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ABSTRACT OF THE DISSERTATION

Essays on Treatment Effect Heterogeneity and Policy Design

by

Yu-Chang Chen

Doctor of Philosophy in Economics

University of California San Diego, 2022

Professor Yixiao Sun, Chair
Professor Kaspar Wüthrich, Co-Chair

My research focuses on the econometrics of policy design in the context of heterogeneous

treatment effects. I study both the theoretical and practical aspects of these issues, ranging from

equivalent representation of models, identification of optimal policies, and estimation of treatment

effects in high-dimensional settings.

Chapter 1 studies the optimal allocation of subsidies based on individual characteristics.

We show that the marginal treatment effect is a “sufficient statistics” for the counterfactual

welfare and accordingly develop a set of identification results. We also show that subsidy rules

weakly dominate treatment rules regarding the attainable social welfare since subsidy rules can

xi



implicitly target individuals based on unobserved heterogeneity.

Chapter 2 establishes that the conditional local average treatment effect (CLATE) models

have a selection model representation in which a specific form of separability needs to hold.

Based on the representation results, we develop several testable implications of the CLATE

model that are sharper than the existing ones in the literature.

Chapter 3 proposes a new empirical Bayes method that utilizes a decision tree to improve

the statistical accuracy of the estimates while maintaining interpretability. Instead of the “shrink-

ing toward the grand mean” that conventional empirical Bayes methods typically engage in,

the proposed method uses a decision tree to group similar parameters together and shrink each

estimator in a group-specific fashion. We also provide a method to select the optimal decision

tree that minimizes the estimation errors.
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Chapter 1

Personalized Subsidy Rules

1.1 Introduction

With an aim to encourage self-serving or socially beneficial behaviors, governments

worldwide offer various kinds of subsidies to households and individuals. Examples include

tuition subsidies for college education, price subsidies for preventive health products, childcare

subsidies for certified daycare services, and many others. Due to its relevance and prevalence, a

large amount of studies across fields in economics have contributed to the evaluation of subsidy

programs. For example, in labor economics, empirical works have exploited exogenous variations

In the choice of eduction to estimate the return to tuition subsidy [Ichimura and Taber, 2002,

Carneiro et al., 2011]. In development economics, researchers have also conducted experiments

to examine the impact of subsidies on the take-up of insecticide-treated bed nets [Cohen and

Dupas, 2010].

One important objective of these studies is to inform the policy-maker on the optimal

allocation of subsidies. Since both the subsidy’s effect on the take-up and its eventual impact

on the welfare outcomes could vary across individuals, an efficient subsidy scheme should take

the welfare effect, the behavioral response, and the cost of subsidies altogether into account.

Intuitively, an ideal allocation of subsidies should increase the take-up among those who are

most likely to benefit from it while keeping others away if giving subsidies actually lead to an

inefficient outcome.
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In this paper, we study subsidy rules which maximizes the welfare of the targeted

population by the providing personalized subsidies. A subsidy rule, which we interchangeably

refer to as a “policy”, is defined as an assignment rule that maps individuals to amounts of

subsidies based on their observable characteristics. In line with the treatment choice literature,

the notion of welfare we consider is of the class of additive social welfare, which is defined

as the average outcome (e.g., employment rate for job-training programs) in the population of

interest. Noteworthily, our approach allows flexible specification of the cost functions. The

cost of subsidies can be dependent on the take-up, individual characteristics, and the amount of

subsidies.

We adopt the marginal treatment effect (MTE) framework [Heckman and Vytlacil, 2005]

to study our problem. In our setting, we view subsidies as instrumental variables that only affect

the take-up the subsidized behavior (the treatment) but are excluded from the outcome equations.

We also follow the tradition in the MTE literature that the instrumental variable (which is the

subsidy in our case) is randomly assigned in the population from which our data is sampled. The

exclusion restriction and exogeneity of the instrument allow us to causally identify the treatment

effect and the individuals’s treatment selection as a function of the subsidies. We then seek to

identify the subsidy rule that maximizes the counterfactual welfare by allocating subsidies based

on heterogeneity.

The MTE framework is suitable for our problem because of its explicit yet flexible

modeling of the treatment effects and the treatment take-up. As we will see in our analysis, direct

modeling of the treatment selections help improve both the interpretability of the result and

the practicality of our procedure. For example, we can incorporate structural assumptions that

are backed by economic theory into the model to facilitate the identification and estimation of

optimal subsidies. We will demonstrate this by studying the case when there is positive selection

in the treatment choice.

We start our analysis by first characterizing the welfare of any subsidy rule using the

MTE framework. It is widely known that the marginal treatment effects can serve as building
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blocks for other treatment parameters such as average treatment effect (ATE) and policy-relevant

treatment effect (PRTE) [Heckman and Vytlacil, 2005] after suitable re-weighting. In line

with these results, we show that the welfare of a given subsidy rule can also be expressed by

the marginal treatment effects, and we use the expression to derive necessary conditions for a

subsidy rule to be optimal. In the optimality condition, it is made clear how the MTE curve,

the main parameter of interest in the MTE framework, is connected to the welfare effects of

subsidies. Furthermore, we provide simple sufficient conditions for a policy to be optimal when

the selection into treatment is monotone.

Given the welfare representation result, the identification of optimal policy becomes

straightforward if the marginal treatment effect is known. However, point identification of

the MTE curve is not always possible. Therefore, we study conditions that allow one to rank

different policies, subject to the fact that the MTE curve may not be identified on its whole

support. We also study in-depth the case when the MTE curve is not point-identified but known

to be monotone, We show that it is possible to identify the optimal policy even when the MTE

curve is not identified on its whole support provided that the selection into the treatment is

positive. We also provide primitive conditions from the choice-theoretic perspective to guarantee

the monotonicity of the MTE curve.

From the practical perspective, this paper addresses the problem of learning the optimal

allocation of subsidies from (quasi-) experimental data. Our characterization result essentially

simplifies the optimal policy problem to the identification and estimation of the MTE curve.

In this view, we bridge the gap between the policy evaluation problem and the policy design

problem. Also, the dual role of subsidies is emphasized: when estimating the effects, subsidies

serve as instrumental variables for estimating the treatment effects; and, when used as policy

assignments, subsidies can also serve as the subject of assignments. We illustrate this idea

with an empirical example on determining the optimal amount for wage subsidies using the

experimental data from Groh et al. [2016].

Subsidy-based policies are popular since policies that mandate the treatment are not

3



always feasible to the policy-maker due to practical issues. This paper establishes results

showing that assigning subsidies also achieves higher welfare than directly mandating the

treatment, giving another justification of subsidy rules. This is because, since the equilibrium

treatment choice is made by individuals, subsidy-based policies implicitly target individuals

based on their unobserved (to the policy-maker) heterogeneity. For example, individuals may

have private information regarding their returns to higher education, on which their decisions

on schooling are based. Consequentially, different subsidies may elicit students with different

returns. If the selection into education is positive, smaller amounts of subsidy tend to elicit

students with higher returns when all other things being equal. Therefore, a subsidy-based policy,

if carefully designed, can leverage individuals’ private information on their returns and may

achieve higher welfare than compulsory policies which totally neglect this information.

The rest of the paper is organized as follows. Section 1.2 introduces the model setup

and the policy design problem. In section 1.3, we present the welfare representation results

and optimality conditions for welfare-maximizing policies. A set of results regarding the

identifications of optimal rules are stated in section 1.4, including results on ranking policies

when MTE is not point identified. In section 1.5, we investigate the welfare properties of subsidy

rules, showing that subsidies rules are generally preferred to treatment rules in terms of social

welfare. In section 1.6, we provide an empirical example of estimating optimal wage subsidies

to illustrate the main ideas of this paper. All proofs are in Appendix.

1.1.1 Connection to the literature

This paper aims to contribute to a growing literature on personalized treatment rules,

including Manski [2004], Dehejia [2005], Hirano and Porter [2009], Stoye [2009], Bhattacharya

and Dupas [2012], Kitagawa and Tetenov [2018], Athey and Wager [2021]. For a recent

review of the subject, see Hirano and Porter [2019]. Much of the literature has focused on the

assignment of treatments, and the case of assigning subsidies as encouragements to treatment
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is less studied.1 Although it is possible to apply existing methods for treatment assignments to

subsidy assignments by adopting an intention-to-treat approach that essentially assigns subsidies

based on reduced-form estimates of subsidy effects [Bhattacharya and Dupas, 2012, Kitagawa

and Tetenov, 2018], we argue that a selection-model approach that explicitly models treatment

choice as a function of the assigned subsidy can have its own advantages. For example, our

approach can allow the realized cost of subsidies to be dependent on treatment take-ups, which

is not possible for intention-to-treat approaches since a model of treatment take-ups is lacking.

Also, by modeling treatment choice explicitly, we can incorporate shape restrictions into the

selection equation to aid identification and estimation, such as requiring the subsidy to have

positive effects on treatment take-ups [Horowitz and Lee, 2017].

Although the majority of studies on individualized treatment rules consider policy learn-

ing in randomized experiments, recent works have looked into cases when endogeneity arises for

reasons such as non-compliances or omitted variable bias [Kasy, 2016, Cui and Tchetgen Tchet-

gen, 2020, Qiu et al., 2020, Athey and Wager, 2021, Byambadalai, 2021, Pu and Zhang, 2021].

The method of instrumental variables is often used for identifications, and this paper is no

exception. Similar to Kasy [2016], we study the welfare rankings of policies when the treatment

effect is only partially identified, albeit we focus on the assignment of instruments rather than

the treatment itself. Pu and Zhang [2021] introduces a new notion of optimality, which they refer

to as IV-optimality, for treatment assignment rules that maximize the worst-case welfare among

the identification region. They also derive a bound on the loss in the welfare of IV-optimal rules

relative to the first-best rule, which assigns treatments whenever the effect is positive. This

paper shows that the optimal subsidy rule generally outperforms the first-best policy that assigns

treatments.

This paper heavily relies on the MTE framework (Heckman and Vytlacil [1999, 2001,

2005, 2007]) for the theoretical analysis of subsidy rules. The main parameter of interest in

1The only exception we can find is Qiu et al. [2020]. They study the optimal assignment of binary instrument
variables as “encouragements” to treatment take-ups. This paper can be viewed as an extension in the sense that we
allow the instrument to be continuous.
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the framework, namely the marginal treatment effects, can be identified by the method of local

instrument variables and can later be used for predicting the effects of hypothetical policies.

Recent works have proposed new approaches to its identification and estimation [Carneiro and

Lee, 2009, Brinch et al., 2017, Mogstad et al., 2018, 2020, Sasaki and Ura, 2021] and to apply

MTE framework to various research topics such as unconditional quantile effects [Martı́nez-

Iriarte and Sun, 2020] and external validity [Kowalski, 2018]. Among these, our paper is most

closely related to Sasaki and Ura [2020], which also applies MTE to statistical decision rules.

However, they focus on the assignment of treatment instead of subsidies. They apply the MTE

framework to the method of empirical welfare maximization Kitagawa and Tetenov [2018],

in which policies are assumed to lie in a known policy class with finite VC-dimension. We

do not make such restrictions on candidate policies. In addition, we emphasize more on the

identification and welfare properties, while Sasaki and Ura [2020] emphasizes more on the

estimation.

1.2 Setup

In this section, we introduce our setup. In brief, the policy maker’s goal is to find the

optimal subsidy assignment rule that assigns amounts of subsidy individually based on a person’s

covariates We say an assignment rule is optimal if it maximizes the social welfare function, which

is defined as the population’s average of the outcome variable under the policy. Importantly, the

subsidy rule only affects the social welfare through its effect on the behavior response, which

can eventually impacts the outcome. Since the majority of our modeling assumptions follow the

MTE framework, we first introduce the framework while stating the assumptions we are making.

6



1.2.1 Data generation process: the MTE framework

Let Y1 and Y0 be the potential outcomes under the treatment and control status respectively.

The potential outcomes are related to the observable covariates as

Y1 = µ1(X ,U1), and Y0 = µ0(X ,U0), (1.1)

where X is a vector of observed random variables influencing potential outcomes, µ1 and µ0

are unknown functions, and U1 and U0 are unobserved random variables. Let D=1 had an

individual received the treatment and D=0 had an individual not received the treatment, and

Y = DY1 +(1−D)Y0 as the realized outcome.

In the MTE framework, the treatment take-up is modeled by a latent-index utility model,

where the selection into the treatment status depends on the individual characteristics and the

instrumental variable. Given (X ,W,Z), where W and Z are instrumental variables, the treatment

take-up D is determined by

D = 1{g(X ,W,Z)≥UD}, (1.2)

where UD is the unobserved heterogeneity in the treatment selection process. We can interpret

UD as resistance to treatment take-ups: holding (X ,W,Z) fixed, individuals with lower UD are

more likely to select into the treatment.

In our setup, we distinguish two types of instruments. The first type of instruments,

denoted by Z, are instruments (or subsidies) that are randomly assigned in the data but could in

principle be manipulated by the policy-maker as policy tools. The second type of instruments,

denoted as W , are instruments that only aid the identification of treatment effects and themselves

are not subject to the policy-maker’s control.2

Z has two roles in our setup. First, Z is an instrumental variable that is exogenously set

2It is not necessary to have non-manipulatable instrument W to apply our method.
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in the data, facilitating the identification of treatment effects. Second, Z is also a policy tool that

the policy-maker can utilize to influence individual’s treatment take-ups. An example of Z would

be price subsidies to services or goods such as education and preventive health products. And

W would be variables such as rainfall, earthquake, or local unemployment rate that are valid

instruments but not subject to the control of the policy-maker.

The following assumptions, which are commonly imposed in the MTE literature, will

also be used in this paper.

Assumption 1 (Moment Existence). The expectations E[Y1] and E[Y0] exist, i.e., E[Y1]< ∞ and

E[Y0]< ∞.

Assumption 2 (Density Existence). The distribution of UD is absolute continuous with respect

to the Lebesgue measure for every X = x.

Assumption 3 (Random Assignment). Conditional on X, the random vector (U1,U0,UD) is

independent to the random vector (W, Z).

Following Assumption 2, we can without loss of generality impose the normalization

that UD | X ∼ Unif[0,1], as g(X ,W,Z)≥UD is equivalent to FUD|X(g(X ,W,Z))≥ FUD|X(UD).

In the MTE framework, the main parameter of interest is the “marginal treatment effect”,

which can be used as building blocks for other conventional treatment effect parameters such as

the average treatment effect. Denote ∆ =Y1−Y0 as the individual treatment effect. The marginal

treatment effect (MTE) is defined as

MTE(x,u) = E
[
∆ | X = x,UD = u

]
,

which can be interpreted as the average treatment effect for individuals at different margins.

We can also interpret MTE as the infinitesimal local average treatment effect (LATE) since

it is identified by the local instrument variable [Heckman and Vytlacil, 2005]. That is, MTE

corresponds to the change in population outcome aroused from an infinitesimal change in the
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instrumental variable. Therefore, as we will show later, we can also interpret the MTE as the

marginal effect of increasing the subsidy, and MTE plays a fundamental role in our analysis. For

example, in the first set of our results, we use MTE to characterize social welfares.

By definition, MTE(x,u) is the mean treatment effects for individuals with X = x at the

selection margin UD = u, where higher UD implies a lower willingness to select the treatment.

Fixing X = x, a decreasing MTE curve (along the u-dimension) corresponds to the case of

“positive-selection”, meaning that individuals who benefit more from the treatment are more

likely to take the treatment. Positive (or negative selection) selection can often be motivated

by economics theory, econometrics specifications, and empirical findings. Typical examples

include the choice of education in which individuals with higher returns are more likely to invest

in education. While we do not impose the assumption of monotone selection in our main results,

we will analyze its implications on the characterization, identification, welfare properties, and

estimation of optimal policies in the relevant sections throughout this paper.

We assume that the econometrician observes variables (Y,X ,D,W,Z), where Y = DY1 +

(1−D)Y0 is the observed outcome.

Example 1.1 (Tuition Subsidy). In the context of the tuition subsidy, one can think of Y as

earnings after graduation, X as individual characteristics such as family background, D as levels

of education, W as proximity to colleges, and Z as the tuition for attending public college [Kane

and Rouse, 1995]. While the government has no direct control over students’ place of residence,

policy makers may change the tuition subsidy to encourage college enrollment.

1.2.2 Subsidy rules, counterfactual outcome, and welfare

We now describe the policy problem and introduce the definition of subsidy rules and

welfare. In our setup, the policy-maker can influence an individual’s treatment choice and thus

the realized outcome by manipulating the subsidies Z. Formally, let X and W be supports of X
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and W , a policy π is a measurable function

π : (X ,W )→Z p (1.3)

that maps individuals’ characteristics to the action space Zp, 3 where Z p is the user-specified

set of subsidy assignments under consideration. Unless otherwise stated, Z p does not have to

be equal to the observed support Z in the data. An example Z p would be Z p = [zl,zu]⊂ R,

where the range [zl,zu] is specified by the policy maker. Notice that we also allow the subsidy to

be negative, which could be thought of as a tax imposed by the policy maker. We denote the set

of candidate policies as Π.

Rather than directly setting a mandatory treatment assignment for each individual, a

subsidy rule instead aims at improving the welfare by encouraging individuals to take up the

treatment with subsidies. Given a policy π , we assume that the counterfactual treatment choice is

Dπ = 1{g(X ,W,π(X ,W ))≥UD} (1.4)

and the counterfactual outcome is

Y π = DπY1 +(1−Dπ)Y0. (1.5)

Notice that, compared to the case with no policy intervention (equation 1.2 and 1.1), the

only difference is that the variable Z is now replaced by the policy-assigned subsidy π(X ,W ).

Equivalently, our definition of counterfactual outcomes implicitly assume the following form

of policy-invariances: (1) the structural functions µ0(·),µ1(·), and g(·); and (2) the distribution

of the economic fundamentals (X ,W,U1,U0,UD) would remain the same under the policy

3Although the instrument variable W does not affect the potential outcomes, we allow the assignment of subsidy
to be dependent on W as W has affects on the treatment take-up. Therefore, the optimal subsidy for type X = x may
depend on the value of W as well. We will elaborate more on the welfare properties in Section 1.5. Furthermore, we
restrict our attention to deterministic policies.
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intervention π .

The cost of subsidies is modeled in the following way. Let c(x,w,z,d) be the cost of

assigning subsidy π(x,w) = z to (X = x,W = w) individuals who then choose treatment status

D = d. The counterfactual cost under policy π is

Cπ = c(X ,W,Z,Dπ).

Unlike previous works that adopt an intention-to-treat approach [e.g., Kitagawa and Tetenov,

2018], our framework allows the realized cost of subsidies to be dependent on individuals’s

treatment choice D. That is, we allow the cost to be endogenous to the individual’s decision.

This is possible in our framework since, unlike intention-to-treat approaches, treatment choice

is explicitly modeled, and the propensity score is estimated. We assume that the cost function

c(·) is known to the policy-maker despite that the realized cost for each individual is ex-ante

unknown.

Example 1.2 (Constant Cost). Kitagawa and Tetenov [2018] studies the optimal eligibility rule

for receiving subsidized training in the Job Training Partnership Act (JTPA) program. In their

welfare calculation, they impute the cost of the program as $774 for each eligible individual

regardless of the actual take-up. In the notation of this paper, their cost function is effectively

c(x,w,z,d) = c(z), which is only a function of the policy assignment. However, as reported in

Bloom et al. [1997], the program take-up varies substantially across different gender and age

groups, implying that the realized cost is in fact heterogeneous.

Example 1.3 (Voucher Cost). Following Example 1.2, a more realistic cost function would be

c(x,w,z,d) = z ·d, where z is the amount of subsidy paid by the government. Just like vouchers

which are covered only when redeemed, the dependence on the treatment choice d reflects

that the subsidy is only paid when the individual actually attends the program. Notice that

the heterogeneity of treatment take-up is already embedded in this cost function since both
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the treatment choice and the propensity score are dependent on the covariates as specified in

equation (1.4).

Following previous works in the treatment assignment literature [see e.g., Manski, 2009,

Kitagawa and Tetenov, 2018, Athey and Wager, 2021], we adopt the additive welfare criterion to

evaluate performance of policies. Given the cost function c(·), the welfare S(π) of a policy π is

defined as

S(π) = E[Y π ]−E[Cπ ]. (1.6)

The additive welfare criterion is flexible that it can cover various social preferences by suitably

transforming the outcome variable. For example, let ν(·) be a concave function, we can accom-

modate inequality-averse preference by replacing Y by ν(Y ) [Atkinson, 1970].4 Alternatively, we

can interpret welfare function E[ν(Y π)]−E[Cπ ] = E[ν(Y π)−Cπ ] as the average social function

in which individuals have quasi-linear preferences.

Given the set of possible subsidy assignments Z p, the policy class Π, and the social

welfare function S(π), a subsidy rule π∗ ∈Π is said to be optimal if it attains the social optimum,

namely,

S(π∗) = sup
π∈Π

S(π).

For the ease of expositions, we will present our results with cost function c(x,w,z,d) = z ·d in

the main text. Results for general cost functions can be found in the appendix and the proof

therein.

Remark. The optimal policy may not be unique in general. For example, in the trivial case that

the treatment effect is always zero (Y1 = Y0) with zero subsidy cost, any subsidy rule is optimal.
4By maximizing E[Y π ], the optimal policy necessarily maximizes V (E[Y π ]) for any V (·) that is an increasing

transformation. The invariance property helps dealing with cases when welfare can not be represented by simple
averages of individual outcomes. For example, in the insecticide-treated bednet example where the policy goal is to
increase the usage of nets (Y ), we can incorporate externality by choosing V (·) that maps the coverage rate E[Y π ] to
the counterfactual infection rate V (E[Y π ]). Such V (·) arguably exists if the externality is approximately determined
by the average coverage of nets.
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Moreover, if any of the targeting variables is a continuous random variable, we can always

construct new optimal rules by modifying existing ones on a measure-zero set without changing

the implied welfare.5

1.3 Optimality Conditions

1.3.1 Necessary conditions for optimality

Our first proposition shows that the welfare of a policy can be expressed by MTE and the

propensity score.

Lemma 1 (Characterization of Welfare). Under Assumptions 1 and 2, we have

E[Y π ] = E[Y0]+E

[∫ g(X ,W,π(X ,W ))

0
MTE(X ,u)du

]
, (1.7)

and

E[Cπ ] = E[π(X ,W )g(X ,W,Z)] (1.8)

for the cost function c(x,w,z,d) = z ·d.

Results for general cost functions can be found in the appendix. Lemma 1 states that the

welfare of a policy has three parts: the baseline outcome under no treatment, the treatment effects

on individuals who are induced into treatment status, and the expected costs of subsidies for the

treatment takers. Notice that the baseline outcome E[Y0] is irrelevant for welfare comparison

between policies since it is unaffected by the policy.

Using Lemma 1, we can find the optimal policy π∗ by optimizing the welfare function

pointwisely for each combination of (x,w). Notice that, as implied by the choice equation (1.4), if

5For the same reason, any characterization of optimal policies necessarily only apply almost surely outside a
measure-zero set if at least one of the targeting variable is a continuous random variable.
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the policy maker assigns subsidy zp = π(x,w) for (X = x,W = w) individuals, the counterfactual

take-up rate uπ
x,w among these individuals would be given by

uπ
x,w = P(Dπ = 1 | X = x,W = w)

= P(g(x,w,π(x,w)≥UD | X = x,W = w)

= g(x,w,π(x,w)).

When the propensity score g(x,w,z) is invertible in the third argument z, say, when an increase in

subsidy always induce more individuals into the treatment status, there is a one-to-one mapping

between the amount of subsidy π(x,w) and the counterfactual take-up rate uπ(x,w). In other

words, the connection between the two is governed by the propensity score, and we can apply

change of variables to simplify the problem. We first solve the optimal take-up rate problem

uπ∗
x,w ∈ argmax

ux,w∈Ix,w

∫ ux,w

0
MTE(x,u′)du′− c(x,w,g−1

x,w(ux,w),1) ·ux,w, (1.9)

where Ix,w = {g(x,w,z) : z ∈Z p} is the image of g(x,w, ·) and gx,w(z) = g(x,w,z). Ix,w reflects

to what degree the policy-maker can influence the treatment take-ups through manipulating the

subsidy Z, and, g−1
x,w(u) is the amount of subsidy needed to induce a take-up rate of u. Notice that

the integration in equation (1.9) starts from 0 as individuals with low UD are always induced first.

To avoid technical issues, we assume Ix,w is a closed set. We also assume that the propen-

sity score gx,w(z) is strictly increasing in z so that gx,w(z) is invertible. The two assumptions,

along with other continuity assumptions stated below, ensure that the optimization defined in

equation (1.9) is well-defined and that it has a solution.

Assumption 4 (Continuity). The propensity score g(x,w,z) and the cost function C(x,w,z) are

continuous in the subsidy z, and the marginal treatment effects MTE(x,u) is continuous in u.

Assumption 5 (Invertibility). The propensity score g(x,w,z) is strictly increasing in z ∀ x ∈

X ,w ∈W .
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While both variables X and W are used for targeting, they play different roles in the

policy problem since W is excluded from the outcome equation. Unlike X , which underlies

the treatment effect heterogeneity, W only enters the optimization problem through the feasible

region Ix,w and the propensity score g(x,w,z). That is to say, the only value of W as a targeting

variable comes from its effect on treatment take-up, which can not be neglected when the policy

is made to provide incentives. On the contrary, if the policy were to assign the treatment D

instead, it is needless to target on variable W since the treatment effect does not depend on W , a

property we would elaborate later.

Once we find optimal take-up rate u∗x,w, the second step is to find the optimal subsidy

level π∗(x,w) that achieves u∗x,w in the sense that

g(x,w,π∗(x,w)) = u∗x,w. (1.10)

By construction, u∗x,w is always achieved by some subsidy level π∗(x,w) ∈Z since u∗x,w ∈ Ix,w.

In fact, π∗(x,w) is unique as the propensity score is strictly increasing in the amount of subsidy.

The next proposition combines the above arguments and states the necessary condition

for optimal policies.

Proposition 1.1 (Optimality Condition). Suppose that Assumptions 1 - 5 hold, cost function

c(x,w,z,d) = z ·d, and the action space Z p is a closed interval [zl,zu]⊂R. If π∗(·) is an optimal

policy, then π∗(·) either satisfies Λ(x,w,π∗(x,w)) = 0, where

Λ(x,w,z) = MTE(x,g(x,w,z))− z−g(x,w,z) ·
[

d
dz

g(x,w,z)
]−1

, (1.11)

or π∗(x,w) ∈ {zl,zu}.

We leave the result for the general cost function c(·) in the proof. The definition of

Λ(x,w,z) has a familiar marginal revenues minus marginal cost interpretation that arises from

a monopolist’s profit maximization problem. The the first term is the marginal revenue, and
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the last two terms represent the marginal cost of subsidy, which depends on the elasticity of

treatment take-up.

As we can see in equation (1.11), MTE can be interpreted as the average marginal benefit

of increasing the amount of subsidy for individuals with (X = x,W = w). So, MTE is not only a

treatment effect parameter as commonly understood, but MTE per se is also a policy-relevant

parameter in the context of personalized subsidy rule.6

Example 1.4. Suppose X is constant so we ignore it in this example. Let Z = W = [0,1]. The

treatment response is g(z,w) = 1
4(1+ z+w). Let the marginal treatment effect be MTE(u) =

4−2u, which is decreasing. The image of g(·,w) is Iw = [1
4(1+w), 1

4(2+w)]. In this case, the

optimal policy is π∗(w) = 1− 3
5w.

1.3.2 Sufficient conditions when MTE is monotone

By definition, MTE(x,u) is the mean treatment effects for individuals with X = x at the

selection margin UD = u, where higher UD implies a lower willingness to select the treatment.

Fixing X = x, a decreasing MTE curve (along the u-dimension) corresponds to the case of

“positive-selection”, meaning that individuals who benefit more from the treatment are more

likely to take the treatment.

Assumption 6 (Positive Selection). The selection process is said to be positive if MTE(x,u) is

weakly decreasing in u.

Assumption 7 (Negative Selection). The selection process is said to be negative if MTE(x,u) is

weakly increasing in u.

Monotonicity of MTE can be motivated by economic theory, implied by econometrics

specification, and sometimes supported by empirical evidence [see e.g., Carneiro et al., 2011,
6Similar connection between MTE and policy effects has been made in the literature. For example, Carneiro

et al. [2010] shows that the marginal policy-relevant treatment effect (MPRTE) is a weighted average of MTE.
However, in our case, MTE itself but not the average of it is shown to be the marginal effects of subsidies. The
distinction appears since we study personalized subsidy rules, whereas they consider universal changes in the
amount of subsidy.
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Cornelissen et al., 2018]. We introduce a few examples.

Example 1.5 (Normal Selection Model). Suppose Y1 = X ′β1 +U1, Y0 = X ′β0 +U0, and D =

1{Z′θ ≥UD}. Further assume that (U1,U0,UD) is jointly normally distributed and independent

to (X ,Z), and the variance of UD is normalized to one. Then MTE(x,u) = x′(β1−β0)+(σ1D−

σ0D)Φ
−1(u), where σ1D = Cov(U1,UD),σ0D = Cov(U0,UD), and where Φ−1(·) is the inverse

of the standard normal cumulative function. For extensions to non-normal selection models, see

Heckman et al. [2003].

Example 1.6 (Roy Model). In the Roy [1951] model, the treatment take-up is fully determined by

the potential gain in the sense that D= 1{∆≥ 0}where, ∆=Y1−Y0. Let UD =F∆(∆)∼Unif[0,1]

be the normalized gain. Then MTE(u) = E[Y1−Y0|UD = u] = F−1
∆

(u).

Example 1.7 (Generalized Roy Model with Positive Selection). Consider a selection model

in which the treatment take-up is partially determined by the potential gain in the form D =

1{φ(X ,W,Z,∆,V )≥ 0}, where ∆ =Y1−Y0 is the potential gain and V represents the unobserved

heterogeneity. In Appendix A.2, we show that if φ(X ,W,Z,∆,V ) is increasing in ∆, then we can

find functions (φ1,φ2) and random variables UD ∼ Unif[0,1] such that D = 1{φ1(X ,W,Z) ≥

φ2(∆,UD)} and MTE(x,u) = E[∆|X = x,UD = u] is decreasing in u.

Our next proposition characterizes the optimal policy when the selection is monotone.

Proposition 1.2 (Optimality under Positive Selection). Suppose that Assumptions 1 - 6 hold, the

action space Z p = [zl,zu], and g(x,w,z) is weakly concave in z. Further assume that the cost

function c(x,w,z,d) = z ·d.Then the optimal subsidy π∗(x,w) is given by

π
∗(x,w) =


zl if Λ(x,w,z)< 0, ∀ z ∈ [zl,zu]

z∗ if Λ(x,w,z∗) = 0 for some z∗ ∈ [zl,zu]

zu if Λ(x,w,z)> 0, ∀ z ∈ [zl,zu]

, (1.12)

where Λ(x,w,z) = MTE(x,g(x,w,z))− z−g(x,w,z) ·
[

∂g(x,w,z)
∂ z

]−1
.
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Proposition 1.2 is a complete characterization of the optimal policy as one of the three

cases in equation (1.12) must hold. The characterization stems from the fact that, when the

selection is positive, the subsidy’s marginal return decreases since individuals with higher returns

are always induced first. Corner solutions arise if the marginal return is always positive or

negative. We can also characterize the optimal policy for the case of negative selection, albeit

under the assumption of no cost c(x,w,z,d) = 0.

Proposition 1.3 (Optimality under Negative Selection). Suppose that Assumptions 1 - 5 and

7 hold, the action space Z p = [zl,zu], and MTE(x,u) is weakly-increasing in u. Furthermore,

assume c(x,w,z,d) = 0. Then the optimal subsidy π∗(x,w) is given by

π
∗(x,w) =


zl if

∫ g(x,w,zu)
g(x,w,zl)

MTE(x,u)du≤ 0

zu if otherwise
. (1.13)

In the case of negative selection, individuals who gain the least from the treatment are

always induced first, and the marginal return of subsidy is increasing. Therefore, unless the

treatment effect is zero, the optimal subsidy is always a corner solution- it either assigns the

highest subsidy under consideration so that individuals with high returns are persuaded to take-up

the treatment; or, it assigns the least amount of subsidy so that the potential harm caused by the

treatment is minimized for the low-return individuals.

We conclude this section with two remarks. First, as we can see from Example 1.4, even

though the instrument W is excluded from the outcome equation, W is still valuable for targeting

because it affects the selection into treatment.7 Second, while the variable UD is not observed

and therefore infeasible for targeting, the policy-maker can partially induce individuals into

treatment based on UD by manipulating Z: all else being equal, higher level of subsidy would

7Notice that the optimal subsidy is decreasing in w in the example for two reasons. First, individuals with
high w are ex-ante more likely to select the treatment, therefore less subsidy is needed. Second, since there is
positive selection into the treatment (MTE is decreasing), it is of less interest to induce the high resistance (high u)
individuals into the treatment status.
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induce more individuals with high UD into treatment. The capability to implicitly targeting with

UD will generally increase the welfare, which is advantage not shared with policies that directly

assign treatment status. We elaborate more on the welfare properties of subsidy-based policies in

Section 1.5.

1.4 Identifying Welfare Rankings

The analysis in Section 1.3 provides conditions for optimal policies in terms of MTE

as though the MTE is known to the policy-maker. In this section, we take the identification

of MTE into account and address the issue of identifying the optimal policy. We first discuss

two scenarios in which the optimal policy can be point-identified and provide results on partial

rankings when point identification is not possible.

By identification, we aim at representing the objects of interest, such as welfare ranking

and optimal policy, by the joint distribution of (Y,D,X ,W,Z). The analysis is conducted under

the full knowledge of observable distributions, namely, the joint distribution of (Y,D,X ,W,Z).

The welfare ranking % is an order on the policy space Π that π % π ′ if and only if S(π)≥ S(π ′).

The identified ranking is said to be partial if for some pair of policies (π,π ′) it is impossible to

determine whether S(π)≥ S(π ′) given the observable distribution.

1.4.1 Point identification of optimal policies

It follows directly from the welfare representation result that, if the entire MTE curve and

propensity score g are identified, then both the welfare ranking and optimal policy are identified.

Corollary 1. If for some (x,w) ∈ X ×W , MTE(x, ·) is identified on [0,1] and g(x,w, ·) is

identified on Z p, then the optimal subsidy π∗(x,w) is also identified.

Heckman and Vytlacil [2005] shows that MTE can be identified using Local Instrument

Variables (LIV). For completeness and ease of discussion of later results, we first rephrase the

identification result of MTE in our setup. Define a function m that is identified from the data as
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follows:

m(x,u) =
d

d p

∣∣∣
p=u

E[Y | X = x,g(X ,W,Z) = p] ·1Supp(g(x,W,Z))(u).

The function m equals to MTE on Supp(X ,g(X ,W,Z)) and 0 elsewhere according to the follow-

ing identification result from Heckman and Vytlacil [2005].

Lemma 2 (Identification of MTE). Suppose that Assumptions 1 - 3 hold. Further, assume that

g(X ,W,Z) is a nondegenerate random variable conditional on X and that 0 < P(D = 1)|X)< 1.

We have MTE(x,u) = m(x,u) ∀ (x,u) ∈ Supp(X ,g(X ,W,Z)).

For the entire MTE curve MT E(·) to be identified, the support of the propensity score

Supp(g(x,W,Z)) has to cover unit interval for every x ∈X so that the entire MTE curve can

be linked the to identified function m(·). Effectively, this requires that there is large enough

variation in the support of the instruments (W,Z) such that the propensity score can be arbitrarily

close to zero or one depending on the realized value of the instrument variables. As for the

identification of g(·), since the propensity score is simply the observed probability of take-up

given the covariates and instruments, we can identify g(·) on the support X ×W ×Z by its

empirical counterpart. When Zp 6⊂ Z, identification of g(·) on X ×W ×Z p can be further

obtained via imposing parametric restriction on g() such as the probit model.

However, point identification of the MTE curve is not necessary for identifying the

optimal policy. We present two scenarios in which point identification of the MTE curve is

not needed for identifying the optimal policy. First, if the policies under consideration assign

subsidies only from the support of Z, that is, when Z p ⊂Z , then the optimal policy is identified.

As we show in the next proposition, it is possible to identify the optimal policy without the

identification of MTE. Define P id = {π ∈Π : π(x,w) ∈ Supp(Z | X = x,W = w) for all (x,w) ∈

Supp(X ,W )}.
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Proposition 1.4. Suppose that Assumptions 1-3 hold. Then for any π ∈P id ,

E[Y π | X ,W ] = E[Y | X ,W,Z = π(X ,W )], (1.14)

and

E[Cπ | X ,W ] = π(X ,W ) ·E[D | X ,W,Z = π(X ,W )]], (1.15)

where E[Y |X ,W,Z = π(X ,W )] and E[D |X ,W,Z = π(X ,W )] are identified as π(x,w)∈ Supp(Z |

X = x,W = w). As a result, the welfare ranking on P id is identified.

Proposition 1.4 essentially states the counterfactual welfare can be identified by the

empirical welfare as long as the subsidy under consideration is observed in the data.

A second scenario in which point identification of the MTE curve is not needed is when

individuals positively select into the treatment status. Under the assumption of positive selections,

individuals with higher returns are always induced first by the subsidies. Therefore, we know an

amount of subsidy is optimal if the marginal effect of subsidy is zero.

Proposition 1.5. Suppose the assumptions stated in Proposition 1.2 hold. If there exists z∗ ∈

Z p such that g(x,w,z∗) and MTE(x,g(x,w,z∗)) are identified and that Λ(x,w,z∗) = 0, then

π∗(x,w) = z∗.

Proposition 1.5 states that, if the selection is positive, we can identify the optimal amount

subsidy as long as we know at which point the marginal effect is zero. Therefore, we do

not necessarily need the instruments to have large support if it contains the point that has

zero marginal effect. Even if the requirement is not met, imposing positive selection still has

identification power, as we will show in the next subsection.
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1.4.2 Partial rankings of policies

While the results in the previous subsections yield point identifications, the requirements

can be restrictive. Next, we discuss how to obtain partial rankings of policies by imposing shape

restrictions.

Let M o and G o be sets of functions that represents the functional parameter space of

MTE and propensity under possible shape restrictions (e.g. parametric model, monotonicity,

boundedness). The true MTE is assumed to be an element of M o and the true propensity is

assumed to be an element of G o. Moreover, the true MTE must coincide with the identifiable

function m on the identified region. Therefore, the identified set of MTEs M and propensities G

under shape restrictions are respectively

M =
{

m̄(x,u) ∈M o : m̄(x,u) = m(x,u) for all (x,u) ∈ Supp(X ,g(X ,W,Z))
}

and

G =
{

g ∈ G o : g(x,w,z) = E[D | X = x,W = w,Z = z],(x,w,z) ∈ Supp((X ,Z,W ))
}
.

Let 〈·, ·〉 be the inner product with respect to the measure underlies the random vector (X ,UD).

Define the dual cone and polar cone of M respectively as

M ∗ = {` : 〈l, m̄〉 ≥ 0, m̄ ∈M }, and M× =−M ∗. (1.16)

For any policy π and propensity g, we use Fg,π(x,u) to denote the conditional cumulative

distribution function (CDF) of the propensity score g(X ,W,π(X ,W )) given X = x, that is,

Fg,π(x,u) = P(g(X ,W,π(X ,W ))≥ u | X = x).

Proposition 1.6 (Geometry Representation of Policy Effects). Suppose that Assumptions 1-3

hold. Let (π,π ′) be a pair of policies. If {Fg,π ′−Fg,π : g ∈ G } ⊂M ∗, then E[Y π ]≥ E[Y π ′]. If
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{Fg,π ′−Fg,π : g ∈ G } ⊂M×, then E[Y π ′]≥ E[Y π ].

This result for incentive-based policy is the analog of Proposition 1 in Kasy [2016].8 It

provides the general identification result of the welfare ranking by considering the geometry

in the Hilbert space containing the MTE curves that are data-consistent. For a pair of policies,

if the difference between the induced CDFs of the propensity score is orthogonal to the set

of plausible MTEs, then the data is uninformative about the welfare ranking between these

two policies. The identified welfare rankings constitute an incomplete ordering that admits an

expected utility representation [Dubra et al., 2004]. As a consequence, the identified ranking

satisfies the independence axiom.

Our next proposition states that, when there is positive selection, we have an easy-to-

interpret partial identification result for policy rankings.

Proposition 1.7 (Direction of Welfare Improvement). Suppose the assumptions in Proposition

1.2 hold, and let π∗ be an optimal policy. If Λ(x,g(x,w,z)) ≥ 0 (resp. ≤ 0) for some z ∈Z p,

then π∗(x,w)≥ z (resp. ≤ z).

The same intuition behind Proposition 1.2 applies here as well- when the selection-into-

treatment is positive, the marginal benefit of subsidy is decreasing. Recall that the function

Λ(x,w,z) only depends on the MTE and the propensity score, and it represents the marginal

return of subsidy. Therefore, if the MTE and the propensity score are identified at a specific

point (x,w,z), then the optimal subsidy can be bounded from below if the marginal return at that

point is positive and can be bounded from above when the marginal return is negative.

1.5 Welfare Properties of Subsidy Rules

In economics, instrumental variables are typically used for the identification of treatment

effects. However, we argue that the instrument variable also has a fundamental influence on the

8Kasy [2016] focuses on the class of direct policies, which directly assigns the (probability of receiving)
treatment rather than using incentives to let individuals self-select.
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policy design through its function of providing incentives for the treatment take-up. Explicitly,

we show that assigning subsidies weakly dominates assigning treatments directly. For ease of

presentation, we condition on X = x throughout this subsection, meaning that g and π are only

functions of the instrumental variables W and Z, and MTE is only a function of u.

As a benchmark, we introduce a new class of policies in which the policy-maker does

not manipulate the subsidy Z. These policies, which we refer to as “direct policies’,’ set the

propensity of receiving the treatment based on the observed characteristics W and Z (By contrast,

subsidy-based policies can only affect the treatment status indirectly through changing subsidies).

Let T denote the treatment status under direct policies. In particular, T is σ(W,Z)-measurable

Bernoulli random variable with parameter τT (W,Z) = P(T = 1 |W,Z), and T ⊥ (U1,U0,UD)

since (W,Z)⊥ (U1,U0,UD). Another class of policies of interest, which we refer to as “constant

policies”, is a collection of direct policies that assign a constant value of propensity for all

(w,z) ∈ Supp(W,Z). That is, the class of constant policies consists of direct policies that has no

personalization. Let Y T = TY1 +(1−T )Y0 be the counterfactual outcome from a direct policy

T , and let

S∗sub = sup
π: σ(W )-measurable

E[Y π1{UD ∈ Supp(g(W,Z))}]

S∗dir = sup
T : σ(W,Z)-measurable

E[Y T 1{UD ∈ Supp(g(W,Z))}]

S∗con = sup
T : τT (w,z)=τT∈[0,1]

E[Y T 1{UD ∈ Supp(g(W,Z))}]

be the optimal identified welfare under different policy settings.9 The subscript “sub” repre-

sents “subsidies”, and S∗sub is the optimal identified welfare when the policy-maker can design

subsidy-based policies using subsidy Z. The subscript “dir” represents “direct”, and S∗dir is the

optimal identified welfare when the policy-maker do not manipulate Z but instead directly assign

9In this section, the cost part of the welfare will be ignored as it is unclear how to compare the cost of assigning
treatment and the cost of assigning subsidies without specific context.
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treatments based on different values of the instrument.10 The subscript “con” denotes “constant”,

and S∗con is the optimal identified welfare when the policy-maker sets the same propensity of

treatment for all individuals. By construction, S∗con ≤ S∗dir since every constant policy is a direct

policy.

We restrict the comparison of optimal welfare on the set of individuals whose UD

lies in the region Supp(g(W,Z)), on which the treatment effect can be identified. Individuals

outside this region are either “always-takers” or “never-takers” since their treatment take-up

can not be affected given the exogenous variation in the instrumental variables. Therefore, the

data is inherently uninformative on the treatment effects as well as the counterfactual welfare

under different policies for these individuals. Accordingly, we restrict our attention to the

identified welfare E[Y π1{UD ∈ Supp(g(Z,W ))}] and E[Y T 1{UD ∈ Supp(g(Z,W ))}]. Our next

two proposition state that we can rank the optimal welfare under different policy classes.

Proposition 1.8 (Value of Manipulable Instrument). Suppose that Assumptions 1-3 hold and

Supp(Z)⊂Z p. Then S∗sub≥ S∗dir. The inequality holds strictly if the supremum in the definition of

S∗sub is achieved by a unique policy π∗ such that g(W,π∗(W )) lies in the interior of Supp(g(W,Z))

with positive probability.

Proposition 1.8 states that the optimal welfare by manipulating the instrument is always

preferred to setting treatment directly.11 The reason why subsidy-based policy weakly dominates

the direct policy is that the former affects the treatment status through changes in the treatment

selection: smaller subsidy induces only individuals with low UD, while larger subsidy induces

both low- and high-UD into the treatment status. Loosely speaking, the subsidy-based policy

implicitly uses UD as a targeting variable even though UD is not observable. Since UD correlates

with (U1,U0) and thus the treatment effect, targeting on UD will improve the welfare.

10Mathematically, this is means T is dependent on (W,Z) through τT .
11This is a very interesting case where the policy-maker choose to deliberately stochastic [Cerreia-Vioglio et al.,

2019] in terms of the treatment choice.
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Proposition 1.9 (Irrelevance of Instrument in Treatment Rules). Suppose that Assumptions 1

and 2 hold. Then S∗dir = S∗con.

The result states that, when the policy under consideration is to assign (the propensity

of) treatments directly, then the instrument variable is irrelevant as a targeting variable. The

instrumental variable W is useful for the identification of treatment effects but, when used for

targeting, do not improve the welfare since the instrumental variable is randomly assigned and

excluded from the outcome equations. By contrast, as we can see from Example 1.4 in Section

1.3, for subsidy-based policies, the optimal targeting can involve the instrumental variable.

Notice that, although as we see from Proposition 1.8 that subsidies rules implicitly target

on unobserved heterogeneity, targeting with subsidies is still not as good as the case when UD

is observed. The subsidy-based policy only targets individuals in a “second-best” sense, as the

targeting is restricted to a specific form that individuals with low UD have to be in the treatment

status whenever the high UD individuals are. However, in the next proposition, we will show that

subsidy-based policy can achieve the first-best welfare when MTE is decreasing.

Consider a (infeasible) direct policy that assigns the propensity of treatment based on

both the observed characteristics (W,Z) and unobserved heterogeneity UD. The corresponding

treatment status, denoted as T̃ , is σ(W,Z,UD)-measurable Bernoulli random variable with

parameter τT̃ (W,Z,UD) = P(T̃ = 1 |W,Z,UD). In particular, Let Y T̃ = T̃Y1 +(1− T̃ )Y0 be the

counterfactual outcome from the policy. We define optimal welfare S∗inf with respect to this

policy class as

S∗inf = sup
T̃ : σ(W,Z,UD)-measurable

E[Y T̃ 1{UD ∈ Supp(g(W,Z))].

The next proposition states that subsidy-based policies can achieve the same welfare as direct

policies that targets on UD even though the latter is infeasible.

Proposition 1.10. Suppose that Assumptions 1-3 hold and Z p = Supp(Z). If MTE(u) is de-
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creasing, then S∗sub = S∗inf.

The intuition behind proposition 1.10 is that the treatment assignment of the infeasible

policy can be replicated by a subsidy-based policy when the MTE is decreasing. Specifically,

the infeasible first best policy assigns all individuals with MTE(u)≥ 0 to the treatment group.

Let u∗x be a solution to MTE(u) = 0. As individuals with higher MTE are always induced first

in the case of positive selection, the subsidy-based policy can achieve the same counterfactual

treatment choice if the individuals with UD = u∗x are indifferent about the treatment choice under

the policy, implying that individuals with MTE(u)≥ 0 are all induced to the treatment group.

1.6 Empirical Application

We illustrate our method by applying it to the experimental data from the Jordan New

Opportunities for Women (Jordan NOW) pilot study. In the experiment, vouchers for wage

subsidies are randomly assigned to female college students who are in their last year of education.

These vouchers can be presented to firms while searching for jobs, and, if a student with a

voucher is employed, the employer can redeem the voucher for up to six months for an amount

equal to the minimum wage. The premise of the program is that wage subsidies can help students

land their first jobs in which they can acquire experience and skills helpful for their long-term

careers. We refer readers to Groh et al. [2016] for more details about the background and their

experiment design.

In their study, Groh et al. [2016] finds that, although wage subsidies substantially increase

the employment rate immediately after graduation, wage subsidies have limited effects on the

long-term labor market participation. Specifically, wage subsidies increase the employment

rate by about 38 percentage points during the subsidized period. However, the effect vanishes

rapidly after the subsidy expires. Seventeen months after the subsidies went out, the effect on

employment is less than two percentage points and is not statistically significant. Groh et al.

[2016] concludes that providing wage subsidies is not an effective measure to promote women’s
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long-term labor market participation, at least in the context of Jordan.

In our empirical exercise, we investigate whether one can improve the effectiveness of

wage subsidies through targeting. The welfare function we consider is the 30-month earnings (Y )

after the subsidy period minus the cost of wage subsidy.12 In the model, Y is the realization of

one of the potential outcomes Y1 and Y0, depending on whether the student successfully found a

job after graduation during the subsidized period (D = 1) or not (D = 0). In our policy exercise,

we consider targeting based on the student’s college major. Specifically, we target on whether the

student majors in medical assistance (X), which includes nursing and pharmacy specializations.

We search for the optimal subsidy within the space Z p = [0,900], where zp = 0 refers to no

subsidy and zp = 900 is the maximal subsidy an individual could receive in the experiment.

The optimal amount of subsidy critically depends on two factors: (1) how effective can

wage subsidy encourage and help students to find their first job and (2) the treatment effect

of having a first job after graduation on the long-term labor market outcome. The traditional

approach to quantifying these effects starts with imposing joint normality for the error terms

(U1,U0,UD) and their independence to (X ,Z). Then, we can estimate the outcome and choice

equations together with either the method of maximum likelihood or the two-step method

proposed by Heckman [1976]. For this illustration, we will proceed accordingly. Although

these parametric assumptions could be restrictive, they yield more precise estimates when the

sample size is modest. We provide a more flexible method that does not impose normality in the

Appendix.

12We proxy the 30-month earnings by the monthly earnings reported at the last round, which took place two years
after the voucher had expired.
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Formally, we estimate the following selection model:

Y1 = X ′β1 +U1,

Y0 = X ′β0 +U0,

D = 1{X ′βD +Zγ−ŨD ≥ 0},

(X ,Z)⊥ (U1,U0,ŨD),(U1,U0,ŨD)∼N (0,Σ),

where

Σ =


σ2

1 ρ01σ0σ1 ρ1σ1

ρ01σ0σ1 σ2
0 ρ0σ0

ρ1σ1 ρ0σ0 1

 .

Table 1.1. Estimates of the Heckman selection model

Choice equation Outcome equation (Y0) Outcome equation (Y1)

Medical major 0.30∗ 1743.90∗ 2677.21∗
(0.09) (351.32) (420.98)

Subsidy 0.17∗
(hundreds of JOD) (0.00)

Intercept −0.94∗ 607.59∗ 660.134
(0.07) (192.68) (437.14)

ρd −0.09 0.38
σd 2596.77 3399.09

1 The sample size is 1347. Standard errors are obtained by bootstraps. The asterisk signifies 1%
statistical significance level.

Table 1.1 presents the estimates from the Heckman two-step method. Same as the results

in Groh et al. [2016], we find that wage subsidies do significantly increase the chance of finding

a job after graduation. In Figure 1.1, we plot the probabilities as functions of subsidies. As we

can see, at the maximal amount of subsidy, the employment rate almost triples compared to the

case with no subsidy. Also, notice that the employment rate is higher among the students with
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Figure 1.1. The fitted probabilities from the choice equation

medical majors at any given level of subsidy. From the policy-maker’s perspective, this implies

that it is cheaper to help medical students to land their first job.

Under the normal selection model, Heckman et al. [2003] shows that the marginal

treatment effect is given by

MTE(x,u) = x′(β1−β0)− (ρ1σ1−ρ0σ0)Φ
−1(u).

We plot the estimated MTE curves in Figure 1.2. There are several things worth noticing. First,

the MTE curves are downward-sloping, suggesting that individuals positively select into the

treatment. That is, individuals who are more likely to find a job after graduation tend to benefit

more from it for their long-term career prospects. Second, the marginal effect can be negative

among individuals with high UD, meaning that wage subsidies can potentially do harm for

individuals with low willingness to work.13 From the policy-making perspective, this implies

13A possible explanation for the negative effect is the stigmatization toward voucher users [Burtless, 1985].
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Figure 1.2. MTE estimated from a normal selection model

that excessive subsidies could be not only expensive but also harmful to the individuals.

Combining previous results, we plot the MTE curves and marginal cost of subsidies in

Figure 1.3. Based on Proposition 1.1, we can look for the optimal take-up rate at the intersection

of the MTE and marginal cost curves. The optimal subsidies are substantially different for the

two groups of students. As discussed earlier, since students with medical majors tend to benefit

more from subsidies, the optimal take-up rate for them is higher than that for students from other

majors. In fact, by substituting the optimal take-up rate into the inverse of propensity scores, we

can find that the optimal subsidy for medical students is about JOD 375, which is about one-third

of the amount provided in the experiment. However, as for students from other majors, the

estimated optimal subsidy is negative (JOD −75). As negative subsidies are out of consideration

in this context, we have a corner solution which implies that the policy-maker should not provide

subsidies for this group of students.

Our results suggest the amount of subsidies set in the experiments are much higher than
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Figure 1.3. MTE curves and marginal costs

their optimal level (in terms of the welfare function we defined). The insignificant long-term

effect found in Groh et al. [2016] may stem from the fact that excessive amounts of subsidies may

draw individuals with lower returns. By lowering the amount of subsidies, the welfare outcome

may actually be improved. Moreover, we can further enhance its efficiency with targeting to

exploit the heterogeneity in treatment effects and take-ups.

1.7 Conclusion

In this paper, we study the problem of allocating subsidies based on individual character-

istics. We adopt the MTE framework to analyze the characterization, identification, and welfare

properties of subsidy rules. Our results show that subsidy rules generally outperform policies

that mandate the treatment. In our empirical example, we illustrate the main idea of this paper by

estimating the optimal wage subsidy using a parametric MTE model. More flexible methods that

do not impose parametric assumptions are provided in the appendix, of which their theoretical

properties are of interest for future studies.
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Chapter 2

Global Representation of the Conditional
LATE model: A Separability Result

2.1 Introduction

Self-selection into treatment is a common challenge in causal inference. One approach,

pioneered by Heckman [1976], is to impose a model on the selection process. Another approach is

to invoke the assumptions of Imbens and Angrist [1994] and use instrumental variables to identify

the local average treatment effect (LATE). Vytlacil [2002] shows that the two approaches are

equivalent, even though the LATE approach does not provide an explicit model of the selection

process. Specifically, Vytlacil [2002] finds that the monotonicity and independence conditions

imposed in Imbens and Angrist [1994] together imply a nonparametric binary choice model,

in which the instrument and the unobserved heterogeneity are additively separable in the latent

index. When conditioning covariates are included, say, for instrument validity, the selection

model representation can be established on a given value of covariates. Namely, holding fixed

the value of covariates, imposing a (nonparametric) selection model is no stronger than imposing

the LATE assumptions.

However, in most empirical settings, a fully nonparametric analysis, conditioning on

each value of the covariates, is prohibitively data-demanding. It is typical to pool observations

with different characteristics and to incorporate covariates in the selection model (for example,

Carneiro et al., 2011 and Cornelissen et al., 2018). These empirical works conduct global analysis
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that explicitly models covariates while the theoretical analysis of Vytlacil [2002] is local in the

sense that covariates are fixed at a constant level.1 This paper aims at filling this gap.2

Our result extends the representation in Vytlacil [2002] to settings where the covariates

are not held fixed. We show that the conditional LATE (CLATE) model [Abadie, 2003] has a

threshold-crossing representation in which the instruments are separated from the covariates in

the latent index. Loosely speaking, the separability is a result of the monotonicity condition in

the CLATE model that requires the instruments to affect the potential treatment status in the

same direction for all individuals.3 In particular, the direction of the monotonicity condition is

the same across all values of the covariates, and thus a latent index representation that separates

out the covariates is appropriate in this case.

The separability result implies that it is possible to uniformly rank the instruments’ values

by the propensity score across the covariates’ values. Such a ranking has two practical usages.

First, it can be used as a single index to construct testable implications for the CLATE model.

Second, we can use the ranking to relabel the values of the instruments so that an increase in

the ranking never causes individuals to drop the treatment, regardless of their covariates values.

Our representation result also implies that the techniques developed in the conditional LATE

(CLATE) framework, such as the identification analysis in Abadie [2003], can be applied to

selection models that impose separability, and vice versa. As a corollary of the representation

theorem. We reformulate and refine the testable implications of Heckman and Vytlacil [2005]

for the marginal treatment effect framework.

The remaining of the paper is organized as follows. In section 2.2, we present the

1The terminology “local” also appears in the work by Dahl et al. [2020] with a different meaning. They consider
the weakening of the LATE assumption based on the outcome distributions rather than the covariates.

2In a recent paper, Kline and Walters [2019] compares the selection model and the LATE approach when
covariates are present. While they have established that, in the absence of covariates, the selection model and the
LATE approach will yield numerically identical estimates, they also point out that their equivalence result does not
hold when the covariates are introduced at least in the way covariates are usually modeled in empirical works. This
paper addresses the same issue by characterizing the set of selection models that are equivalent to the LATE model
when covariates are present.

3Heckman and Vytlacil [2005] suggests renaming the monotonicity condition as uniformity because “it is a
condition across people than the shape of a function for a particular person.”
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global latent index representation of the LATE model, which is our main result. Section 2.3

discusses some implications of the representation. Section 2.4 generalizes the result to the case

of ordered-discrete choice selection models. The last section concludes.

2.2 Representation Results

We first introduce the CLATE model. Let the binary variable D be the receipt of treatment

so that D = 1 denotes the treatment status, and D = 0 denotes the untreated status. The potential

outcomes under the treated and untreated status are denoted by Y1 and Y0, respectively. The actual

outcome observed by the econometrician is Y = DY1 +(1−D)Y0. Let X be a random vector

containing variables that could potentially affect both the outcome and the treatment choice.

The covariates are introduced in the model to make the validity of the instruments plausible.

Denote X as the support of X . Let the random vector Z be the collection of variables that

affect the treatment choice D but not the potential outcomes. These variables are referred to

as instruments or excluded variables. Note that under this specification, Z and X are disjoint

sets of variables. Denote Z as the support of Z. For each value z of the instrument, let Dz be

the counterfactual treatment status if Z were externally set to z. The realized treatment can be

represented as D = DZ = ∑z∈Z 1{Z = z}Dz.

To avoid measure-theoretic technicalities, we assume both Z and X are countable. We

further assume that for any x ∈X , P(D = 1 | X = x) ∈ (0,1) and P(D = 1 | Z = z,X = x) is not

a trivial function of z.This means that there exist both treated and untreated individuals, given

each value of the covariates value. This assumption is also imposed in Vytlacil [2002]. The

assumptions of the CLATE model are listed as follows.

Assumption 8 (Conditional Independence).
(
{Dz : z ∈Z },Y1,Y0

)
⊥ Z | X .

Assumption 9 (Monotonicity). For any (z,z′) ∈Z 2, either

P(Dz > Dz′ | X = x) = 1, for almost all x
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or

P(Dz 6 Dz′ | X = x) = 1, for almost all x.

Assumption 8 requires the instrument to be “as good as randomly assigned” conditional

on the covariates. Assumption 9 is the monotonicity condition that is typically required in the

LATE literature. Together, the two assumptions form the CLATE framework. Note that the

exclusion restrictions of the instrument on the outcome is already embedded in the notation of

the potential outcomes.

We discuss the monotonicity condition in more detail. This condition is global as it

requires the direction of monotonicity to be the same across different values of x. A weaker and

conditional version of monotonicity would be to impose, for any (z,z′) ∈Z 2, and for each x

locally, either

P(Dz ≥ Dz′ | X = x) = 1, or P(Dz ≤ Dz′ | X = x) = 1. (2.1)

For any x ∈X , we can consider the individual with P(Dz > Dz′ | X = x) = 1 as the complier

and the individual with P(Dz < Dz′ | X = x) = 1 as the defier. Then under the local monotonicity

condition (2.1), it is possible that for some x, there are compliers but no defier; while for other x,

there are defiers but no complier. This notion of local monotonicity can be found, for example,

in Kolesár [2013] and Słoczyński [2020]. However, it is important to have uniformity in the

direction of monotonicity in order to obtain the separability result in the global representation.

The main result of this paper is Theorem 1.

Theorem 1 (Latent Index Representation of CLATE). The following two representations are

equivalent.

(i) The CLATE model (Assumptions 8 and 9).

(ii) There exist functions m and q, and a random variable U such that (Y1,Y0,U)⊥ Z | X and
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the treatment choice is determined by

Dz = 1{m(z)> q(X ,U)} w.p.1. (2.2)

Furthermore, if the conditional distribution of U | X = x is absolute continuous for all x ∈X ,4

then there exist a function q∗ and a random variable U∗ ∼ Unif[0,1] such that U∗ ⊥ (Z,X) and

Dz = 1{m(z)> q∗(X ,U∗)} w.p.1. (2.3)

This representation result achieves separability between the instrument and covariates

in the treatment choice process. The function m ranks the values of the instrument. Moreover,

this ranking is invariant to changes in the covariates and is identified up to an increasing

transformation. We further explain this ranking in the next section.

The form of Equation (2.2) is to emphasize the separation between the instrument Z and

the covariates X . Alternatively, we can define Ũ = q(X ,U), and write the selection equation as

Dz = 1{m(z)> Ũ} w.p.1, (2.4)

where (Y1,Y0,Ũ) ⊥ Z | X . Representation (2.4) is used in the proof of Corollary 2. Note that

the separation between Z and X in representation (2.2) and (2.3) holds inside the indicator

function, and it does not necessarily imply that propensity score is additively separable in Z

and X . For example, consider the simple treatment selection equation 1{Z +X ≥U}, where

U | (Z,X) ∼ N(0,1). In this case, the propensity score is equal to π(z,x) = Φ(z+ x), with Φ

being the distribution function of the standard normal distribution. This particular propensity is

not additively separable between its two arguments.5

4This assumption is typically imposed in the marginal treatment effect literature (for example, Heckman and
Vytlacil, 2005) for the normalization of U .

5That being said, non-separabilities of Z and X in the propensity score may lead to a contradiction to the
monotonicity assumption. For example, this can happen if the marginal effect of increasing Z is positive for some
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The intuition of the Theorem is explained along with the following proof, where we make

use of the idea presented in Vytlacil [2006a].

Proof of Theorem 1. The direction (ii) =⇒ (i) is obvious. For (i) =⇒ (ii), consider fixing

X = x for any x ∈X , then apply the results by Vytlacil [2002]. Formally, let (Ω,B,P) be the

probability space that underlies the random vector (Y1,Y0, ,{Dz : z ∈Z },X ,Z). Consider the

partition Ω =
⋃

x∈X Ωx, where Ωx = {ω ∈Ω : X(ω) = x}. The probability P(Ωx) is non-zero as

X is assumed to be countable. For each x ∈X , we construct the probability space (Ωx,Bx,Px)

where the σ -algebra

Bx = {B∩Ωx : B ∈B}

and the probability measure

Px(B) =
P(B∩Ωx)

P(Ωx)
for B ∈Bx.

Consider the random variable Dx
z = Dz

∣∣
Ωx

, which is the restriction of Dz to the subdomain

Ωx Similarly define Y x
1 ,Y

x
0 ,Z

x. It is not hard to see that the probability space and the random

variables are well-defined and that PX(B) is the conditional probability of B given X .6 Then

Assumption 8 implies that for all z ∈ Z , Zx ⊥ (Y x
1 ,Y

x
0 ,D

x
z) under the probability measure Px.

Assumption 9 implies that for all (z,z′) ∈Z 2, either Dx
z ≥ Dx

z′ or Dx
z ≤ Dx

z′ . This means that the

variables (Y x
1 ,Y

x
0 ,{Dx

z : z ∈Z },Zx) satisfy the LATE assumptions defined by Vytlacil [2002]

(namely assumptions L-1 and L-2 in that paper). By the result in that paper, an equivalent

representation for Dx
z is that there exists a non-trivial function g and a random variable Ux,

independent of Zx, such that Dx
z = 1{g(z,x)>Ux}. Define U ≡UX . By construction U ⊥ Z | X ,

and Dz = DX
z = 1{g(z,X)>U}.

The global monotonicity condition imposes further restrictions. It forbids the following

(X ,Z) = (x,z) but negative for another value (X ,Z) = (x′,z). For example, if the propensity score is π(z,x) = Φ(zx),
then the monotonicity assumption would be violated if x can take both positive and negative values.

6We are stating that the followings are true: (1) (Ωx,Bx,Px) is a probability space, (2) Y x
1 ,Y

x
0 ,Z

x and {Dx
z : z∈Z }

are Bx-measurable, and (3) PX (B) = E[1B|X ] a.s. for B ∈B.

39



situation: for some pairs (z,z′) ∈Z 2 and (x,x′) ∈X 2, we have g(z,x)> g(z′,x) but g(z,x′)<

g(z′,x′). This violation is depicted in Figure 2.1, where under X = x we have compliers, but

under X = x′ we have defiers.

CA N
U

g(z,x) g(z′,x)

DA N
U

g(z′,x′) g(z,x′)

A: always taker, C: complier, D: defier, N: never taker.

Figure 2.1. Violation of Assumption 9

In fact, the monotonicity condition implies that g satisfies the following property: for

all pairs (z,z′), either g(z,x) > g(z′,x) for all x, or g(z,x) < g(z′,x) for all x. By Lemma 1 in

Vytlacil [2006a], this property implies that there exists a set of strictly increasing functions

{hx(·) : x∈X } and a function m such that g(z,x)= hx(m(z)). Thus, based on the fact that each hx

is strictly increasing hence invertible, we can derive that Dz = 1{g(z,X)>U}= 1{hX(m(z))>

U}= 1{m(z)> h−1
X (U)} and establish the representation in (2.2).

For representation (2.3), define U∗ = FU |X(U | X) and q∗(x,u) = q(x,F−1
U |X(u | x)), where

FU |X(· | ·) is the conditional cumulative distribution function of U given X. We have

Dz = 1{m(z)> q(X ,U)}

= 1{m(z)> q(X ,F−1
U |X ◦FU |X(U))}

= 1{m(z)> q∗(X ,U∗)}.
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U∗ is independent to (X ,Z) and distributed as Unif[0,1] because

P(U∗ 6 u | X = x,Z = z) = P(FU |X(U | X)6 u | X = x,Z = z)

= P(FU |X(U | x)6 u | X = x)

= P(U 6 F−1
U |X(u | x) | X = x)

= FU |X(F
−1

U |X(u | x) | x),

= u, for all u ∈ [0,1],

where the second line holds as U ⊥ Z | X , and the fourth line holds by the definition of FU |X .

2.3 Implications

The separability property between Z and X in the choice equation implies a rank-

invariance property of the ranking of the instrument in terms of the propensity score

π(z,x)≡ P(D = 1 | Z = z,X = x).

The following corollary also discusses the identification of the function m from the propensity

score.

Corollary 2 (Observable Implications). Let Assumptions 8 and 9 hold.

(i) The propensity score π satisfies that for any z,z′ ∈Z ,

π(z,x)> π(z′,x) for some x =⇒ π(z,x)> π(z′,x) for all x. (2.5)

Further, using representation (2.4), if the CDF of Ũ is strictly increasing conditional on

some value x∗, then the function m can be ordinally identified as m(z) = π(z,x∗). Moreover,

if the conditional CDF is strictly increasing for all x ∈X , then the above statement also
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holds when the weak inequalities in equation (2.5) are replaced by strict inequalities (or

equalities).

(ii) The function m is a sufficient index of the instrument Z in the sense that

P(Yj ∈B | X ,Z,D = j) = P(Yj ∈B | X ,m(Z),D = j),

for any measurable set B and j ∈ {0,1}. Let g1,g0 be nonnegative functions, then

E
[
Dg1(Y,X) | X ,m(Z) = µ

]
is weakly increasing in µ (w.p.1) and

E
[
(1−D)g0(Y,X) | X ,m(Z) = µ

]
is weakly decreasing in µ (w.p.1). These implications are testable when the CDF of Ũ is

strictly increasing conditional on some value x∗, a case in which the function m can be

ordinally identified as the propensity score π(z,x∗).

This first implication means that the function m provides an observable ordering of the

instrument values by their strength of pushing individuals to take up the treatment. That is, in the

CLATE model, we can rank the instrument values by their effectiveness of inducing individuals

into the treatment status. This ordering remains invariant under different values of X because

the monotonicity is assumed to be global (Assumption 9). However, we do not impose the

“normalization” that a higher value of the instrument always leads to more treatment take-ups, so

the function m need not be increasing.

The second implication uses the identified m to derive a set of testable implications of the

CLATE model. This set of testable implications is a refinement of the testable implications of

the marginal treatment effect framework derived in Heckman and Vytlacil [2005] as the role of
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Z is fully summarized by the function m.7 The testable implications are also analogous to those

presented in Equation (3.3) in Kitagawa [2015] except that, here, m(Z), but not Z itself, enters

the conditioning set. That is, the testable implications we derived do not restrict the direction of

the effect of Z on the treatment take-up. The distinction appears as we do not explicitly assume

that no defier exists as Kitagawa [2015] does. We only assume that defiers and compliers can not

both exist. That is, as stated in Assumption 9, we leave the direction of monotonicity unspecified.

8

Proof of Corollary 2. (i) From (2.4), we have π(Z,X) = P(m(Z)> Ũ | Z,X) = FŨ |X(m(Z)),

where FŨ |X denotes the conditional CDF of Ũ given X . The Condition (2.5) on the propen-

sity score is satisfied since FŨ |X is non-decreasing. When FŨ |X=x∗ is strictly increasing,

the ordinal information contained in m(·) is fully transformed into π(·,x∗).

Now suppose that FŨ |X=x∗ is strictly increasing for all x. As a result, the function m

is ordinally identified by π(z,x) for any x ∈X . By the definition of being ordinally

identified, we have

π(z,x)> π(z′,x) ⇐⇒ m(z)> m(z′) ⇐⇒ π(z,x′)> π(z′,x′)

and

π(z,x) = π(z′,x) ⇐⇒ m(z) = m(z′) ⇐⇒ π(z,x′) = π(z′,x′)

for any z,z′ ∈Z and x,x′ ∈X .

(ii) Consider the case where j = 1, the other case can be proved by symmetric arguments. By

7Notice that notation “Z” in Heckman and Vytlacil [2005] is different from ours as it represents the joint set of
the instruments and covariates. By contrast, Z only contains the excluded instruments in our paper. Accordingly, the
set of testable implications we derive is also stronger in that m only depends on the excluded instrument, which is a
result of the monotonicity condition imposed by the CLATE model.

8If the function m were known and increasing, the testable implication in this paper would essentially reduce to
Equation (3.3) in Kitagawa [2015], except that Z can possibly be non-binary in our case. Combined with the testing
procedure proposed in Section 3.1 in his paper to handle multivalued instruments, we may likewise design a test for
our implication.
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representation (2.2), we have

P(Y1 ∈B | X = x,Z = z,D = 1) = P(Y1 ∈B | X = x,Z = z,m(z)> q(x,U))

= P(Y1 ∈B | X = x,m(z)> q(x,U))

= P(Y1 ∈B | X = x,m(Z) = m(z),m(z)> q(x,U))

= P(Y1 ∈B | X = x,m(Z) = m(z),m(Z)> q(X ,U))

= P(Y1 ∈B | X = x,m(Z) = m(z),D = 1),

where the second and third lines follow from the conditional independence assumption

(Assumption 8), and the last line follow from the equivalence result.9 For the second

assertion, let µ > µ ′, then

E
[
Dg1(Y,X) | X ,m(Z) = µ

]
−E

[
Dg1(Y,X) | X ,m(Z) = µ

′]
=E
[
1{h(X ,U)6 µ}g1(Y1,X) | X ,m(Z) = µ

]
−E
[
1{h(X ,U)6 µ

′}g1(Y1,X) | X ,m(Z) = µ
′]

=E
[
1{µ ′ < h(X ,U)6 µ}g1(Y1,X) | X

]
> 0.

The case of E
[
(1−D)g0(Y,X) | X ,m(Z) = µ

]
is similar. When the function m is ordinally

identified as m(z) = π(z,x∗) for some x∗, we can rewrite the implications as (i) the

following equality

P(Yj ∈B | X ,Z,D = j) = P(Y j ∈B | X ,π(Z,x∗),D = j),

hold for any measurable set B and j ∈ {0,1}, (ii) the function

E
[
Dg1(Y,X) | X ,π(Z,x∗) = p

]
9We thank one of the anonymous referee for suggesting this proof to improve the clarity of the original arguments.
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is weakly increasing for p in the range of π(Z,x∗), and (iii) the function

E
[
(1−D)g1(Y,X) | X ,π(Z,x∗) = p

]
is weakly decreasing for p in the range of π(Z,x∗). These implications are testable as

π(Z,x∗) is identified by the observed propensity P(D = 1 | Z = z,X = x∗).

2.4 Ordered Treatment Levels

This section extends the representation result in Section 2.2 to incorporate multiple

ordered levels of treatment. The argument follows from the equivalence results in Vytlacil

[2006b]. Let there be K possible levels of treatment. Now the treatment D takes values in

an ordered set {1, · · · ,K}. The counterfactual treatment Dz’s are defined accordingly. The

corresponding potential outcomes are denoted by (Y1, · · · ,YK).

The CLATE assumptions are modified to incorporate the ordered multiplicity in treatment

levels. Although we have a different definition of D, the statement of the monotonicity condition

does not change.

Assumption 8’.
(
{Dz : z ∈Z },Y1, · · · ,YK

)
⊥ Z | X.

Assumption 9’. For any (z,z′) ∈Z 2, either

P(Dz > Dz′ | X = x) = 1, for almost all x

or

P(Dz 6 Dz′ | X = x) = 1, for almost all x.

Corollary 3 (Ordered Treatment Levels). The ordered CLATE model (Assumptions 8’ and 9’) is

equivalent to the following statements. There exist a function m and K +1 random variables
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U0, · · · ,UK such that for k = 1, · · · ,K,

(i) Dz = k ⇐⇒ Uk−1 6 m(z)<Uk,

(ii) Z ⊥ (U1, · · · ,UK−1,Y1, · · · ,YK) | X,

(iii) U0 =−∞, UK = ∞, and Uk >Uk−1.

This is basically the conditional version of the representation result in Vytlacil [2006b].

The main point is that even though the random thresholds U1, · · · ,UK covariates with X , the

latent index m(Z) does not explicitly depend on X . Again, this is because Assumption 9’ requires

that the direction of monotonicity has to be the same across all values of X .

Proof of Corollary 3. Proof of direction from the random thresholds model to the CLATE model

can be done in the exact same way as in Vytlacil [2006b]. In particular, Assumption 8’ is implied

by item (ii). For Assumption 9’, suppose for some (z,z′) ∈Z 2 and x ∈X , P(Dz > Dz′ | X)> 0.

This implies that m(z) > m(z′), which in turn implies that Dz ≥ Dz′ . This in fact means that

P(Dz ≥ Dz′ | X = x) = 1 for all x ∈X . Because otherwise, P(Dz ≥ Dz′ | X = x)< 1 for some

x ∈X , then by the law of total probability,

P(Dz ≥ Dz′) = ∑
x∈X

P(X = x)P(Dz ≥ Dz′ | X = x)< 1.

For the other direction, define Dk
z = 1{Dz > k}. Then each DK

z is a binary treatment

whose representation can be analyzed by Theorem 1. So Dk
z = 1{mk(z)> Ũk}. For any z,z′ ∈Z ,

mk(z)> mk(z′) implies that Dz > Dz′ by monotonicity. Let d(z) = E [Dz]. Then by Lemma 1 in

Vytlacil [2006b], mk(z) = gk(d(z)) for some non-decreasing gk(·). The rest of the proof follows

from that paper.
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2.5 Conclusion

This paper shows that the CLATE model has a latent index representation in which the

instrument and the covariates are separable in the treatment choice equation. On the theoretical

side, the result more rigorously links the CLATE model to the latent index representation when

covariates are present. On the practical side, the result establishes conditions when methods

from the two pieces of literature can be used interchangeably. For example, one can employ the

nonparametric estimator in Frölich [2007] as robustness checks for the structural estimates in

selection models. For future works, one can consider extending this result into the unordered

monotonicity model [Heckman and Pinto, 2018].

Chapter 2, in full, is a reprint of the material as it appears in Oxford Bulletin of Economics

and Statistics. 2009. Chen, Yu-Chang; Xie, Haitian. “Global Representation of the Conditional

LATE Model: a Separability Result”. The dissertation author was the primary investigator and

author of this material.
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Chapter 3

Empirical Bayes with Optimal Shrinkage
Trees

3.1 Introduction

Empirical Bayes methods are widely-used for the estimation of treatment effects in

applications where the number of treatments is high but the sample size is only modest. Prominent

examples include neighborhood effects, hospital effects, and teacher value-added measures

(VAM). In these applications, having accurate estimates of the treatment effects are essential as

these estimates themselves often serve as important pieces of information in various situations. In

teacher VAM, for example, the estimated effects can be inputs to high-stake personnel decisions.

In other cases, the researchers would use the estimates to study the distribution of treatment

effects as well as their correlation to other variables. Inaccurate estimates of treatment effects

would make such analysis prohibitively uninformative.

Similar to other techniques in high-dimensional statistics, the method of empirical Bayes

utilizes shrinkage to improve the estimator’s performance. In its simplest form, the empirical

Bayes estimates can be obtained by shrinking the initial estimators of treatment effects (such as

coefficient estimates from a regression) toward a common target. In most cases, the common

target is the average of treatment effects, and the extent of shrinkage depends on the signal-

to-noise ratio: the noisier the initial treatment effect estimator is, the more it is shrunk toward

the target. Although shrinkage introduces bias as the treatment effects can deviate from their
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average, it increases the overall precision by downplaying the initial estimators, which are usually

unbiased but imprecise due to high-dimensionality. This specific form of shrinkage engaged in

empirical Bayes methods is also known as “shrinkage toward the grand mean” in the literature.

This paper extends the classical empirical Bayes method by allowing each treatment

effect estimate to be shrunk toward different targets instead of one common target shared by every

treatment type. Specifically, our method involves the following steps. First, we use a decision

tree to group together treatment effects with similar treatment characteristics. For example, we

may group hospitals based on locations or group teachers based on years of experience. We then

calculate the average of treatment effects for each group, and these group-specific averages will

replace the grand mean and serve as the targets for shrinkage. Lastly, we shrink each treatment

effect estimate toward the local average of the group it belongs to to produce the final estimates.

The proposed method improves the classical method since the group-specific averages

are often the better shrinkage targets compared the grand mean. The grand mean, which is

generic to all treatments, can be distant from each individual treatment effect if the variation

among treatment effects is high. Grouping treatments based on treatment characteristics can

reduce the unexplained variation, especially when the characteristics are strong predictors of the

effects. By introducing the grouping, we can reduce the bias caused by shrinkage, making the

resulting empirical Bayes estimates more accurate. On the contrary, shrinkage toward the grand

mean totally ignores the information contained in the treatment characteristics.

In this paper, we first extend the classical empirical Bayes to incorporate group-specific

shrinkage provided that a decision tree for grouping is already given. We first derive formulas

for the group-specific shrinkage factor that decides the optimal degree of shrinkage. The

group-specific shrinkage factor can be very different from the one arisen in classical method

as conditioning on treatment characteristics can dramatically affect the signal-to-noise ratio.

We then provide a consistent model selection method to help researchers decide the optimal

decision tree that minimizes the mean-squared errors (MSE) of the corresponding empirical

Bayes estimator.The optimal tree is referred to as the “optimal shrinkage tree”, hence the title of
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this paper “Empirical Bayes with Optimal Shrinkage Tree.”

We then conduct a series of simulation experiments to examine the statistical properties

of the proposed method. We first verify that the proposed model selection procedure can

successfully pick the optimal decision tree with high probability given that number of treatments

is large enough. We then compare the tree-based empirical Bayes method to the classical method

under various data generation process, in which we quantify the efficiency gains as a function of

the treatment characteristics’s prediction power on treatment effects. Our simulation result shows

that proposed method is most useful when the treatment characteristics can at least partially

predict treatment effects.

While there are alternative grouping algorithms, such as nearest neighbor, that we can in

principle combine with empirical Bayes, we argue that decision tree is a more suitable choice

for its ease of interpretation. As mentioned earlier, empirical Bayes estimates are often used

for high-stake decisions, and transparency is often a necessity for practical or moral reasons.

It would be hard for the policy-maker to justify and implement the policy if it is too difficult

to communicate with the stakeholders. Moreover, as a by-product of the proposed method,

researchers can use selected decision tree to investigate the determinants of treatment effects.

Without the interpretability of decisions trees, such analysis would be rather uninformative.

The rest of paper is organized as follows. Section 2 presents our model setup and the

group-specific empirical Bayes method provided that a decision tree for grouping is given. In

section 3, we then propose a data-driven approach for selecting the optimal shrinkage tree and

show that the procedure is consistent. Results from a series of simulation experiments are

collected in section 4. We present an empirical application using the Tennessee’s Student Teacher

Achievement Ratio (STAR) dataset in section 4. Section 5 concludes.

3.1.1 Literature review

Although the original idea can be traced back as early as to Robbins [1956] and James and

Stein [1961], the empirical Bayes methods have recently regained popularity in both econometrics
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and statistics [see, e.g., Hansen, 2017, Meager, 2019, Ignatiadis and Wager, 2019, Azevedo

et al., 2020, Armstrong et al., 2020, Bonhomme and Weidner, 2021]. The resurgence is partly

due to its applications to high-dimensional problems [Efron, 2010] as well as its increasing

popularity in empirical studies [see e.g., Chetty et al., 2014, Chetty and Hendren, 2018, Hull,

2018, Angrist et al., 2021]. Our paper provides a novel approach that combines empirical Bayes

method with decision trees, seeking to provide a more reliable method for empirical researchers

amid the controversies on the usage of empirical Bayes methods, especially in the teacher VAM

[Harris, 2009, Rothstein, 2010, Jackson et al., 2014, Guarino et al., 2015]. Our paper also adds

to tree-based or more generally partition-based methods in economics [Athey and Imbens, 2016,

Cattaneo and Farrell, 2018, Tabord-Meehan, 2018, Cattaneo et al., 2020].

3.2 Model Setup

3.2.1 Model and motivating examples

This paper considers the following model:

Yi j = αi +ui j,

(αi,Zi)
i.i.d.∼ F,

IE[ui j|αi,Zi] = IE[ui j|αi] = 0

Yi1, Yi2, ...., YiJ are the observed outcomes for treatment i, and the main parameter of interest are

the treatment effects {αi}N
i=1. For ease of exposition, we assume that J, which is the number

of observations for each treatment does not vary across i, although it is straightforward to

incorporate heterogenous sample size Ji at the cost of extra notation burdens. Each treatment i

comes with some treatment characteristics Zi, which is potentially correlated with the treatment

effect αi. We assume the error terms ui j are independently and identically distributed across i

and j.
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In below, we list some applications that will motivate our method.

Example 3.1. Teacher Value-Added Measures (VAM): In a typical application of VAM, Yi j is

the test score for teacher i’s j-th student. The teacher effect αi, i.e., the teacher value-added, is

potentially correlated with the teacher characteristics Zi such as years of teaching experience. In

VAM applications, it is a standard practice to apply the empirical Bayes method since J, which

is the number of students per teacher, is typically small.

Example 3.2. Evaluation of Multi-Sites Programs. Nationwide government programs, such as

the Head Start Program, typically have multiple experimental sites, and it is common for the

researchers to pool samples from all sites in their analysis for the sake of statistical precision.

However, since the actual implementations of the program could differ across sites, ignoring

such complications may fail to reveal critical determinants of program effectiveness. Our method

serves as an alternative to pooling when the heterogeneity across sites is of concern.

Example 3.3. Meta-Analysis. Similar to Bayesian hierarchical models [for a recent example in

development economics, see Meager, 2019] and meta-regression analysis [Thompson and Sharp,

1999, Stanley and Jarrell, 2005], our method can be used to synthesize estimates from different

studies. However, unlike previous approaches, our method provides a data-driven approach to

uncover the effect heterogeneity across studies.

3.2.2 Group-specific shrinkage when the decision tree is given

In this subsection, we extend the classical empirical Bayes method when a decision tree

is specified to capture the correlation between treatment effects and treatment characteristics.

We discuss how to select the decision using a data-driven approach in the next section.

We first define some notations. Let T denote a binary tree and L be its depth. A binary tree

is induces a partition over Z , the support of treatment characteristics Z. Write the partitioning

sets (the leaf nodes) as {1,2, ...,K},K = 2L.1 Let κT (·) : Z →{1,2, ...,K} denote the partition

1In this paper, we only consider perfect binary trees.
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rule induced by the decision tree T and write Ki = κT (Zi) as the leaf node for each treatment.

The two conditional variances

σ
2
α(k) = Var(αi|Ki = k)

and

σ
2
u (k) = Var(ui j|Ki = k)

govern the leaf-specific signal-to-noise ratio, where the σ2
α(·) and σ2

u (·) correspond to the

strength of signals and the amount of noises respectively.

One obvious candidate to estimate αi is the sample average Ȳi =
1
J ∑

J
j=1Yi j. However, as

shown in the seminal work of Stein [1956], the sample average {Ȳi}N
i=1 is actually inadmissible

for the estimation of {αi}N
i=1 when the error terms are normal, meaning that there is an estimator

that dominates the sample average. One such estimator, and the most well-known, is the James-

Stein estimator. The surprising finding that the sample average is in fact inadmissible even

though it is the maximum likelihood estimator under normality motivates extensive studies on

the James-Stein estimator, whose connection to empircal Bayes is later recognized [Efron and

Morris, 1973].

The classical empirical Bayes method produce better estimators of {αi}N
i=1 by shrinking

the sample average toward the “grand mean”:

α̂
EB
i = Ȳi−

σ2
u/J

σ2
α +σ2

u/J
· (Ȳi− ¯̄Y ),

where σ2
α and σ2

u are the unconditional variances of αi and ui j and ¯̄Y = 1
N ∑

N
i=1 Ȳi is the grand

mean. We can simplify the above formula and write

α̂
EB
i =

σ2
α

σ2
α +σ2

u/J
· Ȳi +

σ2
u/J

σ2
α +σ2

u/J
· ¯̄Y.
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Above form resembles the posterior mean in a normal-normal Bayesian model except that the

shrinkage is toward the grand mean, which is estimated from the data, instead of the researcher-

specified prior mean, hence the name “empirical Bayes”.

Same as the normal-normal Bayesian model, the amount of shrinkage depends on the

signal-to-noise ratio:
σ2

α

σ2
α +σ2

u/J
.

When σ2
u is large, that is, when the measurements of αi is relatively noisy, Ȳi is shrunk more

to reduce the impact of noise. On the contrary, if σ2
α is large, the signal contained in the

measurements Yi j is more predominant and therefore more weight is put on the individual

estimate Ȳi.

A second way to understand the shrinkage is through the perspective of forecast com-

bination. That is, we can view Ȳi and ¯̄Y as two “forecasters” for the treatment effect αi and

would like to combine the two forecasters to improve precision. It is not hard to see that for

the optimal linear combination, the weight for each forecaster is inversely proportional to their

respective variances. For Ȳi, the variance comes from the noise {ui j}J
j=1, which results in an

expected forecast error of σ2
u

J . As for the grand mean ¯̄Y , its forecast error stems from the fact

that individual treatment effects can deviate from their mean, and therefore it’s expected forecast

error is σ2
α . Combining the two forecasters inversely proportional to their errors, we can obtain

the empirical Bayes estimator.

The forecast combination perspective sheds light on why group-specific shrinkage can

further improve the statistical precision of empirical Bayes estimator. Recall that Ki = κT (Zi)

is the leaf node observation i belongs to in the decision tree T . As a forecaster for αi, the

expected forecast error of the group-specific average is the conditional variance σ2
α(Ki), and the

conditional variance is generally less than the unconditional variance as long as the treatment

characteristics are not entirely uncorrelated with the treatment effects. As a result, the combined

forecaster with the group-specific average has higher precision, and the gain in accuracy is
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especially high if the prediction power of treatment characteristics is strong since the conditional

variance σα(k) will be small.

We now formally introduce the tree-based empirical Bayes estimator given that a decision

tree T is given. Intuitively, the tree-based empirical Bayes estimator is the empirical Bayes

estimator except that the shrinkage target and shrinkage factor are now group-specific. The

group-specific average is given by

µ̂k =
1

Nk
∑

i:Ki=k
Ȳi1{Ki = k}, k = 1,2, ....,K,

where Nk = ∑
N
i=1 1{Ki = k} is the number of observation in leaf node k. We then estimate

the group-specific signal-to-noise ratio from the within- and across-treatment variations of Yi j.

Specifically, for each leaf node k ∈ {1,2, ....,K}, we use the observed within-treatment variation

σ̂
2
u (k) =

1
Nk

∑
i:Ki=k

J

∑
j=1

(Yi j− Ȳi)
2

J−1
, k = 1,2, ....,K,

to estimate the variance of noise and observed across-treatment variation

σ̂
2
α(k) =

1
Nk

∑
i:Ki=k

(Ȳi− ¯̄Yk)
2

Nk−1
− σ̂2

u (k)
J

, k = 1,2, ....,K,

to estimate the variance of treatment effects. Notice that it is necessary to subtract the within-

treatment variation from the across-treatment variation since we do not directly observe αi.

Given the above quantities, the tree-based empirical Bayes estimator corresponds to the

decision tree T is

α̂
EB,T
i =

σ̂2
α(Ki)

σ̂2
α(Ki)+ σ̂2

u (Ki)/J
· Ȳi +

σ̂2
u (Ki)/J

σ̂2
α(Ki)+ σ̂2

u (Ki)/J
· µ̂Ki.
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3.3 Optimal Shrinkage Trees

We now discuss how to select the decision tree that generates the empirical Bayes

estimators with minimum estimation errors possible. In this section, we provide a data-driven

method to select a tree and show that it can consistently select the optimal shrinkage tree when

the number of treatments go to infinity.

For any tree algorithm, or more generally for machine learning methods, the first step is

to specify an appropriate loss function. The criteria we consider is quadratic loss function, and

we seek to find the decision tree T and shrinkage factors {λi}N
i=1 that minimizes the risk function

R(T ) = E[
N

∑
i=1

(α̂EB,T
i −αi)

2].

Notice that the function R as it is can not be directly used for optimization since αi is unobserved.

Our first proposition simplifies and characterizes the risk function in a way that we can construct

the empirical risk function.

Proposition 3.1. Under above assumptions,

1
N

R(T ) =
K

∑
k=1

P(Ki = k)

[
λ

2
k

σ2
u (k)
J

+(1−λk)
2
σ

2
α(k)

]
+o(1),

where λk =
σ2

α (Ki)

σ2
α (Ki)+σ2

u (Ki)/J
.

Proof. We derive the expression by simplifying the in the summands (α̂EB,T
i −αi)

2, which can
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decomposed in the following part. We first analyze the estimation error from the raw estimates.

E[∑
i

λ
2
Ki
(Ȳi−αi)

2] = E[∑
i

∑
k

1k(Ki)λ
2
k (Ȳi−αi)

2]

= ∑
i

∑
k

λ
2
k EE[1k(Ki)(Ȳi−αi)

2|{Ki}]

= ∑
i

∑
k

λ
2
k E[1k(Ki)E[ε̄2

i |{Ki}]]

= ∑
i

∑
k

λ
2
k E1k(Ki)

σ2
u (Ki)

J

= ∑
k

∑
i

λ
2
k P(Ki = k)

σ2
u (k)
J

= ∑
k

λ
2
k NP(Ki = k)

σ2
u (k)
J

The second term is error from estimating group mean:

E[∑
i
(1−λKi)

2( ¯̄YKi−µKi)
2]

=E[∑
i

∑
k
(1−λk)

21k(Ki)(
¯̄Yk−µk)

2]

=∑
k

∑
i
(1−λk)

2E[1k(Ki)E[( ¯̄Yk−µk)
2|{Ki}]]

=∑
k

∑
i
(1−λk)

2E[1k(Ki)E[ᾱk + ¯̄uk−µk)
2|{Ki}]]

=∑
k

∑
i
(1−λk)

2E[1k(Ki)E[(ᾱk−µk)
2 + ¯̄u2

k +2(ᾱk−µk) ¯̄uk]|{Ki}]]

=∑
k

∑
i
(1−λk)

2E[1k(Ki)[
σ2

α(k)
Nk

+
σ2

u (k)
NkT

]]

=∑
k
(1−λk)

2E[Nk[
σ2

α(k)
Nk

+
σ2

u (k)
NkT

]]

=∑
k
(1−λk)

2[σ2
α(k)+

σ2
u (k)
T

]
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The third term is the unexplained portion of the individual effects.

E[∑
i
(1−λKi)

2(µKi−αi)
2] = E[∑

i
∑
k

1k(Ki)(1−λk)
2(µk−αi)

2]

= E[∑
k

∑
i

1k(Ki)(1−λk)
2(µk−αi)

2]

= ∑
k
(1−λk)

2
∑

i
EE[1k(Ki)(µk−αi)

2|Ki]

= ∑
k
(1−λk)

2
∑

i
E[1k(Ki)σ

2
α(Ki)]

= ∑
k
(1−λk)

2NE[1k(Ki)σ
2
α(Ki)]

= ∑
k
(1−λk)

2NP(Ki = k)σ2
α(k)

= ∑
k

NP(Ki = k)(1−λk)
2
σ

2
α(k)

Combine above quantities we have the desired results.

Using the result from Proposition 1, we can construct the empirical risk function as

follows:

R̂(T ) = P̂(Ki = k)

[
λ̂

2
k

σ̂2
u (k)
J

+(1− λ̂k)
2
σ̂

2
α(k)

]
,

where

σ̂
2
u (k) =

1
Nk

∑
i:Ki=k

J

∑
j=1

(Yi j− Ȳi)
2

J−1
,

σ̂
2
α(k) =

1
Nk

∑
i:Ki=k

(Ȳi− ¯̄Yk)
2

Nk−1
− σ̂2

u (k)
J

,
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and

P̂(Ki = k) =
Nk

N
.

Let TL denote the set of perfect binary trees with depth at most L. Without loss of generality for

practical purposes, we can assume that TL is countable. Our next proposition shows that we can

consistently estimate the optimal shrinkage tree by empirical risk minimization (ERM).

Proposition 3.2. Let T̂ = argminT∈T R̂(T ). Under above assumptions, we have

R(T̂ )
infT∈TL R(T )

a.s.→ 1 as N→ ∞.

Proof. First rewrite R(T ) as

R(T ) = E[rT (Z)],

where

rT (z) = λ
2
k(z)

σ2
u (k(z))

J
+(1−λk(z))

2
σ

2
α(k(z)),

σ
2
u (k) =Var(uit |Ki = k),σ2

α(k) =Var(αi|Ki = k)

Write R̂n(T ) as

R̂N(T ) =
1
N

N

∑
n=1

r̂T (Zi),

where

r̂T (z) = λ
2
k(z)

σ̂2
u (k(z))

T
+(1−λk(z))

2
σ̂

2
α(k(z))
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Now, let T̃ be any tree in TL

R(T̂ )−R(T̃ ) = R(T̂ )− R̂N(T̂ )+ R̂N(T̂ )−R(T̃ )

≤ R(T̂ )− R̂N(T̂ )+ R̂N(T̃ )−R(T̃ )

≤ 2 sup
T∈TL

|R̂N(T )−R(T )|

This implies that

|R(T̂ )− inf
T∈T

R(T )| ≤ 2 sup
T∈TL

|R̂N(T )−R(T )|

So it suffices to show

sup
T∈TL

|R̂N(T )−R(T )| a.s.→ 0 as N→ 0

We also introduce the following intermediate quantity for the sake of the proof:

RN(T ) =
1
N

N

∑
i=1

rT (Zi)

To prove ULLN, we utilize the intermediate quantity RN(T ) (an infeasible R estimator

with known conditional variance) and apply the triangular inequality:

sup
T∈TL

|R̂N(T )−R(T )| ≤ sup
T∈TL

|R̂N(T )−RN(T )|

+ sup
T∈TL

|RN(T )−R(T )|

Note that the second term converges to zero because the function class {rT (·) : T ∈T }
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is GC because it has finite VC dimension. Now we focus on the first term. By definition

R̂N(T ) =
1
N

N

∑
i=1

r̂T (Zi)

=
1
N

N

∑
i=1

[λ 2
k(Zi)

σ̂2
u (k(Zi))

T
+(1−λk(Zi))

2
σ̂

2
α(k(Zi))]

=
K

∑
k=1

 1
N

N

∑
i=1

1{k(Zi) = k}

λ
2
k

σ̂2
u (k)
J

+(1−λk)
2
σ̂

2
α(k)

.
Lastly, by triangular inequality,

|R̂N(T )−RN(T )|

=

∣∣∣∣∣ K

∑
k=1

 1
N

N

∑
i=1

1{k(Zi) = k}

λ
2
k

σ2
u (k)− σ̂2

u (k)
T

+(1−λk)
2(σ̂2

α(k))−σ
2
α(k))

∣∣∣∣∣
≤

K

∑
k=1

 1
N

N

∑
i=1

1{k(Zi) = k}

∣∣∣∣∣λ 2
k

σ2
u (k)− σ̂2

u (k)
J

+(1−λk)
2(σ̂2

α(k))−σ
2
α(k))

∣∣∣∣∣


≤
K

∑
k=1

∣∣∣∣∣λ 2
k

σ2
u (k)− σ̂2

u (k)
J

+(1−λk)
2(σ̂2

α(k))−σ
2
α(k))

∣∣∣∣∣.

Then we apply Gilvenko-Cantelli theorem again to establish uniform convergence.

Remark. We briefly discuss why conventional tree algorithm may be inappropriate for our

appications. Specifically, if we apply the classification and regression tree (CART), the algorithm

will search for a tree T and corresponding the leaf averages µ̂k to minimize

min
T∈TL

E[
J

∑
j=1

(α̂ j− µ̂k)
2]

However, minimizing the above criterion does not generate a tree that exactly fits our purpose.

The primary reason is that above criterion function ignores the fact that we’re estimating the
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treatment effects {α j}J
j=1 not only based on treatment characteristics {Z j}J

j=1 but also the

outcome data {Yi j}N
i=1.

Remark. Although this paper mainly concerns with the estimation problem, inference on the

treatment effects can be carried out by adopting the honest approach proposed by Athey and

Imbens [2016]. The basic idea is to split the samples into two parts: one for determining the tree

structure and one for estimating the tree. In the example of teacher value-added estimations, we

might use teacher data from additional sources to estimate the tree structure. 2

3.4 Simulation

In this section, we investigate the performance of propose estimators by simulation. We

first examine the model selection property. The data generation process (DGP) is the following:

Yi j = αi +ui j,

αi = Z1iβ + vi,

ui j
i.i.d∼ N(0,σ2

u ),vi
i.i.d.∼ N(0,σ2

v )

Z1i
i.i.d.∼ Ber(0.5)

We also generate irrelevant binary variables Z̃1i, ..., Z̃Pi that does not have prediction power over

treatment effects.

In our first exercise, we investigate the model selection property of the tree algorithm,

that is, how frequently the algorithm will correctly choose the only the relevant variable Z1. In

the simulation, we try out various parameter value. First, we alter the R2 of regressing αi on Z1i,

which is the prediction power of Z1i on αi. Intuitively, we should expect the proposed method to

2To fully justify the use of teacher data from other sources, we might want to assume that the effect model is
stable across different settings. Such an assumption may be too strong to be true in most situations. However, even
if the assumption is violated, its consequence is not fatal because only the efficiency but not the consistency is
compromised.
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work well if R2 is high. We also experiment with different P which is the number of irrelevant

binary variables.

Table 3.1. Probability of selecting the correct variable

P
N

R2 R2 R2

0.05 0.1 0.25

0.05 0.836 0.975 0.968
0.1 0.716 0.931 0.998
1 0.275 0.721 0.983

2.5 0.170 0.588 0.981

We then compare statistical accuracy of classical empirical Bayes to that of tree-based

empirical Bayes estimator. We use the unshrunk raw averages as the benchmark. It is important

to note that the relative performance of the methods critically depends on the R2. To make the

comparison more realistic and meaningful, we experiment with a few different values of R2

reported in the empirical study of teacher VAM [Rivkin et al., 2005, Rockoff et al., 2011, Dobbie,

2011].

Table 3.1 and 3.2 present the simulation result. In line with our intuition, the model

selection is most accurate when R2 is high. Interestingly, as long as the prediction power of

Z1i is high, the proposed method can always pick the correct tree regardless of the number of

irrelevant variables. Also, as we can in Table 3.2, the efficiency gain from the proposed method

is especially high when the treatment characteristics is more correlated with the treatment effects.

Table 3.2. Comparison of mean-squared errors

R2 Ȳi Classical EB Tree EB Reference

0.03 1 0.441 0.439 Rivkin et al. (2005)
0.1 1 0.469 0.442 Rockoff et al. (2011)
0.5 1 0.462 0.229 Dobbie (2011)
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3.5 Empirical example: the STAR project

Tennessee’s Student Teacher Achievement Ratio (STAR) project was a randomized

experiment designed to study the effect of class size on students’ academic outcome. Among the

79 participating schools, teachers and students are randomly assigned to classes of different sizes.

We use its public data set to illustrate the usage of the proposed method on teacher value-added

measures.

We restrict our sample to students in first grade in small classes and focus on their

outcomes for the math test score. The sample contains 332 teachers and 3979 students, and the

student-teacher ratio is about 12.

3.5.1 Empirical strategy

We first obtain the raw estimates of teacher effect based on the following OLS specifica-

tion:

Yi = X ′i β1 +Siβ2 +
J

∑
j=1

α jD
j
i +ui

Y is the math test score at grade 1. X contains student demographics such as gender, race and

free/reduced lunch status, and past test score. S indicates whether a school is at urban area.

Finally, D is a vector of teacher assignment dummies.

We then use the OLS estimates {α̂}J
j=1 and teacher characteristics data to select a tree

model. Due to data limitation, teacher experience and level of education are the only available

teacher characteristics that can be used. Nevertheless, the data-driven method will be more

helpful when the number of available variables is higher.

Figure 1 plots the tree generated by the algorithm. It first categorizes teachers based on

education level then based on years of experience. Note that for master’s degree holders, the

cutoff for experience is smaller than that for bachelor’s degree holders. One possible explanation

is that experience after the fourth-year does not matter so much for master’s degree holders.

Figure 2 plots the raw teacher value-added for the two education levels. We can see that teachers
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Figure 3.1. Estimated Tree

with master’s degree are indeed on average more effective.

3.6 Conclusion

This paper proposes a tree-based empirical Bayes method. We extend the classical

empirical Bayes estimator to allow for a tree model for effect heterogeneity. A data-driven tree

algorithm for model selection is provided to optimize the performance of tree-based shrinkage

estimator.

In future works, we plan to further study the theoretical properties of the proposed

methods. Moreover, it would be interesting to see if the tree-based method can be used for

purposes other than estimations such as testing for effect heterogeneity.

Chapter 3, in full, is in preparation for submission. Chen, Yu-Chang.“Empirical Bayes

with Optimal Shrinkage Tree”. The dissertation author was the primary investigator and author

of this material.

65



Figure 3.2. Distribution of Teacher VAM by Level of Education

Left: teacher VAM for bachelor-degree holders.
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Appendix A

Appendix for chapter 1

A.1 Semi-parametric and non-parametric methods of policy
learning

A.1.1 Semi-parametric method

Although the local IV approach to estimate MTE is fully-nonparametric in principle,

it comes with the cost of slower convergence. In applications with smaller sample size, the

nonparametric approach might be inappropriate. In this section of Appendix, we describe a

semi-parametric approach which is less data-demanding than the nonparametric method but

more flexible than parametric methods.

First, to facilitate the estimation of MTE, it is common in the MTE literature [Carneiro

and Lee, 2009, Carneiro et al., 2011, Brinch et al., 2017, Zhou and Xie, 2019] to specify the

potential outcomes in Equation (1.1) as a linear representation

Y1 = Xβ1 +U1, and Y0 = Xβ0 +U0,

where β1 and β0 are unknown parameters. Another useful simplification that is often used is to

assume that (X ,W,Z) are jointly independent of (U1,U0,UD). Under above specification, we
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have

E
[
Y | X = x,g(X ,W,Z) = p

]
= x
(

pβ1 +(1− p)β0
)
+E

[
(U1−U0)1{UD ≤ p}

]
= xβ0 + xp(β1−β0)+λ (p),

where λ (p) =
∫ p

0 E
[
U1−U0 |UD = u

]
du has an unknown form. Taking partial derivative with

respect to p, we get a partial linear specification of the MTE

MTE(x,u) = x(β1−β0)+λ
′(u). (A.1)

We consider the semiparametric estimators β̂1 and β̂0 defined in Carneiro and Lee [2009], which

is based on the semiparametric estimation procedure developed by Robinson [1988]. Under mild

regularity conditions, they are
√

n-consistent.

The semi-parametric approach relies on the parametrization of the selection correction

term

λ (p) = λ (p | θ)

and of the propensity score

g(X ,W,Z) = g(X ,W,Z | γ),

where θ and γ are the parameters. Common choices of λ (p) include finite-order polynomials

[Brinch et al., 2017] and the inverse of normal cumulative distribution function [Carneiro et al.,

2011]. As for the propensity score g(X ,W,Z | γ), popular choices include the logit and probit

models.
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The above parametrization implies that

E
[
Y | X = x,g(X ,W,Z) = p

]
= xβ0 + xp(β1−β0)+λ (p | θ), (A.2)

which can be estimated in the following way.

Step 1: estimate γ in accordance the specified binary choice model. For example, run

probit regression if the probit model is assumed

Step 2: plug in the estimates γ̂ to obtain the generated regressor P̂ = g(X ,W,Z | γ̂)

Step 3: estimate (β1,β0,θ) by solving the non-linear least-square problem

min
β0,β1,θ

N

∑
i=1

[Yi−Xβ0−XP̂β1−λ (P̂ | θ)]2

If desired, additional constraints can be incorporated in the regression to guarantee that the MTE

curve MTE(x,u) = x(β1−β0)+λ ′(u) satisfies certain shape restriction such as monotonicity.

Step 4: for each X = x and given the estimates (β̂0, β̂1, γ̂), we can estimate the optimal

participation rate û∗x,w by solving the equation

MTE(x,u) = x(β1−β0)+λ
′(u) = 0. (A.3)

The optimal incentive assignment z∗x,w is then estimated by inverting the propensity score

ẑ∗x,w = g−1
x,w(u

∗), (A.4)

where gx,w(z) = g(x,w,z | γ̂).

Notice that Step 1-3 adds up to a two-stage regression, which can be formulated as

a generalized method of moments estimator that is asymptotically normal under regularity

conditions. Since ẑ∗x,w is a function of the estimates (β̂0, β̂1, γ̂), we can derive its asymptotic

properties based on the asymptotic distribution of (β̂0, β̂1, γ̂) and the delta method.

76



A.1.2 Policy learning under monotonicity

In this subsection, we briefly describe how monotonicity of MTE can aid the estimation

for optimal policy and outline an estimation procedure. Specifically, the approach has the

advantage of being fully automated as no tuning parameter is required, even though we left

the MTE to be non-parametrically unspecified. The approach is simple in particularly when

the propensity score is concave.1 Noteworthily, the method also serves as a new approach for

estimating the MTE.

When MTE is monotone, say, decreasing, the conditional mean E[Y |P] is concave in P. If

the propensity score P were known, concavity suggests that we can employ a concave regression

of Y on P. Since concave regression is uniformly consistent under regularity condition [Seijo and

Sen, 2011], the optimal participation rate can also be consistently estimated from maximizing

the fitted regression. Formally, let Qn nonparametric least square estimator that solves

min
Qn(·) concave

n

∑
i=1

(Yi−Qn(Pi)).

Since Qn is only uniquely defined on the observed values of Pi, we linearly interpolate between

points of Pi. Also, let ∂Qn(p) denote the subdifferentail of Qn. Seijo and Sen [2011] shows

that, under mild conditions, Qn is uniformly consistent of E[Y |P]. Furthermore, if E[Y |P] is

differentiable, then the estimated subdifferential is also uniformly consistent to the derivative.

Since differentiability is typically assumed for the identification of MTE, we can expect to

construct an uniformly consistent estimator of the MTE curve from the convex regression.

Since Qn is uniformly consistent, we can consistently estimate the optimal participation

rate by finding pn = argmaxp Qn(p).2 Inference-wise, [Ghosal and Sen, 2017] derived the

asymptotic distribution of pn given homoscedasticity and smoothness of E[Y |P].3 However,

1A third approach is to assume the monotone treatment response (Y1 ≥Y0) and apply the monotone regression of
Y on Z.

2Alternatively, we can obtain pn by solving for the root of the estimated MTE curve.
3In our context, their smoothness assumption requires MT E is not flat at its root and is continuously differentiable.
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it is not trivial to construct confidence interval based the asymptotic theory since the limiting

distribution is not pivotal and depends the second order derivate of E[Y |P].

So far, we have been treating the propensity score as known, which is certainly not case

in most applications. Extensions of the existing theory in convex regression is needed to apply

the above approach. However, if both E[Y |P] and p(Z) = E[D|Z] are concave, then E[Y |p(Z)]

is also concave in Z. Therefore, we can estimate E[Y |Z] via concave regression, and solve for

the optimal policy by maximizing the regression function E[Y |Z]. The aforementioned theory

of convex regression is readily applicable in this case. Notice that this method is similar to an

intent-to-treat approach with [Kitagawa and Tetenov, 2018], but the shape restriction that arose

from the MTE framework allows us to deal with non-discrete assignments. That is to say, the

MTE framework provides a convenient yet economics-sensible way to impose structures over

the instruments Z.

A.2 Primitive Conditions for Monotone MTE

Proposition A.1 (Primitive Conditions for Monotone MTE). Let the treatment be determined by

D = 1{φ(X ,W,Z,∆,V )≥ 0},

where (Z,W )⊥ (∆,V ) and ∆ = Y1−Y0. If the function φ satisfies the following two conditions:

(i) φ is increasing (resp. decreasing) in ∆, and

(ii) for any (x,w,z),(x′,w′,z′), φ(x,w,z,δ0,v0)> φ(x′,w′,z′,δ0,v0) for some δ0,v0 =⇒ φ(x,w,z,δ ,v)>

φ(x′,w′,z′,δ ,v) for all δ ,v.

Then we can construct a random variable UD such that (W,Z)⊥UD | X and UD | X ∼ Unif[0,1],

and a function g such that the treatment selection is represented by

D = 1{g(X ,W,Z)≥UD},
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and MTE(x,u) = E
[
∆ | X = x,UD = u

]
is decreasing (resp. increasing) in u.

The function φ(X ,W,Z,∆,V ) represents the utility achieved. The individual is going

to select into treatment iff the utility is positive. Condition (i) essentially means the utility is

monotonic in the individual treatment effect. In the return to schooling study, ∆ represents the

change in earnings after receiving certain level of education, in which case φ is increasing in ∆.

Condition (ii) means that the rank of the instrument based on individual’s utility is invariant to

the values of individual treatment effect and the unobserved heterogeneity V .

As a side note, under a rank-invariance condition in Vytlacil [2006a], we can always find

a transformation, such that the treatment choice g is increasing in the transformed value of the

instrument. This would be helpful when the monotonicity of g facilitates identification.

A.3 Proofs

Proof of Lemma 1. Since Y = (1−D)Y0 +DY1, we have

E[Y π ] = E[Dπ(Y1−Y0)]+E [Y0] .

By the law of iterated expectations,

E
[
Dπ(Y1−Y0)

]
= E

[
E
[
1{g(X ,W,π(X ,W ))≥UD}(Y1−Y0) |UD,X ,W

]]
= E

[
E
[
1{g(X ,W,π(X ,W ))≥UD} |UD,X ,W

]
E
[
(Y1−Y0) |UD,X

]]
= E

[
1{g(X ,W,π(X ,W ))≥UD}MTE(X ,UD)

]
= E

[
E
[
1{g(X ,W,π(X ,W ))≥UD}MTE(X ,UD) | X ,W

]]
= E

[∫ g(X ,W,π(X ,W ))

0
MTE(X ,u)du

]
.
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For the cost function, we have

E
[
Cπ
]
= E

[
c(X ,W,π(X ,W ),Dπ)

]
= E

[
E
[
c(X ,W,π(X ,W ),Dπ) | X ,W

]]
,

= E
[
c(X ,W,π(X ,W ),1) ·g(X ,W,π(X ,W ))

]
+E

[
c(X ,W,π(X ,W ),0) · (1−g(X ,W,π(X ,W )))

]
where the last equality follows from that E

[
D | X ,W,Z

]
= g(X ,W,Z) and that D is binary.

Proof of Proposition 1.1. Notice that since gx,w is an one-to-one mapping from Z to the [0,1],

maximizing over z can be equivalently solved by maximizing over u with change of variables.

Formally, following the expressions derived in the proof of Lemma 1, we have

E[Y π | X = x,W = w] = E[Y0 | X = x,W = w]+
∫ g(x,w,π(x,w))

0
MTE(x,u′)du′

= E[Y0 | X = x,W = w]+
∫ ux,w

0
MTE(x,u′)du′

where ux,w = gx,w(π(x,w)) = g(x,w,π(x,w)). Similarly, we can write

E
[
Cπ | X = x,W = w

]
= c(x,w,g−1

x,w(ux,w),1) ·ux,w + c(x,w,g−1
x,w(ux,w),0) · (1−ux,w).

Since gx,w is assumed to be 1−1, for each X = x,W = w, we can find the welfare-maximizing

subsidy π(x,w) ∈ [zl,zu] by maximizing the welfare over ux,w ∈ Ix,w = {g(x,w,z) : z ∈ [zl,zu]}.

The first-order condition for the optimization problem then can be found by differentiating
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E[Y π −Cπ ] with respect to π∗(x,w) ∈ [zl,zu] and substitute ux,w = gx,w(π(x,w)) as below:

MTE(x,u∗x,w) ·
d
dz

gx,w(z)
∣∣∣∣
z=g−1

x,w(u∗x,w)

= u∗x,w ·
d
dz

c(x,w,z,1)
∣∣∣∣
z=g−1

x,w(u∗x,w)
+ c(x,w,g−1

x,w(ux,w),1) ·
d
dz

gx,w(z)
∣∣∣∣
z=g−1

x,w(u∗x,w)

+(1−u∗x,w) ·
d
dz

c(x,w,z,0)
∣∣∣∣
z=g−1

x,w(u∗x,w)
− c(x,w,g−1

x,w(u
∗
x,w),0) ·

d
dz

gx,w(z)
∣∣∣∣
z=g−1

x,w(u∗x,w)
.

Proposition 1.1 results from calculating the corresponding derivatives for c(x,w,z,d) = z ·d.

Proof of Proposition 1.2. Following the proof of Proposition 1.1, the first-order and of the

optimal take-up rate problem which we define in equation (1.9) is

MTE(x,u)−g−1
x,w(u)−u · d

du
g−1

x,w(u).

Direct calculation yields that the second order derivate is

∂

∂u
MT E(x,u)−2 · [ d

du
gx,w(u)]−1

∣∣∣∣
u=g−1(u)

−u · d2

du2 g−1
x,w(u).

By applying the formula for derivatives of inverse functions, it is not hard to see that the

second order derivative is guaranteed to be non-positive since ∂

∂uMT E(x,u)≤ 0 (Assumption 6),

d
dzgx,w(z)≥ 0 (Assumption 5), and d2

dz2 gx,w(z)≤ 0. The results follows from that the objective

function of the optimal take-up rate problem is concave.

Proof of Propostion 1.3. From Lemma 1, we know that the objective function of the optimal

take-up rate problem (1.9) is given by

f (ux,w) =
∫ ux,w

0
MTE(x,u′)du′

and that its first-order derivative is MTE. Therefore, by Assumption 7, the objective function is
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convex since MT E is increasing, and its solution is either the left endpoint ux,w = g(x,w,zl) or

the right endpoint ūx,w = g(x,w,zu) of the feasible region Ix,w. To complete the proof, notice that

f (ūx,w)− f (ux,w) =
∫ ūx,w

ux,w
MTE(x,u′)du′ =

∫ g(x,w,zu)
g(x,w,zl)

MTE(x,u′)du′.

Proof of Proposition 1.4. Since Y π = DπY1 +(1−Dπ)Y0, we have

E[DπY1 | X ,W ] = E[DπY | X ,W ]

= E[1{g(X ,W,π(X ,W ))≥UD}Y | X ,W ]

= E[1{g(X ,W,Z)≥UD}Y | X ,W,Z = π(X ,W )]

= E[DY | X ,W,Z = π(X ,W )]

Similarly, we can show that E[(1−Dπ)Y1 | X ,W ] = E[(1−D)Y | X ,W,Z = π(X ,W )].

Combining the two steps, we have

E[Y π | X ,W ] = E[DπY1 +(1−Dπ)Y0 | X ,W ]

= E[DY +(1−D)Y | X ,W,Z = π(X ,W )]

= E[Y | X ,W,Z = π(X ,W )]

The second part of the proposition follows from Lemma 1 and that

E[Dπ | X ,W ] = E[D | X ,W,Z = π(X ,W )].

E[C(X ,W,π(X ,W ),D) | X ,W ] =C(X ,W,π(X ,W ),0)(1−E[D | X ,W,Z = π(X ,W )])

+C(X ,W,π(X ,W ),1)E[D | X ,W,Z = π(X ,W )],
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Proof of Proposition 1.5. The result follows directly from Proposition 1.2.

Proof of Proposition 1.6. In the proof of Lemma 1, we have shown that

E
[
Dπ(Y1−Y0)

]
= E

[
1{g(X ,W,π(X ,W ))≥UD}MTE(X ,UD)

]
.

By the law of iterated expectations and UD ⊥ (X ,W ), we have

E
[
Dπ(Y1−Y0)

]
= E

[
E
[
1{g(X ,W,π(X ,W ))≥UD} | X ,UD

]]
= E

[
MTE(X ,UD)E

[
1{g(X ,W,π(X ,W ))≥UD} | X ,UD

]]
= E

[
MTE(X ,UD)(1−Fg,ı(X ,UD))

]
= 〈1−Fg,π ,MTE〉.

So the difference in welfare between the two policies is

S(π)−S(π ′) = 〈Fg,π ′−Fg,π ,MTE〉.

The result follows from the definitions of M ∗ and M× in Equation (1.16).

Proof of Proposition 1.7. Fix X = x. Since the first-order derivative of the objective

f ′(u) =
d

du

∫ u

0
MTE(x,u′)du′ = MT E(x,u),

MT E(x,u0)> 0 implies that the objective is increasing at u0. Combined with the fact that f (·)

is concave when MT E(x, ·) is decreasing, we know argmaxu∈[0,1]
∫ u

0 MTE(x,u′)du′ ≥ u0. The

proof for the case of MT E(x,u0)< 0 is similar.
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Proof of Proposition 1.8 and 1.9. Following the proof of Lemma 1, we have

S∗sub = sup
π

{E
[
1{g(W,π(W ))≥UD,UD ∈ Supp(g(W,Z))}MTE(UD)

]
+E[Y0]}

= sup
π

E

[∫
Bπ (W )

MTE(u)du

]
+E[Y0]

 ,

where Bπ(w) = [0,g(w,π(w))]∩Supp(g(w,Z)). On the other hand, by the independence between

W and (U1,U0,UD), we have

S∗dir = sup
T

{
E
[
T ∆1{U ∈ Supp(g(Z,W ))}

]
+E[Y0]

}
= sup

T

E[T ]E

[∫
B(W )

MTE(u)du

]
+E[Y0]


= S∗con,

where B(w) = Supp(g(w,Z)). Since we can choose π such that B⊂ Bπ , we have S∗sub ≥ S∗dir.

If the supremum in the definition of S∗sub is achieved by a unique policy π∗ such that

g(W,π∗(W )) lies in the interior of Supp(g(W,Z)) with positive probability, then S∗sub > S∗dir.

Proof of Proposition 1.10. To reduce the burden of notation, let S = 1{UD ∈ Supp(g(W,Z))}.

The welfare of an infeasible policy T̃

E
[
Y T̃ S

]
= E

[
(Y1−Y0)T̃ S

]
+E [Y0S]

= E
[
E
[
(Y1−Y0)T̃ S | X ,W,UD

]]
+E [Y0S]

= E
[
T̃ SE

[
(Y1−Y0) | X ,W,UD

]]
+E [Y0S]

= E
[
T̃ S ·MTE(X ,UD)

]
+E [Y0S] ,

where the third equality holds since T̃ is σ(X ,W,UD)-measurable and the fourth equality holds
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as W ⊥ (U1,U0,UD) | X . We can further rewrite the first term, which is the only part relevant for

policy comparison, as

E
[
T̃ S ·MTE(X ,UD)

]
= E

[
T̃ S ·MTE(X ,UD)

]
= E

[
E
[
T̃ S ·MTE(X ,UD) | X ,W,UD

]]
= E

[
E
[
T̃ S ·MTE(X ,UD) | X ,W,UD

]]

From here, it is clear to see that the optimal infeasible policy assigns treatment status

whenever MTE(x,u)≥ 0. Therefore, T̃ ∗ = 1{MTE(x,u)≥ 0}. Because MTE is decreasing, fix

X = x, we have {u |MTE(x,u) ≥ 0} = [0,u∗x ] for some u∗x . The subsidy rule that sets subsidy

equal to g−1
x,w(u

∗
x) can induce the same treatment assignments and hence achieving the same

welfare.

Proof of Proposition A.1. Consider φ to be increasing in ∆. Based on Vytlacil [2006a], we have

φ(x,w,z,δ ,v) = φ̃2(φ̃1(x,w,z),δ ,v) where the functions φ̃1 and φ̃2 are constructed as follows.

Pick any δ0,v0, then define φ̃1(x,w,z) = φ(x,w,z,δ0,v0). Define a correspondence φ̃2 as

φ̃2(·,δ ,v) = {φ(x,w,z,δ ,v) : φ̃1(x,w,z) = ·}.

It’s straightforward to show that φ̃2 is a single-valued function, strictly increasing in the first

argument, and increasing in the second argument. Define φ̃3(δ ,v) by φ̃2(φ̃3(δ ,v),δ ,v) = 0. φ̃3

is well-defined since φ̃2 is strictly increasing in its first argument. Then we have

D = 1{φ(X ,W,Z,∆,V )≥ 0}

= 1{φ̃2(φ̃1(X ,W,Z),∆,V )≥ 0}

= 1{φ̃1(X ,W,Z)≥ φ̃3(∆,V )}.
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Note that φ̃3 is decreasing in δ , because for any v, φ̃2 increases with δ , so by definition φ̃3

has to decrease when δ increases. Define F3|X as the conditional CDF of φ̃3(∆,V ) | X . Then

let g(X ,W,Z) = F3|X(φ̃1(X ,W,Z)), and UD = F3|x(φ̃3(∆,V )). So it holds that UD ⊥ (W,Z) | X ,

UD | X ∼ Unif[0,1], and D = 1{g(X ,W,Z)≥UD}. The MTE

MTE(x,u) = E
[
∆ | X = x,UD = u

]
= E

[
∆ | X = x,F3|x(φ̃3(∆,V )) = u

]

is increasing in u since both the function F3|X(·) and φ̃3(·,v) are increasing.
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