.3) is similar to (4.5), except replacing the max operator of h with the

log-sum-exp function, the so called soft-max operator. One may introduce a “temperature”
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Table 4.1: Model comparisons within our unified framework.

Model εh → 0+(maxh) εh = 1 (
∑
h)

εy → 0+ (maxy) LSSVM MSSVM
εy = 1 (

∑
y) MLLR HCRF

εy = εh ∈ (0, 1) ε-extension model

parameter that smooths between max and soft-max, which motivates a more general objec-

tive function that includes MSSVM, LSSVM and other previous methods as special cases,

1

2
‖θ‖2 + C

N∑
n=1

{
εy log

∑
y

exp
[ 1

εy

(
∆(yn,y) + εh log

∑
h

exp
(θ>φ(xn,y,h)

εh

))]
− εh log

∑
h

exp
(θ>φ(xn,yn,h)

εh

)}
, (4.6)

where εy and εh are temperature parameters that control how much uncertainty we want

account for in y and h, respectively. Similar temperature-based approaches have been used

both in structured prediction [Hazan and Urtasun, 2010, Schwing et al., 2012] and in other

problems, such as semi-supervised learning [Samdani et al., 2012, Dhillon et al., 2012].

One can show (Lemma B.1.1 in Appendix B) that objective (4.6) is also an upper bound of

the empirical loss function ∆(yn, ŷnεh(θ)) over the training set, where the prediction ŷnεh(θ)

is decoded by “annealed” marginal MAP,

ŷnεh(θ) = argmax
y

εh log
∑
h

exp
[θ>φ(xn,y,h)

εh

]
.

This framework includes a number of existing methods as special cases. It reduces to our

MSSVM in (4.3) if εy → 0+ and εh = 1, and LSSVM in (4.5) if εy → 0+ and εh → 0+.

If we set εy = εh = 1, we obtain the loss-augmented likelihood objective in Volkovs et al.

[2011], and it further reduces to the standard likelihood objective of HCRFs if we assume

∆(yn,y) ≡ 0. Our framework also generalizes the ε-extension model by Schwing et al.

[2012], which corresponds to the restriction that εy = εh. Most recently, Xu et al. [2016]
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proposes the multinomial latent logistic regression (MLLR) method, which corresponds to

εy = 1 and εh → 0+. See Table 4.1 for a summarization of these model comparisons. In the

sequel, we provide some general insights on selecting among these different models through

our empirical evaluations.

It should be noted, for all above models, the inference routine for predictions should be

matched with the inference routine used in learning, which means we use mixed-product BP,

max-product BP and sum-product BP for predictions with MSSVM, LSSVMs and HCRFs,

respectively.

4.6 Training Algorithms

In this section, we introduce two optimization algorithms for minimizing the objective func-

tion in (4.3): a sub-gradient descent (SGD) algorithm, and a concave-convex procedure

(CCCP). An empirical comparison of these two algorithms is given in the experiments of

Section 4.7.

4.6.1 Sub-gradient Descent

According to Danskin’s theorem [See Proposition B.25 in Bertsekas, 1999], the sub-gradient

of the MSSVM objective (4.3) is:

∇θM = θ + C

N∑
n=1

Ep(h|xn,ŷn)[φ(xn, ŷn,h)]− C
N∑
n=1

Ep(h|xn,yn)[φ(xn,yn,h)], (4.7)

where ŷn = argmax
y∈Y

{
∆(yn,y) + log

∑
h

exp
[
θ>φ(xn,y,h)

]}
(4.8)

is the loss-augmented marginal MAP prediction, which can be approximated via mixed-

product belief propagation as described in Liu and Ihler [2013]. The Ep(h|xn,ŷn) and Ep(h|xn,yn)
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Algorithm 4.1 Sub-gradient Descent for MSSVM

Input: number of iterations T , learning rate η
Output: the learned weight vector θ∗

θ = 0;
for t = 1 to T do
∇θ = 0;
for n = 1 to N do

1. Calculate φm = Ep(h|xn,ŷn)[φ(xn, ŷn,h)] by mixed-product BP;
2. Calculate φs = Ep(h|xn,yn)[φ(xn,yn,h)] by sum-product BP;
3. ∇θ ← ∇θ + C(φm − φs);

end for
θ ← (1− η)θ − η∇θ;

end for
θ∗ ← θ;

denote the expectation over the distributions p(h|xn, ŷn) and p(h|xn,yn), respectively. Both

expectations can similarly be approximated using the marginal probabilities obtained from

belief propagation. See Algorithm 4.1 for details of the sub-gradient descent (SGD) algorithm

for MSSVM. Furthermore, one can show (Lemma B.1.2 in Appendix B) that the gradient of

the unified framework (4.6) is

∇θU = θ + C
N∑
n=1

Ep(εy,εh)(y,h|xn)[φ(xn,y,h)]− C
N∑
n=1

Epεh (h|xn,yn)[φ(xn,yn,h)]. (4.9)

where the corresponding temperature controlled distributions are defined as,

pεh(h|xn,y) ∝ exp
[θ>φ(xn,y,h)

εh

]
,

p(εy ,εh)(y|xn) ∝ exp
{ 1

εy

[
∆(y,yn) + εh log

∑
h

exp
(θ>φ(xn,y,h)

εh

)]}
,

p(εy ,εh)(y,h|xn) = pεh(h|xn,y) · p(εy ,εh)(y|xn).

Exactly as in Table 4.1, this reduces to the sub-gradient of MSSVM (4.7) if εy → 0+ and

εh = 1, the sub-gradient of LSSVM if εy → 0+ and εh → 0+, and the gradient of HCRF

if εy = 1, εh = 1 and ∆(y,yn) ≡ 0. One can simply substitute these (sub-)gradients into
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Algorithm 4.1 to obtain the corresponding training algorithms for LSSVM and HCRF. In

those cases, max-product BP and sum-product BP can be used to approximate the inference

operations instead.

4.6.2 CCCP Training Algorithm

The concave-convex procedure (CCCP) [Yuille and Rangarajan, 2003] is a general non-

convex optimization algorithm with wide application in machine learning. It is based on the

idea of rewriting the non-convex objective function into a sum of a convex function and a

concave function (or equivalently a difference of two convex functions), and transforming the

non-convex optimization problem into a sequence of convex sub-problems by linearizing the

concave part. In learning with latent variable models, the log-likelihood functions are usually

the difference of two convex functions. As a result, CCCP generalizes the expectation–

maximization (EM) algorithm [Dempster et al., 1977], in which the E-step is analogous to

linearization step in CCCP, and the M-step corresponds to solving the convex sub-problem

in CCCP.

CCCP provides a straightforward solution for our problem, since the objective functions of

all the methods we have discussed – in (4.3), (4.5) and (4.6) – are naturally differences of

two convex functions. For example, the MSSVM objective in (4.3) can be written as,

f(θ) = f+(θ)− f−(θ), where

f+(θ) =
1

2
‖θ‖2 + C

N∑
n=1

max
y

{
∆(yn,y) + log

∑
h

exp
[
θ>φ(xn,y,h)

]}
,

f−(θ) = C
N∑
n=1

log
∑
h

exp
[
θ>φ(xn,yn,h)

]
.

Denoting the parameter vector at iteration t by θt, the CCCP algorithm updates to new
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Algorithm 4.2 CCCP Training of MSSVM

Input: number of outer iterations T , learning rate η, tolerance ε for inner loops
Output: the learned weight vector θ∗

θ = 0;
for t = 1 to T do
u = 0;
\\ linearization step:
for n = 1 to N do

1. Calculate φs = Ep(h|xn,yn)[φ(xn,yn,h)] by sum-product BP;
2. u = u+ φs;

end for
\\ minimizing convex surrogate by gradient descent:
repeat
∇θ = 0;
for n = 1 to N do

1. Calculate φm = Ep(h|xn,ŷn)[φ(xn, ŷn,h)] by mixed-product BP;
2. ∇θ ← ∇θ + Cφm;

end for
∇θ = ∇θ − Cu;
θ ← (1− η)θ − η∇θ;

until ||∇θ|| ≤ ε
end for
θ∗ ← θ;

parameters θt+1 by minimizing a convex surrogate function where f−(θ) is linearized:

θt+1 ← argmin
θ

{
f+(θ) − θ>∇f−(θt)

}
, where ∇f−(θt) = C

N∑
n=1

Ep(h|xn,yn)[φ(xn,yn,h)]

is the gradient of f−(θ) at θt and its expectation can be evaluated (approximately) by belief

propagation. The convex optimization can be solved by gradient descent. See Algorithm 4.2

for more details of CCCP for the MSSVM.

4.7 Experiments

In this section, we compare our MSSVM with other state-of-the-art methods on both simu-

lated and real-world datasets. We demonstrate that the MSSVM significantly outperforms
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the LSSVM, max-margin min-entropy (M3E) model [Miller et al., 2012], and loss-based

learning by modeling latent variable(ModLat) [Kumar et al., 2012], especially when the un-

certainty over hidden variables is high. Our method also consistently outperforms HCRFs

in all experiments, especially with a small training sample size.

4.7.1 Simulated Data

We simulate both training and testing data from a pairwise Markov random field (MRF)

over graph G = (V,E) with discrete random variables taking values in {0, 1, 2, 3}n, given by,

p(x,y,h | θ) ∝ exp
[∑
i∈Vx

θ>i φ(xi) +
∑
j∈Vy

θ>j φ(yj) +
∑
k∈Vh

θ>k φ(hk)

+
∑

(i,j)∈Exy

θ>(i,j)φ(xi, yj) +
∑

(i,k)∈Exh

θ>(i,k)φ(xi, hk) +
∑

(j,k)∈Eyh

θ>(j,k)φ(yj, hk)
]
,

where the graph structure G is either a “hidden chain” (40 nodes) or a 2D grid (size 6×6×2 =

72 nodes), as illustrated in Figure 4.1. The shaded nodes denote hidden variables h, while

the unshaded nodes are the output variables y and nodes with hatching are the inputs x.

The log-linear weights θ are randomly generated from normal distributions. The singleton

parameters θi, θj and θk are drawn fromN (0, σ2
x·I), N (0, σ2

y ·I) andN (0, σ2
h·I), respectively,

corresponding to indicator vectors φ(xi), φ(yj) and φ(hk). The pairwise parameters θ(j,k)[yj =

s, hk = t], θ(i,j)[xi = r, yj = s] and θ(i,k)[xi = r, hk = t] are drawn from N (0, σ2
yh), N (0, σ2

xy)

and N (0, σ2
xh), respectively, corresponding to indicators φ(yj = s, hk = t), φ(xi = r, yj = s)

and φ(xi = r, hk = t). Note that the variance parameters σh and σyh control the degree of

uncertainty in the hidden variables and their importance for estimating the output variables

y: the uncertainty of h is high for small values of σh, and the correlation between h and y is

high when σyh is large.

We sample 20 training instances and 100 test instances from both the 40-node hidden chain
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(a) (b)

Figure 4.1: (a) The hidden chain and (b) 2D grid model used in our simulation experiments.
The shaded nodes denote hidden variables h, while the unshaded nodes are the output
variables y and nodes with hatching are the inputs x.

Table 4.2: Average accuracy (%) of MSSVM, LSSVM, HCRFs using SGD and CCCP when
the data are simulated from 40-node hidden chain and 6 × 6 2D-grid graph as shown in
Figure 4.1. The results are averaged over 20 random trials.

Hidden Chain MSSVM LSSVM HCRFs
SGD 69.20 66.87 68.75

CCCP 69.63 67.91 69.03

2D-grid graph MSSVM LSSVM HCRFs
SGD 74.12 71.96 73.51

CCCP 74.08 73.38 73.62

MRF and 6 × 6 2D grid MRF as as shown in Figure 4.1. We set σx = σy = σh = 0.1,

σyh = σyx = σhx = 2. Then, we train our MSSVM, LSSVM and HCRF models using both

SGD and CCCP. Hamming loss is used in both training and evaluation. In our experiments,

we set the regularization weight C = 1, because we find that it will give good enough results

on the simulated data. See Table 4.2 for the results across different algorithms. The results

are averaged over 20 random trials. We can see that our MSSVM always achieves the highest

accuracy when using either training algorithm. It is worth noting that LSSVM obtains a

significantly better result using CCCP than SGD; this is mainly due to SGD’s difficulty

converging on the piecewise linear objective of LSSVM.
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Figure 4.2: Convergence behaviours of (sub-)gradient descent on MSSVMs, LSSVMs and
HCRFs. Our MSSVM has smoother objective function and faster convergence than LSSVM.

Empirical Convergence of SGD and CCCP. Using sub-gradient descent with learning

rate ηM = 0.02, we found that for our MSSVM, training error converged quickly (within 50

iterations). However, sub-gradient descent on the LSSVM would only converge using a much

smaller learning rate (ηL = 0.001), and converged more slowly (usually after 250 iterations).

This effect is mainly because the LSSVM hard-max makes the objective function nonsmooth,

causing sub-gradient descent to be slow to converge. On the other hand, gradient descent

on HCRFs converges more easily and quickly than either MSSVM or LSSVM, because its

objective function is smoother. Figure 4.2 shows the oscillation during the iteration of (sub-

)gradient descent for each model, and empirically illustrates the convergence process.

We also observe CCCP converging faster than SGD (using smaller number of inference steps),

especially for LSSVM, since CCCP transforms the complex piecewise linear objective into a

sequence of easier convex sub-problems. In our empirical study, CCCP always converged well

even using approximate inference and non-convex objectives.2 To provide a fair comparison,

all methods are trained using the CCCP algorithm in the sequel.

2However, it is challenging to provide rigorous convergence guarantees for the non-convex & intractable
setting, and not really the focus of this work.
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Figure 4.3: The error rate of MSSVM, LSSVM and HCRFs as the training sample size
increases. Results are averaged over 5 random trials.

Training Sample Size. We compared the influence of sample size on each method by

varying the training size from 22 to 210 (with a testing size of 500). The data are all simulated

from a MRF on the 20-node hidden chain shown in Figure 4.1(a). We set σx = σy = σh = 0.1

and σyh = σyx = σhx = 2 as before. Results are averaged over 5 random trials and are shown

in Figure 4.3. We found that our MSSVM always considerably outperforms LSSVM, and

largely outperforms HCRFs when the training sample sizes are small. HCRFs perform worse

than LSSVM for few training data, but outperform LSSVM as the training sample increases.

Our experiment shows that MSSVM consistently outperforms HCRFs even with reasonably

large training sets on a relatively simple toy model. Although the maximum likelihood

estimator (as used in HCRFs) is generally considered asymptotically optimal if the model

assumptions are correct, this assumes a sufficiently large training size, which may be difficult

to achieve in practice. Given enough data (and the correct model), the HCRF should thus

eventually improve, but this seems unrealistic in practice since most applications are likely

to exhibit high dimensional parameters and relatively few training instances.

Likelihood vs. Prediction Accuracy However, it is worth noting that the HCRF model

always achieves higher test likelihood than the MSSVM and LSSVM on our simulated data

set. As an example, Figure 4.4 shows the test log-likelihood across the different methods
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Figure 4.4: The test log-likelihood of MSSVM, LSSVM and HCRF using SGD across itera-
tions.

when 20 training and 100 test instances are sampled from 40-node hidden chain MRF. This

should not be surprising, since the HCRF model directly optimizes the likelihood objective,

and (in this case) the model class being optimized is correct (i.e., the data were drawn

from a true model with the same structure). However, as we showed in Table 4.2, higher

likelihood does not necessarily imply that the HCRF will have better predictions on the

target variables. As was illustrated in previous part, explicitly minimizing the empirical loss

can lead to better predictions in situations with high dimensional model parameters and

relatively few training instances.

Uncertainty of Hidden Variables. We investigate the influence of uncertainty in the hidden

variables for each method by adjusting the noise level σh, which controls the uncertainty of

the hidden variables. Small values of σh correspond to high uncertainty in hidden variables.

We draw 20 training samples and 100 test samples from a MRF on a 40-node hidden chain

shown in Figure 4.1(a), with fixed σx = σy = 0.1 and σyh = σyx = σhx = 2. For comparison,

we also evaluate the performance of M3E [Miller et al., 2012] and ModLat [Kumar et al.,

2012]. In accordance with our default setting C = 1, we use the default hyper-parameters in

their package. It should be noted, MSSVM, LSSVM and HCRF have fewer hyper-parameters

than M3E and ModLat, and may tend to be less sensitive in practice.

Results are averaged over 20 random trials and are shown in Table 4.3. We find that
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Table 4.3: The accuracy (%) of MSSVM, LSSVM, HCRFs, M3E and ModLat under differ-
ent σh, which governs the level of uncertainty in the hidden variables. Small values of σh
correspond to high uncertainty in hidden variables. Results are averaged over 20 random
trials.

σh MSSVM LSSVM HCRFs M3E ModLat
10 79.30 79.46 78.68 79.04 77.16
1 70.00 70.07 69.88 68.53 67.91
0.5 67.24 65.98 66.66 66.05 65.15
0.1 69.63 67.91 69.03 65.19 67.96
0.01 73.88 71.38 72.58 67.21 71.52
1e-3 72.08 69.24 70.88 65.48 66.54
Avg. 72.02 70.67 71.28 68.58 69.37

our MSSVM is competitive with LSSVM and M3E when the uncertainty in the hidden

variables is low, and becomes significantly better than them as the uncertainty increases.

Because LSSVM uses the joint MAP, it does not take into account this uncertainty. On

the other hand, M3E explicitly tries to minimize this uncertainty, which can also mislead

the prediction. Our MSSVM consistently outperforms HCRFs for moderate training sample

sizes. Because current implementations of M3E and ModLat do not provide approximate

inference algorithms on general MRFs, we only provide their results on chain models.

4.7.2 Image Segmentation

In this section, we evaluate our MSSVM method on the task of segmenting weakly labeled

images. Our settings are modeled the experiments in Schwing et al. [2012]. We assume a

ground truth image of 20×40 pixels as shown in Figure 4.5 (a), where each pixel i has a

label yi taking values in {1, · · · , 5}. The observed image x is obtained by adding Gaussian

noise, N (0, 5), on the ground truth image as Figure 4.5 (b).

We use the 2D-grid model as in Figure 4.1 (b), with local features φ(yi, xi) = eyi ⊗ xi and

pairwise features φ(yi, yj) = eyi⊗eyj ∈ R5×5 as defined in Nowozin and Lampert [2011], where
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Figure 4.5: (a) The ground truth image. (b) An example of an observed noisy image. (c)
The performance of each algorithm as the percentage of missing labels varies from 10% to
95%. Results are averaged over 5 random trials, each using 10 training instances and 10 test
instances.

eyi is the unit normal vector with entry one on dimension yi and ⊗ is the outer product. The

set of missing labels (hidden variables) are determined at random, in proportions ranging

from 10% to 95%. The performance of MSSVM, LSSVM, and HCRFs are evaluated using the

CCCP algorithm. Figure 4.5 (c) lists the performance of each method as the percentage of

missing labels is increased. Results are averaged over 5 random trials, each using 10 training

instances and 10 test instances. We can see that the performance of LSSVM degrades

significantly as the number of hidden variables grows. Most notably, MSSVM is consistently

the best method across all settings. This can be explained by the fact that the MSSVM

combines both the max-margin property and the improved robustness given by properly

accounting for uncertainty in the hidden labels.

4.7.3 Object Categorization

Finally, we evaluate our MSSVM method on the task of object categorization using partially

labeled images. We use the Microsoft Research Cambridge data set [Winn et al., 2005], con-

sisting of 240 images with 213×320 pixels and their partial pixel-level labelings. The missing

labels may correspond to ambiguous regions, undefined categories or object boundaries, etc.
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Figure 4.6: The example images and Pixel-wise labellings including building, grass, sky, tree
and car from MSRC dataset. The black regions represent missing labels.

Table 4.4: Average patch level accuracy (%) of MSSVM, LSSVM, HCRFs for MSRC data
by 2-fold cross validation.

MSRC Data MSSVM LSSVM HCRFs
Building 72.4 70.7 71.7

Grass 89.7 88.9 88.3
Sky 88.3 85.6 88.2
Tree 71.9 71.0 70.1
Car 70.8 69.4 70.2

See Figure 4.6 for illustration. Modeled on the approach outlined in Verbeek and Triggs

[2007], we use 20 × 20 pixel patches with centers at 10 pixel intervals and treat each patch

as a node in our model. This results in a 20 × 31 grid model as in Figure 4.1 (b). The

local features of each patch are encoded using texture and color descriptors. For texture,

we compute the 128-dimensional SIFT descriptor of the patch and vector quantize it into a

500-word codebook, learned by k-means clustering of all patches in the entire dataset. For

color, we take 48-dimensional RGB color histogram for each patch. In our experiment, we

select the 5 most frequent categories in the dataset and use 2-fold cross validation for testing.

Table 4.4 shows the accuracies of each method across the various categories. Again, we find

that MSSVM consistently outperforms other methods across all categories, which can be

explained by both the superiority of SSVM-based methods for moderate sample size and the

improved robustness by maintaining the uncertainty over the missing labels in the learning

procedure.
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4.8 Conclusion

We proposed a novel structured SVM method for structured prediction with hidden variables.

We demonstrate that our MSSVM consistently outperforms state-of-the-art methods in both

simulated and real-world datasets, especially when the uncertainty of hidden variables is

large. Compared to the popular LSSVM, the objective function of our MSSVM is easier to

optimize due to the smoothness of its objective function. We also provide a unified framework

which includes our method as well as a spectrum of previous methods as special cases.
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Chapter 5

Learning Infinite RBMs with Frank-Wolfe

Latent variable models (LVMs) can model the highly complex distribution of observable

variables, and provide useful hidden representations for other end tasks, such as classifica-

tion. Restricted Boltzmann machines (RBMs) are popular two-layer LVMs that use a layer

of hidden units h to model the distribution of observable units v [Smolensky, 1986, Hinton,

2002b]. In practice, it is challenging to determine the size of hidden layer (i.e., the number of

hidden units) before performing learning. In this chapter, we propose an infinite restricted

Boltzmann machine by defining a distribution over the hidden layer, whose maximum like-

lihood estimation (MLE) corresponds to a constrained convex optimization. We apply the

Frank-Wolfe algorithm [Frank and Wolfe, 1956], also known as conditional gradient, to solve

the resulting optimization, which provides a solution that can be interpreted as inserting a

hidden unit at each iteration, so that the optimization process takes the form of a sequence

of finite models of increasing complexity. As a side benefit, this can be used to easily and

efficiently identify an appropriate number of hidden units during the optimization. The re-

sulting model can also be used as an initialization for typical state-of-the-art RBM training

algorithms such as contrastive divergence, leading to models with consistently higher test

likelihood than random initialization.
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5.1 Introduction

Restricted Boltzmann machines (RBMs) have been widely applied to capture the complex

distributions of observable data in numerous application domains, including image model-

ing [Krizhevsky et al., 2010], human motion capture [Taylor et al., 2006b] and collaborative

filtering [Salakhutdinov et al., 2007b]. In addition, RBMs are also widely used as building

blocks for state-of-the-art deep generative models, such as deep belief networks [Hinton et al.,

2006b] and deep Boltzmann machines [Salakhutdinov and Hinton, 2009]. Due to the exis-

tence of partition function, the log-likelihood function of RBMs are generally intractable to

calculate. In the literature, RBMs are usually learned using the contrastive divergence (CD)

algorithm [Hinton, 2002b, Tieleman, 2008], which approximates the gradient of the log-

partition function using a Gibbs sampler.

One important model selection problem when using a RBM is that we need to decide the

size of the hidden layer (number of hidden units) before performing learning, and it can be

challenging to decide what is the optimal size. One simple heuristic is to search the ‘best”

number of hidden units using cross validation or testing likelihood within a pre-defined

candidate set. Unfortunately, this is extremely time consuming, which involves running a

full training algorithm (e.g., contrastive divergence (CD) [Hinton, 2002b]) for each possible

size, and thus we can only search over a relatively small set of sizes using this approach.

In addition, because the log-likelihood of the RBM is highly non-convex, its performance

is sensitive to the initialization of the learning algorithm. Although random initializations

(to relatively small values) are routinely used in practice with algorithms like CD, it would

be valuable to explore more robust algorithms that are less sensitive to the initialization, as

well as smarter initialization strategies to obtain better results.

In this chapter, we propose a fast, greedy algorithm for training RBMs by inserting one

hidden unit at each iteration. Our algorithm provides an efficient way to determine the size
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of the hidden layer in an adaptive fashion, and can also be used as an initialization for a full

CD-like learning algorithm. Our method is based on constructing a convex relaxation of the

RBM that is parameterized by a distribution over the weights of the hidden units, for which

the training problem can be framed as a convex functional optimization and solved using

an efficient Frank-Wolfe algorithm [Frank and Wolfe, 1956, Jaggi, 2013] that effectively adds

one hidden unit at each iteration by solving a relatively fast inner loop optimization.

5.2 Related Work

Our contributions connect to a number of different themes of existing work within machine

learning and optimization. Here we give a brief discussion of prior related work.

There have been a number of works on convex relaxations of latent variable models in

functional space, which are related to the classical gradient boosting method [Friedman,

2001]. In supervised learning, Bengio et al. [2005] propose a convex neural network in which

the number of hidden units is unbounded and can be learned, and Bach [2014] analyzes the

appealing theoretical properties of such a model. For clustering problems, several works on

convex functional relaxation have also been proposed [e.g., Nowozin and Bakir, 2008, Bradley

and Bagnell, 2009]. Other forms of convex relaxation have also been developed for two layer

latent variable models [e.g., Aslan et al., 2013].

There has also been considerable work on extending directed/hierarchical models into “infi-

nite” models such that the dimensionality of the latent space can be automatically inferred

during learning. Most of these methods are Bayesian nonparametric models, and a brief

overview can be found in Orbanz and Teh [2011]. A few directions have been explored for

undirected models, particularly RBMs. Welling et al. [2002] propose a boosting algorithm

in the feature space of the model; a new feature is added into the RBM at each boosting
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iteration, instead of a new hidden unit. Nair and Hinton [2010] conceptually tie the weights

of an infinite number of binary hidden units, and connect these sigmoid units with noisy

rectified linear units (ReLUs). Recently, Côté and Larochelle [2015] extend an ordered RBM

model with infinite number of hidden units, and Nalisnick and Ravi [2015] use the same

technique for word embedding. The ordered RBM is sensitive to the ordering of its hidden

units and can be viewed as an mixture of RBMs. In contrast, our model incorporates regular

RBM, as a special case, and enables model selection for standard RBMs.

The Frank-Wolfe method [Frank and Wolfe, 1956], also known as conditional gradient, is

a classical algorithm to solve constrained convex optimization. It has recently received

much attention because it unifies a large number of sparse greedy methods [Jaggi, 2013],

including boosting algorithms [e.g., Beygelzimer et al., 2015], learning with dual structured

SVM [Lacoste-Julien et al., 2013] and marginal inference using MAP in graphical models [e.g.,

Belanger et al., 2013, Krishnan et al., 2015].

Verbeek et al. [2003] proposed a greedy learning algorithm for Gaussian mixture models,

which inserts a new component at each step and resembles our algorithm in its procedure.

As one benefit, it provides a better initialization for EM than random initialization. Likas

et al. [2003] investigate greedy initialization in k-means clustering.

5.3 Background and Notations

As we reviewed in Section 2.1.4 of Chapter 2, a restricted Boltzmann machine (RBM) is an

undirected graphical model that defines a joint distribution over the vectors of visible units

v ∈ {0, 1}|v|×1 and hidden units h ∈ {0, 1}|h|×1,

p(v,h | θ) =
1

Z(θ)
exp

(
v>Wh+ b>v

)
; Z(θ) =

∑
v

∑
h

exp
(
v>Wh+ b>v

)
, (5.1)
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where |v| and |h| are the dimensions of v and h respectively, and θ := {W, b} are the model

parameters including the pairwise interaction term W ∈ R|v|×|h| and the bias term b ∈ R|v|×1

for the visible units. In this chapter, we drop the bias term for the hidden units h, since

it simplifies our derivation and can be achieved by introducing a dummy visible unit whose

value is always one. The partition function Z(θ) serves to normalize the probability to sum

to one, and is typically intractable to calculate exactly.

According to the marginal distribution of RBM in Eq. (2.10), the marginal log-likelihood of

the RBM is:

log p(v | θ) =

|h|∑
i=1

log
(
1 + exp(w>i v)

)
+ b>v − logZ(θ), (5.2)

where wi := W•i is the i-th column of W and corresponds to the weights connected to the

i-th hidden unit. Because each hidden unit hi takes values in {0, 1}, we get the softplus

function log(1 + exp(w>i v)) when we marginalize hi. This form shows that the (marginal)

free energy of the RBM is a sum of a linear term b>v and a set of softplus functions with

different weights wi; this provides a foundation for our development.

Given a dataset {vn}Nn=1, the gradient of the log-likelihood for each data point vn is

∂ log p(vn|θ)
∂W

= Ep(h|vn;θ)

[
vnh>

]
− Ep(v,h|θ)

[
vh>

]
= vn(µn)> − Ep(v,h|θ)

[
vh>

]
, (5.3)

where µn = σ(W>vn) and the logistic function σ(u) = 1/(1 + exp(−u)) is applied in an

element-wise manner. The positive part of the gradient can be calculated exactly, since the

conditional distribution p(h|vn) is fully factorized. The negative part arises from the deriva-

tives of the log-partition function and is intractable. Stochastic optimization algorithms,

such as CD [Hinton, 2002b] and persistent CD [Tieleman, 2008], are popular methods to

approximate the intractable expectation using Gibbs sampling.
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5.4 RBM with Infinite Hidden Units

In this section, we first generalize the RBM model defined in Eq. (5.2) to a model with an

infinite number of hidden units, which can also be viewed as a convex relaxation of the RBM

in functional space. Then, we describe the learning algorithm.

5.4.1 Model Definition

Our general model is motivated by Eq. (5.2), in which the first term can be treated as an

empirical average of the softplus function log(1+exp(w>v)) under an empirical distribution

over the weights {wi}. To extend this, we define a general distribution q(w) over the

weight w, and replace the empirical averaging with the expectation under q(w); this gives

the following generalization of an RBM with an infinite (possibly uncountable) number of

hidden units,

log p(v | q, ϑ) = αEq(w)

[
log(1 + exp(w>v))

]
+ b>v − logZ(q, ϑ), (5.4)

Z(q, ϑ) =
∑
v

exp
(
αEq(w)

[
log(1 + exp(w>v))

]
+ b>v

)
,

where ϑ := {b, α} and α > 0 is a temperature parameter which controls the “effective

number” of hidden units in the model, and Eq(w)[f(w)] :=
∫
w
q(w)f(w)dw. Note that q(w)

is assumed to be properly normalized, i.e.,
∫
w
q(w)dw = 1. Intuitively, (5.4) defines a semi-

parametric model whose log probability is a sum of a linear bias term parameterized by b,

and a nonlinear term parameterized by the weight distribution w and α that controls the

magnitude of the nonlinear term. This model can be regarded as a convex relaxation of the

regular RBM, as shown in the following result.

Proposition 5.4.1. The model in Eq. (5.4) includes the standard RBM (5.2) as special case

by constraining q(w) = 1
|h|
∑|h|

i=1 1(w = wi) and α = |h|. Moreover, the log-likelihood of the
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model is concave w.r.t. the function q(w), α and b respectively, and is jointly concave with

q(w) and b.

We should point out that the parameter α plays a special role in this model: we reduce to the

standard RBM only when α equals the number |h| of particles in q(w) = 1
|h|
∑|h|

i=1 1(w = wi),

and would otherwise get a fractional RBM. The fractional RBM leads to a more challenging

inference problem than a standard RBM, since the standard Gibbs sampler is no longer

directly applicable. We discuss this point further in Section 5.4.3.

Given a dataset {vn}Nn=1, we learn the parameters q and ϑ using a penalized maximum

likelihood estimator (MLE) that involves a convex functional optimization:

argmax
q∈M, ϑ

{
L(q, ϑ) ≡ 1

N

N∑
n=1

log p(vn | q, ϑ)− λ

2
Eq(w)[||w||2]

}
, (5.5)

where M is the set of valid distributions and we introduce a functional L2 norm regulariza-

tion Eq(w)[||w||2] to penalize the likelihood for large values of w. Alternatively, we could

equivalently optimize the likelihood on MC = {q | q(w) ≥ 0 and
∫
||w||2≤C q(w) = 1}, which

restricts the probability mass to a 2-norm ball ||w||2 ≤ C.

5.4.2 Learning Infinite RBMs with Frank-Wolfe

It is challenging to directly solve the optimization in Eq. (5.5) by standard gradient descent

methods, because it involves optimizing the density function q(w) in function space with

infinite dimensions. Instead, we propose to solve it using the Frank-Wolfe algorithm [Jaggi,

2013], which is projection-free and provides a sparse solution that is a convex combination

of only few “atoms”.

In Frank-Wolfe algorithm, assume we have the the density function qt(w) at the iteration t;

then the algorithm finds qt+1 by maximizing the linearization of the objective function, and
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taking a step in that direction :

qt+1 ← (1− βt+1)qt + βt+1rt+1, where rt+1 ← argmax
q∈M

〈q,∇qL(qt, ϑt)〉, (5.6)

therein βt+1 ∈ [0, 1] is a step size parameter, and the convex combination step guarantees

the new qt+1 remains a distribution after the update. A typical step size is βt = 1/t, in which

case we have qt(w) = 1
t

∑t
s=1 rs(w), that is, qt equals the average of all the earlier solutions

obtained by the linear program.

To apply Frank-Wolfe to solve our problem, we need to solve the linear programming defined

in E.q. (5.6), thus we first calculate the functional gradient of L(qt, ϑt) w.r.t. the density

function q(w) as,

∇qL(q, ϑ) = −λ
2
||w||2 + α

[
1

N

N∑
n=1

log(1 + exp(w>vn))

−
∑
v exp

(
αEq(w)[log(1 + exp(w>v))] + b>v

)
· log(1 + exp(w>v))

Z(q, b, α)

]
= −λ

2
||w||2 + α

[
1

N

N∑
n=1

log(1 + exp(w>vn))−
∑
v

p(v | q, ϑ) log(1 + exp(w>v))

]
,

where p(v | qt, ϑt) is the distribution parametrized by the weight density qt(w) and parameter

ϑt at t-th iteration,

p(v | qt, ϑt) =
exp

(
αtEqt(w)[log(1 + exp(w>v))] + b>t v

)
Z(qt, ϑt)

. (5.7)

It turns out that the (functional) linear program in Eq. (5.6) is equivalent to an optimization
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over weight vector w :

max
q∈M
〈q,∇qL(qt, ϑt)〉 = max

q∈M
Eq(w)[∇qL(qt, ϑt)]

= max
w

{
− λ

2
||w||2 +

1

N

N∑
n=1

log(1 + exp(w>vn))−
∑
v

p(v | qt, ϑt) log(1 + exp(w>v))

}
,

(5.8)

because the optimal q(w) is a point mass at some w that can optimize the linear program.

The gradient of the objective Eq. (5.8) is,

∇wδ(w) = −λw +
1

N

N∑
n=1

σ(w>vn) · vn − Ep(v|qt,ϑt)
[
σ(w>v) · v

]
,

where the expectation over p(v | qt, ϑt) can be intractable to calculate, and one may use

stochastic optimization and draw samples using MCMC. Note that the second two terms in

the gradient enforce an intuitive moment matching condition: the optimal w introduces a

set of “importance weights” σ(w>v) that adjust the empirical data and the previous model,

such that their moments match with each other.

Now, suppose w∗t is the optimum of Eq. (5.8) at iteration t, the atom rt(w) we added in

Eq. (5.6) can be shown to be the indicator function over w∗t , that is, rt(w) = 1(w = w∗t );

in addition, we have qt(w) = 1
t

∑t
s=1 1(w = w∗s) when the step size is taken to be βt =

1
t
. Therefore, this Frank-Wolfe update can be naturally interpreted as greedily inserting a

hidden unit into the current model p(v | qt, ϑt). In particular, if we update the temperature

parameter as αt ← t, according to Proposition 5.4.1, we can directly transform our model

p(v | qt, ϑt) to a regular RBM after each Frank-Wolfe step, which enables the convenient

blocked Gibbs sampling for inference.

Compared with the (regularized) MLE of the standard RBM (e.g. in Eq. (5.3)), the opti-
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mization in Eq. (5.8) has the following nice properties: (1) The current model p(v | qt, ϑt)

does not depend on w, which means we can draw enough samples from p(v | qt, ϑt) at each

iteration t, and reuse them during the optimization of w. (2) The objective function in

Eq. (5.8) can be evaluated explicitly given a set of samples, and hence efficient off-the-shelf

optimization tools such as L-BFGS can be used to solve the optimization very efficiently.

(3) Each iteration of our method involves many fewer parameters (only the weights for a sin-

gle hidden unit, which is |v|× 1 instead of the full |v|× |h| weight matrix are updated), and

hence defines a series of easier problems that can be less sensitive to initialization. We note

that a similar greedy learning strategy has been successfully applied for learning mixture

models [Verbeek et al., 2003], in which one greedily inserts a component at each step, and

that this approach can provide better initialization for EM optimization than using multiple

random initializations.

Once we obtain qt+1, we update the bias parameter bt by gradient descent,

∇bL(qt+1, ϑt) =
1

N

N∑
n=1

vn −
∑
v

p(v|qt+1, ϑt)v. (5.9)

We can further optimize αt by gradient descent, and the gradient of L(q, ϑ) w.r.t. α is

∇αL(q, ϑ) =
1

N

N∑
n=1

Eq(w)

[
log(1 + exp(w>vn))

]
−
∑
v

p(v | q, ϑ) Eq(w)

[
log(1 + exp(w>v))

]
.

However, we find simply updating αt ← t is more efficient and works well in practice, and

has the additional advantage to be a valid RBM. We summarize our Frank-Wolfe learning

algorithm in Algorithm 5.1.

Adding hidden units on RBM. Besides initializing q(w) to be a delta function at some random

w′ and learning the model from scratch, one can also adapt Algorithm 5.1 to incrementally

add hidden units into an existing RBM in Eq. (5.2) (e.g. have been learned by CD). Ac-
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Algorithm 5.1 Frank-Wolfe Learning Algorithm

Input: training data {vn}Nn=1; step size η; regularization λ.
Output: sparse solution q∗(w), and ϑ∗

Initialize q0(w) = 1(w = w′) at random w′; b0 = 0; α0 = 1;

for t = 1 : T [or, stopping criterion] do

Draw sample {vs}Ss=1 from p(v | qt−1, ϑt−1);

w∗t = argmaxw

{
− λ

2
||w||2+ 1

N

∑N
n=1 log(1+exp(w>vn))− 1

S

∑S
s=1 log(1+exp(w>vs))

}
;

Update qt(w)← (1− 1
t
) · qt−1(w) + 1

t
· 1(w = w∗t );

Update αt ← t (optional: gradient descent);

Set bt = bt−1;
repeat

Draw a mini-batch samples {vm}Mm=1 from p(v | qt, ϑt)
Update bt ← bt + η · ( 1

N

∑N
n=1 v

n − 1
M

∑M
m=1 v

m)
until

end for

Return q∗(w) = qt(w); ϑ∗ = {bt, αt};

cording to Proposition 5.4.1, one can simply initialize qt(w) = 1
|h|
∑|h|

i=1 1(w = wi), αt = |h|,

and continue the Frank-Wolfe iterations at t = |h|+ 1.

Removing hidden units. Since the hidden units are added in a greedy manner, one may

want to remove an old hidden unit during the Frank-Wolfe learning, provided it is bad with

respect to our objective Eq. (5.8) after more hidden units have been added. A variant of

Frank-Wolfe with away-steps [Guélat and Marcotte, 1986] fits this requirement and can be

directly applied. As shown by [Clarkson, 2010], it can improve the sparsity of the final

solution (i.e., fewer hidden units in the learned model).

5.4.3 MCMC Inference for Fractional RBMs

As we point out in Section 5.4.1, we need to take α equal to the number of particles in q(w)

(that is, αt ← t in Algorithm 5.1) in order to have our model reduce to the standard RBM.

If α takes a more general real number, we obtain a more general fractional RBM model, for
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which inference is more challenging because the standard block Gibbs sampler is not directly

applicable. In practice, we find that setting αt ← t to correspond to a regular RBM seems

to give the best performance, but for completeness, we discuss the fractional RBM in more

detail in this section, and propose a Metropolis-Hastings algorithm to draw samples from

the fractional RBM. We believe that this fractional RBM framework provides an avenue for

further improvements in future work.

To frame the problem, let us assume αq(w) =
∑

i ci · 1(w = wi), where ci is a general real

number; the corresponding model is

log p(v | q, ϑ) =
∑
i

ci log(1 + exp(w>i v)) + b>v − logZ(q, ϑ), (5.10)

which differs from the standard RBM in (5.2) because each softplus function is multiplied

by ci. Nevertheless, one may push the ci into the softplus function, and obtain a standard

RBM that forms an approximation of (5.10):

log p̃(v | q, ϑ) =
∑
i

log(1 + exp(ci ·w>i v)) + b>v − log Z̃(q, ϑ). (5.11)

This approximation can be justified by considering the special case when the magnitude of

the weights w is very large, so that the softplus function essentially reduces to a rectified

linear unit (ReLU) function, that is, log(1 + exp(w>i v)) ≈ max(0,w>i v). In this case, (5.10)

and (5.11) become equivalent because ci max(0, x) = max(0, cix). More concretely, we can

guarantee the following bound:

Proposition 5.4.2. For any 0 < ci ≤ 1,we have

1

21−ci
(1 + exp(ci ·w>i v)) ≤ (1 + exp(w>i v))ci ≤ 1 + exp(ci ·w>i v).

99



Proof. For any 0 < c ≤ 1, we have following classical inequality,

∑
k

xk ≤ (
∑
k

xck)
1/c, and

1

2

∑
k

xk ≤ (
1

2

∑
k

xck)
1/c

Let x1 = 1 and x2 = exp(w>i v), and the proposition is a direct result of above two inequali-

ties.

Note that we apply the bound when ci > 1 by splitting ci into the sum of its integer part

and fractional remainder, and apply the bound to the fractional part.

Therefore, the fractional RBM (5.10) can be well approximated by the standard RBM (5.11),

and this can be leveraged to design an inference algorithm for (5.10). As one example, we

can use the Gibbs update of (5.11) as a proposal for a Metropolis-Hastings update for (5.10).

To be specific, given a configuration v, we perform Gibbs update in RBM p̃(v | q, ϑ) to get

v′, and accept it with probability min(1, A(v → v′)),

A(v → v′) =
p(v′)T̃ (v′ → v)

p(v)T̃ (v → v′)
,

where T̃ (v → v′) is the Gibbs transition of RBM p̃(v | q, ϑ). Because the acceptance

probability of a Gibbs sampler equals one, we have p̃(v)T̃ (v→v′)
p̃(v′)T̃ (v′→v)

= 1 . This gives

A(v → v′) =
p(v′)p̃(v)

p(v)p̃(v′)
=

∏
i(1 + exp(w>i v

′))ci ·
∏

i(1 + exp(ci ·w>i v))∏
i(1 + exp(w>i v))ci ·

∏
i(1 + exp(ci ·w>i v′))

.

5.5 Experiments

In this section, we test the performance of our Frank-Wolfe (FW) learning algorithm on two

datasets: MNIST [LeCun et al., 1998] and Caltech101 Silhouettes [Marlin et al., 2010]. The

MNIST handwritten digits database contains 60,000 images in the training set and 10,000
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test set images, where each image vn includes 28×28 pixels and is associated with a digit label

yn. We binarize the grayscale images by thresholding the pixels at 127, and randomly select

10,000 images from training as the validation set. The Caltech101 Silhouettes dataset [Marlin

et al., 2010] has 8,671 images with 28×28 binary pixels, where each image represents objects

silhouette and has a class label (overall 101 classes). The dataset is divided into three subsets:

4,100 examples for training, 2,264 for validation and 2,307 for testing.

Training algorithms We train RBMs with CD-10 algorithm. 1 A fixed learning rate is se-

lected from the set {0.05, 0.02, 0.01, 0.005} using the validation set, and the mini-batch size

is selected from the set {10, 20, 50, 100, 200}. We use 200 epochs for training on MINIST and

400 epochs on Caltech101. Early stopping is applied by monitoring the difference of average

log-likelihood between training and validation data, so that the intractable log-partition func-

tion is cancelled [Hinton, 2010]. We train RBMs with {20, 50, 100, 200, 300, 400, 500, 600, 700}

hidden units. We incrementally train a RBM model using the Frank-Wolfe (FW) algo-

rithm 5.1. A fixed step size η is selected from the set {0.05, 0.02, 0.01, 0.005} using the vali-

dation data, and a regularization strength λ is selected from the set {1, 0.5, 0.1, 0.05, 0.01}.

We set T = 700 in Algorithm 5.1, and use the same early stopping criterion as CD. We

randomly initialize the CD algorithm 5 times and select the best one on the validation set;

meanwhile, we also initialize CD by the model learned from Frank-Wolfe.

Test likelihood To evaluate the test likelihood of the learned models, we estimate the

partition function using annealed importance sampling (AIS) [Salakhutdinov and Murray,

2008]. The temperature parameter is selected following the standard guidance: first 500

temperatures spaced uniformly from 0 to 0.5, and 4,000 spaced uniformly from 0.5 to 0.9, and

10,000 spaced uniformly from 0.9 to 1.0; this gives a total of 14,500 intermediate distributions.

We summarize the averaged test log-likelihood of MNIST and Caltech101 Silhouettes in

1CD-k refers to using k-step Gibbs sampler to approximate the gradient of the log-partition function.
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Figure 5.1, where we report the result averaged over 500 AIS runs in all experiments, with

the error bars indicating the 3 standard deviations of the estimations.

We evaluate the test likelihood of the model learned by FW after adding every 20 hidden

units. We perform early stopping when the gap of average log-likelihood between training and

validation data largely increases. As shown in Figure 5.1, this procedure selects 460 hidden

units on MNIST (as indicated by the green dashed lines), and 550 hidden units on Caltech101;

purely for illustration purposes, we continue FW in the experiment until reaching T = 700

hidden units. We can see that the identified number of hidden units roughly corresponds to

the maximum of the test log-likelihood of all the three algorithms, suggesting that FW can

identify the appropriate number of hidden units during the optimization.

We also use the model learned by FW as an initialization for CD (the blue lines in Fig-

ure 5.2), and find it consistently performs better than the best result of CD with 5 random

initializations. In our implementation, the running time of the FW procedure is at most

twice as CD for the same number of hidden units. Therefore, FW initialized CD provides a

practical strategy for learning RBMs: it requires approximately three times of computation

time as a single run of CD, while simultaneously identifying the proper number of hidden

units and obtaining better test likelihood.

Classification The performance of our method is further evaluated using discriminant im-

age classification tasks. We take the hidden units’ activation vectors Ep(h|vn)[h] generated by

the three algorithms in Figure 5.1 and use it as the feature in a multi-class logistic regression

on the class labels yn in MNIST and Caltech101. From Figure 5.2, we find that our basic

FW tends to be worse than the fully trained CD (best in 5 random initializations) when

only small numbers of hidden units are added, but outperforms CD when more hidden units

(about 450 in both cases) are added. Meanwhile, the CD initialized by FW outperforms CD

using the best of 5 random initializations.
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(a) MNIST (b) Caltech101 Silhouettes

Figure 5.1: Average test log-likelihood on the two datasets as we increase the number of
hidden units. We can see that FW can correctly identify an appropriate hidden layer size
with high test log-likelihood (marked by the green dashed line). In addition, CD initialized
by FW gives higher test likelihood than random initialization for the same number of hidden
units. Best viewed in color.
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Figure 5.2: Classification error when using the learned hidden representations as features.
(Best viewed in color).

5.6 Conclusion

In this chapter, we propose a convex relaxation of the RBM with an infinite number of

hidden units, whose MLE corresponds to a constrained convex program in a function space.

We solve the program using Frank-Wolfe, which provides a sparse greedy solution that can

be interpreted as inserting a single hidden unit at each iteration. Our new method allows us

to easily identify the appropriate number of hidden units during the progress of learning, and

can provide an advanced initialization strategy for other state-of-the-art training methods

such as CD to achieve higher test likelihood than random initialization.
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Chapter 6

Belief Propagation in Conditional RBMs

for Structured Prediction

Conditional RBMs (CRBMs) are popular latent variable models for many supervised learning

tasks, such as human motion capture [Taylor et al., 2006a], collaborative filtering [Salakhut-

dinov et al., 2007a], and general structured prediction [Mnih et al., 2011, Yang et al., 2014].

Typically, learning on such models is dominated by contrastive divergence (CD) and its

variants. Although belief propagation (BP) algorithms can be used as inference routines

in training as well as for making predictions in test, they are believed to be slow on RBM-

based models (e.g., Mnih et al. [2011]), and not as good as CD when applied in learning (e.g.,

Larochelle et al. [2012]). In this chapter, we present a matrix-based implementation of BP

algorithms, which is easily scalable to tens of thousands of visible and hidden units. In

addition, our algorithms uses standard matrix product and element-wise operations, and is

thus highly suitable for modern high-performance computing architecture. We demonstrate

that, in both maximum likelihood and max-margin learning, training CRBMs with BP as

the inference routine can provide significantly better results than current state-of-the-art CD

methods on structured prediction problems. We also include practical guidelines on training

CRBMs with BP, and some insights on the interaction of learning and inference algorithms

for CRBMs. This Chapter is based on our paper in submission [Ping and Ihler, 2017].
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6.1 Introduction

As we reviewed in Section 2.1.4 of Chapter 2, a restricted Boltzmann machine (RBM) uses a

layer of hidden units h to model the distribution of visible units v. Due to the intractability

of the partition function in maximum likelihood estimation (MLE), RBMs are usually learned

using the contrastive divergence (CD) algorithm [Hinton, 2002a], which approximates the

gradient of the log-partition function using a k-step Gibbs sampler (referred to as CD-k).

To speed up the convergence of the Markov chain, a critical trick in CD-k is to initialize

the state of the Markov chain with each training instance. Although it has been shown

that CD-k does not follow the gradient of any objective function [Sutskever and Tieleman,

2010], it works well in many practical applications [Hinton, 2010]. An important variant

of CD-k is persistent CD (PCD) [Tieleman, 2008]. PCD uses a persistent Markov chain

during learning, where the Markov Chain is not reset between parameter updates. Because

the learning rate is usually small and the model changes only slightly between parameter

updates, the long-run persistent chain in PCD usually provides a better approximation to

the target distribution than the limited step chain in CD-k.

A conditional restricted Boltzmann machine (CRBM) is the discriminative extension of RBM

to include observed features x (see Section 2.1.5 in Chapter 2 for detailed review). In contrast

to the success of CD methods for RBMs, it has been noted that both CD-k and PCD may

not be well suited to learning conditional RBMs [Mnih et al., 2011]. In particular, PCD is

not appropriate for learning such conditional models, because the observed features x greatly

affect the model potentials. This means we need to run a separate persistent chain for every

training instance, which is costly for large datasets. To make things worse, as we revisit

a training instance in stochastic gradient descent (SGD) (which is standard practice for

large datasets), the model parameters will have changed substantially, making the persistent

chain for this instance far from the target distribution. Also, given the observed features,
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CRBMs tend to be more peaked than RBMs in a purely generative setting. CD methods

may make slow progress because it is difficult for the sampling procedure to explore these

peaked but multi-modal distributions. It was also observed that the important trick in CD-k,

which initializes the Markov chain using the training data, does not work well for CRBMs in

structured prediction [Mnih et al., 2011]. In contrast, starting the Gibbs chain with a random

state (which resembles the original learning algorithm for Boltzmann machines [Ackley et al.,

1985]) provides better results.

Approximate inference methods, such as mean field (MF) and belief propagation (BP), can

be employed as inference routines in learning as well as for making predictions after the

CRBM has been learned [Welling and Teh, 2003, Yasuda and Tanaka, 2009]. Although

loopy BP usually provides a better approximation of marginals than MF [Murphy et al.,

1999], it was found to be slow on CRBMs for structured prediction and only considered

practical on problems with few visible and hidden nodes [Mnih et al., 2011, Mandel et al.,

2011]. This inefficiency prevents it from being widely applied to conditional RBMs for

structured prediction, in which the CRBMs may have thousands of visible and hidden units.

More importantly, there is a pervasive opinion that belief propagation does not work well on

RBM-based models, especially for learning [Goodfellow et al., 2016, Chapter 16].

In this chapter, we present an efficient implementation of belief propagation algorithms for

conditional RBMs. It takes advantage of the bipartite graph structure and is scalable to tens

of thousands of visible units and hidden units.1 Our algorithm uses a compact representation

and only depends on matrix product and element-wise operations, which are typically opti-

mized in modern high-performance computing (HPC) architecture. We demonstrate that, in

the conditional setting, learning RBM-based models with belief propagation and its variants

can provide consistently better results than the state-of-the-art CD methods. We also show

1For random RBMs with 10, 000 visible units and 2, 000 hidden units, our Matlab implementation con-
verges within a few seconds on a desktop with Intel Core i7 (3.6 GHz).
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that the marginal structured SVM (MSSVM; in Chapter 4) can provide improvements for

max-margin learning of CRBMs [Yang et al., 2014]. We include practical guidelines on train-

ing CRBMs, and some insights on the interaction of learning and message-passing algorithms

for CRBMs.

We organize the rest of the chapter as follows. Section 6.2 discusses some connections to

related work. We review the RBM model and conditional RBMs in Section 6.3 and discuss

the learning algorithms in Section 6.4. In Section 6.5, we provide our efficient inference pro-

cedure. We report experimental results in Section 6.6 and conclude the paper in Section 6.7.

6.2 Related Work

Mnih et al. [2011] proposed the CD-PercLoss algorithm for conditional RBMs, which uses a

CD-like stochastic search procedure to minimize the perceptron loss on training data. Given

the observed features of the training instance, CD-PercLoss starts the Gibbs chain using

the logistic regression component of the CRBM. Yang et al. [2014] trained CRBMs using

a latent structured SVM (LSSVM) objective [Yu and Joachims, 2009b], and used a greedy

search (i.e., iterated conditional modes) for joint maximum a posteriori (MAP) inference

over both hidden and visible units.

It is also feasible to apply the mean-field (MF) approximation for the partition function in

MLE learning of RBMs and CRBMs [Peterson and Anderson, 1987]. Although efficient, this

is conceptually problematic in the sense that it effectively maximizes an upper bound of the

log-likelihood during learning. In addition, MF uses a unimodal proposal to approximate

the multi-modal distribution, which may lead to unsatisfactory results.

Although belief propagation (BP) and its variants have long been used to learn conditional

random fields (CRFs) with hidden variables [Quattoni et al., 2007b, Ping et al., 2014], they
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are mainly applied on sparsely connected graphs (e.g., chains and grids) and were believed

to be ineffective and slow on very dense graphs like CRBMs [Mnih et al., 2011, Goodfellow

et al., 2016]. A few recent works [Krähenbühl and Koltun, 2012, Zhang and Chen, 2012]

impose particular assumptions on the type of edge potentials and provide efficient inference

algorithms for fully connected CRFs. For example, the edge potentials in [Krähenbühl and

Koltun, 2012] are defined by a linear combination of Gaussian kernels, which enables efficient

message-passing using Gaussian filtering . In this chapter, however, we propose to speed up

general belief propagation on conditional RBMs without any potential function restrictions.

6.3 Background and Notations

As we reviewed in Section 2.1.5 in Chapter 2, the conditional RBM (CRBM) extends RBMs

to include observed features x, and defines a joint conditional distribution over v and h

given input features x ∈ R|x|×1,

p(v,h|x; θ) =
1

Z(x; θ)
exp

(
− E(v,h,x; θ)

)
, (6.1)

where the energy function E is defined as,

E(v,h,x; θ) = −v>W vhh− v>W vxx− h>W hxx− v>bv − h>bh,

and θ = {W vh,W vx,W hx, bv, bh} are model parameters. Z(x; θ) is the x-dependent partition

function,

Z(x; θ) =
∑
v

∑
h

exp
(
− E(v,h,x; θ)

)
.
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6.3.1 Structured Prediction with CRBMs

The conditional RBMs are widely applied in supervised learning. In this Chapter, we consider

the general structured prediction framework, which incorporates many popular applications,

such as collaborative filtering [Salakhutdinov et al., 2007b], multi-label learning [Li et al.,

2015], image denoising [Mnih et al., 2011] and semantic segmentation [Yang et al., 2014].

In structured prediction, the visible units v typically represent output variables, while the

observed x represent input features, and the hidden units h facilitate the modeling of output

variables given observed features. To make predictions, one choice is to infer the modes

of the singleton marginals, p(vi|x) =
∑
v\i

∑
h p(v,h|x). This marginalization inference is

intractable and is closely related to calculating the partition function. One can also decode

the output v by performing joint maximum a posteriori (MAP) inference [e.g., Yu and

Joachims, 2009b, Yang et al., 2014],

(v̂, ĥ) = argmax
v,h

p(v,h|x),

which gives a prediction for the pair (v,h); one obtains a prediction of v by simply dis-

carding the h component. Intuitively, the joint MAP prediction is “over-confident”, since it

deterministically assigns the hidden units to their most likely states, and is not robust when

the uncertainty of the hidden units is high. As we discussed in Chapter 4, one promising

alternative for CRBMs to use is marginal MAP prediction:

ṽ = argmax
v

p(v|x) = argmax
v

∑
h

exp
(
− E(v,h,x; θ)

)
,

which explicitly takes into account the uncertainty of the hidden units by marginalizing them

out. In general, these predictions are intractable in CRBMs, and one must use approximate

inference methods, such as mean field or belief propagation.
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6.4 Learning with CRBMs

In this section, we discuss different learning methods for conditional RBMs.

6.4.1 MLE and Related Algorithms

Assume we have a training set {vn,xn}Nn=1; then, the log-likelihood can be written as,2

N∑
n=1

{
log
∑
h

exp
(
− E(vn,h,xn; θ)

)
− logZ(xn; θ)

}
.

To efficiently maximize the objective function, stochastic gradient descent (SGD) is usually

applied. Given a randomly chosen instance {vn,xn}, one can show that the gradient of

log-likelihood w.r.t. W vh is,

∂ log p(vn|xn)

∂W vh
= vn(µn)> − Ep(v,h|xn)

[
vh>

]
, (6.2)

where µn = Ep(h|vn,xn)

[
h
]

= σ(W vh>vn +W hxxn +bh) and the logistic function σ is applied

in an element-wise manner. The positive part of the gradient can be calculated exactly.

The negative part arises from the derivatives of the log-partition function and is intractable

to calculate. The gradients of log-likelihood w.r.t. other pairwise and bias parameters are

analogous to Eq. (6.2), and listed as follows,

∂ log p(vn|xn)

∂W vx
= vnxn> − Ep(v,h|xn)

[
vxn>

]
,

∂ log p(vn|xn)

∂W hx
= µnxn> − Ep(v,h|xn)

[
hxn>

]
,

∂ log p(vn|xn)

∂bv
= vn − Ep(v,h|xn)

[
v
]
,

∂ log p(vn|xn)

∂bh
= µn − Ep(v,h|xn)

[
h
]
,

2One can also introduce some regularization terms, e.g. a Frobenius norm of W vh, W vx, Whx, to avoid
overfitting.
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All the negative parts of these gradients are intractable to calculate, and must be approxi-

mated during learning.

CD-k initializes the Gibbs chain by instance vn, and performs k-step Gibbs sampling by

Eq. (2.12). Then, the empirical moment is used as a substitute for the intractable expec-

tation Ep(v,h|xn)

[
vh>

]
. Although this works well on RBMs, it gives unsatisfactory results

on CRBMs. In practice, the conditional distributions p(v,h|xn) are strongly influenced by

the observed features xn , and usually more peaked than generative RBMs. It is usually

difficult for a Markov chain with few steps (e.g., 10) to explore these peaked and multi-modal

distributions. PCD uses a long-run persistent Markov chain to improve convergence, but is

not suitable for CRBMs as discussed in Section 6.1.

Sum-product BP and mean field methods provide pseudo-marginals as substitutes for the

intractable expectations in Eq. (6.2). These deterministic gradient estimates have the ad-

vantage that a larger learning rate can be used. BP tends to give a more accurate estimate

of logZ and marginals, but is reported to be slow on CRBMs and is impractical on prob-

lems with large output dimension and hidden layer sizes [Mnih et al., 2011] in structured

prediction.

More importantly, it was observed that belief propagation usually gives unsatisfactory results

when learning vanilla RBMs. This is mainly because the parameters’ magnitude gradually

increases during learning; the RBM model eventually undergoes a “phase transition” after

which BP has difficulty converging [Ihler et al., 2005, Mooij and Kappen, 2005]. If BP

does not converge, it can not provide a meaningful gradient direction to update the model,

and the leaning becomes stuck. However, CRBMs appear to behave quite differently, due

to operating in the “high signal” regime provided by an informative observation x. This

improves the convergence behaviour of BP, which may not be surprising since loopy BP is

widely accepted as useful in learning other conditional models (e.g., grid CRFs for image
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segmentation). In addition, givenN training instances for learning the CRBM, BP is actually

performed onN different RBMs corresponding to different features xn. During any particular

phase of learning, BP may have trouble converging on some training instances, but we can

still make progress as long as BP converges on the majority of instances. We demonstrate

this behaviour in our experiments.

6.4.2 Max-Margin Learning

Another by-product of using BP is that it enables us to apply our marginal structured

SVM (MSSVM) framework for max-margin learning of CRBMs,

min
θ

N∑
n=1

{
max
v

log
∑
h

exp
(

∆(v,vn)− E(v,h,x; θ)
)
− log

∑
h

exp
(
− E(vn,h,xn; θ)

)}
,

(6.3)

where the loss function ∆(v,vn) =
∑

i ∆(vi, v
n
i ) is decomposable (e.g., Hamming loss). In

contrast to LSSVM [Yu and Joachims, 2009b, Yang et al., 2014], MSSVM marginalizes over

the uncertainty of hidden variables, and can significantly outperform LSSVM when that

uncertainty is large [Ping et al., 2014]. Experimentally, we find that MSSVM improves

performance of max-margin CRBMs, likely because there is usually non-trivial uncertainty

in the hidden units. Given an instance {vn,xn}, the stochastic gradient of Eq. (6.3) w.r.t.

W vh is,

∂l(vn,xn)

∂W vh
= Ep(h|v̂,xn)

[
v̂hT

]
− vn(µn)>, (6.4)

where µn is defined as in Eq. (6.2); v̂ is the loss-augmented marginal MAP prediction,

v̂ = argmax
v

∑
h

exp
(

∆(v,v(n))− E(v,h,xn; θ)
)

;
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and “mixed-product” belief propagation for marginal MAP [Liu and Ihler, 2013] can pro-

vide pseudo-marginals to estimate the intractable expectation. (The gradients for other

parameters are analogous.)

6.5 Approximate Inference in RBM

In this section, we present a matrix-based implementation of sum-product and mixed-product

BP algorithms for RBMs. Given a particular xn in CRBM (6.1), we obtain a xn-dependent

RBM model,

p(v,h|xn) =
1

Z(θ(xn))
exp

(
v>W vhh+ v>b1 + h>b2

)
,

where the bias terms b1 = bv + W vxxn, b2 = bh + W hxxn, and thus we can directly apply

the algorithm to CRBMs.

6.5.1 Message-passing in RBMs

We first review the standard message-passing form in RBMs. Because RBM is a special

pairwise model, one can directly apply the loopy BP algorithm defined in Algorithm 2.1.

However, on a dense graphical models like RBMs, to reduce the amount of calculation, one

should always pre-compute the product of incoming messages (or the beliefs) on the nodes,

and reuse them to perform updates of all outgoing messages. In sum-product BP, we write

the fixed-point update rule for the message sent from hidden unit hj to visible unit vi as,

mj→i(vi) ∝
∑
hj

exp
(
viW

vh
ij hj

)
· τ(hj)

mi→j(hj)
, (6.5)
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where the belief on hj is

τ(hj) ∝ exp
(
hjb

2
j

)
·
|v|∏
k=1

mk→j(hj). (6.6)

The update rule for the message sent from vi to hj is,

mi→j(hj) ∝
∑
vi

exp
(
viW

vh
ij hj

)
· τ(vi)

mj→i(vi)
, (6.7)

where the belief on vi is,

τ(vi) ∝ exp
(
vib

1
i

)
·
|h|∏
k=1

mk→i(vi). (6.8)

In mixed-product BP, the message sent from hidden unit to visible unit is the same as

Eq. (6.5). The message sent from visible unit vi to hidden unit hj is

m̃i→j(hj) ∝ exp
(
ṽiW

vh
ij hj

)
· τ(ṽi)

mj→i(ṽi)
. (6.9)

where ṽi = argmaxvi τ(vi), and τ(vi) is defined in Eq. (6.8). These update equations are

repeatedly applied until the values converge (hopefully), or a stopping criterion is satisfied.

Then, the pairwise belief on (vi, hj) is calculated as,

τ(vi, hj) ∝ exp
(
viW

vh
ij hj

)
· τ(vi)

mj→i(vi)
· τ(hj)

mi→j(hj)
.

In the literature, the above algorithm is sometimes referred to as message-passing with

division [Koller and Friedman, 2009b]. It is well known that BP on loopy graphs is not

guaranteed to converge, although in practice it usually does [Murphy et al., 1999].
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6.5.2 Matrix-based BP Implementations

Our algorithms use a compact matrix representation. In addition, because the visible unit vi

and hidden unit hj are all binary, we only need a single scalar to characterize the probabilities

of two states. To this end, we denote the “free” belief vectors and matrices as,

τ v ∈ R|v|×1, where τ vi = τ(vi = 1),

τ h ∈ R|h|×1, where τhj = τ(hj = 1),

Γ ∈ R|v|×|h|, where Γij = τ(vi = 1, hj = 1).

Other beliefs can be represented by these “free” beliefs:

τ(vi = 0) = 1− τ vi ,

τ(hj = 0) = 1− τhj ,

τ(vi = 1, hj = 0) = τ vi − Γij,

τ(vi = 0, hj = 1) = τhj − Γij,

τ(vi = 0, hj = 0) = 1 + Γij − τ vi − τhj .

We similarly define the normalized message matrices,

M vh ∈ R|v|×|h|, M vh
ij = mj→i(vi = 1),

Mhv ∈ R|h|×|v|, Mhv
ji = mi→j(hj = 1).

Thus, M vh represents all the messages sent from h to v, and Mhv represents all the messages

from v to h. In the following, we derive the message-passing equations purely based on this

compact matrix representation.

Proposition 6.5.1. In both sum-product and mixed-product BP, the update equation for
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message matrix M vh is

M vh = σ
(

log
(exp(W vh) ◦ Λvh

1 + Λvh
2

Λvh
1 + Λvh

2

))
, (6.10)

where Λvh
1 = (1hv −Mhv)> · diag(τ h), Λvh

2 = Mhv> · diag(1h − τ h),

where 1hv is a |h| × |v| matrix of ones, 1h is a |h| × 1 vector of ones, ◦ is the element-wise

Hadamard product, and diag(·) extracts the elements in a vector to form a diagonal matrix.

The logarithm, fraction and logistic function are all applied in an element-wise manner.

Proof. We first look into the (i, j)-th element of matrix M vh,

M vh
ij =

mj→i(vi = 1)

mj→i(vi = 1) +mj→i(vi = 0)
= σ

(
log

mj→i(vi = 1)

mj→i(vi = 0)

)

= σ
(

log
exp(W vh

ij ) · τhj
Mhv
ji

+
1−τhj

1−Mhv
ji

τhj
Mhv
ji

+
1−τhj

1−Mhv
ji

)
(by Eq. (6.5))

= σ
(

log
exp(W vh

ij ) · (1−Mhv
ji )τhj +Mhv

ji (1− τhj )

(1−Mhv
ji )τhj +Mhv

ji (1− τhj )

)
.

Then, it is easy to verify the update equation Eq. (6.10) for M vh.

Analogously, the update equation for message matrix Mhv in sum-product BP is

Mhv = σ
(

log
(exp(W vh>) ◦ Λhv

1 + Λhv
2

Λhv
1 + Λhv

2

))
, (6.11)

where Λhv
1 = (1vh −M vh)> · diag(τ v), Λhv

2 = M vh> · diag(1v − τ v),

with 1vh a |v| × |h| matrix of ones, and 1v a |v| × 1 vector of ones.

116



In mixed-product BP, the update equation for message matrix M vh is

M̃hv = σ
(
W vh> · diag(ṽ)

)
, (6.12)

where ṽi = argmaxvi τ
v(vi) for all vi.

Proposition 6.5.2. In both sum-product and mixed-product BP, the belief vectors τ v and

τ h can be calculated as,

τ v = σ
(
b1 + log

( M vh

1vh −M vh

)
· 1h
)
, (6.13)

τ h = σ
(
b2 + log

( Mhv

1hv −Mhv

)
· 1v
)
, (6.14)

where · is the matrix product.

Proof. We first look into the i-th element of τ v,

τ vi =
τ(vi = 1)

τ(vi = 1) + τ(vi = 0)
=

1

1 +
exp
(

0+
∑|h|
j=1 logmj→i(vi=0)

)
exp
(
bi+

∑|h|
j=1 logmj→i(vi=1)

) (by Eq. (6.8))

=
1

1 + exp
{
− b1

i −
∑|h|

j=1

(
logM vh

ij − log(1−M vh
ij )
)}

= σ
(
b1
i +

(
logM vh

i• − log(1h
> −M vh

i• )
)
· 1h
})
.

Then, it is easy to verify the update equation Eq. (6.13) for τ v. The update of τ h in

Eq. (6.14) is derived analogously.

These update equations are repeatedly applied until the stopping criterion is satisfied. After
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Algorithm 6.1 Sum-product BP on RBM

Input: {W vh, b1, b2}, number of iterations T
Output: beliefs {τ v, τ h,Γ}
initialize message matrices:

M vh = 0.5× 1vh, Mhv = 0.5× 1hv;
initialize beliefs:

τ v = σ(b1), τ h = σ(b2);
for t = 1 to T do

send messages from h to v:
Λvh

1 = (1hv −Mhv)> · diag(τ h);

Λvh
2 = Mhv> · diag(1h − τ h);

M vh = σ
(

log
(

exp(W vh)◦Λvh1 +Λvh2
Λvh1 +Λvh2

))
; (6.10)

τ v = σ
(
b1 + log

(
Mvh

1vh−Mvh

)
· 1h
)

; (6.13)

send messages from v to h:
Λhv

1 = (1vh −M vh)> · diag(τ v);

Λhv
2 = M vh> · diag(1v − τ v);

Mhv = σ
(

log
(

exp(W vh>)◦Λhv1 +Λhv2
Λhv1 +Λhv2

))
; (6.11)

τ h = σ
(
b2 + log

(
Mhv

1hv−Mhv

)
· 1v
)

; (6.14);

end for

Γ = Γ11

Γ11+Γ01+Γ10+Γ00 as defined in Eq. (6.15);

that, the pairwise belief matrix Γ can be calculated as (see Appendix C.1 for derivation),

Γ =
Γ11

Γ11 + Γ01 + Γ10 + Γ00
, (6.15)

where Γ11 = exp(W vh) ◦ (τ v · τ h>) ◦ (1vh −M vh) ◦ (1hv −Mhv)>,

Γ01 =
(
(1v − τ v) · τ h>

)
◦M vh ◦ (1hv −Mhv)>,

Γ10 =
(
τ v · (1h − τ h)>

)
◦ (1vh −M vh) ◦Mhv>,

Γ00 =
(
(1v − τ v) · (1h − τ h)

)
◦M vh ◦Mhv>.

We summarize the matrix-based sum-product BP and mixed-product BP in Algorithm 6.1

and 6.2 respectively. It is well known that asynchronous (sequential) BP message updates

usually converge much faster than synchronous updates [e.g., Wainwright et al., 2003, Gon-

zalez et al., 2009]; in Algorithm 6.1 and 6.2, although messages are sent in parallel from all
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Algorithm 6.2 Mixed-product BP on RBM

Input: {W vh, b1, b2}, number of iterations T
Output: beliefs {τ v, τ h,Γ}
initialize message matrices:

M vh = 0.5× 1vh, Mhv = 0.5× 1hv;
initialize beliefs:

τ v = σ(b1), τ h = σ(b2);
for t = 1 to T do

send messages from h to v:
Λvh

1 = (1hv −Mhv)> · diag(τ h);

Λvh
2 = Mhv> · diag(1h − τ h);

M vh = σ
(

log
(

exp(W vh)◦Λvh1 +Λvh2
Λvh1 +Λvh2

))
; (6.10)

τ v = σ
(
b1 + log

(
Mvh

1vh−Mvh

)
· 1h
)

; (6.13)

send messages from v to h:

M̃hv = σ
(
W vh> · diag(ṽ)

)
; (6.12)

τ h = σ
(
b2 + log

(
Mhv

1hv−Mhv

)
· 1v
)

; (6.14);

end for

Γ = Γ11

Γ11+Γ01+Γ10+Γ00 as defined in Eq. (6.15);

hidden units to visible units, the bipartite graph structure ensures that these are actually

asynchronous updates, which helps convergence in practice. Our method is also related to

message-passing algorithms designed for other binary networks, such as binary LDPC codes

[Kschischang et al., 2001], which parametrize each message by a single real number using a

hyperbolic tangent transform. Our algorithm is specially designed for RBM-based models,

and significantly speeds up BP by taking advantage of the RBM structure and using only

matrix operations.

6.6 Experiments

In this section, we compare our methods with state-of-the-art algorithms for learning CRBMs

on two datasets: MNIST [LeCun et al., 1998] and Caltech101 Silhouettes [Marlin et al., 2010].
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MNIST: The MNIST handwritten digits database contains 60, 000 images in the training

set and 10, 000 test set images. We randomly select 10, 000 images from training as the

validation set. Each image is 28 × 28 pixels, thus |v| = 784. We binarize the grayscale

images by thresholding the pixels at 127, to obtain the clean image v. We test two types of

structured prediction tasks in our experiment. The first task is image denoising and denoted

“noisy MNIST”, where the noisy image x is obtained by flipping either 10% or 20% of the

entries in v. The second task is image completion, denoted occluded MNIST, where the

occluded image x is obtained by setting a random patch within the image v to 0. The patch

size is either 8× 8 or 12× 12 pixels. See Figure 6.1 for an illustration.

Caltech101 Silhouettes: The Caltech101 Silhouettes dataset has 8, 671 images with 28×28

binary pixels, where each image represents object silhouette. The dataset is divided into three

subsets: 4, 100 examples for training, 2, 264 for validation and 2, 307 for testing. We test

both image denoising and image completion tasks. The noisy image x in noisy Caltech101 is

obtained by flipping 20% of the pixels from the clean v, and the occluded image in occluded

Caltech101 is obtained by setting a random 12× 12 patch to 1.

Model: Following [Mnih et al., 2011], we structured the CRBM model with 256 hidden

units, giving 1 million parameters in the model. All the learning algorithms are applied

to learn this CRBM model. The logistic regression method can be viewed as learning this

CRBM with only W vx and bv non-zero.

Algorithms: We train several CRBMs using the state-of-the-art CD methods, including

CD-1, CD-10 and CD-PercLoss. We also train models to optimize likelihood (MLE) using

mean field (MLE-MF) and sum-product BP (MLE-BP).3 Finally, we train MSSVM CRBMs

using mixed-product BP, and LSSVM CRBMs using max-product BP. A fixed learning rate

is selected from the set {0.05, 0.02, 0.01, 0.005} using the validation set, and the mini-batch

3In previous work [Mnih et al., 2011], MLE-BP was considered impractical on this task due to the efficiency
issue.
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Figure 6.1: (Row 1) 7 original images from the test set. (Row 2) The noisy (10%) images.
(Row 3) The images predicted from noisy images. (Row 4) The occluded (8 × 8) images.
(Row 5) The images predicted from the occluded images. Rows 3 and 5 use our MLE-BP
for learning.

size is selected from the set {10, 20, 40, 80, 160}. The CD-PercLoss algorithm uses 10-step

Gibbs sampling in the stochastic search process. All the CD methods use 200 epochs in

training. In contrast, MLE-MF, MLE-BP, MSSVM and LSSVM use 50 epochs, because BP

and MF provide a deterministic gradient estimate and larger learning rates can be applied.

Early stopping based on the validation error is also used for all methods.4 We test the

learned models of the CD methods and MLE-MF with mean-field predictions; the learned

model of MLE-BP with sum-product BP predictions; MSSVM with mixed-product BP; and

LSSVM with max-product BP.

Results: Table 6.1 shows the percentage of incorrectly labeled pixels on the noisy MNIST

for different methods. “All” denotes the errors among all pixels and is the main measure-

4In experiments, we found that early stopping always worked better than the Frobenius norm regulariza-
tion.
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Table 6.1: Average test error (%) for image denoising on noisy MINIST. All denotes the
percentage incorrectly labeled pixels among all pixels. Changed denotes the percentage of
errors among pixels that were changed by the noise process.

Dataset Noisy (10%) Noisy (20%)
Method All Changed All Changed

LR 1.960 12.531 4.088 12.609
CD-1 1.925 12.229 4.012 12.597
CD-10 1.816 11.103 3.995 11.271

CD-PercLoss 1.760 11.121 3.970 10.876
MLE-MF 1.862 11.319 3.917 10.939
MLE-BP 1.688 10.718 3.691 10.409
LSSVM 1.807 11.565 3.910 11.175
MSSVM 1.751 11.023 3.804 10.627

Table 6.2: Average test error (%) for image completion on occluded MINIST.

Dataset Occluded (8× 8) Occluded (12× 12)
Method All Changed All Changed

LR 1.468 61.304 3.498 53.971
CD-1 1.814 63.130 3.983 58.376
CD-10 1.707 67.925 3.921 63.237

CD-PercLoss 1.394 45.684 3.483 35.755
MLE-MF 1.492 49.553 3.477 40.703
MLE-BP 1.329 39.785 3.117 36.233
LSSVM 1.496 44.037 3.468 39.140
MSSVM 1.391 41.829 3.273 35.712

ment. We also report the “Changed” errors among the pixels that were changed by the

noise/occlusion process. MLE-BP works best and provides 4% and 7% relative improvement

over CD-PercLoss on two datasets with different noise levels. Table 6.2 shows the results

on occluded MNIST. Here MLE-BP provides 4% and 10% relative improvement over CD-

PercLoss on the two datasets, respectively. CD-k is not appropriate for training conditional

RBMs and gives unsatisfactory results in both cases. Here MSSVM performs worse than

MLE-BP, but better than the other methods in Table 6.1 and 6.2. The image completion

task is viewed as more difficult on Changed pixels. However, again training the CRBM with

MLE-BP gives very good results; see the last two rows of images in Figure 6.1. Table 6.3
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Table 6.3: Average test error (%) for image denoising & completion on Caltech101 Silhouettes
dataset.

Dataset Noisy (20%) Occluded (12× 12)
Method All Changed All Changed

LR 5.653 11.460 4.771 16.587
CD-1 5.876 12.423 5.033 20.300
CD-10 5.736 12.013 5.149 21.087

CD-PercLoss 5.622 10.808 5.081 15.102
MLE-MF 5.617 11.083 4.692 15.995
MLE-BP 5.445 10.731 4.548 16.541
LSSVM 5.628 11.468 4.703 16.014
MSSVM 5.549 11.389 4.534 14.918

demonstrate the results on Caltech101 Silhouettes; in this setting, MLE-BP and MSSVM

perform the best for image denoising and image completion, respectively.

Discussion: We include several observations on the interaction of learning and inference

algorithms for CRBMs:

• Early on in learning, message passing is fast to converge, typically within≈ 7 iterations.

As learning continues, the magnitudes of the parameters gradually increase, and it

becomes harder for BP to converge quickly. One simple but effective strategy is to

set the number of iterations to T = 7 + epoch (e.g., at epoch 10, T = 17). See

Figure 6.2 for an illustration of the convergence behavior of BP using this strategy

during training. We set the convergence tolerance ε = 0.001. The model undergoes

a change of convergence behaviour around epoch 3, but we can still make progress as

BP converges on the majority of training instances.

• No damping is better. Although message damping can improve the convergence of BP,

it always requires more iterations of message-passing and effectively slows down the

progress of learning CRBMs.

• The approximate inference algorithms used in learning and test should be matched,

which means the inference method (BP or mean-field), number of iterations etc., should
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Figure 6.2: Percentage of converged BP in each epoch during MLE-BP training on occluded
(8× 8) MNIST.

be the same. For example, we train our model with MLE-BP using 30 iterations of

message-passing (T = 30). Then, we test the learned model by mean-field predictions

with 30 iterations (abbr. MF30), BP predictions with 30 iterations (abbr. BP30), and

BP predictions with 50 iterations and tuned damping (abbr. BP50
damp). We found

BP30 are significant better than MF30, and measurable better than BP50
damp. The later

one is particularly interesting, because one may figure that more accurate inference

is always preferred. Indeed, the learning and approximate inference routine may be

deeply coupled. A related theoretical investigation can be found in Wainwright [2006].

• As we discussed in Section 6.4.1, learning CRBMs and vanilla RBMs are quite different

in practice. As the literature suggests, in vanilla RBMs we also find that CD methods

work better than MLE-BP, and that the latter also requires using and carefully tuning

the damping rate.

6.7 Conclusions and Future Work

In contrast to past work, we argue that belief propagation can be an excellent choice for

learning and inference with RBM-based models in the conditional setting. We present a

matrix-based expression of the BP updates for CRBMs, which is scalable to tens of thou-

sands of visible and hidden units. Our implementation takes advantage of the bipartite
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graphical structure and uses a compact representation of messages and beliefs. Since it uses

only matrix product and element-wise operations, it is highly suited for modern computa-

tional architecture (e.g., GPU). We demonstrate that learning CRBMs with sum-product BP

(MLE) and mixed-product BP (MSSVM) can provide significantly better results than the

state-of-the-art CD methods on structured prediction problems. Future directions include a

GPU-based implementation and applying the method to deep probabilistic models, such as

deep Boltzmann machines.
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Chapter 7

Conclusions and Future Directions

In this thesis, we research on various challenges for learning and inference in latent variable

graphical models.

• In latent variable models (LVMs), the standard MAP prediction is complicated by the

fact that, we need to first marginalize out latent variables, leading to the challenging

marginal MAP inference. In Chapter 3, we generalize the popular dual-decomposition

method for MAP inference, and provide an efficient block coordinate descent algorithm

to solve the resulting optimization. Our dual-decomposition method for marginal MAP

assumes that the maximization are taken over discrete variables. In many latent vari-

able models, the standard parameter estimation method is marginal MAP estimation,

where one need to marginalize out discrete latent variables at first, then take MAP

estimation over the continuous parameters. In the future, it is of great interest to

develop efficient variational inference algorithm for continuous system, especially for

marginal MAP problem.

• When learning LVMs for structured prediction, the inference is used to “fill in” the la-

tent variables. The popular latent structured SVM method impute the latent variables

with most probable assignment, which is analogous to hard EM and does not maintain

the uncertainty of latent variables. In Chapter 4, we propose the marginal structured

SVM which marginalizes latent variables to properly handle their uncertainty in max-
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margin learning. Our formulation of marginal structured SVM Eq. (4.3) is based on

the margin rescaling framework. As we discussed in Section 2.4.2, another formula-

tion of structured SVM is slack rescaling, which is believed to be more accurate and

better-behaved. Thus, it is interesting to derive the slack rescaling version of marginal

structured SVM; In particular, one need design an efficient variational approximation

to the resulting inference bottleneck [Sarawagi and Gupta, 2008].

• The latent variables are introduced to increase the model’s flexibility. This result

in the challenges for model selection, that is, how to determine the complexity of

latent representation. In restricted Boltzmann machines (RBMs), this correspond to

identify the approximate number of hidden units. In Chapter 5, we propose an one-shot

Frank-Wolfe learning algorithm for both parameter estimation and model selection in

RBM model, which greedily inserts a hidden unit at each iteration and can efficiently

identify an appropriate number of hidden units. Our method is directly applicable

for conditional RBM model, which will train a sequence of structured classifiers with

increasing complexity. It is also very interesting to investigate the Frank-Wolfe learning

method for deep generative models, such as deep Boltzmann machine [Salakhutdinov

and Hinton, 2009].

• Learning and inference are coupled in latent variable models. In Chapter 6, we study

the role of approximate inference in learning with RBMs and conditional RBMs. We

provide efficient implementation of belief propagation (BP) algorithms on these mod-

els, and we demonstrate that for conditional models and structured prediction, learning

RBM-based models with BP can significantly outperforms other popular contrastive

divergence methods. It is very interesting to investigate the role of approximate in-

ference in deep Boltzmann machine, and provide a GPU-based implementation in the

future.
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J. J. Verbeek, N. Vlassis, and B. Kröse. Efficient greedy learning of Gaussian mixture models.
Neural Computation, 2003.

M. Volkovs, H. Larochelle, and R. S. Zemel. Loss-sensitive training of probabilistic condi-
tional random fields. Technical report, 2011.

M. Wainwright. Estimating the wrong graphical model: Benefits in the computation-limited
setting. JMLR, 2006.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 2008.

M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the log
partition function. IEEE Transactions on Information Theory, 2005.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-based reparameterization frame-
work for analysis of sum-product and related algorithms. IEEE Transactions on informa-
tion theory, 49(5):1120–1146, 2003.

S. Wang, A. Quattoni, L. Morency, and D. Demirdjian. Hidden conditional random fields
for gesture recognition. In Proceedings of CVPR, pages 1521–1527, 2006.

Y. Wang and G. Mori. Max-margin hidden conditional random fields for human action
recognition. In Proceedings of CVPR, pages 872–879, 2009.

133

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html


Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming and belief
propagation with convex free energies. In UAI, 2007.

M. Welling and Y. W. Teh. Approximate inference in Boltzmann machines. Artificial
Intelligence, 2003.

M. Welling, R. S. Zemel, and G. E. Hinton. Self supervised boosting. In NIPS, 2002.
T. Werner. A linear programming approach to max-sum problem: A review. TPAMI, 2007.
J. Winn, A. Criminisi, and T. Minka. Object categorization by learned universal visual

dictionary. In Proceedings of ICCV, pages 1800–1807, 2005.
Y. Xu, D. Rockmore, and A. Kleinbaum. Hyperlink prediction in hypernetworks using latent

social features. In Discovery Science, pages 324–339, 2013.
Z. Xu, Z. Hong, Y. Zhang, J. Wu, A. C. Tsoi, and D. Tao. Multinomial latent logistic

regression for image understanding. IEEE Transactions on Image Processing, 25(2):973–
987, 2016.

Y. Xue, S. Ermon, C. P. Gomes, B. Selman, et al. Solving marginal map problems with np
oracles and parity constraints. In Advances In Neural Information Processing Systems,
2016.

J. Yang, S. Safar, and M.-H. Yang. Max-margin Boltzmann machines for object segmenta-
tion. In Proceedings of CVPR, 2014.

J. Yarkony, C. Fowlkes, and A. Ihler. Covering trees and lower-bounds on quadratic assign-
ment. In CVPR, 2010.

M. Yasuda and K. Tanaka. Approximate learning algorithm in Boltzmann machines. Neural
computation, 2009.

J. S. Yedidia, W. T. Freeman, Y. Weiss, et al. Generalized belief propagation. In NIPS,
volume 13, pages 689–695, 2000.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approximations and
generalized belief propagation algorithms. IEEE Transactions on Information Theory,
2005.

A. Yessenalina, Y. Yue, and C. Cardie. Multi-level structured models for document-level
sentiment classification. In Proceedings of EMNLP, pages 1046–1056, 2010.

C. Yu and T. Joachims. Learning structural SVMs with latent variables. In Proceedings of
ICML, pages 1169–1176, 2009a.

C.-N. J. Yu and T. Joachims. Learning structural svms with latent variables. In Proceedings
of ICML, 2009b.

C. Yuan and E. Hansen. Efficient computation of jointree bounds for systematic map search.
IJCAI, 2009.

C. Yuan, T. Lu, and M. Druzdzel. Annealed MAP. In UAI, 2004.
A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:

915–936, 2003.
Y. Zhang and T. Chen. Efficient inference for fully-connected CRFs with stationarity. In

Proceedings of CVPR, pages 582–589, 2012.
L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for

object detection. In Proceedings of CVPR, pages 1062–1069, 2010.

134



Appendix A

Derivations and Proofs

for Dual-decomposition Bounds

A.1 Dual Representations

A.1.1 Proof of Thereom 4.2

We now prove the following dual representation of our bound,

min
δ
L(δ,w) = max

b∈L(G)

{
〈θ, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
, (A.1)

where L(G) = {b | bi(xi) =
∑

xα\i
bα(xα),

∑
xi
bi(xi) = 1} is the local consistency polytope,

and paαi = {j ∈ α|j � i}. Thereom 3.3.2 follows directly from (A.1).

Proof. In our primal bound L(δ,w) (3.2) in the main text, we let θ̃i(xi) = θi(xi)+
∑

α∈Ni δ
α
i (xi)

(we add dummy singleton θi(xi) ≡ 0), and θ̃α(xα) = θα(xα)−
∑

i∈α δ
α
i (xi), then the bound

can be rewritten as,

L(θ̃,w) =
∑
i∈V

log

wi∑
xi

exp
[
θ̃i(xi)

]
+
∑
α∈F

log
wα∑
xα

exp
[
θ̃α(xα)

]
.
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Note, for any assignment x, we have
∑

i θ̃i(xi) +
∑

α θ̃α(xα) =
∑

α θα(xα).

By applying the dual form of the powered sum (2.22) on each node and clique respectively,

we have

L(θ̃,w) =
∑
i∈V

max
bi∈M(Gi)

{
〈θ̃i, bi〉+ wiH(xi; bi)

}
+
∑
α∈F

max
bα∈M(Gα)

{
〈θ̃α, bα〉+

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
,

where paαi is the set of variables in α that are summed out later than i, M(Gi) and M(Gα) are

the marginal polytopes on singleton node i and clique α respectively, which enforce {bi, bα}

to be properly normalized.

The above equation can be more compactly rewritten as,

L(θ̃,w) = max
b∈M̃

{
〈θ̃, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
,

where M̃ = {M(Gi),M(Gα) | ∀ i ∈ V, α ∈ F}, and the elements {bi, bα} of b are independently

optimized.

Then, by tightening reparameterization θ̃ = {θ̃i, θ̃α}, we have

min
θ̃
L(θ̃,w) = max

b∈M̃
min
θ̃

{
〈θ̃, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}

where the order of min and max are commuted according to the strong duality (it’s convex

with θ̃, and concave with b).

The inner minimization minθ̃〈θ̃, b〉 is a linear program, and it turns out can be solved ana-

lytically. To see this, given the relationship between θ̃ and δ, we rewrite the linear program
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as

min
θ̃
〈θ̃, b〉 = min

δ

{
〈θ, b〉+

∑
i∈V

∑
xi

∑
α∈Ni

δαi (xi)bi(xi)−
∑
α∈F

∑
xα

∑
i∈α

δαi (xi)bα(xα)
}
,

= min
δ

{
〈θ, b〉+

∑
(i,α)

∑
xi

δαi (xi)
(
bi(xi)−

∑
xα\i

bα(xα)
)}
.

Then, it is easy to observe that the linear program is either equal to 〈θ, b〉 only if b satisfy

the marginalization constraint
∑

xα\i
bα(xα) = bi(xi) for ∀(i, α), or it will become negative

infinity. Considering the outer maximization, we have

min
θ̃
L(θ̃,w) = max

b∈L(G)

{
〈θ, b〉+

∑
i∈V

wiH(xi; bi) +
∑
α∈F

∑
i∈α

wαi H(xi|xpaαi
; bα)

}
,

where L(G) is the local consistency polytope that is obtained by enforcing both M̃ and the

marginalization constraint.

A.1.2 Matching Our Bound to WMB

After the weights are optimized, our GDD bound matches to WMB bound with optimum

weights. A simple weight initialization method matches our bound to WMB with uniform

weights on each mini-bucket, which often gives satisfactory result; a similar procedure can be

used to match the bound with more general weights as in Section 3.5. We first set wi = 0 for

all nodes i. We then visit the nodes xi along the elimination order o = [x1, x2, · · · , xn], and

divide xi’s neighborhood cliques Ni = {α|α 3 i} into two groups: (1) the children cliques

in which all xα\i have already been eliminated, that is, N ch
i = {α | ∀j ∈α\i, j ≺ i in o};

(2) the other, parent cliques Npa
i = {α | ∃j ∈ α\i, j � i in o}. We set wαi = 0 for all the

children cliques (α ∈ N ch
i ), and uniformly split the weights, that is, wαi = τi/|Npa

i |, across

the parent cliques.
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A.2 Proof of Therom 5.1

Proof. For each δαi (xi), the involved terms in L(δ,w) are Lαi (δ) = Φwi(δ) + Φwα(δ), where

Φwi(δ) = log

wi∑
xi

exp
[ ∑
α∈Ni

δαi (xi)
]
, Φwα(δ) = log

wα∑
xα

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
.

Our result follows by showing that

∂Φwi(δ)

∂δαi (xi)
= µi(xi) and

∂Φwi(δ)

∂wi
= H(xi;µi),

∂Φwα(δ)

∂δαi (xi)
= −

∑
xα\i

µα(xα) and
∂Φwα(δ)

∂wαi
= H(xi|xi+1:c;µα).

The gradient of Φwi(δ) is straightforward to calculate,

∂Φwi

∂δαi (xi)
=

∂

∂δαi (xi)

(
wi log

∑
xi

exp
[∑

α∈Ni δ
α
i (xi)

wi

])
=

exp
[∑

α∈Ni
δαi (xi)

wi

]
Zwi

= µi(xi), (A.2)

where Zwi =
∑

xi
exp

[∑
α∈Ni

δαi (xi)

wi

]
, and

∂Φwi

∂wi
= logZwi + wi ·

1

Zwi
·
∑
xi

{
exp

[∑
α∈Ni δ

α
i (xi)

wi

]
·
∑

α∈Ni δ
α
i (xi)

−w2
i

}
= logZwi −

∑
xi

{
µi(xi) ·

∑
α∈Ni δ

α
i (xi)

wi

}
= −

∑
xi

{
µi(xi) ·

[∑
α∈Ni δ

α
i (xi)

wi
− logZwi

]}
= H(xi;µi).

The gradient of Φwα(δ) is more involved; see Proposition A.3.1 for a detailed derivation.

Given the gradients, the moment matching condition (3.7) in Therom 3.4.1 obviously holds.
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We now prove the entropy matching condition in (3.9). The constraint optimization is

min
w

L(w), s.t. wi ≥ 0, wαi ≥ 0, wi +
∑
α

wαi = τi.

Note, when τi = 0, the optimization is trival, so we simply assume τi > 0. We frame the

Lagrangian as

LG(w,λ, g)
def
== L(w) +

∑
i

λi
(
wi + +

∑
α

wαi − τi
)

+
∑
i

giwi +
∑
(i,α)

gαi w
α
i .

Note g ≤ 0 (dual feasibility), otherwise maxg,λ LG(w,λ, g) will approach infinity. The KKT

conditions are

stationarity:
∂LG
∂wi

= H(xi;µi) + λi + gi = 0, (A.3)

∂LG
∂wαi

= H(xi|xi+1:c;µα) + λi + gαi = 0, (A.4)

complementary slackness: giwi = 0, gαi w
α
i = 0. (A.5)

We multiply wi and wαi to (A.3) and (A.4) respectively, then we can eliminate the KKT

multipliers gi and gαi by applying the complementary slackness (A.5),

wiH(xi;µi) + wiλi = 0, (A.6)

wαi H(xi|xi+1:c;µα) + wαi λi = 0. (A.7)

By summing (A.7) over all α ∈ Ni and adding (A.6), we can solve the multiplier λi as

λi = −wiH(xi;µi) +
∑

αw
α
i H(xi|xi+1:c;µα)

τi
= −H̄i.

We plug it into (A.6) and (A.7), and obtain the entropy matching condition (3.9) in the

Therom 3.4.1.
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A.3 Derivations of Gradient

Proposition A.3.1. Given a weight vector wα = [wα1 , · · · , wαi , · · · , wαc ] associated with vari-

ables xα = {x1, · · · , xi, · · · , xc} on clique α, where c = |α| the power sum over clique α is,

Φwα(δ) = log
wα∑
xα

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

= log

wαc∑
xc

· · ·
wαi∑
xi

· · ·
wα1∑
x1

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
.

We recursively denote Zi as the partial power sum up to x1:i,

Z0(xα) = exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

and Zi(xi+1:c) =

wαi∑
xi

Zi−1(xi:c), (A.8)

thus logZc = Φwα . We also denote the “pseudo marginal” (or, belief) on xα,

µα(xα) =
c∏
i=1

µα(xi|xi+1:c); µα(xi|xi+1:c) =
(Zi−1(xi:c)

Zi(xi+1:c)

)1/wαi
,

and it is easy to verify that µα(xi|xi+1:c) and µα(xα) are normalized.

Then, the derivative of Φwα w.r.t. δαi (xi) can be written by beliefs,

∂Φwα

∂δαi (xi)
= −µα(xi) = −

∑
xα\i

µα(xα) = −
∑
xc

· · ·
∑
xi+1

c∏
j=i

µα(xj|xj+1:c) (A.9)

In addition, the derivative of Φwα w.r.t. wαi is the conditional entropy,

∂Φwα

∂wαi
= H(xi|xi+1:c;µα(xα)) = −

∑
xα

µα(xα) log µα(xi|xi+1:c) (A.10)

Proof. Denote the reparameterization on clique α as θ̃α(xα) = θα(xα)−
∑

i∈α δ
α
i (xi).

From the recursive definition of Zi(xi+1:c) (A.8), we have the following recursive rule for
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gradient,

∂ logZi(xi+1:c)

∂θ̃α(xα)
=

∂

∂θ̃α(xα)

(
wαi log

∑
xi

[
Zi−1(xi:c)

]1/wαi )

= wαi ·
1
wαi
· Zi−1(xi:c)

1
wα
i∑

xi

[
Zi−1(xi:c)

] 1
wαc

· Zi−1(xi:c)
−1 · ∂Zi−1(xi:c)

∂θ̃α(xα)

= µα(xi|xi+1:c) ·
∂ logZi−1(xi:c)

∂θ̃α(xα)
. (A.11)

It should be noted, implicitly, xi+1:c within θ̃α(xα) should take the same value as xi+1:c in

logZi(xi+1:c), otherwise, the derivative will equal 0.

As a result, we can calculate the derivatives of Φwα(θ̃α) w.r.t. θ̃α(xα) recursively as,

∂Φwα

∂θ̃α(xα)
=
∂ logZc

∂θ̃α(xα)
= µα(xc) ·

∂ logZc−1(xc)

∂θ̃α(xα)
= · · · =

c∏
i=1

µα(xi|xi+1:c) = µα(xα). (A.12)

By the chain rule,

∂Φwα

∂δαi (xi)
=
∑
xα\i

∂Φwα

∂θ̃α(xi, xα\i)
·
∂θ̃α(xi, xα\i)

∂δαi (xi)
= −

∑
xα\i

µα(xα),

then (A.9) has been proved.

Applying the variational form of powered-sum (2.22) to Φwα , we have

Φwα(θ̃α) = max
bα∈Mα(G)

{
〈θ̃α, bα〉+

∑
i

wαi H(xi|xi+1:n; bα)
}
.

According to Danskin’s theorem, the derivative ∂Φwα

∂θ̃α(xα)
= b∗α(xα), which is the optimum of

RHS. Combined with (A.12), we have b∗α = µα immediately, and the derivative w.r.t. wαi is,

∂Φwα

∂wαi
= H(xi|xi+1:c;µα(xα)),
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then (A.10) has been proved.

A.4 Derivation of Hessian

Proposition A.4.1. Given Φwi(δ) = log
∑wi

xi
exp

[∑
α∈Ni δ

α
i (xi)

]
in section A.2, the Hes-

sian matrix is,

∀α, β ∈ Ni,
∂2Φwi(δ)

∂δαi (xi)∂δ
β
i (x′i)

=
1

wi

[
I(xi = x′i) · µi(xi)− µi(xi) · µi(x′i)

]
, (A.13)

i.e. in matrix form
∂2Φwi(δ)

∂δαi ∂δ
β
i

=
1

wi

[
diag(µi)− µiµTi

]
.

where µi(xi) =
exp
[∑

α∈Ni δ
α
i (xi)

wi

]
Zi

and Zi =
∑

xi
exp

[∑
α∈Ni

δαi (xi)

wi

]
.

Proof. Starting from the first-order derivative (A.2), when xi = x′i,

∂2Φwi(δ)

∂δαi (xi)∂δ
β
i (xi)

=
exp

[
1
wi

∑
α∈Ni δ

α
i (xi)

]
· 1
wi
· Zi − exp

[
1
wi

∑
α∈Ni δ

α
i (xi)

]
· ∂Zi
∂δβi (xi)

Z2
i

=
1

wi
µi(xi)−

exp
[

1
wi

∑
α∈Ni δ

α
i (xi)

]
· exp

[
1
wi

∑
α∈Ni δ

α
i (xi)

]
Z2
i

=
1

wi

[
µi(xi)− µi(xi)2

]
,

when xi 6= x′i,

∂2Φwi(δ)

∂δαi (xi)∂δ
β
i (x′i)

=
0− exp

[
1
wi

∑
α∈Ni δ

α
i (xi)

]
· ∂Zi
∂δβi (x′i)

Z2
i

=
0− exp

[
1
wi

∑
α∈Ni δ

α
i (xi)

]
· exp

[
1
wi

∑
α∈Ni δ

α
i (x′i)

]
Z2
i

=
1

wi

[
0− µi(xi)µi(x′i)

]
.
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Thus, we obtain the combined result (A.13).

Proposition A.4.2. Given Φwα(δ) = log
∑wα

xα
exp

[
θα(xα) −

∑
i∈α δ

α
i (xi)

]
as in Proposi-

tion A.3.1. The Hessian matrix of Φwα(δ) w.r.t. δαi is,

∂2Φwα(δ)

∂δαi (xi)∂δαi (x′i)
=

1

wαi
I(xi = x′i)µα(xi) +

c−1∑
j=i

[( 1

wαj+1

− 1

wαj

)∑
xα\i

(
µα(xα)µα(x′i|xj+1:c)

)]
− 1

wαc
µα(xi)µα(x′i), (A.14)

where µα(xi) =
∑

xα\i
µα(xα) is defined in Proposistion A.3.1 Eq. (A.9), and

µα(x′i|xj+1:c) =
µα(x′i, xj+1:c)

µα(xj+1:c)
=

∑
x[1:j]\i

µα(xα\i, x
′
i)∑

x1:j
µα(xα)

As a special case, when the weights are equal, wα1 = · · ·wαi = · · ·wαc , (A.14) becames

∀α ∈ Ni,
∂2Φwα(δ)

∂δαi (xi)∂δαi (x′i)
=

1

wαi

[
I(xi = x′i)µα(xi)− µα(xi)µα(x′i)

]
, (A.15)

i.e.
∂2Φwα(δ)

∂δαi ∂δ
α
i

=
1

wαi

[
diag(µαi )− µαi µαi

T
]
,

where the column vector µαi = [µα(xi = 1), ..., µα(xi = d)]T .

Proof.

When wα1 = · · ·wαi = · · ·wαc , we can also verify the special case (A.15) directly, which

is similar to the proof provided in Proposition A.4.1.
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To obtain the general result (A.14), we notice that

∂2Φwα(δ)

∂δαi (xi)∂δαi (x′i)
=

∂

∂δαi (x′i)

(∑
xα\i

−µα(xα)
)

(by Eq. (A.9) )

= −
∑
xα\i

∂µα(xα)

∂δαi (x′i)
= −

∑
xα\i

µα(xα)
∂ log µα(xα)

δαi (x′i)
. (A.16)

We transform the intractable ∂µα(xα)
∂δαi (x′i)

to µα(xα)∂ log µα(xα)
δαi (x′i)

by noticing the definition of µα(xα)

in Proposition A.3.1,

µα(xα) =
c∏
j=1

(Zj−1(xj:c)

Zj(xj+1:c)

) 1
wα
j ,

and thus,

log µα(xα) =
c∑
j=1

1

wαj

(
logZj−1(xj:c)− logZj(xj+1:c)

)
(A.17)

=
1

wα1
logZ0(x1:c) +

c−1∑
j=1

( 1

wαj+1

− 1

wαj

)
logZj(xj+1:c)−

1

wαc
logZc.

According to Equation (A.11),

∀j ∈ [1 : c],
∂ logZj(xj+1:c)

∂θ̃α(xα)
=µα(xj|xj+1:c) ·

∂ logZj−1(xj:c)

∂θ̃α(xα)

=µα(xj|xj+1:c) · µα(xj−1|xj:c) · · ·µα(x1|x2:c)

=µα(x1:j|xj+1:c).
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Given i ∈ [1 : c], there are three cases of j ∈ [1 : c]

(a) j = i,
∂ logZj(xj+1:c)

δαi (x′i)
=
∑
x1:j−1

∂ logZj(xj+1:c)

∂θ̃α(x1:j−1, x′i, xj+1:c)
· ∂θ̃α(x1:j−1, x

′
i, xj+1:c)

δαi (x′i)

=
∑
x1:j−1

µα(x1:j−1, x
′
i|xj+1:c) · (−1)

= −µα(x′i|xj+1:c),

(b) ∀j ∈ [i+ 1 : c],

∂ logZj(xj+1:c)

δαi (x′i)
=
∑
x1:i−1

∑
xi+1:j

∂ logZj(xj+1:c)

∂θ̃α(x1:i−1, x′i, xi+1:j, xj+1:c)
· ∂θ̃α(x1:i−1, x

′
i, xi+1:j, xj+1:c)

δαi (x′i)

=
∑
x1:i−1

∑
xi+1:j

µα(x1:i−1, x
′
i, xi+1:j|xj+1:c) · (−1)

= −µα(x′i|xj+1:c),

(c) ∀j ∈ [0 : i− 1],

∂ logZj(xj+1:c)

δαi (x′i)
=
∑
x1:j

∂ logZj(xj+1:i−1, xi, xi+1:c)

∂θ̃α(x1:j, xj+1:i−1, x′i, xi+1:c)
· ∂θ̃α(x1:j, xj+1:i−1, x

′
i, xi+1:c)

δαi (x′i)

=
∑
x1:j

I(xi = x′i) · µα(x1:j|xj+1:c) · (−1)

= −I(xi = x′i).

It should be noted that during the enumeration of θ̃α(xα) in above chain rule applications,

xj+1:c within θ̃α should be fixed and take the same values as xj+1:c in logZj(xj+1:c), else the

derivative is equal to 0.
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Plugging the above results for
∂ logZj(xj+1:c)

δαi (x′i)
into (A.17), we get

∂ log µα(xα)

∂δαi (x′i)
=

i−1∑
j=1

1

wαj

(
− I(xi = x′i) + I(xi = x′i)

)
+

1

wαi

(
− I(xi = x′i) + µα(x′i|xi+1:c)

)
+

c∑
j=i+1

1

wαj

(
− µα(x′i|xj:c) + µα(x′i|xj+1:c)

)
= − 1

wαi
I(xi = x′i) +

1

wαi
µα(x′i|xi+1:c) +

c∑
j=i+1

1

wαj

(
− µα(x′i|xj:c) + µα(x′i|xj+1:c)

)
= − 1

wαi
I(xi = x′i) +

c−1∑
j=i

( 1

wαj
− 1

wαj+1

)
µα(x′i|xj+1:c) +

1

wαc
µα(x′i). (A.18)

Plugging (A.18) into (A.16),

∂2Φwα(δ)

∂δαi (xi)∂δαi (x′i)
= −

∑
xα\i

µα(xα)
[
− 1

wαi
I(xi = x′i) +

c−1∑
j=i

( 1

wαj
− 1

wαj+1

)
µα(x′i|xj+1:c) +

1

wαc
µα(x′i)

]

=
1

wαi
I(xi = x′i) · µα(xi) +

c−1∑
j=i

[( 1

wαj+1

− 1

wαj

)∑
xα\i

(
µα(xα)µα(x′i|xj+1:c)

)]
− 1

wαc
µα(xi)µα(x′i).

A.5 Derivations of Closed-form Update

We first derive the closed-form update rule for δαi (xi) in Proposition A.5.1. We derive the

closed-form update rule for the block δNi = {δαi (xi) | ∀α ∈ Ni} in Proposition A.5.2.

Proposition A.5.1. Given max node i in marginal MAP (i.e., τi = 0 ) and one clique

α 3 i (i.e. i ∈ α), keeping all δ fixed except δαi (xi), there is a closed-form update rule,

δαi (xi)←
1

2
log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
− 1

2

∑
β∈Ni\α

δβi (xi), (A.19)
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where xα\i = {xj : j ∈ α, j 6= i}, wα\i = {wαj : j ∈ α, j 6= i}, and Ni = {α|α 3 i} is the set of

all clique factors in the neighborhood of node i. Futhermore, this update will monotonically

decrease the upper bound.

Proof. The terms within the bound L(δ,w) that depend on δαi (xi) are,

max
xi

[ ∑
α∈Ni

δαi (xi)
]

+ max
xi

log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
. (A.20)

The sub-gradient of (A.20) w.r.t. δαi (xi) equal to zero if and only if,

x∗i = argmax
xi

[ ∑
α∈Ni

δαi (xi)
]

= argmax
xi

log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]
,

which is “argmax” matching. One sufficient condition of this matching is,

∑
α∈Ni

δαi (xi) = log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
i∈α

δαi (xi)
]

which impllies matching of “pseudo marginals”. Then, one can pull δαi (xi) outside from the

operator log
∑wα\i

xα\i exp, and get the closed-form equation

δαi (xi) =
1

2
log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
− 1

2

∑
β∈Ni\α

δβi (xi).

To prove monotonicity, we substitute above update equation of δαi (xi) into (A.20); then we

get,

max
xi

{ ∑
β∈Ni\α

δβi (xi) + log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]}
. (A.21)
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Clearly, (A.21) ≤ (A.20) by using the fact that maxx[f(x) + g(x)] ≤ maxx f(x) + maxx g(x).

Proposition A.5.2. Given node i ∈ B (i.e., a max node) and all neighborhood cliques

Ni = {α|α 3 i}, we can jointly optimize δNi = {δαi (xi) | ∀α ∈ Ni} in closed-form by keeping

the other {δαj | j 6= i,∀α ∈ Ni} fixed. The update rule is,

δαi (xi)←
|Ni|
|Ni|+ 1

γαi (xi)−
1

|Ni|+ 1

∑
β∈Ni\α

γβi (xi), (A.22)

where |Ni| is the number of neighborhood cliques, and {γαi (xi) | ∀α ∈ Ni} are defined by

γαi (xi) = log

wα
\i∑

xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
. (A.23)

Futhermore, this upate will monotonically decrease the upper bound.

Proof. For ∀α ∈ Ni, we have closed-form solutions for δαi (xi) as Proposition A.5.1. We

rewrite it as,

∀α ∈ Ni, 2δαi (xi) +
∑

β∈Ni\α

δβi (xi) = log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
. (A.24)

Note, for ∀α, β ∈ Ni, there is a linear relationship between δαi (xi) and δβi (xi).

We denote column vector γi(xi) filled α-th element with

γαi (xi) = log

wα\i∑
xα\i

exp
[
θα(xα)−

∑
j∈α\i

δαj (xj)
]
.

We also frame all {δαi (xi) | α ∈ Ni} into a column vector δNi(xi), and denote |Ni| × |Ni|
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matrix A

A =



2 1 · · · 1

1 2 · · · 1

...
...

. . .
...

1 1 · · · 2


, and note A−1 =



|Ni|
|Ni|+1

− 1
|Ni|+1

· · · − 1
|Ni|+1

− 1
|Ni|+1

|Ni|
|Ni|+1

· · · − 1
|Ni|+1

...
...

. . .
...

− 1
|Ni|+1

− 1
|Ni|+1

· · · |Ni|
|Ni|+1

.


It is easy to verify AδNi(xi) = γi(xi). from (A.24). Since A is invertable, one can solve

δNi(xi) = A−1γi(xi).

Then, one can read out the closed-form update rule (A.22). The monotonicity holds directly

by noticing that the update rule (A.22) are solutions which jointly satisfy equation (A.19).
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Appendix B

Derivations and Proofs

for Marginal Structured SVM

In this Appendix, we give proofs for two lemmas with respect to the unified framework,

which is referenced but omitted from the Chapter 4.

B.1 Properties of Unified Framework

Lemma B.1.1. The objective of the unified framework (Eq. (4.6) in Chapter 4) is an upper

bound of the empirical loss function ∆(yn, ŷnεh(θ)) over the training set, where the prediction

ŷnεh(θ) is decoded by “annealed” marginal MAP: ŷnεh(θ) = argmaxy log
∑
h exp

[
θ>φ(xn,y,h)

εh

]
.

Proof.

∆(yn, ŷnεh(θ)) ≤ ∆(yn, ŷnεh(θ)) + εh log
∑
h

exp
[θ>φ(xn, ŷnεh(θ),h)

εh

]
− εh log

∑
h

exp
[θ>φ(xn,yn,h)

εh

]
≤ εy log

∑
y

exp
{ 1

εy

[
∆(yn,y) + εh log

∑
h

exp
(θ>φ(xn,y,h)

εh

)]}
− εh log

∑
h

exp
[θTφ(xn,yn,h)

εh

]
,
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where the first inequality holds by the definition of ŷnεh(θ), and the second holds for ∀εy > 0,

because the summation over y contains ŷnεh(θ).

For convenience, we denote this upper bound as

Un(θ; εy, εh) = U+
n (θ; εy, εh)− U−n (θ; εh) (B.1)

where

U+
n (θ; εy, εh) = εy log

∑
y

exp
{ 1

εy

[
∆(yn,y) + εh log

∑
h

exp
(θ>φ(xn,y,h)

εh

)]}
U−n (θ; εh) = εh log

∑
h

exp
[θ>φ(xn,yn,h)

εh

]
.

Lemma B.1.2. The (sub-)gradient of Un(θ; εy, εh) in (B.1) is,

∇θUn(θ; εy, εh) = Ep(εy,εh)(y,h|xn)[φ(xn,y,h)]− Epεh (h|xn,yn)[φ(xn,yn,h)],

where the corresponding temperature controlled distribution is defined as,

pεh(h|xn,y) ∝ exp
[θ>φ(xn,y,h)

εh

]
,

p(εy ,εh)(y|xn) ∝ exp
{ 1

εy

[
∆(y,yn) + εh log

∑
h

exp
(θ>φ(xn,y,h)

εh

)]}
,

p(εy ,εh)(y,h|xn) = pεh(h|xn,y) · p(εy ,εh)(y|xn).
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Proof.

∇θ

(
εh log

∑
h

exp
[θ>φ(xn,y,h)

εh

])
= εh

∑
h

{
exp

[
θ>φ(xn,y,h)

εh

]
·
[
φ(xn,y,h)

εh

]}
∑
h exp

[
θ>φ(xn,y,h)

εh

]
=
∑
h

{ exp
[
θ>φ(xn,y,h)

εh

]
∑
h exp

[
θ>φ(xn,y,h)

εh

] · φ(xn,y,h)
}

= Epεh (h|xn,y)[φ(xn,y,h)] (B.2)

As a result, ∇θU
−
n (θ; εh) = Epεh (h|xn,yn)[φ(xn,yn,h)], and

∇θU+
n (θ; εy, εh)

= εy

∑
y

{
exp

{
1
εy

[
∆(yn,y) + εh log

∑
h exp

(
θTφ(xn,y,h)

εh

)]}
· 1
εy
· ∇θ

(
εh log

∑
h exp

[ θ>φ(xn,y,h)
εh

])}
∑
y exp

{
1
εy

[
∆(yn,y) + εh log

∑
h exp

(
θ>φ(xn,y,h)

εh

)]}
Subinstitute the gradient result (B.2),

=

∑
y

{
exp

{
1
εy

[
∆(yn,y) + εh log

∑
h exp

(
θ>φ(xn,y,h)

εh

)]}
· Epεh (h|xn,y)[φ(xn,y,h)]

}
∑
y exp

{
1
εy

[
∆(yn,y) + εh log

∑
h exp

(
θ>φ(xn,y,h)

εh

)]}
= Ep(εy,εh)(y|xn)Epεh (h|xn,y)[φ(xn,y,h)]

= Ep(εy,εh)(y,h|xn)[φ(xn,y,h)]

which completes the proof.
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Appendix C

Derivations and Proofs

for Conditional RBMs

C.1 Derivation of Matrix-based BP

The (i, j) element of pairwise belief matrix:

Γij =
τ(vi = 1, hj = 1)∑

vi,hj
τ(vi, hj)

=

exp(wvhij )τvi τ
h
j

Mvh
ij M

hv
ji

exp(wvhij )τvi τ
h
j

Mvh
ij M

hv
ji

+
(1−τvi )τhj

(1−Mvh
ij )Mhv

ji

+
τvi (1−τhj )

Mvh
ij (1−Mhv

ji )
+

(1−τvi )(1−τhj )

(1−Mvh
ij )(1−Mhv

ji )

We can denote the intermediate terms

Γ11 = exp(W vh) ◦ (τ v · τ h>) ◦ (1vh −Mvh) ◦ (1hv −Mhv)>,

Γ01 =
(
(1v − τ v) · τ h>

)
◦Mvh ◦ (1hv −Mhv)>,

Γ10 =
(
τ v · (1h − τ h)>

)
◦ (1vh −Mvh) ◦Mhv>,

Γ00 =
(
(1v − τ v) · (1h − τ h)

)
◦Mvh ◦Mhv>.

Then, the pairwise belief matrix Γ = Γ11

Γ11+Γ01+Γ10+Γ00 .
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