
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Dynamic link-based ranking over large-scale graph- structured data

Permalink
https://escholarship.org/uc/item/7ps4f334

Author
Hwang, Heasoo

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7ps4f334
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Dynamic Link-based Ranking over Large-Scale Graph-Structured Data

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Heasoo Hwang

Committee in charge:

Professor Yannis Papakonstantinou, Chair
Professor Richard Belew
Professor Alin Deutsch
Professor Gert Lanckriet
Professor Victor Vianu

2010

Copyright

Heasoo Hwang, 2010

All rights reserved.

The dissertation of Heasoo Hwang is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

To my family and friends,

especially to my parents in Korea.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Efficiency of Dynamic Link-based Search 5
1.2 Measuring Authority and Specificity 7
1.3 Dissertation Overview 10

Chapter 2 Background - ObjectRank . 12
2.1 Authority-based Search 12
2.2 Overview of ObjectRank 13
2.3 Data Model of ObjectRank 18

2.3.1 Modeling Database as Graph 19
2.3.2 Assigning Weights to Edge Types 22

2.4 Answering Queries Using ObjectRank 24
2.4.1 Answering Queries With Single Keyword 24
2.4.2 Answering Queries With Multiple Keywords . . . 25

2.5 Quality of ObjectRank 27
2.5.1 Qualitative Evaluation of ObjectRank 27
2.5.2 Effectiveness of ObjectRank 29

Chapter 3 BinRank: Fast Dynamic Authority-Based Search Using Mate-
rialized SubGraphs . 31
3.1 Introduction . 31
3.2 Motivation . 34
3.3 Related Work . 35
3.4 Relevant Subgraphs . 38
3.5 Bin Construction . 42
3.6 Adaptive MSG Re-computation 45

v

3.7 System Architecture . 46
3.7.1 Preprocessing . 47
3.7.2 Query Processing 49

3.8 Experiments . 50
3.8.1 Setup . 50
3.8.2 ObjectRank on the Full Wikipedia Graph 51
3.8.3 BinRank - Preprocessing Stage 52
3.8.4 BinRank - Query Processing Stage 55
3.8.5 BinRank for Multi-keyword Queries 60
3.8.6 Adaptive MSG Re-computation 62
3.8.7 Performance Comparison of BinRank with Monte

Carlo Method and HubRank 66
3.9 Conclusions . 67

Chapter 4 Inverse ObjectRank: Measuring Specificity 69
4.1 Introduction . 69
4.2 Keyword Search and Ranking Factors 71
4.3 Inverse ObjectRank . 73

4.3.1 Inverse ObjectRank 74
4.3.2 Parallelisms to Information Retrieval Factors . . . 75
4.3.3 Combine Ranking Factors and Multiple Keywords 76

4.4 Architecture . 77
4.4.1 Demo . 79

4.5 Qualitative Evaluation 80
4.5.1 Combining Specificity with Relevance and Global

Importance . 80
4.5.2 Comparison to Textbook’s Bibliography 82
4.5.3 User Survey . 84
4.5.4 Distance Between Specificity Metrics 86

4.6 Related Work . 86
4.7 Conclusions . 89

Chapter 5 Summary and Conclusions . 91

Bibliography . 93

vi

LIST OF FIGURES

Figure 2.1: A subset of the DBLP graph 14
Figure 2.2: Top 10 papers on “OLAP” returned by ObjectRank 16
Figure 2.3: The DBLP schema graph. 18
Figure 2.4: The DBLP authority transfer schema graph. 18
Figure 2.5: Mapping of Common Data Models to a Data Graph. 20
Figure 2.6: Authority transfer data graph 22
Figure 2.7: Top 5 papers on “XML Index”, with and without emphasis on

“XML” . 26

Figure 3.1: System Architecture . 47
Figure 3.2: The number of keywords and average ObjectRank execution

time on the Wikipedia graph per frequency range (ε is fixed to
5.0E-4) . 51

Figure 3.3: Performance of bin construction 53
Figure 3.4: The effect of maxBinSize on the MSG construction cost (ε is

fixed to 5.0E-4) . 53
Figure 3.5: The effect of ε on the MSG construction cost (maxBinSize is

fixed to 4000) . 54
Figure 3.6: The effect of maxBinSize on the BinRank running time 56
Figure 3.7: The effect of maxBinSize on the top-100 accuracy(ε is fixed to

5.0E-4) . 57
Figure 3.8: The effect of maxBinSize on the top-k accuracy with fixed ε . . 58
Figure 3.9: The effect of ε on the BinRank running time 59
Figure 3.10: The effect of ε on the top-100 accuracy(maxBinSize is fixed to

4000) . 60
Figure 3.11: The top-100 accuracy for disjunctive queries (maxBinSize =

4000 and ε =5.0E-4) . 61
Figure 3.12: The top-100 accuracy for conjunctive queries (maxBinSize =

4000 and ε =5.0E-4) . 62
Figure 3.13: The effect of the number of links on an MSG on the BinRank

running time (maxBinSize = 4000 and ε =5.0E-4). The Pearson
correlation coefficient is 0.938. 64

Figure 3.14: The distribution of the number of links on an MSG (1043 MSGs
generated by using maxBinSize = 4000 and ε=5.0E-4) 65

Figure 3.15: top-k accuracy of Monte Carlo algorithm with various query times 67

Figure 4.1: Instance of a Publications Database 70
Figure 4.2: System Architecture. 78
Figure 4.3: Number of Authoritative-Specific and Authoritative-Non-Specific

papers according to [RG03]. 81
Figure 4.4: Average Ratings of the Five Specificity Metrics at the User Survey. 84

vii

Figure 4.5: Compare Results’ Distances. 85

viii

LIST OF TABLES

Table 1.1: Examples of Graph-Structured Data in Various Domains 2
Table 1.2: Examples of Keyword Queries over Graph-Structured Data in Ta-

ble 1.1 . 2

ix

ACKNOWLEDGEMENTS

First, I thank my advisor Yannis Papakonstantinou for sharing valuable

insights, guiding my research, and showing endurance throughout my Ph.D. years.

I know that without him, nothing could have been done. Also, I would like to thank

the other professors in our lab, Alin Deutsch and Victor Vianu, for providing me

of warm encouragement and invaluable advices when I really needed them. I also

thank my other committee members, Richard K. Belew and Gert Lanckriet, for

their time and consideration.

I thank my former and current lab colleagues, too. Especially, I thank my

cohorts at UCSD database group, Yannis Katsis and Emiran Curtmola, for pro-

viding me of insightful comments and moral support all the time. Also, I offer

my sincere gratitude to my excellent mentors and collaborators, Andrey Balmin,

Vagelis Hristidis, and Alex Ntoulas. I truly think it was luck and privilege for me

to work with them. I also thank many great collaborators I had at UC San Diego,

IBM Almaden Research Center, and Microsoft Search Labs in San Jose. They

include Amarnath Gupta(SDSC), Berthold Reinwald(IBM Almaden), Hamid Pi-

rahesh(IBM Almaden), Erik Nijkamp(IBM Germany), Yannis Sismanis(IBM Al-

maden), Frank van Ham(IBM Watson), Hady Lauw(Microsoft Research), and Lise

Getoor(University of Maryland).

My special thanks go to my family, Kyung Ki Hwang, Ae Kyung Park,

Sang Rae Shim, Hyunho Hwang and Hyunchul Hwang, for their love, prayers, and

so many phone calls. Also, I would like to thank my best friends, Ji Hee Jung, Ki

Yeon Kim, and YouRyang Seo, for their firm presence and strong support during

my Ph.D. studies. I also thank people in San Diego Onnuri Church for sharing so

many good times with me and cheering me up. Last but not least, I would like

to express my immeasurable gratitude to my God and Jesus Christ for saving me,

caring me, loving me, and walking with me throughout my life and forever.

Parts of Chapter 2 were published in Proceedings of the 2006 ACM SIG-

MOD international conference on Management of data (SIGMOD-2006), pp 796-

798 and ACM Transactions on Database Systems 2008, 33(1) (TODS-2008). Hea-

soo Hwang, Vagelis Hristidis, and Yannis Papakonstantinou, “ObjectRank: a sys-

x

tem for authority-based search on databases” and Vagelis Hristidis, Heasoo Hwang,

and Yannis Papakonstantinou, “Authority-based keyword search in databases”.

The dissertation author and Vagelis Hristidis were the primary investigators and

authors of these papers.

Chapter 3 was published in Proceedings of the 2009 IEEE International

Conference on Data Engineering (ICDE-2009) and will appear in IEEE Transac-

tions on Knowledge and Data Engineering 2010, Special Issue on the Best Papers

of ICDE09 (TKDE-2010). Heasoo Hwang, Andrey Balmin, Berthold Reinwald,

and Erik Nijkamp, “BinRank: Scaling Dynamic Authority-Based Search Using

Materialized SubGraphs” and its extended version. The dissertation author was

the primary investigator and author of these papers.

Chapter 4 was published in Proceedings of the 2006 ACM SIGMOD in-

ternational conference on Management of data (SIGMOD-2006), pp 796-798 and

ACM Transactions on Database Systems 2008, 33(1) (TODS-2008). Heasoo

Hwang, Vagelis Hristidis, and Yannis Papakonstantinou, “ObjectRank: a system

for authority-based search on databases” and Vagelis Hristidis, Heasoo Hwang,

and Yannis Papakonstantinou, “Authority-based keyword search in databases”.

The dissertation author and Vagelis Hristidis were the primary investigators and

authors of these papers.

xi

VITA AND PUBLICATIONS

2000 Bachelor of Science in Computer Science, Seoul National Uni-
versity, Seoul, Korea

2002 Master of Science in Computer Science, Seoul National Uni-
versity, Seoul, Korea

2010 Doctor of Philosophy in Computer Science, University of Cal-
ifornia, San Diego

Heasoo Hwang, Andrey Balmin, Berthold Reinwald, and Erik Nijkamp, “Bin-
Rank: Scaling Dynamic Authority-Based Search Using Materialized Sub-
Graphs”(extended version), To appear in IEEE Transactions on Knowledge and
Data Engineering (TKDE), Speical Issue on the Best Papers of ICDE 2009, 2010.

Heasoo Hwang, Andrey Balmin, Berthold Reinwald, and Erik Nijkamp, “BinRank:
Scaling Dynamic Authority-Based Search Using Materialized SubGraphs”, In Pro-
ceedings of the 2009 IEEE International Conference on Data Engineering (ICDE-
2009), pp. 66-77, 2009.

Akanksha Baid, Andrey Balmin, Heasoo Hwang, Erik Nijkamp, Jun Rao, Berthold
Reinwald, Alkis Simitsis, Yannis Sismanis, and Frank van Ham, “DBPubs: Mul-
tidimensional Exploration of Database Publications”, In Proceedings of the 34th
International Conference on Very Large Data Bases (VLDB-2008), pp. 1456-1459,
Auckland, New Zealand, August 24-30, 2008.

Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou, “Authority-based
keyword search in databases”, ACM Transactions on Database Systems (TODS),
33(1), 2008.

Heasoo Hwang, Andrey Balmin, Hamid Pirahesh, and Berthold Reinwald, “In-
formation discovery in loosely integrated data”, In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data (SIGMOD-2007), pp.
1147 - 1149, 2007.

Heasoo Hwang, Andrey Balmin, Hamid Pirahesh, and Berthold Reinwald,
“ObjectRank: a system for authority-based search on databases”, In Proceed-
ings of the 2006 ACM SIGMOD international conference on Management of data
(SIGMOD-2006), pp. 796-798, 2006.

xii

ABSTRACT OF THE DISSERTATION

Dynamic Link-based Ranking over Large-Scale Graph-Structured Data

by

Heasoo Hwang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Yannis Papakonstantinou, Chair

Information Retrieval techniques have been the primary means of keyword

search in document collections. However, as the amount and the diversity of avail-

able semantic connections between objects increase, link-based ranking methods

including ObjectRank have been proposed to provide high-recall semantic key-

word search over graph-structured data. Since a wide variety of data sources can

be modeled as data graphs, supporting keyword search over graph-structured data

greatly improves the usability of such data sources. However, it is challenging in

both online performance and result quality.

We first address the performance issue of dynamic authority-based ranking

methods such as personalized PageRank and ObjectRank. Since they dynamically

rank nodes in a data graph using an expensive matrix-multiplication method, the

online execution time rapidly increases as the size of data graph grows. Over the

English Wikipedia dataset of 2007, ObjectRank spends 20-40 seconds to compute

query-specific relevance scores, which is unacceptable. We introduce a novel ap-

proach, BinRank, that approximates dynamic link-based ranking scores efficiently.

BinRank partitions a dictionary into bins of relevant keywords and then constructs

xiii

materialized subgraphs(MSGs) per bin in preprocessing stage. In query time, to

produce highly accurate top-K results efficiently, BinRank uses the MSG corre-

sponding to the given keyword, instead of the original data graph.

PageRank and ObjectRank calculate the global importance score and the

query-specific authority score of each node respectively by exploiting the link struc-

ture of a given data graph. However, both measures favor nodes with high in-degree

that may contain popular yet generic content, and thus those nodes are frequently

included in top-K lists, regardless of given query. We propose a novel ranking

measure, Inverse ObjectRank, which measures the content-specificity of each node

by traversing the semantic links in the data graph in the reverse direction. Then,

we allow users to adjust the importance of the three ranking measures (global im-

portance, query-relevance, and content-specificity) to improve the quality of search

results.

xiv

Chapter 1

Introduction

Recently, the variety and the size of digital information sources have grown

very rapidly. In particular, there is an increasing number of data sources that

contain not only data objects but the links that connect semantically relevant

objects have become widely prevalent. In this dissertation, we refer to such sources

as graph-structured data sources. We target on improving their usefulness to end-

users by providing efficient and effective search functionality, based on the fact

that the semantic link information cannot be exploited easily by ordinary users,

but is very helpful in finding relevant data objects effectively.

Bibliographic datasets such as the DBLP database1 and the Citeseer dump

data2 are good examples of graph-structured data sources. They provide relational

tuples or XML elements that correspond to typed data objects such as authors

and publications, as well as typed semantic links such as authorships and citations

represented as foreign-key relationships or XPointers/XLinks connecting authors

and publications. As stated in [BHP04], such semantic links are very useful in

improving the quality of search results, especially when the importance of a data

object is transferred to neighboring objects via semantic links connecting them.

For instance, if there is a set of papers, P , that are important in the “OLAP”

research area, and all of the papers cite paper pcited, we can intuitively see that

pcited is also an important paper. This can be explained by using the authority

1http://www.informatik.uni-trier.de/ ley/db/
2http://citeseer.ist.psu.edu/

1

2

Table 1.1: Examples of Graph-Structured Data in Various Domains

D1: Publications dataset in a relational database (Structured database)

D2: Wikipedia articles in an XML database (Semi-structured database)

D3: A collection of social networking web pages including profile pages, where the

profile of each person is connected to those of co-workers, universities and

companies (A collection of XML documents)

Table 1.2: Examples of Keyword Queries over Graph-Structured Data in Table 1.1

Q1: Who are important researchers (or papers) in the “OLAP” research?

Q2: Find Wikipedia articles highly relevant to “PageRank”.

Q3: Which universities are closely related to “CompanyX”?

(importance) transfer mechanism: the importance scores of the papers in P flow

into pcited through the citation links from P to pcited. Therefore, our target graph-

structured data sources are the ones on which the authority transfer mechanism is

observed.

As many ordinary users want to access and use graph-structured data

sources such as the datasets in Table 1.1, supporting an efficient and effective

keyword search functionality over graph-structured data has become increasingly

important. Text-based ranking methods including traditional Information Re-

trieval (IR) techniques have been one of the most commonly used approaches to

enable keyword search over an unstructured collection of documents. Given a key-

word query, they usually define the degree of relevance of each document to the

query by using the number of occurrences of the given keywords in the textual

content of the document. However, the IR techniques that rely only on keyword

occurrences are not effective in generating semantically meaningful search results,

especially when the containment/absence of given keywords and the relevance to

the query do not coincide. For instance, if there are objects whose textual contents

do not contain the given keywords but are highly relevant to the query, traditional

IR techniques cannot find them. Also, if two documents with the same document

length have the same number of keyword occurrences, text-based ranking methods

3

rank them as equally relevant to the query, which is not always the case. In this

way, traditional IR techniques may suffer from problems regarding the quality of

search results such as low recall search and semantically incorrect ranking. This is

due to the fact that the relevance information is not fully expressed in the textual

contents of objects, but often hidden in the link structure between objects.

Latent Semantic Indexing (LSI) [DDF+90] is a relatively new IR technique

that exploits the latent semantic structure of the pattern of keyword usage across

documents to generate an expanded set of results with better recall. By exam-

ining keyword co-occurrences across a collection of documents, it captures latent

semantic associations of keywords. Thus, it can find relevant documents that do

not contain the given keywords if they contain keywords semantically related to

the given keywords. Even though it partially overcomes the deficiencies of as-

suming independence of keywords such as the low recall problem of traditional IR

techniques we discussed above, it does not provide a solid solution for the second

problem described above. This is because it still relies only on the textual contents

of documents, and does not exploit the relevance information hidden in the link

structure.

Dynamic link-based ranking methods such as HITS [Kle99], topic-sensitive

PageRank [Hav02], personalized PageRank [JW03], and ObjectRank [BHP04] pro-

posed to measure the relevance of objects to a given keyword query effectively by

exploiting the semantic link information between objects. ObjectRank [BHP04], in

particular, is a variation of personalized PageRank [JW03] that performs dynamic

link-based ranking for high-recall semantic keyword search over graph-structured

data. For example, when a user query Q1 in Table 1.2 is given, ObjectRank can

find not only the authors of papers containing the keyword “OLAP” in their titles,

but the researchers whose are very important in the “OLAP” research commu-

nity even though their paper titles do not contain “OLAP”. Those researchers

are highly relevant to the “OLAP” research since their papers are frequently

‘cited by’ many papers related to “OLAP”, or they have been closely collab-

orating with authors related to “OLAP”. In fact, as demonstrated in previous

works [Kle99, Hav02, JW03, BHP04], by leveraging semantic link information be-

4

tween data objects, the quality of search results over graph-structured data can be

greatly improved.

In this dissertation, we aim to overcome the deficiencies of text-based search

methods we discussed above by leveraging the relevance information hidden be-

hind the link structure of graph-structured data. In particular, we focus on gen-

erating semantically meaningful search results for top-K keyword queries in a

more efficient and effective way. To provide high-recall semantic search results

for keyword queries (e.g. Q1-Q3 in Table 1.2) over graph-structured data (e.g.

D1-D3 in Table 1.1), we follow the ranking method proposed by Balmin et al.,

ObjectRank [BHP04], that applied the dynamic link-based search technique of

personalized PageRank [JW03] to implement an effective keyword search function-

ality over graph-structure data.

ObjectRank [BHP04] is an effective top-K keyword search system that pro-

duces high-quality search results by leveraging both the textual contents of data

objects and the link structure of graph-structured data: for a given keyword query,

ObjectRank uses IR techniques to identify a set of objects whose textual contents

are related to the given keywords(in [BHP04], Balmin et al. used an IR function

checking keyword containment). The query-specific importance scores of these

objects are initialized to nonzero values, while relevance scores of the rest of the

objects are set to 0. Then, by exploiting the link structure of graph-structured

data, ObjectRank computes query-specific authority scores of objects, and finds

top-K most relevant objects with respect to the given keyword query.

It is worth noting that the efficient and effective link-based search frame-

work we propose in this dissertation is not limited to support keyword search

using ObjectRank, but can be applied to implement various ranking functionali-

ties based on the personalized PageRank. Notice that this dissertation addresses

both the performance and the semantic issues of ObjectRank [BHP04], a variant of

personalized PageRank. The background of link-based search methods including

ObjectRank [BHP04] is given in Chapter 2.

In the following sections, we briefly describe the problems we solve and give

overviews of the solutions we suggest in this thesis, BinRank [HBRN09, HBRN10]

5

and Inverse ObjectRank [HHP06, HHP08], to support a more efficient and effective

link-based keyword search functionality over graph-structured data.

1.1 Efficiency of Dynamic Link-based Search

Unlike the original PageRank [PBMW98] that measures global importance

scores of nodes in the Web graph offline, ObjectRank [BHP04] is a dynamic link-

based search method in that it calculates query-specific importance scores for

each given keyword query. Although link-based search methods such as topic-

sensitive PageRank and personalized PageRank in [Hav02, JW03] also generate

query-specific rankings, the degree of personalization is limited to 16 topics or

a subset of hub nodes in a human-constructed directory. ObjectRank, by con-

trast, supports full personalization in order to cover all the keyword queries in a

dictionary, and generates high-recall semantic search results for a given keyword

query.

Despite the search effectiveness of ObjectRank, however, it is often infeasi-

ble to implement keyword search functionality over a graph-structured data source

using ObjectRank as it is because of the performance issue of ObjectRank. At high

level, for a given query and a data graph, ObjectRank uses iterative matrix mul-

tiplication method to rank the nodes in the graph with respect to the query in

query time. To this extent, as the size of a data graph becomes larger, the ma-

trix multiplication takes more time to reach the fixpoint, sometimes resulting in

prohibitively long query time. Alternatively, building an index of pre-computed

results for some or all keywords is proposed in [BHP04], yet it is not a feasible

solution either because of its expensive preprocessing cost.

Let us consider a collection of English Wikipedia articles, where various

types of semantic links such as ’definition’ links, ’see also’ links, and ‘category’

links through which authority flows between Wikipedia3 articles. Let us denote

the data graph modeling English Wikipedia dataset as Gwiki = (Vwiki , Ewiki). Since

Gwiki contains 3.2 million nodes and 109 million links, even a fully optimized in-

3http://en.wikipedia.org

6

memory implementation of ObjectRank takes 20-50 seconds to rank nodes in the

graph. In the off-line mode, ObjectRank precomputes top-k results for a query

workload in advance. This precomputation is very expensive and requires a lot of

storage space for precomputed results. Moreover, this approach is not feasible for

all keywords outside the query workload that a user may search for, i.e. for all

keywords in the dataset dictionary. For example, on the same Wikipedia dataset,

the full dictionary precomputation would take about a CPU-year.

As we observed in the experimental results in Figure 3.13, the running

time of link-based keyword search is almost linear in the size of a data graph (the

number of links). In fact, the Pearson’s correlation coefficient between them is

estimated to 0.938 using high frequency keywords, which indicates a very strong

correlation. We noticed that users are interested in top-K search lists with a small

K such as 20 or 100, while the data graph modeling a real-life dataset such as

Gwiki is huge in size. Interestingly, since Gwiki covers many other topics such as

historical events or movie actors, the major portion of Gwiki is irrelevant to any

given keyword query. For instance, the number of Wikipedia articles irrelevant to

query “OLAP” exceeds 3 million, which counts for more than 90% of |Vwiki |. We

observed that ObjectRank returns the same top-K search list for “OLAP” even

though we run ObjectRank in the subgraph of Gwiki induced from relevant nodes

only, not in the original data graph Gwiki . This is because the subgraph sufficiently

captures the search context of the given query.

We introduce BinRank [HBRN09, HBRN10], a system that approximates

ObjectRank results by utilizing a hybrid approach inspired by materialized views in

traditional query processing. We materialize a number of relatively small subsets of

the data graph in such a way that any keyword query can be answered by running

ObjectRank on only one of the subgraphs. The subgraphs BinRank generates

satisfy the following properties. Firstly, in order to improve the running time

of ObjectRank, the subgraphs should be small. Secondly, each subgraph should

well capture the search context of the corresponding keyword queries. Notice that

we aim to speed up the link-based keyword search process, while producing the

same top-K search lists ObjectRank generates in the entire data graph. Lastly, to

7

provide full coverage of the dictionary, every keyword query can be answered using

the subgraphs.

BinRank generates the subgraphs by partitioning all the terms in the corpus

based on their co-occurrence, executing ObjectRank for each partition using the

terms to generate a set of random walk starting points, and keeping only those

objects that receive non-negligible scores. The intuition is that a subgraph that

contains all objects and links relevant to a set of related terms should have all the

information needed to rank objects with respect to one of these terms.

We demonstrate that BinRank can achieve sub-second query execution time

on the English Wikipedia dataset, while producing high-quality search results

that closely approximate the results of ObjectRank on the original graph. The

Wikipedia link graph contains about 108 edges, which is at least two orders of

magnitude larger than what prior state of the art dynamic authority-based search

systems have been able to demonstrate. Our experimental evaluation investigates

the trade-off between query execution time, quality of the results, and storage

requirements of BinRank.

1.2 Measuring Authority and Specificity

Another major contribution of this dissertation is to propose and evaluate a

novel ranking measure, Inverse ObjectRank, that captures the degree of specificity

of each data object in a given data graph with respect to a given keyword query.

Various approaches including text-based methods and link-based methods have

already been suggested to produce effective top-K keyword search results. In this

dissertation, we particularly focus on the ranking techniques measuring various

important aspects of data objects by leveraging the links connecting relevant data

objects.

Text analysis methods such as traditional information retrieval techniques

focus on measuring the relevance between each data object and the keyword query

by considering the textual contents of data objects. However, such methods are in-

capable of identifying relevant data objects if their textual contents do not contain

8

the given keyword. Motivated by the observation that the relevance information is

often hidden behind the connections between data objects, Balmin et al.[BHP04]

proposed a link-based ranking measure for relevance, ObjectRank, that leverages

the link structure modeling connections between relevant data objects. Based upon

the proven effectiveness of link-based ranking measures, we propose a novel rank-

ing measure for specificity to capture another important aspect of data objects by

exploiting the link structure.

The ObjectRank system [BHP04] assumes that users prefer the data ob-

jects that are highly relevant to the given query and very popular in general. It

captures these two important features of data objects, the relevance to a given

keyword query and the global importance, by analyzing the link structure for

a given query. First, the relevance measure originally suggested by Balmin et

al. [BHP04] captures the query-specific authority score, i.e., the degree of relevance

to a given keyword query, which is referred to as the ObjectRank score. In addition

to the query-specific importance, Balmin et al. [BHP04] applied the PageRank al-

gorithm [PBMW98] to the given data graph as described in Section 2.2 to measure

the query-independent importance, and obtained the global ObjectRank score of

each data object. These link-based measures successfully capture the relevance

and the global importance of each data object, enabling the ObjectRank system

to generate high-recall, semantic keyword search results.

However, we frequently observed that popular data objects with generic

contents such as database textbooks appear in the top-K result lists generated

by the ObjectRank system regardless of given keyword queries. Notice that both

ranking measures, ObjectRank and global ObjectRank, of the ObjectRank sys-

tem focus on capturing the authority of each data object in the data graph,

but cannot distinguish between the data objects specifically relevant to the given

query(’authoritative-specific’) and the ones with generic contents(’authoritative-

non-specific’). In this dissertation, we introduce a novel link-based specificity

measure, Inverse ObjectRank, and claim that we can improve the effectiveness of

top-K keyword search by considering both the authority and the specificity of each

data object in the data graph. Our specificity measure allows users to penalize a

9

data object for its content-specificity or topical diversity.

In the following usage scenario, we provide two situations with different user

preferences, where authoritative-non-specific objects and authoritative-specific ob-

jects are preferred, respectively. Through this, we highlight our motivation for

the specificity measure that enables users to retrieve more authoritative-specific

objects in the top-K search lists:

Let us consider a professor who needs to give a reading list to a

first year graduate student who starts research on a topic, say “XML

database storage”. Being a first year student, he/she likely has no

background knowledge on database issues pertaining to XML and

semistructured data in general. In this case, you may want to pro-

vide an authoritative papers list where it is OK (indeed desirable) to

include a few seminal papers on XML and semistructured databases,

even though they may not be related to storage in particular. Such

seminal papers are a good starting point for the student. These pa-

pers are authoritative-non-specific papers.

Now assume that the professor wants to produce a reading list for

someone who already knows the basics of XML databases and of

conventional (relational) storage systems. He now cares about the

specific papers in XML storage, in particular. Such papers are

authoritative-specific papers

In Chapter 4, we describe our new ranking measure, Inverse

ObjectRank [HHP06, HHP08], which exploits the link structure in the reverse di-

rection to measure how specific each data object is with respect to a given query.

When there are two nodes with similarly high authority scores, Inverse ObjectRank

enables users to distinguish the nodes whose content is specifically relevant to the

given query from authoritative nodes with generic content. In this way, by com-

bining two existing authority measures, ObjectRank and global ObjectRank, with

our new specificity measure, Inverse ObjectRank, we can further improve the ef-

fectiveness of link-based top-K keyword search. Users may obtain search results of

better quality by combining these three link-based ranking measures according to

10

their requirements. We conducted user surveys with domain experts to assess the

quality of search results produced by various combinations of these measures.

1.3 Dissertation Overview

In this dissertation, we focus on graph-structured data sources in which

there exists authority flow between objects through links. For those data sources,

we want to provide a more efficient and effective authority-based search system.

In particular, we propose our solutions to both the performance and semantic

issues of dynamic authority-based search methods such as ObjectRank [BHP04]

and personalized PageRank [Hav02, JW03].

We first review the background pertaining to this dissertation in Chapter 2.

Just like the Web that can be viewed as a graph with authority flow, various data

sources such as the DBLP database and the collection of Wikipedia articles can

also be modeled as graphs. ObjectRank [BHP04] applied the idea of authority-

based search suggested by personalized PageRank (see Section 2.1) for keyword

search over databases. ObjectRank modeled a database as a labeled graph that

captured meaningful authority flows via various types of semantic links between

objects in the database. Throughout Chapter 2, we review the data model and

the query processing stage of ObjectRank, and then discuss about the quality

superiority of ObjectRank search results. To enable such authority-based search

over real-life datasets, however, the performance of ObjectRank (and personalized

ObjectRank) should be improved.

Therefore, in Chapter 3, we address the performance issue of dynamic

authority-based search methods such as ObjectRank [BHP04]. Since ObjectRank

calculates query-specific relevance scores in runtime using expensive iterative ma-

trix multiplication, the ObjectRank execution time rapidly increases as the size of

data graph grows. In fact, the same problem appears in all the dynamic authority-

based ranking methods including personalized PageRank [Hav02, JW03]. To make

dynamic authority-based keyword search feasible over large-scale graph-structured

data, we suggest BinRank, a system that approximates ObjectRank results by

11

utilizing a hybrid approach inspired by materialized views in traditional query

processing. Our experimental evaluation investigates the trade-off between query

execution time, quality of the results, and storage requirements of BinRank.

In Chapter 4, we focus on the semantic quality issue of link-based keyword

search. In particular, we suggest Inverse ObjectRank, a novel specificity measure

based on link structure, and combine it with various types of existing link-based

ranking measures such as the global importance(PageRank) and the query-specific

relevance(ObjectRank). We provide a demo system that allows users to adjust the

importance of these various link-based ranking measures. We analyze and evaluate

the semantic contribution of Inverse ObjectRank and compare various combining

functions by assessing the quality of search results through experiments.

In Chapter 5, we summarize and give conclusions.

Chapter 2

Background - ObjectRank

2.1 Authority-based Search

PageRank We first describe the essentials of PageRank and authority-based

search, and the random surfer intuition. Let (V,E) be a graph, with a set of nodes

V = {v1, . . . , vn} and a set of edges E. A surfer starts from a random node (web

page) vi of V and at each step, he/she follows a hyperlink with probability d or

gets bored and jumps to a random node with probability 1 − d. The PageRank

value of vi is the probability r(vi) that at a given point in time, the surfer is at vi.

If we denote by r the vector [r(v1), . . . , r(vi), . . . , r(vn)]
T then we have

r = dAr+
(1− d)

|V | e (2.1)

where A is a n × n matrix with Aij = 1
OutDeg(vj)

if there is an edge vj → vi in

E and 0 otherwise, where OutDeg(vj) is the outgoing degree of node vj. Also,

e = [1, . . . , 1]T .

Personalized PageRank with Base Set The above PageRank equation is

typically precomputed before the queries arrive and provides a global, keyword-

independent ranking of the pages. Instead of using the whole set of nodes V as

the base set, i.e., the set of nodes where the surfer jumps when bored, one can

use an arbitrary subset S of nodes, hence increasing the authority associated with

12

13

the nodes of S and the ones most closely associated with them. In particular, a

base vector s = [s0, . . . , si, . . . , sn]
T can be defined, where si is 1 if vi ∈ S and 0

otherwise. The PageRank equation is then

r = dAr+
(1− d)

|S| s (2.2)

Regardless of whether one uses Equation 2.1 or Equation 2.2 the PageRank

algorithm solves this fixpoint using a simple iterative method, where the values of

the (k+1)-th execution are calculated as follows:

r(k+1) = dAr(k) +
(1− d)

|S| s (2.3)

The notion of the base set S was suggested in [BP98] as a way to do per-

sonalized rankings, by setting S to be the set of bookmarks of a user. In [Hav02],

it was used to perform topic-specific PageRank on the Web. ObjectRank [BHP04]

takes it one step further and uses the base set to estimate the relevance of a node

to a keyword query. In particular, the base set of ObjectRank consists of the nodes

that contain the keyword as explained in Section 2.2.

Convergence of PageRank The computation of Equation (2.2) terminates

when r converges, which is guaranteed to happen under very common condi-

tions [MR95]. In particular, the authority flow graph needs to be irreducible

(i.e., (V,E) be strongly connected) and aperiodic. The former is true due to the

damping factor d, while the latter happens in practice.

2.2 Overview of ObjectRank

PageRank [BP98] is an excellent tool to rank the global importance

of the pages of the Web. However, PageRank measures the global impor-

tance of the pages, independently of a keyword query. More recent works

[Hav02, RD02] apply PageRank to estimate the relevance of pages to a keyword

query. ObjectRank [BHP04] appropriately extends and modifies PageRank to per-

14

Paper
 Authors
=“H. Gupta
,
V.

Harinarayan
,
A. Rajaraman
,
J.

Ullman”
Title
=“
Index Selection

for
OLAP
.”
Year
=“ICDE 1997”

Paper
 Authors
=“J. Gray, A.

Bosworth, A. Layman, H. Pirahesh”

Title
=“Data Cube: A Relational

Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-

Total.”
Year
= “ICDE 1996”

Paper
 Authors
=“C. Ho, R. Agrawal,

N. Megiddo, R. Srikant”

Title
=“Range Queries in
OLAP
 Data

Cubes.”
Year
=“SIGMOD 1997”

Paper
 Authors
=“R. Agrawal, A.

Gupta, S. Sarawagi”

Title
=
“Modeling Multidimensional

Databases.”
Year
=“ICDE 1997”

Author
 Name
=“R. Agrawal”

cites

by

Year
 Name
=“ICDE”,

Year
=1997,

Location
=
Birmingham

contains

contains
 cites

cites

cites

by

Conference

Name
=“ICDE”

has

instance

Figure 2.1: A subset of the DBLP graph

form keyword search in databases for which there is a natural flow of authority

between their objects (e.g., bibliographic or complaints databases).

Given a keyword query, ObjectRank ranks the results according to two fac-

tors: the relevance to the query and the global importance of the result. Both

factors are handled using authority-flow techniques that exploit the link structure

of the data graph, in contrast to traditional Information Retrieval. The relevance

is computed using the ObjectRank metric which is a keyword-specific adapta-

tion of PageRank to databases. The global importance is computed using Global

ObjectRank, which is the keyword-independent version of ObjectRank.

Motivating Example Consider the example of Figure 2.1, which illustrates

a small subset of the DBLP database in the form of a labeled graph (au-

thor, conference and year nodes except for “R. Agrawal”, “ICDE” and “ICDE

1997” respectively are omitted to simplify the figure). Schema graphs, such

as the one of Figure 2.3, describe the structure of database graphs. Given

a keyword query, e.g. the single-keyword query “OLAP”, ObjectRank sorts

the database objects by their relevance with respect to the user-provided key-

words. Figure 2.2 illustrates the top-10 “OLAP” papers produced by our on-

line demo available at two mirror sites, http://www.db.ucsd.edu/ObjectRank and

http://dbir.cis.fiu.edu/BibObjectRank/. Notice that many entries (the “Data

15

Cube” and the “Modeling Multidimensional Databases” papers in Figure 2.1) of

the top-10 list do not contain the keyword “OLAP” (“OLAP” is not even contained

in their abstracts) but they clearly constitute important papers in the OLAP area,

since they may be referenced by other papers of the OLAP area or may have been

written by authors who have written other important “OLAP” papers.

Key Intuition of ObjectRank Conceptually, the ranking is produced in the

following way: Myriads of random surfers are initially found at the objects con-

taining the keyword “OLAP”, which are called the base set, and then they traverse

the database graph. In particular, at any time step a random surfer is found at

a node and either (i) makes a move to an adjacent node by traversing an edge,

or (ii) jumps randomly to an “OLAP” node without following any of the links.

The probability that a particular traversal happens depends on multiple factors,

including the type of the edge (in contrast to the Web link-based search systems

[BP98, Hav02, RD02]). These factors are depicted in an authority transfer schema

graph. Figure 2.4 illustrates the authority transfer schema graph that corresponds

to the setting that produced the results of Figure 2.2. Assuming that the probabil-

ity that the surfer moves back to an “OLAP” node is 15% (damping factor–random

jump probability–[BP98]), the collective probability to move to a referenced paper

is up to 85% × 70% (70% is the authority transfer rate of the citation edge as

explained below), the collective probability to move to an author of the paper is

up to 85%× 20%, the probability to move from the paper to the forum where the

paper appeared is up to 85%× 10%, and so on. As is the case with the PageRank

algorithm as well, as time goes on, the expected percentage of surfers at each node

v converges (Section 2.1) to a limit r(v). Intuitively, this limit is the ObjectRank

of the node.

An alternative way to conceive the intuition behind ObjectRank is to con-

sider that authority/importance flows in the database graph in the same fash-

ion that [Kle99] defined authority-based search in arbitrary graphs. Initially the

“OLAP” authority is found at the objects that contain the keyword “OLAP”. Then

authority/importance flows, following the rules in the authority transfer schema

graph, until an equilibrium is established that specifies that a paper is authorita-

16

1 Implementing Data Cubes Efficiently. SIGMOD Conference 1996. Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman
2 An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 1997. Surajit Chaudhuri, Umeshwar Dayal
3 Index Selection for OLAP. ICDE 1997. Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman

4
On the Computation of Multidimensional Aggregates. VLDB 1996. Sameet Agarwal, Rakesh Agrawal, Prasad Deshpande, Ashish
Gupta, Jeffrey F. Naughton, Raghu Ramakrishnan, Sunita Sarawagi

5
Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. ICDE 1996. Adam
Bosworth, Jim Gray, Andrew Layman, Hamid Pirahesh

6 Summarizability in OLAP and Statistical Data Bases. SSDBM 1997. Hans-Joachim Lenz, Arie Shoshani
7 Modeling Multidimensional Databases. ICDE 1997. Rakesh Agrawal, Ashish Gupta, Sunita Sarawagi
8 OLAP, Relational, and Multidimensional Database Systems. SIGMOD Record 1996. George Colliat
9 OLAP and Statistical Databases: Similarities and Differences. PODS 1997. Arie Shoshani
10 OLAP and Statistical Databases: Similarities and Differences. CIKM 1996. Arie Shoshani

Figure 2.2: Top 10 papers on “OLAP” returned by ObjectRank

tive if it is referenced by authoritative papers, is written by authority authors and

appears in authority conferences. Vice versa, authors and conferences obtain their

authority from their papers. Notice that the amount of authority flow from, say,

paper to cited paper or from paper to author or from author to paper, is arbitrarily

set by a domain expert and reflects the semantics of the domain. For example,

common sense says that in the bibliography domain a paper obtains very little

authority (or even none) by referring to authoritative papers. On the contrary it

obtains a lot of authority by being referred by authoritative papers.

Global ObjectRank is query-independent and is obtained by placing all

nodes of the data graph in the base set.

Novel Properties of ObjectRank Keyword search in databases has some

unique characteristics, which make the straightforward application of the random

walk model as described in previous work [BP98, Hav02, RD02] inadequate. First,

every database has different semantics, which ObjectRank uses to improve the

quality of the keyword search. In particular, unlike the Web, where all edges are

hyperlinks, the database schema exhibits the types of edges, and the attributes of

the nodes. Note that previous works [RD02, CDG+98] assign weights on the edges

of the data graph according to the relevance of the incident nodes’ text to the

keywords. In contrast, ObjectRank assigns authority transfer rates on the schema

graph, which captures the semantics of the database, since the relevance factor is

reflected in the selection of the base set. Using the schema, ObjectRank specifies

the ways in which authority flows across the nodes of the database graph. For

17

example, the results of Figure 2.2 were obtained by annotating the schema graph

of Figure 2.3 with the authority flow information that appears in Figure 2.4.

Furthermore, previous work [BP98, Hav02, RD02] assumes that, when cal-

culating the global importance (in the ObjectRank framework, Balmin et al. make

a clear distinction between the global importance of a node and its relevance to

a keyword query), the random surfer has the same probability to start from any

page p of the base set (this probability is called base ObjectRank of p). However,

this is not true for every database. For example, consider a product complaints

database. In this case, the business value of a customer can be represented by

assigning to his/her node a base ObjectRank proportional to his/her total sales

amount.

Another novel property of ObjectRank is adjustability, which allows for the

tuning of the system according to the domain- and/or user-specific requirements.

For example, for a bibliographic database, a new graduate student desires a search

system that returns the best reading list around the specified keywords, whereas a

senior researcher looks for papers closely related to the keywords, even if they are

not of a high quality. These preference scenarios are made possible by adjusting

the weight of the global importance versus the relevance to the keyword query.

Changing the damping factor d offers another calibration opportunity. In particu-

lar, larger values of d favor nodes pointed by high-authority nodes, while smaller

values of d favor nodes containing the actual keywords (that is, nodes in the base

set). The handling of queries with multiple keywords offers more flexibility to the

system as is described in Section 4.3. For example, a user may want to assign a

higher weight to the relevance of a node to an infrequent keyword.

Performance of ObjectRank On the performance level, calculating the

ObjectRank and Global ObjectRank values in runtime is a computationally in-

tensive operation, especially given the fact that multiple users query the sys-

tem. In [BHP04], this is resolved by precomputing inverted indexes where for

each keyword the system materializes a sorted lists of the nodes with non-trivial

scores for this keyword. During run-time ObjectRank employs the Threshold Al-

gorithm [FLN01] to efficiently combine the lists. However, this approach induces

18

Conference
 Year
 Paper
 Author

cites

1:n
 1:n
 m:n

m:n

Figure 2.3: The DBLP schema graph.

Conference
 Year
 Paper
 Author

0.3

0.3

0.3

0.1

0.7 cites

0.2

0.2

0 cited

Figure 2.4: The DBLP authority transfer schema graph.

the cost of precomputing and storing the inverted index. Regarding the space

requirements, notice that the number of keywords of a database is typically less

than the number of users in a personalized search system [JW03]. Furthermore,

ObjectRank does not store nodes with ObjectRank below a threshold value (chosen

by the system administrator), which offers a space versus precision tradeoff.

Notice that the naive approach would be to calculate each keyword-specific

ObjectRank (the same applies for Inverse ObjectRank) separately. Balmin et

al. [BHP04] have found that it is substantially more efficient to first calculate the

Global ObjectRank, and use these scores as initial values for the keyword-specific

computations. This accelerates convergence, since in general, objects with high

Global ObjectRank, also have high keyword-specific ObjectRank.

2.3 Data Model of ObjectRank

In this section, the essential definitions of ObjectRank [BHP04] are pre-

sented, that depict how ObjectRank captures the authority flow between objects

in a database using a labeled graph. They are later used to define ranking metrics

of ObjectRank [BHP04].

19

2.3.1 Modeling Database as Graph

ObjectRank [BHP04] views a database as a labeled graph, which is

a model that easily captures both relational and XML databases. The

data graph D(VD, ED) is a labeled directed graph where every node v

has a label λ(v) and a set of keywords. For example, the node

“ICDE 1997” of Figure 2.1 has label “Year” and the set of keywords

{‘‘ICDE’’, ‘‘1997’’, ‘‘Birmingham’’}. Each node represents an object of the

database and may have a sub-structure. Without loss of generality, ObjectRank

assumes that each node has a tuple of attribute name/attribute value pairs. For

example, the “Year” nodes of Figure 2.1 have name, year and location attributes.

Notice that the keywords appearing in the attribute values comprise the set of key-

words associated with the node. One may assume richer semantics by including the

metadata of a node in the set of keywords. For example, the metadata “Forum”,

“Year”, “Location” could be included in the keywords of a node. The specifics of

modeling the data of a node are orthogonal to ObjectRank and will be neglected

in the rest of the discussion.

Each edge e from u to v is labeled with its role λ(e) (overload λ) and

represents a relationship between u and v. For example, every “paper” to “paper”

edge of Figure 2.1 has the label “cites”. When the role is evident and uniquely

defined from the labels of u and v, the edge label is omitted. For simplicity

ObjectRank assumes that there are no parallel edges and an edge e from u to v is

often denoted as “u → v”.

A critical issue in constructing the data graph for a database is to decide

the granularity of the information in the nodes. For example, if we are to return

a paper, should we also return the author names and the conference where the

paper was published? ObjectRank adopts the idea of predefined “answer nodes” as

described in [BNH+02, DEGP98, GSBS03, HPB03]1. Hence, in the above example,

ObjectRank chooses to store the author and conference information in every paper

node. Keep in mind that the data graph is a conceptual structure, so the actual

physical storage may vary.

1In XKeyword [HPB03] they are referred to as target objects.

20

Data Graph Nodes Edges

Relational

Database

Tuples (or attribute values) Primary-to-Foreign Key Relationships

XML

Database

XML Elements (or XML Nodes) Containment or IR-IDREF Edges

Web Pages Hyperlinks

Figure 2.5: Mapping of Common Data Models to a Data Graph.

The data graph can represent relational [ACD02, HP02] and XML [HPB03,

GSBS03] databases, as well as the Web [BP98]. The mappings of these data models

to nodes and edges of the data graph are shown in Figure 2.5.

The use of ObjectRank ranking metrics does not require the existence of a

schema. However, if a schema is present then it can be used to easier define the

authority transfer rates (see below). Furthermore, the schema may offer optimiza-

tion opportunities. The schema graph G(VG, EG) (Figure 2.3) is a directed graph

that describes the structure of D. Every node has an associated label. Each edge

is labeled with a role, which may be omitted, as discussed above for data graph

edge labels. It is said that a data graph D(VD, ED) conforms to a schema graph

G(VG, EG) if there is a unique assignment µ of data-graph nodes to schema-graph

nodes and a consistent assignment of edges such that:

1. for every node v ∈ VD there is a node µ(v) ∈ VG such that λ(v) = λ(µ(v));

2. for every edge e ∈ ED from node u to node v there is an edge µ(e) ∈ EG

that goes from µ(u) to µ(v) and λ(e) = λ(µ(e)).

Authority Transfer Schema Graph. From the schema graph G(VG, EG),

ObjectRank creates the authority transfer schema graph GA(VG, E
A) to reflect

the authority flow through the edges of the graph. This may be either a trial and

error process, until the administrator is satisfied with the quality of the results,

or a domain expert’s task. In particular, for each edge eG = (u → v) of EG,

two authority transfer edges, efG = (u → v) and ebG = (v → u) are created. The

two edges carry the label of the schema graph edge and, in addition, each one is

21

annotated with a (potentially different) authority transfer rate - α(efG) and α(ebG)

correspondingly. In [BHP04], it is said that a data graph conforms to an authority

transfer schema graph if it conforms to the corresponding schema graph. (Notice

that the authority transfer schema graph has all the information of the original

schema graph.)

Figure 2.4 shows the authority transfer schema graph that corresponds to

the schema graph of Figure 2.3 (the edge labels are omitted). The motivation for

defining two edges for each edge of the schema graph is that authority potentially

flows in both directions and not only in the direction that appears in the schema.

For example, a paper passes its authority to its authors and vice versa. Notice

however, that the authority flow in each direction (defined by the authority transfer

rate) may not be the same. For example, a paper that is cited by important papers

is clearly important but citing important papers does not make a paper important.

Notice that the sum of authority transfer rates of the outgoing edges of a

schema node u may be less than 12, if the administrator believes that the edges

starting from u do not transfer much authority. For example, in Figure 2.4, con-

ferences only transfer 30% of their authority.

Authority Transfer Data Graph. Given a data graph D(VD, ED) that con-

forms to an authority transfer schema graph GA(VG, E
A), ObjectRank derives an

authority transfer data graph DA(VD, E
A
D) (Figure 2.6) as follows. For every edge

e = (u → v) ∈ ED the authority transfer data graph has two edges ef = (u → v)

and eb = (v → u). The edges ef and eb are annotated with authority transfer rates

α(ef) and α(eb). Assuming that ef is of type efG, then

α(ef) =







α(ef
G
)

OutDeg(u,ef
G
)
, if OutDeg(u, efG) > 0

0, if OutDeg(u, efG) = 0
(2.4)

where OutDeg(u, efG) is the number of outgoing edges from u, of type efG. The

authority transfer rate α(eb) is defined similarly. Figure 2.6 illustrates the authority

transfer data graph that corresponds to the data graph of Figure 2.1 and the

authority schema transfer graph of Figure 2.4. Notice that the sum of authority

2In terms of the random walk model, this would be equivalent to the disappearance of a surfer.

22

Paper
 Authors
=“H. Gupta, V.

Harinarayan, A. Rajaraman, J.

Ullman”
Title
=“Index Selection

for
OLAP
.”
Year
=“ICDE 1997”

Paper
 Authors
=“J. Gray, A.

Bosworth, A. Layman, H. Pirahesh”

Title
=“Data Cube: A Relational

Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-

Total.”
Year
= “ICDE 1996”

Paper
 Authors
=“C. Ho, R. Agrawal,

N. Megiddo, R. Srikant”

Title
=“Range Queries in
OLAP
 Data

Cubes.”
Year
=“SIGMOD 1997”

Paper
 Authors
=“R. Agrawal, A.

Gupta, S. Sarawagi”

Title
=
“Modeling Multidimensional

Databases.”
Year
=“ICDE 1997”

Author
 Name
=“R. Agrawal”

0.7

Year
 Name
=“ICDE”,

Year
=1997,

Location
=Birmingham

0.15

0.15
 0.7

0.35

0.35
0.1

0.1

0.05

0.066

0.1
 0.1

Conference

Name
=“ICDE”

0.3

0.3

Figure 2.6: Authority transfer data graph

transfer rates of the outgoing edges of a node u of type µ(u) may be less than

the sum of authority transfer rates of the outgoing edges of µ(u) in the authority

transfer schema graph, if u does not have all types of outgoing edges.

2.3.2 Assigning Weights to Edge Types

Role of Edge Weights As described throughout this section, the semantic

connections between objects are modeled as edges in a corresponding data graph

in the ObjectRank framework [BHP04]. Since ObjectRank calculates authority

flows between connected objects for ranking, it is very important to annotate

edges with adequate weights to reflect the actual strength of connections. This

enables ObjectRank to generate semantically meaningful search results.

In particular, ObjectRank aims to capture the query-independent strength

of semantic connections. Notice that edges of different edge types may transfer

different amount of authority. By assigning different edge weights to different edge

types, ObjectRank can capture important domain knowledge such as “a paper cited

by important papers is important, but citing important papers should not boost

the importance of a paper”. For example, in the DBLP dataset, suppose that a new

paper pnew on “OLAP” cites pclassic, a classic paper in the “OLAP” research. Then,

one can add two edges between pnew and pclassic, that are typed “Cites”(pnew
cites−→

pclassic) and “CitedBy”(pclassic
citedBy−→ pnew) respectively. Obviously, the amounts of

23

authority flow via these two edges are not the same. If pnew becomes authoritative

by getting many citations from authoritative papers, then pclassic will become more

authoritative. However, pnew should not get some of the authority of pclassic simply

by citing pclassic. This semantic knowledge can be captured by assigning 0 as the

weight of “citedBy” edges, while annotating “cites” edges with nonzero weights.

Assigning Edge Weights Note that previous works [RD02, CDG+98] assign

weights on the edges of the data graph according to the relevance of the incident

nodes’ text to the keywords, which is query-specific. In contrast, ObjectRank

assigns authority transfer rates on the schema graph, which captures the semantics

of the database, since the relevance factor is reflected in the selection of the base

set of the query processing stage. Using the schema, ObjectRank specifies the ways

in which authority flows across the nodes of the database graph. For example, the

results of Figure 2.2 were obtained by annotating the schema graph of Figure 2.3

with the authority flow information that appears in Figure 2.4.

In [BHP04], ObjectRank assumes the process of assigning weights to each

edge type as either a trial and error process until an administrator is satisfied with

the quality of the results, or a domain expert’s task. In this thesis, we also assume

that it is beyond the scope of this thesis, and weights of each edge type are given.

In fact, there are several prior work that propose learning based approaches

to automatically assign weights to each edge type, instead of using manually tuned

weights. [NZWM05, CA06] proposed weight learners based on the partial rankings

(pairwise preferences) of objects given by domain experts. They explore the search

space of possible combinations of weights and iteratively reduce the difference

between the rankings provided by domain experts and those generated by using

the learned edge weights.

Another line of work such as Précis[SKI08] exploits query logs to compute

weights of each edge type, considering query logs as a source for relevance feedback

data from users.

24

2.4 Answering Queries Using ObjectRank

2.4.1 Answering Queries With Single Keyword

ObjectRank. In [BHP04], ObjectRank for a single keyword is defined as fol-

lows. In Section 4.3.3 this definition is extended to multiple keywords. Given a

single keyword query w, ObjectRank finds the keyword base set S(w) (from now

on referred to simply as base set when the keyword is implied) of objects that

contain the keyword w and assigns an ObjectRank rw(vi) to every node vi ∈ VD

by resolving the equation

rw = dArw +
(1− d)

|S(w)| s (2.5)

where Aij = α(e) if there is an edge e = (vj → vi) in EA
D and 0 otherwise, d

controls the base set importance, and s = [s1, . . . , sn]
T is the base set vector for

S(w), i.e., si = 1 if vi ∈ S(w) and si = 0 otherwise.

The damping factor d determines the portion of ObjectRank that an object

transfers to its neighbors as opposed to making a random jump to one of the base

set pages. It was first introduced in the original PageRank paper [BP98], where it

was used to ensure convergence in the case of PageRank sinks. However, in addition

to that, in ObjectRank it is used as a calibrating factor, since by decreasing d,

ObjectRank favors objects that actually contain the keywords (i.e., are in base

set) as opposed to objects that acquire ObjectRank through the incoming edges.

The value for d used by PageRank [BP98] is 0.85, which ObjectRank also adopts

to balance the importance of containing the actual keywords as opposed to being

pointed by nodes containing the keywords.

Global ObjectRank. The definition of global ObjectRank is different for dif-

ferent applications or even users of the same application. In [BHP04], ObjectRank

focuses on cases where the global ObjectRank is calculated applying the random

surfer model, and including all nodes in the base set. The same calibrating param-

eters are available, as in the keyword-specific ObjectRank. Notice that this way

of calculating the global ObjectRank, which is similar to the PageRank approach

25

[BP98], assumes that all nodes (pages in PageRank) initially have the same value.

However, there are many applications where this is not true.

2.4.2 Answering Queries With Multiple Keywords

To reach a ranking function for node v given a multiple-keyword query

“q = {w1, . . . , wm}”, Balmin et al. [BHP04] find the score rwi(v) of v for every

keyword wi that is defined in Section 2.4.1, and then combine these scores (and

possibly Global ObjectRank rG(v)) to compute the final score rq(v).

In [BHP04], the semantics of a multiple-keywords query “q = {w1, . . . , wm}”
is defined by naturally extending the multiple-keywords random walk model. In

particular, for the case of ObjectRank [BHP04] considers m independent random

surfers, where the ith surfer starts from the keyword base set S(wi). For AND

semantics, the ObjectRank of an object v with respect to the m-keywords query

is the probability that, at a given point in time, the m random surfers are simul-

taneously at v.

rw1,...,wm(v) =
∏

i=1,...,m

rwi(v). (2.6)

For OR semantics, the ObjectRank of v is the probability that, at a given

point in time, at least one of the m random surfers will reach v.

rw1,w2(v) = rw1(v) + rw2(v)− rw1(v)rw2(v) (2.7)

and for more than two it is defined accordingly, as specified by the inclusion-

exclusion principle (also known as the sieve principle). Notice that [Hav02] also

takes the sum of the topic-sensitive PageRank values to calculate the PageRank

of a page.

Weigh keywords by frequency. A drawback of the combining function of Equa-

tion 2.6 is that it favors the more popular keywords in the query. The reason is

that the distribution of ObjectRank values is more skewed when the size |S(w)|
of the base set S(w) increases, because the top objects tend to receive more refer-

ences. For example, consider two results for the query “XML AND Index” shown

26

(a)

47.31
 11.44
 An XML Indexing Structure with Relative Region Coordinate. Dao Dinh Kha, ICDE 2001

41.02
 3.08
 DataGuides: Enabling Query ... Optimization in Semistructured... Roy Goldman, VLDB 1997

7.44
 28.43
 Access Path Selection in a RDBMS. Patricia G. Selinger, SIGMOD 1979

31.44
 3.24
 Querying Object-Oriented Databases. Michael Kifer, SIGMOD 1992

26.73
 3.09
 A Query … Optimization Techniques for Unstructured Data. Peter Buneman, SIGMOD 1996

(b)

47.31
 11.44
 An XML Indexing Structure with Relative Region Coordinate. Dao Dinh Kha, ICDE 2001

7.44
 28.43
 Access Path Selection in a RDBMS. Patricia G. Selinger, SIGMOD 1979

2.04
 102.1
 R-Trees: A Dynamic Index Structure for Spatial Searching. Antonin Guttman, SIGMOD 1984

1.73
 112.7
 The K-D-B-Tree: A Search Structure For Large … Indexes. John T. Robinson, SIGMOD 1981

41.02
 3.08
 DataGuides: Enabling Query … Optimization in Semistructured... Roy Goldman, VLDB 1997

Figure 2.7: Top 5 papers on “XML Index”, with and without emphasis on “XML”

in Figure 2.7. Result (b) corresponds to the model described above. It noticeably

favors the “Index” keyword over the “XML”. The first paper is the only one in the

database that contains both keywords in the title. However, the next three results

are all classic works on indexing and do not apply directly to XML. Intuitively,

“XML” as a more specific keyword is more important to the user. Indeed, the result

of Figure 2.7 (a) was overwhelmingly preferred over the result of Figure 2.7 (b) by

participants of the relevance feedback survey in [BHP04] (Section 2.5.1). The lat-

ter result contains important works on indexing in semistructured, unstructured,

and object-oriented databases, which are more relevant to indexing of XML data.

This result is obtained by using the modified formula:

rw1,...,wm(v) =
∏

i=1,...,m

(rwi(v))g(wi) (2.8)

where g(wi) is a normalizing exponent, set to g(wi) = 1/log(|S(wi)|).
This exponent plays a role similar to the inverse document frequency

(idf) in traditional Information Retrieval. Using the normalizing exponents

g(“XML”) and g(“Index”) in the above example is equivalent to running in parallel

g(“XML”) and g(“Index”) random walks for the “XML” and the “Index” keywords

respectively. Balmin et al. [BHP04] propose the following combining function to

incorporate the global ObjectRank of v

rq,G(v) = (rq(v)) · (rG(v))g (2.9)

where g is the g lobal ObjectRank weight, that determines the importance of the

27

global ObjectRank.

2.5 Quality of ObjectRank

2.5.1 Qualitative Evaluation of ObjectRank

To evaluate the quality of the results of ObjectRank, Balmin et al. [BHP04]

conducted two surveys. The first was performed on the DBLP database, with eight

professors and Ph.D. students from the UC, San Diego database lab, who were not

involved with the project. The second survey used the publications database of

the IEEE Communications Society (COMSOC) 3 and involved five senior Ph.D.

students from the Electrical Engineering Department.

Each participant was asked to compare and rank two to five lists of top-

10 results for a set of keyword queries, assigning a score of 1 to 10, according to

the relevance of the results list to the query. Each result list was generated by a

different variation of the ObjectRank algorithm. One of the results lists in each

set was generated by the “default” ObjectRank configuration which used the au-

thority transfer schema graph of Figure 2.4 and d = 0.85. The users knew nothing

about the algorithms that produced each result list. The survey was designed to

investigate the quality of ObjectRank when compared to other approaches or when

changing the adjusting parameters.

Effect of keyword-specific ranking. First, [BHP04] assesses the basic princi-

ple of ObjectRank, which is the keyword-specific scores. In particular, [BHP04]

compared the default (that is, with the parameters set to the values discussed in

Section 2.2) ObjectRank with the global ObjectRank ranking algorithm that sorts

objects that contain the keywords according to their global ObjectRank (where the

base-set contains all nodes). Notice that this is equivalent to what Google used

to4 do for Web pages, modulo some minor difference on the calculation of the rele-

vance score by Google. The DBLP survey included results for two keyword queries:

“OLAP” and “XML”. The score was 7:1 and 5:3 in favor of the keyword-specific

3http://www.comsoc.org
4Google’s current ranking algorithm is not disclosed.

28

ObjectRank for the first and second keyword query respectively. The COMSOC

survey used the keywords “CDMA” and “UWB (ultra wideband)” and the scores

were 4:1 and 5:0 in favor of the keyword-specific approach respectively.

Effect of authority transfer rates. [BHP04] compared results of the default

ObjectRank with a simpler version of the algorithm that did not use different

authority transfer rates for different edge types, i.e., all edge types were treated

equally. In the DBLP survey, for both keyword queries, “OLAP” and “XML”, the

default ObjectRank won with scores 5:3 and 6.5:1.5 (the half point means that a

user thought that both rankings were equally good) respectively. In the COMSOC

survey, the scores for “CDMA” and “UWB” were 3.5:1.5 and 5:0 respectively.

Effect of the damping factor d. [BHP04] tested three different values of the

damping factor d: 0.1, 0.85, and 0.99, for the keyword queries “XML” and “XML

AND Index” on the DBLP dataset. Two points were given to the first choice of a

user and one point to the second. The scores were 2.5 : 8 : 13.5 and 10.5 : 11.5

: 2 (the sum is 24 since there are 8 users times 3 points per query) respectively

for the three d values. [BHP04] sees that higher d values are preferred for the

“XML”, because “XML” is a very large area. In contrast, small d are preferable

for “XML AND Index”, because few papers are closely related to both keywords,

and these papers typically contain both of them. The results were also mixed in the

COMSOC survey. In particular, the damping factors 0.1, 0.85, and 0.99 received

scores of 5:6:4 and 4.5:3.5:7 for the queries “CDMA” and “UWB” respectively.

Effect of changing the weights of the keywords. [BHP04] compared the

combining functions for AND semantics of Equations 2.6 with the weighted com-

bining method described in Section 2.4.2 for the two-keyword queries “XML AND

Index” and “XML AND Query”, in the DBLP survey. The use of the normalizing

exponents proposed in Section 2.4.2 was preferred over the simple product func-

tion with ratios of 6:2 and 6.5:1.5 respectively. In the COMSOC survey, the same

experiment was repeated for the keyword query “diversity combining”. The use of

normalizing exponents was preferred at a ratio of 3.5:1.5.

29

2.5.2 Effectiveness of ObjectRank

To our best knowledge, there has been no previously reported experi-

ments that directly compare the quality of top-K keyword search results by

ObjectRank [BHP04] with annotated answers provided by domain experts. Nev-

ertheless, we can still see the effectiveness of ObjectRank as below.

First, the relevance feedback survey results(Section 2.5.1) of [BHP04] show

that results of the default ObjectRank are more semantically meaningful than

those of 1) Google-like method that identifies objects using a simple IR function

and then sorts by global ObjectRank scores or 2) ObjectRank over a data graph

with equal-weight edges. [BHP04] could not analyze the quality of ObjectRank

quantitatively because there was no available annotated graph-structured dataset

for evaluating top-K keyword queries.

The quality of ObjectRank is re-evaluated in [HHP08]: we compare the orig-

inal ObjectRank [BHP04] with various ranking schemes that combine ObjectRank

and our new specificity measure, Inverse ObjectRank, in order to demonstrate the

semantic contribution of this thesis. The results of the three qualitative experi-

ments we performed are provided in Section 4.5.

Link-based ranking methods have been shown to produce effective search

results in various research areas such as the personal information management

domain [MCN06, Min07]. [MCN06, Min07] perform three email-related tasks

- disambiguating person names, threading, and finding email aliases - using an

authority-based approach very similar to ObjectRank over a data graph modeling

an email corpus with learned edge weights. [MCN06, Min07] provide empirical

results that show the superiority of the quality of authority-based ranking with

learned edge weights over baseline approaches, a TFIDF method in [MCN06] and

an authority-based approach with fixed edge weights in [Min07].

Since the effectiveness of link-based ranking methods including ObjectRank

has already been demonstrated in various ways as discussed in this section, we do

not revisit this issue in the following chapters. Note that the qualitative evaluation

of ObjectRank [BHP04](and variations of personalized PageRank) is beyond the

scope of this thesis.

30

Parts of Chapter 2 were published in Proceedings of the 2006 ACM SIG-

MOD international conference on Management of data (SIGMOD-2006), pp 796-

798 and ACM Transactions on Database Systems 2008, 33(1) (TODS-2008). Hea-

soo Hwang, Vagelis Hristidis, and Yannis Papakonstantinou, “ObjectRank: a sys-

tem for authority-based search on databases” and Vagelis Hristidis, Heasoo Hwang,

and Yannis Papakonstantinou, “Authority-based keyword search in databases”.

The dissertation author and Vagelis Hristidis were the primary investigators and

authors of these papers.

Chapter 3

BinRank: Fast Dynamic

Authority-Based Search Using

Materialized SubGraphs

3.1 Introduction

Recently, dynamic versions of the PageRank algorithm have become popu-

lar. They are characterized by a query-specific choice of the random walk starting

points. In particular, two algorithms have gotten a lot of attention: personalized

PageRank (PPR) for Web graph datasets ([Hav02, JW03, FRCS05, ALNO07]), and

ObjectRank for graph-modeled databases ([BHP04, NZWM05, Cha07, HBPR07,

HHP08]).

Personalized PageRank is a modification of PageRank that performs

search personalized on a preference set that contains web pages that a user

likes. For a given preference set, PPR performs a very expensive fixpoint it-

erative computation over the entire Web graph, while it generates personalized

search results. Therefore, the performance issue of PPR has attracted a lot

of attention ([JW03, FRCS05, ALNO07]). As mentioned earlier in Chapter 2,

ObjectRank [BHP04] extends personalized PageRank to perform keyword search

in databases.

31

32

Even though ObjectRank is an effective search method generating high re-

call search results(Section 2.5), it is not feasible to use ObjectRank to process

keyword queries over a real-world dataset since ObjectRank suffers from the same

performance issue as personalized PageRank as it requires multiple iterations over

all nodes and links of the entire database graph. The original ObjectRank system

has two modes, on-line and off-line. The on-line mode runs the ranking algorithm

once the query is received, which takes too long on large graphs. For example, on

a graph of articles of English Wikipedia1 with 3.2 million nodes and 109 million

links, even a fully optimized in-memory implementation of ObjectRank takes 20-50

seconds to run, as shown in Figure 3.2. In the off-line mode, ObjectRank precom-

putes top-k results for a query workload in advance. This precomputation is very

expensive and requires a lot of storage space for precomputed results. Moreover,

this approach is not feasible for all terms outside the query workload that a user

may search for, i.e. for all terms in the dataset dictionary. For example, on the

same Wikipedia dataset, the full dictionary precomputation would take about a

CPU-year.

In this chapter, we introduce a BinRank system that employs a hybrid ap-

proach where query time can be traded off for preprocessing time and storage. Bin-

Rank closely approximates ObjectRank scores by running the same ObjectRank

algorithm on a small subgraph, instead of the full data graph. The subgraphs are

precomputed offline. The precomputation can be parallelized with linear scalabil-

ity. For example, on the full Wikipedia dataset, BinRank can answer any query

in less than 1 second, by precomputing about a thousand subgraphs, which takes

only about 12 hours on a single CPU.

BinRank query execution easily scales to large clusters by distributing the

subgraphs between the nodes of the cluster. This way, more subgraphs can be kept

in RAM, thus decreasing the average query execution time. Since the distribution

of the query terms in a dictionary is usually very uneven, the throughput of the

system is greatly improved by keeping duplicates of popular subgraphs on multiple

nodes of the cluster. The query term is routed to the least busy node that has the

1http://en.wikipedia.org

33

corresponding subgraph.

There are two dimensions to the subgraph precomputation problem: (1)

how many subgraphs to precompute, and (2) how to construct each subgraph that

is used for approximation. The intuition behind our approach is that a subgraph

that contains all objects and links relevant to a set of related terms should have

all the information needed to rank objects with respect to one of these terms. For

(1), we group all terms into a small number (around 1,000 in case of Wikipedia)

of “bins” of terms based on their co-occurrence in the entire dataset. For (2),

we execute ObjectRank for each bin using the terms in the bins as random walk

starting points and keep only those nodes that receive non-negligible scores.

Our experimental evaluation highlights the tuning of the system needed

to balance the query performance with size and number of the precomputed sub-

graphs. Intuitively, query performance is highly correlated to the size of the sub-

graph, which in turn is highly correlated with the number of documents in the bin.

Thus, normally, it is sufficient to create bins with a certain size limit to achieve

a specific target running time. However there is some variability in the process

and some bins may still result in unusually large subgraphs and slow queries. To

address this, we employ an adaptive iterative process that further splits the prob-

lematic subgraphs to guarantee that a vast majority of queries will be executed

within the allotted time budget.

Other approximation techniques have been considered before to improve

the performance of dynamic authority-based search algorithms. Monte Carlo algo-

rithms are introduced in [FRCS05] and [ALNO07] for approximation during pre-

computation. HubRank [Cha07] uses the same approximation as [FRCS05], but

performs precomputation only for “hub” nodes. Other techniques might also sug-

gest sampling-based techniques on-line. However, although these techniques claim

on-line query processing, they have only been demonstrated on graphs with less

than 106 links. In contrast, we demonstrate superior performance of our approach

on a Wikipedia graph that is 2 orders of magnitude larger. We also show that our

approximation using ObjectRank itself is more precise than the sampling-based

techniques.

34

The contributions of this chapter are:

• The idea of approximating ObjectRank by using Materialized SubGraphs

(MSG), which can be precomputed off-line to support on-line querying for a

specific query workload, or the entire dictionary.

• Use of the default ObjectRank [BHP04] algorithm itself to generate MSGs

for “bins” of terms.

• A greedy algorithm that minimizes the number of bins by clustering terms

with similar posting lists.

• Extensive experimental evaluation on the Wikipedia dataset that supports

our performance and search quality claims. The evaluation demonstrates

superiority of BinRank over other state-of-the-art approximation algorithms.

The rest of the chapter is organized as follows: First, we start with the

motivation of this chapter in Section 3.2 and give a survey of related work in Sec-

tion 3.3. Then, the concept of materialized subgraphs is introduced in Section 3.4,

and the bin construction algorithm is described in Section 3.5. In Section 3.6,

we suggest the adaptive MSG re-computation method that improves the perfor-

mance of BinRank. Section 3.7 describes the architecture of the BinRank system.

Section 3.8 walks through the experimental evaluation. We conclude in Section 3.9.

3.2 Motivation

In this section, we discuss the result quality and performance issues that

motivate this chapter.

ObjectRank returns top-k search results for a given query using both the

content and the link structure inG. Since it utilizes the link structure that captures

the semantic relationships between objects, an object that does not contain a given

keyword but is highly relevant to the keyword can be included in the top-k list. This

is in contrast to the static PageRank approach, that only returns objects containing

the keyword sorted according to their PageRank score. This key difference is one

35

of the main reasons for ObjectRank’s superior result quality, as demonstrated by

the relevance feedback survey reported in [BHP04].

However, the iterative computation of ObjectRank vectors described in Sec-

tion 2.4 is too expensive to execute at run time. For a given query, ObjectRank iter-

ates over the entire graphG to calculate the ObjectRank vector r until |r(k+1)
i −r

(k)
i |

is less than the convergence threshold for every r
(k+1)
i in r(k+1) and r

(k)
i in r(k). This

is a very strict stopping condition. This iterative computation may take a very long

time if G has a large number of nodes and edges. Therefore, instead of evaluating

a keyword query at query time, the original ObjectRank system [BHP04] precom-

putes the ObjectRank vectors of keywords in H , the set of keywords, during the

preprocessing stage and then stores a list of <ObjId, RankValue> pairs per key-

word. However, the preprocessing stage of ObjectRank is expensive, as it requires

|H| ObjectRank executions and O(|V | · |H|) bits of storage. In fact, according to

the worst-case bounds for PPR index size proven in [FRCS05], the index size must

be Ω(|V | · |H|) bits, for any system that returns the exact ObjectRank vectors.

3.3 Related Work

The performance issue of Personalized PageRank (PPR) [JW03] has at-

tracted a lot of attention. PPR performs a very expensive fixpoint iterative compu-

tation over the entire graph, while it generates personalized search results. To avoid

the expensive iterative calculation at run time, one can naively precompute and

materialize all the possible personalized PageRank vectors (PPVs). Although this

method guarantees fast user response time, such precomputation is impractical as

it requires a huge amount of time and storage especially when done on large graphs.

In this section, we examine hub-based and Monte Carlo methods that address the

performance problem of PPR, and we give an overview of HubRank [Cha07], that

integrates the two approaches to improve the performance of ObjectRank. Even

though these approaches enabled PPR to be executed on large graphs, they either

limit the degree of personalization or deteriorate the quality of the top-k result

lists significantly.

36

Hub-based Methods. Hub-based approaches materialize only a selected subset

of PPVs. Topic-sensitive PageRank [Hav02] suggests materialization of 16 PPVs

of selected topics and linearly combining them at query time. The personalized

PageRank computation suggested in [JW03] enables a finer-grained personalization

by efficiently materializing significantly more PPVs (e.g. 100K) and combining

them using the hub decomposition theorem and dynamic programming techniques.

However, it is still not a fully personalized PageRank, because it can personalize

only on a preference set subsumed within a hub set H .

Monte Carlo Methods. Monte Carlo methods replace the expensive power-

iteration algorithm with a randomized approximation algorithm ([FRCS05,

ALNO07]). In order to personalize PageRank on any arbitrary preference set with

maintaining just a small amount of precomputed results, [FRCS05] introduces the

fingerprint algorithm that simulates the random walk model of PageRank and

stored the ending nodes of sampled walks. Since each random walk is indepen-

dent, fingerprint generation can be easily parallelized and the quality of search

results improves as the number of fingerprints increases. However, as mentioned in

[FRCS05], the precision of search results generated by the fingerprint algorithm is

somewhat less than that of power-iteration-based algorithms, and sometimes the

quality of its results may be inadequate especially for nodes that have many close

neighbors. In [ALNO07], a Monte Carlo algorithm that takes into account not only

the last visited nodes, but all visited nodes during the sampled walks, is proposed.

Also, it showed that Monte Carlo algorithms with iterative start outperform those

with random start.

HubRank. HubRank [Cha07] is a search system based on ObjectRank that im-

proved the performance of ObjectRank by combining the above two approaches.

It first selects a fixed number of hub nodes by using a greedy hub selection algo-

rithm that utilizes a query workload in order to minimize the query execution time.

Given a set of hub nodes H , it materializes the fingerprints of hub nodes in H .

At query time, it generates an active subgraph by expanding the baseset with its

neighbors. It stops following a path when it encounters a hub node whose PPV was

37

materialized, or the distance from the baseset exceeds a fixed maximum length.

HubRank recursively approximates PPVs of all active nodes, terminating with

computation of PPV for the query node itself. During this computation the PPV

approximations are dynamically pruned in order to keep them sparse. As stated

in [Cha07], the dynamic pruning takes a key role in outperforming ObjectRank by

a noticeable margin. However, by limiting the precision of hub vectors, HubRank

may get somewhat inaccurate search results, as stated in [Cha07]. Also, since it

materialized only PPVs of H , just as [JW03], the efficiency of query processing

and the quality of query results are very sensitive to the size of H and the hub se-

lection scheme. Finally, [Cha07] did not show any large-scale experimental results

to verify the performance of HubRank.

Comparative Evaluation of BinRank. In our experiments section, we per-

form quality and performance experiments on the full English Wikipedia dataset

exported in October 2007, to show that BinRank is an efficient ObjectRank ap-

proximation method that generates a high quality top-k list for any keyword query

in the corpus.

For comparative evaluation of the performance of BinRank, we implemented

the Monte Carlo algorithm 4 in [ALNO07]; that was shown to outperform other

variations in [ALNO07]. We also implemented HubRank[Cha07] to check its per-

formance on our Wikipedia dataset. To compare the quality(closeness of approxi-

mation) of BinRank results with those of previous work, we compute the similarity

between top-K lists obtained by each method (i.e., approximate top-K lists) and

top-K lists by ObjectRank over the given data graph (i.e., accurate top-K lists).

Unlike [FRCS05] which proves the convergence to the exact solution on

arbitrary graphs, and [Cha07] and [JW03] which offer exact methods at the expense

of limiting the choice of personalization, our solution is entirely heuristic. However,

extensive experimental evaluation confirms that on real-world graphs BinRank can

strike a good balance between query performance and closeness of approximation.

38

3.4 Relevant Subgraphs

Our goal is to improve the performance of ObjectRank while maintaining

the high quality of top-k result lists. We focus on the fact that ObjectRank does

not need to calculate the exact full ObjectRank vector r to answer a top-k keyword

query (K � |V |). We identify three important properties of ObjectRank vectors

that are directly relevant to the result quality and the performance of ObjectRank.

First, for many of the keywords in the corpus, the number of objects with non-

negligible ObjectRank values is much less than |V |. This means, that just a small

portion of G is relevant to a specific keyword. Here, we say an ObjectRank value of

v, r(v), is non-negligible if r(v) is above the convergence threshold. The intuition

for applying the threshold is that differences between the scores that are within the

threshold of each other are noise after ObjectRank execution. Thus, scores below

threshold are effectively indistinguishable from zero, and objects that have such

scores are not at all relevant to the query term. Second, we observed that top-k

results of any keyword term t generated on subgraphs of G composed of nodes

with non-negligible ObjectRank values, with respect to the same t, are very close

to those generated on G. Third, when an object has a non-negligible ObjectRank

value for a given baseset BS1 , it is guaranteed that the object gains a non-negligible

ObjectRank score for another baseset BS2 if BS1 ⊆ BS2 . Thus, a subgraph of G

composed of nodes with non-negligible ObjectRank values, with respect to a union

of basesets of a set of terms, could potentially be used to answer any one of these

terms.

Based on the above observations, we speed up the ObjectRank computation

for query term q, by identifying a subgraph of the full data graph that contains all

the nodes and edges that contribute to accurate ranking of the objects with respect

to q. Ideally, every object that receives a non-zero score during the ObjectRank

computation over the full graph should be present in the subgraph and should

receive the same score. In reality, however, ObjectRank is a search system that is

typically used to obtain only the top-k result list. Thus, the subgraph only needs

to have enough information to produce the same top-k list. We shall call such a

subgraph a Relevant subgraph (RSG) of a query.

39

Definition 3.4.1. The top-k result list of the ObjectRank of keyword term t on

data graph G(V,E), denoted OR(t, G, k), is a list of k objects from V sorted in

descending order of their ObjectRank scores with respect to a baseset that is the set

of all objects in V that contain keyword term t.

Definition 3.4.2. A Relevant Sub-Graph (RSG(t, G, k)) of a data graph G(V,E)

with respect to a term t and a list size k is a graph Gs(Vs, Es), such that Vs ⊂ V ,

Es ⊂ E, and OR(t, G, k) = OR(t, Gs, k).

It is hard to find an exact RSG for a given term, and it is not feasible

to precompute one for every term in a large workload. However, we introduce

a method to closely approximate RSGs. Furthermore, we observed that a single

subgraph can serve as an approximate RSG for a number of terms, and that it

is quite feasible to construct a relatively small number of such subgraphs that

collectively cover, i.e. serve as approximate RSGs, all the terms that occur in the

dataset.

Definition 3.4.3. An Approximate Relevant Sub-Graph

(ARSG(t, G, k, c)) of a data graph G(V,E) with respect to a term t, list

size k, and confidence limit c ∈ [0, 1], is a graph Gs(Vs, Es), such that Vs ⊂ V ,

Es ⊂ E, and τ(OR(t, G, k),OR(t, Gs, k)) > c.

Kendall’s τ is a measure of similarity between two lists of [Ken55]. This

measure is commonly used to describe the quality of approximation of top-k lists

of exact ranking (RE) and approximate ranking (RA) that may contain ties (nodes

with equal ranks) [FRCS05, Cha07]. A pair of nodes that is strictly ordered in

both list is called concordant if both rankings agree on the ordering, and discordant

otherwise. A pair is e-tie, if RE does not order the nodes of the pair, and a-tie, if

RA does not order them. Let C, D, E, and A denote the number of concordant,

discordant, e-tie, and a-tie pairs respectively. Then, Kendall’s τ similarity between

two rankings, RE and RA, is defined as τ(RE , RA) =
C−D√

(M−E)(M−A)
, where M is

the total number of possible pairs, M = n(n−1)
2

and n = |RE ∪ RA|. We linearly

scale τ to [0, 1] interval as in [FRCS05, Cha07].

40

Definition 3.4.4. An ARSG cover of a data graph G(V,E), with respect to a key-

word term workload W , list size k, and confidence limit c ∈ [0, 1] is a set of graphs

Γ, such that for every term t ∈ W , there exists Gs ∈ Γ that is ARSG(t, G, k, c),

and inversely every Gs ∈ Γ is an ARSG(t, G, k, c) for at least one term t ∈ W .

We construct an ARSG for term t by executing ObjectRank with some set of

objects B as the baseset and restricting the graph to include only nodes with non-

negligible ObjectRank scores NOR(B), i.e. those above the convergence threshold

εt of the ObjectRank algorithm. We call the induced subgraph G[NOR(B)] a

materialized subgraph for set B, denoted MSG(B).

The main challenge of this approach is identifying a baseset B, that will

provide a good RSG approximation for term t. We focus on sets B, that are

supersets of the baseset of t. This relationship gives us the following important

result.

Theorem 3.4.5. If BS1 ⊂ BS2 , then (v ∈ MSG(BS1) ⇒ v ∈ MSG(BS2)).

Proof. Let BS1 and BS2 be subsets of V that satisfy BS1 ⊂ BS2 . Also, let r1,

r2 and r2\1 be the ObjectRank vectors and q1, q2, and q2\1 be the normalized

baseset vectors corresponding to BS1 , BS2 , and (BS2 − BS1) respectively. Then,

by applying the linearity theorem in [JW03] on the ObjectRank formula in Equa-

tion (2.5), we get the following equation2:

α1r1+α2\1r2\1 = dA(α1r1+α2\1r2\1)+ (1−d)(α1q1+α2\1q2\1), where α1 =
|BS1 |
|BS2 |

and α2\1 =
|BS2−BS1 |

|BS2 |
. Since BS1 ⊂ BS2 , α1+α2\1 = 1, which satisfies the linearity

theorem. Notice that, since α1q1 + α2\1q2\1 = q2, α1r1 + α2\1r2\1 = r2 holds.

Now, let us consider a node v ∈ G is in MSG(BS1). Since we just showed r2 =

α1r1 + α2\1r2\1, r2(v) = α1r1(v) + α2\1r2\1(v) also holds. Thus, r2(v) ≥ α1r1(v),

because α2\1 > 0 and r2\1(v) ≥ 0. Also, since v ∈ MSG(BS1), r1(v) > ε
|BS1 |

by

definition of MSG.

Since α1 = |BS1 |
|BS2 |

and r1(v) >
ε

|BS1 |
, r2(v) ≥ α1r1(v) >

|BS1 |
|BS2 |

· ε
|BS1 |

= ε
|BS2 |

. Since

r2(v) >
ε

|BS2 |
, by definition of MSG, v ∈ MSG(BS2).

2For better presentation of this chapter, let BS(w) and q denote S(w) and s

|S(w)| of Equa-

tion (2.5) respectively

41

According to this theorem, for a given term t, if the term baseset BS (t) is

a subset of B, all the important nodes relevant to t are always subsumed within

MSG(B), i.e., all the non-negligible end points of random walks originated from

starting nodes containing t are present in the subgraph generated using B.

However, notice that even though two nodes v1 and v2 are guaranteed to be

found both in G and in MSG(B), the ordering or their ObjectRank scores might

not be preserved on MSG(B) as we do not include intermediate nodes if their

ObjectRank scores are below the convergence threshold. Missing intermediate

nodes could deteriorate the quality of ObjectRank scores computed on MSG(B).

However, it is unlikely that many walks terminating on relevant nodes will pass

through irrelevant nodes. Thus, even if MSG(B,G) is not an RSG(t, G, k), it

is very likely to be ARSG(t, G, k, c) with high confidence c. Our experimental

evaluation supports this intuition.

In this chapter, we construct MSGs by clustering all the terms of the dic-

tionary, or of a query workload if one is available, into a set of term “bins”. We

create a baseset B for every bin by taking the union of the posting lists of the terms

in the bin, and construct MSG(B) for every bin. We remember the mapping of

terms to bins, and at query time, we can uniquely identify the corresponding bin

for each term, and execute the term on the MSG of this bin.

Theorem 3.4.5 supports our intuition that a bin’s MSG is very likely to

be an ARSG for each term in the bin with fairly high confidence. Thus, the

set of all bin MSGs will be an ARSG cover with sufficiently high confidence.

Our empirical results support this claim. For example, after a reasonable tun-

ing of parameter settings (ε = 0.0005 and maximum B size of 4000 docu-

ments), 90% of our random workload terms ran on their respective bin MSGs

with τ(OR(t, G, 100),OR(t,MSG , 100)) > 0.9. Moreover, the other 10% of terms,

which had τ100 < 0.9, were all very infrequent terms. The most frequent among

them appeared in 8 documents. τ100 tends to be relatively small for infrequent

terms, because there simply may not be 100 objects with meaningful relationships

to the baseset objects.

42

3.5 Bin Construction

As outlined above, we construct a set of MSGs for terms of a dictionary

or a workload by partitioning the terms into a set of term bins based on their

co-occurrence. We generate an MSG for every bin based on the intuition that

a subgraph that contains all objects and links relevant to a set of related terms

should have all the information needed to rank objects with respect to one of these

terms.

There are two main goals in constructing term bins. First, controlling

the size of each bin to ensure that the resulting subgraph is small enough for

ObjectRank to execute in a reasonable amount of time. Second, minimizing the

number of bins to save the preprocessing time. After all, we know that precom-

puting ObjectRank for all terms in our corpus is not feasible.

To achieve the first goal, we introduce a maxBinSize parameter that limits

the size of the union of the posting lists of the terms in the bin, called bin size.

As discussed above, ObjectRank uses the convergence threshold that is inversely

proportional to the size of the baseset, i.e., the bin size in case of subgraph con-

struction. Thus, there is a strong correlation between the bin size and the size of

the materialized subgraph. As we show in Section 3.8, the value of maxBinSize

should be determined by quality and performance requirements of the system.

The problem of minimizing the number of bins is NP-hard. In fact, if all

posting lists are disjoint, this problem reduces to a classical NP-hard bin packing

problem [GJ85]. We apply a greedy algorithm that picks an unassigned term with

the largest posting list to start a bin and loops to add the term with the largest

overlap with documents already in the bin. We use a number of heuristics to

minimize the required number of set intersections, which dominate the complexity

of the algorithm. The tight upper bound on the number of set intersections that our

algorithm needs to perform is the number of pairs of terms that co-occur in at least

one document. To speed-up the execution of set intersections for larger posting

lists, we use KMV synopses [BHR+07] to estimate the size of set intersections.

The bin computation algorithm in Algorithm 1 works on term posting lists

from a text index. As the algorithm fills up a bin, it maintains a list of document

43

Algorithm 1: PackTermsIntoBins

Input: A set of workload terms W , with their posting lists

Output: A set of bins B

while W is not empty do

create a new empty bin b;

create an empty cache of candidate terms C;

pick term t ∈ W with the largest posting list size |t|;
while t is not null do

add t to b, and remove it from W ;

jd compute a set of terms T that co-occur with t;

foreach t′ ∈ T do

insert (or update) mapping < t′, null > into C;

bestI := 0;

foreach mapping < c, i >∈ C do

if i = null then

i := |b ∩ c|;
update mapping < c, i > in C;

union := |b|+ |c| − i;

if union > maxBinSize then

remove < c, i > from C;

else if i > bestI then

bestI := i;

t := c;

if bestI = 0 then

pick t ∈ W with maximum |t| ≤ maxBinSize − |b|;
if no such t exists, t := null ;

add completed b to B;

44

IDs, that are already in the bin, and a list of candidate terms, that are known to

overlap with the bin (i.e. their posting lists contain at least one document, that

was already placed into the bin). The main idea of this greedy algorithm is to

pick a candidate term with a posting list that overlaps the most with documents

already in the bin, without posting list union size exceeding the maximum bin size.

While it is more efficient to prepare bins for a particular workload that may

come from a system query log, it is dangerous to assume that a query term that

has not been seen before, will not be seen in the future. We demonstrate that it

is feasible to use the entire dataset dictionary as the workload, in order to be able

to answer any query.

Due to caching of candidate intersection results in lines 12-14 of the al-

gorithm, the upper bound on the number of set intersections performed by this

algorithm is the number of pairs of co-occurring terms in the dataset. Indeed, in

the worst case, for every term t that has just been placed into the bin, we need to

intersect the bin with every term t′ that co-occurs with t, in order to check if t′ is

subsumed by the bin completely, and can be placed into the bin “for free”.

For example, consider N terms with posting lists of size X each, that all

co-occur in one document d0 with no other co-occurrences. If maximum bin size

is 2(X − 1), a bin will have to be created for every term. However, to get to that

situation, our algorithm will have to check intersections for every pair of terms.

Thus, the upper bound on the number of intersections is tight.

In fact, it is easy to see from the above example that no algorithm that packs

the bins based on the maximum overlap can do so with fewer than N(N − 1)/2

set intersections in the worst case. Fortunately, real-world text databases have

structures that are far from the worst case, as we show in Section 3.8.

Lastly, we show that the number of bins the algorithm uses to pack a set

of posting lists is at most 2αOPT , where α indicates the degree of overlap across

posting lists and OPT is minimal. Notice that, since BinRank constructs an MSG

for each bin during preprocessing, 2αOPT is also the upper bound of the number

of MSGs.

Theorem 3.5.1. Given a set of posting lists S of Si’s, suppose that there exists

45

α ≥ 1 such that
∑

Si∈S
|Si| ≤ α|

⋃

Si∈S
Si|. Then, the approximation ratio of

PackTermsIntoBins is 2α.

Proof. Let OPT and OPT ′ denote the optimal number of bins and the number of

bins PackTermsIntoBins uses.

• Claim1: OPT ≥
∑

Si∈S
|
⋃

Si|

maxBinSize·α

Since no bin can hold a total capacity of more than maxBinSize, OPT ≥
|
⋃

Si∈S
Si|

maxBinSize
. Also, since α satisfies |⋃Si∈S

Si| ≥
∑

Si∈S
|Si|

α
, OPT ≥ |

⋃
Si∈S

Si|

maxBinSize
≥

∑
Si∈S

|
⋃

Si|

maxBinSize·α
. ∴ Claim1 holds.

• Claim2: |
⋃

Si∈S
Si| > (OPT ′ − 1) ∗ maxBinSize

2

Since no more than one bin is less than half full, |⋃Si∈S
Si| > (OPT ′ −

1) ∗ maxBinSize
2

. Also, since
∑

Si∈S
|Si| ≤ α|

⋃

Si∈S
Si| for α ≥ 1,

∑

Si∈S
|Si| ≤

|
⋃

Si∈S
Si|. ∴ Claim2 holds.

By Claim1 and Claim2, OPT ≥
∑

Si∈S
|
⋃

Si|

maxBinSize ·α
> OPT ′−1

2α
, i.e., OPT > OPT ′−1

2α
. ∴

OPT ′ ≤ 2αOPT

3.6 Adaptive MSG Re-computation

We construct bins of up to a certain number of documents based on the

intuition that a limited bin size will limit the resulting MSG size, which, in turn,

will limit the running time of the query. As we demonstrate in Section 3.8 this

intuition holds for the average case, however for a small minority of MSGs and

queries the running time can be 2-3 times higher than the average. Fortunately,

we can detect problematic MSGs and replace them with more efficient ones during

the pre-processing stage.

Recall that the ObjectRank running time scales linearly with two parame-

ters: the number of iterations required and the size of the graph. The number of

iterations is correlated to the size of the baseset, so for a given MSG, queries with

the largest basesets are going to be the slowest. And for queries with fixed sized

basesets, the running time will largely depend on the number of links in the graph.

46

In fact, we report in Section 3.8.6 a 94% correlation between the number of links

on an MSG and the BinRank running time for queries with large basesets. This

observation enables us to reliably identify problematic MSGs based only on their

link counts.

However, the correlation between the bin sizes and the MSG link counts

is less obvious. Figure 3.14 shows that the link-count for MSGs follows a normal

distribution even with all the Bin and MSG generation parameters fixed. Thus,

setting the generation parameters in a way that no MSG exceeds a certain link-

count threshold is not going to be practical. Instead, we set the parameters in

such a way that only a small minority of MSGs exceeds the limit, and then deal

with this minority separately.

One way to deal with dangerously large MSGs is to recompute them with

a larger convergence threshold, thus making them smaller. However, this may

diminish the subsequent query result quality, so instead we choose to keep the same

ε, but regenerate the bins that produced these MSGs with a smaller maxBinSize.

To do this, we introduce a new threshold maxMSGSize and generate a

set of rejected bins RB , that resulted in MSGs with the number of links larger

than maxMSGSize. We then generate a new set of workload terms W ′, which

consists of all the keywords of all bins in RB , and rerun the PackTermsIntoBins

algorithm with W ′ and the new maxBinSize set to the half of the original one. The

new set of bins replaces RB , and the new MSGs are produced and tested against

the maxMSGSize. If some MSGs still fail the test, the process can be repeated

iteratively.

3.7 System Architecture

Figure 3.1 shows the architecture of the BinRank system. During the pre-

processing stage (left side of figure), we generate MSGs as defined in Section 3.4.

During query processing stage (right side of figure), we execute the ObjectRank

algorithm on the subgraphs instead of the full graph and produce high quality

approximations of top-k lists at a small fraction of the cost. In order to save pre-

47

Lucene index

<term, binId,

docIds>
T = {docIds}

Greedy bin algorithm

packTermsIntoBins()

T‘ = KMV(T)

Pre-

Processing

Query-

Processing

MSG Generator

term t

KMV synopsis

generation

Query term q

Baseset bs(q)

binId b(q)

Workload W

Query

Dispatcher

Sub-Graph

Deserializer

MSG

binary files

ObjectRank

MSG(b) = G(V‘, E‘)

Top-k list

Posting list

and bin

maxBinSize

OR(bs(q), MSG(b), k)

q

V‘,E‘

store

ObjectRank

OR(b, G)
d, e, k

B = set of term bins

G(V, E)

V‘ = { n | n V and score(n) > e }

binId

d, e

MSG Cache

Figure 3.1: System Architecture

processing cost and storage, each MSG is designed to answer multiple term queries.

We observed in the Wikipedia dataset that a single MSG can be used for 330 to

2000 terms, on average.

3.7.1 Preprocessing

The preprocessing stage of BinRank starts with a set of workload terms W

for which MSGs will be materialized. If an actual query workload is not available,

W includes the entire set of terms found in the corpus. We exclude from W all

terms with posting lists longer than a system parameter maxPostingList . The

posting lists of these terms are deemed too large to be packed into bins. We

execute ObjectRank for each such term individually, and store the resulting top-k

lists. Naturally, maxPostingList should be tuned so that there are relatively few

48

of these frequent terms. In the case of Wikipedia, we used maxPostingList = 2000

and only 381 terms out of about 700000 had to be precomputed individually. This

process took 4.6 hours on a single CPU.

For each term w ∈ W , BinRank reads a posting list T from the Lucene3

index and creates a KMV synopsis T ′ that is used to estimate set intersections.

The bin construction algorithm, PackTermsIntoBins, partitions W into a

set of bins composed of frequently co-occurring terms. The algorithm takes a single

parameter maxBinSize, which limits the size of a bin posting list, i.e. the union of

posting lists of all terms in the bin. During the bin construction, BinRank stores

the bin identifier of each term into the Lucene index as an additional field. This

allows us to map each term to the corresponding bin and MSG at query time.

The ObjectRank module takes as input a set of bin posting lists B and the

entire graph G(V,E) with a set of ObjectRank parameters, the damping factor

d and the threshold value ε. The threshold determines the convergence of the

algorithm as well as the minimum ObjectRank score of MSG nodes.

Our ObjectRank implementation stores a graph as a row-compressed ad-

jacency matrix. In this format, the entire Wikipedia graph consumes 880MB of

storage, and can be loaded into main memory for MSG generation. In case that

the entire data graph does not fit in main memory, we can apply parallel PageR-

ank computation techniques such as hypergraph partitioning schemes described in

[BdJKT05].

The MSG generator takes the graph G and the ObjectRank result with

respect to a term bin b, and then constructs a subgraph Gb(V
′, E ′) by including

only nodes with rt(u) ≥ εb. εb is the convergence threshold of b, that is ε
|BS(b)|

.

Given the set of MSG nodes V ′, the corresponding set of edges E ′ is copied from

the in-memory copy of G. The edge construction takes 1.5 - 2 seconds for a typical

MSG with about 5 million edges.

Once the MSG is constructed in memory, it is serialized to a binary file

on disk in the same row-compressed adjacency matrix format to facilitate fast

deserialization. We observed that de-serializing a 40MB MSG on a single SATA

3http://lucene.apache.org

49

disk drive takes about 0.6 seconds. In general, deserialization speed can be greatly

improved by increasing the transfer rate of the disk subsystem.

3.7.2 Query Processing

For a given keyword query q, the query dispatcher retrieves from the Lucene

index the posting list bs(q) (used as the baseset for the ObjectRank execution) and

the bin identifier b(q). Given a bin identifier, the MSG mapper determines whether

the corresponding MSG is already in memory. If it is not, the MSG deserializer

reads the MSG representation from disk. The BinRank query processing module

uses all available memory as an LRU cache of MSGs.

For smaller data graphs, it is possible to dramatically reduce MSG storage

requirements by storing only a set of MSG nodes V ′, and generating the corre-

sponding set of edges E ′ only at query time. However, in our Wikipedia dataset

that would introduce an additional delay of 1.5 - 2 seconds, which is not acceptable

in a keyword search system.

The ObjectRank module gets the in-memory instance of MSG, the baseset,

and a set of ObjectRank calibrating parameters: (i) the damping factor d, (ii) the

convergence threshold ε, and (iii) the number of top-k list entries k. Once the

ObjectRank scores are computed and sorted, the resulting document ids are used

to retrieve and present the top-k objects to the user.

Multi-keyword queries are processed as follows: For a given conjunctive

query composed of n terms, {t1, . . ., tn}, the ObjectRank module gets MSGs,

{MSG(b(t1)), . . ., MSG(b(tn))}, and evaluates each term over the corresponding

MSG. Then, it multiplies the ObjectRank scores obtained over MSGs to generate

the top-k list for the query. For a disjunctive query, the ObjectRank module sums

the ObjectRank scores with respect to each term calculated using MSGs to produce

BinRank scores.

One of the advantages of BinRank query execution engine is that it can

easily utilize large clusters of nodes. In this case, we distribute MSGs between

the nodes and employ Hadoop4 to start an MSG cache and an ObjectRank engine

4http://hadoop.apache.org

50

Web service on every node. A set of dispatcher processes, each with its own replica

of the Lucene index, route the queries to the appropriate nodes.

3.8 Experiments

We present our experimental evaluation in this section. We first describe our

experimental setup using English Wikipedia articles. Then, we show performance

numbers for ObjectRank followed by numbers for BinRank. Finally, we present a

performance comparison of BinRank with Monte Carlo Method and HubRank.

3.8.1 Setup

We evaluate the performance of the BinRank algorithm on the collection of

English Wikipedia articles exported in October 2007. We parsed the 13.8GB dump

file and extracted 3.2M articles and 109M intra-wiki links of 10 types (e.g., “Regular

links”, “Category links”, “See also links”, etc.). All the experiments in this section

are performed over the labeled graph Gwiki = (Vwiki , Ewiki), that is composed of

the Wikipedia articles as nodes and the intra-wiki links as edges. We used the

standard row-compressed matrix format to represent the link structure and weight

dissipation rates of Ewiki compactly. We were able to store the 3.2M ∗ 3.2M

transition matrix of Gwiki with 109M non-zero elements in only 880MB. We created

a Lucene text index of the Wikipedia article titles, which takes up 154MB. The

dictionary of the index contains 698,214 terms.

We chose to index only article titles, by analogy with the original

ObjectRank [BHP04] setup that used only publication titles from DBLP. It is

important for ObjectRank to have a baseset of objects that are highly related to a

search term. However, a large article can mention a term without being meaning-

fully related to it. For that reason, title index works better than an index on the

full text of the articles. In order to use the full article text index, the ObjectRank

algorithm would have to be augmented to take into account Lucene search scores

of the baseset documents. This is one of our future research directions.

For our experiments, we implemented the BinRank system (and other al-

51

gorithms for performance comparisons) in Java and performed experiments on a

single PC with a Pentium4 3.40GHz CPU and 2.0GB of RAM.

3.8.2 ObjectRank on the Full Wikipedia Graph

ObjectRank on Gwiki takes too long to be executed online, and it consumes

around 880MB of memory just for the link information of Gwiki . As shown in

Figure 3.2, it takes around 20-50 seconds (30 seconds on average) to compute

the dynamically generated top-k list for a given single keyword query even with

our optimized, in-memory ObjectRank execution engine. For frequent keywords,

that have posting lists with over 200 documents, the ObjectRank is likely to take

longer. Since frequent keywords are found in many articles, they are more likely to

be meaningfully connected to many other articles through many paths, resulting

in a wider search space for ObjectRank to evaluate and rank.

0

10

20

30

40

50

[1,
 10

)

[10
, 2

0)

[20
, 5

0)

[50
, 1

00
)

[10
0,

 20
0)

[20
0,

 50
0)

[50
0,

 10
00

)

[10
00

, 2
00

0)

[20
00

, 2
44

69
2]

Keyword Frequency Range

O
b

je
ct

R
an

k
E

xe
cu

ti
o

n
 T

im
e

(s
ec

s)

0

5000

10000

15000

20000

25000

N
u

m
b

er
 o

f
ke

yw
o

rd
s

Avg(time)

Number of keywords

Figure 3.2: The number of keywords and average ObjectRank execution time on
the Wikipedia graph per frequency range (ε is fixed to 5.0E-4)

Figure 3.2 also shows the keyword frequency distribution obtained from the

Lucene text index built on the article titles. The total number of keywords in

52

the index is 698214, and the keyword frequencies follows the typical power law

distribution.

3.8.3 BinRank - Preprocessing Stage

During the BinRank preprocessing stage, we generate bins for all the key-

words in the corpus. Once the bins are constructed, we generate an MSG per

bin by executing ObjectRank on Gwiki using the union of the posting lists of the

terms in a bin as a single baseset. We first describe the performance of the bin

construction and MSG generation in Section 3.8.3, and then measure the query

result quality and the impact of two important parameters, ε and maxBinSize,

in Section 3.8.4.

Bin Construction. To measure the performance of the bin construction stage,

we examine the bin construction time and the number of bins constructed with

different maxBinSize values.

We construct bins for all terms in our Lucene index, except for the 381

most frequent terms which have posting lists longer than a system parameter

maxPostingList = 2000. Recall from Section 3.7, that such terms are deemed to

be too frequent, so we precompute their ObjectRank authority vectors individually.

This process takes 4.6 hrs.

To pack the remaining 697833 keywords into terms, we construct bins with

various maxBinSizes as shown in Figure 3.3. Notice that as maxBinSize increases,

the bin construction algorithm generates fewer bins while consuming more time.

The running time goes up because the greedy algorithm needs to try more intersec-

tions of larger sets to fill the larger bins. However, even with maxBinSize = 12000,

BinRank generates all 345 bins in only 1106 seconds. This is a small fraction of

the total preprocessing time, which is dominated by MSG construction, as we will

see next.

Note, that Wikipedia page titles are a very simple case for bin generation as

the typical document size is extremely small. We also tested the bin construction

algorithm on the full text of Wikipedia pages. In this case, the total size of the

53

maxBinSize
bin construction

time(secs)
number of

bins
number of

keywords per bin
2000 180 2107 331
4000 322 1043 669
6000 509 693 1007
8000 737 519 1345

10000 920 414 1686
12000 1106 345 2023

Figure 3.3: Performance of bin construction

posting lists in the text index was 84 million, vs. 4.8 million for titles. The

algorithm produced 6340 bins with maxBinSize 5000, performing over 4 billion

intersections. The packing process took about 70 hours.

MSG Generation. Once the bins are constructed, we generate an MSG for each

bin. For our Wikipedia dataset, we generated a comprehensive set of MSGs with

24 combinations of the two parameters, maxBinSize and ε. For each combination,

we measure the performance of BinRank, i.e. the query time and the quality of

top-k lists.

maxBinSize
num MSGs
constructed

avg MSG
construction
time (secs)

total MSG
construction

time (hrs)

avg MSG
size (MB)

total MSG
size (MB)

2000 2107 28.9 16.9 21 44253
4000 1043 40.6 11.8 42 44035
6000 693 42.6 8.2 64 44556
8000 519 46.0 6.6 85 44143
10000 414 48.0 5.5 104 43209
12000 345 50.0 4.8 127 43919

Figure 3.4: The effect of maxBinSize on the MSG construction cost (ε is fixed to
5.0E-4)

maxBinSize determines the number of bins to be constructed, and thus the

number of MSGs generated (the 2nd column in Figure 3.4). The construction time

and average size go up with the maxBinSize. Intuitively, the larger the baseset the

more objects will be related to it. And the more objects have non-trivial scores,

the more iterations it will take the ObjectRank algorithm to reach the fixpoint.

54

Figure 3.4 supports this intuition.

Notice that the total MSG construction time decreases significantly, as the

maxBinSize increases. However, the average MSG size increases at the same time,

which leads to slower query execution time. Thus, there is a clear tradeoff between

preprocessing time and query time in BinRank.

Figure 3.5 shows the effect of ε on MSG construction time and the size of

MSGs. Smaller ε implies that ObjectRank will need more iterations to reach the

convergence point, and that more nodes will have scores above the bin convergence

threshold εb =
ε

BinSize
. Thus, both construction time and MSG size decrease as the

ε increases.

epsilon
num MSGs
constructed

avg MSG
construction
time (secs)

total MSG
construction

time (hrs)

avg MSG
size (MB)

total MSG
size (MB)

2.5E-04 1043 46.5 13.5 73 75773
5.0E-04 1043 40.6 11.8 42 44035
1.0E-03 1043 38.7 11.2 25 25691
5.0E-03 1043 31.0 9.0 7 7324
1.0E-02 1043 29.0 8.4 4 4562

Figure 3.5: The effect of ε on the MSG construction cost (maxBinSize is fixed to
4000)

An interesting observation from Figures 3.4 and 3.5, is that the storage

requirements of BinRank, i.e. the total size of MSGs, is controlled by the choice

of ε and is virtually unaffected by maxBinSize. Of course, the quality of the

BinRank’s score approximations are also strongly affected by ε, as we show next.

Thus, one has to strike a balance between the quality of results and the storage

overhead. For example, BinRank produces extremely high quality results with

ε =5.0E-4. However, this setup requires 44GB of storage for MSGs, which is 50

times of the size of Gwiki . Another way to approach this tradeoff is to say, that the

amount of disk, or even better, RAM available to the system will determine the

quality of results.

As we discussed in Section 3.7, it is possible to reduce MSGs storage re-

quirements by materializing MSG nodes only and extract links at query time. The

edge extraction adds 1.5-2 seconds to the query time, but the storage requirements

55

in this case go down from 44GB to only 203MB, which is similar to the size of our

Lucene index, 154MB.

3.8.4 BinRank - Query Processing Stage

Quality Measures. For a given keyword query, BinRank generates an approx-

imate top-k list using the corresponding MSG. The exact top-k list is obtained by

executing ObjectRank on Gwiki with small ε =1.0E-4. The two lists are compared

using the same three quality measures as in [FRCS05]: RAG(relative aggregated

goodness), precision at K, and Kendall’s τ .

Let OR(kw,K) and BR(kw,K) denote the accurate top-k list by

ObjectRank and the approximate top-k list by BinRank for a given keyword kw.

In our experiments, both top-k lists are lists of Wikipedia article IDs sorted by the

authority score. Let ORScore(n, kw) denote the exact keyword-specific authority

score of a node n computed by ObjectRank.

RAG and precision measure the quality of BR(kw,K) by considering top-

k lists as sets, say ORSet(kw,K) and BRSet(kw,K). RAG is the ratio of the

aggregated exact authority scores of nodes in BR(kw,K) to scores of nodes in

OR(kw,K). Precision at K computes the ratio of the size of intersection to K.

RAG(K) =

∑

n∈BRSet(kw,K)ORScore(n, kw)
∑

n∈ORSet(kw,K)ORScore(n, kw)

Prec(K) =
|BRSet(kw,K) ∩ORSet(kw,K)|

K

Kendall’s τ , as defined in Section 3.4, compares the orderings of the top-k

lists, i.e., OR(kw,K) and BR(kw,K). It is the most stringent quality measure of

the three measures that we use. τ value of 1 means that the lists are identical, and

0 that they are disjoint or in inverse order.

Since we primarily aim to get high quality top-k lists within reasonable

amount of query time, we want to find good combinations of maxBinSize and ε for

BinRank. To tune these parameters, we compute quality measures for all 24 sets

of MSGs described above, 6 different maxBinSize values and 4 different ε values.

56

The smallest maxBinSize, 2000, is chosen to be the same as the maximum posting

list size for terms that are put into bins.

We run a workload of 92 randomly selected query terms on all of these 24

sets of MSGs.

Effect of maxBinSize on query time and quality of top-k lists using

BinRank. With ε =5.0E-4, we generated MSGs with 6 different maxBinSize

values starting from the smallest maxBinSize, 2000. Figure 3.6 shows, that query

time increases linearly as maxBinSize increases. This is because the average size

of MSGs also increases linearly as depicted in Figure 3.4. For example, when

maxBinSize is 2000, an MSG is 21MB, but it increases to 42MB if maxBinSize

increases to 4000.

0

500

1000

1500

2000

2500

3000

12000100008000600040002000

maxBinSize

T
im

e(
m

s)

epsilon=5.0E-4

epsilon=1.0E-3

epsilon=5.0E-3

epsilon=1.0E-2

Figure 3.6: The effect of maxBinSize on the BinRank running time

Next, we investigate the effects of the MSG size, which is determined by the

maxBinSize, on the accuracy of top-k lists. Figure 3.7 shows the average accuracy

of top-100 lists measured by the three goodness measures given ε =5.0E-4. First,

all the measures are in [0.95, 1] range, indicating that the quality of the top-100

lists obtained by BinRank is very good. Second, as maxBinSize increases from

2000 to 12000, the accuracy remains the same or improves very slightly. However,

57

0.8

0.85

0.9

0.95

1

2000 4000 6000 8000 10000 12000

maxBinSize

A
cc

u
ra

cy avg(RAG(100))

avg(Prec(100))

avg(Tau 100)

Figure 3.7: The effect of maxBinSize on the top-100 accuracy(ε is fixed to 5.0E-4)

we do not see a noticeable improvement on the quality of top-k lists. In contrast,

the accuracy of top-k is sensitive to ε as is shown in Figure 3.10.

Figure 3.8 illustrates the relationship between maxBinSize, ε and the ac-

curacy of top-k lists. It shows the distribution of τ5 through τ1000 with 12 combi-

nations of the parameters: all 6 different maxBinSize and 2 ε values, 5.0E-3 and

5.0E-4. One can see that the 12 line form two clusters, one for ε =5.0E-3(bottom)

and the other for ε =5.0E-4(top).

For a given ε and a set of maxBinSize values, if larger maxBinSize does not

improve quality of top-k lists in a big margin, then we do not see any good reason

to increase maxBinSize. Actually, it decreases the preprocessing time in Figure 3.4

by reducing the number of MSGs, but increases the query processing time as is

shown in Figure 3.6. For example, with ε =5.0E-4, we can see from Figure 3.4 that

the average size of MSGs is 127MB when maxBinSize = 12000, while it is 42MB

for maxBinSize = 4000. However, Figure 3.8 shows that the top-k lists generated

on these two MSGs are very similar on average. We computed standard deviations

of τ values of top-k lists with varying maxBinSize values and a fixed ε. They are

very low: stdev(τ20) = 0.00627 and stdev(τ100) = 0.00672.

However, we cannot reduce maxBinSize without considering the total MSG

construction time. One might want to construct bins with very small maxBinSize.

58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 20 30 40 50 60 70 80 90 10
0

20
0

50
0

10
00

Top-K List Size

A
cc

u
ra

cy
 (

A
ve

ra
g

e
T

au
)

6 different maxBinSize with epsilon=5E-3

6 different maxBinSize with epsilon=5E-4

Figure 3.8: The effect of maxBinSize on the top-k accuracy with fixed ε

Setting aside the accuracy issue, BinRank will construct too many bins to com-

plete MSGs construction stage in a given time budget. The extreme case is to

precompute and materialize MSGs or authority vectors for all the keywords in the

dictionary, which is infeasible especially when the size of the dictionary and the

size of the full graph are huge as in our Wikipedia dataset.

Effect of ε on query time and quality of top-k lists of BinRank. As we

observed in Figure 3.5, as ε increases, the average size of MSGs also increases. It

takes more time to generate top-k lists on a larger MSG on average as shown in

Figure 3.9.

Now, we analyze the effect of ε on the quality of top-k lists. Unlike

maxBinSize, the quality of top-k lists improves as we can see in Figure 3.10.

To measure how much an MSG covers the context of keywords in the corre-

sponding bin, we computed the RankMass coverage metric[CS07] of sets of MSGs

generated with 5 different ε values. In our experiments, we define the RankMass

of an MSG with respect to a keyword as the ratio of aggregated authority scores of

nodes in the MSG to the sum of all authority scores in Gwiki = (Vwiki , Ewiki). Let

MSG(b, e,m) denote a set of nodes in the MSG generated for a bin b with ε = e

59

0

500

1000

1500

2000

2500

3000

5.0E-041.0E-035.0E-031.0E-02
epsilon

T
im

e(
m

s)

maxBinSize=12000

maxBinSize=10000

maxBinSize=8000

maxBinSize=6000

maxBinSize=4000

maxBinSize=2000

Figure 3.9: The effect of ε on the BinRank running time

and maxBinSize = m. Let us assume, that the bin b contains a workload keyword,

kw. Then the RankMass of an MSG w.r.t. kw is: RankMass(MSG(b, e,m), kw)

=

∑

v∈MSG(b,e,m)OR(v, kw)
∑

v∈Vwiki
OR(v, kw)

We computed the average RankMass coverage of an MSG using all the

keywords in our workload, which shows how well an MSG covers the context of

keywords in the corresponding bin. As we can expect with an increasing ε, the

RankMass also increases rapidly.

For example, if we compare two sets of MSGs constructed with

maxBinSize = 4000 and maxBinSize = 6000,

avg(|MSG(b,5E-4, 12000)|) = 3 ∗ avg(|MSG(b,5E-4, 4000)|), but the average

RankMass only increases by 5.7%. The average size of MSGs ofmaxBinSize = 4000

is 1.52% of |Vwiki | while that of maxBinSize = 6000 is 4.59% of |Vwiki |. However, if
we decrease ε from 1E-3 to 5E-4, the average size of MSGs increases from 0.98%

of |Vwiki | to 1.52% of |Vwiki |, while the RankMass increases by 7.0%.

60

0.5

0.6

0.7

0.8

0.9

1.0

1.0E-02 5.0E-03 1.0E-03 5.0E-04 2.5E-04

Epsilon

A
cc

u
ra

cy
avg(RAG(100))

avg(Prec(100))

avg(tau100)

Figure 3.10: The effect of ε on the top-100 accuracy(maxBinSize is fixed to 4000)

3.8.5 BinRank for Multi-keyword Queries

In this section, we investigate the performance of BinRank for multi-

keyword queries. Given a multi-keyword query q composed of n keywords, k1 . . . kn,

BinRank first evaluates each ki over the MSG corresponding to the keyword,

MSG(ki). Then, it combines the rank scores computed over those MSGs according

to query semantics to produce the top-k list for q.

We observed from our experimental results that if a multi-keyword query

contains highly relevant keywords such as “martial” AND “arts” or “fine” AND

“performing”, BinRank assigns those relevant keywords into the same bin, and thus

evaluates those keywords using the same MSG. In this case, the top-k accuracy

of the query is higher than randomly generated multi-keyword queries. However,

if keywords composing a multi-keyword query are assigned to different bins and

the query is conjunctive, BinRank has to evaluate each keyword over different

MSGs and combine scores.We assign zero scores to nodes not in the MSG. Hence,

if a conjunctive query contains keywords whose MSGs do not overlap, BinRank

will return an empty result. However, we observed no such cases thorughout

our experiments, because certain highly popular subgraphs of Gwiki , obtain non-

negligible scores regardless of the keywords assigned to a bin.

61

We randomly generated 600 multi-keyword queries to measure the top-k

accuracy of conjunctive queries and disjunctive queries containing 2 to 4 keywords.

Throughout our experiments, we use maxBinSize = 4000 and ε =5.0E-4. We do

not report the statistics of the BinRank running time for multi-keyword queries,

because it is dominated by the running time of BinRank for each individual query

term.

Figure 3.11: The top-100 accuracy for disjunctive queries (maxBinSize = 4000 and
ε =5.0E-4)

We can see from Figure 3.11 that the top-100 accuracy of disjunctive queries

is higher than the top-100 accuracy for single-keyword queries shown in Figure 3.7

and Figure 3.10. As shown in Figure 3.8, the accuracy of a top-k list drops as K

increases, because scores of highly ranked nodes are more stable than those of the

rest. Since the top-100 list for a disjunctive query tends to include top-k nodes

(K ≤ 100) in the top-100 lists obtained over MSGs, its accuracy is at least as high

as that for single-keyword queries or slightly higher than that.

As is shown in Figure 3.12, RAG(100) and Prec(100) are above 0.9, indi-

cating that the top-100 lists obtained by BinRank include most of the nodes in

the top-100 lists generated by ObjectRank over Gwiki . However, the average τ100

for conjunctive queries remains in [0.75, 0.8] range, which is lower than those for

single-keyword queries(Figure 3.7) or disjunctive queries(Figure 3.11). Therefore,

we can see that for a given conjunctive query, BinRank generates a top-k list that

contains all the nodes in the top-k list obtained over Gwiki , but the ordering of

62

Figure 3.12: The top-100 accuracy for conjunctive queries (maxBinSize = 4000
and ε =5.0E-4)

nodes in the BinRank top-k list is not highly accurate. This is mainly because the

MSGs are not large enough to cover all the important paths through which signif-

icant amount of authority flows into or between the top-100 nodes, even though

most of the links between top-100 nodes exist on the corresponding MSGs. To

improve the top-k accuracy of conjunctive queries, we can increase the coverage of

MSGs by using smaller ε. Note that increasing maxBinSize does not improve the

top-k accuracy in a big margin as shown in Figure 3.7.

However, with smaller ε, BinRank generates larger MSGs, increasing query

execution time. Especially, we observed that some MSGs require unacceptably long

running time. Given time budget, we want to identify such MSGs and re-compute

them as described in Section 3.8.6.

3.8.6 Adaptive MSG Re-computation

In this section, we first want to examine the entire set of MSGs to under-

stand the features of MSGs. We obtain 1043 bins and then generate a set of MSGs,

M, using BinRank parameters, maxBinSize = 4000 and ε =5.0E-4. The average

number of nodes and links on an MSG is 48616 and 5.2M, which is just 1.52% of

|Vwiki | and 4.83% of |Ewiki |. Recall that Gwiki has 3.2M nodes and 109M links.

Next, to evaluate the quality of the MSGs in M, we pick a set of keywords,

63

Q, by selecting the keyword with largest frequency among the keywords assigned

to each bin. The range of keyword frequency of Q is [1, 2000]. We select the most

frequent keyword for each bin since they are very likely to result in the slowest

BinRank execution time out of all keywords in the bin, as discussed in Section 3.6.

The average BinRank execution time for queries in Q is 856ms, which is

much faster than the average ObjectRank execution time on Gwiki , 30 seconds.

However, we observe that some queries in Q require almost 2 seconds to evalu-

ate, which is sometimes not acceptable. The goal of the MSG re-computation

algorithm is to predict and prevent such cases, so that the BinRank running time

does not exceed a certain time budget, which is set to 1 second throughout these

experiments.

As we discussed in Section 3.6 the BinRank query running time depends

on the features of the query (e.g. the baseset size) and those of the corresponding

MSG (e.g. the number of nodes and the number of links). Other factors such

as the connectivity of links on an MSG and the topology of baseset nodes also

affect the BinRank running time, but they are harder to quantify, and the simple

features prove to be sufficiently good predictors.

The correlation coefficients, denoted by r, between the BinRank running

time and each of the three simple features are the followings:

• r1 = 0.564: with the number of nodes on an MSG

• r2 = 0.700: with the number of links on an MSG

• r3 = 0.459: with the baseset size of a query

r2 is noticeably higher than r1 or r3, which indicates that the number of links on

an MSG is more tightly correlated to the BinRank running time than the other

two features. Actually, since r2 is obtained from all the queries in Q and their

baseset sizes vary significantly within [1, 2000], we can see the effect of the number

of links on an MSG more clearly after reducing the effect of the baseset size. To do

it, we select a set of 292 queries with high frequency, [1000, 2000], and denote it as

Qhf . From Figure 3.13 obtained using Qhf , we can clearly observe a very strong

correlation between the number of links on an MSG and the BinRank running

64

time. With very high R2 value, the BinRank running time of a query is almost

linear in the number of links on the corresponding MSG. Also, the correlation

coefficient between the number of links on an MSG and the BinRank running time

using high frequency keywords in Qhf is 0.938, which also indicates a very strong

correlation.

Figure 3.13: The effect of the number of links on an MSG on the BinRank running
time (maxBinSize = 4000 and ε =5.0E-4). The Pearson correlation coefficient is
0.938.

By exploiting this strong correlation, we select MSGs whose BinRank run-

ning time will be above a certain time budget with high probability. As we can see

in Figure 3.14, the number of links on an MSG almost follows a normal distribution

N(µ, σ2) where µ = 5.2E6 and σ = 1.0E6. Our experiments show that among

the 1043 MSGs in M, 144 MSGs have more than (µ+ σ) links, and among them,

138 MSGs(94.4%) require more than 1sec to produce top-k lists for the largest

frequency keyword in the corresponding bin. In contrast, the probability that the

worst case BinRank running time exceeds 1sec is just 16.4% for MSGs with less

than (µ + σ) links. If we pick the MSGs with less than µ links, only 5.6% of

them spend more than 1sec to compute top-k lists in the worst case. Therefore,

by default, BinRank sets the maxMSGSize parameter to (µ+ σ), and recomputes

bins for all the MSGs with higher link counts, using the halved maxBinSize, as

described in Section 3.6. Recall from Figure 3.6 that reducing the maxBinSize

65

linearly reduces the query time, thus dramatically reducing the number of queries

running over budget.

Figure 3.14: The distribution of the number of links on an MSG (1043 MSGs
generated by using maxBinSize = 4000 and ε=5.0E-4)

In general case, maxMSGSize could be set to (µ+ xσ), where good candi-

dates for x are within [0, 1] as we can see in our experimental results. In future,

we plan to investigate optimizing x, while considering such factors as the time and

space budget for MSG generation. For example, if x = 0, we need to regenerate

about 50% of the MSGs, while we regenerate only 14% of them when x = 1.

Another approach we are planning to investigate, is to base maxMSGSize

on the actual query performance measurements. The BinRank running time also

follows a normal distribution N(µt, σ
2
t) and the time budget, 1 second in our ex-

periments, corresponds to µt + 0.58σt. Since the BinRank running time and the

number of links on an MSG are highly correlated as shown in Figure 3.13, we can

use 0.58 as x to select MSGs to regenerate.

66

3.8.7 Performance Comparison of BinRank with Monte

Carlo Method and HubRank

In this section, we present a performance comparison of BinRank over

Monte Carlo style methods and HubRank. We implemented the Monte Carlo algo-

rithm 4, “MC complete path stopping at dangling nodes”, introduced in [ALNO07]

and HubRank[Cha07] that combines a hub based approach and a Monte Carlo

method called fingerprint.

For a given keyword query, the Monte Carlo algorithm simulates random

walks starting from nodes containing the keyword. Within a specified number

of walks, it samples exactly the same number of random walks per each starting

point. The authority score of a node is the total number of visits to the node

divided by the total number of visits. Figure 3.15 shows the performance of the

Monte Carlo algorithm in terms of accuracy of top-k lists and various query times.

We used our workload keyword queries, and executed the Monte Carlo algorithm

with different total numbers of sampled walks. As the number of sampled walks

increases, the algorithm generates higher quality top-k lists, which usually takes

more time.

However, we can see that τ values in Figure 3.15 are not as high as those of

BinRank in Figure 3.7. With maxBinSize = 2000 or 4000 and ε =5E-4, BinRank

generates high quality top-k lists of τ ≈ 0.95 in 350-750ms on average as shown

in Figure 3.7 and Figure 3.9. However, according to Figure 3.15, the Monte Carlo

algorithm generates top-k lists of τ ≈ 0.70 within the same amount of time. To get

high quality top-k lists, it would take the Monte Carlo algorithm around 7 seconds

per query term, which is probably not acceptable in a online search system.

We also implemented HubRank[Cha07] in order to measure the performance

and the top-k quality over Gwiki . We selected hubs and then materialized a large

number of fingerprints, while keeping the hub set fairly focused to our experimental

query workload to save preprocessing cost. For a given keyword query, HubRank

generates the active graph of the query by expanding the baseset’s neighborhood

until bounded by hub nodes or nodes very far from the given query node. Since

Gwiki contains 3.2M nodes and 109M links, we often needed to compute many

67

0

0.2

0.4

0.6

0.8

1

5 10 20 30 40 50 60 70 80 90 10
0

20
0

50
0

10
00

Top-K List Size

A
cc

u
ra

cy
(A

ve
ra

g
e

T
au

)

avg(query time)=6905ms

avg(query time)=1034ms

avg(query time)=804ms

avg(query time)=421ms

avg(query time)=228ms

Figure 3.15: top-k accuracy of Monte Carlo algorithm with various query times

(thousands) of active vectors to answer a single query, where each active vector

is a (sparse) vector of 3.2 million numbers. Due to this requirement, for most

queries, we could not keep all the necessary active vectors in memory. The authors

of [Cha07] also reported, that their implementation ran out of memory on a few

queries, while they were running the experiments on a graph with less than a

million edges. A two orders of magnitude increase in the size of the graph made

this problem ubiquitous and prevented us from obtaining comparable results.

3.9 Conclusions

Summary. In this chapter, we proposed BinRank as a practical solution for

scalable dynamic authority-based ranking. It is based on partitioning and approx-

imation using a number of materialized subgraphs. We showed that our tunable

system offers a nice trade off between query time and preprocessing cost.

We introduce a greedy algorithm that groups co-occurring terms into a

number of bins for which we compute materialized subgraphs. Note that the num-

ber of bins is much less than the number of terms. The materialized subgraphs are

computed off-line by using ObjectRank itself. The intuition behind the approach

68

is that a subgraph that contains all objects and links relevant to a set of related

terms should have all the information needed to rank objects with respect to one

of these terms. Our extensive experimental evaluation confirms this intuition.

Future Work. For future work, we want to study the impact of other keyword

relevance measures, besides term co-occurrence, such as thesaurus or ontologies,

on the performance of BinRank. By increasing the relevance of keywords in a bin,

we expect the quality of materialized subgraphs, thus the top-k quality and the

query time, can be improved.

We also want to study better solutions for queries whose random surfer

starting points are provided by boolean conditions. And ultimately, although our

system is tunable, the configuration of our system ranging from number of bins,

size of bins, tuning of the ObjectRank algorithm itself (edge weights, thresholds)

is quite challenging, and a wizard to aid users is desirable.

To further improve the performance of BinRank, we plan to integrate Bin-

Rank and HubRank[Cha07] by executing HubRank on MSGs BinRank generates.

Currently, we use the ObjectRank algorithm on MSGs in query time. Even though

HubRank is not as scalable as BinRank, it performs better than ObjectRank on

smaller graphs such as MSGs. In this way, we can leverage the synergy between

BinRank and HubRank.

Chapter 3 was published in Proceedings of the 2009 IEEE International

Conference on Data Engineering (ICDE-2009) and will appear in IEEE Transac-

tions on Knowledge and Data Engineering 2010, Special Issue on the Best Papers

of ICDE09 (TKDE-2010). Heasoo Hwang, Andrey Balmin, Berthold Reinwald,

and Erik Nijkamp, “BinRank: Scaling Dynamic Authority-Based Search Using

Materialized SubGraphs” and its extended version. The dissertation author was

the primary investigator and author of these papers.

Chapter 4

Inverse ObjectRank: Measuring

Specificity

4.1 Introduction

Even though ObjectRank [BHP04] is an effective search method generat-

ing high recall search results(Section 2.5), ranking solely by ObjectRank can be

problematic, since general-content nodes may be ranked higher than nodes with

content specific to the query. For example, consider the publications database of

Figure 4.1, where edges denote citations (edges start from citing and end at cited

paper), and the keyword query “Sorting”. Then, using ObjectRank the “Access

Path Selection in a Relational Database Management System” paper would be

ranked highest, because it is cited by four papers containing “sorting” (or “sort”).

The “Fundamental Techniques for Order Optimization” paper would be ranked

second, since it is cited by only three “sorting” papers. This is unintuitive since

the “Access Path Selection” paper has general content while the “Fundamental

Techniques for Order Optimization” paper is more focused (specific). The lat-

ter paper should be ranked higher because it is mostly cited by “sorting” papers,

whereas the former paper is also cited by many (the three papers on the top right)

papers irrelevant to “sorting”. This lack of specificity can also be viewed as a

topic-drift problem [BH98, CJT01].

69

70

Paper
 Authors
 =“
D. Simmen
 ,
E.

Shekita
 ,
T. Malkemus
 ”

Title
=“Fundamental Techniques for

Order Optimization”

Year
=“SIGMOD 1996”

Paper
 Authors
 =“J. Claussen et al.”

Title
=“Exploiting Early
 Sorting
 and

Early Partitioning for Decision

Support Query Processing”

Year
=“VLDB Journal 2000”

Paper
 Authors
 =“J. Claussen, A.

Kemper, D. Kossmann”

Title
=“
Order-Preserving Hash

Joins:
 Sorting
 (Almost) For Free
 ”

Year
=“TechReport 1998”

Paper
 Authors
 =“P. Selinger at al.”

Title
=“Access Path Selection in a

Relational Database Management

System
 ”
Year
 =“SIGMOD 1979”

Paper
 Authors
 =“J. Vitter, M.

Wang”
Title
=“
Approximate

Computation of Multidimensional

Aggregates of Sparse Data Using

Wavelets
 ”
Year
=“SIGMOD 1999”

Paper
 Authors
 =“S. Madden at al.”

Title
=“
Continuously Adaptive

Continuous Queries over Streams
 ”

Year
=“SIGMOD 2002”

Paper
 Authors
 =“H.V. Jagadish et

al.”
Title
=“
Global Optimization of

Histograms
 ”
Year
=“SIGMOD

2001”

Paper
 Authors
 =
“
X. Wang, M.

Cherniack
 ”
Title
=“
Avoiding

Sorting
 and Grouping during Query

Processing
 ”
Year
=“VLDB 2003”

Paper
 Authors
 =“
W. Li
,
D. Gao
 ,
R.

Snodgrass
 ”
Title
=“
Skew Handling

Techniques in
 Sort
-Merge Join
 ”

Year
=“SIGMOD 2002”

Figure 4.1: Instance of a Publications Database

In this chapter, we present Inverse ObjectRank [HHP06, HHP08], a

keyword-specific metric of specificity, based on the link structure of the data graph.

In particular, given a keyword w, the Inverse ObjectRank score pw(v) of node v

shows how specific v is with respect to w. In terms of the random surfer model,

pw(v) is the probability that starting from v and following the edges on the oppo-

site direction we are on a node containing w at a specific point in time. As is the

case for ObjectRank, the random surfer at any time step may get bored and go

back to v.

Google uses (to the best of our knowledge) IR techniques based on the

content of the Web pages (e.g., document length), which ignore the link structure

of the labeled graph (i.e., the Web). Clearly, IR specificity metrics (e.g., document

length) are not adequate since a longer document may be more specific than a

shorter one for a particular query. However, IR metrics can be used in conjunction

to Inverse ObjectRank to measure specificity.

The semantic contribution of this thesis to the quality of authority-based

keyword search is evaluated using two user surveys in Section 4.5. We have im-

plemented a web interface1 to query the DBLP database (with additional link

information extracted from CiteSeer2). It allows users to combine three link-based

1available at http://www.db.ucsd.edu/ObjectRank and
http://dbir.cis.fiu.edu/BibObjectRank/

2citeseer.ist.psu.edu/

71

ranking measures, ObjectRank [BHP04], Global ObjectRank [BHP04], and Inverse

ObjectRank, in various ways by adjusting a set of calibrating parameters. The per-

formance contribution of our work, BinRank [HBRN09, HBRN10], is presented and

evaluated in Chapter 3.

Upon the essential formal background on authority search and

ObjectRank [BHP04] in Section 2.1, Section 4.2 introduces the keyword search

problem this chapter addresses. Then, in Section 4.3, we present the semantics

of Inverse ObjectRank, our novel specificity metric, as well as ways to combine it

with ObjectRank. Section 4.4 describes the system’s architecture and the online

demo. We present the results of two user surveys in Section 4.5 to demonstrate

the semantic contribution of this chapter. Furthermore, related work is discussed

in Section 4.6. Finally, we conclude in Section 4.7.

4.2 Keyword Search and Ranking Factors

In this section, the definition of the keyword search problem we address

in [HHP06, HHP08] is provided with the outline of the ranking measures. To

improve the effectiveness of link-based keyword search, we combine our new speci-

ficity measure, Inverse ObjectRank, with existing ranking measures introduced in

the ObjectRank framework [BHP04].

A keyword query q is defined as a set of keywords. The result of a key-

word query is a list of objects of the database (i.e., nodes of the data graph),

ranked according to the query. Our ranking system in [HHP06, HHP08] ranks

objects according to three desired properties listed below. Notice that there is

other non-link-based factors (e.g., IR score of individual nodes [HGP03]) that can

be incorporated in the ranking as well, but they are beyond the scope of our work.

First, we give an example that highlights the effectiveness of ranking mea-

sures we combine in [HHP06, HHP08].

Example 4.2.1. Given keyword query “sort” on the data graph of Figure 4.1 with

the authority transfer rates of Figure 2.4 and damping factor d = 0.85, a possible

result is

72

1. Authors=D. Simmen, E. Shekita, T. Malkemus. Title=“Fundamental Techniques for Or-

der Optimization”. Year=SIGMOD 1996

2. Authors=P. Selinger at al. Title=“Access Path Selection in a Relational Database Man-

agement System”. Year=SIGMOD 1979

3. Authors=X. Wang, M. Cherniack. Title=“Avoiding Sorting and Grouping during Query

Processing”. Year=VLDB 2003

4. Authors=J. Claussen et al. Title=“Exploiting Early Sorting and Early Partitioning for

Decision Support Query Processing”. Year=VLDB Journal 2000

5. Authors=J. Claussen, A. Kemper, D. Kossmann. Title=“Order-Preserving Hash Joins:

Sorting (Almost) For Free”. Year=TechReport 1998

6. Authors=W. Li, D. Gao, R. Snodgrass. Title=“Skew Handling Techniques in Sort-Merge

Join”. Year=SIGMOD 2002

Top result is ranked highest because it satisfies all three properties, even though it

does not contain the given query “sort” in its title: It is relevant to the query as

three “sort” papers cite it, of high-quality since it is cited by three papers, and

specific as only papers about “sort” cite it.

Now, we outline the three ranking factors that measure different aspects of

a dataset by exploiting the link structure of the data graph modeling the dataset.

A user can combine them in various ways to obtain effective link-based keyword

search results.

Relevance to Query: ObjectRank [BHP04]

Results that either contain the keywords of the query or are semantically associ-

ated to the keywords of the query should be ranked higher. The latter factor is

equivalent to being connected through paths on the data graph in the ObjectRank

data model, where edges correspond to semantic associations. In [BHP04], the

link-based relevance of a node v to a query w (assume a single-keyword query for

now) is the ObjectRank value rw(v) of v discussed in Section 2.4.1.

Global quality: Global ObjectRank [BP98, GSBS03, BHP04]

Results of high quality should be ranked higher. The link structure of the data

73

graph is used to measure quality. In particular, nodes with high incoming authority

flow are assumed to have higher quality. For example, a highly referenced paper

should be ranked higher than a non-referenced paper if the other ranking properties

are equal. In [BHP04], Global ObjectRank (defined in Section 2.4.1) is used, which

is an effective link-based metric to measure the global authority, that is, the quality

of a node of the data graph. The Global ObjectRank rG(u) of a node u is defined

as the probability that a random surfer starting from any node of the authority

transfer graph will be at u at a specific time. For the case of the Web, Global

ObjectRank is equivalent to PageRank [BP98], whose value has been proven by

the success of Google3.

Specificity: Inverse ObjectRank [HHP06, HHP08]

Specific results (nodes) should be ranked higher. That is, results with content

particular to the query are preferred over results with content that spans across

many topics. Previous work has not considered any link-based specificity metric.

In Section 4.3.1 we present and discuss in detail Inverse ObjectRank.

Notice that these three properties correspond to the specificity, keyword

proximity and hyperlink awareness properties respectively, defined in XRANK

[GSBS03]. The same three properties (although not explicitly enumerated) have

been used in other works as well (e.g., [BNH+02]).

4.3 Inverse ObjectRank

In this section, we formally define our new ranking metric, Inverse

ObjectRank [HHP06, HHP08], that measures the specificity of search results. To

produce effective search results for a given keyword query, users can combine In-

verse ObjectRank with existing metrics, ObjectRank and Global ObjectRank,

discussed in Section 2.4.1. Finally, in Section 4.3.3 we present and address the

challenges in combining these metrics into a ranking function.

3http://www.google.com

74

4.3.1 Inverse ObjectRank

Before presenting the specifics of Inverse ObjectRank, we explain why the

traditional IR specificity metrics are inadequate. In particular, IR metrics ignore

the link structure which makes them incomplete. For example, the document

length (dl) metric cannot distinguish between objects (nodes) of approximately

the same length, as is the case in our bibliographic database of paper titles and

author names. Traditional IR specificity metrics are complementary to Inverse

ObjectRank since they focus on the nodes of the authority flow graph, whereas

Inverse ObjectRank exploits the edges. In this work we only evaluate Inverse

ObjectRank and other alternative link-structure based specificity metrics in Sec-

tion 4.5.1.

The intuition behind Inverse ObjectRank is the following. Given a keyword

w, the ObjectRank value of a node v is the probability that a random surfer starting

from a node containing w will be at v at a specific time. v is specific with respect

to w if there is only few such keywords for which a surfer will end up on v starting

from them. That is, if the random surfer will start at v and follow the edges of

the authority transfer graph on the reverse direction, he/she should land back on

w with high probability.

The above intuition is formally defined as follows. We first need to de-

fine the inverse authority transfer graph DI(VD, E
I
D), given the authority trans-

fer data graph DA(VD, E
A
D), as follows: For every edge e(u → v) ∈ EA

D, we

create an opposite-direction edge eI(v → u) ∈ EI
D with authority flow rate

a(eI) = a(e)OutDeg(u)
InDeg(v)

. Notice that 1/OutDeg(u) is used in the calculation of a(e),

so by multiplying by OutDeg(u) this is evened out.

Given a single-keyword query q = {w}, the Inverse ObjectRank score pw(u)

of a node u is the probability that a random surfer of the inverse authority transfer

graph DI starting from u will be at a node containing w at a specific time.

Inverse ObjectRank is calculated in two steps. First, for each node v ∈ DI

we compute its connectivity4 qu(v) to u, i.e., how much authority starting from u

4This could also be called Inverse ObjectRank with respect to u. However, we avoid using
this name which we reserve for the product of the final (second) step of the computation.

75

will reach v through DI .

qu = dAIqu + (1− d)su (4.1)

where AI is the transition matrix of DI . That is, AI
ij = α(e) if there is an edge

e = (vj → vi) in DI and 0 otherwise. su = [su1, . . . , sun]
T is the base set vector

containing just u, i.e., sui = 1 if vi is u and sui = 0 otherwise. Note that the

connectivity qu(v) of a node v is equivalent to the inverse P-distance from u to v

as defined by Jeh and Widom [JW03].

Second, the Inverse ObjectRank pw(u) is computed by summing the con-

nectivities qu(v) of all nodes that contain w. That is

pw(u) =
∑

v∈S(w)

qu(v) (4.2)

where S(w) is the base set of w as defined in Equation (2.5).

Global Inverse ObjectRank p, which we do not use in our ranking func-

tion but has its own merit, is calculated by Equation 4.3. High Global Inverse

ObjectRank denotes high connectivity of a node in a way similar to hub nodes in

[Kle99].

p = dAIp+
1− d

|V | e (4.3)

where e = [1, . . . , 1]T .

Notice that Inverse ObjectRank is a keyword-specific metric of specificity,

in the same sense that ObjectRank is a keyword-specific metric of relevance.

This is the key reason why it performs superior to keyword-independent speci-

ficity heuristic metrics (including Global Inverse ObjectRank) as we show in Sec-

tion 4.5. Also notice that Inverse ObjectRank has the same convergence properties

as ObjectRank, which are described in Section 2.1.

4.3.2 Parallelisms to Information Retrieval Factors

Information Retrieval is a mature area which traditionally tackles the prob-

lem of ranking a set of documents with respect to a (typically keyword) query. On

76

the other hand, keyword search [BNH+02, ACD02, HP02, GSBS03, GSVGM98]

in data graphs and especially link-based keyword search [BP98, Hav02, Kle99]

are young research areas. In this section we discuss how the basic IR factors (in

particular, term weighting factors) correspond to properties of the data graph. In

particular, the most widely accepted metrics to rank text documents for a keyword

query are (a) the term frequency (tf), (b) the inverse document frequency (idf),

and (c) the document length (dl).

ObjectRank corresponds to the tf · idf factor because if many nodes (sim-

ilarly to tf) containing a keyword point to a node u, then the ObjectRank value

of u increases, and if few nodes are in the base set, then they have higher weight

(similarly to idf). On the other hand, Inverse ObjectRank corresponds to tf/dl

because if we imagine that the node is expanded to a supernode following the

incoming edges, then Inverse ObjectRank is proportional to the ratio of nodes in

this supernode that contain the keywords.

4.3.3 Combine Ranking Factors and Multiple Keywords

There are two levels of combining scores in our framework to reach a ranking

function for node v given a multiple-keyword query “q = {w1, . . . , wm}”. First, we
need to find the score fwi(v) (fwi(v) is the score of node v given keyword wi) of v

for every single keyword wi, and then combine these scores (and possibly Global

ObjectRank rG(v)) to compute the final score f q(v).

First, we define two alternative ways to combine ObjectRank with Inverse

ObjectRank to compute fwi(v), shown in Equations 4.4 and 4.5. The two equations

are used to boost or downplay the weight of Inverse ObjectRank, that is, of the

specificity factor in a keyword query respectively.

fwi(v) = rwi(v) · pwi(v) (4.4)

fwi(v) = rwi(v) ·
√

pwi(v) (4.5)

Alternatively, if we choose a different specificity metric (see Section 4.5)

we can replace pwi(v) in Equation 4.4 by that metric, where we also show that

Equation 4.5 typically produces superior results.

77

Second, we define the semantics of a multiple-keywords query “q =

{w1, . . . , wm}” by naturally extending the multiple-keywords random walk model.

In particular, for the case of ObjectRank we consider m independent random

surfers, where the ith surfer starts from the keyword base set S(wi). For AND

semantics, the ObjectRank of an object v with respect to the m-keywords query

is the probability that, at a given point in time, the m random surfers are simul-

taneously at v. We extend this model by substituting rwi(v) by fwi(v). Hence the

score f q(v) of node v with respect to the m keywords is

fw1,...,wm(v) =
∏

i=1,...,m

fwi(v). (4.6)

For OR semantics, the ObjectRank of v is the probability that, at a given

point in time, at least one of the m random surfers will reach v. Hence, for two

keywords w1 and w2 the model can be extended to

fw1,w2(v) = fw1(v) + fw2(v)− fw1(v)fw2(v) (4.7)

and for more than two it is defined accordingly, as specified by the inclusion-

exclusion principle (also known as the sieve principle). Notice that [Hav02] also

takes the sum of the topic-sensitive PageRank values to calculate the PageRank

of a page.

If Global ObjectRank is included in the computation, it is treated as an

additional keyword wm+1 with fwm+1(v) = rG(v).

4.4 Architecture

We have implemented a system to answer keyword queries on databases.

The user inputs (a) a set of keywords, (b) a choice for combining semantics (AND or

OR), (c) the importance of global quality of the results (i.e., Global ObjectRank),

(d) the importance of containing the actual query keywords (translated to a damp-

ing factor value d), and (e) a specificity metric (as we explain in Section 4.5). The

output of the system is a ranked list of nodes of the database (to be more formal,

of the authority transfer graph) according to the input parameters based on the

78

Figure 4.2: System Architecture.

ranking function in Equation 4.6 or 4.7 (for AND and OR semantics respectively).

The authority transfer graph is stored in a relational database using the schema

shown in Figure 2.3.

The architecture of the system, which is shown in Figure 4.2, is divided

into two stages. The preprocessing stage consists of the Authority Flow Execution

module, which inputs the authority transfer graph G to be indexed, the set of all

keywords that will be indexed, and a set of parameters. In particular these param-

eters are: (i) A set of damping factors d, that users are expected to choose from.

(ii) The convergence constant epsilon which determines when the ObjectRank and

Inverse ObjectRank algorithms converge, and (iii) The threshold value which de-

termines the minimum score that an object must have to be stored in the authority

flow index. Note that other index pruning techniques are possible [CCF+01]; how-

ever, we found that this simple uniform pruning technique performs well in our

setting.

The Authority Flow Execution module creates the authority flow index,

which is an inverted index, indexed by the keywords. For each keyword w, it stores

a list of 〈id(u), fw(u)〉 pairs for each object u that has fw(u) ≥ threshold. The

79

pairs are sorted by descending fw(u) to facilitate an efficient querying method as we

describe below. The authority flow index has been implemented as an index-based

table, where the lists are stored in a CLOB attribute. A hash-index is built on top

of each list to allow random access, which is required by the Query module. Note

that if we allow multiple combinations of calibration parameters to be selected by

the user, then we create multiple inverted indexes, one for each such combination.

The Query module inputs a set of keywords w1, . . . , wm and a set of adjust-

ing parameters, and outputs the top-k objects according to the ranking function

(Equation 4.6 or 4.7). In particular, these parameters are: (a) a choice for com-

bining semantics (AND or OR), (b) the importance of global quality of the results

(i.e., Global ObjectRank), (c) the importance of containing the actual query key-

words (translated to a damping factor value d), and (d) a specificity metric (as

we explain in Section 4.5). The keyword-specific lists read from the authority flow

index are merged using the Threshold Algorithm [FLN01] which is guaranteed to

read the minimum prefix of each list. Notice that the Threshold Algorithm is

applicable since both combining functions (Equations 4.6 and 4.7) are monotone.

Finally, the Database Access module inputs the result ids and queries the

database to get the corresponding node of the authority transfer graph. This

information is stored into an id-indexed table, that contains a CLOB attribute

value for each object id. For example, a paper object CLOB would contain the

paper title, the authors’ names, and the conference name and year.

4.4.1 Demo

We have built a demo [HHP06] on bibliographic data, which is available

online at two mirror sites5. The data was collected using the following method.

First, we downloaded all publications and citations from the DBLP database6. We

noticed that this source is missing too many citations, which greatly degrades the

quality of link-based analysis. To overcome this shortcoming, we used Citeseer7 as

an additional citations’ source. We built a web crawler to retrieve these citations

5http://www.db.ucsd.edu/ObjectRank/ and http://dbir.cis.fiu.edu/BibObjectRank/
6http://www.informatik.uni-trier.de/ ley/db/
7http://citeseer.ist.psu.edu/

80

since we found that the exported files of Citeseer are in a large degree inaccurate.

We matched papers from the two sources using their titles, which of course can

lead to few inaccurate matches.

Our demo offers to the user multiple authority flow settings, in order to

accommodate multiple user profiles/requirements. We believe the ability to cus-

tomize authority flow schemes is important, since we should not assume that “one

size fits all” when it comes to opinions about authority flow. For example, there

is one setting for users that primarily care for papers with high global importance

and another for users that primarily care for papers that are directly or indirectly

heavily referenced by papers that have the keywords. We expect that multiple

settings make sense in all non-trivial applications.

4.5 Qualitative Evaluation

The user survey investigates and compares alternative ways to incorporate

link-based specificity to keyword queries. In particular, we propose alternative

specificity metrics and also experiment with various ways to incorporate Inverse

ObjectRank in the ranking. We performed three qualitative experiments to com-

pare these alternatives: a comparison to a textbook’s bibliography, a user survey,

and a quantitative measurement of the distances between the result lists. The key

conclusion from these studies is that combining ObjectRank with the square root

of Inverse ObjectRank produces the best results.

4.5.1 Combining Specificity with Relevance and Global

Importance

We consider the following ranking functions. For each case we specify the

single keyword score fwi(v) of node v as well as the multiple keywords combining

function fw1,...,wm(v). Notice that AND semantics is used.

1. Obj ranks according to ObjectRank. fwi(v) = rwi(v) and fw1,...,wm(v) is

defined by Equation 4.6.

81

Obj ObjInv ObjOverGlobal Objd03 ObjSqrtInv

A-S A-NS A-S A-NS A-S A-NS A-S A-NS A-S A-NS

tree index 7 1 6 1 0 0 6 1 7 1

hash index 3 3 1 0 0 0 0 0 2 1

concurrency control 4 2 7 0 0 0 7 1 7 1

object databases 1 4 3 0 0 0 4 2 4 1

deductive databases 4 2 4 0 0 0 4 0 5 0

spatial databases 3 2 1 0 0 0 2 0 2 0

distributed databases 1 3 5 0 0 0 5 1 6 1

relational model 3 5 3 2 0 0 3 2 3 4

query optimization 2 3 3 1 0 0 4 2 4 2

data mining 4 1 6 0 0 0 4 0 6 0

relational algebra 3 2 2 0 0 0 3 0 2 0

AVERAGE 3.18 2.55 3.73 0.36 0 0 3.82 0.82 4.36 1

Figure 4.3: Number of Authoritative-Specific and Authoritative-Non-Specific pa-
pers according to [RG03].

2. ObjInv ranks according to the product of ObjectRank and Inverse

ObjectRank. fwi(v) is defined by Equation 4.4 and fw1,...,wm(v) by Equa-

tion 4.6.

3. ObjOverGlobal uses the inverse of Global ObjectRank as the specificity met-

ric. The assumption is that if a node has high ObjectRank, it receives it from

a wide range of nodes, and hence this node is too general. It is fwi(v) = rwi(v)

and fw1,...,wm(v) =
∏

i=1,...,m fwi(v)/rG(v)

4. Objd03 is the same as Obj but d = 0.3 (d = 0.85 when not specified). That

is, this ranking attempts to achieve specificity by limiting the authority flow

and emphasizing the nodes that contain the keywords.

5. ObjSqrtInv ranks according to the product of ObjectRank and the square

root of Inverse ObjectRank. fwi(v) is defined by Equation 4.5 and

fw1,...,wm(v) by Equation 4.6.

6. ObjOverInc uses the inverse of the number of incoming links

NumIncLinks(v) of node v as specificity metric. It is fwi(v) = rwi(v) and

fw1,...,wm(v) =
∏

i=1,...,m fwi(v)/NumIncLinks(v). NumIncLinks(v) can be

viewed as an approximation of rG(v), so this ranking can be viewed as an

approximation of ObjOverGlobal.

82

7. ObjOverInvGlobal uses the inverse of Global Inverse ObjectRank rIG(v)

as the specificity metric. It is fwi(v) = rwi(v) and fw1,...,wm(v) =
∏

i=1,...,m fwi(v)/rIG(v).

ObjOverInc and ObjOverInvGlobal were found to perform much worse than

the other ranking functions and their results are omitted for simplicity.

4.5.2 Comparison to Textbook’s Bibliography

We assume that the bibliography section of each chapter in [RG03] is a

highly credible source of references related to the chapter title. Based on this

assumption, we compare the recall (precision is the same as recall in this case) of

the top-10 papers produced by the five above ranking functions with respect to the

papers in the bibliography section of the corresponding chapter, which is viewed

as the ground truth.

We evaluated 11 queries that correspond to chapter titles of the textbook

[RG03]. For each keyword query q, let B(q) denote the set of papers in the bibli-

ography of the corresponding chapter and U(q) denote the set of papers that are

in the bibliography of the book but not of that chapter, that is, they are not in

B(q). We assume that papers in B(q) satisfy all properties of Section 4.2, that

is, they are specific to q, relevant to q and of high quality. We refer to such

papers as authoritative-specific for q. On the other hand, papers in U(q) have

high quality but are not highly relevant or specific to q, and are referred to as

authoritative-non-specific. Figure 4.3 shows the number of authoritative-specific

and authoritative-non-specific papers for each query for the five ranking functions.

Obviously, ObjOverGlobal has the worst performance according to Fig-

ure 4.3. In particular, it produces no authoritative-specific or authoritative-non-

specific papers in the top-10 results for any query. Hence, we do not consider this

metric in our discussion henceforth. Objd03, which promotes papers that contain

the actual keywords, performs well in terms of authoritative-specific results. The

reason is that because the queries in Figure 4.3 refer to fundamental areas, it

happens that many important papers contain the actual keywords.

83

Now, let’s focus on the relationship between Obj, ObjInv, and ObjSqrtInv,

which have the common property that they only involve keyword-specific computa-

tions. In terms of the number of authoritative-non-specific papers, Obj and ObjInv

are located at the two extremes. We introduced ObjSqrtInv as a ranking function

to combine the desirable properties of both ends. As expected, ObjSqrtInv has

a number of authoritative-non-specific papers that is between those of Obj and

ObjInv. However, ObjSqrtInv is superior than both Obj and ObjInv in terms of

average number of authoritative-specific papers, which is a highly desirable prop-

erty.

The intuition behind the selection of ObjSqrtInv is the following. Using

ObjInv, a too specific object may receive a high score even if it has relatively low

quality and relevance. For example, a very high quality object that happens to

be relevant to 10 keywords would be ranked equal to a 10 times lower-quality

document that is relevant to only one keyword. Hence, taking the square root of

Inverse ObjectRank serves a purpose similar to taking the logarithm of tf in IR to

avoid assigning top score to documents that repeat many times the keywords in

an adversary way. We chose square root instead of logarithm because logarithm

is sensitive to the breadth of the range of the Inverse ObjectRank values. In

particular, we observed that few nodes have very large Inverse ObjectRank values

which have orders of magnitude difference to the top ObjectRank values. Square

root is more appropriate since
√
a · c/

√
b · c does not depend on c (c > 0), whereas

log(a · c)/ log(b · c) depends on c.

On the other hand, taking the square root of ObjectRank is a bad idea,

since ObjectRank is the relevance (and quality) measure, which is the primary

ranking factor, and cannot be easily tricked (especially in controlled databases like

bibliographical). Other ways to decrease the weight of Inverse ObjectRank were

tested, like dividing (1-d) by a constant in Equation 4.1, but taking the square

root was found to perform better.

A surprising fact is that the average number of authoritative-specific papers

for Obj is high. The reason is that the textbook contains multiple general refer-

ences for each chapter, to introduce the topic to newcomers or carry very general

84

Obj ObjInv ObjOverGlobal Objd03 ObjSqrtInv

2.13 3.42 2.13 3.60 3.92

Figure 4.4: Average Ratings of the Five Specificity Metrics at the User Survey.

concepts, which would not be judged as specific by an experienced researcher. This

observation is also supported by the user survey presented below.

4.5.3 User Survey

We asked twelve users (not involved in the project), eight database pro-

fessors and four database Ph.D. students in eight different universities in the US

and abroad, to rank the top-10 result lists for the five ranking functions, for var-

ious queries. The survey consisted of 9 queries, 4 of which were chapter titles of

[RG03]. Each user/subject assigned a score between 1 and 5 to each result list

for the queries/topics he/she feels comfortable with. Also, the user can specify

his/her level of expertise for each topic, which is then used to weight the rat-

ing when computing average numbers. We explained to the users what is meant

by authoritative-specific as opposed to authoritative-non-specific by providing the

following scenario, and we asked them to evaluate according to the former.

Survey Scenario: Let us assume you are a professor and you need

to give a reading list to a first year graduate student who starts re-

search on a topic, say “XML database storage”. Being a first year

student, he/she likely has no background knowledge on database is-

sues pertaining to XML and semistructured data in general. In this

case, you may want to provide an authoritative papers list where it

is OK (indeed desirable) to include a few seminal papers on XML

and semistructured databases, even though they may not be related

to storage in particular. Such seminal papers are a good starting point

for the student. These papers are authoritative-non-specific papers.

Instead, our survey asks for authoritative-specific papers. Now as-

sume that you produce a reading list for someone (perhaps yourself)

85

0

2000

4000

6000

8000

10000

12000

5
 10
 20
 50
 100

k

K
e
n
d
a
l
l

T
a
u

d
i
s
t
a
n
c
e

Obj vs. ObjInv
 Obj vs. ObjSqrtInv
 ObjInv vs. ObjSqrtInv

Obj vs. Objd03
 ObjInv vs. Objd03

Figure 4.5: Compare Results’ Distances.

who already knows the basics of XML databases and of conventional

(relational) storage systems. You now care about the specific papers

in XML storage, in particular.

The average ratings are shown in Figure 4.4. We observe that ObjSqrtInv

has the highest average rating, which is consistent with our expectation that Ob-

jSqrtInv outperforms other metrics because of its balance between authority and

specificity. We also see that Obj, which lacks a specificity factor, received low rat-

ings in contrast to Figure 4.3, where it received a high score due to the reasons

mentioned above.

Surprisingly, Objd03 received a high average rating, although setting d =

0.3 greatly degrades the authority flow factor and promotes results that contain

the actual keywords. The reason of the high average rating is that some subjects

did not have knowledge of the best papers for a topic and instead they seem to

have judged by the titles of the papers and the presence of the keywords in them.

86

4.5.4 Distance Between Specificity Metrics

In this experiment, we perform a quantitative comparison between the

above ranking functions using the Kendall Tau distances between the generated

result lists. Since the two top-k lists are not permutations of each other, we use

the extended Kendall Tau definition of Fagin et al. [FKS03]. The average Kendall

Tau distances between the most interesting pairs of ranking functions over 100

queries are shown in Figure 4.5, as a function of the lists length k. Notice that as

expected, there is a large distance between Obj and ObjInv but a smaller distance

between Obj and ObjSqrtInv. We do not include the distance between Obj and

ObjOverGlobal since their results are often disjoint hence resulting in very large

distances.

4.6 Related Work

We first present how state-of-the-art works rank the results of a keyword

query, using traditional IR techniques and exploiting the link structure of the data

graph. Then we discuss about related work on the performance of link-based

algorithms.

Traditional IR ranking. Currently, all major database vendors offer tools

[Ora06, DB206, MSD06] for keyword search in single attributes of the database.

That is, they assign a score to an attribute value according to its relevance to the

keyword query. The score is calculated using well known ranking functions from

the IR community [Sal89], although their precise formula is not disclosed. Recent

works [BNH+02, HP02, HPB03, ACD02] on keyword search on databases, where

the result is a tree of objects, either use similar IR techniques [BNH+02], or use the

simpler boolean semantics [HP02, HPB03, ACD02], where the score of an attribute

is 1 (0) if it contains (does not contain) the keywords.

The first shortcoming of these semantics is that they miss objects that are

very related to the keywords, although they do not contain them (Section 2.2).

The second shortcoming is that the traditional IR semantics are unable to mean-

87

ingfully sort the resulting objects according to their relevance to the keywords. For

example, for the query ”XML”, the paper [GNY+02] on Quality of Service that

uses an XML-based language, would be ranked as high as a classic book on XML

[ASB00]. Again, the relevance information is hidden in the link structure of the

data graph.

As we discuss in Section 4.3.2, the most popular specificity metric in Infor-

mation Retrieval is the document length (dl). As an example, a state-of-the-art

IR ranking function is [Sin01]:

Score(ai, Q) =
∑

w∈Q∩ai

1 + ln(1 + ln(tf))

(1− s) + s dl
avdl

· lnN + 1

df
(4.8)

where, for a word w, tf is the frequency of w in the document D, df is the

number of documents in the database containing word w, dl is the size of D in

characters, avdl is the average document size, N is the total number of documents

in the database, and s is a constant (usually 0.2). Croft [Cro00] and Craswell et

al. [CRZT05] present techniques on combining ranking factors.

Link-based semantics. In [BHP04], Balmin et al. introduced the ObjectRank

metric. This work completes [BHP04] in the following ways. The specificity factor

is handled and evaluated, in contrast to [BHP04] where the specificity factor is

ignored. Inverse ObjectRank is introduced and qualitatively evaluated. Further-

more, in this work we clearly identify the ranking factors (relevance, specificity and

global importance) and map them to authority flow metrics. Moreover, we explain

these authority flow metrics from the perspective of information theory. We also

elaborate on the combining ranking function and study techniques to weigh the

query keywords. Finally, we enriched the demo available on the Web by adding

adjusting parameters, and including the whole DBLP dataset and citations from

Citeseer, in contrast to [BHP04] where a small subset of DBLP was used.

Spreading activation techniques [Pre81, SB88] can be seen as earlier prece-

dents of link-based semantics in that they performed search by controlling the

propagation of node scores through associative networks. To the best of our knowl-

edge, Savoy [Sav92] was the first to use the link structure of the Web to discover

relevant pages. This idea became more popular with PageRank [BP98], where a

88

global score is assigned to each Web page as we explain in Section 2.1. However,

directly applying the PageRank approach in our problem is not suitable as we

explain in Section 2.2. HITS [Kle99] employs mutually dependent computation of

two values for each web page: hub value and authority. In contrast to PageRank,

it is able to find relevant pages that do not contain the keyword, if they are directly

pointed by pages that do. However, HITS does not consider domain-specific link

semantics and does not make use of schema information. The relevance between

two nodes in a data graph can also be viewed as the resistance between them in

the corresponding electrical network, where a resistor is added on each edge. This

approach is equivalent to the random walk model [DS84].

Richardson et al. [RD02] propose an improvement to PageRank extending

the work of Bharat and Henzinger [BH98], where the random surfer takes into

account the relevance of each page to the query when navigating from one page

to the other. However, they require that every result contains the keyword, and

ignore the case of multiple keywords. Haveliwala [Hav02] proposes a topic-sensitive

PageRank, where the topic-specific PageRanks for each page are precomputed and

the PageRank value of the most relevant topic is used for each query. Both works

apply to the Web and do not address the unique characteristics of structured

databases, as we discuss in Section 2.2. Furthermore, they offer no adjusting

parameters to calibrate the system according to the specifics of an application.

Recently, the idea of PageRank has been applied to structured databases

[GSBS03, HXY03]. XRANK [GSBS03] proposes a way to rank XML elements us-

ing the link structure of the database. Furthermore, they introduce a notion similar

to our ObjectRank transfer edge bounds, to distinguish between containment and

IDREF edges. Huang et al. [HXY03] propose a way to rank the tuples of a re-

lational database using PageRank, where connections are determined dynamically

by the query workload and not statically by the schema. However, none of these

works exploits the link structure to provide keyword-specific ranking. Furthermore,

they ignore the schema semantics when computing the scores.

Geerts et al. [GMT04] use a set of queries to rank the values of a relational

database using authority flow semantics. TrustRank [GGMP04] uses the idea of

89

Global Inverse PageRank as a heuristic for a completely different purpose than

specificity. In particular, they use it to find well connected pages to use as seeds

in their algorithms.

Performance. A set of works [Hav99, CGS02, JW03, KHMG03] have tackled the

problem of improving the performance of the original PageRank algorithm. [Hav99,

CGS02] present algorithms to improve the calculation of a global PageRank. Jeh

and Widom [JW03] present a method to efficiently calculate the PageRank values

for multiple base sets, by precomputing a set of partial vectors which are used in

runtime to calculate the PageRanks. The key idea is to precompute in a compact

way the PageRank values for a set of hub pages, through which most of the random

walks pass. Then using these hub PageRanks, calculate in runtime the PageRanks

for any base set consisting of nodes in the hub set. However, in our case it is not

possible to define a set of hub nodes, since any node of the database can be part

of a base set.

4.7 Conclusions

In this chapter, we presented Inverse ObjectRank, which is a link-based

and keyword-specific specificity metric. We showed how Inverse ObjectRank is

combined with other ranking measures to produce the results list for a keyword

query. Our methods have been qualitatively evaluated using a user survey and

the bibliography sections of a database textbook. We concluded that combining

ObjectRank with the square root of Inverse ObjectRank produces results of highest

quality. Furthermore, we built a prototype of our methods on a bibliographic

database, which we made available on the Web.

Chapter 4 was published in Proceedings of the 2006 ACM SIGMOD in-

ternational conference on Management of data (SIGMOD-2006), pp 796-798 and

ACM Transactions on Database Systems 2008, 33(1) (TODS-2008). Heasoo

Hwang, Vagelis Hristidis, and Yannis Papakonstantinou, “ObjectRank: a system

for authority-based search on databases” and Vagelis Hristidis, Heasoo Hwang,

90

and Yannis Papakonstantinou, “Authority-based keyword search in databases”.

The dissertation author and Vagelis Hristidis were the primary investigators and

authors of these papers.

Chapter 5

Summary and Conclusions

In this dissertation, we aimed at supporting efficient and effective keyword

search functionality over graph-structured data by exploiting the semantic connec-

tions between data objects.

We first addressed the performance issue of dynamic authority-based rank-

ing methods such as personalized PageRank and ObjectRank. To improve the

query execution time required to compute query-specific relevance scores for top-

K keyword search, we introduced a novel approach, BinRank, that approximates

dynamic link-based ranking scores efficiently by using a number of materialized

subgraphs. It partitions a dictionary into bins of relevant keywords and then con-

structs materialized subgraphs (MSGs) per bin in preprocessing stage. We sug-

gested a greedy algorithm that groups co-occurring terms into a number of bins

for which we compute materialized subgraphs. The materialized subgraphs are

computed off-line by using ObjectRank itself. The intuition behind the approach

is that a subgraph that contains all objects and links relevant to a set of related

terms should have all the information needed to rank objects with respect to one of

these terms. Our extensive experimental evaluation confirms this intuition. Since

the number of bins is much less than the number of terms, the preprocessing stage

of BinRank is performed efficiently. In query time, to produce highly accurate top-

K results efficiently, BinRank uses the MSG corresponding to the given keyword,

instead of the original data graph. We showed that our tunable system offers a

nice trade-off between query time and preprocessing cost.

91

92

Then, we presented Inverse ObjectRank, which is a link-based and keyword-

specific specificity metric. PageRank and ObjectRank calculate the global impor-

tance score and the query-specific authority score of each node respectively by

exploiting the link structure of a given data graph. However, both measures fa-

vor nodes with high in-degree that may contain popular yet generic content, and

thus those nodes are frequently included in top-K lists, regardless of given query.

Inverse ObjectRank measures the content-specificity of each node by traversing

the semantic links in the data graph in the reverse direction. We built a proto-

type of our methods on a bibliographic database, which we made available on the

Web. We allowed users to adjust the importance of the three ranking measures

(global importance, query-relevance, and content-specificity) to improve the qual-

ity of search results. We showed how Inverse ObjectRank is combined with other

ranking measures to produce the results list for a keyword query. Our methods

have been qualitatively evaluated using a user survey and the bibliography sec-

tions of a database textbook. Our experimental evaluation showed that combining

ObjectRank with the square root of Inverse ObjectRank produces results of highest

quality.

Bibliography

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer:
A System For Keyword-Based Search Over Relational Databases.
ICDE, 2002.

[ALNO07] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte
carlo methods in PageRank computation: When one iteration is suf-
ficient. SIAM J. Numer. Anal., 45(2):890–904, 2007.

[ASB00] Serge Abiteboul, Dan Suciu, and Peter Buneman. Data on the Web :
From Relations to Semistructured Data and Xml. Morgan Kaufmann
Series in Data Management Systems, 2000.

[BdJKT05] Jeremy T. Bradley, Douglas V. de Jager, William J. Knottenbelt, and
Aleksandar Trifunovic. Hypergraph partitioning for faster parallel
PageRank computation. In EPEW/WS-FM, pages 155–171, 2005.

[BH98] Krishna Bharat and Monika R. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. In SIGIR, 1998.

[BHP04] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou.
ObjectRank: Authority-based keyword search in databases. In
VLDB, 2004.

[BHR+07] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis,
and Rainer Gemulla. On synopses for distinct-value estimation under
multiset operations. In SIGMOD, pages 199–210, 2007.

[BNH+02] G. Bhalotia, C. Nakhey, A. Hulgeri, S. Chakrabarti, and S. Sudar-
shan. Keyword Searching and Browsing in Databases using BANKS.
ICDE, 2002.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hy-
pertextual web search engine. Computer Networks, 30(1-7):107–117,
1998.

93

94

[CA06] Soumen Chakrabarti and Alekh Agarwal. Learning parameters in en-
tity relationship graphs from ranking preferences. In ECML/PKDD,
volume 4213 of LNCS, 2006.

[CCF+01] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael
Herscovici, Yoelle S. Maarek, and Aya Soffer. Static index pruning
for information retrieval systems. In ACM SIGIR, 2001.

[CDG+98] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and
S. Rajagopalan. Automatic resource compilation by analyzing hyper-
link structure and associated text. In WWW, 1998.

[CGS02] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques for computing
PageRank. CIKM, 2002.

[Cha07] Soumen Chakrabarti. Dynamic personalized PageRank in entity-
relation graphs. In WWW, 2007.

[CJT01] Soumen Chakrabarti, Mukul Joshi, and Vivek Tawde. Enhanced
topic distillation using text, markup tags, and hyperlinks. In SIGIR,
2001.

[Cro00] W. Bruce Croft. Combining Approaches to Information Retrieval.
Advances in Information Retrieval: Recent Research from the CIIR,
Kluwer, Chapter 1, 2000.

[CRZT05] Nick Craswell, Stephen E. Robertson, Hugo Zaragoza, and Michael J.
Taylor. Relevance weighting for query independent evidence. In SI-
GIR, 2005.

[CS07] Junghoo Cho and Uri Schonfeld. Rankmass crawler: A crawler with
high PageRank coverage guarantee. In VLDB, 2007.

[DB206] http://www.ibm.com/software/data/db2/extenders/textinformation/
index.html. 2006.

[DDF+90] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K.
Landauer, and Richard Harshman. Indexing by latent semantic
analysis. Journal of the American Society for Information Science,
41:391–407, 1990.

[DEGP98] S. Dar, G. Entin, S. Geva, and E. Palmon. DTL’s DataSpot:
Database Exploration Using Plain Language. VLDB, 1998.

[DS84] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks.
Mathematical Association of America, Washington, D. C., 1984.

95

[FKS03] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k lists.
In Procs.ACM-SIAM Symposium on Discrete Algorithms (SODA),
2003.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation
Algorithms for Middleware. ACM PODS, 2001.

[FRCS05] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós.
Towards scaling fully personalized PageRank: Algorithms, lower
bounds, and experiments. Internet Mathematics, 2(3):333–358, 2005.

[GGMP04] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating Web
Spam with TrustRank. VLDB, 2004.

[GJ85] Michael R. Garey and David S. Johnson. A 71/60 theorem for bin
packing. Journal of Complexity, 1:65106, 1985.

[GMT04] Floris Geerts, Heikki Mannila, and Evimaria Terzi. Relational link-
based ranking. VLDB, 2004.

[GNY+02] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu. An XML-
based Quality of Service Enabling Language for the Web. Journal of
Visual Languages and Computing 13(1): 61-95, 2002.

[GSBS03] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked Keyword Search over XML Documents. ACM SIGMOD,
2003.

[GSVGM98] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-
Molina. Proximity Search in Databases. VLDB, 1998.

[Hav99] Taher H. Haveliwala. Efficient computation of
PageRank. Technical report, Stanford University
(http://www.stanford.edu/∼taherh/papers/efficient-pr.pdf), 1999.

[Hav02] Taher H. Haveliwala. Topic-sensitive PageRank. In WWW, 2002.

[HBPR07] Heasoo Hwang, Andrey Balmin, Hamid Pirahesh, and Berthold Rein-
wald. Information discovery in loosely integrated data. In SIGMOD,
2007.

[HBRN09] Heasoo Hwang, Andrey Balmin, Berthold Reinwald, and Erik Ni-
jkamp. BinRank: Scaling dynamic authority-based search using ma-
terialized subgraphs. In ICDE, 2009.

96

[HBRN10] Heasoo Hwang, Andrey Balmin, Berthold Reinwald, and Erik Ni-
jkamp. BinRank: Scaling dynamic authority-based search using ma-
terialized subgraphs (extended version). To appear in IEEE Transac-
tions on Knowledge and Data Engineering (Speical Issue on the Best
Papers of ICDE 2009), 2010.

[HGP03] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-Style
Keyword Search over Relational Databases. VLDB, 2003.

[HHP06] Heasoo Hwang, Vagelis Hristidis, and Yannis Papakonstantinou.
ObjectRank: a system for authority-based search on databases. In
SIGMOD, 2006.

[HHP08] Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou.
Authority-based keyword search in databases. ACM Trans. Database
Syst., 33(1), 2008.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Key-
word Search in Relational Databases. VLDB, 2002.

[HPB03] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Prox-
imity Search on XML Graphs. ICDE, 2003.

[HXY03] A. Huang, Q. Xue, and J. Yang. TupleRank and Implicit Relationship
Discovery in Relational Databases. WAIM, 2003.

[JW03] Glen Jeh and Jennifer Widom. Scaling personalized web search. In
WWW, 2003.

[Ken55] M.G. Kendall. Rank Correlation Methods. NewYork: Hafner Pub-
lishing Co., 1955.

[KHMG03] Sepandar Kamvar, Taher H. Haveliwala, Christopher Manning, and
Gene Golub. Extrapolation Methods for Accelerating PageRank
Computations. WWW Conference, 2003.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. Journal of the ACM 46, 1999.

[MCN06] Einat Minkov, William Cohen, and Andrew Ng. A graphical frame-
work for contextual search and name disambiguation in email. In Pro-
ceedings of TextGraphs: the First Workshop on Graph Based Methods
for Natural Language Processing, pages 1–8, 2006.

[Min07] Einat Minkov. Learning to rank typed graph walks: Local and global
approaches. In WebKDD/KDD-SNA workshop, 2007.

97

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, United Kingdom, 1995.

[MSD06] http://msdn.microsoft.com/library/. 2006.

[NZWM05] Zaiqing Nie, Yuanzhi Zhang, Ji-Rong Wen, and Wei-Ying Ma.
Object-level ranking: bringing order to web objects. In WWW, pages
567–574, 2005.

[Ora06] http://technet.oracle.com/products/text/content.html. 2006.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank citation ranking: Bringing order to the web. In Tech-
nical report, Stanford University, 1998.

[Pre81] Scott Everett Preece. A spreading activation network model for in-
formation retrieval. PhD thesis, Champaign, IL, USA, 1981.

[RD02] M. Richardson and P. Domingos. The Intelligent Surfer: Proba-
bilistic Combination of Link and Content Information in PageRank.
Advances in Neural Information Processing Systems 14, MIT Press,
2002.

[RG03] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. Third Edition. McGraw-Hill Book Co, 2003.

[Sal89] Gerard Salton. Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. Addison Wes-
ley, 1989.

[Sav92] Jacques Savoy. Bayesian inference networks and spreading activa-
tion in hypertext systems. Information Processing and Management,
28(3):389–406, 1992.

[SB88] G. Salton and C. Buckley. On the use of spreading activation meth-
ods in automatic information. In SIGIR ’88: Proceedings of the 11th
annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 147–160, New York, NY,
USA, 1988. ACM.

[Sin01] Amit Singhal. Modern information retrieval: a brief overview. IEEE
Data Engineering Bulletin, Special Issue on Text and Databases,
24(4), December 2001.

[SKI08] Alkis Simitsis, Georgia Koutrika, and Yannis Ioannidis. Précis: from
unstructured keywords as queries to structured databases as answers.
The VLDB Journal, 17(1):117–149, 2008.

