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ORIGINAL ARTICLE
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Interaction and Aggregation of Amyloid β Peptide

Zhengjian Lv & Margaret M. Condron &

David B. Teplow & Yuri L. Lyubchenko
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# Springer Science+Business Media New York 2012

Abstract Misfolding and aggregation of the amyloid β-
protein (Aβ) are hallmarks of Alzheimer’s disease. Both
processes are dependent on the environmental conditions,
including the presence of divalent cations, such as Cu2+.
Cu2+ cations regulate early stages of Aβ aggregation, but
the molecular mechanism of Cu2+ regulation is unknown. In
this study we applied single molecule AFM force spectros-
copy to elucidate the role of Cu2+ cations on interpeptide
interactions. By immobilizing one of two interacting Aβ42
molecules on a mica surface and tethering the counterpart
molecule onto the tip, we were able to probe the interpeptide
interactions in the presence and absence of Cu2+ cations at
pH 7.4, 6.8, 6.0, 5.0, and 4.0. The results show that the
presence of Cu2+ cations change the pattern of Aβ interac-
tions for pH values between pH 7.4 and pH 5.0. Under these
conditions, Cu2+ cations induce Aβ42 peptide structural
changes resulting in N-termini interactions within the
dimers. Cu2+ cations also stabilize the dimers. No effects
of Cu2+ cations on Aβ-Aβ interactions were observed at pH

4.0, suggesting that peptide protonation changes the
peptide-cation interaction. The effect of Cu2+ cations on
later stages of Aβ aggregation was studied by AFM topo-
graphic images. The results demonstrate that substoichio-
metric Cu2+ cations accelerate the formation of fibrils at pH
7.4 and 5.0, whereas no effect of Cu2+ cations was observed
at pH 4.0. Taken together, the combined AFM force spec-
troscopy and imaging analyses demonstrate that Cu2+ cati-
ons promote both the initial and the elongation stages of Aβ
aggregation, but protein protonation diminishes the effect of
Cu2+.

Keywords Amyloidβ-protein, Aβ42 . Alzheimer’s
disease . Cu2+ cations . Single molecule force spectroscopy .

Atomic force microscopy imaging

Introduction

Misfolding and aggregation of the amyloid β-protein (Aβ)
peptide are two of the key features of Alzheimer’s disease
(AD) (Dobson 2003), which has no cure at the present time.
Aβ peptide, including residues 39–43, is capable of forming
aggregates of various morphologies, including fibrils (Bitan
et al. 2003; Ono et al. 2009). Several lines of evidence
suggest that Cu2+ cations play an important role in the
aggregation of Aβ42 both in vitro and in vivo. For example,
a prominent characteristic of AD is altered Cu2+ concentra-
tions in the brain and disrupted Cu2+ homeostasis (Roberts
et al. 2012). Cu2+ ions are found concentrated within senile
plaques of AD patients directly bound to Aβ with a pico-
molar affinity (Hong and Simon 2011). The concentration of
Cu2+ within the senile plaques of AD patients is 26 times
higher than within the extracellular space of healthy indi-
viduals (Chen et al. 2011). Aβ plaques are therefore con-
sidered a metal “sink” (Atwood et al. 1998). Copper in a
high-cholesterol diet induces amyloid plaque formation and
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learning deficits in a rabbit model of AD (Sparks and
Schreurs 2003). Trace amounts of metal cations initiate
and promote Aβ aggregation (Huang et al. 2004; Innocenti
et al. 2010). Moreover, metal cations are believed to con-
tribute to AD pathogenesis by causing oxidative stress,
which could lead to the dysfunction or death of neuronal
cells (Jomova et al. 2010; Barnham et al. 2004). One of the
prevailing underlying mechanisms of AD etiology is the
metal-triggering hypothesis (Hung et al. 2010; Rivera-
Mancia et al. 2010).

Although a few papers report inhibitory effects of Cu2+

cations on Aβ aggregation (Zou et al. 2001), it is generally
accepted that Cu2+ cations promote Aβ aggregation (Faller
2009; Lin et al. 2010). However, the end products of Aβ
aggregation in the presence of Cu2+ cations remain unclear.
Whether Cu2+ cations accelerate the growth of Aβ42 fibrils
has been vigorously debated in recent years. The published
results have been confusing and, to some extent, contradic-
tory. Both amorphous aggregates and fibrils were reported
to be end products (Miura et al. 2000; Tougu et al. 2011),
indicating the complexity of the Cu2+−Aβ interaction. It is
now understood that the Cu2+−Aβ interaction is sensitive to
experimental conditions (Olubiyi and Strodel 2012; Klug et
al. 2003), such as pH, Aβ concentration, ionic strength,
temperature, and agitation. A minor change in experimental
conditions may lead to different morphologies of Aβ aggre-
gates. The effect of metal cations on Aβ aggregation is also
metal/sequence-specific (Dong et al. 2007). Copper cations
accelerated fibril formation of Aβ(14–23), but inhibited
formation of Aβ(11–23) and Aβ(11–28) (Faller and
Brown 2009).

Despite the fact that the effects of Cu2+ cations on Aβ
aggregation have been extensively investigated, the under-
lying mechanism controlling aggregation remains elusive.
One of the main challenges is obtaining detailed Cu2+−
Aβ42 interaction information during the earliest stage of
aggregation, especially in the dimerization phase, because
oligomers are transient states not amenable to traditional
visualization techniques. In addition, the ability of Cu2+

cations to promote the growth of fibrils needs to be verified.
Therefore, a thorough study capable of probing transient
states of Cu2+−Aβ42 interactions at the single molecule
level would be significant.

Recently, the single molecule force spectroscopy (SMFS)
mode of atomic force microscopy (AFM) has been used to
detect the specific interaction forces of biological molecules
(Krasnoslobodtsev et al. 2007; Sulchek et al. 2005). We
recently succeeded in using SMFS to characterize the early
stage of Aβ and α-synuclein aggregation (Kim et al. 2011;
Yu et al. 2011). These studies revealed the high stability of
Aβ and α-synuclein misfolded dimers and led to a novel
hypothesis explaining the role of dimerization in amyloid
protein misfolding and aggregation (Lyubchenko et al.

2010). Furthermore, by using SMFS, we examined the
effects of Zn2+ and Al3+ on the early stages of α-synuclein
aggregation at neutral pH (Yu et al. 2011). The results
demonstrated that Zn2+ and Al3+ greatly promote the dimer-
ization of α-synuclein. It is thus reasonable to extend the use
of AFM to inspect the effect of Cu2+ cations on Aβ42
aggregation. The application of AFM and SMFS can pro-
vide direct information about Aβ aggregation at the nano-
meter level.

In this paper, we report on data from our SMFS and AFM
imaging studies to elucidate the effect of Cu2+ cations on
interactions of Aβ42 peptides during the initial stages of
aggregation and on the growth of aggregates at later stages.
The role of pH on Cu2+−Aβ42 interactions is also dis-
cussed. We find that Cu2+ cations change the interaction
pattern of Aβ42 dimers and accelerate the aggregation pro-
cess by promoting fibrillogenesis, but these effects are abol-
ished in acidic conditions. These results may have relevance
for understanding the etiology of AD and for development
of knowledge-based drug design strategies targeting metal-
Aβ interactions.

Materials and methods

Materials

A β 4 2
(CDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGL
MVGGVVIA) was synthesized using 9-fluorenylme
thoxycarbonyl (Fmoc) chemistry and purified by reverse
phase high performance liquid chromatography (RP-
HPLC). The identity and purity (usually >97 %) of the
peptides were confirmed by amino acid analysis followed
by mass spectrometry and reverse phase high performance
liquid chromatography (RP-HPLC). The lyophilized Aβ42
was dissolved in TFA (2 mg/ml) by ultrasonication
(Branson 1210) for 5 min to destroy dimeric and higher
oligomers and then dried immediately using a vacuum cen-
trifuge (Vacufuge, Eppendorf). The white powder of Aβ42
was dissolved at 2 mg/ml in dimethyl sulfoxide (DMSO) as
a stock solution and then diluted in DMSO before being
used. The final concentration of diluted Aβ42 was deter-
mined by spectrophotometry (Nanodrop® ND-1000). The
molar extension coefficients used for tyrosine and cysteine
were 1280 cm−1·m−1 and 120 cm−1·m−1, respectively. Stock
solutions of cysteinyl-Aβ42 were prepared as previously
described (Kim et al. 2011; Yu et al. 2008; Walsh et al.
1997).

A 50 mM 1-(3-aminopropyl) silatrane (APS) stock solu-
tion was prepared by dissolving the APS powder in DI
water. The 1.67 mM stock solution of maleimide-
polyethylene glycol-succinimidyl valerate (MAL-PEG-
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SVA; 3.4 kDa Laysan Bio Inc, Arab, AL) was prepared in
DMSO (Sigma-Aldrich Inc.) and stored at −20 °C. The
10 mM Tris (2-carboxyethyl) phosphine (TCEP) hydrochlo-
ride (Hampton Research Inc.) and the 2.94 mM stock solu-
tion of maleimide silatrane (MAS) were prepared in DI
water and stored at −20 °C. A 20 mM stock solution of β-
mercaptoethanol was prepared in pH 7.4 buffer and kept
under room temperature.

Copper chloride (CuCl2) was purchased from Sigma-
Aldrich and used without additional purification. A 1 mM
stock solution of CuCl2 was prepared by dissolving the
CuCl2 powder into DI water. Glycine was added into the
buffer solutions at pH 7.4 and 6.0 to stabilize the CuCl2
stock solution. The CuCl2 solutions with different pH values
were all diluted to a final concentration of approximately 1–
5 μM. Other reagents used in the experiments were of
analytical grade from Sigma-Aldrich, unless otherwise spec-
ified. Deionized water (18.2 MΩ, 0.22 μm pore size filter,
APS Water Services Corp., Van Nuys, CA) was used for all
experiments.

Buffer solutions

Buffers were 50 mM 4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid (HEPES) (pH 7.4), 20 mM 3-(N-morpho-
lino) propanesulfonic acid (MOPS) (pH 6.8), 20 mM
monopotassium phosphate (pH 6.0), and 10 mM sodium
acetate (pH 5.0 and 4.0). All buffer solutions were adjusted
to a final ionic strength of 150 mM using sodium chloride
and were filtered through 0.22 μm disposable nylon filters
before use.

Functionalization of AFM tips

The functionalization of AFM tips and mica surfaces were
done as described previously (Yu et al. 2008; Yu and
Lyubchenko 2009). Briefly, silicon nitride (Si3N4) AFM tips
(MSNL-10, Veeco) were immersed in 100 % ethanol solu-
tion for 15 min, rinsed thoroughly with water, dried with
argon, and then exposed to UV light (CL-1000 Ultraviolet
Crosslinker, UVP, Upland, CA) for 30 min. The AFM tips
were placed in an aqueous solution of 167 μM MAS for 3 h
followed by multiple thorough rinses with water. A 20 nM
Aβ42 peptide solution in pH 7.4 HEPES buffer solution
was pretreated with 20 μM TCEP hydrochloride for 15 min
to break any intermolecular disulfide bonds between the
Aβ42 molecules and ensure that the covalently attached
Aβ42 molecules were in monomeric form. The MAS-
modified AFM tips were immersed into the above men-
tioned peptide solution for 1 h to covalently attach the
peptides. After rinsing with pH 7.4 HEPES buffer, the
Aβ42 peptide-tethered AFM tips were treated with 10 mM
β-mercaptoethanol solution for 10 min to block the

unreacted maleimide moieties. Finally, the Aβ42 peptide-
functionalized AFM tips were washed with pH 7.4 HEPES
and stored in the same buffer. Typically, the storage time
was less than 24 h.

Modification of mica surfaces

Mica sheets (Asheville-Schoonmaker Mica Co., Newport
News, VA) were cut into 1.5×1.5 cm squares. The freshly
cleaved mica surfaces were treated with APS for 30 min
followed by reaction with 167 μM MAL-PEG-SVA in
DMSO. After activation for 3 h, the mica squares were
rinsed sequentially with DMSO and water to remove un-
bound MAL-PEG-SVA, and then dried with argon. The
remaining steps for immobilizing the Aβ42 peptides onto
the mica surface were the same as described above for the
AFM tips.

Single molecule force spectroscopy

The single molecule force spectroscopy force measurements
were conducted in different pH buffer solutions at room
temperature with the Molecular Force Probe 3D AFM sys-
tem (MFP-3D, Asylum Research, Santa Barbara, CA). AFM
probes with nominal spring constants of 0.03 N/m were
used throughout the experiments. The apparent spring con-
stants were calibrated by the thermal noise analysis method
with the Igor Pro 6.04 software (provided by the manufac-
turer). A low trigger force (100 pN) was exerted on the
AFM probes. The retraction velocity of all experiments
was set at 500 nm/s. At each pH, force measurements
between Aβ42-functionalized AFM tips and Aβ42-
modified mica were first performed in the absence of Cu2+

and then in the presence of Cu2+. The tip and mica remained
intact in the presence of Cu2+. For each force measurement,
at least 100 rupture events were collected over at least three
randomly chosen locations on the mica surface to allow
accurate statistical analysis. Force curves were obtained by
probing over area 5×5 μm generating force maps each sized
in 60×40 points. It took 35~75 min to finish a single force
map; the time depends on the retraction velocity. The sam-
pling rate for each force curve varied from 1 to 2 kHz. By
using the exact same experimental setup, the same concen-
tration of Aβ42, and the same type of AFM tips throughout
all experiments, several attempts of force probing were
made for each experiment. Therefore, it was reasonable to
calculate the yield of rupture events by averaging the numb-
ers of yield obtained from a set of repeating experiments.

Tapping mode AFM imaging

The growth of Aβ fibrils in the absence and presence of Cu2
+ was monitored with tapping mode AFM (Nanoscope V,
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Veeco). Aβ stock solutions were diluted with a working
buffer solution and filtered through a 10 kDa filter unit
(Amicon® Ultra) by centrifuging at 16,873 × g for 15 min.
The final Aβ concentration was 10 μM for all imaging
experiments. Substoichiometric Cu2+ cations were added
in Aβ solutions at a molar ratio of 1:10. Cu2+-free Aβ
solutions also were prepared in parallel as control experi-
ments. All Aβ solutions were incubated at 37 °C under
quiescent conditions. Samples for AFM imaging were pre-
pared every day to check the progress of aggregation. After
each sample preparation, 4 μL of the incubated solution was
deposited on a freshly cleaved bare mica surface, which was
immobilized on a metal disc via a double-sided sticker. The
solution was allowed to sit for 2 min to let the Aβ aggre-
gates absorb onto the mica surface. The mica surface was
rinsed with DI water to remove any soluble solvents. The
mica surface was then dried with argon and placed into a
vacuum chamber for at least 3 h, after which imaging was
performed. Images with typical features (5×5 μm in size)
were acquired at a scan rate of 1 Hz and resolution of 512×
512.

Data analysis

Three rules were applied to select force-distance curves:
1) according to the thermal noise of the experimental
setup, the rupture forces should be higher than 20 pN;
2) the contour lengths (the length at maximum physically
possible extension of the interaction system determined
after the WLC analysis) should be larger than 20 nm (see
“Results” below); 3) the distance of the tip-sample sep-
aration (the projection of distance between AFM tip and
mica substrate on the vertical axis) should be larger than
15 nm to exclude the nonspecific interactions between
the tip and bare mica. All force curves which did not
meet the above requirements were discarded. Overlapping
of raw rupture forces was accomplished by using Igor
Pro software.

The worm like chain (WLC) model was used for fitting
the force-distance curves:

FðxÞ ¼ kBT
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where F(x) is the force at the distance of x, kB is the
Boltzman constant, T is the absolute temperature, and Lp
and Lc are the persistence length and the contour length,
respectively. The persistence length of PEG was fixed at
0.38 nm (Gomez-Casado et al. 2011). From the WLC fit of
force-distance curves, the contour lengths were obtained
with the Igor Pro 6.04 software package.

The apparent loading rates were calculated by using the
following equation (Yu et al. 2011):
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where Fp 0 kBT/Lp, kc is the spring constant (pN/nm), v is the
tip velocity, F is the rupture force, and r is the apparent
loading rate (pN/s). All histograms were generated by
Origin 7.0 software and fitted with a Gaussian distribution.
Data are shown in the form of mean ± SE.

Quantitative analysis of Aβ aggregates was achieved by
using Femtoscan Online software (Advanced Technologies
Center, Moscow, Russia) (Portillo et al. 2012). The back-
ground was initially subtracted to eliminate anything that
was less than 1 nm in height. The “enum features” function
was used to count the particle number and read out infor-
mation about shape and height. This function can be used to
determine the elongation factor of the Aβ aggregates, which
is represented as Rs/Rp (the ratio between two radii in an
oblong object), also known as form factor. Form factors
were interpreted as follows: 0–0.5 represented mature
fibrils; 0.5–0.8 represented protofibrils; and 0.8–1.0 repre-
sented oligomers. The percentages of various Aβ aggregates
were calculated and shown as pie charts.

Results

Experimental setup of SMFS

It is a widely acknowledged fact that Aβ aggregation must
begin with peptide dimerization. Therefore, we rationalized
that immobilization of Aβ42 monomers on the tip and the
mica surface would represent a pivotal step in order to analyze
the initial stages of aggregation. Our experimental setup is
illustrated in Fig. 1a. One of the interacting Aβ42 molecules
is anchored onto the AFM tip through a short linker, MAS, and
a second Aβ42 molecule is immobilized on the mica surface
using a long PEG linker. Specific interaction forces between
these molecules were measured by multiple approach-
retraction cycles. Treating the Aβ42 solution with TCEP effi-
ciently reduces cystine links that create Aβ dimers (Kim et al.
2011). Therefore, the Aβ42molecules used for immobilization
were single monomers. In addition, we took advantage of the
presence of the maleimide group exclusively covalently cou-
pled to the cysteine group at the N-terminus of Aβ42. The
concentration of Aβ42 peptide used in the current study was as
low as 20 nM, therefore this site-specific attachment would
result in sparse surface presentation of Aβ42 molecules onto
the mica surface and AFM tip, preventing peptide aggregation
during the immobilization step (Yu et al. 2011; Kim et al.
2011). Additionally, the concentration of Aβ42 peptide used
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was more than three orders of magnitude less than that used in
aggregation experiments in vitro (Kim et al. 2011; Yu et al.
2011). Bifunctional PEG was chosen to circumvent unwanted
nonspecific interactions between the AFM tip and the mica
surface, and to function as a spacer to sort out the nonspecific
interactions that often take place between tips and substrates
with a short separation.

Figure 1b shows a typical rupture force-distance curve
with a clear peak located at a distance defined primarily by
linker stretching that could be associated with the specific
interactions between Aβ42 molecules. Prior to this rupture
peak, a section of a parabolic curve exists that originates
from stretching of the extendable segments of the linkers
and the interacting molecules.

Effect of Cu2+ cations on the Aβ42 interaction

The effect of Cu2+ cations on the Aβ42 interaction was inves-
tigated by SMFS at pH values of 7.4, 6.8, 6.0, 5.0 and 4.0. The
data are assembled in Table 1. An overlap of all raw force
curves obtained in the absence and presence of Cu2+ cations
and at the physiological condition, pH 7.4, is shown in the left
column of Fig. 2. Clustered data points at certain rupture
lengths and rupture forces represent visual presentations of

the overlay of multiple rupture events and provide a clear com-
parison between the presence and absence of Cu2+ cations.
Major differences between these two types of experiments are
highlighted with colored light pink or light blue vertical bands.

In the absence of Cu2+ cations, the most probable contour
length was 53.6±9.7 nm (Fig. 2; middle column). This value
includes the length of the flexible tethers used for the peptide
immobilization and the length of the stretchable segment of the
peptide between the N-terminus and the peptide segment in-
volved in the dimer stabilization (Yu et al. 2008, 2011;
Lyubchenko et al. 2010; Kim et al. 2011). According to
Fig. 1a, the total length of the tethers is 26.5±3.0 nm
(Supplementary Material); therefore we estimate the contour
length of the stretchable segment of Aβ42 molecule at these
conditions to be 13.6±5.1 nm per Aß42 molecule. Given the
length of each amino acid as 0.34–0.4 nm, we estimate that
more than a half of theN-terminus of the peptide is unstructured
and undergoes stretching. In the presence of Cu2+ cations, the
most probable contour length decreased to 31.6±3.5 nm, which
corresponds to a stretchable segment length of 2.6±2.3 nm, or
5–7 aa (amino acids) per Aß42 molecule. This suggests that
Cu2+ cations alter the folding pattern of Aβ42 dimers resulting
in the inclusion of the entire N-terminus. This structural change
is accompanied by a 15 % increase in rupture forces.

The central motivation of this work was to investigate the
effect of Cu2+ cations on the early stages of Aβ aggregation.
Careful comparison of force results has been made between
Cu2+-present and Cu2+-free experiments. In the absence of
Cu2+, the N terminus (D1-K16) as well as the central hy-
drophobic cluster (L17-A21) of Aβ42 peptides were found
not to be involved in interpeptide interactions. By contrast,
these two parts were brought to form Aβ dimer complexes
by Cu2+. This finding was in line with a recent study, in
which the N terminus of Aβ was observed to participate the
formation of β-sheet conformation (Haupt et al. 2012).

The shift in the contour length values induced by Cu2+

cations also was observed at pH 5.0 (Fig. 3a), with a 40 %

Fig. 1 Experimental setup of
SMFS (a). One of the
interacting Aβ42 molecules is
immobilized on the APS
modified mica surface via a
long PEG linker. The
counterpart Aβ42 molecule is
anchored on the MAS
functionalized AFM tip. A
typical approach-retraction
cycle of recorded rupture force
curve (b). Red line is the
approach force curve and blue
line is the force curve for the
retraction step followed by the
approach. The rupture event is
indicated with a vertical arrow

Table 1 Summary of the most probable contour length (MPCL) and
the most probable rupture force (MPRF) of force spectroscopy in the
presence and absence of Cu2+ cations at all pH

MPRF (pN) MPCL (nm)

Without Cu With Cu Without Cu With Cu

pH 7.4 41.3±7.6 47.3±1.2 53.6±9.7 31.6±3.5

pH 6.8 41.6±2.0 50.2±2.6 50.7±3.9 32.0±9.2

pH 6.0 53.3±2.1 77.2±2.5 45.4±1.8 28.1±5.5

pH 5.0 64.2±7.8 84.8±1.1 52.4±1.2 25.8±4.7

pH 4.0 61.8±7.0 63.5±1.6 32.9±1.0 30.5±0.1
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increase in the rupture force. A similar pattern was observed
at pH 6.8 (Supplementary Fig. S1) and pH 6.0
(Supplementary Fig. S2). Additionally, for pH values from
7.4 to 5.0, the statistical average yields of rupture events in
the presence of Cu2+ cations were at least two times higher
than those in the Cu2+-free experiments, suggesting that Cu2
+ cations promote the dimerization of Aβ42. Experiments
performed at pH 4.0 (Fig. 3b) demonstrate that Cu2+ cations
have minimal effects on Aβ42 interactions under these
conditions. Thus, Cu2+ cations promote the dimerization of
Aβ42 over the pH range of 7.4–5.0, but this effect is not
observed at more acidic pH. This finding is consistent with
the results obtained by other methods that demonstrated that
Cu2+ cations did not interact with Aβ when the pH was
below 5.0 (Atwood et al. 1998).

Effect of Cu2+ cations on Aβ42 aggregation

We used AFM imaging to directly inspect the effect of Cu2+

cations on Aβ aggregation at later stages. We incubated
10 μM Aβ solutions under quiescent conditions at all pH
values studied above and imaged aliquots taken at various
times during the aggregation process.

At pH 7.4, long fibrils with heights of 4.6 nm appeared
on the 6th day in the presence of substoichiometric Cu2+

cations (Fig. 4a, black arrows). Shorter and thinner fibrils
were also observed (profibrils), as indicated with red arrows.
These fibrillar features were found in the absence of Cu2+

cations (Fig. 4b). Bright globular features (oligomers) were
observed, as indicated with green arrows. A corresponding
quantitative analysis of Aβ aggregates is shown in Fig. 4c.
A large proportion of fibrils were observed by AFM in the
presence of Cu2+ cations, suggesting that Cu2+ cations pro-
mote Aβ aggregation in the elongation phase. At pH 5.0,
Aβ fibrils appeared in experiments with and without Cu2+

cations (Fig. 5a and b). However, the percentage of fibrils in

Fig. 2 AFM force spectroscopy in the presence and absence of Cu2+

cations at pH 7.4. The force spectroscopy in the absence of Cu2+

cations is shown in the upper panel. The columns include, from left
to right: the overlap of all raw force curves, the distribution of contour

length, and the distribution of rupture force. The lower panel shows the
corresponding characteristic of force spectroscopy in the presence of
Cu2+ cations. The Lc and Fr denote the most probable contour length
and the most probable rupture force, respectively

�Fig. 3 AFM force spectroscopy in the presence and absence of Cu2+

cations at pH 5.0 is shown in (a). The force spectroscopy in the
absence of Cu2+ cations is shown in the upper panel. The columns
include, from left to right: the overlap of all raw force curves, the
distribution of contour length, and the distribution of rupture force. The
lower panel shows the corresponding characteristic of force spectros-
copy in the presence of Cu2+ cations. Similar SMFS results in the
presence and absence of Cu2+ cations at pH 4.0 are shown in (b). The
Lc and Fr denote the most probable contour length and the most
probable rupture force, respectively

J Neuroimmune Pharmacol (2013) 8:262–273 267



268 J Neuroimmune Pharmacol (2013) 8:262–273



the presence of Cu2+ cations was significantly larger (21 %)
than that in the control experiment (4 %), as shown in
Fig. 5f and e. Fibrils were observed both in the absence
and presence of Cu2+ cations after 5 days of incubation at
pH 4.0 (Fig. 5c and d). These results are consistent with our
force spectroscopy data that demonstrated no effects of Cu2+

under these conditions. The fibril populations in both
experiments were similar (Fig. 5g and h), even though
images were acquired at arbitrarily chosen spots that may
have different surface coverage. In the present study, a long
lag phase for fibril growth was found at pH 4.0 and 7.4;
consistent with the notion that pH 5.0 is the optimum

Fig. 4 Representative AFM
images of Aβ42 aggregates in
the presence (a) and absence (b)
of Cu2+ cations at pH 7.4.
Yields of aggregates formed in
the presence of Cu2+ cations (c)
and absence of Cu2+ cations (d)
are shown in pie charts. Mature
fibrils, protofibrils and
oligomers are colored in black,
red, and green, respectively

Fig. 5 a and b show representative AFM images of Aβ42 aggregates
in the absence and presence of Cu2+ cations at pH 5.0, respectively.
Representative AFM images of Aβ42 aggregates in the absence (c) and
presence (d) of Cu2+ cations at pH 4.0. Yields of aggregates formed in
the absence of Cu2+ cations (e) and presence of Cu2+ cations (f) are

shown in pie charts. Mature fibrils, protofibrils and oligomers are
colored in black, red, and green, respectively. g and h show the yields
of aggregates formed in the absence of Cu2+ cations and presence of
Cu2+ cations, respectively
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condition for Aβ aggregation in contrast to pH 4.1 and pH
7.0–7.4 (Snyder et al. 1994).

Discussion

Cu2+ cations change the structure of Aβ42 dimers

AFM force spectroscopy revealed that Cu2+ cations dramat-
ically change the folding pattern of Aβ42 within dimers. In
the absence of the cations, the monomers are stabilized by
the interactions of peptide segments located at the C-
terminus of the peptide. Assuming the dimers are symmet-
rically formed, the linker length analysis shows that in the
absence of Cu2+ cations the N-terminal segment of the
peptide up to Ser26 is not involved with interpeptide inter-
actions. The addition of Cu2+ cations dramatically decreases
the non-interacting regions, shortening the N-terminal re-
gion to Arg5–Asp7. The pattern is essentially similar in the
pH range between pH 7.4 and pH 5.0. Additionally, in the
presence of Cu2+ cations, dimer stability is increased, de-
pendent on pH. At pH 7.4, the increment on rupture force is
approximately 15 %; however, at pH 5.0, the value increases
by a factor of three. The finding that the peptide N-terminus
is involved in dimer stabilization is consistent with early
studies that have shown that three histidine residues at the
N-terminus are the major Cu2+ coordination sites (Shin and
Saxena 2008). Copper, in its oxidized form, Cu2+, causes the
pKa value of the imidazole of the histidine residue to de-
crease from 14 to approximately 7. This change enables
protonation of the imidazole and the coordination of Cu2+

cations over a broad pH range (Rauk 2009; Ali-Torres et al.
2011). In addition to the three histidine residues, Asp1
(Hong et al. 2010), Ala2 (Drew et al. 2009), Glu3 (Miura
et al. 2004), Asp7 (Sarell et al. 2009), Tyr10 (Stellato et al.
2006), Glu11 (Streltsov et al. 2008), and Val40
(Parthasarathy et al. 2011) were also reported to be the
coordination site. Therefore, a plausible explanation of the
rupture observed with short contour lengths is that the
coordination of Cu2+ to N-terminal residues leads to a
conformational change of Aβ42 that significantly facilitates
the intrapeptide contact.

On the basis of these findings, we propose a model of
Cu2+ cation mediated structural transitions of Aß42 into
misfolded states, as shown schematically in Fig. 6. In the
absence of Cu2+ cations, the dimer is stabilized by the
interactions of the Aβ42 C-termini, schematically shown
by two arrows (Fig. 6a). With a strong rupture force these
two segments can form antiparallel β-sheet structures.
Shortening of the non-structured N-termini suggests that in
the presence of Cu2+ cations, monomeric Aβ42 folds and
these folded conformers interact with each other, as shown
schematically in Fig. 6b. We assume that this conformation

is close to the one found for Aβ42 structures in fibrils. The
Glu11-Lys16 N-terminal region of this structurally different
monomeric unit is involved in an intramolecular antiparallel
β-sheet structure (Ahmed et al. 2010). This is in agreement
with the contour length analysis that indicates the rupture
position at Arg5–Asp7. Additionally, a β-turn exists at the
Asp23–Lys28 region (Lazo et al. 2005; Ahmed et al. 2010).
This model is consistent with a prevailing pathway for Cu2+

induced Aβ aggregation, in which Cu2+ cations induce a
conformational change from mostly random coils through a
partially helical conformation to a partially β-sheet structure
(Yang et al. 2006). The circular dichroism experiments have
demonstrated that intermediates with partial α-helix and β-
sheet structures exist during the transition from monomers
to fibrils before rapid aggregation (Kirkitadze et al. 2001;
Fezoui and Teplow 2002). This conformational change is
also supported by the solution studies of the Aß peptide
structure by Fourier transform infrared spectroscopy (Stroud
et al. 2012), solution NMR spectroscopy (Olofsson et al.
2009), and mass spectroscopy (Murariu et al. 2007).

Other than the conformational change pathway, other possi-
ble pathways of Cu2+ cation induced Aβ aggregation include:
1) catalysis of dimer formation (via dityrosines) by radical
chemistry ( Murakami et al. 2005; Smith et al. 2007); 2)
bridging of a histidine residue by two metal ions (Smith et al.
2006); and 3) change of overall net charge (Sarell et al. 2010;
Syme et al. 2004). In our experiments, radical chemistry is not
possible because we did not use reductants. Second, the likeli-
hood of the bridging effect is low as the rupture forces in the
presence of Cu2+ cations were less than 50 pN.With the level of
force loading rates used in our forcemeasurements, breaking an
interpeptide metal coordination bond often generates moderate

Fig. 6 Schematic view of the proposed structure model of Aβ42 dimer
formation in the absence (a) and presence (b) of Cu2+ cations. The
structure of Cu2+-free dimers is characterized by an interpeptide inter-
action between the two hydrophobic C-termini of the Aβ42 peptides.
With Cu2+, the dimers adopt a compact structure highlighted by an
interpeptide parallel β-sheet structure
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rupture forces (58 pN) (Beyer and Clausen-Schaumann 2005;
Schmitt et al. 2000). Cu2+ cations may alter the net charge of
Aβ42 because this peptide possesses a net charge of −3 under
physiological conditions (Rauk 2009). Cu2+-induced charge
neutralization could result in a strong propensity for peptide
self-association. This could explain our force spectroscopy
results at 7.4; however, this would not be consistent with our
results obtained at mildly acidic pH in which the Aβ42 pI was
5.4, and the fact that stronger aggregation effects were ob-
served at pH 5.0 than at pH 7.4. Another model suggests that
Cu2+ cations change the positive charge density at the N-
terminus of Aβ42. Enhanced charge density may conversely
raise the proportion of β-structure (Klug et al. 2003; Rauk
2009). This notion is more practically consistent with the
conformational change model than other models.

Substoichiometric concentrations of Cu2+ cations accelerate
Aβ42 aggregation

In addition to the effect of Cu2+ cations on Aβ misfolding,
Cu2+ changes the pattern of later stages of peptide aggregation
by facilitating fibril formation at pH 7.4 that does not appear in
the absence of Cu2+ cations. AFM imaging reveals fibrils in
the absence of Cu2+ cations at pH 5.0 because aggregation is
facilitated by acidic condition. However, in the presence of
Cu2+ cations, the yield of fibrils is significantly higher than
that in metal-free systems, suggesting that Cu2+ cations are
still capable of promoting Aβ42 aggregation under these
conditions (Fig. 5e and f). At pH 4.0, samples in the presence
and absence of Cu2+ cations both show similar aggregation
behavior, indicating that the aggregation effects of Cu2+ are
lost. These findings, along with the force spectroscopy results,
suggest that Cu2+ cations facilitate all stages of Aβ aggrega-
tion. The appearance of fibrils in the presence of Cu2+ cations
may require both dilute concentrations (not higher than
10 μM) and substoichiometric amounts of Cu2+ cations
(Masters and Selkoe 2012). Amorphous aggregates are com-
monly reported in previous studies due to the use of relatively
high Aβ concentrations (usually 50–100 μM) (Miura et al.
2000; Tougu et al. 2011). A recent study has demonstrated that
2 μM Aβ in the presence of substoichiometric Cu2+ cations
was still sufficient for fibril growth. The authors proposed that
the low peptide concentration required for fibril formation in
the presence of Cu2+ cations is reminiscent of the crystalliza-
tion of proteins (Sarell et al. 2010), in which high protein
concentrations lead to a high propensity for overt precipitation
rather than ordered crystals. Similarly, suprastoichiometric
amounts of Cu2+ cations could cause excessive cross-linking
of Aβ42, resulting in formation of amorphous aggregates or
higher-order oligomers (Jones and Mezzenga 2012).

In conclusion, our AFM force spectroscopy and imaging
results suggest that Cu2+ cations increase interpeptide interac-
tions; therefore it is reasonable to assume that Cu2+ cations

promote both the initial and the elongation phases of Aβ42
aggregation. Importantly, the single molecule force spectros-
copy studies directly demonstrate the alterations in peptide
conformation in the misfolded dimers and how the N-
terminal residues aid in dimer stabilization. These findings
may have relevance for understanding disease mechanisms
and potential therapeutic strategies, such as metal dyshomeo-
stasis ( Bush and Tanzi 2008; Kenche and Barnham 2011).
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