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Abstract

Control and Optimization of Power Systems with Renewables:
Voltage Regulation and Generator Dispatch

by

Baosen Zhang

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor David Tse, Chair

The electric power system is undergoing dramatic transformations due to the emergence of
renewable resources. However, integrating these resources into the electric grid has proven
to be difficult for two main reasons: these resources are uncertain and distributed. This
thesis discusses how uncertainty and distributedness of the new resources are manifested as
challenges in time and spatial scales, and how we can optimally control the power grid to
overcome these challenges.

The theme of this thesis is that in order to control the new resources, we need a better
understanding of the physical power flow in the system. To illustrate the spatial-scale chal-
lenge, we consider the voltage regulation problem for distribution networks. With a deep
penetration of distributed energy resources the voltage magnitudes in a distribution system
can fluctuate significantly. To control these resources such that voltage profiles remain flat,
we need to coordinate the tens of thousands of households in the distribution network. By
studying the geometry of power flows in the network, we show that even though the volt-
age regulation problem is non-convex, it can be convexified exactly through a semidefinite
relaxation . Based on this insight, we an optimal and decentralized algorithm for this prob-
lem. Only communication between electrical neighbors are required in the algorithm, thus
allowing it to scale to problem of large sizes.

The second problem we consider is dispatching generators in the transmission network
under deep penetration of wind power. Because of on/off and ramp-rate constraints, tradi-
tional generators need to be dispatched before the actual time of delivery of energy. On the
other hand, wind power cannot be dispatched and is difficult to predict in advance. This
creates a mismatch in time-scale between the controls (traditional generators) and the ran-
domness in the system (wind). We capture this challenge as a two-stage stochastic dispatch
problem. In contrast to the standard Monte Carlo solutions, we show that the dimensional of
the problem can be reduced dramatically by using forecast informations. This dimensional
reduction is based on a better understanding of congested DC optimal power flow problems.
Using this reduction, we show how to calculate the optimal reserve margin for the system in
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the presence of renewables, and quantify the intrinsic impact of uncertainties on the system
cost.
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Chapter 1

Introduction

The modern electric power system is one of the monumental engineering achievements of
the twentieth century [2]. It is a vast system of interconnected machines that transfer
electricity to the end consumers with a remarkable degree of reliability.1 Yet, the power
system is undergoing a dramatic transformation, both in structure and functionality. This
transformation is mainly due to the emergence of a diverse range of variable generations
sources, from large scale wind farms to rooftop photovoltaics (PVs). This emergence is
driven by the society’s desire for a more sustainable and efficient energy portfolio, often
manifested as policy initiatives from various levels of government. For example, the state
of California has three ambitious goals : 1) generating 33% of the state’s electricity by
renewables in 2030 [4]; 2) 3 GW of household solar capacity in 2017 [5]; and 3) 1.5 million
electrical vehicles by 2025 [6]. Similar targets have been put in place by many other states
and countries as well.

To achieve the goals set out by the various initiatives, variable renewable resources need
to be integrated into the power system. This integration has proven to be non-trivial for
two main reasons: the uncertain and distributed natures of these resources. These are the
main difficulties since they cannot be accommodated by current operating practices, and we
must design new control strategies. To describe current practices, we give a brief overview
of the electricity grid. The US grid is shown in Fig. 1.1 and can be decomposed into two
layers. The top layer is a meshed network that connects large generators to substations,
and the bottom layer is a network that delivers electricity from the substations to the end
consumers of electricity. These layers are called the transmission and distribution networks,
respectively.

Currently, the main controls in the power system are the traditional generators (for ex-
ample, coal, nuclear, hydro and gas plants) in the transmission network. These generators
are committed and dispatched to serve the loads in the system, usually at one day ahead
of actual time of operation because of on/off and ramping constraints of the generators.

1The planning criteria is a customer should experience no more than one hour of outage every ten years.
In practice, the average US consumer experiences about 2.5 hours of blackout a year, and the average outage
duration has been increasing recently because of an aging infrastructure [3].
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(a) The US Transmission Network

F
ee
d
er

1

2

6
4

7
5

9

8

11

3

10

16

121315

14

17

18

19

20

57 58 59 60 61 62

21

24

26

28

29

30 31 32

2223

25

27

3334

37 35

36

41 40 42 43
38

44

46

48

51 53 54 55 56

39

45

47

49

52
50

65 64

66 72

63

67

68

6970

71

103

108

109

113

116

117

99100

101

94959697

102

73

78

82

74
75

76
77

79
80

81

104
105

106
107

110
111

112114
115

118

119120 121 122 123

83

9293

98
86

87

88 89

90

9185
84

Load Bus System Bus

(b) Example of a Distribution Network

Figure 1.1: The transmission and distribution networks. Transmission networks have a
meshed topology and operate above 100 KV; distribution networks have a tree topology and
operate at much lower voltages.

The loads are the substations, that is, they are aggregations of households and industrial
customers. The uncertainty nature of renewable resources means that they cannot be dis-
patched, that is, a wind farm cannot guarantee its output ahead of time since it is inherently
stochastic. On the other hand, rest of the of the traditional (dispatchable) generators have
limited ramp rates and cannot adaptively change their output to accommodate the changes
in renewable output levels. Therefore, here is a mismatch between the timescale of control
and the time scale of the randomness in the system.

The distribution network is largely ignored in real-time operations today because there
is essentially nothing to control and optimize in the current distribution network. However,
with the emergence of rooftop PVs and electric vehicles (EVs), each customer could be a
point of control. In contrast to traditional generators, the new resources in the distribution
network are controlled by their power electronics, which can respond in a time-scale of
microseconds. Therefore the resources can adapt to the changes in the grid (e.g. solar
radiation variation, which occurs on a minute-by-minute scale). The challenge in control is
in the spatial-scale, since the resources are distributed over the entire network, which could
contain tens of thousands of households.

The topic of this thesis is to optimally control the resources in the electricity grid under
deep penetration of renewables. To illustrate the challenge in the spatial-scale, we focus
on the voltage regulation problem, which is fundamental to the operation of distribution
networks; to illustrate the challenges in the time-scale, we look at the stochastic dispatch
of generators. Both problem can be written as optimization problems, with the former
being non-convex and the latter being a high-dimensional stochastic dynamic programming
problem. A central theme of this thesis is: in order to solve the optimization problem brought
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on by the renewable resources, a better understanding of the fundamentals of power flow is
needed. By developing fundamental insights into power flows, we show how both problem
can be solved optimally and efficiently.

1.1 Problem Descriptions

1.1.1 Power Flows

Each connected power system is synchronized to a single operating frequency2, and the
voltage and current are sinusoids at this frequency; therefore, they are described by complex
phasors. The interaction of voltage drops, current flows and complex power are determined
by Kirchoff’s first and second laws and Ohm’s law [7]. Given a power system with n-buses,
the physical laws can be summarized into one system of equations as:

i = Yv (1.1a)

s = v ⊙ conj(i), (1.1b)

where v, i, s ∈ C
n are the voltage, current and complex power injections, respectively; Y

is the bus admittance matrix; ⊙ is the component-wise produce (Hadamard product) and
conj(·) is the conjugate operator.

The real part and imaginary parts of the complex power is called active power and
reactive power, labelled as p ∈ R

n and q ∈ R
n, respectively. In practice, the possible values

of active and reactive powers are restricted by the operational constraints in te system.
For example, the voltage magnitude are constraint to be within a narrow range around a
nominal value; the current magnitude cannot exceed thermal thresholds on the transmission
lines; and complex powers are constrained at the buses. The set of all possible active power
injection vectors is called the feasible injection region, denoted by P .

Many of the problem in power system engineering can be cast as an optimization problem
over P . The most basic and the best known problem is perhaps the optimal power flow
problem (OPF) in (1.2), which seeks the minimize some cost function over the set of all
feasible power injections.

minimize Cost(p) (1.2a)

subject to p ∈ P . (1.2b)

We focus on the active powers rather than the reactive powers since cost is mainly a function
of active, rather than reactive powers. The reason is that active power can do work and
has unit of watt; on the other hand, reactive power cannot do work, so it has a unit of
volt·ampere. For example, the electricity bill of residential customers is specified in dollars
for kilowatt. This does not mean that reactive powers are not important to the operation

2North American grid operates at 60 Hz and European grid operates at 50 Hz. Some countries, such as
Japan, have two separate grid operating at each of the frequencies, respectively.
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of power systems, rather, we model reactive power as constraints that affect P , but not the
objective function. 3

Understanding P is critical to solving OPF and related problems. For general networks,
P is a complicated region in R

n that is not convex, and therefore (1.2) is not a convex
problem. For transmission networks, P is often approximated to be a polytope via the DC
power flow approximation (see Section 2.7 for details). This approximation is insufficient for
our purposes. In the distribution network, due to high R/X ratios and the importance of
reactive power constraints, the DC approximation is not useful. For stochastic dispatch, DC
power flow linearizes the problem, but the resulting stochastic program can have thousands
of constraints.

1.1.2 Voltage Regulation

With the emergence of distributed energy resources (DERs) such as rooftop PV, controlling
and optimization in the distribution network becomes critical to the reliable operation of
the grid. One of the most important operational constraints in the distribution network is
to keep the voltage magnitudes close to their reference values; and it is known that voltage
magnitudes could be severely perturb by the active injections from DERs.

The voltages can be regulated by altering the active power injections of the DERs, but
such changes are likely to be small. For example, a customer may agree to reduce the
output of his/her rooftop solar unit by 5% to help the neighbor, but a reduction of 50%
would be unlikely. Therefore instead of active power injections, the main control knobs are
the reactive power injections provided by the power electronics on the DERs. The voltage
regulation problem can be written as an OPF, where the injection region P is determined
by: voltage, active power and reactive power constraints. A common objective function is
the system loss, but other functions can be used.

The resulting OPF is not convex and is large-scale. In particular, because of the lack of
communication infrastructure in the network, the problem need to be solved in a decentral-
ized fashion.

1.1.3 Generator Dispatch

Uncertainty mainly impact the scheduling of resources in the power system. Since most
of traditional generator have on/off time constraints and limited ramping capabilities, they
must be scheduled some time ahead of the actual time of electricity delivery. In North
American, this is typically done one day-ahead (24 hours) of the actual time of operations.
Currently, the main source of uncertainty is load, which can be predicted within 1%. Because
of accurate forecasting, the scheduling of resources is solved as a deterministic OPF problem.
On the other hand, wind is much more difficult to predict than load, with the state of art

3There are some situations where reactive power are explicitly optimized, see [8] and the references
within.
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forecast error being around 20% at day ahead. Under high wind penetration levels, the
problem of generator scheduling can no longer be treated as deterministic.

The stochastic dispatch problem becomes a multi-period dynamic programming problem,
where the traditional generator settings must be determined before the realization of the
random renewable output levels are known. Curse of dimensionality becomes a major concern
since typical power networks can include thousands of buses and more than ten thousand
transmission lines.

1.2 Previous Works

1.2.1 Power Flow

Power flow has been studied since the 1930’s. Earlier studies were done using dc network
analyzer [9,10], in which the current flow was proportional to the power flow. Mathematically,
this represent a linearization of the power flow equations in (1.2) and is called the DC power
flow4 (for example, see [11] and the references within). The optimal power flow problem
was proposed by [12], and have received a tremendous amount of attention since then (for
example, see [13–15] for surveys).

Despite the amount of research effort, OPF remains a challenge. In practice, it is gen-
erally solved using Newton-type method, which convergences to a local optimum (although
convergence is not guaranteed). Some non-iterative methods have been proposed [16, 17],
which may have wider radius of convergences compared to the Newton-type methods.

Relaxation methods are another class of algorithm for OPF. These algorithm converts
the non-convex OPF to a convex problem through different types of relaxations. For general
networks, Lagrangian dual relaxations was proposed in [18,19], conic relaxation was proposed
in [20], and semidefinite programming (SDP) relaxation relaxation was proposed in [21]. The
SDP relaxation technique was explored in-depth in [22] to show that the relaxation is tight
for the IEEE benchmarks in [23].5 Since the relaxations are convex, they can be solved by
Newton or interior point methods in polynomial time [25]. However, the optimal solutions
of relaxations are not necessarily feasible for the original OPF problem, and therefore may
not be physically meaningful.

1.2.2 Voltage Regulation

In the distribution network, voltage is currently regulated through tap-changing under-load
transformers, set voltage regulators, and fixed/switched capacitors. While these devices–
whose operations are of mechanical nature– are effective in managing slow variations (on
the time-scale of hours) in voltage, their lifetime could be dramatically reduced from the

4The original power flow equations are sometimes called AC power flow.
5Subsequent research have shown that SDP relaxation cannot be tight for all practical systems [24], and

finding conditions on networks such that the relaxation is tight is an active area of research.
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increased number of operations needed to handle faster voltage variations due to sudden
changes (on the timescale of minutes) in active power generated or consumed by DERs.

A number of strategies have been proposed to use the power electronics on the DERs
to help with voltage regulation [26–36]. These methods are either endowed with wireless or
power-line communications. The general approach is to cast the voltage regulation problem
as an OPF problem. A drawback of the existing methods are that they are suboptimal due
to the fact that OPF problems are difficult to solve, and many require a centralized strategy
(for example [33, 34]), which is difficult to implement in large networks.

1.2.3 Generator Dispatch

The study of generator scheduling is most commonly known as unit commitment and eco-
nomic dispatch. Unit commitment is a integer-valued program that determines the on/off
status of generators, and the subsequent OPF problem is called economic dispatch. Both
problem have been studied extensively since the 1960’s (for example, see [37, 38] and the
references within).

Stochastic unit commitment and economic dispatch have been studied relative recently
[39–44], spurred by the need to integrate wind into the system. Majority of the approaches
are scenario-based, which means that the probability distribution of wind is discretized to
a set of “representative” scenarios. This approaches converts the stochastic problem to a
large but deterministic problems. However, the scenario based approach suffers from three
disadvantages: i) what scenarios are representative? Simply finding the best discretization
of the probability distribution does not always ensure the disretization is the best for the
over all problem; ii) A small number of scenarios may not capture much of the stochastic
information, no matter how well they are chosen; iii) Qualitative information such as the
impact of uncertain on the system cost are difficult to gain using this approach. An alter-
native approach considering the worst case scenario using robust optimization is proposed
in [45], however choosing an acceptable worst case is still difficult. In the microgrid setting,
an online approach that does not require any stochastic information is proposed in [46], and
a finite competitive ratio is provided.

1.3 Our Approach and Contributions

In this thesis, we take an geometric approach to understand the underlying power injection
region P . For each of the problems, we identify the critical geometric feature of the injection
region that allows for them to be solved efficiently. The mathematical tools we use are
convex geometry, algebraic graph theory, and linear algebra. In particular, many results in
this thesis is obtained by linking the topology of the power network to the algebraic property
of optimization problems.

In general, the power injection region P is known to be non-convex. We make two con-
tribution to the understanding of P . The first contribution is we show that even though
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P is not convex, the Pareto-front of P is the same as the Pareto-front of the convex hull
of P for power distribution networks, under a broad set of conditions. This fact establishes
that in OPF problems for distribution problems, an equivalent optimization problem can
be obtained by replacing the non-convex set P by its convex hull, thus convexifying the
OPF. Algebraically, this convex relaxation is represented by reformulating the problem as
a SDP problem. The second contribution is a better understanding of the DC power flow.
For transmission networks, DC power flows approximation are fairly accurate, but the re-
sulting DC-OPF problem can still be high dimensional. Algebraically, high dimensionality
corresponds the fact that P is described by many constraints. We show that under practical
conditions, P is a simple geometric object, and show that it can in fact be described by a
few constraints.

We show that the voltage regulation problem can be thought as an OPF problem in the
distribution network, and thus can be solved as an SDP. We derive a optimal decentralized
algorithm that is robust to asynchrony and communication errors. The information exchange
in the algorithm is between neighbors in the electric network.

Using the simplified injection region for DC power flow, we show that the two-stage
stochastic generator scheduling problem can be solved without resorting to scenario based
techniques. Specifically, we use the first stage forecast information to reduce the dimension
of second stage OPF problem. In practice, the OPF problem can be reduced to an equivalent
problem for a network of a few buses (typically less than 4 for US networks), thus allowing the
problem to be solved analytically. Perhaps more importantly, we characterize the intrinsic
impact of uncertainty on the dispatch procedure, and show it is linear in the standard
deviation of the uncertainty.6

From a higher perspective, the overall philosophy in this thesis is to first look at the
simplest possible settings of problems, and once they are understood, extend them to more
general situations. That is why we focus on geometry, since understanding the geometry of
simple problems allows us to guess the correct answer to more complicated problems.

1.4 Thesis Outline

In Chapter 2 we introduce the topic of power flow and optimal power flow. We investigate
the geometric property of the injection region by taking a step-by-step approach. We analyze
the effect of each of type of constraints on the injection region, starting with the case of no
constraints. We show that the injection region is the upper halfspace given the conservation
of energy. Next, we focus on distribution networks. Because of its tree structure, we show
the injection region can be thought as a positive linear transformation of the product of two-
bus injection regions. Therefore all convexity results about two-bus networks would carry
over to the general tree network. We show that injection regions for two-bus networks are a
partial ellipse, where the Pareto-front is preserved under the convex hull operation. We then

6Linearity is important since it allows us to answer questions of the following type: is it worth it to
spend 10 million dollars to improve wind forecasts such that the uncertainty is reduced by 1%?
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give an numerical algorithm for the convex relaxation. We finish this chapter by describing
the DC flow approximation.

In Chapter 3 we solve the voltage regulation problem by casting it as an OPF. Moreover,
we provide an optimal decentralized algorithm that only require communication between
the neighboring buses. The information exchanged are a set of Lagrange multipliers, and
each bus does not need to reveal its private data. This algorithm is shown to be tolerant to
communication errors and asynchrony through numerical simulations.

In Chapter 4 we introduce solve the two-stage generator dispatch problem. The main
idea is to use the first stage prediction to simplify the second stage DC-OPF. Namely, we
show that even though the number of transmission constraints are large, only a few are
binding at a time. Using forecast information, we can predict the binding constraints and
the transmission capacity limits on other lines can be ignored. This allows us to reduce the
dimension of the OPF problem dramatically and solve the stochastic dispatch problem in an
analytical fashion.

Chapter 5 concludes this thesis, and the appendices contains most of the proofs.
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Chapter 2

Optimal Power Flow

In this chapter, we first provide the power flow equations that describes the power systems
that we consider in this thesis, then define the optimal power flow problem. We then consider
three different scenarios where the optimal power flow can be solved exactly, they are i) a
system without voltage constraints; ii) networks that have a tree topology (distribution
networks); and iii) lossless networks with that is combination of cycles and trees. The DC
power flow is also introduced at the end of the chapter.

2.1 Power Flow Equations

Consider an electric network with n buses. Throughout we assume the network is connected.
We write i ∼ k if bus i is connected to k, and i ≁ k if they are not connected. Let
zik denote the complex impedance of the transmission line between bus i and bus k, and
yik = 1

zik
= gik + jbik. We have gik > 0, and we assume that the lines are inductive (as in

the Pi model) so bik < 0. Note that zik = zki and yik = yki. Let zii (yii) denote the shunt
impedance (admittance) of bus i to ground. These shunt impedances can come from the
capacitance to ground in the Pi model of the transmission line, the capacitor banks installed
for reactive power injection, or modeling constant impedance loads. The bus admittance
matrix is denoted by Y and defined as

Yik =











∑

l∼i yil + yii if i = k

−yik if i ∼ k

0 if i ≁ k

. (2.1)

Y is symmetric. If the entries of Y are real, we say the network is purely resistive and if the
entries are imaginary, we say the network is lossless. Lines in the transmission network are
mainly inductive so it is sometimes assumed that the network is lossless.

Let v = [V1 V2 . . . Vn]
T ∈ C

n be the vector of bus voltages and i = [I1 I2 . . . In]
T ∈ C

n
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be the vector of currents1, where Ii is the total current flowing out of bus i to the rest of the
network. By Ohm’s law and Kirchoff’s Current Law,

i = Yv (2.2a)

s = v ⊙ conj(i), (2.2b)

where s = [S1 S2 . . . Sn]
T ∈ C

n is the complex power;⊙ is the component-wise produce
(Hadamard product) and conj(·) is the conjugate operator. In rectangular coordinates,
Si = Pi+ jQi where Pi is the active power and Qi is the reactive power. A positive Pi means
bus i is generating active power and a negative Pi means bus i is consuming active power;
similarly for reactive powers. Let p = (P1 P2 . . . Pn) be the vector of active powers and
q = (Q1 Q2 . . . Qn) be the vector of reactive powers.

Eliminating i from (2.2), we obtain

s = p+ jq = diag(vvHYH), (2.3)

where diag(·) is the diagonal operator2 and (·)H is the Hermitian transpose. The resistive
loss on the transmission line between buses i and k is given by

Lik = |Vi − Vk|2gik;
the active and reactive powers flowing from bus i to k are denoted as Pik and Qik, given by

Pik + jQik = Vi|Vi − Vk|HyHik .
Note Lik = Pik + Pki.

2.2 Optimal Power Flow

A number of optimization problems in power systems can be written as the following OPF
problem:

minimize f(P1, P2, . . . , Pn) (2.4a)

subject to V i ≤ |Vi| ≤ V i (2.4b)

Lik ≤ lik (2.4c)

Pik ≤ P ik (2.4d)

P i ≤ Pi ≤ P i (2.4e)

Q
i
≤ Qi ≤ Qi (2.4f)

p+ jq = diag(vvHYH), (2.4g)

1Following the convention in power engineering, scalars representing voltage, current and power are
denoted with capital letters. We use x to denote vectors, and X to denote matrices.

2This operator is overloaded as it is in Matlab. Given a vector, diag returns a diagonal matrix; and given
square matrix, diag returns diagonal of the matrix as a column vector
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where f(P1, P2, . . . , Pn) is the cost function (not necessarily quadratic) defined on the real
powers; (2.4b), (2.4c), (2.4d), (2.4e) and (2.4f) are the constraints corresponding to bus
voltage, line thermal loss, line power flow and bus real and reactive power respectively;
and (2.4g) is the physical law coupling voltage to power. The thermal loss constraints in
(2.4c) are calculated from current rating of transmission lines and are usually the dominant
constraints in distribution networks [47]. Typically the data sheet of a line would have a
maximum current rating Imax of the line, and this gives lik = I2maxR, the maximum loss that
can be tolerated across a line. In practice, f is usually an increasing function of the power
injections. For example, if f(P1, . . . , Pn) = P1 + · · ·+Pn, then we are minimizing the loss in
the network; or if f is quadratic with positive coefficients, then we are minimizing the cost
of generation.

A central object of study in this thesis is the feasible injection region, P , defined as

P = {p ∈ R
n : p = Re(diag(vvHYH)), V i ≤ |V |i ≤ V i ∀i,

Lik ≤ lik ∀i ∼ k, Pik ≤ P ik ∀i ∼ k, P i ≤ Pi ≤ P i∀i, Qi
≤ Qi ≤ Qi}. (2.5)

Therefore P is the feasibility region of (2.4), and we can rewrite (2.4) as

minimize f(p) (2.6a)

subject to p ∈ P . (2.6b)

Note the reactive powers are represented as a constraint of the injection region. This is
because in most practical settings, the objective function of the optimization problem is in
terms of real powers only. For example, the cost curve for an generator only includes the
real power output; also, the consumers are only charged based on the amount of real power
they consume (watt-hours). Since the objective function is in terms of real powers only, the
injection region is the set of all real injections.

Since the objective function in (2.4) and (2.6) is generally convex, the convexity of the
OPF depend on the geometric property of the region P . In rest of the section, we establish
conditions on the power systems such that the OPF problem is convex. An important
note is that P need not necessarily be convex. Furthermore, we provide efficient algebraic
descriptions of P .

2.3 Network with No Operation Constraints

To warm up, let us first consider a network with no operation constraints. Since there are
no constraints, the injection region is defined as

P = {p ∈ R
n : p = Re(diag(vvHYH)). (2.7)

The reactive powers are ignored since we model reactive power as constraints in (2.4). In
this case, the injection region has a simple characterization.
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Theorem 1. If the network is lossy3, then P is given by

P = {p ∈ R
n :

n
∑

i=1

Pi > 0} ∪ {0}. (2.8)

Therefore P is the union of the open upper half space of Rn and the origin 0. Note this
region is connected and convex. If the network is lossless, then P is given by

P = {p ∈ R
n :

n
∑

i=1

Pi = 0}. (2.9)

Therefore P is a hyperplane through the origin.

This result is intuitive pleasing since it says if there are no constraints in the network
then the injection region is only limited by the law of conservation of energy. Conservation
of energy gives the bound

∑n

i=1 Pi ≥ 0, and if the network is not lossless then
∑n

i=1 Pi > 0
except when all voltages are equal. In this case, all injections are 0 so p = 0. Theorem 1
states this is the only constraint on the injection region. The authors in [48,49] conjectured
that the unconstrained injection region is convex, and (2.8) shows this is indeed the case.
To proof this theorem, it is necessary to show that for every vector p ∈ P , there exists a
voltage v that achieves p. The details are given in the Appendix A.

In practice, some of the constraints in (2.4) would be binding. For example, the voltages
magnitudes at each bus are bounded. Figure 2.3 shows the injection region of a two bus
network with fixed voltage magnitudes. The region is an ellipse (without the interior). The
next few sections is devoted to the study of the effect of constraints on the injection regions
of tree networks and their implications to optimization problems.

2.4 Distribution Networks

Power systems are operated as radial networks [47], therefore we model it as a connected
tree with vertex set V = {1, . . . , n} and the edge set E .4 The notation (i, k) ∈ E implies that
there exists a line connecting bus i and bus k. Figure 2.1 is an example of a commonly used
distribution test system, the 123-bus network [50]. This section investigates the properties
of the power injection region P for tree networks.

2.4.1 Two-Bus Networks

Consider the two-bus network in Figure 2.2 with the line admittance g − jb. Let the com-

3Every line has non-zero resistance
4A distribution system may contain cycles. However, at anytime of operation, the switches in the system

are opened or closed such that the network is a tree. This design is used because of its simplicity in fault
detection and isolation.
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Figure 2.1: 123-bus system: electrical network graph.

V1 V2

P1 P2

g − jb

Figure 2.2: A two-bus network.

plex voltages at buses 1 and 2 be expressed as V1 = |V1| exp(jθ1) and V2 = |V2| exp(jθ2).
Throughout this subsection, assume that the magnitudes |V1| and |V2| are fixed, while θ1
and θ2 are variable. The power injections at the two buses are given by

P1 = |V1|2g + |V1||V2|b sin(θ)− |V1||V2|g cos(θ) (2.10a)

P2 = |V2|2g − |V1||V2|b sin(θ)− |V1||V2|g cos(θ), (2.10b)

where θ = θ1 − θ2. Since the network has only two buses, P1 = P12 and P2 = P21, where Pik

is the power flowing out of bus i to bus k. Since the voltage magnitudes are fixed, the power
flows between the buses can both be described in terms of the single parameter θ. Notice
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that a circle centered at the origin and of radius 1 can be parameterized as (cos(θ), sin(θ)).
Therefore, (2.10) represents an affine transformation of a circle, which leads to an ellipse.
This ellipse contains all points (P1, P2) satisfying the inequality

∥

∥

∥

∥

[

b −g
−b −g

]−1 [
P1 − |V1|2g
P2 − |V2|2g

] ∥

∥

∥

∥

2

= |V1||V2|,

where ‖ · ‖2 denotes the 2-norm operator. As can be seen from the above relation, the
ellipse is centered at (|V1|2g, |V2|2g), where its major axis is at an angle of −45◦ to the x-axis
with length |V1V2|b and its minor principle axis has length |V1V2|g. If the line is lossy, the
injection region is a hollow ellipse as shown in Figure 2.3a. If the line is lossless, the ellipse is
degenerate and collapses into a line through the origin as shown in Figure 2.3b. In practice

(a) lossy (b) lossless

Figure 2.3: The region defined by (2.10): (a) shows the region corresponding to |V1| = |V2| =
1 (per unit), b = 5 and g = 1; (b) shows the region for a lossless line.

most lines in distribution networks are lossy with b/g ratio typically between 3 to 5 (instead
of > 10 in transmission networks) [47, 50]. Thus, the interesting and practical case is when
the region is a hollow ellipse. Note that the convex hull of this region is the filled ellipse.

Now, we investigate the effect of thermal, line flow and angle constraints. Since the
network has fixed voltage magnitudes, the thermal loss and line flow constraints can be
recast as angle constraints of the form θ ≤ θ ≤ θ for some limits θ ∈ [−π, 0] and θ ∈ [0, π].
More precisely, the loss of the line, denoted by L12, can be calculated as

L12 = |V1 − V2|2g = P12 + P21

= |V1|2g − 2|V1||V2|g sin(θ) + |V2|2g.
(2.11)

It follows from the above equality that a loss constraint L12 ≤ L12 (for a given L12) can
be translated into an angle constraint. Likewise, the line flow inequalities P12 ≤ P 12 and
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P21 ≤ P 21 are also angle constraints. As a result, we restrict our attention only to angle
constraints in the rest of this part.

We define the injection region P to be the set of all points {(P1, P2)} given by (2.10) by
varying θ ∈ [θ, θ]. The bold curve in Figure 2.4 represents the injection region after a certain
angle constraint.

Figure 2.4: The feasible set for the two flows along a line when there are power flow con-
straints. It is a subset of an ellipse which is the feasible set when there are no constraints
other than the fixed voltage magnitudes at the two buses. In this example, the feasible set
is part of the Pareto-front of the ellipse.

The key object in this section is the Pareto-front of a set. Given a set A ⊂ R
n, let

conv(A) denote the convex hull of A. A point x ∈ A is Pareto-optimal if there does not
exist another point y ∈ A such that y ≤ x with strict inequality in at least one coordinate.5

Let O(A) denote the set of all Pareto-optimal points of A, which is called the Pareto-front of
A. Note that if a strictly increasing function is minimized over A, its optimal solution must
belong to O(A) [51]. The important property of the non-convex feasible set P for a two-bus
network is that Pareto front of P is the same as the Pareto-front of the convex hull of P
(see Figure 2.4). To understand the usefulness of this property in solving an optimization
problem over this region, consider the following pair of optimization problems for a strictly
increasing function f :

minimize f(P1, P2) (2.12a)

subject to (P1, P2) ∈ P , (2.12b)

and

minimize f(P1, P2) (2.13a)

subject to (P1, P2) ∈ conv(P). (2.13b)

5Given to vectors, x ≤ y means that xi ≤ yi for all i.
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Since f is strictly increasing in both of its arguments, the optimal solution to (2.13) must
be on the Pareto boundary of the feasible set; therefore both optimization problems share
the same solution (P ∗

1 , P
∗
2 ) ∈ P . This implies that instead of solving the non-covex problem

(2.12), one can equivalently solve the optimization (2.13) that is always convex for a convex
function f . Hence, even though P is not convex, optimization over P and conv(P) is
equivalent for a broad range of optimization problems due to the following lemma.

Lemma 2. Let P ∈ R
2 be the two-bus injection region defined in (2.10) by varying θ over

[θ, θ]. The relation O(P) = O(conv(P)) holds.

2.4.2 Tree Networks with Line Constraints

In this subsection, we extend Lemma 2 to an arbitrary tree network with constraints on the
transmission lines (for example, thermal and line flow constraints).

First, we express the injection region of a general tree as a linear transformation of the
power flow region. Given a general network described by its admittance matrix Y, consider
a connected pair of buses i and k. Let Pik denote the power flowing from bus i to bus k
through the line (i, k) and Pki denote the power flowing from bus k to bus i. Similar to the
two-bus case studied earlier, one can write:

Pik = |Vi|2gik + |Vi||Vk|bik sin θik − |Vi||Vk|gik cos θik
Pki = |Vk|2gik − |Vi||Vk|bik sin θik − |Vi||Vk|gik cos θik,

where θik = θi − θk. The tuple (Pik, Pki) is referred to as the flow on the line (i, k). As in
the two-bus case, all the thermal and line flow constraints can be cast as a constraint on
the angle θik. Note that the angle constraint on θik only affects the flow on the line (i, k);
therefore it is called a local constraint.

There are 2|E| numbers describing the flows in the network. Let F denote the feasible
set of the flows in R

2|E|, where the bus voltage magnitudes are fixed across the network and
each flow satisfies its local constraints. Recall that the net injection at bus i is related to
the line flows through the relation Pi =

∑

k:k∼i Pik. This motivates the introduction of an
n × 2|E| matrix A defined below with rows indexed by the buses and the columns indexed
by the lines:

A(i, (k, l)) =

{

1 if i = k

0 otherwise.
(2.15)

The matrix A can be seen as a generalization of the edge-to-node adjacency matrix of the
graph. The injection vector p ∈ R

n and the flow vector f ∈ F are related by p = Af . We
express the set of line flows as {Pik, Pki} and say that p is achieved by the set of flows. This
implies that the feasible injection region P is given by

P = AF . (2.16)

Since the above mapping is linear, it is straightforward to show that conv(P) = A conv(F).
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We now demonstrate that F has a very simple structure: it is simply a product of the
two-bus flow regions, one for each line in the network:

F =
∏

(i,k)∈E

Fik, (2.17)

where the two-dimensional set Fik is the two-bus flow region of the line (i, k). In other
words, the flows along different lines are decoupled. To substantiate this fact, it suffices to
show that the flow on an arbitrary line of the network can be adjusted without affecting the
flows on other lines. To this end, consider the line (i, k) and a set of voltages with the angles
θ1, . . . , θn. The power flow along the line (i, k) is a function of θik = θi − θk. Assume that
we want to achieve a new flow on the line associated with some angle θ̃ik. In light of the
tree structure of the network, it is possible to find a new set of angles θ̃1, . . . , θ̃n such that
θ̃i − θ̃k = θ̃ik and that the angle difference is preserved for every line in E\(i, k).

Due to this product structure of F , it is possible to generalize Lemma 2.

Lemma 3. Given a tree network with fixed voltage magnitudes and local angle constraints,
consider the injection set P defined in (2.16). The relation O(P) = O(conv(P)) holds.

Proof: First, we show thatO(conv(P)) ⊆ O(P). Given p ∈ O(conv(P)), let {(Pik, Pki)} ∈
conv(F) be the set of flows that achieves p. Consider a line (i, k) ∈ E . Since F is a product
space and p ∈ O(conv(P)), we have (Pik, Pki) ∈ O(conv(Fik)). Moreover, it follows from
Lemma 2 that O(conv(Fik)) = O(Fik). Therefore, (Pik, Pki) ∈ Fik for every line (i, k). This
gives p ∈ P and consequently p ∈ O(P).

Next, we show thatO(P) ⊆ O(conv(P)). Given p ∈ O(P), assume that p /∈ O(conv(P)).
Then, there exists a point p′ ∈ O(conv(P)) such that p′ ≤ p with strict inequality in at least
one coordinate. By the first part of the proof, we have p′ ∈ P , which contradicts p ∈ O(P).
�

2.4.3 Two-Bus Network with Bus Power Constraints

So far, we have studied tree networks with angle constraints and global bus power constraints.
Power constraints are harder to deal with since they represent global constraints : they couple
all the flow into and out of a bus. In contrast, angle constraints are local in the sense they
are independent across the transmission lines. We want to investigate the effect of bus power
constraints. We first consider the two-bus network shown in Figure 2.2, and incorporate the
angle constraints together with the bus active power constraints of the form P i ≤ Pi ≤ P i

for i = 1, 2. Let Pθ = {(P1, P2) : |V1| = V 1, |V2| = V 2, θ ≤ θ ≤ θ} be the angle-constrained
injection region, and PP = {(P1, P2) : P i ≤ Pi ≤ P i, i = 1, 2} be the bus power constrained
region, where V 1 and V 2 are the given nominal values of the voltage magnitudes. The overall
injection region is given by the intersection of the two regions through the equation

P = Pθ ∩ PP . (2.18)
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(a) (b) (c)

Figure 2.5: Three possible cases for the bus power constrained injection region.

There are several possibilities for the shape of P , as visualized in Figures 2.5a, 2.5b and 2.5c.
In Figure 2.5a, both buses have power upper bounds. In Figure 2.5b, P1 has upper bound,
while P2 has both upper and lower bounds. In Figure 2.5c, both buses have lower bounds. It
can be observed that O(P) = O(conv(P)) for Figures 2.5a-2.5b, but this desirable property
does not hold for Figure 2.5c.

Figure 2.5c means that in the presence of active power lower bounds, the relationship
O(P) = O(conv(P)) does not always hold. This is the reason for the various assumptions
made about bus power lower bounds in [52–54]. Note that θ12 in Figure 2.5c is allowed to
vary from −π to π. However, the angles are often constrained in practice by thermal and/or
stability conditions. For example, the thermal constraints usually limit the angle difference
on a line to be less than 10◦. Figure 2.6 shows a typical distribution network together with
its thermal constraints, from which it can be observed that each angle difference is restricted
to be less than 7◦. Flow constraints also limit the angle differences in a similar fashion.

Assume that the angle constraints are such that Pθ = O(conv(Pθ)), implying that every
point in Pθ is Pareto-optimal. Now, there are two possible scenarios for the injection region
P as shown in Figure 2.7. In Figure 2.7a, some of the points of the region Pθ remain in
P and they form the Pareto-front of both P and conv(P). In Figure 2.7b, P = ∅ so then
conv(P) = ∅ as well. We observe in both cases that O(P) = O(conv(P)). Therefore, we
have O(P) = O(conv(P)) if Pθ = O(conv(Pθ)).

In terms of the line parameters b12 and g12, the condition Pθ = O(conv(Pθ)) can be
written as:

− tan−1(
b12
g12

) < θ12 ≤ θ12 < tan−1(
b12
g12

). (2.19)

Observe that tan−1(b12/g12) is equal to 45.0◦, 63.4◦ and 78.6◦ for b12
g12

equal to 1, 2 and 5,
respectively. These numbers suggest that the above condition is very practical. Note that
since the inductance of a practical AC transmission line is larger than its resistance, the
above requirement is met if |θ12|, |θ12| < 45.0◦. It is noteworthy that an assumption

− tan−1(
g12
b12

) < θ12 ≤ θ12 < tan−1(
g12
b12

) (2.20)
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Figure 2.6: This figure illustrates the angle constraints in a distribution network. A pair
(α, β) is assigned to each line in this figure, where α shows the angle between the two related
buses under typical operating conditions (as given in the data) and β shows the limit from
thermal constraints.

(a) Feasible (b) Infeasible

Figure 2.7: Either P = O(P) = O(conv(P)) or the injection region is empty.

is made in Chapter 15 of [55], under which a practical optimization can be convexified
(after approximating the power balance equations). However, our condition (2.19) is far less
restrictive than (2.20). To understand the reason, note that the value g12

b12
is around 0.1 for a

typical transmission line at the transmission level of the network [55] . Now, our condition
allows for an angle difference as high as 80o while the condition reported in [55] confines the
angle to 6o.
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2.4.4 Tree Networks with All Active Power Constraints

In this section, we study general tree networks with local angle constraints and global bus
power constraints. For every bus i ∈ V , let Vi denote the fixed voltage magnitude |Vi|. Given
an edge (i, k) ∈ E , assume that the angle difference θik belongs to the interval [θik, θik)], where
θik ∈ [−π, 0] and θki ∈ [0, π]. Define the angle-constrained flow region for the line (i, k) as

Fθik = {(Pik, Pki) : θik ≤ θik ≤ θik, |Vi| = V i, |Vk| = V k}

The angle-constrained injection region can be expressed as Pθ = AFθ, where Fθ =
∏

(i,k)∈E Fθik.
Following the insight from the last subsection, we make the following practical assumption

− tan−1(
bik
gik

) < θik ≤ θik < tan−1(
bik
gik

), ∀(i, k) ∈ E . (2.21)

This ensures that all points in the flow region of every line are Pareto optimal. As will be
shown later, this assumption leads to the invertibility of the mapping from the injection
region Pθ to the flow region Fθ, or equivalently the uniqueness of the solution of every power
flow problem.

Assume that the power injection Pi must be within the interval [P i, P i] for every i ∈ V .
To account for these constraints, define the hyper-rectangle PP = {p : p ≤ p ≤ p}, where
p = (P 1, . . . , P n) and p = (P 1, . . . , P n). The injection region P is then equal to Pθ ∩ PP .
In what follows, we present the main result of this section.

Theorem 4. Suppose that P is a non-empty set. Under the assumption (2.21), the following
statements hold:

1. For every injection vector p ∈ P, there exists a unique flow vector f ∈ F such that
Af = p.

2. P = O(P).

3. O(P) = O(conv(P)).

In order to prove this theorem, the next lemma is needed.

Lemma 5. Under the assumptions of Theorem 4, the relation O(P) = O(conv(Pθ) ∩ PP )
holds.

The proof of this lemma is provided in the appendix. Using this lemma, we prove
Theorem 4 in the sequel.

Proof of Part 1: Given p ∈ P , consider an arbitrary leaf vertex k. Assume that i is the
parent of bus k. Since k is a leaf, we have Pki = Pk, and subsequently Pik can be uniquely
determined using the relation Fjk = O(Fjk). One can continue this procedure for every leaf
vertex and then go up the tree to determine the flow along each line in every direction.
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Proof of Part 2: Since P is a subset of Pθ, it is enough to show that Pθ = O(Pθ). To
prove this, the first observation is that Fθ = O(Fθ) = O(conv(Fθ)). Given a point p ∈ Pθ,
let f ∈ Fθ be the unique flow vector such that Af = p. There exist strictly positive numbers
{cik, (i, k) ∈ E} such that f is the optimal solution to the following optimization problem

f = argmin
f̃∈Fθ

∑

(i,k)∈E

cikP̃ik. (2.22)

Since minimizing a strictly increasing function gives rise to a Pareto point, it is enough to
show that there exists a set of positive constants c1, c2, . . . , cn such that the optimal solution
of the above optimization does not change if its objective function (2.22) is replaced by
∑

(i,k)∈E ciP̃ik =
∑n

i=1 ciP̃i. Since Fθ is a product space, we can multiply any pair (cik, cki) by
a positive constant, and f still remains an optimal solution. Assume that the tree is rooted
at 1. Let i be a leaf of the tree and consider the path from 1 to i. Without loss of generality,
assume that the nodes on the path are labeled as 1, 2, . . . , i. By setting c1 as c12, one can
define c2, . . . , ci according to the following recursion

ck = ck−1
ck,k−1

ck−1,k

,

where k ranges from 2 to i. After defining c1, . . . , ci, we remove all lines of the path 1–i from
the network. This creates i disconnected subtrees of the network rooted at 1, . . . , i. For each
of the subtrees with more than 1 node, one can repeat the above cost assignment procedure
until c1, . . . , cn have all been constructed. This completes the proof. �

Proof of Part 3: For notational simplicity, denote conv(Pθ) ∩ PP as S. To prove this
part, we use the relation

P ⊆ conv(P) ⊆ S (2.23)

and the result of Lemma 5, i.e.,
O(P) = O(S) (2.24)

The first goal is to show the relation O(P) ⊆ O(conv(P)) by contradiction. Consider a
vector p ∈ O(P) such that p /∈ O(conv(P)). There exists a vector p′ ∈ O(conv(P)) such
that p′ ≤ p with strict inequality in at least one coordinate. Hence, it follows from (2.23)
that p is not a Pareto point of S, while it is a Pareto point of P . This contradicts (2.24).
To prove the converse statement O(conv(P)) ⊆ O(P), consider a point p ∈ O(conv(P)). In
light of (2.23), p belongs to S. If p ∈ O(S), then p ∈ O(P) due to (2.24). If p /∈ O(S), then
there must exist a point p′ ∈ O(S) = O(P) such that p′ ≤ p with strict inequality in at
least one coordinate. This implies p′ ∈ P and consequently p′ ∈ conv(P), which contradicts
p ∈ O(conv(P)). �

2.4.5 Reactive Power Constraints

In the previous chapters, we have focused on the active powers. In this section, we show that
reactive power flow can be thought as a rotation of active power flow, and therefore much of
the argument for active power carries over.
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The reactive power flows between bus i and k is given by

Qik = |Vi|2gik − |Vi||Vk|gik sin θik − |Vi||Vk|bik cos θik
Qik = |Vk|2gik + |Vi||Vk|gik sin θik − |Vi||Vk|bik cos θik.

Let Gik ∈ R
2 denote the region that contain all the [Qik Qki]

T that can be achieved by
varying θik between 0 and 2π; similar to Fik, Gik is again a linear transformations of a circle.
The center of Gik is [bik bik]

T , its major axis is parallel to [1 1]T and has length bik, while its
minor axis is parallel to [1,−1]T and has length gik. The active and reactive power injection
regions are related by a linear invertible mapping, as shown in Fig. 2.8: Gik = HikFik, with

Hik =
1

2bikgik

[

b2ik − g2ik b2ik + g2ik
b2ik + g2ik b2ik − gik

]

. (2.25)

Figure 2.8: The active line flow region Fik, the reactive flow region Gik, and the linear
transformation Hik between them.

Again, we assume that the angle on a transmission line is limited between θik and θik,
where

− tan−1(bik/gik) < θik < θik < θik.

Let Gθ,ik be the angle-constrained reactive power flow region for the line i, k, and let Gθ be
the angle-constrained reactive power flow region. By (2.25), the reactive constraints can be
thought as the constraints on the active flow region:

FQ = {f ∈ R
2(n−1) : q ≤ A(Hf) ≤ q}, (2.26)

where A is the generalized edge-to-node matrix in (2.15); and H is the block diagonal matrix
formed by stacking Hik for each line (i, k). Following the same notation as before, we define
the reactive power constrained active power injection region as

PQ = AFQ. (2.27)
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Figure 2.9: Active power injection region (left) and reactive power injection region (right)
under reactive power injection lower bound.

The most general active injection region is given by

P = Pθ ∩ PP ∩ PQ. (2.28)

Theorem 6 below is the generalization of Theorem 4.

Theorem 6. Suppose P is defined in (2.28) and it is non-empty. Furthermore, suppose the
reactive power lower bounds satisfy

Q
i
< βi, i = 2, . . . , n, (2.29)

where βi =
∑

k:k∈C(i) bik − gik sin(θ̃ik)− bik cos(θ̃ik), where C(i) is the set of all neighbors of i.
Then

O(P) = O(conv(P)).

The proof of Theorem 6 is given in the appendix. We illustrate the concept using the
two-bus injection region again. Because the reactive flow region is a rotation of the active
flow region, constraints on reactive power becomes “slanted” when they are translated into
active power constraints, as shown in Fig. 2.9.

Figure 2.9 shows the reason that the condition in (2.29) on the reactive power lower
bounds are needed. Figure 2.9b gives the reactive injection region with a tight reactive lower
bound on bus 2. Figure 2.9a shows the corresponding active power injection region. Observe
that it is possible for the optimal solution of the relaxed problem to be not in the original
injection region, while the original problem remains feasible. The condition Q

i
< βi rules

out this phenomenon by ensuring that the reactive power lower bounds are never tight.

2.4.6 Variable Voltages

So far, we have assumed that all complex voltages in the network have fixed magnitudes.
In this section, the results derived earlier will be extended to the case with variable voltage
magnitudes under the assumption P i = −∞ for every i ∈ V . The goal is to study the
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injection region after imposing the constraints

Pi ≤ P i, i ∈ V (2.30a)

θik ∈ [θik, θik], (i, k) ∈ E (2.30b)

where |θik|, |θik| < 90◦. Note that the results to be developed next are valid even with explicit
line flow constraints.

Given a bus i ∈ V , let V i and V i denote the given lower and upper bounds on |Vi|.
In vector notation, define v = (V 1, . . . , V n) and v = (V 1, . . . , V n). Given a vector ṽ ∈
R

+, define Pθ(ṽ) as the angle-constrained injection region in the case when the voltage
magnitudes are fixed according to ṽ, i.e. |Vi| = Ṽi for i = 1, ..., n. Let P and Pθ denote the
regions for the case with variable voltage magnitudes. One can write P = Pθ ∩ PP , where

Pθ =
⋃

v≤ṽ≤v

Pθ(ṽ) (2.31)

The problem of interest is to compute the convex hull of Pθ. However, the challenge is that
the union operator does not commute with the convex hull operator in general (because the
union of two convex sets may not be convex). In what follows, this issue will be addressed by
exploiting the flow decomposition technique introduced in [53]. Let H+

2 denote the convex
set of 2 × 2 positive semidefinite Hermitian matrices and Hn denote the set of all n × n
Hermitian matrices. Given a matrix W ∈ Hn together with an edge (i, k) ∈ E , define:

• Wik: (i, k) entry of W.

• Wik: The 2× 2 submatrix of W corresponding to the entries (i, i), (i, k), (k, i), (k, k).
The matrix Wik is called an edge submatrix of W.

Define also

Hik(ṽ) =

{

W ∈ H : Wik ∈ H+
2 ,Wii = Ṽ 2

i ,Wkk = Ṽ 2
k ,

tan(θik)× Im(Wik) ≤ Re(Wik),

Re(Wik) ≤ tan(θik)× Im(Wik)

}

It can be shown that for every matrix W ∈ Hik(ṽ) with the property Rank(Wik) = 1, there
exists an angle θik ∈ [θik, θik] such that

Wik =

[

Ṽ 2
i ṼiṼk∡θik

ṼiṼk∡θki Ṽ 2
k

]

Thus,
Fθik(ṽ) =

{

Re(diag(WikY
H
ik)) : W ∈ Hik(ṽ),

Rank(Wik) = 1
}



25

where Yik =

[

yik −yik
−yik yik

]

(see [52, 53]). The flow region Fθik(ṽ) can be naturally convex-

ified by dropping its rank constraint. However, the convexified set may not be identical to
conv(Fθik(ṽ)). We use the notation conv(Fθik(ṽ)) for the convexified flow region, which is
defined as

conv(Fθik(ṽ)) =
{

Re(diag(WikY
H
ik)) : W ∈ Hik(ṽ)

}

(2.32)

The following sets can also be defined in a natural way:

conv(Fθ(ṽ)) =
∏

(i,k)∈E

conv(Fθik(ṽ)),

conv(Pθ(ṽ)) = Aconv(Fθ(ṽ))

Note that conv(·) and conv(·) were the same if the angle constraint (2.30b) did not exist.

Lemma 7. Given a vector ṽ, the following relations hold:

O(Pθ(ṽ)) = O(conv(Pθ(ṽ))), (2.33a)

O(P(ṽ)) = O(conv(Pθ(ṽ)) ∩ PP ), (2.33b)
⋃

v≤ṽ≤v

conv(Pθ(ṽ)) = Convex set. (2.33c)

The proof is provided in the appendix.
As pointed out before Lemma 7, conv(·) and conv(·) are equivalent if the angle constraint

(2.30b) is ignored. In this case, it follows from (2.33c) and the relation

Pθ ⊆
⋃

v≤ṽ≤v

conv(Pθ(ṽ)) ⊆ conv(Pθ)

that conv(Pθ) =
⋃

v≤ṽ≤v conv(Pθ(ṽ)). In other words, as long as there is no angle constraint,
the convex hull operator commutes with the union operator when it is applied to (2.31).
Motivated by this observation, define conv(Pθ) as the convex set

⋃

v≤ṽ≤v conv(Pθ(ṽ)). We
present the main theorem of this section below.

Theorem 8. For a tree network, O(P) = O(conv(P)) = O(conv(Pθ) ∩ PP ).

Proof: Since
P ⊆ conv(P) ⊆ conv(Pθ) ∩ PP , (2.34)

it suffices to prove that O(P) = O(conv(Pθ)∩PP ) (see part 3 of Theorem 4). First, we show
that O(conv(Pθ)∩PP ) ⊆ O(P). Consider a vector p in O(conv(Pθ)∩PP ). By the definition
of conv(Pθ), p ∈ O(conv(Pθ(ṽ)) ∩ PP ) for some ṽ. Hence, by Lemma 7, p ∈ O(P(ṽ)) and
consequently p ∈ P . Now, it follows from (2.34) and p ∈ O(conv(Pθ)∩PP ) that p ∈ O(P).
The relation O(P) ⊆ O(conv(Pθ)∩PP ) can be proved in line with the proof of Lemma 5. �
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2.5 Numerical Algorithm for Convex Relaxation

The previous sections have focused on the geometric property of the power injection region,
but to solve the OPF problem, we need an algebraic description of the convexification results.
The relationO(P) = O(conv(P)) derived before states that the minimization of an increasing
function over either the nonconvex set P or the convexified counterpart conv(P) leads to the
same solution. However, employing a numerical algorithm to minimize a function directly
over conv(P) is difficult due to the lack of efficient algebraic representations of conv(P).

To address this issue, we decompose P as Pθ ∩ PP ∩ PQ and then use the fact that
conv(Pθ), conv(PP ) and conv(PQ) all have simple algebraic representations. Specifically, we
use a rank relaxation technique. Recall the OPF problem in (2.4) has the general form

minimize f(P1, P2, . . . , Pn) (2.35a)

subject to V i ≤ |Vi| ≤ V i (2.35b)

Lik ≤ lik (2.35c)

Pik ≤ P ik (2.35d)

P i ≤ Pi ≤ P i (2.35e)

Q
i
≤ Qi ≤ Qi (2.35f)

p+ jq = diag(vvHYH). (2.35g)

The resistive loss on the transmission line between buses i and k can be written as Lik =
vHGikv where Gik is a matrix with the (i, i)th entry and the (k, k)th entry being gik, and
the (i, k)th entry and the (k, i)th entry being −gik and all other entries being 0. The power
flow from bus i to bus k can be written as Pik = vHAikv, where Aik is a matrix with (i, i)th
entry gik, the (i, k)th entry 1

2
(−gik − jbik), the (k, i)th entry 1

2
(−gik + jbik) and all the other

entries 0. Let Ai =
1
2
(EiY +YHEi) where Ei is the diagonal matrix with 1 at the (i, i)th

entry and 0 everywhere else. Similarly let Bi =
1
2j
(YHEi −EiY). Then the powers injected

at bus i is given by Pi = vHAiv and Qi = vHBiv. Therefore (2.4) can be equivalently
written as

minimize f(p) (2.36)

subject to V i ≤ |Vi| ≤ V i, ∀i
vHGikv ≤ lik ∀i ∼ k

vHAikv ≤ P ik ∀i ∼ k

P i ≤ vHAiv ≤ P i

Q
i
≤ vHBiv ≤ Qi

p+ jq = diag(vvHYH).
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To expose the potential non-convexity, we can equivalently write it as

minimize f(p) (2.37)

subject to V 2
i ≤ Wii ≤ V

2

i , ∀i
Tr(GikW) ≤ lik ∀i ∼ k

Tr(AikW) ≤ P ik ∀i ∼ k

P i ≤ Tr(AiW) ≤ P i

Q
i
≤ Tr(BiW) ≤ Qi

p+ jq = diag(WYH)

W < 0

rank(W) = 1,

where W = vvH and the non-convexity enters as the rank 1 constraint on W. Relaxing this
rank 1 constraint and eliminating p and q, we get

minimize f(Tr(A1W), . . . ,Tr(AnW)) (2.38)

subject to V 2
i ≤ Wii ≤ V

2

i , ∀i
Tr(GikW) ≤ lik ∀i ∼ k

Tr(AikW) ≤ P ik ∀i ∼ k

P i ≤ Tr(AiW) ≤ P i,

Q
i
≤ Tr(BiW) ≤ Qi,

W < 0.

The optimization problem in (2.38) is convex, and if the conditions in Theorem 6 is satisfied,
the optimal solution of (2.38) is rank 1, and the optimal value of (2.38) is the same as the
optimal value of (2.4).

2.6 Network with Cycles

Ideally, one would like to generalize the results for trees to networks with cycles. However,
this is difficult. In fact, there exist results stating the OPF problem for general power systems
is NP-hard [56]. However, there is a large gap between tree networks and general electric
networks, and in Appendix C section we provide partial progress in extending the results
about tree networks.

2.7 DC Optimal Power Flow

In the previous sections we have focused on solving the AC power flow problem in distribution
networks. Unfortunately, for transmission networks, it is known that the injection region
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cannot be convex [56,57]. On the other hand, the b/g ratio is very high (b/g > 10), and the
DC approximation given below is often accurate enough.

The notations used in this thesis to describe DC power flow is somewhat new in the
power system community and they are usually in graph theoretical terms.6

Given an electrical network with n buses and m transmission lines, we will think of it as
a directed graph with the vertex set V = 1, . . . , n and edge set E = {(i, k) : i ∼ k}. Note
since the network is directed, the edge (i, k) means that it is originating from i and entering
k. The set of flows on the edges is a vector of length m, indexed by the edge set, with fik > 0
meaning the flow is in the direction of the edge and fik < 0 if the flow is opposite to the
direction. Let ∇T ∈ R

n×m be the mapping from branch flows to bus injections defined as

∇
T (i, (k, l)) =











1 if i=k

−1 if i=l

0 otherwise

. (2.39)

Let {bik} be the set of susceptances, and let b be the vector of susceptances indexed by the
edge set. Define

L = ∇
T diag(b)∇. (2.40)

If the network is lossless and Y is purely imaginary, by a straightforward calculation,

Y = −jL. (2.41)

The matrix L is called a Laplacian matrix, and the following lemma is true (see [58] for an
in-depth discussion):

Lemma 9. L is symmetric, positive semidefinite with rank n− 1. Its null space is spanned
by the 1 vector.

In the DC approximation, the voltages are all assumed to be set at 1 per unit; the network
is assumed to be lossless; and the angles are assumed to be small enough such that sin θ ≈ θ
and cos θ ≈ 1 (that is, θ2 ≈ 0). The power flow equation in (2.3) becomes

s = p+ jq = diag(vvHYH)

≈ diag((1+ jθ)(1+ jθ)HYH)

= diag((11T + jθ1T − j1θT + θθT )(jL)

(a)
= diag((−j1θT + θθT )(jL)

(b)≈ diag((−j1θT )jL

= Lθ,

6We adopt graph-theoretical notations for two reasons: i) there is no established set of notations in power
system engineering for stating our results; ii) some of the theorems are known in graph-theory but not in
the form of DC power flow, so the notation can serve as a bridge between the two subjects.
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where (a) follows from Lemma 9 and (b) follows from the assumptions that the angles are
small. Notice only active power remains in the DC approximation. The DC-OPF is given
by

minimize f(p) (2.42a)

subject to p ≤ p ≤ p (2.42b)

|f | ≤ c (2.42c)

p = Lθ (2.42d)

f = diag(b)∇θ. (2.42e)

It is convenient to eliminate θ from (2.42) to write all variables in terms of the flows f . To
do this, we need to define the concept of an oriented sum over a cycle. Since the network
is directed, a cycle in the network is directed as well. The oriented sum is the a sum of all
flows in the cycle with respect to the orientation of the edges. An example of this is given
in Fig. 2.10. A weighted oriented sum is an oriented sum where each flow is weighted by 1

4

1 2

3

f1

f2

f3

f4

Figure 2.10: A four bus network. The weighted oriented sum is f1/b12+f2/b23+f3/b34+f4/b14.

over its admittance. We have the following lemma

Lemma 10. There exist θ ∈ R
n such that f = diag(b)∇θ if and only if the weighted oriented

sum of every cycle is 0.

The proof of this lemma follows directly from the theory of fundamental cycles in graphs
[59]. As an example, for the network in Fig. 2.10, the weighted oriented sum is

f1/b12 + f2/b23 + f3/b34 + f4/b14 =
b12(θ1 − θ2)

b12
+

b23(θ2 − θ3)

b23
+

b34(θ3 − θ4)

b34
+

b14(θ4 − θ1)

b14
= θ1 − θ2 + θ2 − θ3 + θ3 − θ4 + θ4 − θ1

= 0
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We can represent constraint given by the oriented sums as a set of linear constraints on
the flows, denoted by Kf = 0. The DC OPF in (2.42) can be equivalently written as

minimize f(p) (2.43a)

subject to p ≤ p ≤ p (2.43b)

|f | ≤ c (2.43c)

p = ∇
T f (2.43d)

Kf = 0. (2.43e)

Compared to AC-OPF, the feasible injection region for (2.43) is a polytope, thus (2.43) can
be solved by standard optimization techniques if f is convex.
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Chapter 3

Voltage Regulation

The objective of this section is to apply the result about distribution networks in Chapter
2 to the problem of voltage regulation with deep penetration of DERs; specifically, the
focus is on the problem of mitigating voltage variability across the network due to fast (and
uncontrolled) changes in the active generated or consumed by DERs. To this end, we rely
on i) the use of the power electronics interfaces of the DERs to locally provide some limited
amount of reactive power; and ii) to some extent, on the use of storage-capable DERs and
DRRs to locally provide (or consume) some amount of active power. In other words, we
have a limited ability to shape the active/reactive power injection profile. With respect to
this, it is important to note that this ability to shape the active/reactive power injection
profile, which in turn will allow us to regulate voltage across the network, it is intended to
supplement the action of conventional voltage regulation devices (e.g., tap-changing under-
load transformers, set voltage regulators, and fixed/switched capacitors).

t0 t1 t2

Instants at which conventional voltage
regulation devices are set

time

Instants at which DER/DRR
references are set

Figure 3.1: Time-scale separation between the instants in which the settings of conventional
voltage regulation devices are decided, and the instants in which the reference of DER and
DRRs are set.

In practice, in order to realize the ideas above, we envision a hierarchical control ar-
chitecture in which there is a separation in the (slow) time-scale in which the settings of
conventional voltage regulation devices are adjusted and the (fast) time-scale in which volt-
age regulation through active/reactive power injection shaping is accomplished. Then, given
that fast (and uncontrolled) changes in the DERs active generation (consumption) might
cause the voltage to deviate from this reference voltage, a second optimization is performed
at regular intervals (e.g., every minute). The timeframe in which the settings of conven-
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tional devices are decided and the reference setting of DERs/DRRs is graphically depicted
in Fig. 3.1. The solution of this minute-by-minute optimization will provide the amount
of active/reactive power that needs to be locally produced or consumed so as to track the
voltage reference. In order words, the minute-by-minute optimization provides the reference
values for the amount of active/reactive power to be collectively provided (or consumed) on
each bus of the network within the next minute by reactive-power-capable and/or storage-
capable DERs and DRRs. These reference values are then passed to the DERs and DRRs
local controllers, which will adjust their output accordingly—note that the time-scale in
which DER/DRR local controllers act (on the order of milliseconds (see, e.g., [60, 61]), is
much faster than the minute-to-minute optimization.

3.1 Voltage Regulation via DERs/DRRs: Problem

Formulation

As stated earlier, the focus of this paper is on developing mechanisms to mitigate voltage
variability across the network due to fast (and uncontrolled) changes in the active generated
or consumed by DERs; thus, subsequent developments only deal with the inter-hour minute-
by-minute optimization mentioned above. As argued before, we assume that at the beginning
of each hour, the settings of conventional voltage regulation devices are optimized, which in
turns prescribes the value that each individual bus voltage can take to some voltage reference
V ref
i . In order to achieve the voltage regulation goal above, we rely on a limited ability to

locally produce and/or consume some limited amount of active/reactive power, and cast the
voltage regulation problem as an optimization program where the objective is to minimize
network losses.

Let Lik(Vi, Vk) = Pik + Pki; then, the total losses in the network are given by L(v) :=
∑

i,k:(i,k)∈E Lik(Vi, Vk), and the voltage regulation problem can be formulated as

min
v

L(v) (3.1a)

s.t. |Vi| = V ref
i , ∀i (3.1b)

P i ≤ Pi ≤ P i, ∀i (3.1c)

Q
i
≤ Qi ≤ Qi, ∀i (3.1d)

|Pik| ≤ P ik, ∀i ∼ k (3.1e)

Lik(Vi, Vk) ≤ Lik, ∀i ∼ k (3.1f)

Pi =
∑

k∼i

Pik (3.1g)

Qi =
∑

k∼i

Qik. (3.1h)
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The constraints in (3.1b) capture the voltage regulation goal. The constraints in (3.1c) and
(3.1d) describe the limited ability to control active/reactive power injections on each bus i;
P i (P i) and Qi (Qi

), denote the upper (lower) limits on the amount of active and reactive
power that each bus i can provide, respectively. Without loss of generality and to ease the
notations in subsequent development, hereafter we assume V ref

i = 1 p.u. for all i. Note that
active power and reactive power need not be controllable at every bus. If for a particular bus
they are not controllable, in the optimization problem we set the bus active and/or reactive
power upper and lower bounds to be equal, which essentially fixes the active and/or reactive
on that bus.

By results from the previous section, the convex rank relaxation of (3.1) is

min
W<0

n
∑

i=1

Tr(AiW) (3.2a)

s.t. W[i, i] = 1, ∀i (3.2b)

P i ≤ Tr(AiW) ≤ P i, ∀i (3.2c)

Q
i
≤ Tr(BiW) ≤ Qi, ∀i (3.2d)

Tr(GikW) ≤ Lik, ∀i ∼ k (3.2e)

|Tr(AikW)| ≤ P ik, ∀i ∼ k. (3.2f)

3.2 A Distributed Algorithm for Solving the

Convexified Problem

In Chapter 2, we showed that the SDP program in (3.2) is a convex relaxation of the
voltage regulation problem in (3.1). Since the objective is to regulate the voltages in the
presence of fast-changing power injection that, e.g., arise from renewable-based generation;
the optimization problem needs to be solved no slower than the time-scale at which these
injections significantly change. General-purpose SDP solvers scale poorly as the problem
size increases [25]. Thus for large distribution networks with hundreds or thousands of
buses, solving the SDP problem in a minute to sub-minute scale is challenging. Furthermore
standard solvers for SDP problems are centralized; i.e., it is assumed that all the data defining
the problem is available to a single processor. However the communication infrastructure in
a distribution network may not be able to transmit all the data to a centralized location fast
enough. By exploiting the tree structure of distribution networks, we propose a distributed
algorithm to solve (3.2) that only requires communication between neighboring buses.

3.2.1 Algorithm Derivation

The proposed algorithm consists of two stages: local optimization and consensus. In the local
optimization stage, each node solves its own local version of the problem. In the consensus
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stage, neighboring nodes exchange Lagarangian multipliers obtained from the solutions to
their corresponding local optimums, with the goal of equalizing the phase angle differences
across a line from both of its ends.

Let Ni be the set of buses directly connected to bus i by transmission lines, together
with bus i itself, i.e., Ni = {k : k ∼ i, ∀k} ∪ {i}. For a n× n matrix M, let M(i) denote the
|Ni| × |Ni| submatrix of M whose rows and columns are indexed according to Ni. Similarly,
for the n × 1 vector v, v(i) is the corresponding Ni-dimensional vector indexed by Ni. We
can rewrite (3.2) as

min
W(1),...,W(n)<0

n
∑

i=1

Tr(A(i)W(i)) (3.3a)

s.t. diag(W(i)) = v(i) ◦ v(i), ∀i (3.3b)

P i ≤ Tr(A(i)W(i)) ≤ P i, ∀i (3.3c)

Q
i
≤ Tr(B(i)W(i)) ≤ Qi, ∀i (3.3d)

|Tr(A(i)
ik W

(i))| ≤ P ik, ∀(i, k) ∈ E (3.3e)

W
(i)
ik = W

(k)
ik , ∀(i, k) ∈ E , (3.3f)

W
(i)
ki = W

(k)
ki , ∀(i, k) ∈ E , (3.3g)

where ◦ is the Hadamard product. It is easy to verify that (3.3a), (3.3b), (3.3c), (3.3d), and
(3.3e) are equivalent to (3.2a), (3.2b), (3.2c), (3.2d), and (3.2f), respectively, as Ai in (3.2c),
Bi in (3.2d), and Aik in (3.2f) have non-zero elements only at (i, i), (i, k), (k, i), ∀k ∼ i.
Since all Ni’s are maximal cliques, W < 0 is tantamount to W(i) < 0, ∀i [62]. Constraints
(3.3f) and (3.3g) are added to ensure that all W(i)’s coordinate to form W; in other words,
∀(i, k) ∈ E , the θik’s computed from W(i) and W(k) should be the same.

Let λik be the Lagrangian multiplier of (3.3f) for (i, k) and similarly λki for (3.3g). By
relaxing (3.3f) and (3.3g), the augmented objective function is

n
∑

i=1

Tr(A(i)W(i)) +
∑

(i,k)∈E

[λik(W
(i)
ik −W

(k)
ik )

+ λki(W
(i)
ki −W

(k)
ki )] ,

n
∑

i=1

Tr(Ã(i)W(i)), (3.4)

where Ã(i) is also Hermitian, and its (i, k)th entry is i) Ã
(i)
ik = A

(i)
ik if i = k, Ã

(i)
ik = A

(i)
ik + λH

ik

if i < k, and iii) Ã
(i)
ik = A

(i)
ik − λH

ik if i > k. With (3.4), problem (3.3) can be divided into n
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separable subproblems and the ith subproblem corresponds to bus i, defined as follows:

min
W(i)<0

Tr(Ã(i)W(i)) (3.5a)

s.t. diag(W(i)) = v(i) ◦ v(i) (3.5b)

P i ≤ Tr(A(i)W(i)) ≤ P i (3.5c)

Q
i
≤ Tr(B(i)W(i)) ≤ Qi (3.5d)

|Tr(A(i)
ik W

(i))| ≤ P ik, ∀k ∼ i. (3.5e)

We denote the feasible region described by (3.5b)–(3.5e) together with W(i) < 0 of Sub-
problem i by Ci. Define gi(λik) , infW(i)∈Ci{Tr(Ã(i)W(i))}. The gradient of −gi at λik is

W
(i)∗
ik , which is the (i, k)th element of the optimal W(i)∗ of gi determined by solving the

ith subproblem (3.5). Similarly, that of −gk at λik is −W
(k)∗
ik . Therefore, the gradient of

−(gi + gk) is then W
(i)∗
ik −W

(k)∗
ik . Let W

(i)
ik [t] and W

(k)
ik [t] be W

(i)∗
ik and W

(k)∗
ik determined at

time t, respectively. By gradient ascent, at time t+ 1, we update λik by

λik[t+ 1] = λik[t] + α[t](W
(i)
ik [t]−W

(k)
ik [t]), (3.6)

where α[t] > 0 and λik[t] are the step size and λik at time t, respectively. The value of
λki[t + 1] can be directly computed from λik[t + 1] as λki = λH

ki. The Lagrangian multiplier
λik is only defined for the line (i, k) and the two buses at the ends of the edge, i.e., buses

i and k, are required to manipulate λik. The purpose of (3.6) is to make W
(i)
ik and W

(k)
ik as

close to each other as possible with the help of λik. Eq. (3.6) can be computed either by
bus i or by bus k and it is independent of all other buses and edges. Whenever both the ith
and kth subproblems have been computed and so W

(i)
ik and W

(k)
ik have been updated, then

λik can then be updated by using (3.6).
The optimization problem comprised of (3.4), together with all the constraints (3.5b)–

(3.5e), imposed on the subproblems, is a dual problem of (3.3). When all λik’s are optimal,

W
(i)
ik will be equal to W

(k)
ik for all (i, k)’s and thus the duality gap is zero. Accordingly,

we can construct the optimal W∗ of problem from the values of the W
(k)
ik ’s. Algorithm 1

can be seen as a dual decomposition algorithm, where the constraints on the consistence of
line flows are dualized. Due to the convexity of (3.3), algorithm 1 converges to the optimal
solution [63].

3.2.2 Feasibility

When the buses determine their own limits on active and reactive powers independently, an
infeasible problem might result, i.e., an empty feasible region. When there exists a central
authority having all the bus power information, we can check the feasibility easily. Otherwise,
it is necessary for the buses to declare infeasibility.

One sufficient condition for infeasibility of the the problem is that there exists an infea-
sible subproblem (3.5) for any bus. If any bus finds an infeasible subproblem, it is sufficient
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Given a n-bus network

1. while |W (i)
ik

−W
(k)
ik

| > δ for any (i, k) ∈ E do

2. for each bus i (in parallel) do
3. Given λik, ∀k ∼ i, solve (3.5)

4. Return W
(i)
ik

, ∀k
5. end for

6.Given W
(i)
ik

and W
(k)
ik

, update λik with (3.6) (in parallel)
7. end while

Algorithm 1: Distributed Algorithm

1
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(a) Network structure.

5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Iteration

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

 

 

the optimal value

without flow constraints

with flow constraints

(b) Convergence curve.

Figure 3.2: A five-bus example.

to say that the whole problem is infeasible. To proceed further, the bus with an infeasible
subproblem should adjust its own active and reactive power limits so as to make the sub-
problem feasible. A necessary and sufficient condition for infeasibility is that W

(i)
ik and W

(k)
ik

never match for some (i, k) ∈ E when Algorithm 1 evolves. If this happens on edge (i, k),
either bus i or bus k or both constitute the infeasibility.

3.2.3 Numerical Performance Enhancements

Consider the five-bus network given in Fig. 3.2a. Assuming that all λik’s are updated at the
end of each iteration, the progress of Algorithm 1 (the curve without power flow constraints)
and the target optimal objective value are shown in Fig. 3.2b. At iteration 20, when we sum
the objective function values of all the subproblems, the sum still has around 20% difference
to the optimal one. Even for a small network, it may take a long time for the algorithm to
converge to the global optimal solution. Next, we provide some enhancements that improve
the algorithm convergence speed.

Power Flow Constraints

Constraint (3.5e) means that the active power can flow in any direction on the edge (i, k) as
long as its magnitude does not exceed the limit P ik. Assume that the global optimal solution
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Table 3.1: Bus information of the five-bus example

Bus P P Q Q V

1 5.2844 -5.4692 5.5798 -5.7604 1.2247

2 -0.0648 -0.0988 0.5298 0 1.1509

3 -0.0423 -0.5828 0.6405 0 1.1103

4 -0.0334 -0.5155 0.2091 0 0.9762

5 -0.0226 -0.4329 0.3798 0 1.1400

W∗ exists. Our decomposition allows us to compute W ∗
ik separately by buses i and k, in

which each bus determines its local version of W ∗
ik, e.g., W

(i)
ik for bus i. Then (3.6) brings

both W
(i)
ik and W

(k)
ik towards W ∗

ik by just equalizing W
(i)
ik and W

(k)
ik . If the feasible regions

Ci and Ck are smaller, it will be easier for (3.6) to reduce the discrepancy between W
(i)
ik and

W
(k)
ik .
The additional assumption we make is that all buses are net consumers of active power

except the feeder; that is, Pi ≤ 0 for i = 2, 3, . . . , n. Even with deep penetration of renewable-
based energy, it is unlikely that the power generated by these resources in a particular bus
will compensate the load at that bus; let alone they will compensate for the power coming
from the feeder. We now know that the active power must flow from buses i to k along the
edge (i, k) with i < k, i.e., Pik ≥ 0. With this observation, we can re-write (3.5e) as

0 ≤ Pik = Tr(A
(i)
ik W

(i)) ≤ P ik, (3.7)

−P ik ≤ Pki = Tr(A
(k)
ik W(k)) ≤ 0, (3.8)

from the perspectives of buses i and k, respectively. We can actually replace (3.5e) for (i, k)
of Subproblem i by (3.7) and similarly (3.5e) for (i, k) of Subproblem k by (3.8). If we apply
the same logic to all edges connecting to bus i, we can construct a smaller feasible region Ĉi
for Subproblem i. For the edge (i, k), the constructions of Ĉi and Ĉk can help W

(i)
ik and W

(k)
ik

converge to W ∗
ik faster.

With this modification, the progress of the algorithm for the five-bus example is also
depicted in Fig. 3.2b, where we can see that the algorithm converges faster.

Feasible Solution Generation

When the algorithm converges, we have that

Tr(A(i)W(i)) = Tr(Ã(i)W(i)), ∀i, (3.9)

which holds when all its associated λik’s are optimal; this is equivalent to have both of the
following held:

Tr(A(i)W(i)) = Tr(A(i)W(i)∗) ⇔ Pi = P ∗
i , ∀i, (3.10)

Tr(B(i)W(i)) = Tr(B(i)W(i)∗) ⇔ Qi = Q∗
i , ∀i. (3.11)
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In other words, Algorithm 1 tries to find the the optimal active and reactive power pair
[P ∗

i , Q
∗
i ]

T for each bus i by manipulating λik’s defined for the corresponding lines. The more
lines are connected to a bus (i.e., the more λik’s it involves), the more difficult is for (3.10)
and (3.11) to hold. The [Pi, Qi]

T pair affects the [Pk, Qk]
T pair through λik. Consider the

situation where edge (i, k) is the only line connected to bus k except for bus i. When [Pk, Qk]
T

becomes optimal, this helps bus i converge in the sense that this reduces the variations of
[Pi, Qi]

T induced from bus k. When Algorithm 1 evolves, the [Pk, Qk]
T of leaf bus k converges

first as a leaf bus has only one edge. Then, we have the buses connected to the leaf buses
converged. We continue this process and finally go up to the feeder.

For any leaf node k, we have Pk = Pki and Qk = Qki, where bus i is the only bus
connected to bus k. When the algorithm evolves, we obtain W

(k)∗
ik from the solution of

the kth subproblem (3.5) when Tr(A(k)W(k)) and Tr(B(k)W(k)) are equal to P ∗
k and Q∗

k,

respectively. Once we have fixed W
(k)∗
ik , we can add the constraint W

(i)
ik = W

(k)∗
ik to the

ith subproblem for bus i by passing a message containing the value of W
(k)∗
ik from bus k

to bus i. In matrix form, this constraint is equivalent to Tr(C(i)W(i)) = Re{W (k)∗
ik } and

Tr(D(i)W(i)) = Im{W (k)∗
ik }, where C(i) = (C

(i)
lm, l,m ∈ Ni), with C

(i)
lm = 1

2
if l = i and m = k,

C
(i)
lm = 1

2
if l = k and m = i, and C

(i)
lm = 0 otherwise; and D(i) = (D

(i)
lm, l,m ∈ Ni), with

D
(i)
lm = 1

2
j if l = i and m = k, D

(i)
lm = −1

2
j if l = k and m = i, and D

(i)
lm = 0 otherwise. In

this case, we reduce the n-bus network into the (n−1)-bus one by removing bus k. When all
other buses with positive active power flown from bus i (i.e. {l : l ∼ i, l > i}) have been fixed
and “removed”, bus i becomes a leaf bus in the reduced network. This process continues
until we find all W ∗

lm, ∀(l,m) ∈ E . The global solution W∗ can be constructed from those
W ∗

lm’s. However, for any bus k, if we fix Pk and Qk which is not optimal, these errors will
make its connecting bus i being fixed afterwards result in incorrect Pi and Qi, which are not
optimal either. To achieve this, we observe Pi[t] and Qi[t] for a certain time period and check
if their variations are significant. Assume that we are at time t, for the active power, we can
keep track of the previous T Pi’s and the current Pi[t], i.e. [Pi[t−T ], Pi[t−T +1], . . . , Pi[t]]

T .
We can say that Pi[t] has converged if its cumulative change is less than a certain threshold
γ (e.g. 10−4), i.e.,

T−1
∑

k=0

|Pi[t− T + k]− Pi[t− T + k + 1]|
|Pi[t− T + k]| < γ; (3.12)

with a similar condition for the reactive power.

Hot Start

The problem needs to be solved repeatedly; when there are changes to the active/reactive
limits at any bus, we apply Algorithm 1 to the problem again. In each update, we usually
have small variation between the new P i and the previous ones and also for P i. Thus, in
subsequent instances of the problem, the optimal angle difference across each line usually
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Figure 3.3: 34-bus system: electrical network graph. There are tap changing transformers
between buses 7 and 8, buses 17 and 18, and buses 17 and 23.

does not vary significantly. Therefore, we can set λik[0] with the optimal λ∗
ik which can be

determined from the previous optimal W ∗
ik.

3.3 Case Studies

We test the performance of Algorithm 1 on the IEEE 34- and 123-bus test systems [50]; the
data for these systems can be found in [50]. The topology for the 34-bus system is displayed
in Fig. 3.3, while the topology for the 123-bus system is displayed in Fig. 2.1. All simulations
were performed on a MacBookPro6,2, and each one was terminated when 300 iterations were
reached.

Assume that, for both test systems, the nominal load on each bus i, which we denote
by P̂i, is as specified by the datasets in [50]. Additionally, we assume that connected to
each bus i, there are energy storage devices and PV-based electricity generation resources,
which can supply active power, which we denote by P PV

i , to the bus locally, i.e., their net
effect is to reduce the load. If all P PV

i is consumed locally, then the active power injection
at bus i will be P i = P̂i + P PV

i ≤ 0. The computed optimal P ∗
i ∈ [P̂i, P i], i = 2, . . . , n,

will then be adjusted by controlling the amount of power from the PV devices which will be
stored at the local storage device. Let Q̂i be the nominal reactive power injection at bus i.
Following [60], the power electronics interface of the PV installations is assumed to be able
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Figure 3.4: Irradiance of a particular day in November 2011 [1].
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Figure 3.5: Active and reactive power injections at various buses in the 34-bus network.

400 600 800
0

0.05

0.1

Time horizon (min)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

 

 

Centralized

Distributed

(a) 34-bus system

400 600 800
0.38

0.4

0.42

0.44

Time horizon (min)

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

 

 

(b) 123-bus system

Figure 3.6: Objective function values computed by the distributed algorithm.
to provide supply reactive power in a range that is sufficient to cancel the nominal reactive
power [60]. Therefore, we assume that the reactive power can be adjusted in the ranges
specified by i) Qi ∈ [0, 1.2Q̂i], if Q̂i ≥ 0, and ii) Qi = [−1.2Q̂i, 0] otherwise.

Fits, we consider the one-minute resolution irradiance data in Fig. 3.4a, which correspond
to a particular day in November 2011 collected at the University of Nevada [1]; the P PV

i ’s
vary in accordance to the variation of this irradiance data. Assume that the PV systems
connected to bus i can provide up to 20% of the nominal load P̂i at that bus. Thus, the
maximum P PV

i , which is proportional to the respective P̂i, is different for different buses.
As it can be seen in Fig. 3.4, since there is only radiation between the 377th and 991th

minutes, for all numerical examples, we define a time horizon of [377, 991], and execute
Algorithm 1 every minute within this time horizon. Recall that Algorithm 1 requires inputs
of Lagrangian multipliers as the starting points. In minute t, where t ∈ [377, 991], the inputs
to Algorithm 1 are the Lagrangian multipliers computed by Algorithm 1 at time t − 1.
Moreover each Lagrangian multiplier is only stored and manipulated by the two buses at the
two ends of the corresponding transmission line. Initially, i.e., at t = 377, the Lagrangian
multipliers are computed from the nominal system settings.

In order to check if the distributed algorithm can achieve the global optimum, we com-
pare the objective function values computed by the distributed algorithm to those by the
centralized solver; the results are plotted in Fig. 3.6. The active and reactive power injection
at various buses in the 34-bus network are shown in Fig. 3.5a and Fig. 3.5b respectively.
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Figure 3.7: Voltage profile over time at representative buses. The proposed voltage regulation
method is able to keep the voltages constant at their perspective references values.

As observed in Fig. 3.6, for the 34-bus system, we can see that the distributed algorithm
converges to the optimum all the time, whereas for the 123-bus system convergence occurs
most of the time. In Fig. 3.6b, the dropping lines correspond to the non-convergent cases
where the convergence fails because the pre-defined 300 iterations allowed were exhausted.
In the 34-bus and 123-bus systems, the centralized solver failed to solve the system due to
convergence issues.

Figure 3.7 displays the voltage profile at various representative buses of the the 34- and
123-bus test system over a one-hour period with high variability in the the P PV

i ’s caused
by the high-variability irradiance period displayed in Fig. 3.4b. This one-hour period corre-
sponds to the portion of the daily irradiance profile in Fig 3.4a between the 781th and 840th

minutes. For this simulation, the settings of the conventional voltage regulation devices are
kept at the values given in [50], whereas the V ref

i ’s in (3.1b) result from the solution to the
power flow equations for the nominal P̂i’s as specified in [50]. The fact that all the volt-
ages displayed in Fig. 3.7 remain at their reference value illustrates the effectiveness of our
proposed voltage regulation method to mitigate the effect of fast-varying power injections
arising from PV systems.

Figure 3.8 shows the computational times corresponding to each test system; here we only
consider the CPU time spent on the SDP solver and assume that communication overheads
can be neglected. In our simulation, we implement the algorithm iteratively; in each iteration,
we solve the subproblems sequentially. In Fig. 3.8, each subfigure contains two curves. One
(distributed) is to sum the CPU times of the subproblems which need the longest CPU time
in each iteration. In other words, we only consider the most demanding subproblem in each
iteration and then sum the CPU times spent on these subproblems in all iterations. The
average CPU computation time for the three cases are 1.28 s, 3.33 s, and 19.69 s, respectively,
which are substantially shorter than the one-minute cycles considered.

Next, we show that the distributed algorithm is robust against random communication
link failures. We model communication failures as packets drops. This means that, at a
given iteration, the Lagrangian multiplier transmitted on any particular edge could be lost
with probability p, independent of all other transmissions. Figure 3.9 shows the average time
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Figure 3.8: Computation time of the distributed algorithm.
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Figure 3.9: Time it takes for Algorithm 1 to converge under the presence of communication
link failures.

of convergence needed over the day for the 34-bus network for p = 0, p = 0.1 and p = 0.3.
Note that convergence is achieved at all times.
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Chapter 4

Generator Dispatch

This chapter we focus on the problem of generator scheduling, or it is sometimes called,
stochastic economic dispatch.

4.1 Problem Formulation

In current system operations, the generator is scheduled about 24 hours ahead of the actual
time of electricity delivery [64]. This forward scheduling method is used because of the
limited ramping capabilities on the generators. Figure 4.1 illustrate the scheduling process
in detail.

Day-Ahead Reliability Assessment Real-Time

Figure 4.1: The scheduling methodology used by system operators

.

In the US, most generator are scheduled through a market structure. Each generator and
load serving entity (utility) submit bids to the system operator (SO), and the SO performs an
double auction to clear this market. This process is the day-ahead (DA) market in Fig. 4.1.
The outcome of the day-ahead market is a set of committed generators, with their scheduled
generation levels, and a set of locational marginal prices. After this schedule is known, the
SO will solve an optimal power flow problem with the set of committed generators and the
forecasted load to determine if there is sufficient resources in the system. If there is an
inadequacy of resources, the system operator would procure additional resources. This is
the reliability assessment process in Fig. 4.1. Then at real-time, the actual delivery of power
happens. To find the exact flows and generation at real-time, the SO solves another OPF
problem with the actual demand.

The problem we focus on in this chapter is the reliability assessment process when there is
significant wind power in the system. Before introducing wind, we first describe the current
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reliability assessment problem in detail. Currently, only load is considered, and since load
can be forecasted very accurately (within 1%), the SO performs the reliability assessment
process by solving the following deterministic DC-OPF problem (see 2.7)

minimize αTg (4.1a)

subject to g −∇f ≥ l̂, (4.1b)

|f | ≤ c (4.1c)

Kf = 0, (4.1d)

where α ∈ R
n is the set of locational marginal prices at the buses; l̂ is the set of forecasted

loads; and the optimization variables are g and f , the generation levels and line flows,
respectively. Since the optimization problem in (4.1) may not always be feasible, the power
balance constraint in (4.1b) is typically written as a penalty term in the objective function,
and (4.1) becomes

minimize αTg + βy+ (4.2a)

subject to g −∇f + y = l̂, (4.2b)

c ≤ f ≤ c (4.2c)

where β is a penalty associated with the cost of not meeting the load; y can be thought as
a virtual generator that can absorb excessive power and has cost β if it is generating; and
(x)+ = x if x > 0 is 0 otherwise.

With significant penetration of wind, the reliability assessment is no longer a deterministic
problem. We assume that wind is taken as negative load, and define the net demand as

d = l−w, (4.3)

where w is the wind power. We use an additive stochastic model, where

d = d̂+ e, (4.4)

where d is the prediction and e is the prediction error. To define the stochastic version of
(4.2), first consider the real-time OPF given by

J(β,g) =min
gR

βT (gR)+ (4.5a)

subject to gR − (d− g)−∇
T f = 0, (4.5b)

Kf = 0, (4.5c)

|f | ≤ c, (4.5d)

where g represent the day-ahead decision that has already been made, the penalty is β and
the realization of the random demand is known. The day-ahead stochastic RA problem is:

V ∗(d̂) = min
g≥0

{

αTg + E[J(β,d− g)|d̂]
}

, (4.6)
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where the expectation is taken with respect to the distribution of d conditional on the
forecast d̂. The constraint g ≥ 0 limits the day ahead decisions to purchasing generation
power only. Additionally, g is function of the forecast d̂ and the error distribution. We call
the optimal solution to (4.6) the risk limiting dispatch.

There are two reasons why we focus on the intermediate RA problem rather than directly
at the day-ahead market.

1. The day-ahead market is purely financial. That is, the bidders in the market can
place arbitrary bids, and these bids may not correspond to any physical loads in the
system. On the other hand, the system operator’s role is simply to perform the double
auction. Without changing the market structure significantly, there is no place to take
the randomness into account. In contrast, the reliability assessment is performed by
the system operator with actual load forecast and must take wind into account.

2. The day-ahead market must make commitment decisions and this results in a integer-
valued optimization problem. In the reliability assessment, most of commitment deci-
sions are already made by the day-ahead market, therefore only the generation levels
need to be decided.

4.1.1 Integration Cost and Price of Uncertainty

A fundamental quantity of interest is the impact of uncertainty in the cost of dispatch. We
call this quantity if integration cost [65], which is defined the difference between the expected
cost of the procedure and the expected cost of a dispatch clairvoyant of the realization of d.
The clairvoyant dispatch can allocate all the required power in the day ahead by solving the
deterministic OPF V ∗

C(d) = J(α,d). The integration cost for a realization of the information

set d̂ is given by

CI(d̂) = V ∗(d̂)− E[V ∗
C(d̂+ e)|d̂]. (4.7)

An important question is regarding the sensitivity of this cost to the forecast error standard
deviation σe when the best possible dispatch is utilized. If CI is a linear function of σe, so
CI = pσe, then p is the price of uncertainty, a fundamental limit faced by any dispatch
procedure. In this paper we show the existence of this price, and determine it for various
scenarios.

4.1.2 Small-σ Assumption

An important consideration is the order of magnitude of the error standard deviation σe

compared to the entries in the average net load vector µ and the transmission line capacities.
Standard deviation of day ahead load forecasts σL are 1% − −2% of the expected load µL.
Wind error forecasts are more severe, and error standard deviations σW of 30% of rated
capacity µW have been observed. High wind penetration scenarios have about 30% of total
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load being generated by wind, and therefore the total error would be about 0.01+0.3∗0.3 =
10% of total load.

In contrast to the financial situation, a relative forecast error of 10% would not change
the overall physical operating characteristic of the network. More precisely, suppose we
calculate the deterministic dispatch based on the forecast values d̂ and find bus i would be
generating power in the first stage. Then with high probability, bus i would still be generating
power in the two stage dispatch problem. Also, the network congestion pattern under the
deterministic dispatch and the two-stage dispatch should not be drastically different. We
formalizes these observations in later sections.

We denote above scenarios small -σ scenarios. In theoretic arguments this usually implies
studying scaling regimes such that the variance of the prediction error σ → 0. For simplicity
of exposition, we avoid such limits in the relevant points in the analysis, but the formal
arguments follow easily from the stated theorem. The important observation is that forecast
values are very useful in determining the qualitative behaviour of the network.

4.2 Uncongested Network

This section reviews the risk limiting dispatch control for a two stage uncongested network
[66,67], and analyzes the price of uncertainty in this scenario.

4.2.1 Risk Limiting Dispatch

Since we only consider a single bus, all variables are scalar. Equivalently, the single bus
network can be thought as an n-bus network without congestion. In this case, the constraint
region in (4.5) reduces to net supply must equal net demand, and the RT-OPF becomes

J∗(β, d− g) =min β(gR)+

s.t. gR + g − d = 0

=(d− g)+.

The DA-SPF in Eq. (4.6) can then be reduced to

g∗ = argmin
g
αg + β E[(d− g)+|d̂] (4.8a)

s.t. g ≥ 0. (4.8b)

RLD can then be derived as follows. Consider the unconstrained optimization problem

min
g

αg + β E[(d− g)+|d̂]. (4.9)
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Taking the subgradient with respect to g gives the optimality condition

0 = α− β E[1(d− g > 0)|d̂]
= α− β E[1(d̂+ e− g > 0)|d̂]
= α− β Pr(e > g − d̂|d̂),

rearranging gives

Pr(e > g − d̂|d̂) = Q(g − d̂) =
α

β
, (4.10)

the optimal control g is given by inverting (4.10)

g = d̂+Q−1(
α

β
). (4.11)

Note it is possible that g < 0, it can be shown that the risk limiting dispatch g∗ (optimal
solution to the constrained problem in (4.8)) is given by thresholding

g∗ = g+ = [d̂+Q−1(
α

β
)]+. (4.12)

4.2.2 Price of Uncertainty

Since most power systems would not have 100% penetration in the near future, we assume
that the net demand d, and its prediction d̂, are positive. Then first we would show the price
of uncertainty exists (i.e. the integration cost is linear in σe), and then calculate its value.

Theorem 11. Suppose d > 0. Then C(d̂) defined in (4.7) is linear and can be written as

C(d̂) = σep, (4.13)

where σe is the standard deviation of the error e and p = βφ(Q−1(α
β
)) (φ(·) is the standard

Gaussian density and Q(·) is the complimentary Gaussian cumulative density function).

Theorem 11 relies on the observation that if net demand is positive (d > 0), then it
is always beneficial to purchase energy in the day ahead as the energy price is higher in
real-time, so the optimal schedule must be positive g∗ > 0. The positivity constraint in the
simplified DA-SPF (Eq. (4.8)) is redundant, and the cost of uncertainty (Eq. (4.7)) can be



48

computed as

C(d̂) = V ∗(d̂)− VC(d̂) (4.14a)

= min
g

αg + β E[(d− g)+|d̂]− αE[d+|d̂] (4.14b)

(a)
= min

g
αg + β E[(d− g)+|d̂]− αE[d|d̂] (4.14c)

= min
g

αg + β E[(d̂+ e− g)+|d̂]− αE[d|d̂] (4.14d)

(b)
= min

∆
α(d̂+∆) + β E[(e−∆)+|d̂]− αE[d̂+ e|d̂] (4.14e)

= min
∆

α∆+ β E[(e−∆)+|d̂] (4.14f)

(c)
= σe{min

∆′

α∆′ + β E[(z −∆′)+|d̂]} (4.14g)

= σep, (4.14h)

where (a) follows from the assumption d > 0, (b) follows from setting g = d̂ + ∆, (c)
follows from changes from variables where ∆′ = ∆/σe and z = e/σe. p only depends on the
standardized random variable z with unit variance and thus is independent of the forecast
error standard deviation σe.

The structure of the optimal control was not used in the previous derivation, so the
existence of the price of uncertainty p was demonstrated without calculating its value, which
can be numerically calculated in close form as below. Using the same technique as solving
(4.9) the optimal ∆′ in (4.14g) is given by Q−1(α

β
). The price of uncertainty p becomes

p = αQ−1(
α

β
) + β E[(z −Q−1(

α

β
))+] (4.15a)

= αQ−1(
α

β
) + β

∫ ∞

Q−1(α
β
)

(z −Q−1(
α

β
))φ(z)dz (4.15b)

= αQ−1(
α

β
) + β(−α

β
Q−1(

α

β
) + φ(Q−1(

α

β
))) (4.15c)

= βφ(Q−1(
α

β
)). (4.15d)

Figure 4.2 plots the price of uncertainty for different values of α/β with β set to be 1.
Somewhat surprisingly, p is not monotonic in α/β and it goes to 0 as α/β approaches 0 or
α/β approaches 1. Intuitively, when α/β is small, the day ahead cost is very low, and the
SO can purchase sufficient amounts of energy to absorb the prediction error. In contrast,
when α/β is close to 1, the day ahead and real-time costs are similar, so the SO waits until
real-time to balance the system once the net load realization is completely known.
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Figure 4.2: The price of uncertainty for different ratios of α/β.

4.2.3 Extremely High Penetration

In some networks renewable power may have a penetration level of more than 100%, violating
the small-σ assumption. For example, in a microgrid where wind or solar energy is abundant,
the net demand could become negative. In this case, the cost of uncertainty is no longer
linear in the standard deviation of the prediction error and in general cannot be computed
in closed form. Figure 4.3 plots the cost of uncertainty of a system where d̂ = −1 per unit,
and α/β = 1/3. The cost of uncertainty is low when σe is small since no additional energy
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Figure 4.3: The cost of uncertainty for α/β=1/3, d̂ = −1.

is needed to balance the system, and as σe increases, the cost becomes linear with the slope
φ(Q−1(1/3)).

4.3 Congested Networks

The RT-OPF in N-RLD for n-bus networks does not admit an analytical solution as in the
single bus case, significantly increasing the complexity of the full dispatch. In particular,
it is difficult to obtain the day ahead dispatch g in closed form. Moreover, the cost of
uncertainty can be a complicated function of the information set Y and the network capacities
c. These quantities can be numerically computed resorting to a Monte Carlo approach, but
the computational challenges are formidable due to the high dimensionality of the problem.
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Instead, the small-σ assumption from Sec. 4.1.2 can be explored to obtain a simple and
interpretable dispatch. Since the prediction error is a small percentage of the net load, the
change in flows caused by that error is also a small percentage, we assume the prediction
error is small compared to both d̂ and c. Under the small-σ assumption, the qualitative or
structural behavior of the power system predicted in the day-ahead from the forecast d̂ will
not differ from its realization in real-time after observing d. If we expect to purchase power
at a bus in the day-ahead, then after real-time, we do not expect power to be shed in that
bus. If a transmission line is expected to be congested in a certain direction in the day-ahead,
then the direction of congestion would not be reversed at real time. Since qualitative features
are consistent with the forecast, a deterministic OPF based on the day-ahead price α and
the net load forecast d̂ will predict congested lines, congestion directions and buses where
energy is purchased correctly. This deterministic OPF is denominated Nominal Day-Ahead
OPF (NDA-OPF):

J(α, d̂) = min
g

αT (g)+ (4.16a)

subject to g − d̂ ∈ P . (4.16b)

In stochastic control terms, NDA-OPF solves the certainty equivalent control problem for
N-RLD (4.6) [68, 69], by replacing the random quantity d by the deterministic quantity d̂
and solving the optimization problem. Denote the generation schedule from NDA-OPF by
g.

The day ahead schedule g in the DA-SPF (Eq. (4.6)) can be decomposed as the nominal
dispatch added to a perturbation g = (g + ∆)+ where ∆ ∈ R

n is the perturbation. The
optimal schedule is determined by computing ∆. Perturbations are expected to be small
since the uncertainty is small, so the perturbed DA-SPF can be significantly simplified. The
simplification relies on three key observations for small-σ forecast error:

1. If gi < 0, bus i is treated as a source of unlimited energy, since it is shedding energy
in the nominal problem (NDA-OPF). If gi > 0, then the perturbed dispatch ∆i is not
constrained to be positive.

2. If the line between buses i and k are not congested, then it is not congested in perturbed
DA-SPF.

3. If the line between buses i and k is congested from i to k, then it would not become
congested from k to i in the perturbed DA-SPF.

Going forward, we assume these observations to hold. This is called the small-σ assumption.
We propose the two step algorithm in Algorithm 1.
Algorithm 1: Procedure to solve Network Risk Limiting Dispatch
Step 1 (NDA-OPF): Solve the nominal problem in Eq. (4.16) using forecast net load and
day ahead prices to obtain the nominal schedule g and nominal line flows f .
Step 2 (Perturbed DA-SPF):Solve the DA-SPF (Eq. (4.6)) for the optimal perturbation
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∆ by substituting g = g + σe∆
∗ and appropriately normalizing and reducing the problem

using Observations (1)− (3) as

∆∗ = argmin
∆

αT∆+ E[J̃(β, e)|d̂] (4.17a)

subject to ∆i = 0 if gi < 0, (4.17b)

∆i > 0 if gi = 0, (4.17c)

where

J̃(β, e) = minβ̃T (y)+ (4.18a)

s.t. y − e−∇T f = 0 (4.18b)

Kf = 0 (4.18c)

fik < 0 if f ik = cik, (4.18d)

and β̃i = βi if gi ≥ 0 and β̃i = 0 otherwise. The optimal DA-SPF dispatch is then given by
g = (g + σe∆)+.

At first glance, (4.17) seems to be no simpler than the original problem in (4.6). However,
note that the network capacity constraints (4.18d) only include the lines that are congested
in the nominal problem. In essence, (4.17) balances a ’left-over’ network from solving the
nominal problem, and (4.18d) states that if a line is congested in the nominal problem, no
more energy is allowed to flow along the direction of congestion.

The next subsection explores the normalization and reduction process to define the Per-
turbed DA-SPF for two bus and three bus networks. We show the perturbation ∆ is the
solution to a set of deterministic equilibrium equations. Then the problem of an arbitrary
network with n buses and a single congestion link is studied and we show the general reduc-
tion procedure results in an optimal dispatch control under the small-σ assumption.

4.3.1 Two Bus Network

Consider the two bus network in Fig. 4.4. For this network, the day ahead dispatch is a

21

d1 d2

c

Figure 4.4: A two-bus network where c is the capacity of the line.

vector g = [g1 g2]
T of the scheduled generation at each bus. The real-time balancing of

the network requires solving an OPF where the injection region is two dimensional. The
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RT-OPF becomes

J(β,d− g) = min
gR

βT (gR)+ (4.19a)

subject to gR1 + g1 − d1 − f = 0 (4.19b)

gR2 + g2 − d2 + f = 0 (4.19c)

|f | < c, (4.19d)

where f is the amount of power flowing from bus 1 to bus 2 and c is the capacity on the line.
To apply Algorithm 1, first solve the NDA-OPF (Eq. 4.16) for the two bus network.

Then, to apply Step 2, we partition R
2 into the five regions in Fig. 4.5 according to the value

of the net demand forecast d̂. Each region is defined by whether the transmission link is
congested or not, the direction of congestion, and whether each bus is scheduled to generate
power in the nominal problem. The small-σ assumption enables inference of these facts with
high probability from the solution of the NDA-OPF.

D

E
A

B

C

d̂1

d̂2

Figure 4.5: Partition of R2 with respect d̂ when α1 ≤ α2. The small-σ assumption means
that the actual realization of d is in the same region as d̂ w.h.p.

Regions A, B, C and D are reduces to the single bus case as analyzed in Section 4.2. In
regions B and D, since the line capacity is not binding, power can flow from one bus to the
other without congestion. In region A, bus 1 has excess power and transfer up to capacity
to bus 2, and then reserve is only needed for bus 2. Region C is symmetrical to region A.

For region E in Fig. 4.5, d̂1 > −c and d̂2 > c. Since buying at bus 1 is cheaper (α1 < α2),
the SO should transfer up to line capacity c units of energy from bus 1 to bus 2. The
NDA-OPF solution is then

g =

[

d̂1 + c

d̂2 − c

]

.

At first glance, it seems the two buses are now decoupled and can be treated as two isolated
buses since the line between them is congested. However, this viewpoint is not correct due
to the two-stage nature of the problem and congestion being directional. In the two stage
dispatch problem, the SO decides in the first stage to purchase some energy based on the
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forecast and error statistics; however the actual balancing of the network occurs at the second
stage. Some averaging of the errors can still occur even if the line from bus 1 to bus 2 is
congested. For example, suppose that in real-time e1 > 0 and e2 < 0. That is, demand at bus
2 was over-predicted and demand at bus 1 was under-predicted. Due to this configuration,
bus 2 needs less than c units of energy from bus 1, and the remaining energy can be utilized
to satisfy the under-predicted demand in bus 1. This represents a flow from bus 2 to 1 and
does not violate congestion constraints, since the line was congested from bus 1 to 2. Due to
this property of opposing the congestion direction, we denominate this flow a backflow. For
example, backflow does not arise in region A because bus 1 always has an excess of energy
and does not require any energy from bus 2. Similarly for region C.

In region E, the small-σ assumption implies that d ∈ E with high probability and the
line is not congested from bus 2 to bus 1 (Observation (3)). Assuming that errors e1 and e2
have covariance matrix

Σe = σ2
eΣ

′ = σ2
e

[

γ11 ρ
ρ γ22

]

, (4.20)

the optimal dispatch and price of uncertainty in region E are given by:

Theorem 12. Under the small-σ assumption, the risk limiting dispatch is given by

g∗ = g + σe∆
∗,

where g = [d̂1 + c d̂2 − c]T and ∆∗ is the unique solution to

α1 = min(β1, β2) Pr(z1 > ∆1, z1 + z2 > ∆1 +∆2) (4.21a)

α2 = β2 Pr(z2 > ∆2)

+ min(β1, β2) Pr(z2 < ∆2, z1 + z2 > ∆1 +∆2), (4.21b)

where z = [z1 z2]
T = e/σe. The cost of uncertainty is linear and the price of uncertainty is

given by

p =αT∆∗ (4.22)

+ min(β1, β2){E[(z1 + z2 −∆∗
1 −∆∗

2)
+1(z2 < ∆∗

2)]

+ E[(z1 −∆∗
1)

+1(z2 > ∆∗
2)]}+ β2 E[(z2 −∆∗

2)
+].

Before formally proving Theorem 12, we provide an intuitive explanation of the non-
linear equations in (4.21). After subtracting the nominal dispatch choice, the net demands
(normalized by σe) are z1 and z2 respectively, and only backflow is allowed. The network
reduces to a two bus network with a unidirectional link going from bus 2 to bus 1 (Fig. 4.6).
The left hand side of (4.21) can be seen as the cost of purchasing an additional unit of

energy at the buses in stage 1, while the right hand side can be seen as the benefit of having
that unit of energy at stage 2. Therefore (4.21) can be interpreted as balancing the cost and
benefit between buying an additional of unit at stage 1. For example, one additional unit of
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21

z1 z2

Figure 4.6: The perturbed network consisting of a unidirectional link and normalized de-
mands z1 = e1/σe, z2 = e2/σ2 .

energy at bus 1 is useful if two event occurs: z1 > ∆1 (bus 1 does not have enough energy)
and (b) z1 + z2 > ∆1 +∆2 (bus 2 does not have enough energy to transfer to bus 1). Since
power can be transferred from bus 2 to bus 1 in the perturbed network (Fig. 4.6), the price
of buying an unit of energy at real time is min(β1, β2) and the right hand side of (4.21a) is
the expected benefit of having that unit of energy available. The price of purchasing that
unit of energy at stage 1 is α1. At optimality, equilibrium is achieved between the cost at
stage 1 and the expected benefit at stage 2. Similarly, (4.21b) describes the equilibrium at
bus 2

Figure 4.7 plots the ratio in the average price between a network where backflow is not
taken into account and a network that allows backflow as a function of the correlation between
errors e1 and e2. If backflow is not allowed, then the network becomes two isolated buses.

−1 −0.5 0 0.5 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 4.7: Ratio in prices between using and not using back flow for α1 = α2 = 0.5 and
β1 = β2 = 1. Note the curve is always below one since a network with back flow can do no
worse than a network without backflow.

The ratio is always less than 1 since a network with backflow can do no worse than a network
without backflow. The ratio is highest when the two buses are negatively correlated since
backflow averages out the uncertainties in the error. As the two buses become positively
correlated, backflow becomes less useful since both errors tend to be the same sign and
averaging is less useful.

Proof of Theorem 12. Any dispatch can be written as g + σe∆. We first prove the optimal
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∆ is independent of σe. Substituting g = g + σe∆, the DA-SPF (Eqn. (4.6))becomes

minimize αT (g + σe∆) + E[J(β,d− (g + σe∆))|d̂] (4.23a)

subject to g + σe∆ ≥ 0. (4.23b)

By the small-σ assumption, the constraint in Eqn. (4.23b) is always satisfied since g ≥ 0
from the definition of NDA-OPF. The RT-OPF (Eqn. (4.19)) becomes

J(β,d− (g + σe∆)) (4.24a)

=minimize βT (gR+1)+ (4.24b)

subject to gR+1
1 + g1 + σe∆1 − f − d̂1 − e1 = 0 (4.24c)

gR+1
2 + g2 + σe∆2 + f − d̂2 − e2 = 0 (4.24d)

− c ≤ f ≤ c. (4.24e)

Since the nominal flow is c, let f = c− δ with δ representing the backflow. Substituting the
value of g into Eqn. (4.24),

J(β,d− (g + σe∆)) (4.25a)

=minimize βT (gR+1)+ (4.25b)

subject to gR+1
1 + σe∆1 + δ − e1 = 0 (4.25c)

gR+1
2 + σe∆2 − δ − e2 = 0 (4.25d)

0 ≤ δ ≤ 2c. (4.25e)

By the assumption that the line does not congest from bus 2 to bus 1, the constraint δ < 2c
is always satisfied and can be dropped. Normalizing Eqn. (4.25) by σe gives

J(β,d− (g + σe∆)) (4.26a)

=σeminimize βT (gR+1)+ (4.26b)

subject to gR+1
1 +∆1 + δ − z1 = 0 (4.26c)

gR+1
2 +∆2 − δ − z2 = 0 (4.26d)

δ ≥ 0, (4.26e)

where the optimization variables gR+1 and δ have been normalized by σe and zi := ei/σe.
Let J̃ = J/σe, and note that J̃ only depdent of β and ∆. Combining (4.23) and (4.26), ∆
solves the unconstrained optimization problem

min
∆

αT∆+ E[J̃(β,∆)]. (4.27)
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To solve this optimization problem, we need the gradient of E[J̃(β,∆)] with respect to ∆.
The optimization problem can be analytically solved to yield

J̃(β,∆) =



















































min(β1 + β2)(z1 + z2 −∆1 −∆2)

if z1 + z2 > ∆1 +∆2, z2 < ∆2

min(β1 + β2)(z1 −∆1) + β2(z2 −∆2)

if z1 > ∆1, z2 > ∆2

β2(z2 −∆2)

if z1 < ∆1, z2 > ∆2

0 otherwise

= min(β1, β2)[(z1 + z2 −∆1 −∆2)
+1(z2 < ∆2)

+ (z1 −∆1)
+1(z2 > ∆2)] + β2(z2 −∆2)

+.

Using the linearity of expectation and taking derivatives with respect to ∆ in αT∆ +
E[J̃(β,∆)] gives (4.21).

Next we prove the price of uncertainty is given by Eqn. (4.22). The value of full knowledge
optimization problem is E[J(α,d)]. The error is zero mean and by the small-σ assumption,
E[J(α,d)] = αTg where g is the nominal solution. The cost of uncertainty is

u = αT (g + σe∆) + E[J(β,d− (g + σe∆))]− E[J(α,d)]

= σe(α
T∆+ E[J̃(β,∆)]

= σep.

4.3.2 N-bus Network with a Single Congested Line

Figure 4.8: A zonal map of the California transmission network under CAISO control. The
subnetwork within a zone are uncongested under normal operation. The tie lines to other
WECC areas are not shown.

Most networks consists of a large number of buses and lines, but under normal operating
conditions, only very few lines are congested. For example, the California transmission
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network can be thought as divided into three zones connected by major transmission lines
shown in Figure 4.8 and the flows within a zone are unrestricted [70]. The zonal grouping in
CAISO was designed utilizing the idea of collapsing together buses connected by uncongested
transmission lines in a deterministic OPF. We formalize and extend this intuitive concept
for ND-RLD by showing that a general network with a single congested link reduces to a
two bus problem under mild to moderate uncertainty. More concretely, assume the line from
bus 1 to bus 2 is congested, then

Theorem 13. Under the small-σ assumption, suppose that f 12 = c12 is the only congestion
in the network, then the following holds:

1. There are at most two nodes with positive generation. That is, gi > 0 for at most two
i. Furthermore, if g1 ≤ 0, then only one other bus has positive generation.

2. The optimal control takes the form

g∗ = (g +∆)+,

where ∆i 6= 0 only if gi > 0.

3. If βi = βk = β for all i, k, then the network can be thought as a congested two node
network with congestion from bus 1′ to 2′ with correlated errors. Let k 6= 1 be the bus
with positive generation. Then the first stage costs are α′

1 = α1 and α′
2 = (αk

γk
− γkα1)

and the errors are given by

e′1 = e1 +
n
∑

i=3

γiei e′2 = e2 +
n
∑

i=3

(1− γi)ei, (4.28)

where γi ∈ [0, 1] are determined by the topology of the network.

Point 1) in Theorem 13 seems strange since it is highly unlikely that only two generators
would be generating in a power network. This result is comes from the assumption that the
prices are linear in the power generated, which is used here to simplify the presentation. In
practice, cost functions are piecewise linear or quadratic. If piecewise linear cost functions
are used, then Theorem 13 1) is modified to stating that there are at most two genera-
tors operating at their marginal cost [64]; if quadratic (or other continuous increasing) cost
functions are used, Theorem 13 is modified to stating that there are at most two different
marginal costs among the generators. The details of the derivation is given in the Appendix.
The overall message of Theorem 13 remains unchanged in each case: in a network with two
congested link, the risk limiting dispatch can be calculated by considering a two-bus network
obtained from the original n-bus network.

The proof of this theorem is somewhat technical and can be thought as a special case
of the general theorem in the next section. The theorem states that the network can be
collapsed into a single bus or a two bus network, utilizing an appropriate averaging of the
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net demands. To understand how to calculate the bus averaging weights γi, it is convenient
to simplify (4.6) (with cost β) by considering fundamental flows [71]. By theorems in
graph theory, Eq. (4.5c) can be eliminated by choosing a spanning tree in the network, and
identifying the branch flows on the tree as fundamental flows f̃ . All flows f are determined
by these n − 1 fundamental flows denoted f̃ ∈ R

n−1. Let R be the mapping from f̃ to f
(f = Rf̃). Let A = ∇

TR. The constraint (4.5c) can be eliminated and (4.5) reduces to:

J∗(β,x) = minβT (gR)+ (4.29a)

subject to gR − x−Af̃ = 0 (4.29b)

|Rf | ≤ c. (4.29c)

Let aT
i be the ith row of A for i = 1, . . . , n. For each node i = 3, . . . , n in the network, let

f̃ (i) be set of fundamental flows that solve the following set of equations

f
(i)
1 = 0 (4.30a)

aT
i f̃

(i) = −1 (4.30b)

aT
k f̃

(i) = 0, k 6= i, k ≥ 3. (4.30c)

In matrix form, f̃ (i) solves
[

1 0 0 · · · 0
A2

]

f̃ (i) = Ãf̃ (i) = −ei−1,

where A2 is the (n − 2) × (n − 1) matrix obtained by removing the first two rows of A.
Inverting gives f̃ (i) = −Ã−1ei−1 and

γi = aT
1 f̃

(i). (4.31)

Next we apply Theorem 13 to a three bus single cycle network with equal admittance on
each line. Let the prediction d̂ be such that the line from bus 1 to bus 2 is congested. That
is, f 12 = c12 in the nominal problem. There are four possible congestion patterns1 as listed
in Figure 4.9. Bus i is labeled by the sign of gi. Figure 4.10 shows the equivalent two bus
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Figure 4.9: Possible sign patterns of g when a single line is congested.

networks for each of the networks in Fig. 4.9 after applying Theorem 13. The networks in
Fig. 4.10 are labeled by the first stage costs, the sign patterns and the forecasted errors at
each of the nodes. Let ∆′ be the solution to the two bus networks in Fig. 4.10. Then the
controls ∆ for the original problem are given in each of the networks in Fig. 4.10.

1Other patterns are possible, but occur for a set of d̂ that is of measure zero
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Figure 4.10: The equivalent perturbed networks for the networks in Fig. 4.9 respectively.
The left bus is 1′ and the right bus is 2′. The back flow is only allowed form 2′ to 1′.

4.4 Network with Multiple Congested Links

The result from the last section carries over in an obvious way: a network with K nominally
congested links can be reduced to a network with K + 1 buses. Formally, Theorem 13
generalize to

Theorem 14. Suppose the small-σ assumption hold. Then the two step procedure in Section
4.3 is optimal. Furthermore, let K be the number of congested links from the nominal prob-
lem. The the perturbed problem in (4.18) reduces to an equivalent problem on at most K +1
buses with at most K congested lines. The perturbed network is constructed by Algorithm 1.

Algorithm 1: Construction of the perturbed network

1. Solve the nominal problem J(α, d̂) to get g and f .

2. Renumber the flows such that the K congested flows are numbered 1 to K. Let the
matrix A be defined with respect to this numbering of the flows (2.15).

3. Let A1 be the matrix formed from AT be keeping the first K rows and A2 be the
matrix formed from AT by removing the first K rows. Therefore A1 has size K × n
and A2 has size (n− 1−K)× n.

4. Consider the equation
A2λ = 0. (4.32)

From [59], all rows of A are linear independent, A2 has rank n−K − 1 and null space
of dimension of K +1. Therefore each λ as a linear combination of K +1 independent
λ’s.

5. The K + 1 independent λ’s include all buses with a + labelling. If the number of +
labelled buses is less than K + 1, the pick other buses to complete this set. Renumber
the buses such that these independent buses at numbered from 1 to K +1. Rearrange
the columns A, A1 and A2 accordingly.
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6. Find B such that [λK+2, . . . , λn]
T = B[λ1 . . . λK+1]

T . Define ẽ and Ã as

ẽ =
[

I BT
]

e Ã = A1

[

I
B

]

(4.33)

where I is the identity matrix of size K + 1, ẽ is a vector of length K + 1, and Ã is of
size K ×K + 1. Since the all one’s vector spans the null space of AT , the rows of B
sum up to 1.

7. The perturbed network has K +1 buses, with the flow to bus mapping determined by
ÃT and the prediction error at bus i is ẽi. The topology of the reduced network can
be determined by the method in Chapter 12 of [72], but is not needed in solving the
perturbed problem.

8. The first and second stage prices are given by

α̃ =
[

I BT
]

α′ β̃ =
[

β′
1 β′

2 . . . β′
K+1

]T
. (4.34)

The perturbed two stage problem becomes

min
∆̃

α̃T ∆̃+ E[J̃(β̃, ∆̃)].

This problem has dimension K+1. Let ∆̃ the risk limiting dispatch for the perturbed
problem. The original ∆ is obtained by solving

min
∆

α′T∆ (4.35a)

s.t.
[

I BT
]

∆ = ∆̃ (4.35b)

∆i ≥ 0 if gi = 0. (4.35c)

The proof of Theorem 14 mainly involves showing each step in Algorithm 1 is possible
and is given in the appendix. For the rest of this section, we illustrate the usefulness of
Theorem 14 with examples.

4.4.1 Example 1

Consider the 5-cycle network in Fig. 4.11. For some d̂ and α, the sign pattern of the buses
after solving the nominal problem is given in Fig. 4.11. In this case renumbering of buses or
the flows are not needed. Following Algorithm 1, we compute Ã and B and they are given
in Fig. 4.11. The last step of Algorithm 1 gives the perturbed network is a triangle, and the
direction of flows consistent with Ã is given in Fig. 4.12.
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]

Figure 4.11: The resulting flows and signs of buses of a 5-cycle network after solving a
nominal problem. The congested edges are label by red crosses and the directions are given
by arrows (f1 and f2 are congested). The matrices are computed according to Algorithm 1.
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]

Figure 4.12: The perturbed network. The error at each bus is a linear combination of the
original errors. The fundamental flows in the network is the flow from bus 1 to bus 2 and
bus 2 to bus 3. The congestion is denoted by red lines.

For this perturbed network, the second stage optimization problem becomes

J̃(β̃, ∆̃) = min
y

β̃Ty (4.36a)

s.t. y − ÃT f − (ẽ− ∆̃) ≥ 0 (4.36b)

f ≤ 0 (4.36c)

y ≥ 0, (4.36d)

where f is the two fundamental flows in Fig. 4.12. By standard duality theory, the dual is

J̃(β̃, ∆̃) = max
λ

λT (e− ∆̃) (4.37a)

s.t. 0 ≤ λ ≤ β̃ (4.37b)

Ãλ ≤ 0, (4.37c)

where λ are the Lagrange multipliers of the energy balance constraint (4.36b). The overall
problem is

min
∆̃1,∆̃2,∆̃3

3
∑

i=1

α̃i∆̃i + E[J(β̃, ∆̃)]. (4.38)

To solve for the first stage control ∆̃, we can set up a system of equilibrium equations.
The equations are found by considering trade-off between procuring more one unit of energy
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in the first stage and the potential benefit of that unit of energy in the second stage. The
cost of procuring one more unit of energy at bus i is αi and the expected benefit of that unit
of energy is given by E[λ∗

i (ẽ − ∆̃)] [73]. To obtain the optimal ∆̃, we solve the system of
equilibrium equations:

α̃i = E[λ∗
i (ẽ− ∆̃)], ∀i. (4.39)

Since J̃ is a linear program, the optimal occurs at a vertex of the polyhedron defined by
(4.37b) and (4.37c). The vertices can be listed [74], and for each (ẽ− ∆̃), the corresponding
optimal vertex can be found be simple comparisons. For the network in Fig. 4.12, there are
6 possible vertices, and due to space constraints, we do not list them here. By comparison
of the vertices,

λ∗
1 =







































































β if











1 1 1

1 0 0

1 0 1/4

3/4 1 0











(ẽ− ∆̃) ≥ 0

β/4 if











1/4 0 1

1/4 0 0

1/4 −1 0

−3/4 −1 0











(ẽ− ∆̃) ≥ 0

0 otherwise

=











β if R1(ẽ− ∆̃) ≥ 0

β/4 if R2(ẽ− ∆̃) ≥ 0

0 otherwise

.

Therefore the first equilibrium equation is given by

α̃1 = β Pr(R1(ẽ− ∆̃) ≥ 0) + β/4Pr(R2(ẽ− ∆̃) ≥ 0)

and equations for α̃2 and α̃3 can be generated in the same way. Solving this set of equations
gives ∆̃∗. And the optimal solution to the original problem is (g +∆)+ where ∆ is found
by solving (4.35).

4.4.2 Example 2

Consider the IEEE 9-bus benchmark network in Fig. 4.15 [23]. For some predicted demand
and cost α, the congestion pattern and the labelling of the buses are given in Fig. 4.15 as
well. The perturbed network is given in Fig. 4.14.

The equilibrium conditions can be written down using the same procedure in Section
4.4.1.
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Figure 4.13: The IEEE 9-bus benchmark network with a particular sign and congestion
pattern. The direction of the flows are given by the arrows, and the congested lines are
denoted by red marks.
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Figure 4.14: The perturbed network. The error at each bus is a linear combination of the
original errors. The error at bus 3 does not matter since it is labelled (−) (β̃ = 0). The
fundamental flows in the network is the flow from bus 1 to bus 2, bus 3 to bus 2 and bus 2
to bus 4. The congestion is denoted by red lines.

4.5 Simulation Results

This section explores various numerical examples using the IEEE 9-bus benchmark network.
In particular we compare the performance of ND-RLD with utilizing the standard 3 − σ
rule. We also compute the price of uncertainty numerically and compare it to the theoretical
prediction.

4.5.1 Uncongested Network

Many practical networks have line capacities that are much larger than the typical power
flows. For these networks, they are well approximated by a single bus network. For example,
consider the IEEE 9-bus network in Figure 4.15. The nominal generation and demands
from the data included with this benchmark network [23, 75] is shown in Table 4.2. Note
that line flows are significantly smaller than transmission line capacities. Therefore, under
moderately high penetration, the network can be thought as a network operating without
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Figure 4.15: IEEE 9-bus benchmark network. Bus 1,2,3 are generators and the rest of the
buses are loads.

capacity constraints.
Up to this point we have used the DC power flow model, while in reality power flow is AC.

It is known that for transmission networks, due to the low R/X ratios of the transmission
lines, DC and AC power flows yields similar answers. This is confirmed in our simulations
where the difference in performance of using the risk limiting dispatch under DC and AC
power flow models is minimal. Therefore it is sufficient to use the simpler DC flow model to
obtain the dispatch.

Bus 1 2 3 4 5 6 7 8 9
DC Flow 86.6 134.4 94.1 0 -90 0 -100 0 -125
AC Flow 89.8 134.3 94.2 0 -90 0 -100 0 -125

Table 4.1: All units are MW. Negative numbers are the demands at buses 5, 7, and 9. The
generations needed at buses 1, 2, and 3 to meet these demands under both DC flow and AC
flow are shown. Note that due to losses, the total amount of generations needed under the
AC power flow model is slightly higher.

From bus 1 4 5 3 6 7 8 8 9
To bus 4 5 6 6 7 8 2 9 4

DC Flow 86.6 33.7 -56.3 94.1 37.8 -62.2 - 134.4 72.2 -52.8
AC Flow 89.8 35.2 -55.0 94.2 38.2 -61.9 -134.3 72.11 -54.3
Capacity 250 250 150 300 150 250 250 250 250

Table 4.2: All units are MW. Both DC and AC power flows on each line of the network is
shown. Capacities are the long term emergency rating of the line. The network is uncon-
gested since at most a flow takes about half of the capacities on the line.

To analyze the performance of the risk limiting dispatch derived in Section 4.2, we com-
pare it to two other dispatches. The first one is the currently used 3− σ dispatch, and the
second one is the oracle dispatch where the actual realization of the wind is known at stage
1. We assume that all the generating buses have a first stage cost2 α = 1 and all buses have
the same second stage cost β. For simplicity, the prediction errors are generated as i.i.d.
zero mean Gaussian random variables with variance σ2. The predictions d̂ is taken to the
nominal demands in Tab. 4.1.

2The nominal generations are determined by an OPF problem, and every generator with non-zero gen-
eration has the same marginal cost. This can be thought as α.
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The risk limiting dispatch is derived by viewing the network as a single bus. For actual
operation, the amount of reserves to put at each buses in the network need to be determined.
Here we spread the reserves equally among the three generating buses(buses 1,2 and 3). From
(4.11) and the fact that the prediction errors are independent, the single bus risk limiting
dispatch is

∑9
i=1 d̂i +∆ where ∆ =

√
9σQ−1(α

β
). The network risk limiting dispatch is given

by

grld = g +∆ =
[

86.6 134.4 94.1 0 . . . 0
]T

+ 3σQ−1(
α

β
)
[

1
3

1
3

1
3

0 . . . 0
]T

.

The 3− σ control purchases a reserve of 3 times the standard deviation for each bus in the
network, or 3 · 9 · σ. Again we spread out the 3− σ dispatch over the three generating nodes
as

grld = g +∆ =
[

86.6 134.4 94.1 0 . . . 0
]T

+ 9σQ−1(
α

β
)
[

1 1 1 0 . . . 0
]T

.

We simulate the cost for both the DC and AC power flows.
Figure 4.16 plots the total cost of the three dispatches for β = 1.5α. As we can see the

risk limiting dispatch performs much better than the 3− σ dispatch. There are two reasons
why the 3 − σ dispatch or rules like it perform badly. The first is that the 3 − σ rules is
too conservative since it does not take into account the actual cost of the second stage; the
second reason is that the 3−σ dispatch ignores the potential benefit of averaging between the
prediction errors by treating the different buses as isolated nodes. In contrast, risk limiting
dispatch takes these two points into consideration. Figure 4.17 is a zoomed in version of Fig.
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Figure 4.16: Total costs for β = 1.5α as a function of σ. The red, blue and black lines are
the total cost for the 3 − σ, risk limiting, and the oracle dispatches respectively. The solid
lines are the costs under DC flow while the dotted lines are for AC flows.

4.16 by plotting the total cost only for the risk limiting dispatch and the oracle dispatch.
The cost for the oracle dispatch is constant at 315 up until σ = 80. This is expected since the
predicted total demand is 315 MW, and the prediction errors are zero mean, so the errors
averages out. At higher σ, the capacities in the network become binding and the cost goes
up since not all errors can be averaged. The cost for the risk limiting dispatch is essentially
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linear for all σ’s. A lower bound for the minimum total cost is the total cost of applying the
risk limiting dispatch to a network with infinite capacities, since an infinite capacity network
has lower cost than a finite capacity one and the risk limiting dispatch is optimal for the
former. From Figure 4.17, this lower bound is almost met. Thus the risk limiting dispatch
is close to optimal and our assumption of viewing an uncongested network as a single bus
network is valid. The slopes of the lines gives the price of uncertainties. As expected, the
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Figure 4.17: Total costs for β = 1.5α as a function of σ. The blue and black lines are the
total cost for the risk limiting and the oracle dispatches respectively. The purple line is the
cost of the RLD when applied to an infinite capacity network, which is a lower bound for
the minimum cost of the finite capacity network. The slopes of the blue and the purple lines
represent the price of uncertainties.

price of uncertainty for the oracle dispatch is 0 since the actual realization is known at the
first stage. The price of uncertainty of the risk limiting dispatch closely matches that of the
single bus price of uncertainty, while the 3− σ price is much higher.

4.5.2 Congested Network

To construct a congested network, the network in Fig. 4.15 is modified by increasing the
nominal load at bus 5 to 150 MW and reducing the capacity of the line connecting bus 5
and 6 to 75 MW. Then the line from bus 6 to bus 5 is congested. There are two different
first stage costs α1 and α2 and these are given by the marginal costs of the generators. Let
α = 1

2
(α1 + α2) and we normalize all cost by α. Figure 4.18 plots the total cost of the three

dispatches for β = 1.5α. Again, we see the risk limiting dispatch performs much better than
the 3− σ dispatch. Figure 4.19 is a zoomed in version of Fig. 4.18 with the total cost only
for the risk limiting dispatch and the oracle dispatch. As expected, the cost of the oracle
dispatch is constant over a wide range of σ’s. The cost of the risk limiting dispatch is linear
and very close to its lower bound. The lower bound is obtained by applying the risk limiting
dispatch to a network with only one finite capacity line, namely the line congested under
the nominal flows. Figure 4.19 shows that the abstraction of thinking about a network with
one congested line as a two bus network is very accurate.

Figure 4.20 shows the difference in cost of using the risk limiting dispatch derived in
Section 4.2 and using the risk limiting dispatch developed in this section. As expected, the
later dispatch performs better since it takes into account the congestion in the network. The
gap in cost should increase as the ratio β

α
increases.
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Figure 4.18: Total costs for β = 1.5α as a function of σ. The red, blue and black lines are
the total cost for the 3 − σ, risk limiting, and the oracle dispatches respectively. The solid
lines are the costs under DC flow while the dotted lines are for AC flows. The purple line is
the cost of the rld when applied to a network where only one line has finite capacity, namely
the line congested under the nominal flows. This is a lower bound for the minimum cost of
the finite capacity network. The slopes of the blue and the purple lines represent the price
of uncertainties.
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Figure 4.19: Total costs for β = 1.5α as a function of σ. The blue and black lines are the
total cost for the risk limiting and the oracle dispatches respectively. The purple line is the
cost of the RLD when applied to a network where only one line has finite capacity, namely
the line congested under the nominal flows. This is a lower bound for the minimum cost of
the finite capacity network. The slopes of the blue and the purple lines represent the price
of uncertainties.
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Figure 4.20: Total costs for β = 1.5α as a function of σ. The blue line is the total cost for
the risk limiting dispatch developed in Section 4.3. The red line is the total cost if the risk
limiting dispatch derived for the congested network in Section 4.2 is used.
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Chapter 5

Conclusion

In this thesis we have considered the control and optimization of resources in the power
system in the presence of renewables. We investigated the problem of optimal power flow
by looking at the injection region. We explored various geometric property of the injection
region, and in particular, showed that for a network of a tree topology, the Pareto-Front of the
injection region is conserved under the convex hull operation. Therefore the OPF problem
can be convexified for distribution networks. As an application, we derive an optimal and
decentralized algorithm for the voltage distribution problem.

Next, we investigated the problem of stochastic generator dispatching in the transmission
network. We formulated it as a two-stage stochastic programming problem, and showed
under the small-error regime, it can be solved in an analytical fashion without sampling.
Furthermore, we quantify the impact of uncertainty on the system cost with a notion called
the price of uncertainty.
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Appendix A

Proofs of Results in Chapter 2

A.1 Proof of Theorem 1

The following basic lemma from linear algebra is useful.

Lemma 15 (Rank Nullity Theorem). Let A be a n×n real symmetric matrix. Let image(A)
and ker(A) denote the image and kernel of A, respectively. Then dim image(A)+dimker(A) =
n and image(A)⊕ ker(A) = R

n, where ⊕ is the direct sum.

First consider the case where the network is lossless. Then any feasible injection vector
must be on the conservation of energy plane. We need to show that any point on the
plane can be achieved. Since the network is lossless Y = j Im(Y) where Im(Y) is a n × n
real symmetric matrix and each row of Im(Y) sums to 0 by (2.1). Therefore Im(Y) is a
generalized graph Laplacian matrix where the admittances can be interpreted as weights on
the edges. By a standard result in graph theory, dim ker(Im(Y)) = 1 and ker(Im(Y)) is
spanned by the all one’s vector 1. By Lemma 15, image(Im(Y)) is the linear subspace in R

n

orthogonal to 1. Let p0 be an injection vector on the conservation of energy plane, that is
∑n

i=1 P
0
i = 0. Since 1Tp0 = 0, there is a unique vector v0 such that Yv0 = p0 and 1Tv0 = 0.

Choose the voltage vector v = (−v0 + j1), then

Re(diag((−v0 + j1)(−v0 + j1)HYH)) (A.1)

= Re(diag((v01T + 1(v0)T ) Im(Y)) (A.2)

+ j diag((v0(v0)T + 11T ) Im(Y)))

(a)
= p0,

where (a) follows from the choice of v0 and Im(Y) being symmetric. This finishes the proof
for a lossless network.

Next consider the case where the network is lossy. The proof proceeds in two parts, first
we show that the conservation of energy boundary

∑n

i=1 Pi = 0 can be arbitrarily closely
from above, and then we show the injection region is convex. Since the network is lossy,
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Re(Y) is a n×n real positive semidefinite Laplacian matrix. By conservation of energy, any
power injection vector achieved must satisfy

∑n

i=1 Pi > 0 if p 6= 0. Let p0 be a vector on
the conservation of energy plane. We show there is a voltage vector v that achieves a point
arbitrarily close to p0. Since 1Tp0 = 0, by Lemma 15 there is a unique vector v0 such that
Re(Y)v0 = p0 and 1Tv0 = 0. Let v = (α1 + 1

α
v0) for some α ≥ 0 and the corresponding

injection vector p is

p = Re(diag(vvTY)) (A.3)

= Re(diag((α1+
1

α
v0)(α1+

1

α
v0)T (Re(Y) + j Im(Y)))

= diag((α111T + v01T + 1(v0)T +
1

α2
v0(v0)T ) Re(Y))

(a)
= diag(1(v0)T Re(Y)) +

1

α2
diag(v0(v0)T Re(Y))

(b)
= diag(1(p0)T ) +

1

α2
diag(v0(p0)T )

= p0 +
1

α2
diag(v0(p0)T ),

where (a) follows from 1 ∈ ker(Re(Y)) and Re(Y) is symmetrical, (b) follows from the
choice of v0. We can increase α to make p arbitrarily close to p0. For example, if we want
||p− p0||∞ ≤ ǫ, then choose

α ≥
√

||p0||∞||v0||∞
ǫ

.

The next lemma states that P is convex.

Lemma 16. The injection region P as defined in eqn. (2.8) is a convex set.

Before proving Lemma 16, we show Theorem 1 follows from it. The geometric intuition
is illustrated in Fig. A.1 for a two bus network. The main idea is to chose a set of points
sufficiently close to the conservation of energy boundary (but not on it) such that the convex
cone formed by the chosen set of points with the origin includes all other points in the upper
half space. Formally, for a n-bus network, define p̂(i) ∈ R

n to be the vector with n − 1 in
the i’th position and −1 in all other positions. Each p̂(i) satisfies 1T p̂(i) = 0. Therefore the
point p̂(1)+ ǫ is in P for some ǫ where 1Tǫ > 0. Suppose p ∈ R

n is a point in the upper half
space, that is, 1Tp > 0. To show p is in P , we first show that p is in the strict interior of
the convex cone formed by the origin 0 together with {p̂(1)+ǫ, p̂(2), . . . , p̂(n)}. By definition,
we need to show the existence of positive coefficients λ1, . . . , λn such that

p = λ1(p̂
(1) + ǫ) +

n
∑

i=2

λip̂
(i). (A.4)

Due to the perturbation ǫ, the set of vectors {p̂(1)+ǫ, p̂(2), . . . , p̂(n)} is linearly independent.
Therefore λi’s exist. To show they are positive, sum both side of (A.4) to obtain

1Tp = λ11
Tǫ.
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Figure A.1: Outline of proof idea for Theorem 1 for a two bus network. First pick two points
close to the boundary P1 +P2 = 0 that are on opposite sides of the origin. Form the convex
cone defined by the origin and the two chosen points as illustrated by the red lines. If the P
is convex, then all points inside the cone is achievable. Since the P1 + P2 = 0 boundary can
be approached arbitrarily closely, the cone can be made to include every point in the open
set {(P1, P2) : P1 + P2 > 0}.

By assumptions, 1Tp > 0 and 1Tǫ > 0 and λ1 =
1Tp

1T ǫ
> 0. The rest of λi’s solves
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λ1.

Choose an ǫ such that 1Tǫ is sufficiently small and the right hand side of the equation
is positive in every coordinate. Suppose at least one of the λi’s are non-positive, WLOG,
assume it is λ2. The first row of the equation implies least one of λ3, . . . , λn is negative .
WLOG, assume it is λ3. Furthermore, λ3 <

n−1
n−2

λ2. Repeating this procedure by going down
the rows of the equation, from the second last row we get (n− 1)λn < (λ2+ · · ·+λn−1). But
then the last row of the equation is not satisfied and therefore λi > 0 for all i = 1, . . . , n.
Since p is in the strict interior of the convex cone formed by {p̂(1)+ ǫ, p̂(2), . . . , p̂(n)}, it is in
the interior of the convex cone formed by {p̂(1)+ ǫ, p̂(2)+ ǫ(2), . . . , p̂(n)+ ǫ(n)} for sufficiently
small ǫ(i), i = 2, . . . , n. Thus p is in P .

It remains to prove Lemma 16.

Proof. For a given network with n buses represented by Y, define PV as

PV = {p ∈ R
n : p = Re(diag(vvHYH)), ||v||2 ≤ V }, (A.5)
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where ||v||2 = (
∑n

i=1 |V |2i )
1
2 . PV approaches the unconstrained injection region as V tends

to infinity. PV cannot have holes since if p ∈ PV , then αp ∈ PV for α ∈ [0, 1]. Therefore
to prove the convexity of PV it suffices to prove it has convex boundary. Consider the
optimization problem

J = minimize
n
∑

i=1

ciPi (A.6)

subject to ||v||2 ≤ V

p = Re(diag(vvHY H)).

Relaxing and eliminating p, we get

J1 = minimize Tr(MW) (A.7)

subject to
∑

i=1

Wii ≤ V
2

W < 0,

By changing the costs, we are exploring the boundaries of the two regions with linear func-
tions. We want to show that all the point on the boundary of the larger region is in fact in
the smaller region.

First we show that for all M there is an optimal W∗ for (A.7) which is rank 1. To solve
(A.7), expand W in terms of its eigenvectors, so W = w1w1w

H
1 + · · ·wnwnw

H
n where wi is

unit norm and
∑n

i=1 wi ≤ V
2
. Then (A.7) can be written as

minimize
n
∑

i=1

wiw
H
i Mwi (A.8)

subject to
n
∑

i=1

wi ≤ V
2

W =
n
∑

i=1

(wiwiw
H
i ) < 0.

By the well known result about Rayleigh quotients [76], to minimize any of the terms
wH

i Mwi, the optimal w∗
i = m1, where m1 is the eigenvector corresponding to the small-

est eigenvector of M . Therefore the optimal solution to (A.7) is W =
∑n

i=1 wim1m
H
1 =

V
2
m1m

H
1 and is rank 1.

If m1 is not unique, since eigenvector are not continuous in the entries of the matrix, we
can perturb Y by an arbitrarily small amount to obtain a M that has a unique eigenvector
corresponding to the smallest value. Note the power vector p is continuous in the entries of
Y . From uniqueness of m1 and the fact there is no gap between (A.6) and (A.7), the two
regions have the same boundary. Taking V to infinity finishes the proof.
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A.2 Proof of Lemma 5

To prove Lemma 5, we first show that O(S) ⊆ O(P) (recall that S = conv(Pθ) ∩ PP ).
Consider a point x ∈ O(S), and denote its corresponding line flow from bus i to bus k with
xik for every (i, k) ∈ E . Due to the relation P = O(P) derived in Part 2 of Theorem 4, it is
enough to prove that x ∈ P . Since x is a Pareto point of the convex set S, it is the solution
of the following optimization

x = argmin
p∈conv(Pθ)

n
∑

i=1

ciPi

subject to P i ≤ Pi ≤ P i i = 1, 2, ..., n.

for some positive vector (c1, . . . , cn). To simplify the proof, assume that all entries of this
vector are strictly positive (the idea to be presented next can be adapted to tackle the case
with some zero entries). By the duality theory, there exist nonnegative Lagrange multipliers
λ1, ..., λn and λ1, ..., λn such that

x = argmin
p∈conv(Pθ)

n
∑

i=1

(ci + λi − λi)Pi − λiP i + λiP i

or equivalently

x = argmin
p∈conv(Pθ)

n
∑

i=1

(

c̄i
∑

k∈V: k∼i

Pik

)

(A.9)

where c̄i = ci+λi−λi for every i ∈ V . By complementary slackness, whenever c̄i is less than
or equal to zero, the multiplier λi must be strictly positive. Therefore

xi = P i whenever c̄i ≤ 0 (A.10)

On the other hand, since conv(Pθ) = A conv(Fθ) and Fθ =
∏

(i,k)∈E Fθik , it results from

(A.9) that
(xik, xki) = argmin

(Pik,Pki)∈conv(Fθik)

c̄iPik + c̄kPki (A.11)

for every (i, k) ∈ E . In order to prove x ∈ P , it suffices to show that (xik, xki) ∈ Fθik. Notice
that if either c̄i > 0 or c̄k > 0, then it can be easily inferred from (A.11) that (xik, xki) ∈ Fθik.
The challenging part of the proof is to show the validity of this relation in the case when
c̄i, c̄k ≤ 0. Consider an arbitrary vector y (not necessarily distinct from x) belonging to P .
Since (yik, yki) ∈ Fθik, it is enough to prove that (xik, xki) = (yik, yki) whenever c̄i, c̄k ≤ 0.
This will be shown below.

Consider an edge (i, k) ∈ E such that c̄i, c̄k ≤ 0. There exists at least one connected,
induced subtree of the network including the edge (i, k) with the property that c̄r ≤ 0 for
every vertex r of this subtree. Among all such subtrees, let G denote the one with the
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maximum number of vertices. We define two types of nodes in G. A node r ∈ G is called a
boundary node of G if either it is connected to some node l ∈ V\G or it is a leaf of the tree.
We also say that a node r ∈ V\G is a neighbor of V if it is connected to some node in V . By
(A.10), if r is a node of G, then yr ≥ P r = xr. Without loss of generality, assume that the
tree is rooted at a boundary node of G, namely node 1.

Consider an edge (r, l) of the subtree G such that node l is a leaf of G and node r is its
parent. First, we want to prove that ylr ≥ xlr. To this end, consider two possibilities. If l is
a leaf of the original tree, then the inequality (A.10) yields ylr = yl ≥ P l = xl = xlr. As the
second case, assume that l is not a leaf of the original tree. Let m denote a neighbor of G
connected to l. By analyzing the flow region for the line (l,m) as depicted in Figure A.2a,
it follows from (A.11) and the inequalities cl ≤ 0, cm > 0 that (xlm, xml) is at the lower right

Pml

Plm

(xlm, xml)

(a)

Plr

Prl

(xrl, xlr)

(yrl, ylr)

(b)

Figure A.2: Figure (a) shows the flow region for the line (l,m), where (xlm, xml) lies at its
lower right corner due to cl ≤ 0 and cm > 0. Figure (b) shows the flow region for the line
(r, l) to illustrate that xrl ≥ yrl (due to Fθrl = O(conv(Fθrl)) and ylr ≥ xlr).

corner of Fθlm . Thus, xlm ≥ yml because of (ylm, yml) ∈ Fθlm . Let Nl denote the set of all
nodes connected to l that are neighbors of G. One can derive the inequality xlm ≥ ylm for
every m ∈ Nl. Combining this set of inequalities with xl = P l ≤ yl or equivalently

xl =
∑

m∈Nl

xlm + xlr ≤
∑

m∈Nl

ylm + ylr = yl,

yields that ylr ≥ xlr. As illustrated in Figure A.2b, this implies that xrl ≥ yrl. This line of
argument can be pursued until node 1 of the tree is reached. In particular, since node 1 is
assumed to be a boundary node of G, it can be shown by induction that x1l ≥ y1l for every
node l such that (1, l) ∈ E . On the other hand,

∑

l∈V: l∼1

x1l = x1 = P 1 ≤ y1 =
∑

l∈V: l∼1

y1l
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Therefore, the equality x1l = y1l must hold for every l ∼ 1. By propagating this equality
down the subtree G, we obtain that xik = yik and xki = yki. This completes the proof of the
relation O(S) ⊆ O(P).

In order to complete the proof of the lemma, it remains to show that O(P) ⊆ O(S). To
this end, assume by contradiction that there is a point p ∈ O(P) such that p /∈ O(S). In
light of P ⊆ S, there exists p′ ∈ O(S) such that p′ ≤ p with strict inequality in at least one
coordinate. However, since O(S) ⊆ O(P), p′ belongs to P . This contradicts the assumption
p ∈ O(P).

A.3 Proof of Theorem 6

The proof proceeds along the same lines of Theorem 4. The requirement that Q
i
< βi for

i = 2, . . . , n is to ensure that the reactive lower bound is in fact never tight for all the
nodes in the network. Let h be parent of i and k be a child of i. Since we assume that
power always flow from parent to child in the network, and from the angle constraints,
0 ≤ θhi ≤ tan−1( bik

gik
). Over this range, Qih ≥ 0. This corresponds to the intuition that

reactive power should flow up the tree to support the voltage. Note the inductive line is
very lossy in terms of reactive powers, therefore i might receive or supply reactive power to
k. The Qik is monotonic in θik starting at θik = 0 until it reaches is minimum at an angle of
tan−1( gik

bik
). Let θ̃ik = min(tan−1( gik

bik
), θik), then Qi = Qih +

∑

k:k∈C(i) Qik ≥ ∑

k:k∈C(i) Qik ≥
∑

k:k∈C(i) bik − gik sin(θ̃ik) − bik cos(θ(θ)ik) = βi. Therefore if Q
i
< βi, the lower bounds on

the reactive power injections are never tight.
Since by construction the lower bonds on the reactive power injection are never tight,

we can ignore them from now on. Let P be the feasible region, that is, P = {p : ∃v ∈
C

n, Pi = Tr(Aivv
H), |Vi| = 1, P i ≤ Pi ≤ P i,Tr(Bivv

H) ≤ Qi, |θik| < θik, ∀i ∼ k}. We
can equivalently write P as P = A(Fθ ∩ FP ∩ FQ), Since FP and FQ are defined by linear
inequalities, they are convex. However, Fθ is not.

Define S = A(convhull(Fθ) ∩ FP ∩ FQ). It is convex, and contains P . To establish the
theorem, it suffices to show the following lemma.

Lemma 17. Suppose P is not empty, then P = O(S).

To prove the Lemma, let p∗ ∈ S be the optimal solution of the relaxed problem,
f∗ ∈ convhull(Fθ)∩FP ∩FQ its corresponding active flow vector and r∗ = Hf∗ be the corre-
sponding reactive power flow vector. It suffices to show that if P ∗

i > P i, then (f ∗
ik, f

∗
ki) ∈ Fθ,ik

for every k ∼ i. Once this fact is established, the rest of the proof is the same as the proof of
Lemma 5. Suppose that P ∗

i > P i, but (f
∗
ik, f

∗
ki) /∈ Fθ,ik for some k. Then there exists ǫ > 0

such that (f ∗
ik − ǫ, f ∗

ki) ∈ convhull(Fθ,ik). Let (f̃ik, f̃ki) = (f ∗
ik − ǫ, f ∗

ki). Since

Hik

[

−ǫ
0

]

= − ǫ

2bikgik

[

b2ik − g2ik
b2ik + g2ik

]

< r∗,
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Therefore (f̃ik, f̃ki) is a better feasible flow on the line (i, k), which contradicts the optimality
of f∗.

A.4 Proof of Lemma 7

The proofs provided for the case with fixed voltage magnitudes can be easily adapted to prove
(2.33a) and (2.33b). Therefore, we only prove (2.33c) here. It follows from (2.32) that there
exists a linear transformation from Hik(ṽ) to conv(Fθik(ṽ)), which is independent of ṽ. We
denote this transformation as conv(Fθik(ṽ)) = lik(Hik(ṽ)). Define H(ṽ) as

⋂

(i,k)∈E Hik(ṽ)

and the function l(·) as the natural extension of lik. Hence, conv(Fθ(ṽ)) = l(H(ṽ)). One
can write:

⋃

v≤ṽ≤v

conv(Pθ(ṽ)) =
⋃

v≤ṽ≤v

Aconv(Fθ(ṽ))

= A
⋃

v≤ṽ≤v

l(H(ṽ))

= Al

(

⋃

v≤ṽ≤v

H(ṽ)

)

(A.12)

On the other hand,
⋃

v≤ṽ≤v H(ṽ) is a convex set because it consists of all Hermitian matrices
W whose entries satisfy certain linear and convex constraints. Due to the convexity of this set
as well as the linearity of A and l, it can be concluded from (A.12) that

⋃

v≤ṽ≤v conv(Pθ(ṽ))
is convex. �
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Appendix B

Proofs of Results in Chapter 4

B.1 Proof of Theorem 14

The proof of Theorem 14 mainly follows duality of the DC-OPF problem. The statement that
the two step strategy is optimal is not surprising, since the small-σ assumption guarantees
that the generation pattern (the sign of gi at bus i) and the congestion pattern (which lines
are congested) are the same at day-ahead and real-time. The interesting part is to show that
the size of the perturbed problem can be reduced to a problem of size K + 1. The rest of
the proof shows that each step of Algorithm 1 is valid.

Let g be the solution of J(α, d̂). Let the lines be numbered as in step 2 of Algorithm 1.
Lemma 18 states that the total number of buses with + label can be no greater than K +1.

Lemma 18. Let N+ be the number of buses labelled with +. Then N+ ≤ K+1. Furthermore,
solution of A2λ = 0 can be expressed as a linear combination of λi where i is labelled with
+, together K + 1− |N+| other λ’s.

Suppose Lemma 18 is true and renumber the buses as in step 5 of Algorithm 1. For a
generic set of capacities, all congested flows are fundamental. Since only the first K lines
are congested, J(α, d̂) can be equivalently written as

J(α, d̂) = min
g

αT (g)+ (B.1a)

s.t. g −Af − d̂ = 0 (B.1b)

fk = ck, k = 1, . . . , K. (B.1c)

The dual is

max λ
T
d̂−

K
∑

k=1

µkck (B.2a)

s.t. 0 ≤ λ ≤ α (B.2b)

ATλ+
[

µ1 . . . µK 0 . . . 0
]T

= 0 (B.2c)
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where λ are the Lagrange multipliers to the energy balance constraint (B.1b) and µ are
the Lagrange multipliers to the flow constraints (B.1c). Part of the vector constraint in
(B.2c) can be written as A2λ = 0 where A2 is defined in Algorithm 1. By the choice of
λ1, . . . , λK+1, λK+1, . . . , λn can be written as a linear combination of λ1 to λK+1. This fact
is used later for the dual of the second stage problem as well.

Now write the solution of the original problem as g+∆. The objective function becomes

αT (g +∆)+.

And denote the flows by f + f . Using the small-σ assumption, if gi < 0, then ∆i is small
enough such that gi + ∆i < 0 always and the price of ∆i can be thought as 0; if gi > 0,
then gi+∆i always and there are no constraint on ∆i. The power balance constraints in the
second stage becomes

y + g +∆−A(f + f)− (d̂+ e) = 0,

where y is the energy purchased at the second stage. By definition of g and f , this constraint
becomes

y +∆−Af − e = 0.

The flow limits are
fk + fk ≤ ck, k = 1, . . . , K

and by the small-σ assumption and fk = ck, they become

fk ≤ 0, k = 1, . . . , K.

Therefore under the small-σ assumption, the two stage optimization problem becomes

min
∆

α′T∆+ E[min
y

β′(y)+}] (B.3)

s.t. y +∆−Af − e = 0

fk ≤ 0 k = 1, . . . , K,

where the constraint ∆i = 0 if gi = 0. Recall the α′
i = 0 (β′

i = 0) if bus i is labelled − and
αi (β) otherwise. This means that under the small-σ assumption, we can assume that a bus
dumping energy in the nominal problem as a source of energy with cost 0.

The dual of the second stage problem in (B.3) is

max λT (e−∆) (B.4a)

s.t. 0 ≤ λ ≤ β′ (B.4b)

ATλ+
[

µ1 . . . µK 0 . . . 0
]T

= 0 (B.4c)

µk ≥ 0, k = 1, . . . , K. (B.4d)
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This is exactly the form of (B.2). Therefore we can express λK+2, λn as a function of
λ1, . . . , λK+1 through the B matrix defined in step 4 of Algorithm 1. Let λ̃ = [λ1 . . . λK+1]

T

and write (B.4) in terms of λ̃ gives

max λ̃T (ẽ− ∆̃) (B.5a)

s.t. 0 ≤ λ̃ ≤ β̃ (B.5b)

Ãλ̃ ≤ 0, (B.5c)

where the definitions for Ã, ẽ, β̃ and ∆̃ are given in Algorithm 1. Since each column of
B sum up to 1, and β′

i is either 0 or β, it suffices to consider the first K + 1 as in (B.5b).
Taking the dual of (B.5), we get back the primal problem

J̃(β̃, ∆̃) = min
y

α̃T (y)+ (B.6a)

s.t. y − Ãf̃ − (ẽ− ∆̃) = 0 (B.6b)

f̃ ≤ 0, (B.6c)

but this is exactly the primal of a second stage problem with a network of size K + 1, with
flows governed by the matrix Ã. Therefore the two stage problem is

min
∆̃

α̃T ∆̃+ E[J̃(β̃, ∆̃], (B.7)

and this is precisely the risk limiting dispatch problem for a network of size K + 1.

B.1.1 Proof of Lemma 18

Since A2 has full rank, by the rank-nullity theorem, the null space of A2 has rank K +
1. Therefore all of λi can be expressed as linear combination of some K + 1 λ’s. By
complementary slackness [25], the buses with label + (gi > 0) has λi = αi. Intuitively, this
means buses that are generating positive power are generating at their marginal costs. Since
these are the marginal generators, they cannot dependent on other λi’s [73]. Therefore any
set of independent λi’s must include the buses labelled +.
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Appendix C

Optimal Power Flow for Lossless
Networks

The results in this section is different from Chapter 2 in three aspects

• We focus on lossless networks.

• Only voltage constraints are considered.

• We look at the convex hull instead of the Pareto-front.

Therefore the results in this section are of a weaker flavor since we need to assume that
the networks are lossless and we only consider voltage constraints. They are useful since in
practice some distribution networks consists of a ring feeder and trees hanging of the feeder
nodes as in Figure C.1. In this case, the objective functions are often to minimize the loss

Figure C.1: A distribution network with a ring feeder.

at the feeders. Also, the feeder nodes are generally considered as slack buses, so they only
have a voltage constraint. Since minimizing a linear function over A and convhull(A) has
the same objective values, characterizing the convex hull of the injection region is useful.

The voltage constraint injection region is defined as

P = {p : p = Re(diag(vvHYH)), V i ≤ |V |i ≤ V i}. (C.1)
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We can again define a enlarged convex region P̃ as

P̃ = {p : p = Re(diag(WYH)), V 2
i ≤ Wii ≤ V

2

i ,W < 0}. (C.2)

We have the following theorem

Theorem 19. Given a network with n buses represented by its bus admittance matrix Y.
Let P and P̃ be defined as in (C.1) and (C.2) respectively. Then if the network is a lossless
cycle or a lossless cycle with one chord, then convhull(P) = P̃.

The next theorem states that joining the basic types of networks in a certain way preserves
the characterization result. Given two networks G and H, the network K is said to be a
1-connection of G and H if it is possible to decompose K into two components K1 and K2

such that they have only one node in common and no edges between them, where K1 is
equal to G and K2 is equal to H. Note by equal we mean that the admittance matrices are
identical. In particular, if a line in G or H is lossless then its corresponding line in K is also
lossless. We say K is obtained by 1-connecting G and H. Figure C.1 gives an example of a
network obtained by 1-connecting a cycle and a number of trees.

Theorem 20. Given a network on n nodes with voltage constraints. Then convhullP = P̃
if the network is a result of repeatedly 1-connecting a lossless cycle and a tree.

It is simple to check if a network has the topology that satisfies the conditions in Theorem
20. Given a network, first decompose it into its one connected parts which can be done in
linear time. Then one simply check each of the parts to see if they are a tree or a lossless
cycle.

First we prove Theorem 19. This requires that we prove an analogous result about trees
first. Consider the following lemma

Lemma 21. Given a tree network with n buses. Let P and PW be defined as in (C.1) and
(C.2) respectively. Then convhull(P) = PW .

Proof. To prove this theorem, it suffices to prove that minimizing linear functions over P and
PW has the same optimal objective value for all coefficients [25]. So consider the optimization
problem

J = minimize
n
∑

i=1

ciPi (C.3)

subject to V i ≤ |Vi| ≤ V i, ∀i
p = Re(diag(vvHYH)),
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and its relaxation

J1 = minimize
n
∑

i=1

ciPi (C.4)

subject to V 2
i ≤ Wii ≤ V

2

i , ∀i
W < 0

p = Re(diag(WYH)),

where the costs can be general (no longer constraint to be positive). We show J = J1 for all
ci’s.

The dual of (C.4) is

J1 = maximize
n
∑

i=1

(V 2
iλi − V

2

iλi) (C.5)

subject to Λ+M < 0.

From Theorem 13 if the costs are such thatM is connected, then the optimal solution to (C.4)
is rank 1 and clearly J = J1. If M is disconnected, then M can be written as a block diagonal
matrix. Suppose there are K connected components of M, then M = diag(M1, . . . ,MK).
Since the network is a tree, Mi fits the topology of a tree for each i. Then (C.4) and (C.5)
decomposes into K independent primal-dual subproblems, and we may apply Theorem 13
to each of them. Let W ∗

1 , . . . ,W
∗
K denote the optimal solutions to each of the subproblems.

By Theorem 13, they are all rank 1 so we can write W ∗
i = v∗

i (v
∗
i )

H for each i. An optimal

solution W∗ to the original problem is given by W∗ = v∗(v∗)H where v∗ =







v∗
1
...

v∗
K






.

Now we prove Theorem 19. The approach is the same as in the proof of Lemma 21. That
is, we look at (C.3), (C.4) and their dual (C.5). We say a matrix A is lossless if all the off
diagonal terms of A are purely imaginary or 0. We prove the following lemma

Lemma 22. Given a graph on n nodes that is either an odd cycle or a cycle with one chord,
if A is lossless, positive semidefinite and fits G, then rank(A) ≥ n− 1.

Theorem 19 can be proved from Lemma 22. Suppose the electrical network is lossless
and has the topology of an odd cycle or a cycle with one chord. The network being lossless
means Y is purely imaginary, and M = 1

2
(CY + YHC) is also purely imaginary since C

is real. Suppose that the costs are such that Mik 6= 0 if (i, k) is connected by a line in the
network. Since Λ∗ is diagonal, the dual matrix Λ∗ + M is positive semidefinite, lossless
and fits the network topology. Apply Lemma 22 shows W∗ is rank 1. If the cycle is even,
we add a chord between two buses, and let the admittance of that chord go to 0. Since
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all the functions in (C.4) are continuous, the optimal solution of the network with a chord
approaches the network without the chord as the admittance goes to 0.

If the costs are such that Mik = 0 even if (i, k) is connected in the network, then M
either fits a tree or becomes disconnected. If M fits a tree, then apply Theorem 13. If M
becomes disconnected, then M can be written as a block diagonal matrix. If there are K
connected components of M, then M = diag(M1, . . . ,MK). Since the network is a cycle
(with a chord), then Mi is either a tree or a cycle for each i. We can apply Theorem 13 or
Lemma 22 to each component and obtain an optimal solution W∗ in the same way as in the
tree network case. To finish Theorem 19, it remains to proof Lemma 22.

Proof. Given a graph G, the tree-width of G is a number that intuitively captures how close
G is to a tree. For example, the tree-width of a tree is 1, and the tree-width of a cycle is
2. The rigorous definition and some methods of computing the tree-width the reader may
consult [77]. A graph of tree-width 2 is also called serial-parallel graph or a partial-2-tree.
The following lemma collects the known results that we need.

Lemma 23. If G is a cycle of length n, then the minimum rank of real positive semidefinite
matrices fitting G is n− 2 [78]. More generally, if the graph has tree-width 2, the minimum
rank is n− 2 [79,80].

Given a graph G with n nodes and m edges. We construct a bipartite graph derived from
G that we call the bipartite expansion of G and denote by B(G). B(G) is a bipartite graph
with 2n nodes and 2m edges. Label the nodes 1, 2, . . . , n, 1′, 2′, . . . , n′ with the bipartition
being {1, . . . , n} and {1′, . . . , n′}. There is an edge between i and k′ if and only if i 6= k and
(i, k) is an edge in G. If G is an odd cycle then B(G) is also a cycle and if G is a cycle with
a chord then B(G) has tree-width 2 (a subclass of linear-2-trees in the language of [80]).
Two examples are given in Figures C.2 and C.3. If G is an even cycle then B(G) is two
disconnected cycles, therefore the assumption of odd cycle is needed in the Lemma.

(a) G (b) B(G)

Figure C.2: (a) shows a 3-cycle and (b) shows its bipartite expansion.

Given a graph G, suppose A is lossless, positive semidefinite and A fits G. We show that
the rank of A cannot be lower than n− 1. Suppose A has rank r. Then A can be factored
as A = ZHZ for some complex matrix r × n matrix Z. Let z1, . . . , zn ∈ C

r be the columns
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(a) G (b) B(G)

Figure C.3: (a) shows a 4-cycle with a chord and (b) shows its bipartite expansion.

of Z. They satisfy the graph topology condition

zHi zk =

{

0 if i ≁ k

6= 0 if i ∼ k
(C.6)

and the lossless line condition
Re(zHi zk) = 0 if i 6= k. (C.7)

From each complex vector we define two real vectors as

xi =

[

Re(zi)
Im(zi)

]

yi =

[

Im(zi)
−Re(zi)

]

Since zi ∈ C
r, then xi,yi ∈ R

2r. By algebra, Re(zHi zk) = xT
i xk = yt

iyk and Im(zHi zk) =
xT
i yk. In terms of x’s and y’s, (C.6) becomes

xT
i yk =

{

0 if i ≁ k

6= 0 if i ∼ k
(C.8)

and (C.7) becomes
xT
i xk = yT

i yk = 0 if i 6= k. (C.9)

Define the matrix B to be the 2r× 2n matrix with columns x1, . . . ,xn,y1, . . . ,yn. By (C.8)
and (C.9) B fits B(G). But if G is an odd cycle or a cycle with one chord, applying Lemma
23 to B(G) gives rank(B) ≥ 2n− 2. Thus 2r ≥ 2n− 2 or r ≥ n− 1.

Now we proceed to the proof Theorem 20. Given a network G, we say the matrix A
satisfies G if A fits the topology of G and Aik is purely imaginary if the line from bus i to
bus k is lossless. We have the following lemma.

Lemma 24. Given two networks G and H with n and m buses respectively, let K be a
network obtained by 1-connecting G and H, so K has n + m − 1 buses. If A is a positive
semidefinite matrix that satisfies K, then rank(A) ≥ n+m− 2.
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From the basic topologies in Theorem 19, we can apply the Lemma 24 repeatedly to get
Theorem 20. A version of Lemma 24 just about graphs (without considering lossless lines
and such) is known in the graph theory community [78, 81]. We give a proof here to show
the additional condition of lossless lines does not change the result.

Proof. Let G, H and K be networks given in the statement of the Lemma. Label the buses
in K to be 1, 2, . . . , n − 1, n, n + 1, n + 2, . . . , n + m − 1 where the subnetwork induced
by 1, . . . , n − 1, n corresponds to G and the subnetwork induced by n, n + 1, n + m − 1
corresponds to H. So bus n is the common bus in the 1-connection. Suppose A is a
(n+m− 1)× (n+m− 1) positive semidefinite matrix that satisfies K and has rank r. Then
it is possible to factor A as A = ZHZ for some r× (n+m−1) matrix Z. Let z1, . . . , zn+m−1

be the columns of Z. Let U be the subspace spanned by z1, . . . , zn−1 and V be the subspace
spanned by zn+1, . . . , zn+m−1. By construction of K, there are no lines between the set of
buses {1, . . . , n − 1} and {n + 1, . . . , n +m − 1}. Therefore V is orthogonal to U . We may
write vector zn as zn = u + v + w where u ∈ U , v ∈ V and w is orthogonal to U and
V . Let ZG be the matrix with columns z1, . . . , zn−1,u and ZH be the matrix with columns
v, zn+1, . . . , zn+m−1. Let AG = ZH

GZG. Since z
H
i u = zHi zn for i = 1, . . . , n−1, AG equals the

matrix formed by the first n rows and n columns of A. By the assumption A satisfies K,
so AG satisfies G. Similarly ZH

HZH satisfies H. By the assumption in the Lemma, we have
rank(ZG) ≥ n−1 and rank(ZH) ≥ m−1, so equivalently dimU ≥ n−1 and dimV ≥ m−1.
Since U is orthogonal to V and z1, . . . , zn+m−1 spans U + V , rank(A) = dimU + dimV ≥
(n− 1) + (m− 1) = n+m− 2.




