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Significance

New data-driven methods to aid 
in the discovery and biological 
characterization of natural 
products are necessary to 
advance the field. Assigning the 
mechanism of action to novel 
bioactive compounds is an 
essential step in drug discovery 
and a major challenge in chemical 
biology. Advances in 
metabolomics have provided a 
better understanding of the 
constituents present in libraries 
but are not sufficient to drive the 
discovery of novel biologically 
active metabolites. Here, we 
describe an unbiased, data-driven 
strategy which integrates 
phenotypic screening with 
metabolomics into a single 
platform that provides rapid 
identification and functional 
annotation of natural products. 
This approach represents a 
strategy that could significantly 
accelerate the process of drug 
discovery.
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Determining mechanism of action (MOA) is one of the biggest challenges in natu-
ral products discovery. Here, we report a comprehensive platform that uses Similarity 
Network Fusion (SNF) to improve MOA predictions by integrating data from the 
cytological profiling high-content imaging platform and the gene expression platform 
Functional Signature Ontology, and pairs these data with untargeted metabolomics 
analysis for de novo bioactive compound discovery. The predictive value of the integrative 
approach was assessed using a library of target-annotated small molecules as benchmarks. 
Using Kolmogorov–Smirnov (KS) tests to compare in-class to out-of-class similarity, 
we found that SNF retains the ability to identify significant in-class similarity across a 
diverse set of target classes, and could find target classes not detectable in either platform 
alone. This confirmed that integration of expression-based and image-based phenotypes 
can accurately report on MOA. Furthermore, we integrated untargeted metabolomics of 
complex natural product fractions with the SNF network to map biological signatures 
to specific metabolites. Three examples are presented where SNF coupled with metab-
olomics was used to directly functionally characterize natural products and accelerate 
identification of bioactive metabolites, including the discovery of the azoxy-containing 
biaryl compounds parkamycins A and B. Our results support SNF integration of multi-
ple phenotypic screening approaches along with untargeted metabolomics as a powerful 
approach for advancing natural products drug discovery.

natural products | pharmacology | metabolomics

Assigning the mechanism of action (MOA) to botanicals, natural products, and synthetic 
chemicals is an essential step in drug discovery and remains a major challenge in chemical 
biology. Despite the technological advances in isolation, synthesis, and screening strategies 
that make many bioactive substances available, in most cases, their biological targets remain 
unknown (1, 2). This challenge is exacerbated when taking a systems-level approach to 
gain mechanistic information about entire collections of molecules and complex mixtures, 
such as encountered in natural product libraries (3).

There has been a concerted effort to return to phenotypic screening approaches in drug 
discovery efforts (4, 5). This paradigm shift has come with the development of informa-
tion-rich approaches that provide an unprecedented level of mechanistic understanding. 
These methods take advantage of gene expression profiling (6–8), high content imaging 
(9–11), yeast chemical genetics (12), proteomics (13, 14), and others (5, 15). While these 
platforms are valuable individually, each one is subject to the limitations. Here we test the 
hypothesis that using computational tools to integrate screening results from orthogonal 
screening platforms will allow for simultaneous leverage of divergent phenotypic coverage 
to inform MOA predictions. In this study, we integrate gene expression-based (Functional 
Signature Ontology; FUSION) and high content imaging-based (Cytological Profiling; 
CP) screening platforms using Similarity Network Fusion (SNF), and use this fused 
network to annotate high-resolution mass spectrometric profiling of a library of complex 
natural product fractions. The result is a novel framework for the functional annotation 
of natural products that demonstrates the power of leveraging multiple data types.

Our interest in the functional characterization of natural products led our groups to 
independently develop phenotypic screening strategies to evaluate natural product fraction 
libraries from marine bacteria. One platform, termed FUSION, utilizes perturbation-in-
duced gene expression signatures coupled with pattern-matching tools to produce verifiable 
guilt-by-association MOA hypotheses (8). This method has been used to characterize a 
series of microbially derived molecules with unique mechanisms of action (8, 16–19). In 
this study, we have adapted the FUSION approach to a non-small-cell lung cancer context 
using the cell line NCI-H23 and a new set of 14 reporter genes that form the basis for 
pattern-matching between known and unknown perturbagens. A limitation of this 
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approach, as well as other gene expression-based approaches such 
as the Connectivity Map (LINCS Consortium) (7), is that the 
sensitivity and specificity of the signature a bioactive molecule can 
produce is dependent on the biological context of the assay.

A biologically orthogonal platform, CP, utilizes high-content 
image analysis of perturbation-treated cells stained with a panel of 
fluorescent probes to extract sets of cytological features that are 
then used with pattern-matching tools to predict MOA (20). The 
CP platform utilizes unsynchronized HeLa cells, which, after treat-
ment with perturbagen are fixed and stained with probes. A total 
of 251 unique cytological features are then extracted for each per-
turbagen from automated fluorescence microscopy images. 
Clustering compounds by their CP fingerprints has revealed both 
well-established associations among compounds with the same 
target or MOA, as well as novel or unexpected associations and 
unique phenotypes of natural products (3, 11). FUSION, CP, and 
related platforms are subject to limited resolution of bioactive com-
pounds with broad cellular effects, or limited sensitivity to bioactive 
compounds that engage morphologically silent mechanisms (11).

While these methods have been exploited by our respective 
groups (3, 8, 11, 16–19, 21), the inherent limitations of these 
platforms can be especially problematic when exploring large, 
uncharacterized libraries whose active metabolites may span a wide 
and divergent range of biological activities. We hypothesized that 
a bioinformatic approach to integrate the two platforms could 
expand the biological space covered while retaining the information 
from both platforms. A challenge with integration of diverse data 
types is how to handle disparate numbers of features and data scales 
in individual datasets. To solve this problem, we adopted SNF (22), 
which overcomes this challenge by constructing similarity networks 
individually for each available data type and then fusing these into 
a single network based on shared similarity across both datasets. 
SNF has been used efficiently in a range of applications, including 
cell-to-cell heterogeneity (23), drug sensitivity (24), multiomic 
integrations, COVID-19, and other diseases (22, 25–33).

Natural product screening libraries are typically prepared as 
complex mixtures. To relate phenotypes to specific components in 
these mixtures, we required both a detailed description of the chem-
ical constitution of each fraction, and informatics tools to define 
the associations between constituents and phenotypes. Current 
mass spectrometry-based methods often yield peak lists with very 
high false discovery rates, making it difficult to identify biologically 
relevant features from these large results’ files (34). To address this, 
we developed bespoke acquisition and data processing methods 
designed to describe the chemical constitution of the natural prod-
uct fraction library while removing interference signals caused by 
instrument noise and systemic contaminants from the sample pro-
cessing workflow. These methods included appropriate replicates, 
blanks, and sample preparation workflow, employing an ion-mo-
bility spectroscopy-enabled ESI-qTOF (35). Using a modified 
version of our Compound Activity Mapping platform (21), we 
then defined activity scores for all analytes based on SNF clustering 
results and developed a custom data visualization platform to 
directly relate analytes to specific biological phenotypes.

By integrating orthogonal screening platforms and combining 
this with next-generation metabolomics analysis of natural prod-
uct libraries, we have created a unique and powerful framework 
for natural product biological characterization (Fig. 1A).

Results

Integration of Multiple Platforms Retains In-Class Target 
Classification. As a test-of-concept, we profiled a small collection 
of 628 randomly selected microbial natural product fractions in the 

FUSION, CP, and metabolomics profiling platforms (Fig. 1A and 
SI Appendix, Supplementary Note 1). For reference benchmarks, 
we also collected FUSION and CP profiles from a library of 2027 
known synthetic small molecules that were selected for known 
bioactivity and have been annotated for MOA and/or molecular 
target (SI Appendix, Fig. S1, Table S1, and Supplementary Note 
1 and Dataset S1). Briefly, all perturbagens were screened in 
triplicate on both platforms. FUSION gene expression signatures 
were normalized to nontreated wells, and CP fingerprints were 
normalized to DMSO-treated wells (SI Appendix, Supplementary 
Note 3). A Z-score transformation was then applied to both 
normalized datasets. To evaluate differential sensitivity of these 
orthogonal platforms to detection of chemical activity, we classified 
as “quiet” any perturbagen where all Z-scored probe values were 
less than |0.5|. Approximately 33% of perturbagens were quiet in 
FUSION (n = 889), and ~25% of perturbagens were quiet in CP 
(n = 686). Notably, natural product fractions comprised 25% of 
quiet perturbagens in FUSION (n = 226) but only 0.7% of quiet 
perturbagens in CP (n = 5). In total, intersection of these lists 
revealed that 12% of all perturbagens were quiet in both datasets (n 
= 329; three natural product fractions and 326 Selleck chemicals), 
suggesting that integrating the two datasets will provide active 
signatures for a larger percentage of the total compounds.

Next, we compared the dispersion of knowns and unknowns 
in each dataset using two-way hierarchical clustering (Fig. 1B). 
We observed that natural product fractions were interspersed 
throughout the clustering of each dataset, with more dispersion 
in FUSION than in CP. This confirmed that the natural product 
fractions produced sufficiently divergent signatures to allow for 
similarity analyses with benchmark chemicals that target a broad 
biological space. Interestingly, comparison of the pair-wise Pearson 
correlations between natural product fractions and all other per-
turbagens in FUSION vs. CP revealed that while some correla-
tions trend in the same direction, the overall concordance between 
the two datasets on a perturbagen-by-perturbagen basis is relatively 
low (Fig. 1C). In fact, there are interactions that are negatively 
correlated in FUSION but positively correlated in CP, and vice 
versa. We also observe that the majority of Pearson correlations in 
CP fall within a relatively narrow range (Pearson r values between 
−0.5 and 0.5), while correlations in FUSION spread across the 
full range (Fig. 1C and SI Appendix, Fig. S2). This suggests that 
while the two platforms can report on the same biological space, 
CP may provide less resolution between MOAs than FUSION.

In order to assess concordance between the two datasets at the 
level of molecular target, we selected FUSION and CP signatures 
from the top 30 largest target classes in the Selleck library and applied 
k-means clustering (k = 30) to this subset. Using the hypergeometric 
test with Bonferroni correction for multiple comparisons to score for 
significant enrichment of target classes within each cluster revealed 
that FUSION and CP have similar levels of sensitivity in terms of 
total number of target classes detected (19 and 22 target classes with 
P < 0.00167, respectively); however, there is notable divergence 
between the two datasets in terms of which target classes are detected 
(SI Appendix, Figs S3 and S4). Comparison of cluster membership 
between the two datasets revealed that some target classes were 
robustly clustered together in both platforms (i.e., heat shock proteins 
(HSP), proteasome, histone deacetylases (HDAC)), while others are 
clustered more closely in one dataset than another (i.e., Aurora Kinase 
inhibitors cluster more closely together in CP than in FUSION, and 
mammalian target of rapamycin (mTOR) inhibitors cluster more 
closely together in FUSION than CP) (Fig. 1D and SI Appendix, 
Table S2 and Fig. S5). Moreover, comparison on a cluster-by-cluster 
basis of each dataset reveals that while both FUSION and CP are 
capable of clustering together target classes of similar MOA, the types 
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of MOAs they pair are different in many cases (SI Appendix, Fig. S6). 
Target class pairings that were observed in FUSION but not CP 
include mTOR and phosphoinositide 3-kinase (PI3K) inhibitors in 
cluster 2, RAF and mitogen-activated protein kinase (MEK) 

inhibitors in cluster 9, topoisomerase andcyclin dependent kinase 
(CDK) inhibitors in cluster 10, and pan-receptor tyrosine kinase 
(RTK) and epidermal growth factor receptor (EGFR) inhibitors in 
cluster 25 (SI Appendix, Fig. S4). By contrast, several other target 
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Fig. 1. Overview of screening platforms and initial data collection. (A) Experimental outline. Natural product fractions are isolated from marine bacteria, screened 
through two biological screening platforms (FUSION and CP), and subjected to high-resolution mass spectrometry-based metabolomics profiling. FUSION and 
CP data are integrated using SNF, which then provides biological annotation on individual metabolites identified. (B) Two- way hierarchical clustering of Z-scores 
from FUSION and CP using Euclidean distance and complete linkage. NPFs are indicated with pink flags. (C) Heat-scatter hexplot comparing Pearson correlations 
between NPFs and all other perturbagens in FUSION vs. CP. (D) Alluvial diagram comparing k-means clustering of chemicals in the top 30 largest target classes 
in FUSION and CP. Each target class is represented by a different color.
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class pairings were observed in CP but not in FUSION, including 
microtubule and JAK inhibitors in cluster 2, Poly (ADP-ribose) pol-
ymerase (PARP) and DNA/RNA synthesis inhibitors in cluster 7, 
HSP and HDAC inhibitors in cluster 15, and DNA/RNA synthesis 
and CDK inhibitors in cluster 28. Functional evidence supporting 
each of these pairings can be found in the literature. Importantly, 
many target classes were not effectively clustered together by k = 30 
clustering, but the identity of these classes were also divergent 
between the two datasets (SI Appendix, Fig. S3). This lack of con-
cordance could reflect differences between gene expression-based 
versus image-based readouts, low target expression in the cell lines 
used, misannotation of targets, polypharmacology within target 
annotated classes, and/or that k = 30 clustering did not offer adequate 
resolution to discriminate between some target classes. Taken 
together, these analyses suggest that at this level of resolution, each 
dataset is able to cover the same biological space with comparable 
depth, but reports on the same space very differently.

Generation of a fused similarity network across CP and 
FUSION signatures would allow for the orthogonal information 
contained in the molecular and morphological phenotypic read-
outs to be leveraged simultaneously in the annotation of unchar-
acterized compounds. However, integration of orthogonal datasets 
is a computational challenge due to inherent differences in exper-
imental collection, measured features, noise, and overall scale 
between methods (36). In order to test the idea that combining 
the information from FUSION and CP would lead to an improved 
platform for MOA assignment, we used a data integration 
approach called SNF (22). This method addresses challenges asso-
ciated with differences in scale and feature measurement by first 
constructing within-sample similarity networks for each data type. 
A single similarity matrix is then generated by iteratively propa-
gating similarity information simultaneously across all individual 
networks to generate a single, fused similarity matrix where per-
turbagens with evidence of similarity across multiple datasets result 
in higher similarity measures (SI Appendix, Fig. S7 and 
Supplementary Note 4). To optimize for our high-content bioassay 
data, we adapted SNF by varying the value of k nearest neighbors 
and taking an agglomerate value of similarity across all k to gen-
erate a final matrix of similarity weights (see SI Appendix, 
Supplementary Note 4). This matrix was then used to calculate a 
new Euclidean distance or Pearson correlation matrix, and sub-
jected to hierarchical affinity propagation clustering (APC) (37, 
38) to group perturbagens based on each metric.

In order to assess the performance of the individual and fused 
datasets in assigning MOA, we again used our collection of com-
mercial compounds (Selleck) and their target annotations as 
benchmark references. Among the 195 pre-annotated target classes 
within this collection, 89 classes contained five or more chemicals. 
A two-sample, one-sided Kolmogorov–Smirnov (KS) test was 
applied to each of these 89 target classes to determine whether the 
pairwise similarities between chemicals, as determined by 
FUSION or CP, with the same target annotation (“in-class”) were 
significantly closer or more correlated than the pairwise similarities 
between these chemicals and those from other target classes (“out-
of-class”). We compared Euclidean distance and Pearson correla-
tion as similarity metrics. Perturbagens with high Pearson 
correlation will have signatures whose overall trend is in the same 
direction, but whose magnitudes may be very different. This can 
be useful when considering perturbagens which may have similar 
biological effects but different levels of potency, but will also have 
the effect of dispersing noise throughout the dataset. Meanwhile 
perturbagens with small Euclidean distances will have signatures 
which are closely related in both direction and magnitude. Thus, 
this metric can be particularly useful to make fine distinctions 

between different mechanisms of action, but may group noisy 
signatures together.

Comparison of the KS-test P-values for each target class across 
all datasets revealed that that SNF using Euclidean distance iden-
tified 20 of the 24 target classes identified in FUSION (83%) and 
27 of the 38 target classes identified in CP (71%). We also 
observed that SNF-Euclidean identified significant self-association 
between members of 19 additional target classes not identified in 
either dataset alone (Fig. 2 A and D; CDF plots for each target 
class are included in SI Appendix, Fig. S8). By contrast, SNF-
Pearson identified 29 of the 36 target classes identified in FUSION 
(81%) and 44 of the 52 target classes identified in CP (85%), and 
4 additional target classes that were not identified in either dataset 
(Fig. 2 B and D and SI Appendix, Fig. S8). Notably, there also was 
a high degree of overlap in target classes identified by SNF-
Euclidean and SNF-Pearson (Fig. 2C).

Taken together, these analyses demonstrated that valuable asso-
ciations can be found in each dataset using either similarity metric, 
and that SNF retains at least 70% of the information found in 
individual datasets. Thus SNF is a platform in which the biological 
associations in both datasets can be leveraged together to provide 
functional annotation of compounds with unknown MOA.

SNF Integration Drives Clustering of Natural Product Fractions. 
We next used SNF values to construct a relational network among 
the reference compounds and natural product fractions using 
hierarchical affinity propagation clustering (APC) as described 
previously (38) (Fig. 3). This clustering method was chosen as it is 
a deterministic method that defines, in a data-driven fashion, both 
the number and membership of clusters emerging from a given 
similarity matrix (37). Binning edges based on the contribution 
from each individual dataset revealed that more than half of 
associations are supported by both datasets (~54%), while ~14% 
and ~32% of associations are supported primarily by FUSION and 
CP, respectively (see Methods; Fig. 3A). When these edge annotations 
are quantified on a per cluster basis, we observed that while most 
clusters are supported by both datasets, some clusters are driven by 
one dataset (e.g., Clusters 2 and 91 are driven by CP, while Clusters 
120 and 125 are driven by FUSION; Fig. 3B). Notably, most of 
the perturbagens that were flagged as “dead” in either platform 
clustered together in the SNF-Euclidean network, and this list 
included compounds for which cytotoxicity would be expected at 
the doses used in these assays (e.g., topoisomerase inhibitors; SI 
Appendix, Fig. S9). In general agreement with our KS-test results, 
many clusters were significantly enriched for chemicals with the 
same target annotation, as assessed by a hypergeometric test (Fig. 
3C and SI Appendix, Table S3). We also observed that some clusters 
were significantly enriched for multiple classes, which may reflect 
similar mechanisms of action and/or convergence of downstream 
signaling effects (e.g., Cluster 123 is significantly enriched for 
PI3K, mTOR and EGFR target classes). It is also possible that 
overlap of multiple target classes in the same cluster may reflect 
a limitation of the gene set, cytological features, or the cell lines 
selected for profiling in both platforms, in that these reporters may 
not be sufficient to distinguish between those mechanistic classes. 
A comparison between the SNF-Euclidean and SNF-Pearson APC 
maps revealed that some target classes which can either be classified 
as closely related to other classes or be divided into subclasses have 
more separation in the SNF-Euclidean APC map compared to SNF-
Pearson. For example, several chemicals annotated as “epigenetic 
reader domain” inhibitors cluster together with HDAC inhibitors 
in the SNF-Pearson APC map (SI Appendix, Fig. S10, Cluster 64), 
but separately from HDAC inhibitors in the SNF-Euclidean APC 
map (Fig. 3C, Cluster 76). The SNF-Euclidean map is also able to 
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cluster pan-CDK inhibitors separately from other more specific 
CDK inhibitors (Fig. 3C, Cluster 51). We also observe that there 
are more clusters in the SNF-Pearson APC map that contain 
multiple members of different classes than in the SNF-Euclidean 
map (Fig. 3C and SI Appendix, Fig. S10). The Pearson networks 
do clearly contain valuable associations (Fig. 2B), which are likely 
to be informative across different biological contexts compared to 
the Euclidean distance networks. Our comparison of the networks 
suggests that SNF-Euclidean may have superior power to distinguish 
between related target classes than the SNF-Pearson network, and 
thus we chose to use this similarity metric in downstream analyses.

Untargeted Metabolomics Relates Chemical Constitution 
to Functional Signatures via the SNF-Similarity Score. The 
chemical complexity of natural product fractions increases the 
difficulty in relating phenotypes to specific molecules or sets of 
molecules for a given sample. However, in most cases biological 

activities are driven by a single compound or a small subset of 
compounds in each extract (39). By determining the distribution 
of secondary metabolites across the full sample set, it is possible 
to test the hypothesis that extracts with similar phenotypes 
contain the same or similar bioactive species. In order to create 
a clear picture of chemical constitution across the sample set, we 
performed untargeted metabolomics on the full set of natural 
product extracts using a UPLC-IMS-qTOF instrument operating 
in data-independent acquisition mode (DIA) (SI Appendix, 
Supplementary Note 2). Inclusion of ion mobility spectrometry 
affords an additional axis of separation over standard LCMS 
systems that improves separation of complex mixtures and 
provides an additional physicochemical measure (collisional 
cross-sectional area) for matching analytes between samples. Use 
of DIA increases the percentage of analytes that are subjected 
to MS fragmentation compared to traditional data-dependent 
acquisition. These fragmentation patterns are useful for comparing 
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Fig. 2. Comparison of KS-test P-values for in-class vs out-of-class target annotation in FUSION, CP, and SNF. Dot plots of −log10 KS-test P-values in FUSION, CP 
and SNF datasets, for each target annotation class with at least five members, using (A) Euclidean distance or (B) Pearson correlation as the similarity metric. 
Significance threshold is represented by the horizontal line (P = 0.01). (C) KS-test P-values for every target class in SNF-Pearson vs. SNF-Euclidean. (D) Venn 
diagrams illustrating the overlap in target classes scoring as significantly self-associated be KS-test (P < 0.01) using Euclidean distance or Pearson correlation.
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analytes between samples, and for comparing to external reference 
libraries for compound identification (40, 41).

Samples were analyzed as three independent technical replicates, 
and consensus feature lists generated for each sample using a suite 
of in-house data processing scripts. Mass spectrometric features were 
required to appear in at least two of three replicates to be included 
in the consensus feature list. These sample-by-sample feature lists 
were then ‘basketed’ to produce a single list of unique mass spec-
trometric features across the full sample set. This feature list included 
information about mass spectrometric properties (e.g., retention 
time, mass to charge ratio, collision cross-sectional area) as well as 
sample distribution (SI Appendix, Supplementary Note 2).

For this initial study, a small set of 75 randomly selected strains 
of marine-derived Actinobacteria and Firmicutes from the 
MacMillan and Linington culture collections were grown in large-
scale liquid culture, extracted using our standard extraction proto-
col, and pre-fractionated over C18 to afford 628 natural product 
fractions. Mass spectrometric analysis of these fractions identified 
a total of 8,108 mass spectrometric features, of which 3,498 appear 
only once in the sample set (43%). To examine the relationship 
between individual features and the SNF network, we employed a 
variation of our previously developed Compound Activity Mapping 
method to score predicted mass spectrometry feature activities (21). 
For each unique feature in the metabolomic dataset, we identified 
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Fig. 3. Affinity propagation clustering map of the SNF network preserves in-class target associations. (A) Hierarchical affinity propagation clustering map of the 
SNF network using Euclidean distance as the similarity metric. Edges are colored based on contribution from individual datasets: Orange, supported by FUSION; 
blue, supported by CP; purple, supported by both datasets. Perturbagen type is indicated by node color: black, NPF; gray, pure chemical. (B) Bar plot showing 
the percent of total edges in each APC cluster that are supported by FUSION, CP, or both datasets. Clusters are labeled by cluster number. (C) Heatmap showing 
minus log10 P-values calculated by hypergeometric test for each target annotation class, per APC cluster. Target classes without significant enrichment in any 
cluster are omitted (Bonferroni-corrected alpha = 0.0016).

http://www.pnas.org/lookup/doi/10.1073/pnas.2208458119#supplementary-materials
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the subset of natural product fractions containing the feature and 
calculated the average of the SNF similarity scores within this set 
(see SI Appendix, Fig. S11 and Supplementary Note 4). This score 
provides a numerical evaluation of how closely the presence of a 
specific mass feature is correlated with the presence of a specific 
biological phenotype in the APC network. In cases where a given 
feature is responsible for an observed activity, it is expected that the 
phenotypes of the associated set should be similar, and that the 
average SNF similarity score (SNF score, with a score range from 
0 to 1) should be correspondingly high. By contrast, compounds 
that do not impart a biological response should not correlate with 
a specific biological signature, and the SNF score should be corre-
spondingly weak. Using a 95th percentile cutoff of all Euclidean 
distance-based SNF scores revealed 229 features with high correla-
tion to biological activity (SI Appendix, Fig. S12).

SNF scoring is feature-independent, meaning that a high score 
for one mass spectrometric feature has no impact on the scores of 
other features in the sample. This is important because the mass 
spectrometry data are not deconvoluted by either adduct (e.g., 
[M+H]+ vs. [M+Na]+) or in-source fragments (e.g., [M-H2O+H]+). 
It is therefore common to identify a suite of mass spectrometry 
features with the same retention time that all possess strong SNF 
scores. These features can be used in concert to determine the 
correct accurate mass for the active component (which aids in 
dereplication) and to reconstitute mass spectrometry fragments 
(which can help with metabolite identification).

Calculating SNF scores for every mass spectrometric feature 
provides a metric to quickly identify bioactive compounds and 
prioritize them for subsequent isolation. A valuable visualization 
for these data is the Compound Activity Map (Fig. 4A). In this 

network, extracts are represented by large nodes, while individual 
mass spectrometric features are represented by small nodes, color-
coded by SNF score. Only mass spectrometric features with SNF 
scores above a set threshold are included, with edges added 
between extracts and the features they contain. The network is 
therefore arranged based on shared bioactive chemical features. 
Using this visualization, it is possible to identify sets of extracts 
with the same mechanistic prediction based on SNF annotations. 
Selection of clusters with similar SNF scores can be used to pri-
oritize target molecules with shared biological properties. For 
example, fractions SW218953, SW218954, and SW218955 (Fig. 
4B) share a suite of related mass spectrometric features, including 
molecular ions, adducts and in source fragments, that possess 
similar extracted ion chromatograms (Fig. 4C). These features also 
possess strong SNF scores (dark green nodes in Fig. 4B), and 
identical activity predictions as shown by assignment to the same 
SNF APC cluster, suggestive of a single bioactive compound fam-
ily in these samples. Conversely, in situations where clusters con-
tain several classes of bioactive compounds, SNF scoring can be 
used to subdivide these clusters by chemical family. For example, 
samples SW218928, SW218929, SW218930, and SW218931 
(SI Appendix, Fig. S13) divide into two groups based on differences 
in mass spectrometric features, suggesting the presence of two 
separate compound classes within these related extracts.

Compound Activity Maps thus provide a powerful strategy to 
prioritize candidate compounds for isolation. However, this vis-
ualization is centered on biological attributes, and provides less 
information about chemical properties. As a complement to 
Compound Activity Mapping we used the open-source Bokeh 
server library to create a data visualization tool that enables direct 
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Fig. 4. Compound Activity Map for combined SNF profiles and untargeted metabolomics features. Large nodes represent extracts. Small nodes represent mass 
spectrometry features. Edges represent presence of mass spectrometric features in connected extracts. Only mass spectrometric features with predicted SNF 
scores >0.06 are included. (A) Full Compound Activity Map. Small nodes are color coded by SNF score. (B) Expansion of a representative region of the map with 
large nodes colored by SNF score. (C) EIC of mass spectrometric features present in adjacent fractions with similar SNF scores.
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examination and filtering of the untargeted metabolomics data 
with a range of data display options (SI Appendix, Fig. S11). This 
platform can display metabolomics data as plots of retention time 
vs. m/z ratio, filtering based on SNF score, presence in extract list, 
or both. This viewpoint on the data is valuable for selecting lead 
compounds that not only score well based on bioactivity predic-
tions, but also display robust chemical signatures for subsequent 
isolation and structure elucidation.

In order to evaluate the efficiency of this new platform for de 
novo bioactivity prediction from complex mixtures, we tested two 
different query approaches; 1) querying the SNF network for nat-
ural product clustering predominately near other reference com-
pounds, (biology-first discovery), and 2) filtering for metabolites 
with highly correlated biological activity as assessed by SNF score 
(chemistry-first discovery). The first case highlights compounds that 
possess mechanisms in line with known bioactives while the second 
approach identified sets of compounds with mechanisms that are 
not covered by the training set of known bioactives. This second 
approach attempts to address one of the largest challenges in natural 
products, that is, identification of new natural products with novel 
mechanisms of action. These strategies were selected to test the 
platform under different conditions, from simple situations where 
the annotations were unanimous, to complex situations with mul-
tiple reference compound types and multiple natural product frac-
tions. In each approach, we highlight the contribution of SNF and 
metabolomics toward identification of both the natural product 
driving the signature and its biological MOA.

Identification of Trichostatin A from an HDAC-Inhibitor-Enriched 
Cluster Validates the Integrated SNF Platform. We first sought 
to validate the SNF network by querying the dataset for natural 
product fractions that clustered mainly with reference compounds 
from a single target class. In the SNF-Euclidean APC, there were 
6 clusters that were highly enriched (P < 1e-10) for chemicals 
belonging to the same target class: Cluster 48 (HSP), Cluster 49 
(HDAC), Cluster 76 (Epigenetic Reader Domain), Cluster 100 
(mTOR), and Cluster 103 (Proteasome) (Fig. 3C and SI Appendix, 
Table S4). Of these, Clusters 49, 100, and 103 contained natural 
product fractions (3 in Cluster 49, 1 in Cluster 100, and 1 in 
Cluster 103), thus identifying readily testable MOA hypotheses 
for the bioactive natural products present in each case. A KS-
test confirmed that association between chemicals in the HDAC 
inhibitor target class is preserved in the full dataset, and that these 
associations were still significantly improved in SNF compared to 
FUSION or CP (P = 1.8e−61; Fig. 5A).

We observed that the HDAC inhibitor cluster contained three 
sequentially isolated natural product fractions (SW218953, 
SW218954, and SW218955) (Fig. 5B). The presence of multiple 
natural product fractions (NPFs) from the same series suggests the 
presence of common metabolite profiles. Filtering the metabolomics 
data for features that are only present in these three natural product 
fractions revealed a vertical “stripe” of mass spectrometry features 
at 3.13 min with a precursor mass feature of 303.1712m/z (Fig. 5C; 
red box). This pattern of signals is indicative of both a precursor 
mass and associated in-source fragments from the LCMS analysis 
(extracted ion chromatograms for the NP fractions are included in 
SI Appendix, Fig. S14). Subsequent chromatographic optimization, 
purification and NMR analysis from SW218953 identified this 
product as the known bacterial metabolite trichostatin A (Fig. 5 
D–E). Trichostatin A has been extensively studied for its activity as 
an HDAC inhibitor (42, 43). Notably, Cluster 49 also contained 
pure trichostatin A from the Selleck library (SI Appendix, Table S5). 
An analysis of the top 50 nearest neighbors to trichostatin A in the 
SNF-Euclidean network also confirms that these three natural 

product fractions are tightly associated with HDAC inhibitors (Fig. 
5F). Collectively, the natural product fractions containing trichos-
tatin A also had a very high SNF score (0.537; 99.9th percentile). 
Therefore, our integrated platform successfully assigned known 
MOA to natural product fractions in an agnostic manner, confirm-
ing the power of this annotation strategy.

SNF-Score-Driven Identification of Surugamide A as Modulator of 
CDK Activity. Using a top 98th percentile cutoff of SNF scores also 
identified a single natural product (precursor mass-to-charge ratio 
of 912.6266) that was present across multiple extracts from multiple 
bacterial species (SW218824, SW218835, SW218858, SW218859, 
and others; Fig. 6A). Purification and structure elucidation identified 
this metabolite as the cyclic octapeptide surugamide A (Fig. 6B 
and SI Appendix, Fig. S15 and Supplementary Note 5) (44). The 
surugamides are a recently discovered class of cyclic peptides that 
appear to be widely distributed in Streptomyces sp. Initial biological 
activity reports for surugamide A show weak activity as protease 
inhibitors with an IC50 of 21 μM in an enzymatic assay for 
inhibition of bovine cathepsin B (44). Querying the SNF-Euclidean 
APC network showed several surugamide-containing fractions 
clustering near each other and in close proximity to CDK inhibitors 
(SI Appendix, Fig. 15C). The function of the retinoblastoma tumor 
suppressor (Rb) is tightly controlled by CDK complex proteins and 
the phosphorylation state of Rb is indicative of cell-cycle progression 
(45). Based on this APC clustering, we evaluated surugamide A 
(10 μM) for its ability to inhibit Rb phosphorylation, compared 
to the CDK inhibitor dinaciclib (100 nM). Western blot analysis 
of surugamide A treatment clearly shows strong suppression of Rb 
phosphorylation on Ser 807/811 relative to untreated cells (Fig. 6C).

The identification of surugamide A in our dataset confirms that 
the use of the SNF score with untargeted metabolomics can also 
be used to quickly identify single bioactive metabolites in fractions 
that share a phenotype. In the case of surugamide A, clustering 
with a subset of CDK inhibitors provided a testable and validated 
biological hypothesis. Taken together, these data demonstrate that 
the bioinformatic integration of FUSION, CP, and metabolomics 
datasets can effectively drive the rapid discovery and characteriza-
tion of bioactive natural products.

SNF-Guided Discovery of Parkamycins A and B. Finally, several 
clusters in the APC map contained exclusively NP fractions, 
suggesting the presence of bioactive metabolites with mechanisms 
not represented in the training set. One of these clusters contained 
two isobaric species with strong SNF scores (m/z = 455.2604 and 
455.2627, rt = 4.06 and 4.40 min Fig. 6D and SI Appendix, Fig. 
S16), suggestive of a bioactive compound family. Refermentation 
and isolation yielded two molecules with matching UV spectra, one 
of which (parkamycin B) was highly unstable, rapidly converting 
to the more stable isomer (parkamycin A) upon exposure to light 
(Fig. 6E). Structure determination of the more stable isomer using 
a full suite of NMR and spectroscopic techniques (SI Appendix, 
Supplementary Note 6, NMR spectra as SI Appendix, Figs. S17–
S30) identified parkamycin A as a natural product containing 
the highly unusual biphenylazoxy core pharmacophore. While 
azoxy motifs have some precedent in medicinal chemistry 
there are very few examples of this motif in nature (46). As the 
parkamycins did not correlate to any molecules in the informer 
set by SNF, the effect of parkamycin A on H23 cells after a 6-h 
treatment was evaluated by profiling 748 gene transcripts that 
are part of the Nanostring curated metabolic pathways probe 
set (SI Appendix, Supplementary Note 3, Fig. S31, and Table S6 
and Dataset S2). Genes were assigned to pathways through the 
nSolver Advanced Analysis system 4.0 and Advanced Analysis 
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module 2.0, and scores were generated that showed upregulation 
or downregulation of metabolic pathways as a whole (SI Appendix, 
Fig. S32; 47). Several genes related to AMPK, endocytosis, 
KEAP1, p53, and Myc signaling were down-regulated, while 
cell-cycle signaling, epigenetic and cell-cycle regulation were up-
regulated (SI Appendix, Fig. S33 A–H). These results suggest that 
the parkamycins have complex biological activity that requires 
further investigation.

The isolation of parkamycin compounds demonstrate the value 
of 'chemistry-first' prioritization methods for discovering novel 
natural product scaffolds with biological activities not represented 
in the reference compound training set.

Discussion

The natural product literature contains thousands of examples of 
novel compounds with biological activities reported from simple 
end-point assays, such as cytotoxicity or antimicrobial growth 

inhibition assays. While this provides a handle for further inves-
tigation, the lack of detailed mechanistic information means that 
the majority of these molecules are never followed up on for bio-
logical characterization. This is due to the aforementioned chal-
lenges associated with characterizing the mode of action of 
pharmacological agents. Previous biological screening platforms 
developed by our laboratories (CP and FUSION) have been suc-
cessful at characterizing new natural products with detailed mech-
anistic assignments (3, 8, 11, 16–19). While powerful, both 
platforms encountered scenarios where no prediction for a natural 
product fraction was possible due to weak signatures. Differences 
in both resolution and sensitivity between platforms can limit 
their utility, either because a given mechanism is not reported on 
by the assay system, or because the resolving power of the platform 
is insufficient to differentiate between mechanistic classes. In order 
to maximize the amount of information used to predict MOA, 
we applied an adapted version of SNF to integrate data from both 
CP and FUSION.
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The SNF network retained the associations of many pure chem-
icals to their annotated target class that were observed in either 
FUSION or CP, delivering the capacity to leverage both datasets 
simultaneously for untargeted mode of action prediction. We val-
idated the utility of this network in assigning MOA by demon-
strating that natural product fractions containing trichostatin A 
were clustered with pure trichostatin A and other HDAC inhib-
itors. We then further developed a robust pipeline to assign the 
mechanistic annotation that the SNF network provides to specific 
natural product structures. Using untargeted metabolomic pro-
filing of the full natural product fraction library and creating a 
scoring method (SNF score) to relate these mass spectrometry 
features to defined phenotypes, it is possible to directly predict 
the contributions of all mass spectrometry features to the biolog-
ical landscape of the sample set. Development of the Bokeh server 
visualization suite (SI Appendix, Fig. S11) also provides a facile 
platform for data filtering and visualization that enables the rapid 
exploration of these data using a range of different viewpoints. 
Using this approach, we were able to link surugamide with novel 
biological activity against CDKs. Thus, SNF scores provide a rich 
perspective on chemical and functional interpretation from the 
natural product library. For example, in situations where two dif-
ferent compound classes cause the same biological phenotype 
(i.e., one cluster in the APC network), SNF scores can correctly 
identify these two compounds as high-priority candidates, even 
though neither compound is present in all members of the bio-
logical cluster, provided that each molecule is predominantly 
found within that cluster. Similarly, in situations where extracts 
contain many mass spectrometric features, most features will be 
quickly deprioritized because their distributions throughout the 
sample set do not correlate to specific biological phenotypes. 
Finally, SNF scores can be used to prioritize fractions that have 
biologically active natural products even in the absence of 

benchmark compounds, as demonstrated by the identification of 
parkamycins from clusters primarily enriched in other NPFs. The 
discovery of a new natural product with no clear associations to 
the diverse biological space represented in our chemical training 
set confirms that our integrated approach can quickly identify 
high priority bioactive compounds even without biological anno-
tation. This mechanism for compound prioritization is therefore 
a robust and powerful strategy for directly targeting biologically 
relevant compounds from large, complex, natural product librar-
ies, and can greatly accelerate the discovery of both novel chem-
istry and biology. An important aspect of new technologies is the 
ability to identify minor components in complex mixtures, which 
the integrated biological/metabolomics signatures are able to do.

Notwithstanding the value of this approach, there are several 
situations which remain difficult to resolve. Currently, the SNF 
score is not weighted by relative intensity of each MS feature. This 
is because determining relative concentrations of unknown ana-
lytes in complex samples remains an unsolved challenge in mass 
spectrometry-based metabolomics. In situations where a bioactive 
metabolite is present both above and below its EC50, the SNF 
score will be reduced, as there will be no measurable phenotype 
in extracts where the concentration is low. Secondly, the system 
cannot differentiate between active and inactive metabolites if they 
are always co-expressed. Review of our metabolomics dataset sug-
gests that this circumstance is rare; however, in these cases both 
metabolites would be scored as active candidates, requiring down-
stream deconvolution. Finally, in situations where bioactive com-
pounds are frequently encountered with other unrelated bioactives, 
the resulting phenotypes could bear little relationship to one 
another. Review of the dataset suggests that this situation is also 
unusual; however, in these cases SNF scores will also deteriorate 
because of the reduced similarity scores between samples with 
different phenotypic signatures.
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The use of SNF to merge orthogonal data is limited by the 
breadth of space covered in the input datasets, both in terms of 
the reference training set and the number of features used for 
readout. The proliferation of information-rich screening technol-
ogies, such as L1000 and cell painting, provide enhanced oppor-
tunities for chemical/ biological associations in natural product 
and other libraries (6, 8). While we chose to use FUSION and 
CP in this study, the approaches and methodology outlined here 
would be amenable to these platforms as well. The field of natural 
products will be greatly enhanced by the adoption of more com-
plex screening platforms, as one of the major limitations in the 
field is the lack of mechanistic understanding of the large majority 
of isolated molecules.

Natural product research brings with it a number of challenges, 
such as the chemical complexity of extracts, re-isolation of known 
compounds and characterization of biological activity. These chal-
lenges limit the pace of natural product research and leave knowl-
edge gaps around the value of a given natural product structure 
or class. Recent initiatives to develop resources to better under-
stand the genomics of natural product biosynthetic gene clusters 
(48) and the development of the Global Natural Products Social 
molecular networking platform (41) have fundamentally changed 
how natural product research is conducted, but the field as a whole 
is far behind in leveraging ‘Big Data’ to address outstanding chal-
lenges. The approach we have detailed here provides an unbiased, 
data-driven platform that can be used to integrate biological assay 
and metabolomics results to provide a comprehensive viewpoint 
on chemical/biological relationships in the natural product sphere.

Materials and Methods

Chemical Libraries.
Selleck chemical library. The reference library is a set of 2027 molecules 
spanning 196 compound classes, with 789 compounds not belonging to any 
annotated class. The library was purchased from Selleck as a premade library. 
Further details are included in SI Appendix, Supplementary Note 1.
Natural product libraries. Two natural product libraries were utilized in this 
study. The MacMillan lab collection used in this study was comprised of ~500 
fractions derived from 25 marine-derived bacterial strains. The Linington nat-
ural product fraction library contains >5,000 microbial fractions. The library is 
comprised of extracts of marine sediment-derived bacterial strains isolated by 
the Linington laboratory over the past 10 y. Further details are included in SI 
Appendix, Supplementary Note 1.

Metabolomics.
DIA UPLC-MS/MS data acquisition. All measurements were performed with an 
Acquity UPLC H-Class (Waters) using an HSS C18, 100-mm × 2.1-mm, 1.7-μm 
column (Waters). The LC flow was directly infused into a Synapt G2-Si operated in 
positive ion mode. Mass spectra were acquired from 50–1500 m/z at a 2-Hz scan 
rate in continuum mode without lockmass correction. Details for data processing 
are included in SI Appendix, Supplementary Note 2.

Cell Culture Conditions. NCI-H23 cells were cultured in RPMI supplemented 
with 5% FBS (Gibco). HeLa cells were cultured in DMEM supplemented with 10% 
FBS (Difco, MT35015CV). All cells were cultured at 37°C under 5% CO2.

CP Assay. Briefly, HeLa cells were seeded into 384-well at 2,500 cells/well. 
After a 24-h incubation, cells were treated with test fractions or pure compounds 
using a Janus MDT robot (PerkinElmer). Staining procedures are described in 
SI Appendix, Supplementary Note 3. Natural product fractions were screened 
at either 10 μg/mL (Macmillan library), or 1000x dilution (Linington library). 
Selleck chemicals were screened at 10 μM. If a CP fingerprint was flagged as 
inactive at 10 μM, then the chemical was re-screened at 50 μM and that result-
ing fingerprint was used in downstream analyses. Image capture, processing 
and analysis follows previously published methodology (11; SI Appendix, 
Supplementary Note 3).

Functional Signature of Ontology Assay. The FUSION assay concept was 
described previously (8). We extended this concept to a lung cancer context by 
selecting a new set of genes that can report on the physiological state of lung can-
cer cell lines. Expression of 14 dynamic reporter genes (DUSP6, FAM3C, GCNT3, 
GRHL2, HSD17B7, KIAA0922, LCN2, LTBR, RRM2, SIRPA, TLE2, TMEM30B, WSB2, 
YAP1) and two static reporter genes (EEF1A1, SIRT6) were detected using a 16-plex 
QuantiGene Plex 2.0 Assay (ThermoFisher). Further details on sample processing, 
data acquisition and analysis are included in SI Appendix, Supplementary Note 3.

Data Integration and Statistical Analysis

SNF Methodology. SNF is a novel similarity metric designed to aggregate 
information across multiple datasets and assign a similarity score to perturba-
tions based on evidence from multiple datasets. SNF was performed as previ-
ously described, with some modifications (SI Appendix, Fig. S7; 22). Similarity 
matrices used for input were calculated using either the dist2 function in the 
‘SNFtool’ R package for Euclidean distance, or the distance matrix function 
from the ‘ClassDiscovery’ R package to generate Pearson distance similarity 
matrices. In the step where k-nearest neighbors are chosen, we chose to vary 
k from k = 2 to k = n/2, where n is the total number of perturbations in each 
dataset, and use an agglomerate value of similarity across all k. Networks were 
then fused by prorogation information from each dataset until a final fused 
matrix is calculated. This procedure results in n/2-1 fused matrices total. Each 
matrix is then normalized by dividing by the maximum nondiagonal value, and 
then the average value between all matrices is calculated to result in a final, 
fused aggregate similarity matrix. This matrix was then log10-transformed and 
clustered by APC using either Euclidean distance or Pearson correlation as the 
similarity metric. A full description of the algorithm is provided in SI Appendix, 
Supplementary Note 4.

Clustering and Statistics. The similarity between Z-scored perturbagen profiles 
was measured using either Euclidean distance or Pearson correlation. To assess 
the ability of each dataset to identify significant associations within Selleck target 
classes, we used a two-sample, one-sided KS test to determine whether in-class 
associations were significantly smaller (Euclidean distance) or larger (Pearson corre-
lation) than out-of-class associations. Only target classes with at least five members 
were considered for this analysis. Hypergeometric tests were performed to assess 
for statistical enrichment of target classes in clusters, and threshold for significance 
was corrected for the total number of classes considered. K-means clustering was 
performed using the kmeans function in the ‘stats’ R package. Alluvial diagrams 
were generated using either the ‘ggalluvial’ or ‘alluvial’ R packages.

Hierarchical APC was performed as previously described using either 
Euclidean distance or Pearson correlation as the similarity metric (38). APC 
was chosen because it is a deterministic clustering method. In addition, APC 
will determine, in a completely automated fashion, not only the number of 
clusters arising from the data but also the exemplar member of each cluster. 
APC performs clustering by passing messages between the data points (37), 
taking a square matrix representing pairwise similarity measures between all 
data points as input. Each data point is treated as a node in a network and is 
initialized by connecting all the nodes together, where edges between nodes 
are proportional to the distance between them. Messages are then iteratively 
transmitted along the edges, which are pruned with each iteration until a set 
of clusters and exemplars emerges. In our implementation, we clustered the 
exemplars identified by APC. This was repeated until no more clusters emerged, 
thereby identifying a hierarchical structure of clusters. A full description of our 
implementation is described in ref. 38.

FUSION data were clustered using the final 14 gene signatures, CP data were 
clustered using the final 251 features, and SNF data were clustered using the 
aggregate Wfused matrix of weights over all k values. Networks were visualized in 
Cytoscape (49) with edge lengths drawn using the Allegro Spring-Electric layout.

SNF APC network edges were colored according to dataset contribution as 
described below. For each pair-wise association, the log10 ratios of the affinity val-
ues in each dataset (i.e., AffFUS:AffCP) were calculated. Ratios ≤ −0.5 were flagged 
as being supported by FUSION, ratios ≥ 0.5 were flagged as being supported by 
CP, and all other associations were flagged as being supported by both. All data 
processing and statistical analyses for FUSION and SNF were carried out using 
the statistical platform R (http://www.R-project.org).
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Integration of Metabolomics to SNF, CP, and FUSION Data. Integration of the 
basketed metabolomics data was performed similarly to previous studies (21). This 
approach treats every observed MS feature or basket as an individual chemical entity 
and asks the question, on average, what biological phenotype is expected when cells 
in the high-content assays are treated with compound? Each basket is treated as an 
object and assigned five numeric descriptors or attributes specific to the biological 
data acquisition: CP Cluster Score, CP Activity Score, FUSION Cluster Score, FUSION 
Activity Score, and SNF Cluster score. The Cluster Score is computed using the NXN 
similarity matrices from each assay the combined SNF similarity matrix and is simply 
the average of the nondiagonal values of the sub NXN matrix consisting of all the 
natural product fractions containing that basket. These descriptors are then exported 
as a table that can be used for discovery and visualized using tools such as the custom 
Bokeh server (SI Appendix, Supplementary Note 4 and Fig. S11).

Compound Isolation and Bioactivity Assays. Procedures for extraction, isolation, 
and structural elucidation of natural products from bioactive fractions are described in 
SI Appendix, Supplementary Notes S5 and S6. Immunoblotting and gene expression 
assay procedures are described in SI Appendix, Supplementary Note 3.

Data, Materials, and Software Availability. Further information and requests for 
resources and reagents should be directed to and will be fulfilled by the Lead Contacts, 
John B. MacMillan (jomacmil@ucsc.edu) and Roger G. Linington (rliningt@sfu.ca).
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