
UC Irvine
UC Irvine Previously Published Works

Title
Translator writing systems

Permalink
https://escholarship.org/uc/item/7p07s766

Journal
Communications of the ACM, 11(2)

ISSN
0001-0782

Authors
Feldman, Jerome
Gries, David

Publication Date
1968-02-01

DOI
10.1145/362896.362902

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7p07s766
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Programming Languages
N. Wirth, Editor

A STATE-OF-THE-ART SURVEY

Translator Writing Systems

BY J E R O I ~ E t ~ E L D M A N AND D A V I D G R I E S

Stanford University, Stanford, California

An Exploration of Concepts and Principles

A critical review of recent efforts to automate the writing of translators of programming lan-
guages is presented. The formal study of syntax and its application to translator writing
are discussed in Section II. Various approaches to automating the postsyntactic (semantic) as-
pects of translator writing are discussed in Section III, and several related topics in Section IV.

KEY WORDS AND PHRASES: compiler, compiler-compiler, translator, translator writing systems, metacompiler,
syntax, semantics, syntax-dlrected, meta-assembler, macroprocessor, parser, syntactic analysis, generator

CR CATEGORIES: 4.1, 4.10, 4.12, 4.22, 5.23

CONTENTS

I. INTRODUCTION

U. SYN~CAX
A. Terminology
B. Automatically Constructed Recognizers

1. Operator precedence (Floyd)
2. Precedence (Wirth and Weber)
3. Extended precedence (McKeenIan)
4. Transition matrices (SameIson and Bauer, Gries)
5. Production language (Floyd, Evans, Earley)

C. Formal Studies of Syntax
I. Bounded context grammars (Eickel, Floyd, Irons, Wirth and Weber)
2, Deterministic pushdown automata (Ginsburg and Greibaeh)
3. LR(k) grammars (Knuth)
4. Recursive functions of regular expressions (Conway, Tixier)
5. Summary

III. SEMANTICS
A. Syntax-Directed Symbol Processors

1. TMG (McClure)
2. The META Systems (Schorre, Schneider and Johnson)
3. COGENT (ReynoMs)
4. ETC (Garwiek, Gilbert, and Pratt)

B. Compiler-Compilers
1. FSL and its descendants (Feldman)
2. TGS (Plaskow and Sherman, Cheatham)
3. CC (Brooker, Morris, et al.)

C. Meta-Assemblers and Extendible Compilers
1. General discussion and METAPLAN (Ferguson)
2. PLASMA (Graham and IngerInan)
3. XPOP (IIalpern)
4. Extendible compilers--basic concepts
5. Definitional extensions (Cheatham)
6. ALGOL C (Galler and Perlis)

IV. RELATED TOPICS AND CONCLUSIONS
A. Other Uses of Syntax-Directed Techniques
B. Forrnal Studies of Semantics
C. Summary and Research Problems

V. BIBLIOGRAPHY

I. INTRODUCTION

"... for all of it is contained in a long poem which neither
I, nor anyone else, has ever succeeded in wading through."
So speaks The Devil in Shaw's Man and Superman.

Compiler writing has long been a glamour field within

programming and has a well-developed folklore [Knu 62,

Ros 64b]. ~/[ore recently, the attention of researchers has

been directed toward schemes for automating different

parts of the compiler writer's task. This paper is an at-

tempt to critically survey these research efforts. An early

version of this survey, Stanford Computer Science Report

CS69, June 1967, was circulated widely, and the many

thoughtful comments we received have made an inesti-
mable contribution to the accuracy and conceptual clar-
ity of the present paper.

Before we describe the particular systems, we say a few
things about the general problem of translator writing.
We concentrate on compilers, because these contain all the
essential problems found in asselnblers and interpreters.
Considering the amount of effort that has gone into com-
piler writing, there has been relatively little published on
the subject. This lack of literature has forced translator
writing system (TWS) designers to t ry to formalize tech-
niques which have never been described carefully. A
further difficulty is that there are no accepted standards of

T h i s w o r k w a s p a r t i a l l y s u p p o r t e d b y t h e U S A t o m i c E n e r g y

C o m m i s s i o n a n d b y t h e A d v a n c e d R e s e a r c h P r o j e c t s A g e n c y .

V o l u m e 11 / N u m b e r 2 / F e b r u a r y , 1968 C o m m u n i c a t i o n s o f t h e A C M 77

http://crossmark.crossref.org/dialog/?doi=10.1145%2F362896.362902&domain=pdf&date_stamp=1968-02-01

performance for translators, only shibboleths, such as
efficiency. The efficiency of a compiler depends on its
ability to conserve both t ime and space while t ranslator
and during execution of the object program. The ease of
use, the error detection and recovery facilities, the editing
facilities, and the speed of recompilation have important
effects on efficiency. As not all these goals are mutual ly
compatible, one can expect no absolute measure of per-
formance for compilers. The designers of the TWSs
considered here have varied greatly in their preferred
choice of compromises.

Since compiler writing is a large programming task with
many aspects, it is not surprising that many different
techniques have been proposed as aids to compiler writers.
In a very real sense, any system feature (e.g. trace, edit)
which helps one produce large programs is a compiler-
writing tool. This remark will become relevant as we
examine various systems for their specificity to compiler
writing. Since there is as yet no general agreement on
terminology, we here define a term translator writing system
(TWS) to denote the programs and proposed programs
considered here. A translator written in a TWS might be
an interpreter, a compiler, an incremental compiler, or an
assembler.

This paper contains neither a history of nor an intro-
duction to the work on TWSs; the references at the end of
this section provide what introductory material there is in
the literature. Although we compare individual systems
and also various techniques, this paper is not intended to
be a consumer's guide to translator writing systems. The
intended purpose is to consider the existing work carefully
in an a t t empt to form a unified scientific basis for future
research. Toward this end we emphasize the intellectual
content of the various TWS designs, rather than the sys-
tern features available in a particular implementation.

The use of TWSs to write commercial compilers is just
now becoming common. This lag of about three years is not
excessive, but it has led some people to disregard the
entire TWS development. While it is true tha t any par-
ticular TWS is more suited to certain compiler charac-
teristics, this does not seem to be the major bar to their
use. The successful TWSs have all been done in a research
environment by people who have not shown an entre-
preneurial bent. Most importantly, the idea of flexible
languages, inherent in TWS work, runs counter to the
manufacturer ' s emphasis on ever greater standardization.
Although commercial compiler writers are starting to use
TWSs, it will take a minor revolution to put TWSs in the
hands of the user where they belong.

Unfor tunate ly , one has to exercise considerable care in
reading the TWS literature. A system described formally
in a paper is rarely adequate to completely handle the ap-
plications claimed for it. There is also a strong current of
mathemat ism, tha t is, the notion tha t the use of symbolic
notat ion automatically increases the value of a paper.
Communication between various workers seems to be poor;
there is much rediscovery and little cross-referencing

within the field. The existence--and tolerance by referees--
of the situation mars an otherwise excellent record in TWS
research.

Our review of TWSs is divided into two major headings,
syntax and semantics. The work on automated syntax
methods is the oldest and best understood aspect of TWS
research. Syntax methods are further divided into those of
limited generality, which have been used in TWSs, Section
I I .B, and the theoretically more powerful but as yet
inapplicable methods of Section I I .C.

The division of semantic considerations into three sec-
tions is along somewhat more controversial lines. The
syntax-directed symbol processors of Section I I I . A share
the approach of considering translators as a speciM case of
a problem which is best t reated generally. The compiler-
compilers of I I I . B a t tempt to provide many specific
mechanisms to help in the postsyntactic processing of
programs. Section I I I . C considers two related sets of
a t tempts to extend the conventional macro assembler
to a TWS.

The related topics discussed in Section IV were chosen
to complement the review sections and are treated in
much less detail. The treatments of the other uses of syn-
tax-directed techniques and related mathematical studies
are aimed at elucidating their relationships with TWS
efforts. Finally, a number of potentially fruitful research
topics related to the future development of translator
writing systems are sketched. The bibliography is ar-
ranged alphabetically; in addition, references pertinent
to each section are indicated at the end of the section.

REFERENCES FOR I
The Communications of the ACM and to a lesser extent the Com-

puter Journal of the British Computer Society are the major
journals for publications on translator writing. See especially
Comm. ACM 4 (Jan. 61), 7 (Feb. 64), and 9 (Mar. 66).

Other general references: Che 64a, Flo 64b, Hals 62, Knu 62,
Ran 64, Ros 64b, Weg 62, Wil 64b.

Formal descriptions of various programming languages: Bac 59,
Ber 62, Brook 61, BroS 63, EvA 64, Gor 61, IBM 66, Naur 60,
63b, Rab 62, Samm 61, Shaw 63, Tay 61, Wir 66b, 66c.

I I . S Y N T A X

A. T e r m i n o l o g y

One of the minor irri tants in TWS literature is the lack
of uniform notation. In order to make this paper more
readable, we have taken the liberty to change the symbols
and sometimes the syntax used by various authors. For
the discussions on syntax we have decided on the notation
used by Ginsburg [Gin 66a, pp. 8, 9]. However, as a non-
conflicting alternative, the notat ion of the syntactic
metalanguage Backus-Naur Form (BNF), especially the
symbol ":: = ", is used where it is more readable.

In this paper many words are used in both the formal
and the informal sense; in this section on syntax the usual
sense is the formal, while in sections I I I and IV, the in-
formal. The formal definitions of such terms as " syn tax"
and "semantics" are not generally agreed upon, and we

78 Communicat ions of the ACM Volume 11 / Number 2 / February, 1968

(program> ~ ± E ± (program> : := .~ E x
E--~ T E : := T I E + T
E--~E.-b T T ::= P I T * P
T ~ P P : := f [(E)
T - - ~ T * P
P ~ (E)
P---~ I

(a) formal notation (b) BNF notation
Nonterminal symbols: (program) E T P.
Terminal symbols: [() --]- * z.

FIG. 1. Example of a phrase structure grammar

discuss them further in Section IV. Informally, we con-
sider syntax to be a specification of the well-formed
statements of a language, usually incorporating a mecha-
nism for structural descriptions, and semantics to be a
specification of how these statements are to be executed
by a real or abstract computer.

In general throughout the paper, a language £ is some
subset of the set et* of all finite strings of symbols from an
alphabet a. The specification of which strings are in the
language £ (syntax of £) is described in a syntactic recta-
language. The syntactic metalanguage is procedural and
describes either an algorithm for generating strings of
(synthetic syntax) or for recognizing if an element of a* is in

(analytic syntax). Statements in a syntactic metalan-
guage are often called productions. Any process utilizing a
nontrivial analytic syntax is called syntax-directed.

The symbols in the alphabet (~ are called terminal
symbols, and in Section I I are denoted by T, T~, T2, etc.
A syntactic metManguage may include a set of nonterminal
symbols, v, not in a, which are used in defining the lan-
guage. These nonterminals are normally enclosed in angle
brackets "(" and "}", as in the ALGOL report, and appear
in the text as well as in formal syntax rules.

In this section where we deal more formally with syntax,
we omit the brackets and represent all nonterminals by
Latin capitals U, V, and Z. These sections on syntax also
require a fairly extensive technical vocabulary, which we
now describe in detail.

The vocabulary ~ is defined as the union of a (the set of
terminM symbols) and v (the nonterminal symbols). The
symbols S, $1, $2, etc. are used to denote members of ~,
while strings of symbols (including the empty string A)
are denoted by lowercase Latin letters u, v, w , If
z = xy is a string, x is a head and y a tail of z.

We specify a language, 2~, by a phrase structure gram-
mar, ~, which is defined as a finite set of productions of the
form U~ --~ u~ with the following properties:

(1) each ul is a nonempty string whose symbols are in
the vocabulary ~d;

(2) each U~ is a nontenninal symbol: U~ ~ n;
(3) There is exactly one U~, called the distinguished

symbol Z, which occurs in no ui .
U~ is called the left part and u~ the right part of the produc-
tion U~ ~ u~. Figure l(a) is an example of a grammar,
with Z = (program}. Figure l (b) gives an alternate nota-
tion for the same phrase structure grammar, the Baekus-

{program> {p rog ram> (program>

/ ? ' x
T * P

(a) (b) (c)

(program> (program)

± / / / f f ~ ± _ L ~ a -

E + T

T T * P T
r
P

(e)

Syntax trees

(d)

FiG. 2.

Naur Form (BNF) . Here " : : = " is substituted for "---~"
and the metasymbol "1" is used to separate different right
parts corresponding to the same left part.

In some of the work reviewed, productions with empty
right parts are allowed, though we may not always mention
it.

In order to show how a (phrase structure) grannnar de-
fines a language, we need some further definitions. We say
that v is a direct derivative of w (written w ~ v) by applica-
tion of the production U ~ u if there are (possibly empty)
strings x and y such that w = xUy and v = xuy.

The transitive closure of " ~ " is denoted by " ~ " ;
w ~ v if there exist strings w0, wl, . . - , wi (i > 0) such
that w = w0, w0 ~ wl, • • • , 'wi-1 ~ ¢-/)i and w~ = v. v is
then called a derivative of w, and the sequence w = w0
wl, • • • , w~_~ ~ w~ = v a derivation of v from w.

The derivatives of the distinguished symbol Z are called
sentential forms. The language £~ is defined as the set of
sentences, i.e. the set of sentential forms consisting only of
terminal symbols:

£~ := { x l Z ~ x and x E a*}

In the grammar ~ of Figure 1, £~ is the set of all arith-
metic expressions (using operators -5 and ,, parentheses
(and) and the operand I) . The beginning and end of the
arithmetic expressions are explicitly indicated by the
symbol .L.

The sentential form ~P -5 T • P~ has at least two deriva-
tions (according to the grammar of Figure 1) :

(program) =* . E - ~ -E -5 T- ~ -T + T~
(2.1)

z P - 5 T J . ~ P - 5 T * P J .

(progrmn} ~ ±EJ. ~ :.E -5 T~. ~ .LE -5 T • P.L
(2.2)

~ . L T -5 T * P.L ~ . L P -5 T * P.L

A derivation may be illustrated by a syntax tree, which
is drawn for derivation (2.2) as follows: Starting from the
symbol (program) a branch is drawn, as in Figure 2(a).
The branch is the set of lines emanating downward from

Volume 11 / Number 2 / February, 1968 Communicat ions of the ACM 79

E + T

(program)

tka. 3. Upside-down syntax tree

the node (program), together with the nodes (the labels)
at the ends of these lines. These nodes concatenated form
the string ±E± which replaced <program) in the derLvation.
We continue in the same manner; for each application of a
production U ::= x (each direct derivation), from the
node U, which is being replaced, we draw a branch whose
nodes form the replacing string x. This is illustrated for
derivation (2.2) by the sequence of syntax trees in Figure
2, with Figure 2(e) representing the complete derivation.
Note that the end nodes of the tree (those with no branches
emanating downward from them), when concatenated,
yield the final sentential form.

Although there are two derivations of ±P + T • Pj., both
have the same syntax tree, since the derivations differ
only in the order in ~hich the productions are applied as
direct derivations. A grammar ~ is said to be ambiguous if
there is a sentence of 29 which has more than one syntax
tree relative to ~.

Given a synthetic phrase structure granmtar one can
randomly generate sentences of the language by deriving
them and their syntax trees from the distinguished symbol
Z. Compilers on the other hand have the opposite problem:
given a sentence x and a grammar ~, construct a deriva-
tion of x and find a corresponding syntax tree. This is
called parsing, recognizing (whence the term recognizer), or
analyzing the sentence.

There are two different parsing strategies, called top-
down and bottom-up, which are sometimes confused. One
reason is that people draw syntax trees differently; the
tree in Figure 2(b) (which is how we draw it) could also be
drawn as in Figure 3. Another reason is that these two
strategies have actually merged as recognizers become
sophisticated. We discuss this later in this section and
again in Section II.C.5. Both types of strategies are called
left-right, since the general order of processing the symbols
in the sentence is from left to right whenever possible.

A pure top-down recognizer is entirely goal-oriented. The
main goal is, of course, the distinguished nonterminal
symbol Z - - a prediction is made that the string to be recog-
nized is actually a sentence. Therefore the first step is to
see whether the string can be reduced to the right part
$1S2.. . Sn of some production Z ~ $1S2".. S,~.

This is done as follows: For the application of the
production to be valid, if S~ is a terminal symbol, then the
string must begin with this terminal. If $1 is nontenninal,
a subgoal is established and tried: see whether some head
of the string may be reduced to S~. If this proves true,

(program)

/i r r l r + 1 * I a. • I + I * I
(a) partial top-down parse (b) partial bottoln-up parse

~IG. 4

$2 is tested in the same manner, then $3, and so on. If no
match can be found for some S~, then application of an
alternate production Z ~ S i ' S (. . . S, / is at tempted.

Subgoals U are tested in the same manner; a production
U --~ $1S2.. • S,, is tested to see whether it can be applied.
TMs, new subgoals are continually being" generated and
attempted. If a subgoal is not met, failure is reported to
the next higher level, which must t ry another alternative.

Left recursion sometimes causes trouble in left-right
top-down recognizers; productions of the form U1 :: = Ulx
may cause infinite loops. This is because when U1 becomes
the new subgoal, the first step is to create again a new sub-
goal U~. The left recursion problem is sometimes solved by
changing the grammar or modifying the recognizer in some
way (see below). The order in which the different right
parts of productions for the same left part are tested can
also play a large role here. If there is only one right part
which contains left recursion this one should be the last
one tested. However, this might conflict with other order-
ing problems, such as testing the shortest right part last.

The top-down recognizer gets its name from the way
the syntax tree is being constructed. At any point of the
parse certain connections have been made (perhaps incor-
rectly) by constructing the tree from the top node and
reaching down to the string (Figure 4 (a)) . Such recog-
nizers are sometimes called predictive [see Kun 62], since at
each step they t ry to predict the connections to be made.

A top-down recognizer may be programmed in many
different ways--as recursive subroutines, as a single
routine working with a stack, etc. The significant feature
is that it is goM-oriented.

In contrast, a pure bottom-up recognizer has essentially
no long-range goals (except of course the implicit goal Z).
The string is searched for substrings which are right parts
of productions. These are then replaced by the corre-
sponding left side. This is illustrated by Figure 4(b) . We
will go into some detail here in order to introduce termi-
nology needed in later sections.

Although the syntax tree is not present when we start to
parse a sentence, it is clearer to present the idea behind
bottom-up parsing as if it were. Let us therefore suppose
we have a sentential form s and its syntax tree. We define
a phrase of s to be the set of end nodes of some subtree of
the syntax tree. We now define the handle of s relative to
the syntax tree to be the leftmost phrase which contains no

8 0 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 2 / F e b r u a r y , 1968

phrases other than itself. For example, in the syntax tree of
Figure 2(e) there are four phrases: P, T * P, P ~ T * P,
and xP "4- T * Px. Two of these contain no other phrases:
P and T * P. The handle is the leftmost such phrase: P.

The following algorithm represents the general phi-
losophy behind left-right bottom-up parsing: starting with
a sentential form s = So (and a syntax tree for it) , repeat
the following steps for i = 0, 1, . . . , n until s,~ = Z has
been produced:

1. Find the handle of s~ (by looking at the syntax tree
for s0.

2. l~eplace the handle of sl by the label on the node
naming the corresponding branch, yielding the sen-
tential form si+1.

3. Prune the tree by deleting the handle from it.
The sequenceZ = s~ ~ S~-l~'.-~ sl ~ So is thena
derivation of So. For example, given the sentential form
So = zP -4- T * P~ and its syntax tree in Figure 2(e), the
handle P is replaced by T and pruned from the tree, yield-
ing sl = zT q- T * Px and the syntax tree of Figure 2(d).
The handles for the syntax trees in Figures 2(d), 2(c),
2(b), and 2(a) are, respectively, T, T. P, E q- T, and
.LEz. The syntax tree of Figure 2(c) arises by pruning the
handle of 2(d), 2(b) arises by pruning the handle of 2(c),
and 2(a) comes similarly from 2(b). This sequence yields
the derivation (2.2).

The pure bottom-up recognizer, like the pure top-down
recognizer, will normally make reductions (or connections)
which turn out to be incorrect. This may be handled in one
of two different ways. The first method is to back up
(backup or backtracking) to a point where another alterna-
tive may be tried. This involves restm~ng parts of the
string to a previous form or erasing some of the connections
made. The second method is to carry out all possible
parses in parallel. As some of them lead to "dead ends"
(no more reductions or connections are possible), they are
dropped. COGENT (Section III.A.3) uses this method in a
top-down scheme. See also [~un 62].

In order to reduce the probability of making incorrect
reductions, more sophisticated recognizers have been de-
veloped. For instance, before starting out on a new sub-
goM, a ~odified top-down recognizer might look in a pre-
constructed table to see whether some derivative of the
subgoal can actually start with the initial symbol of the
substring in question (look ahead), or whether the subgoal
being at tempted could occur in the partial tree formed so
far (memory). Examples of modified top-down recognizers
are those in [Ir 61, May 61, and War 64]. Most of the
syntax-directed symbol processors of Section III .A use
modified top-down recognizers.

Similarly, modified bottom-up recognizers look at the
context around a possible handle to aid in the decision. In
practice, these recognizers have become sophisticated
enough so that, with certain restrictions on the grammar,
backup or parallelism is unnecessary.

These modifications have contributed to the (con)fusion
of the two concepts. I t is sometimes very difficult to

classify a particular recognizer as bottom-up or top-down.
For instance, a production language recognizer as gener-
ated by Earley's algorithm (cf. Section II.B.5) has some
of the properties of both. If a recognizer has any explicit
goals and subgoals to meet, we tend to call it (modified)
top-down, since it is goal-oriented. See Section III.C.5
for a fm'ther discussion on this problem.

Most of the remaining terminology should be familiar
to anyone with general knowledge of computer science. We
use a few data structure terms which require definition.
The term list structure system is used generically to de-
scribe any programming system making significant use of
pointers (links) and dynamic storage allocation. A list
structure which does not allow more than one path be-
tween any two nodes is a tree. A list structure which ex-
plicitly allows general connectivity and where each element
is a block of storage containing several (often two-way)
links is called a plex. We also use the terms LIFO (last-in-
first-out) and FIFO (first-in-first-out) as general rules for
handling sequential information.

REFERENCES FOR II. A
Che 64c, Chom 63, Flo 64b, Gin 66a,Ir 61, Kun 62, Naur 60, War 64.

B. A u t o m a t i c a l l y C o n s t r u c t e d R e c o g n i z e r s

In this section severM practical techniques for parsing,
or for recognizing, sentences of languages defined by
grammars are described and evaluated. A "practical"
technique is one tha t has been or is being used to write a
compiler. Such a recognizer may be in the form of tables to
be used by a set of basic routines or in the form of a pro-
gram in some language. Each of the recognizers described
here has an associated algorithm, called a constructor, for
generating it from a suitable grammar. Finally, all are left-
right recognizers which work with one LIFO stack and
have no backup facilities.

The property of automatic generation is very important
to the compiler writer. Most of the constructors check the
grammar for ambiguity before actually constructing the
recognizer--a decided advantage. Automatic construction
of parts of a compiler also means less work, leaving more
time for considerations such as code optimization. More-
over, the automatic construction guarantees that the
recognizer follows the formal syntax.

Unfortunately, these recognizers and their constructors
do not solve all problems. First, the existing formal no-
tions of syntax cannot be used to completely describe the
syntax of most programming languages. Second, semantics
form a much larger and more difficult part of a program-
ruing language--often either the grammar or the generated
recognizer must be changed in order to fit in semantics
properly. Third, while a technique may be theoretically
sound, the restrictions necessary for its use may require
substantial alteration-of the conventional grammar of the
programming language.

We note in passing that the "efficiency" of several
recognizers has been compared by Griffiths and Petrick

Volume 11 / Number 2 / February, 1968 Communications of the ACM 81

[Grif 65]. Although it is of some theoretical interest, this
comparison is of no practical value in writing compilers,
since it is based mainly on the efficiency of Turing machines
corresponding to each of the recognizers. We are interested
in comparing the recognizers with respect to the following
points:

(a) How much space does the recognizer use?
(b) How fast is the recognizer?
(c) How much does a conventional grammar have to be

altered in order to be accepted by the constructor?
(d) Once the recognizer is constructed, how easy is it to

insert semantics and the syntactic properties not ex-
pressed by the grammar?

The reader must note that our comparisons are based on
these recognizers as formally applied and that they are
general observations; by bit-pushing or devising fast list
searching techniques, a particular implementation can
greatly increase efficiency. The above properties also de-
pend on the type of compiler being built, the language in
question, and so forth. The answer to question (d) in
particular depends very much on whether some internal
form of the source program or machine code itself is to be
generated and on the power of the semantic processes
available in the compiler.

Although it is possible to build bottom-up recognizers
which allow backup, this has rarely been done. Restric-
tions are usually placed on the grammar to assure its un-
ambiguity and to assure that the unique handle of any
sentential form can be efficiently detected and reduced. All
of the recognizers discussed here do this. On the other
hand, many of the top-down recognizers in use today allow
backup, or they carry out possible parses in parallel; the
only restriction is that left recursion is not allowed (see p.
80). The existing top-down recognizers therefore accept
a wider class of grammars but tend to be less efficient;
backup can lead to very inefficient recognizers if the gram-
mar is not written cleverly.

Pure top-down recognizers were discussed briefly in
Section II.A, and therefore are not discussed here. See
[War 61] for details of compilers which use modified top-
down recognizers. [Che 64c] is a good tutorial paper on the
use of top-down recognizers in compiling, and [Flo 64b]
also contains a good description of the technique.

Some of the recognizers discussed here have been used
in many compilers by many people; we cannot list ref-
erences to all of them. For each recognizer we give
references to papers where both the recognizer and its
constructor are discussed. Some theoretically interesting
recognizers which can be mechanically constructed, as
well as formal properties of systems described here, are
discussed briefly in Section II.C.

The grammar in Figure 1 (p. 79) is used throughout
this section as an example. At this point it may be advis-
able for the reader to briefly review Section II .A for
definitions and notations.

Syntax tree (program) (program} (program>

T T * P T
L I

P P
Prime phrase T * P P ~ T ± E -L

(a) (b) (c)

FZG. 5. Parse using operator precedence

B.1. OPERATOR PRECEDENCE (Floyd [Flo 63])
The grammar is first of all restricted to an operator

grammar; no production may be of the form U ~ x U1U2y
for some strings x and y and nonterminals U1, U2. This
means that no sentential form contains two adjacent non-
terminal symbols. This is not a serious restriction; many
programming language grammars are already in this form,
and most programming]angnage grammars not in this
form can be made into operator grammars without essen-
tially disturbing the structure of the language.

Given an operator grammar, let s be a sentential form.
We define a prime phrase of s to be a phrase which contains
no phrase other than itself but at least one terminal charac-
ter T. (Compare this with the definitions of phrase and
handle on p. 80.) For instance, in Figure 5(a) the phrases
a r e P , T , P , P + T * P a n d , P + T * P ~ ; t h e p r i m e
phrase is T * P. Similarly in Figure 5(b) the prime phrase
is P -/- T, in 5(c) ±E,. The recognizer to be described
reduces at each step the leftmost prime phrase, and not the
handle. However, we still call this a bottom-up, left-right
recognizer, since it is proceeding essentially in a left to
right manner.

Equivalently, x is a prime phrase of at least one sen-
tential form s if and only if x contains at least one terminal
and either there exists a production U --~ x or a production
U --~ x' where x' ~ x and the only productions applied in
the derivation x r ~ x are of the form U~ --~ Uj.

During the parse of a sentence Ti • • • Tm, a LIFO stack

will contain symbols SoSi "" Si of the partially reduced
string SoSi "" SiTjTj+i ... Tm • At any step, it is neces-

sary to be able to tell solely from the symbols S~-i, S~

and Tj whether (i) S~ is the tail symbol of the leftmost

prime phrase in the stack; or whether (2) S~ is not the tail

and Tj must be pushed into the stack.
In order to do this, the following three relations are

defined between terminal symbols TI and T2 of an operator

grammar.
I. Ti ~ T2 if there is a production U --~ xTiT2y or

U ~ xTiUiT2y where Ui is nonterminal.
2. Ti "> T2 if there is a production U ~ x UiT2y and a

derivation Ui ~ ZTl or Ui ~ zTiU2 for some z and

U~.
3. Ti < T2 if there is a production U ~ xTiU1y and a

derivation Ui ~ T2z or UI ~ U~T2z for some z and

U~.

82 C o m m u n i c a t i o n s o f the ACM Volume l I / Number 2 / February, 1968

S o ~ 'i' So,Si,..-3S i IS A STACK HOLDING A PORTIOH

" U ~ ~ OF THE SENTENTIAL FORM UNDER ANALYSIS

i

READ OUR SYMBOL FROM
SOURCE PROGRAM; STORE IN R

Yes

No No

IS S. A TERMINAL No
J SYMBOL?

PROCESS PRIME PHRASE Sj+i-..S i

(CALL A SEMANTIC ROUTiTIE); GET
LEFT PART U; i ~ j + l; S i ~- U [

f

FIG. 6. Recognizer using operator precedences

If at most one relation holds between any ordered pair
T~, T2 of terminal symbols, then the grammar is called an
operator precedence grammar and the language an operator
precedence language.

In an operator precedence language, these unique rela-
tions may be used quite simply for detecting a substring
which may be reduced (prime phrase). Suppose ToxT is a
substring of a sentential form s = x~ToxTx2 and that the
terminal symbols in the substring x are, in order, T~,
T2, • • • , T~ (n > 1). Now suppose the following relations
hold between To, T1, • • • , T~ and T:

T o < Ti ~- T2 ~ . . . ~ T , , > T.

(Note that nonterminals of x play no role here.) Then x is
a prime phrase. Furthermore the reduction of x to some U
may always be executed to yield the sentential form
xlToUTx~ .

The parse of a sentence (or program) is quite straight-
forward (see Figure 6). Symbols are pushed into the stack
until the relation T~ .~ T holds between the top terminal
stack symbol T~ and the next incoming symbol T. If the
string is indeed a sentence of the language, the top stack
elements then hold a string Tox as described above. One
searches back in the stack, using the relations, to find To
and the beginning of x. x is then a prime phrase and can
then be reduced to some U, yielding ToU in the stack. The
process is then repeated by comparing To with T.

As an example, the sentential form ~P + T * P~ would
be parsed (using the grammar of Figure 1) as illustrated
in Figure 5, where each tree is derived by pruning the
prime phrase of the preceding syntax tree.

TABLE I

T2

)
I

÷
(
±

(I * + ±) T f(T) g(T)

) 5 1
I 5 6
* 5 4
--P 3 2
(1 6
± 1 1

The relations .~, ~ and < can be kept in an l X l
matrix, where l is the number of terminal symbols of the
grammar. (In [Flo 63], the matrix for an ALGoL-like
language is about 35 X 35.) The comparison is then just
a test of the relation in the matrix element defined by the
row corresponding to the top stack terminal symbol and
the column corresponding to the incoming symbol.

The space needed for the relations may be reduced to
two vectors of length 1 if two integer precedence functions
f (T) and g(T) can be found such that T1 < T2 implies
f (T1) < g(T2), T1 --" T~ implies f (T~) = g(T2) and
T1 -~ T2 implies f (T1) .> g(T2).

Floyd outlines the algorithm for finding the matrix of
precedence relations, and an algorithm which finds the
functions f and g if and only if they exist. For the language
of Figure 1 the precedence matrix and functions in Table I
are generated.

I t is rather difficult to figure out a good error recovery
scheme if the functions f and g are used, since an error can
be detected only when a probable prime phrase turns out
not to be one. With the full matrix, an error is detected
whenever no relation exists between the top terminal stack
symbol and the incoming symbol. Therefore the functions
should be used only if a previous pass has provided a com-
plete syntax check. (Some compilers actually parse the
program twice. The first parse makes a complete syntax
check and also allows one to collect global ilfformation
about variables, blocks, etc. The second parse uses the
efficient operator precedence technique the functions--
and the information collected during the first parse to
generate code. The trend is, however, to let the syntax
checker produce an altered form of the source program--
reverse polish, triples, etc. (see Section I I I .B .2) - - f rom
which code may be generated more easily, making a
second parse unnecessary.)

One objection to this technique is that the language may
still contain ambiguous sentences. The structure of the
parse tree is unambiguous if the grammar is an operator
precedence grammar, but the names of the nodes may not
be unambiguous. For a prime phrase x there may exist
more than one nonterminal to which it may be reduced,
since there is no restriction that right parts of productions
be unique. This objection is part ly answered by the fact
tha t the nonterminals are usually manipulated by semantic

V o l u m e n / N u m b e r 2 / F e b r u a r y , 1968 C o m m u n i c a t i o n s o f t h e ACM B3

~'outines anyway, and not so much by the syntax. The
syntax defines the structure; whether a node is named
(say) {integer expression) or (real expression) is a semantic
matter.

A semantic routine is called when a prime phrase is
recognized and is to be reduced. A separate routine is
written to process each different prime phrase. This some-
times requires an alteration of the grammar, depending of
course on the semantic processing to be carried out. For
instance, the production

(cond) --~ i f (be) t h e n (expr) e l se (expr)

would normally be changed to

{if el) --~ i f (be)
(if-then) --~ (ifel} t h e n <expr}
(eond) --~ {if-then) e l se (expr)

so that the tests and jumps may be inserted at the proper
places by semantic routines.

However, the revised grammar will not, in all likelihood,
be essentially different from the original reference grammar
of the language (see for example Floyd's language in
[Flo 63]). Although to our knowledge no compiler contains
a mechanically constructed recognizer of this type, the
precedence technique itself has been used in quite a few
ALGOL, iVIAD, and F o ~ a ~ compilers and will be used in
many more. The technique is easy to understand, flexible,
and very efficient.

B.2. PRECEDENCE (Wirth and Weber [Wir 66c])
Wirth and Weber modified Floyd's precedence concept.

The grammar is not restricted to an operator grammar and
the relations ©, © and @ may hold between all pairs
$1, $2 of symbols:

1. S, © $2 if there is a production U ~ xS1S2y.
2. S~ @ $2 if there is a production U --~ x U~S2y (or

U ~ xU1U~y) and a derivation U1 ~ zS1 (and
U2 ~ S2w) for some z, w.

3. S, © $2 if there is a production U ~ xStU~y and a
derivation U~ ~ S2z for some z.

If at most one relation holds between any pair S~, $2 of
symbols, and if no two productions have identical right
parts, then the grammar is called a precedence grammar and
the language a precedence language. Any sentence of a
precedence language has a unique syntax tree. When
parsing, as long as either the relation © or © holds be-
tween the top stack symbol S~ and the incoming symbol
T, T is pushed into the stack. When S~ @ T, then the
stack is searched downward for the configuration

Sj_~ © Si © . . . © S~_~ © S~.

The handle is then Sj - . . S~ and is replaced by the left
part U of the unique production U ::= Si " " S~. The
main difference between this technique and Floyd's is tha t
the relations may hold between any two symbols and not
just between terminal symbols; therefore, the handle and
not the prime phrase is reduced. Algorithms for generating
the matrix of precedences and functions f and g similar to
Floyd's are given in [Wir 66@

TABLE II
S2

E'
E
T'
T
P
)
I

+
(
4_

E ' E T ' T P (I * +) ±

© © ©
© © © © ©

© @ © © © © ©
@ © @ @ @ © @

© ©
© @ @
@ ® @

© @ ® ®
® ® @ @
® @ @ @
® @ @ @

s f(s) g(S)

E' 1 1
E 2 2
T' 3 2
T 3 3
P 4 3
) 4 1
I 4 4
* 3 3

-4- 2 2
(1 4
± 1 1

For the grammar of Figure 1, relations + © T, zc © T;
± © E, ± © E; and (© E, (© E hold. These conflicts may
be disposed of by changing the grammar to the following
equivalent one:

(program) --+ J. E ' ±
E' ----~ E
E--~ T'
E----~ E-4- T'
T'---~ T
T--* P
T---~ T*P
P ~ (E ')
P----~ I

The precedence matrix and functions for this grammar
are given in Table II . Actually, any phrase structure
grammar can be modified, without doing violence to its
phrase structure, such that there is at most one precedence
relation between any two symbols. Ambiguities show up in
nonunique right sides of productions [Michael Fisher,
Harvard U.]. The problem of multiple right sides makes
this rather unpractical, even if the grammar is unam-
biguous.

As with Floyd's recognizer, one may use either the
precedence matrix or the functions f and g. The matrix is
much larger than Floyd's (over 70 X 70 for ALGOL), since
the relations may hold between any two symbols. Again,
semantic routines may only be called when a handle is
detected.

Theoretically, the technique is very sound and efficient.
Since the relations may hold between any two symbols, it
is in a sense more reliable than Floyd's; in a precedence
grammar one knows that a unique canonical parse exists for
each sentence. In practice, however, the restriction to
unique right parts is not followed; each semantic processor
for a handle which is reducible in more than on e rWay must
determine the correct nonterminal to replace /c from the
context and global information. This is necessary for pro-
ductions such as

<array identifier} --> <identifier>
(procedure identifier} ~ <identifier)

84 C o m m u n i c a t i o n s o f t h e ACCI V o l u m e l l / N u m b e r 2 / F e b r u a r y , 1968

T A B L E I I I

M A T R I X 1

t.~2
E I ' P ([. +

E
T
P
)
[

+
(
±

@ @
@ @ ©

@ @ @ @
@ @ @ @

@
@
@
@

@
@
@
@

@
@
@
@
@

M A T R I X 2

~2
s ~ E T P ([• +)

E
T
P
)
I

+
(
±

@ © ©
® @ © ©

® © @ © ©
® © @ © ©

) ±

@ @
@ @
@ @
@ @
@ @

@ @ @
@ @ @ @
@ @ @ @
@ @ @ @
@ @ @ @

F u n c t i o n P1 n o t
n e c e s s a r y , s ince
t he eonfl ie t (~)
does no t ar ise .

F u n c t i o n P2 (On ly nec -
e s s a r y t r ip le s w h i c h also
f o r m va l i d s u b s t r i n g s of
s o m e s e n t e n t i a l f o r m
l i s t ed .)

P 2 [± , E , +] = T R U E
P 2 [± , E , ±] = F A L S E
P 2 [(, E , +] = T R U E
P 2 [(, E ,)] = F A L S E
P2[+,T,*] = T R U E
P2[+,T,+] = F A L S E
P 2 [+ , T ,)] = F A L S E
P 2 [W , T , ±] = F A L S E

Moreover, one must manipulate a grammar for an average
programming language considerably before it is a prece-
dence grammar. The reason is that not enough context is
used in determining the precedence relations; very often
more than one relation holds between two symbols. I t
may be necessary to insert intermediate productions (as
in the above example) or even to use a different symbol
for (say) a comma depending on its context. In the latter
ease a preseanner must then be ehanged to look at the
context and decide which internal symbol to use for each
comma. The final grammar could not be presented to a
programmer as a reference to the language.

B.3. EXTENDED PRECEDENCE (McKeeman [MeKee 66])
McKeeman extended Wirth's concept by first separating

the precedence matrLx into two tables--one for looking for
the tail of the handle, the other, for the head of a handle---
and then having the recognizer look at more context so
that fewer precedence conflicts arise. The constructor will
therefore accept a much wider class of grammars.

(a) The top two symbols S~_~, S~ of the stack and T, the
incoming symbol, are used to decide whether T should be
put into the stack, or whether Si is the tail of a handle
and a reduction should take place.

(b) Similarly, in order to go back in the stack to find the

V o l u m e 11 / N u m b e r 2 / F e b r u a r y , 1968

SotSl~...,S i IS A STACK HOLDING A PORTION

OF THE SENTENTIAL FORM UNDER kNALYSIS

1
S i ~-R

READ OUR SYMBOL FROM
SOURCE PROGRAM; STORE IN R

®

TRUE

Yes

@

FIG. 7.

(PL ~ (Sj_l, Sj, S j+ I) ? F~S E

TRUE

AND GET LEFT PART U; i ~- j ; S i ~- U

.

Recognizer using Wh'th precedences plus
M c K e e m a n t r i p l e s

initial symbol of the handle, three symbols instead of two
are used.

This technique should be compared with the one pro-
posed by Eickel et al. [Ei 63]. See Section II.C.1. In prac-
tice, the number of different triples is too large (over 10,000
for a dialect of PL1). Also, in most cases two symbols
suffice to determine uniquely what is to be done. McKee-
man's recognizer compromises by using Wirth's two-
argument precedences whenever possible and switching to
triples only when necessary. When looking to the right to
see if the stack contains a handle, a matrix MATRIX1
with entries @ (© or ©) , @, and ® (@ and either © or
©) are used. If ® holds between the top stack symbols Si
and the incoming symbol T then a list of triples is searched
to find the vMue of the following three-argument function
P1;

l t r u e S~ © 7'(S~ is ta i l of a h an d l e) in t h e
P I (Si-1, S~ , T) := c o n t e x t Si-1 S~ T ;

[f a l s e Ti @ S holds in t he c o n t e x t Si-lSi T.

Of course this function nmst be single valued for all
triples, and the constructor checks this. A similar matrix
M A T R I X 2 with entries @, © and @ (© and either ©
or @) and a function P2 are used when looking in the
stack for the initial symbols of the handle:

t t r u e S]--1 © S j (S i is h e a d of a hand le) i n

P2(Si-t, Sj , Sj+~) = t he c o n t e x t Sj-~ Si Si+~ ;
I f a l s e Si-1 (~ Si holds in t h e c o n t e x t

Si--i S i Sj+I •

For the grammar of Figure 1, matrices and functions in
Table I n are generated; the recognizer is given in Figure 7.

C o m m u n i c a t i o n s o f t h e A C M 8 5

The use of triples helps avoid most of the unpleasantness
one encounters with precedence grammars. But again,
semantic routines may only be called when a handle is
detected, so that it may be necessary to alter the grammar
for this reason. McKeeman is writing a compiler for a
dialect of PL1 on the IBM 360 using this technique. The
matrices MATRIX1 and MATRIX2 are about 90 X 45
and 90 X 90 (each matrix element is two bits long), while
roughly 450 triples are necessary. An alternative approach
now being considered is to throw out the 90 X 90 matrix
used to find the head of the handle. Then, when a handle is
in the stack, all possible right parts will be compared with
the stack contents to determine the correct production to
apply.

B.4. TRANSITION MATRICES
(Samelson and Bauer [Sam, 60], Gries [Grie 67a])

This technique for parsing sentences was first introduced
by Samelson and Bauer. In their version two stacks are
used--an operator stack and an operand stack. The sen-
tence is processed from left to right; incoming identifiers
are pushed onto the operand stack, while the incoming
operators (+ , / , begin , etc.) are compared with the top
operator on the operator stack. If a reduction cannot be
performed, the incoming operator is pushed onto the
operator stack. If a reduction can be performed, a sub-
routine is executed that performs some operation using
the top operator stack element and the operands on the
operand stack, deletes those elements used, and pushes a
resulting operand onto the operand stack. Note the
similarity with the operator precedence technique; two
terminals (operators) are used to determine the process to
be performed--nonterminals (operands) play no role in
this. The extra operand stack is used just to make it easy
to reference the terminals and nonterminals separately and
is a practical, not a theoretical, consideration. The only
real difference is that, while the operator precedence
technique uses a matrix of precedences, the transition
matrix technique uses a matrix of subroutine names. The
top operator stack element and the incoming symbol
determine an element of the matrix which is the name of a
subroutine to execute; this subroutine then performs the
necessary reduction or pushes the symbol into the operator
or operand stack. Thus the productions do not have to be
searched at each step to determine the reduction to make.

The transition matrix has been used as an analytic
syntax language in a number of compilers. Gries has writ-
ten a constructor which builds a transition matrix recog-
nizer for a large class of operator grammars. The restric-
tion to operator grammars was made so that the con-
structed recognizers would be similar to the recognizers
produced by hand.

The constructor begins by using the following scheme to
reduce the number of elements in the stack which must be
tested in order to find the beginning of the prime phrase
(not the handle). Suppose that

<cond} ~ i f <be} t h e n (expr) else (expr) (4.1)

S O ~- "l";U1 = ~4PTY;

ie-o

1
READ ONE CHARACTER

FROM SOURCE PROGRAM;

STORE IN R

1
JU~ ° TO SUBROUTINE DEFINED BY

~ATRIX EL~T CORRESPONDING TO

ROW DETEEMINED BY S i and

COL DETERMINED BY R.

FIo. 8. Transition matrix recognizer

Son...S i IS A STACK HOLDING

SYMBOLD Vl~... ,V i OF THE

SEN~ENTZAL FORM UNDER ANALYSIS.

is a production of the grammar. This would be changed to
the four productions

"if" ~ i f
"ibt" ~ "if" (be} then
"ibtee" --~ "ibt" <expr) else
(cond} --~ "ibtee" (expr)

These intermediate reductions merely allow us to pu t
into the stack a representation " ib t" of the three symbols
i f (be) t h e n . Similarly we represent i f (be) t h e n (expr}
e l s e by "ibtee". These new "quoted" nonterminals we
represent by V, V1, V2, etc.

At any step of the parse, then, the stack will consist of
symbols Vj , j = 1 , - . . , i, each of which is a quoted
symbol- -a representation for the head of the right part of
some original production--plus perhaps a final non-
terminal operand U. The sequence

V1V2 . . . V~(U) TjTj+i . . . T,~

is thus not a sentential form but a representation of one.
(The parentheses around U indicate that it may or may
not be there.) In general there are three possible actions
at each step of the parse:

1. (U)Tj may form the head of another right part,
yielding upon reduction V1V2"" V~V~+iTj+i
• . . Tm;

2. V~(U) and perhaps Ti may form a right part to be
reduced, yielding ViV2. ." V~-iU1Tj '" Tm or
V1V2.. . V~_iU1Tj+i... Tm;

3. V~(U)Ty may form the head of some right part ,
!

yielding upon reduction V1V2"" V~-iVi T j+ l ""
Tm.

The constructor checks each pair V, T and each triple V,
U, T to see which of the three possibilities exist. If at
most one exists for each pair and triple, and if the reduc-
tion to be performed is unique, then the transition matrix
and subroutines are constructed as follows: One row is
allotted to each quoted symbol V and one column to each
possible terminal symbol T. In each matrix element
Mv,r is stored the number of a subroutine to execute if V
appears as V~ and T as the incoming symbol. A corre-
sponding subroutine is constructed which checks for the
presence of the nonterminal U and executes the appro-
priate reduction. We use a single stack, V~, V2, • • • , V~

86 Communica t ions of the ACM Volume 11 / Number 2 / February, 1968

TABLE IV

"E+" I
" T * ' [
"C [
1:

2:

3:

4:

5:

6:

7:

8:

T~
J_ + * () I

1 4 5 6 8
2 2 5 6 2 8
3 3 3 6 3 8

4 5 6 7 8

i f U1 = E o r U1 = T o r U1 = P
t h e n S U C C E S S E X I T e l s e ERROR;
i f U1 = T o r U1 = P
t h e n begin i ~-- i -- 1 ; U1 +- E; g o t o GO I N e n d e l s e

ERROR;
i f U1 = P

t h e n b e g i n i ~-- i -- 1; U1 +- T; g o t o GOIN e n d e l s e
ERROR;

i f U1 = E o r U1 = T o r U1 = P
t h e n b e g i n i +- i + 1; Si ~ " E + " ; U1 ÷-empty; g o t o

S C A N e n d e l s e ERROR;
i f U1 = P o r U1 = T
t h e n b e g i n i ~-- i + 1; S~ +- " T * ' ; U1 +-empty; g o t o

S C A N e n d e l s e ERROR;
i f U1 = e m p t y
t h e n begin i ~ i + 1; S~ ~-- " (" ; U1 +--empty; g o t o

S C A N e n d e l s e ERROR;
i f U1 = E o r U1 = T o r U1 = P
then begin i ~-- i -- 1; U1 ~-- P; g o t o SCAN e n d e l s e

ERROR;
i f U1 = e m p t y
t h e n b e g i n U1 ~ P; g o t o SCAN e n d e l s e ERROR;

and put the U in location U1. The basic recognizer is given
in Figure 8 ; the matrix and subroutines generated from the
g rammar in Figure 1 are given in Table IV.

A matrix for ALGOL is about 50 X 40, with perhaps 500
subroutines. The checks for U1 = e m p t y may be deleted
by doubling the number of rows of the matr ix (see [Grie
67a]). Some alterations are usually necessary once the
recognizer is generated, but semantics m a y be inserted at
any step of the parse (in any of the subroutines 1-8, Table
IV), and not just when a right par t is recognized. The
g rammar does not have to be changed much, although it
must be an operator grammar. The constructor itself has
not yet been used to generate a compiler, but the generated
recognizers closely resemble recognizers built by hand
using the same technique (see [Grie 65]).

This is perhaps the fastest technique. In general,
switching tables are used whenever speed is essential.
Note tha t the productions need not be searched each t ime
to determine the reduction to make and the semantic
routine to execute. I t s drawbacks are the space used and
the large number of subroutines needed to implement the
technique.

B.5. PRODUCTION LANGUAGE
(Floyd [Flo 61], Evans [Ev 64], Earley [Ear 65])

Production language is an ana ly t i c syntactic meta-
language for writing compilers, introduced by Floyd and
modified by Evans. I t consists of a set of p r o d u c t i o n s (note

PROGRAMO: .L

E0:T0:P0: (
I
o"

E1 : ±E±
(E)

E +
o"

T1 : T*
E + T~

T~
o"

Pi: T * Po"
Pa

(7

FIG. 9.

*E0
ERROR EXIT
*E0

-~ P *P1
ERROR EXIT
SUCCESS EXIT

P ,P1
,TO
ERROR EXIT
*P0

E~ E1
E~ E1

ERROR EXIT
--~ To" T1
--~ To" T1

ERROR EXIT

Production language recognizer

carefully the different use of the word produc t ions) , an

example of which is:

L0: $3S~1 I ~ $2'$1' l'G1

A more naturM name for this would be a reduct ion, since
it is used to indicate how to reduce, or parse, a string.

We start parsing a sentence by putt ing the first symbol
± of the sentence on the stack. Then we sequence through
the productions, comparing the top of the stack with the
symbols $1, $2, • • • directly to the left of the first bar "]".
When a match is found, the matched symbols S1,S~, • • •

in the stack are replaced by the symbols S / , $2' (I f
no replacement is to be made the arrow " -~" and symbols
S / , S~' do not appear.) The symbol ~ appearing as some
S~ matches any symbol on the stack. Then, if "*" appears
following the second "1" the next input symbol is scanned
and pushed onto the stack. FinMly we start comparing
symbols of the stack again, beginning with the production
labeled by the name appearing at the fight of the produc-
tion (G1 in this case). Any production may be labeled.
Earley has writ ten a constructor which produces, from a
suitable (synthetic) phrase structure grammar, a recog-
nizer writ ten in production language.

The production language program generated from the
g rammar in Figure 1 is given in Figure 9.

Semantics are introduced once the productions have
been generated by inserting "act ions" of the form E X E C
i, where i is the number of some semantic subroutine,
directly after the second bar "1" in any line of a production.

I t is important to realize tha t a production language
description is a de te rmin i s t i c description of a language. I t
is actually a language for writing recognizers which parse
sentences of a language. This is not the case with the usual
phrase structure grammar.

Production language, or a variation of it, has been used
in a number of systems. Once one has some practice, it is
quite a natural, flexible language to program in. A pro-
g r immer can learn to write compilers with it relatively
easily. No compilers have yet been written using a mechan-
ically constructed recognizer. The E X E C actions may
be inserted in any production, so tha t in general few

V o l u m e 11 / Number 2 / February, 1968 C o m m u n i c a t i o n s o f t h e ACM 87

alterations will have to be made in the grammar. More
context can be used by the recognizer, so that a grammar
is more likely to be accepted by this constructor than by
the other four.

We would venture to say that this branch of TWS is
fairly complete. One can devise only a finite number of
really different left-right recognizers for parsing sentences
using limited context. Even the first four recognizers
listed here differ only in the programming techniques
used--theoretically they are all (1,1) bounded context in
the terminology of Section II.C.

The operator precedence technique is the most well-
known of the techniques. I t is often used to recognize
portions of a language, most frequently arithmetic and
Boolean expressions, as is done in the IBM 360 (H-level)
FORTRAN compiler. See JAr 66, Grie 65] for documentation
of other compilers using this technique. [Gall 67] also
mentions it. The transition matrix technique (but not its
constructor) has been used to write several ALaOL coin-
priers [Grie 65, Sam 60], especially within the ALCOR group,
as well as NELIAC compilers, under the name CO-NO
table [Hals 62, Mas 60]. Both of the above techniques
have undoubtedly been used in many other compilers.
The production language is used in an ALGOL compiler
[EvA 64], but it is also a significant part of two compiler-
compilers [Feld 66, Mond 67] in which a number of other
compilers have been written [Rov 67, It 66]. Two other
compiler-compiler projects use this language [Fie 67,
Grie 67b], and independent variations of it have been used
by [Che 65] and others. The precedence and extended
precedence techniques have been used mainly by their
authors, Wirth [Wir 66a, Wir 66b] and McKeeman
[McKee 66].

In operator precedence, precedence, and extended
precedence recognizers, each time a handle (or prime
phrase) is recognized, the productions nmst be searched
to find the symbol to which the handle should be reduced
and the semantic routine to be executed. Similarly, when
using the Floyd-Evans analytic production language, the
stack may be matched against several possibilities before
a reduction can be performed. All these methods are there-
fore slowed down unless some efficient table searching can
be performed. The transition matrLx technique solves the
problem by coding a separate subroutine for each possible
reduction and by using the switching table; the dis-
advantage here is the amount of space used for the matrix
and subroutines.

For the theoretically inclined reader, we now proceed
to discussions of more generM, powerful, and complicated
(and therefore less efficient) left-right recognizers. Basic
references on the theory of formal languages are also given
at the end of the next section.

R~F~RENC~S FOI~ II.B
Operator precedence: Ar 66, Flo 63, Gall 67, Grie 65.
Precedence and extended precedence: McKee 66, Wir 66a, Wir

66b, Wir 66c.
Transition matrices: Grie 65, Grie 67, Hals 62, Mas 60, Sam 60.
Production language: Che 65, EvA 64, Feld 66, Fie 67, Grie 67b,

It 66, Mond 67, Roy 67.

C. F o r m a l S t u d i e s o f S y n t a x

C.1. BOUNDED CONTEXW GRAMMARS (Eiekel [El 63, 64]
Floyd [Flo 64a], Irons [Ir 64], Wirth and Weber
[Wir, 66c])

A grammar is called an (m, n) bounded context grammar
if and only if the handle is always uniquely determined
by the m symbols to its left and n symbols to its right.
During a parse, a left-right recognizer may thus find the
handle of a sentential form of an (m, n) bounded context
grammar by considering at each step at most m symbols
to the left (into the stack) and n terminal symbols to the
right of a possible handle. The first four types of grammars
discussed in Section II.B are essentially (1,1) bounded
context grammars.

In a sense, to construct a (bottom-up) recognizer for an
(m, n) bounded context grammar 9 is to construct an
equivalent context sensitive grammar [Gin 66a, p. 9] 91 from
9. A context sensitive grammar is a grammar with produc-
tions of the form x Uy ~ xuy.

Thus, in such a grammar, a replacement of u by U can
be performed only if x is to the left and y to the right of u.
When building the recognizer, context is added to the
left and right in each production (and thus more produc-
tions are constructed), until the grammar states ex-
plicitly and unambiguously in what context each reduc-
tion can be performed.

Recognizers for (m, n) bounded context grammars for
m > 1, n > 1 are likely to make unreasonable demands on
computer time and storage space. Therefore (m, n) bounded
context grammars have not been used so far in compilers.

One of the earlier papers on constructing recognizers
for (1,1) bounded context grammars was [Ei 63]. The
first step in the construction algorithm is to insert inter-
mediate productions to change the length of right parts of
productions to one or two. Thus the productions

U1 ~ abcd, U2 ----* abd

would be changed mechanically to

U~-----~ ab, U4-* U3c, U~ -+ U4d, U2 ----~ U3d.

(Contrast this with the similar technique used in Section
II.B.4.) Now when the recognizer looks for the handle at
the top of the stack, the two top stack symbols S~ and
S~_~ and the incoming terminM symbol Tj. must uniquely
determine the step to be taken. Thus, for each triple
($1, $2, T) one and only one of the following conditions
must hold:

1. S~$2 is a handle and one reduction U :: = S~$2 may
be executed.

2. $2 is a handle and one reduction U ::= $2 may
be executed.

3. T must be pushed onto the stack.
4. S~S~T may not appear as a substring of a sententiM

form.
The Ngorithm for producing the triples and the corre-
sponding actions is given in [Ei 63], along with examples.

88 Communicat ions of the ACM Volume 11 / Number 2 / February, L968

This ~dgorithm and the recognizers produced have been
programmed and tested but not used to write compilers.

There have been three major papers on general bounded
context analysis. Each defines "context bounded" slightly
differently. The idea behind all of them, though, is the
same, and we do not discuss the differences here. The paper
by Yloyd on bounded context [Flo 64a] and the paper by
Irons on structural connections [Ir 64] should be read by
any person interested in delving further into the mysteries
of bounded context, although neither gives an algorithm
for actually constructing the recognizer. Eickel 's aim
[Ei 64] is to describe the recognizer and its construction in
detail (and his paper is therefore less readable than the
other two). The recognizer uses the usual stack. As in
[Ei 63] the grammar is first reduced to one in which all
productions have length 1 or 2. The constructor then
produces 5-tuples

(x; S; y, k, U)

where x, y are strings with length (x) _< m and length
(y) _< n, S is a symbol, U a nontenninal, and k a posi-
tive integer. Suppose the stack contains

S o ' " S i - iS i

and let

TYj+ i " " T~+t-1 T~+z " " T,,,

be the rest of the input string, where l > 0. The number
l specifies that the first 1 symbols of the input string are
needed as context to the right at this point. The 5-tuples
are searched until one is found such that S = S~,
x i s a t a i l o f S 0 . . . S ~ _ ~ , a n d y i s a h e a d o f T j . . . Tj+l-~.

The step to be taken depends on the corresponding k
and U as follows:

lc action

0 stop--syntax error
1 replace handle S~ by U (make a redl~ction U ~ Si)
2 i ~ i - l; S i t U (replace handle S~_l S~ by U)
3 i f l = 0 l h e n 1 ~-- 1 else begin i ~-- i + 1; Si ~ T¢; delete

Tj from input string; l ~ 1 -- 1; e n d
4 1 s- l -4- 1 (more context needed on the right).

Note that, although a g rammar is (m, n) bounded con-
text, n symbols to the right are not always necessary. The
recognizer uses only as much context as is necessary to
determine the action to be taken; this is the reason for the
number 1 above.

Eickel has programmed and tested both the constructor
and recognizer, but no compiler has been written using
this technique. The constructor starts by limiting the
length of x and y to 1 and producing all possible 5-tuples.
I f two (or more) 5-tuples exist with the same x, y and S
but different lc (or the same k but different U), then the
grammar is not (1,1) bounded context. For such 5-tuples,
the lengths of x and y are increased, thus adding more
context (and more 5-tuples), unt, il the conflict is resolved
or some maximum m, n are reached.

Wirth and Weber [Wir 66c] have extended the idea of
precedences between symbols X and Y (see Section

II .B.2) to strings x and y. Thus we have x © y, x © y,
and x @ y where length (x) < m and length (y) _< n. An
(m, nn) precedence grammar is of course also (m, n)
bounded context according to our definition. A precedence
g rammar according to Section II .B.2 is a (1,1) precedence
grammar.

C.2. D E T E R M I N I S T I C P U S H D O W N A U T O M A T A

(Ginsburg and Greibach [Gin 66b])
A D P D A is an automata-theoretic formalization of the

concept of a left-right recognizer working with a stack.
One has a finite set $ = {$0, " " , $,,} of "s ta tes"
containing a start state So, a set of inputs (~ (terminal
symbols), a set ~ (corresponding to our nonterminal
symbols) containing a start symbol Z and a mapping 8;

8: (states X (nonterminal symbols) X (input sym-

bols)) ~ (states X (strings of nonterminal symbols))

o r

8: (s X ~ X (a U { A })) ~ (s x ~ *) .

This mapping 8 must be a function (single valued). Other
restrictions are also placed on it to take care of the empty
symbol A which may appear anywhere in the input. At
each step we have a triple

state stack rest of input

(where i >_ 1), the initial triple being ($o, Z, T~ . . . T,,,).
At each step, with the help of the mapping ($. , U~, Tj)

($q, U~' • • • U~') where n >_ 0, the triple gets changed
to

, • U " U ' ($q Ui" • i-lU1 ' ' ' n, T j + i ' " T,,,).

A string (of inputs) is accepted if the final state S,,, is a
member of a set of final states F.

A language (a set of strings of input symbols derivable
from some grammar) is deterministic if it is accepted by
some DPDA. Note that a deterministic language is de-
fined by a machine--a D P D A - - a n d not by certain proper-
ties of a g rammar defining the language. Ginsburg and
Greibach prove some interesting properties of DPDAs and
deterministic languages. What is significant for us here is
the relation to LR(k) languages of Knuth (Section I I .C.3) .

Note that one can implement a D P D A using a transition
matrix M, where each possible state Sp is represented by
a row and each terminal T by a column. At each step the
matrix element M$~.r; then determines a subroutine
which performs the appropriate mapping depending on the
U~ at the top of the stack. The transition matrix technique
is thus fairly general; but the constructor written by
dries (Section I I .B.4) only accepts a subset of the (1,1)
bounded context grammars.

C.3. LR(/c) GRAMMARS (Knuth [Knu 65])
A grammar is LR(/c) if and only if a handle (p. SO) is

always uniquely determined by the entire string to its
left and the /c terminal symbols to its right. The corre-

Volume 11 / Number 2 / February, 1968 Communications of the ACM 89

sponding language is an LR(k) language. Thus, when
parsing a sentence using a stack, the left-right recognizer
may look at the complete stack (and not just a fixed num-
ber of symbols in it) and the following k terminal symbols
of the sentence. This is the most general type of grammar
for which there exists an efficient left-right bottom-up
recognizer that can be mechanically produced from the
grammar. In fact, a grammar accepted by any of the other
constructors discussed is LR(k) for some It. Thus the
LR(k) condition is also the most powerful general test for
unambiguity that is now available.

I (nuth gives two algorithms for deciding whether or not
a grammar is LR(k) for a given k. The second algorithm
also constructs the recognizer--if the grammar is L R (k) - -
essentially in the form of a DPDA (above). This may look
strange at first sight, since there are, in general, an infinite
number of strings S~, $2, .. • , S~ which may appear in
the stack and thus an infinite number of strings which
must be used to make parsing decisions, while a Dt~DA
requires only the top stack element, a state, and the in-
coming symbol.

However, since the number of productions is finite, at
any step of a parse there are only a finite number of
possible actions, no mat ter which symbols S~, $2, - ' . ,
S~_~ are in the stack. Thus it is only necessary to classify
the possible strings S~, $2, .. • , S~_x into classes, called
"s ta tes" Sv and show that, if the grammar is LR(k) for
some k, one can describe the necessary single-valued
mapping:

(S , , S~, T~) -~ ($q, S / . - . , S , ') .

Of course we have greatly simplified the process here in
trying to get across the idea; the symbols S~ in the stack
of the DP DA are not only symbols of the original grammar
but may themselves be complicated sets in order to be
able to determine the necessary single-valued mapping.

Knuth also proves by construction that for each langu-
age 2 accepted by a DPDA there is an LR(1) grammar
which defines ~. Thus any LR(k) language is also LR(1) ,
although not with the same grammar. Earley [Ear 67] has
written a constructor for L R (k) grammars, whose output
is in the form of productions similar to the Floyd-Evans
productions.

C.4. RECURSIVE FUNCTIONS OF]REGULAR EXPRESSIONS

(Conway [Con 63], TRier [Tix 67])
Conway discussed a compiler whose syntax is specified

by a number of transition diagrams, each of which recog-
nizes strings derivable from a certain nonterminal, such as
in Figure 10.

(term):
(

(ld" e " "er} (e ~ r e a s i b n }

FiG. 10. Two transition diagrams

At each step of the parse of a sentence, there exists a,
current node of some current diagram. The action performed
by the left-right recognizer (working ~xith lhe diagrams
plus a pushdown stack) is determined as follows:

(a) If the next input symbol (a terminal) matches the
name of one of the lines emanating from the current node,
traverse that line to the new current node and scan the
next input symbol.

(b) If no match as in (a) occurs, and if one line is
labeled with a nonterminal U, then traverse that line,
push the current diagram name and the new current node
onto the stack, and change the current node to the first
node of the diagram labeled U.

(c) If (a) and (b) do not occur and there is an unlabeled
line, traverse that line.

(d) If the current node is an EX IT , we have recognized
a string derivable from the nonterminal described by the
current diagram. Change the current node (and diagram)
to the one specified by the top stack element and delete
that element from the stack.

This is a top-down left-right recognizer without backup;
note the prediction in step (b) that a string derivable from
U will be recognized. This method effectively breaks the
syntax analysis into small, simple parts and saves space,
since the character set involved in each subroutine is quite
small. It is clear that each transition diagram represents a
finite state automaton which is capable of recursively
calling other finite state automata.

TLxier independently formalized this concept in his
thesis. He considers the productions U~ --~ x~ to be regular
expressions U~ = x¢, where the set operations union ('4-),
product, and closure (*) are used. Thus the productions

(identifier) --~ (letter)

(identifier) --~ (identifier) (letter)

may be written equivalently as

(identifier) = (letter) + (identifier) (letter)

o r

(identifier) = (letter) (letter)*.

Tixier has rewritten the 120 productions for Euler [Wir
67c] as 7 functions of the 7 variables, 3 of which we give
here, with the symbols " (" , ") " used as metasymbols to
bracket set expressions:

program = block
block = begin ((new id A- l a b e l id);)* (id:)*expr(;(id:)*expr)*

e n d
expr = (out + if expr t h e n expr else --4- id ([expr] + .)*~--)*

(go to primary + block + catena)

Tixier's constructor can manipulate the equations
(productions) of a grammar, if desired, to arrive at the
smallest number of equations, the main goal being to parse
as much as possible via efficient finite state automata.
For a suitable grammar the constructor then builds a
(modified top-down) recognizer which can parse any
sentence of the language unambiguously and without back-
up, in the form of a set of finite state automata (one for
each equation) calling each other recursively. The main

9 0 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 2 / F e b r u a r y , 1968

difficulty here is to be able to determine unambiguously
from the current node and the input symbol if another
finite state automaton should be called, and if so, which
one. An accepted grammar, together with its language, is
called regular context free (RCF).

The constructor actually builds an efficient, restricted
DPDA. Thus RCF languages are LR(1) languages.

C.5. SUMMARY
Figure 11 presents an inclusion tree for the classes of

grammars accepted by the particular constructors dis-
cussed in this paper. This tree may be confusing in some
places. Some metalanguages, such as]~loyd's production
language, are powerful, but a particular constructor of a
recognizer using such a metalanguage may restrict the
grammars acceptable. If a node has a reference on it, the
node refers to the language (or constructor) defined in
that paper. The following should be noted (see Figure 11) :

(a) Although (1,1) grammars and extended precedence
grammars both use triples, the advantage for (1,1) gram-
mars arises from the automatic intermediate reductions
performed, which essentially allows more context. Of
course, any constructor could be changed to include these
intermediate reductions.

(b) Transition matrix grammars fall somewhere be-
tween (1,1) and (0,1) bounded context.

(c) We are making the assumption here that the opera-
tor precedence conditions have been augmented to dis-
allow identical right sides. Otherwise inclusion does not
hold. The advantage of the matrix technique over operator
precedence is, as in (a), the use of automatic intermediate
reductions.

(d) Feldman shows [Feld 64] that each DPDA is equiv-
alent to some program written in production language.

Let us for a moment return to the problem of classifying
recognizers as top-down or bottom-up. Tixier's recognizer
(Section III .C.4) is definitely top-down; you can see the
prediction (the goal) being made when he switches to a
new finite state automaton. Is Knuth 's constructed
recognizer for LR(k) grammars top-down? Some would
say no. The recognizer just makes reductions using the k
symbols to the right and the stack symbols to the left as
context. The concept of LR(k) itself, together with its
recognizer, is an extension of the (m, n) bounded context
recognizers, which are generally bottom-up. Furthermore,
the extra "states" have been added to the stack just to aid
in the determination of the reduction to be performed.
However, others say that by using these states a predic-
tion or goal is actually being introduced. In favor of this is
the fact that both Tixier's recognizer, which is top-down,
and Xnuth's recognizer are both DPDA. Here we can
truly say that these concepts have merged, and a case
could be made for either.

We have at tempted to survey a few of the concepts oc-
curring in the study of syntax related to compiler writing;
much has been omitted. Mention should be made of Gil-
bert [Gil 66] who adds to a context sensitive grammar a
selection function that indicates (based on the sentential
form) which production to use (if several possibilities

phrase structure grammar

LR(k) grammars and production language
[Knu 651 (d)

(m, k) bounded context LR(1)
[Ei 64] [Knu 651

On, k) precedence (1, 1) bounded context RCF
[Wir 66c] [Ei 63] [Tix 66]

(a) (b)

/ \
extended precedence transition matrices

[McKee 66] [Grie 67a1

precedence operator precedence
[Wir 66c] [Flo 631

FIG. 11. Inclusion tree

exist) in making the reduction. Thus with the use of the
selection function the synthetic grammar can be used as
an analytic grammar. Gilbert proves several properties of
these grammars and selection functions and shows that
one can completely describe the syntax of languages such
as ALGOL and FORTRA~ " (including comparisons of dec-
larations and uses of variables).

We have not surveyed top-down recognizers in detail,
since they are covered well in [Che 64c] and [Flo 64b]. The
problem of ambiguity in context free languages has been
covered only slightly as it relates to TWSs. The automata
theory field is also related but has not been mentioned.

In fact, we have had to omit from the bibliography
many papers dealing with context free grammars, auto-
mata theory, and machines. Many of these, and references
to almost all the others, can be found in the Journal of the
Association for Computing Machinery, in Information
and Control, and in [Gins 66a1.

REFERENCES FOR II.C
Introduction to the theory of formal languages: Bar 64, Gins 66a.
Pure or modified top-down algorithms: Barn 62, Br 62a, Che

64c, GraR 64, Ing 66, Ir 63a, Xir 66, Kun 62, Rey 65, Scho 65,
War 64.

Construction of efficient recognizers--sufficient conditions for
unambiguity: Ea 65, Ea 67, Ei 63, Ei 64, Flo 63, Flo 61b, Gil 66,
Gins 66b, Grie 67a, Ir 64, Knu 65, McKee 66, Paul 62, Wir 66c,
Tix 67.

Surveys, tutorials on recognizer techniques: Che 64c, Flo 64h.
GraR 64.

Ambiguity in context free languages: Can 62, Flo 62a, Flo 62b,
Gin 66a, Gor 63, Lang 64, Ross 64.

Thirteen different ways to define languages: Gorn 61.

Volume 11 / Number 2 / February , 1968 Communica t ions o f t h e ACM 91

III . SEMANTICS

A. S y n t a x - D i r e c t e d S y m b o l P r o c e s s o r s

The programs discussed in this section are not properly
called compiler-compilers, although each has been used to
write compilers. Their common treatment of compiler
writing as a symbol manipulation task makes each of these
programs both more than and less than a TWS. Most of
the early TWS efforts were of this type, the most notable
being [Ir 61]. Since such systems are more general, they
have been used heavily in the various nontranslator tasks
described in Section IV.A. In fact, the discussion of AED
[Ross 67] is deferred to that section, because its goals have
been more general from the outset.

A.1. T M G (McClure [McC1 65])
The T M G system was developed at Texas Instruments

as a tool for writing simple one-pass compilers that produce
symbolic output. The syntax technique is a simple top-
down scan with backup. However, the embedding of
semantic rules allows the recognizer to be more efficient by
eliminating some syntactically possible goals on semantic
grounds.

The basic T M G statement form is a sequence of actions
separated by spaces. Any action may be preceded by a
<label}, and it may be followed by a <destination} which is
taken in ease the action fails. The <actions} can be: inter-
mediate goals for the syntax recognizer, string computa-
tions on the input, or built-in statements. These actions
are all to be performed by the translator in building an
intermediate tree. The actual ot/tput of code is done by a
different set of routines, which are discussed below.

There is a character-based symbol table which is built
from input strings using the primitives M A R K S and
I N S T A L L . Consider the following example:

INTEGER: ZERO* MARKS DIGIT DIGIT* INSTALL.

The action ZERO* scans all leading zeros; then M A R K S
notes the current value of the input-string pointer. The
action D I G I T D I G I T * scan all characters in the class
<digit}. The execution of I N S T A L L causes the string
starting at the pointer of M A R K S to be entered into the
symbol table and a reference to it to be entered in the in-
termediate tree. The only other information allowed in the
table is a set of declared F L A G S (Boolean variables) used
to describe the attributes of identifiers.

The built-in routines include conditional arithmetic ex-
pressions, number conversions, and a few input-output
functions. There are also some system cells, such am J , the
input pointer, and S Y M N R M , the length of the last string
entered. Output is also character-oriented, as the following
example will show:

LABELFIELD: LABEL = $($P1 / BSS / 0 / / $) .

This statement would be used to process the label in
some language. The " = " symbol signMs an output routine
which is bounded by "$(" and "$)" . The body of the out-

put statement will form one line of assembly code

value (P1) BSS O.

The symbol SP1 is a command to evaluate the first
construct to the left of the = , presumably the symbolic
name of the label. The / says insert a tab and B S S and 0
represent themselves. Finally, the / / places a carriage
return in the output. The output routines operate from
top to bot tom on the intermediate tree representation of a
program. Thus a S P n in an output routine may refer to a
subtree and the evaluation of S P n will then involve a
recursive call on another output routine. I t is also possible
to pass parameters by value to the inner routine. The paper
gives several examples of these functions and includes a
brief discussion of the error recovery capabilities of TMG.

The T M G effort was a pilot project and its clumsy syn-
tax would be easy to fix. I t has been used to write a number
of compilers, and a related system, TROL, has been used by
Knuth for teaching compiler writing. The E P L (Early
P L / I) used in MULTICS was written as a two-pass system,
using two sets of T M G definitions, to get better code. The
T M G system does not seem to be as coherent am some of
the systems considered below and would benefit from an-
other iteration.

A.2. TH~ M E T A SYSTE~aS (Schorre, [Sehor 64],
Schneider and Johnson [Seh 64])

The M E T A systems are the product of the Los Angeles
S IGPLAN working group on syntax-directed compilers.
Although the original work was diversified, the current sys-
tems are generally based on a model known as META-I I ,
developed by Sehorre [Schor 64]. Within this model the
parsing and translation processes for a language are all
stated in a set of BNF-like rules. These rules become reeur-
sive recognizers with embedded code generators when
implemented. The rules do not allow left reeursion, using
instead the prefix iteration operator $. Terminal symbols
are quoted; system symbols are preceded by " ."; and all
unmarked symbols are user's nonterminals. Parentheses
are used to group alternates within right parts. The follow-
ing rules are used in translating Boolean expressions:

1. UNION = I N T E R ('OR' .OUT('BT' *1) UNION .LABEL
*I].EMPTY) ;

2. INTER = B P R I M A R Y ('AND' .OUT('BF' *1) I N T E R
.LABEL "1 I .EMPTY) ;

3. B P R I M A R Y = .ID .OUT('LD' *) I ' ('UNION')';

The last rule defines a procedure for recognizing a
Boolean primary in an algebraic language. The word
B P R I M A R Y followed by " = " defines the name of the rule,
while the right part of the rule is both an algorithm for
testing an input stream for the occurrence of a union and a
code generator in ease an identifier (. ID) is found. The
above rules contain examples of the three basic entities
used in most META compilers. The mention of the name
of another rule, in this ease U N I O N , causes a reeursive
call on that recognizer to be invoked. The occurrence of a
literal string " (" states that the input stream is to be tested
for a left parenthesis. The output statement . O U T pro-

92 Communicat ions of the ACM Volume 11 / Number 2 / February, 1968

duces a line of text, where "*" always refers to the last
item recognized by the primitive nonterminal .ID.

The first mention of a *1 within a rule (as in Rule 1
above) causes both the generation of a label and the output
of that label. Subsequent references within the same rule
output the same label. That is, when a rule is entered new
labels may be generated. These labels exist only while the
rule is active. If a call is made to another rule, the labels
are pushed onto a stack. Upon return from the called rule,
the previous labels are restored. The action .LABEL *1
indicates that the label corresponding to *1 is to be written
o u t . . E M P T Y is a primitive nonterminal which has no
effect on the input but is always satisfied or true.

For the input stream "(A OR B) AND (C OR D)" the
following code would be produced where LD, BT, BF are
mnemonics for Load, Branch True, and Branch False
respectively.

LD A
B T L1
LD B

L1
BF L2
LD C
B T L3
LD D

L3
L2

The usefulness of META-II was severely limited by the
lack of facilities for backup or for reordering the output.
There have been several attempts to extend the META
techniques to a complete TWS. META-3 [Schor 64] was
an attempt to extend the basic META-II concept so that
ALGOI, 60 could be compiled for a 7090. It added some
ability for semantic tests and register manipulation, but
the additions never proved adequate. META-5 has been
used in a number of format conversion and source-to-
source language translations, but has not been used for
compilers. The most recent development is TREE META,
a multipass system using complex processing of inter-
mediate syntax trees. The slowness and inefficiency of
META compilers is recognized by their authors, but the
ease of implementation, the boot-strapping capabilities,
and the large class of languages they can handle are used to
justify the work that has gone into their development.

A.3. COGENT (Reynolds [Rey 65])
The COGENT system, designed at Argonne National

Laboratory and implemented on a CDC 3600, draws
heavily on the ideas of Brooker and Morris (Section
III.B.3), Irons [Ir 61, May 61], and LISP COGENT is very
well thought out and is considerably more comprehensive
than the other systems described in this section. The CO-
GENT compiler is written completely in its own language.
By boot-strapping three times, its own compilation speed
has been increased by a factor of six.

A program written in COGENT consists of two parts:
the syntax and a set of processing routines called genera-
tors. The syntax is given by a synthetic phase structure

grammar. Almost any context free grammar is acceptable,
including those with left recursion; only a few restrictions
are made concerning empty right parts. The recognizer
which uses the grammar is modified top-down, with alter-
natives at each step being processed in parallel. A string is
accepted if the recognizer finds a unique syntax tree for it.

Syntactic analysis produces a list structure to represent
the intermediate tree. For example, use of the production

(term) : : = (term) + (factor)

would produce a list element (term) with pointers to the
subtrees for (term) and (factor).

One can precede any production by a name of a genera-
tor (semantic routine), which is then executed when that
production is used in building the tree. When there is more
than one possible syntax tree (due to parallel processing of
alternatives), the execution of these generators is delayed
and syntax analysis continues until the local ambiguity is
resolved and only one tree remains. Then all the generators
are called in the correct order.

As an example, consider the labeled production:

processterm / (term) :: = (term) + (factor)

When a subtree with (term) as the root is completely
formed, the generator processterm will be called, with the
subtrees for (term) and (factor) as arguments. Processterm
may manipulate these subtrees, delete them, produce code
corresponding to them, and so forth.

The generator language is based on list processing opera-
tions and the mechanism of failure. List elements may have
varying numbers of pointers to other elements. The types
of list elements include numbers (fixed or floating), genera-
tor entry pointers, dummy elements, identifier elements,
and parameter elements. Fixed point numbers may be of
any magnitude and take up sufficient words to represent
that magnitude. This feature facilitates symbolic math-
ematics applications of COGENT.

In addition to the conventional assignment statements,
generators may use synthetic and analytic assignment state-
ments to describe the synthesis and analysis of list struc-
tures. A synthetic assignment statement has the form

(identif ier) /= (template), (expression list)

where a (template), used for pattern matching, looks like a
production in parentheses with "/" substituted for" :: = "
The statement causes the (identifier) to be a copy of the
(template), in which the ith parameter (nonterminal) is
replaced by the valve of the ith expression in the (expres-
sion list). For example, the execution of the synthetic as-
signment statement

Z / = ((term) / (factor)*(factor)), X, Y

where X has the value ((factor)/ABE) and Y the value
(@actor)/BED), would assign to Z a copy of ((termS~ABE
• BED).

Similarly, analytic assignment statements of the form

(test expression) = / (t empla te) , (identifier list)

V o l u m e 11 / Number 2 / Feb rua ry , 1968 C o m m u n i c a t i o n s o f t h e ACM 93

are used to decompose an expression. The (test expression}
is matched against the (template}. If they match, the
value corresponding to the ith parameter (nonterminal) of
the template is assigned to the ith identifier of the (identi-
fier list). Thus if Z has the value ((term)/ ABE * BED),
then the statement

Z = / ((term} / (factor),(factor)), X, Y

will give X the value ((factor}/ ABE) and Y the value
((factor}/BED).

If (test expression} and (template} do not match, the
analytic assignment statement fails. Failure is the method
of branching in COGENT. If no conditional statement
includes the action that fails, the entire generator fails.
This failure proceeds up the chain of generator calls until
some conditional statement is encountered.

A program in COGENT can use any number of symbol
tables. The action label $IDENT n specifies that the result
of that production (which must be a character string)
should be placed in symbol table n. If it is already there, a
pointer to the old copy will be returned; i.e. all identifiers
in any given table have unique character strings. Each
entry in a table consists of the identifier plus a pointer ele-
ment, which normally points to the attributes of that
identifier.

Output is achieved by calling the routine P U T P with a
single parameter--the internal code of a character to be
placed in the output line. When the line is filled, it
is written out and a new line started; however, OUTP can
be called to print out a line before it is completely filled.
Another primitive generator, S T A N D S C N (X, PUTP) ,
will map a list structure X into the string S represented by
its end nodes. S T A N D S C N finds the symbols in S and
passes them one at a time to PUTP.

COGENT is admittedly experimental and has several
shortcomings. The structure of the language for generators
is not as neat as ALGOL has shown languages can be. One
syntax error in the input is fatal. List processing should be
generalized to include arbitrary plex-creation, rather than
just plexes based on the syntax. COGENT has been ap-
plied to a number of problems in symbolic mathematics.
Reynolds has suspended work on COGENT pending the
development of a better theory of data structures, which
he, among others, is working on (cf. Section IV.C).

A.4. ETC (Garwick [Gar 64], Gilbert [Gil 66]
and Pratt [Pra 65])

In this section we describe three other efforts, that are best
described as syntax-directed symbol processors. For vari-
ous reasons, these systems have not had the impact of
those discussed above and are presented in less detail.

The GARGOYLE system [Gar 64] was developed for the
Control Data 3600 by Jan Garwick at the Norwegian
Defense Establishment. There are reasonably complete
descriptions in internal reports, but the published paper
[Gar 64], which was written first, gives only a vague picture
of GARGOYLE.

GARGOYLE is like TMG (Section III.A.1) in many

ways; the recognizer is top-down with a facility for direct-
ing the search. All syntactic and semantic statements are
written in a five-entry tabular form: (label) (else} (next}
(link} (action). The sequencing rules are quite complex
(partly because backup is handled implicitly) and are nor-
mally done by a "steering routine." The backup mecha-
nism also requires complicated data handling involving
stacking of some variables and copying of others. All five
entries are used in multiple ways; e.g. the label may in-
stead be a code controlling how the line is to be interpreted.
The following example would be used to process an (assign-
ment statement).

(label) (else) (next} (link) (action}
R ASSIGN
L V A R
0 V A R I A B L E 1
1 N E X T 2 i f S YMB=:COLEQ t h e n

VARy----WORD
2 3 A S S IG N 4
3 E X P R 4
4 RE T URN O U T T E X T ("STO", 10);

O U T F I E L D (V A R , 20) ;

The first line is the header for routine ASSIGN, whose local
variable, VAR, is declared in the second line. If VARI-
ABLE finds a (variable} then the next symbol must be
COLEQ (" :=") or the routine fails. Line 2 is a recursive
call of ASSIGN for treating multiple left sides; the first
backup will lead to E X P R (which will compile the right
side), and subsequent returns will execute statement 4 once
for each variable in the multiple assignment. The (action}
in statement 4 produces text for storing into each succes-
sive value of VAR.

The language of the (action} column includes partial
word operators and a few fixed routines for table searching,
input-output, etc. The GARGOYLE user is expected to
embed assembly statements frequently, and the entire
(action} language appears similar to the high level machine
language of [Wir 66a]. GARGOYLE has been used by its
author to help implement a complex language [Gar 66], but
its wider use will require a somewhat cleaner design and
considerably better publication.

Thc TWS of Gilbert and McLellan [Gil 67] is based on
some syntactic ideas of Gilbert (Section II.C, [Gil 66])
and an attempt to revive the UNeOL [Ste 61] concept.
Source programs are to be translated into a machine-
independent language, BASE, which in turn can be trans-
lated into many machine languages. The first translation
is described in an intermediate language which is a macro
assembly language having a few fixed data structure con-
ventions; the second translation is described in a string
form like that of TMG. Although there are a number of
good ideas in the paper, they are not significantly different
from others in this section. Some of the bad ideas, however,
are uniquely illustrative.

The UNCOL notion of a machine-oriented but machine-
independent language has always foundered on the diver-
sity of languages and computers. Gilbert and McLellan
attempt to avoid this by Mlowing new operators to be de-

94 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 2 / F e b r u a r y , 1968

fined in BASE and passed blindly to each BAsE-to-machine-
language translator. This gives the appearance of machine-
independence but leaves untouched the basic problem of
which macros to choose. The authors also make a point of
the fact tha t their system is "rigorously based." This
presumably encouraged them to use the set of strings
"AmB-AmB-CCC ' ' as the programming language example
illustrating all aspects of their system. Finally, in a classic
example of misplaced rigor, they exclude infinite loops
from their system by not permitt ing loops and go to state-
ments. The only reference in this paper [Gil 67] to other
TWS literature is [Ir 61].

The AMOS system developed by P ra t t and Lindsay
[Pra 65, Pra 66] is a direct application of list-processing
ideas to TWSs. The source language is translated into an
intermediate language (I-language) which is interpreted by
AMOS. The I-language is a simple list processing language
with some string processing operations and crude arithme-
tic; e.g. "*ADD* P1, P2, P3" means "add P1 to P2 and
put the result in P3." The I-language was designed to be
minimal and to be expanded in macro fashion. The syntax
is t reated by a var iant of production language (Section
II .B.5) relying heavily on reeursive calls; the semantics is
written in I-language. The most interesting feature of
AMOS is the a t tempt to provide for the translation of data
structures as well as programs. AMOS has had some minor
successes in handling list structures, but the problem de-
serves much more attention (ef. Section IV.C).

R E F E R E N C E S FOR III.A
Ab 66, Gar 64, Gar 66, Gil 66, Gil 67, Kirk 65, Ir 61, McC165, :Met

64, Pra 65, Pra 66, Rey 65, Sch 64, Schm 63, Schor 64.

B. C o m p i l e r - C o m p i l e r s

The distinguishing characteristic of this set of TWSs is
the a t t empt to automate many of the postsyntactic aspects
of translator writing. Such systems might bet ter be called
compiler-writing systems because they include significant
programs which are resident at translation and execution
time, as well as metalanguage processors. The programs in
this section are more complex than most of those discussed
previously; none has ever been successfully implemented
by someone not in contact with a previous effort of the
same type. The following excerpt from a paper on FSL
(Formal Semantic Language) [Feld 66] outlines basic
philosophy and should serve as an adequate introduction
to our discussion of compiler-compilers.

When a compiler for some language, £, is required, the following
steps are taken. First the formal syntax of £, expressed in a syn-
tactic metalanguage, is fed into the syntax loader. This program
builds tables which will control the recognition and parsing of pro-
grams in the language ~2. Then the semantics of ~, written in a se-
mantic metalanguage, is fed into the semantic loader. This program
builds another table, this one containing a description of the mean-
ing of statements in £. Finally, everything to the left of the
double line in Figure 12 is discarded, leaving a compiler for ~.

The resulting compiler is a table-driven translator based on a
recognizer using a single LIFO stack. Each element in this main
stack consists of two machine words one for a syntactic construct
and the other holding a semantic description of that construct.

SYNTAX OF£

SEMANTICS OF

SYNTAX
LOADER

SEMANTIC
LOADER

• SOURCE CODE IN .C

- ~
E

COMPILER
KERNEL

MACHINE CODE

FIG. 12. A compiler-compiler

When a particular construct is recognized, its semantic word and
the semantic table determine what actions the translator will take.

The compiler kernel includes input-output , code genera-
tion routines, and other facilities used by all translators.

B.1. FSL AND ITS DESCENDENTS (Feldman [Feld 66])
The problem faced in the original FSL effort was the

development of a language for describing the postsyntactic
(semantic) processing. An adequate semantic metalan-
guage should permit the description of the source language
to be as natural as possible. I t should be readable so tha t
other people can understand the meaning of the source
language being defined. I t should allow a description which
is sufficiently precise and complete to enable efficient auto-
matic compilation. Finally, the metalanguage should not
depend on the characteristics of a particular computer.

The syntax metalanguage used in FSL is very close to
the production language discussed in Section II.B.5. A
s ta tement in this syntax language m a y include a command
" E X E C n" which is a call on the semantic s ta tement
labeled n. The only other interaction between syntax and
semantics is the pairing of syntactic and semantic descrip-
tions in the main stack.

The semantic metalanguage, FSL, was the main focus of
effort and is discussed in some detail here. The overriding
consideration in FSL was machine independence as op-
posed to object code optimization in the T R A N G E N ef-
fort discussed below. The plan was to have the meta-
language be machine independent, with the machine
dependent aspects of translation handled by a large set of
primitives embedded in the compiler kernel. Statements in
the metalanguage would be compiled (whence compiler-
compiler) into machine code made up largely of calls on
primitive routines. Some examples should serve to illus-
t rate this approach.

Suppose the syntax phase is processing a R E A L declara-
tion and calls semantic Routine 1 with the identifier being
declared in the second position of the stack (LEFT2) .

1: ENTER[SYMB; LEFT2, (STORLOC I DOUBLE), REAL,
LEV];

STORLOC e- STORLOC -4- 2

Here a description of the variable is placed in the symbol
table, S Y M B . The entries for the variable are its name, a
tagged address, the word R E A L , and the current block
level. Finally, STORLOC is increased by two, allocating
two cells to the double-precision variable.

Volume 11 / Number 2 / February, 1968 Communications of the ACM 95

When an identifier is scanned in an arithmetic statement,
semantic Routine 2 is called.

2: IF NOT LEFT1 IS CONSTANT THEN
IF SYMB[LEFT1, TYPE] = REAL THEN

RIGHT1 e-- SYMB[LEFT1, SEMANTICS]
ELSE FA ULT 1

In semantic Routine 2, if the identifier (in L E F T 1) is a
constant, the routine terminates. If not, the identifier is a
variable and must be looked up in the symbol table. The
table-lookup is accomplished in FSL through a special table
operand of the form

(table name) [(operand), (position name)].

This instance of a table operand initiates a search of the
table S Y M B for an entry (row) whose first column equals
the contents of LEFT1 . Then the specified position (T Y P E)
of the matched row is selected and compared with the
string construct R E A L . If they are the same, the variable
was declared to be R E A L and all is well. In this case the
S E M A N T I C S (tagged address) of the matched row in
S Y M B is assigned as the semantics of the real variable. If
the variable is not of type R E A L or is not in the table at
all, the statement F A U L T 1 will be executed. This causes
the printing of an error message on the listing of the source
language program being compiled.

Finally, suppose the syntax has recognized an addition
which is to be compiled and calls semantic Routine 3.

3: RIGHT2 ~ CODE(LEFT4 "b LEFT2)

The code brackets "CODE (" and ")" specify that the
statement within them is to be compiled into object code,
rather than executed during translation. The execution of
this statement will produce a call on a code generating
routine which uses the semantic descriptions in the second
and fourth positions of the stack to compile a code sequence
for addition. The semantic descriptions include the data
type, sign, index attributes, and current location of an
operand; these, along with the state of the translator, are
enough to produce locally good code. The result of an
addition is itself an expression, and the syntax is presumed
to have put the syntactic symbol, E, into the second posi-
tion of the stack (cf. line T1 -4- 1, Figure 9, p. 87). The
assignment to R I G H T 2 will associate the semantics of the
result (e.g. DOUBLE, in accumulator) with the syntactic
symbol. The FSL system allows almost all constructs to
appear inside code brackets (to be done at execution time)
or outside code brackets (to be done during translation).

The semantic metalangnage, FSL, allows a compiler
writer to declare and use a variety of data structures in
building a translator. Besides the tables and cells men-
tioned in the examples, there are stacks, masks, and strings.
The system includes a number of auxiliary routines (e.g.
format, file manipulation) available at both translation
and execution time. The Formula ALGOL compiler was
largely written in FSL, and the description [It 66] of that
implementation provides a good study of the strengths and
weaknesses of FSL.

The weaknesses of FSL can be characterized as the lack
of several conveniences and a number of basic structural
defects. The lack of conveniences, such as index variables,
recursive subroutines, assembly language embedding, and
debugging aids, are due to its development as a thesis (hit
and run) project and have been remedied in later systems.
The structural defects result mainly from the attempt to
preserve machine independence.

An FSL system is useful to the extent that the compiler
writer's needs are met by the facilities of the semantic
metalangnage. This, in turn, is possible only where there
are suitable formalizations of the pertinent, concepts. Thus
all the research problems listed in Section IV.C (e.g. data
structures, paging, parallelism) are problems in any FSL
system. One common misconception is that FSL requires
code to be produced immediately when a construct is recog-
nized. One is allowed to defer code generation indefinitely,
but the systems now running do not have particularly good
facilities for global code optimization or multipass com-
pilers.

These problems are being attacked in several current
FSL-like projects. There are, however, limits to the level
of code optimization which can be achieved in a machine
independent way. There is a sense in which any FSL sys-
tem is predestined to failure: techniques will always be
used before they are sufficiently well understood to be
formalized. Such a system can still be very helpful, and the
search for metalangnage representations should lead to
careful study of new techniques. In addition, a particular
implementation will normally include informal techniques
(e.g. assembly language) for handling constructs not yet
formalized.

The only other FSL-like system completed to date is
VITAL [Mond 67] at the Lincoln Laboratory. VITAL runs
in a time sharing environment and differs from FSL mainly
in system features. These, along with a number of nota-
tional improvements (used in this description), make
VITAL much easier to use but are of little theoretical
interest. Among the more significant changes is the execu-
table syntactic class name which reduces the size of the
syntax table by about one fourth and increases speed. All
text is saved in linked blocks of dictionary pointers; this
facilitates line editing and reduces recompilation time by
about one half. The combined features of persistent stor-
age and compile-time execution aid in the writing of incre-
mental compilers. The user is given considerably more
flexibility in register allocation but can choose to abrogate
this responsibility as in the original system. A minor but
philosophically important change was the addition to the
production language of a syntactic (action}, TEST, which
depends on a variable set by the semantics. This violates
the BNF tradition, but it was found to be necessary for
some translators and a great convenience in several others.

The FSL systems have undoubtedly been handicapped
by being implemented on uncommon machines, the G-20
and the TX-2. To compensate for this there are now three
separate implementations for the IBM 360 series in prog-

96 Communica t ions of the ACM Volume 11 / Number 2 / February, 1968

ress. The CABAL group at Carnegie [Fie 67] is designing
a system for multipass compilers using a semantic language
which is a minimal extension of ALGOL in the direction of
FSL. The work under Gries at Stanford [Grie 67b] will also
be multipass-oriented but will use a special purpose seman-
tic language. The Lincoln Laboratory effort under J.
Curry will probably be quite similar to VITAL. All of
these projects may be considered attempts to combine the
virtues of FSL with those of TGS, our next subject.

B.2. TGS (Plaskow and Schuman [Plas 66],
Cheatham [Che 65])

One of the most productive groups in TWS research has
been the small consulting company, Massachusetts Com-
puter Associates (COMPASS), now part of Applied Data
Research. Although their TWSs have undergone many
changes, the basic world view and goals of their effort have
remained rather constant. They define compiling as a six-
step process: lexical analysis, syntactic analysis, interpre-
tation of the parse, optimization, code selection, and out-
put. The principal driving force behind their work has
been run time efficiency, although other considerations
have played an important role from time to time. The
current TWS efforts of Computer Associates use a single
language TRANDIR for all the steps of compilation. TRAN-
DIR consists essentially of an algebraic section, a pattern
matching section (cf. Section II.B.5), and a number of
built-in functions. Other aspects of their efforts are dis-
cussed in Section II.C.5 which deals with an extendible
compiler scheme within TGS.

The first attack on the TWS problem at COMPASS was
called CGS [War 64] and was quite different from their
current work. Although they have abandoned this ap-
proach, we will discuss it briefly here because it seems to
be rediscovered periodically. The CGS system was based
on a top-down recognizer which produced a syntax tree to
be used in further analysis. The input to this phase was
essentially BNF. The second phase was the generation of
intermediate code using a tree-matching language called
GSL. The actual code selection process was written in a
third language, MDL. This effort was abandoned because
trees were found to be slow to build and difficult to do
pattern recognition upon.

The TGS systems differ from CGS, as well as the other
systems described in this section, in the use of a single
language for describing all phases of the compiler. This
language, TRANDIR, is compiled into an interpretive code
which is processed by the TRANGEN b~terpreter. If one
combines the syntax and semantic loaders of Figure 12, the
FSL model applies quite well to TGS. In fact, there has
been good communication between these two efforts, and
they have converged to a marked degree. The communica-
tion has not, however, been perfect; two concurrent imple-
mentations of TGS and FSL took place within a few hun-
dred yards of each other without making contact.

The TRANDIR language contains a pattern-matching
subset which is essentially the same as the syntax language
used in FSL (cf. Section II.B.5). The TGS version is more

flexible in that it can be used on a variety of stacks and can
match on properties other than identity of symbols. The
pattern matching features can be used in various code
optimization techniques as well as in syntax analysis.

The remaining features in TRA_NDIR language are quite
similar to the semantic language in FSL. There is a "sym-
bol description" (SD) connected with each syntactic con-
struct which is the analog of the "semantic word" in FSL.
There are fairly elaborate facilities for declaring tables,
masks, etc., for use by the translator. These various storage
methods with the associated operators provide a very
flexible means of recording and accessing the information
needed for compiling efficient code. The FSL notion of
code brackets is replaced in TGS by a series of symbol
manipulation primitives to help the compiler writer pro-
duce output code. The operation of a TGS compiler can be
best described by working through an example fairly com-
pletely.

The example will be taken from a compiler for a minia-
ture algebraic language ~t0 described in [Plas 66]. The
basic compilation technique chosen is to use a tabular
intermediate code as is common in COMPASS compilers
[Che 66]. A typical intermediate code translation of

would be

Z , - - - X . Y

(~) TIMES X Y
(~) STORE Z (~)

The intermediate code will be processed by a code selection
phase which will produce the final output for later as-
sembly.

Consider the first TGS statement:

...VAR AE H EMIT(STORE, COMP(1), COMP(O));
EXCISE; TRY(ENDST).

The left part (up to t h e / /) of this statement is a pattern
of type (variable) (expression) which is compared with
main stack (S Y M L I S T) . If a match is attained the re-
mainder (action part) of the statement is executed. The
action E M I T produces a S T O RE intermediate instruction
with the operands being the first and zeroth elements of
the stack as matched. Since there is no resulting semantic
description (SD), the action E X C I S E is used to erase the
two matched elements from the stack. Finally, the action
T R Y (E N D S T) directs TRANGEN to try to match the
pattern labelled E N D S T .

A somewhat more complicated routine would be used for
recognizing a multiplication:

...VAL $. VAL / / PHRASE(SYMRES(TIMES,COMP(2),
COMP (0)));

AESET; SYNTYP (COMP(O)) ~- AE; TRY(AE1)

When one understands that " $. " denotes the terminal
symbol " . " , the left part of this statement should be clear.
The action S Y M R E S is a call on a routine which performs
an E M I T of the same parameters and also returns an SD
as its value. This SD becomes a parameter to P H R A S E

V o l u m e 11 / Number 2 / February, 1968 C o m m u n i c a t i o n s o f t h e ACM 97

which uses it to replace the matched portion of the stack.
The action labeled A E S E T causes the syntactic type of the
new top element to be assigned the value A E . Finally, the
statement T R Y (A E 1) leads to further expression process-
ing.

These two TGS statements, if executed in reverse order,
would compile Z ~-- X • Y into intermediate language. In
the real world, typical statements would involve table
operations, string commands, conditionals, and other more
complicated Tat~NDm constructs. There are also fairly
sophisticated <procedure) features which improve the read-
ability as well as the writability of translators.

In any event, the intermediate code will itself be proc-
essed by another set of TRANG~N routines called the code
selectors. These are written in the same form as the syntax
routines considered above. For example:

/ / TIMES INMEM INMEM ...
LOADMQ (XM+ 1).

This statement has a pat tern involving a predicate
I N M E M (meaning in memory) on stack entries rather
than symbols to match. (The delimiters " / / " and ".. ."
indicate tha t the pat tern is to be matched against the inter-
mediate code stack.) The subroutine L O A D M Q is called
with a pointer to the second stack operand as parameter.
This user-written routine will assemble a L O A D M Q com-
mand if necessary and will adjust the SD in the stack to
reflect the fact that one operand is now in the M Q register.
A similar routine will be used to compile the appropriate
multiply sequence. The result will be in the accumulator,
and TRANGEN will eventually match the statement:

/ / STORE ** . INAC ...
IF SIGN (S YMBOL (A CHOLDS)) THEN
EMIT (CHS) ;
EMIT (STO, ARG(1));
L INE(TEMPS) = 0;
ACHOLDS = 0; MQHOLDS = 0;
TO (STEP).

The pat tern here contains a "**" which is always matched
and a "*" , meaning indirect reference. I f the operand in
the accumulator, which is described by A C H O L D S , is
negative, a "complement" (CHS) instruction must be
emitted. The store command is emitted in any case with-
out any tests on the variable to be replaced. The succeeding
actions affect the state of the translator, reclaiming the
temporaries and freeing the AC and MQ registers. Finally
there is a transfer to the action labeled S T E P which se-
quences through the intermediate code.

The TGS system has been implemented on several com-
puters and has been used in the construction of a variety of
compilers. The compiler writers have been professionals
and have not been constrained to stay within the formal
system. The use of TGS has been sufficiently valuable to
COMPASS that they continue to use it. on commercial
compilers. More recently [Che 66], Cheatham has
suggested using a declarative metalanguage £D which is
meant to be translated into TRANDIR procedures, presum-
ably by a (meta-meta) processor. The translation of the

language £D is based on a mechanical constructor combin-
ing notions of Wirth and Early (el. Section II .B). To allow
for more powerful languages, one can append predicates
(e.g. type checking) and even arbitrary computations to
the declarative syntax. Finally, there are rules for out-
putting intermediate code attached to the syntax rules.
The declarative language has not been implemented, but
Cheatham claims that it has proved useful for the initial
formulation of Ti~AN~n~ compilers. While this is probably
true, one would expect that the translation to procedurM
form is not, at present, a mechanical process. Further, the
sophistication required of an £D user does not seem appre-
ciably less than that required by TRA~DIR.

The main differences between TGS and FSL accurately
reflect the difference in design goals: TGS Mlows more
flexibility by requiring more detailed information from the
compiler writer. The efforts of Gries [Grie 67b], at Stan-
ford, and Fierst [Fie 66], at Carnegie, are at tempts to have
the best of both by allowing simple code bracket state-
ments as well as multiphase processing. Both VITAL
[Mond 67] and the most recent TGS [Plas 66] are interae-
rive and have sophisticated trace, edit, and debug features.

B.3. CC (Brooker, Morris, et al. [Brook 67a, b, el)
The CC (Compiler-Compiler) project started at Man-

chester University is one of the oldest and most isolated
TWS efforts. Although the CC system has been running for
some time and has been used to implement severM alge-
braic languages [Cou 66, Kerr 67], the published descrip-
tions are inadequate, and the CC is not generMly under-
stood.

The CC effort has concentrated on problems of seman-
tics; the syntax analysis is top-down with memory and one
symbol look-ahead (ef. Section II.A). The result of syntax
analysis is a complete syntax tree which is used by the
semantic phase. This is, of course, a slow process, and there
are informal provisions for other techniques. We are follow-
ing the formal t reatment here, taking many liberties with
their notation.

The input to the syntax phase is similar to B N F with the
additions of "?" which can appear within angle brackets
(meaning optional) and the repeat operation " . " (to re-
place left recursion). The following statements could be
used to specify the syntax of an assigmnent statement for
arithmetic sums.

1. FORMAT [SS] = (variable} ~- (sum}
2. PHRASE (sum} = (sign?) {term} (terms}
3. PHRASE (term} = (variable} I (number} [((sum})
4. P H R A S E (terms) = (sign} (term} (terms} [(empty)

Line 1 is called a format definition and makes use of the
auxiliary phrase definitions on Lines 2-4. The S S specifies
the class of this format and will be discussed below. Both
format and phrase definitions are used as "productions"
by the top-down recognizer. The difference is that , when
an intermediate tree corresponding to a format definition is
completely formed, an associated format (semantic) rou-
tine is called to process it. The format routine associated

9 8 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 2 / F e b r u a r y , 1968

with Line i would be written as follows:

5. R O U T I N E [SS] .~ (variable) ~-- (sum}
6. Let (sum) = (sign?) (term) (terms)
7. ACC ~-- (sign?} (term)
8. Li: GO TO L2 U N L E S S (terms) = (sign) (term) (terms)
9. ACC ~-- ACC (sign} (term)

10. GO TO L1
11. L2: S T O R E ACC I N (variable)
12. E N D

Lines 5 states that this routine is associated with the
format of Line 1 and will be called when the syntax has
matched Line 1 and built the appropriate intermediate
tree. Line 6 assigns descriptors from the intermediate tree
as the values of (sign?}, (term} and (terms}. After code to
load the accumulator is compiled (Line 7), the tree is exa-
mined to see if the (sum} had more than one (term}. I f not,
the routine compiles a store instruction (Line 11) and exits.
More complicated (sum}s are treated by the loop of Lines
8, 9, 10. The actual output of code is implementation
dependent and is usually done by simple string manipula-
tion routines.

There are three main classes of statements used in CC:
basic (BS), master (MP), and source (SS). The BS sub-
language parallels the semantic sublanguages of FSL and
TGS; it includes code generation, list processing, and
lexical analysis routines in an algebraic language. These
BS statements are further divided into precompiled state-
ments (e.g. Lines 6, 8, 10, 12 above) and translator-specific
compilations of BS statements (e.g. Line 7, 9, 11) defined
by FORMAT [BS] statements and their associated RO U-
TINEs. BS statements can occur only within a format
routine.

Statements in the M P class inch(de the FORMAT,
PHRASE, and ROUTINE statements themselves (Lines
l-5) as well as editing and system dump instructions. None
of these constructs can occur within a format routine. The
final statements class, SS, contains the source language
statements themselves. These may be interlaced with BS
and M P statements making CC, in effect, a powerful ex-
tendible compiler in the sense of Section III .C. Although
the CC system was originally designed to operate this way,
actual practice has been somewhat different. One writes
the definition of, say, FORTRAN aS ~ set of FORMAT [SS]
and ROUTINE [88] statements and the CC compiles these
into tables. One then records this updated copy of CC with
a switch set to have CC accept only SS statements, yielding
a conventional FORTRAN compiler. When used this way,
CC can be modeled by Figure 12 with FORMAT and
PHRASE statements as the syntax and with ROUTINEs
as the semantics, linked by an intermediate tree rather
than a stack. Notice that CC does not have a facility for
handling descriptors for intermediate symbols as FSL and
TGS do. Because CC uses a top-down recognizer, con-
structs are used as they are processed; this eliminates
intermediate descriptors, but does force an ALGOL compiler
to be written as one large ROUTINE.

The CC group has recently produced reports on the uses

and performance of their system. These include the first
a t tempt to compare a TWS with hand written compilers
[Brook 67b]. Brooker was able in a year to reduce the space
requirement by a factor of 1.6 and the time by 1.7 by hand-
coding the Atlas Autocode compiler. These results are
hard to interpret without more information, but they
suggest tha t compiler-compilers need not be as extravagant
in the use of space and time as many people have imagined.
This is also suggested by the results of Kerr [Kerr 67].

The CC has been successfully embedded in an ALGOL-
like language Atlas Autocode [Brook 67a]. An adaptation
of the system called SPG (System Program Generator) is
currently under development by Morris at Manchester.
SPG is aimed at the systems programmer who has a knowl-
edge of its underlying mechanisms. Implementations of the
CC now exist in Atlas, the KDF-9, and the G-21, and an
effort is underway at Carnegie-Mellon on the IBM 360/67.

REFERENCES FOR III.B
Design: Brook 60a, 62a, 63, 67b, 67c, Che 64a, 64c, 65, Cou 67,

Feld 64, 66, 67, Fie 67, Grie 67b, Mond 67, Mor 67, Nor 63, Plas
66, Ros 64a, War 61, 64.

Uses: Brook 67a, 67b, Cou 66, It 66, Kerr 67, Nap 67, Rov 67.

C. Meta-Assemblers and Extendible Compilers

These forms of TWSs are similar in tha t they both at-
tempt to extend the macro concept to higher level pro-
gramming languages. The basic idea in a macro processor is
the direct replacement of certain symbols with their asso-
ciated pieces of text. Although almost all modern assemblers
have sophisticated macro features, the best descriptions of
the idea are in the general papers by Strachey [Str 65] and
Mooers and Deutsch [Moo 65]. The meta-assembler and
the extendible compiler are based on two different con-
ceptions of how to extend macros to high level languages.
The meta-assembler approach considers the compiler to be
a special case of the assembler, while the extendible com-
piler approach adds text replacement features to standard
compilers. Both of these approaches are becoming very
popular; a number of papers which appeared too late to be
considered here are listed in the references at the end of
this section.

C.] . GENERAL DISCUSSION AND M E T A P L A N
(Ferguson [Fer 66])

The article by Ferguson is taken from the ACM Pro-
gramming Language Conference, San Dimas, California,
1965, and contains a good introduction to meta-assemblers.
The basic ideas arose from observing that all assemblers
have many features in common. By building procedures
for handling such things as symbol tables, location counters
and macros, one could speed up the writing of particular
assemblers. To construct an assembler for a particular
machine one would specify word size, number representa-
tions, and the like. Output for each machine would be
programmed using format statements and could easily
include relocation or symbolic debugging information.
While such a system seems feasible and quite useful for
writing assemblers, it is not obvious how one would extend
it to a TWS.

Volume 1] / Number 2 / February , 1968 Communica t ions of the ACM 99

The use of a meta-assembler as a TWS is based on the
previously mentioned assumption that the compiler is a
special case of the macro assembler. Discussions of this
assumption sound like a reincarnation of the macro versus
high level language debate. The macro assembler side is on
the defensive, is outnumbered, and therefore has been the
most vehement in argument. The whole situation is further
complicated by a lack of agreement on what an assembler is
(cf. discussion following the paper [Fer 66]). An example
will suffice for our purposes.

Fergnson describes how a recta-assembler would handle
the compiler-like statement:

1F F(A) PLUS 5 EQ G(B) GO TO L.

He would have IF, PLUS, EQ, and GO TO be defined as
(prefix) operators using a scheme called many-many
macro. The many-many macro has features for using and
updating state information during text replacement. This
attacks the main problem in the more general use of
macros--the effective use of global properties (state infor-
mation) in the assembly process. The many-many macro is
probably flexible enough to implement any known compiler;
the real question is whether the many-many macro is a
good way of doing it. The answer to this depends on the
mechanisms for recording and using state information, and
these are not discussed in the paper.

C.2. PLASMA (Graham and Ingerman [GraM 65])
The meta-assembler effort of Graham and Ingerman

concentrates mainly on the problems of substitution and
binding. They are much less concerned with syntax than
Halpern (next discussion), because they assume a syntax-
directed front end (presumably [Ing 66]) for a compiler
written in their system.

The basic input to their meta-assembler is a "line"
which is a list of lists. The first list is a generalized label
consisting of a symbol, the number of higher levels at which
it is active, and the number of lower levels at which it is
active. The second list contains the operation, and the third
contains the operands. The input is converted into a tree,
and substitutions are made on the basis of the tree struc-
ture. By allowing substitutions by symbolic or numeric
value, they combine the text replacement with assembly
functions.

The authors are continuing their work at RCA, Cherry
Hill, and will presumably report on it again. Their current
efforts involve even more elaborate substitution processes.
They have not, as yet, put forth specific suggestions on how
their system might be used as the basis for a compiler.

C.3. XPOP (Halperu [Hal 64, 67c])
The XPOP system has been implemented on the IBM

7090 and is well documented internally [Hal 67c]. At least
one language, ALTEXT [Star 65], has been implemented in
the system. A few examples from a program written in
ALTEXT will illustrate the types of macro calls possible:

DO THRU LAB1 I = 1 TO T--1 B Y 1
IF 1 CHAR A T N A M E S I IS EQUAL TO N A M E S / - l - l , GO

TO LAB2

IF U IS LESS T H A N 8, GO TO PUT
IF MATCH GO TO (LAB1, LAB2, LAB3), I
COPY 11 CHAR CARDS 1 TO REJECT 1

Any statement in this language is a call on a macro
written in IBM 7090 assembly language; thus the pro-
grammer may freely intersperse assembly language with
his high level language statements. The following features
of XPOP make it possible to define macros which handle
statements as illustrated above:

1. Macros are usually recognized by the first word of a
statement (DO, IF, GO TO), but in some eases the macro
name may appear elsewhere on the line.

2. Within each macro definition one can define the punc-
tuation to be used in processing the rest of the statement as
parameters of that macro.

3. Within each macro definition one can define noise
words (which are ignored) and keywords (which are used in
determining parameters) for processing the rest of the
statements as parameters.

4. I t is possible to defer the assembly of sections of code
until a particular label appears. (This is used in generating
instructions for the DO statement above.)

5. Instructions within macro definitions may be exe-
cuted at assembly time, providing for checking of (say)
global attributes of names and conditional assembly in-
structions. This provides one with the ability to write
compilers in assembly language (as usual) except that the
instructions have to be assembled each time they are to be
executed.

6. The system has a large number of useful trace and
debugging aids.

XPOP has several disadvantages when viewed as a
compiler-writing tool. Everything must be written in
assembly language or in previously defined macros.
Secondly, there are no facilities for implementing symbol
tables, etc., to hold attributes of variables, beyond writing
them explicitly in assembly language. AL~EXT does very
little checking for correct use of names. Thirdly, while the
XPOP system has a built-in compiler for arithmetic ex-
pressions, it compiles either all floating point instructions
or all fixed point instructions (depending on a switch); no
type checking is done and no mixed expressions are possi-
ble. Finally, languages such as ALGOL which have a high
degree of structure cannot be implemented easily; macro
calls may not be nested in an easy manner. I t is safe to say
that one is never sure whether enough macro features have
been provided. Addition of a new statement to a language
may necessitate another macro feature, just as the feature
Number 4 above was implemented to take care of DO
statements.

Halpern states that he does not intend to replace the
other compiler-writing tools used for implementing
ALGOL-like languages. He is interested in processing lan-
guages whose programs look like English and believes his
system is good for this.

Halpern is the most sanguine and vocal of the meta-
assembler proponents. His work on meta-assemblers is

100 C o m m u n i c a t i o n s o f t h e ACM Volume 11 / N u m b e r 2 / F e b r u a r y , 1968

related to his controversial stand on natural language
programs by his statement that XPOP will allow one to
implement something "closely approaching" natural lan-
guage. Halpern's paper [Hal 67b] is an elaborate defense of
XPOP-like systems. He suggests that the (operator}
(operand string) notation of macro systems is the canonical
syntax of programming languages as opposed to natural or
mathematical languages. Halpern also separates the study
of programming languages into three parts: functional
(macros), notational (change punctuation commands, etc.),
and modal (assembly time executions).

C.4. EXTENDIBLE COMPILERS--BAsIC CONCEPTS
Many attempts (starting with McIlroy [McI1 60]) have

been made to embed macro features in compiler systems.
One approach was to retain the macro syntax form but
add a number of built-in features which are compiler-like.
The SET system [Ben 64a] included a skeleton compiler
with input-output, symbol manipulation, table handling,
and list processing features. These built-in routines were
combined with translation time operations (action opera-
tors) in the attempt to build a TWS. A more successful
approach has been to use the structured syntax of high
level languages as a basis for extension.

Many existing compilers (including PL/I [IBM 66])
incorporate simple forms of macro expansion, the first
probably being JOVIAL [Shaw 63]. The most primitive
form is pure text replacement without parameter substitu-
tion. For example, in B5500 ALGOL one could define a
macro with the statement:

D E F I N E LOOP 1 = FOR I ~ 1 S T E P 1 U N T I L N

and later write statements like

LOOP 1 N DO A[I] ~ 0

which would be expanded into

FOR I ~-- 1 S T E P 1 U N T I L N DO A [I] ~-- 0.

The next step is to allow a macro definition with param-
eters. This facility has been included in the AED-0 com-
piler [Ross 66], among others. In AED-0 one might define
a macro with the statement:

D E F I N E M A C R O LOOP (P1, P2) T O B E
FOR P1 ~-- 1 S T E P 1 U N T I L P2 DO E N D M A C R O .

In this case, one could get the same result as above with
the shorter statement

LOOP(I , N) A[I] ~-- O.

These two simple macro forms would form a useful addi-
tion to any high level language, and one might imagine
developing mechanisms which parallel more sophisticated
macro techniques. Although AED-0 does permit arbitrary
strings as parameters, and nested definitions, features like
conditional assembly do not seem to have been widely used
in high level languages. One reason for this is that com-
pilers normally depend heavily on the structure of the text;
the next two sections describe the complexities that arise in
trying to extend compilers with macro techniques.

Co5o DEFINITIONAL EXTENSIONS (Cheatham [Che 66])
The definitional extension of high level languages is the

latest attack on the TWS problem by the Computer Asso-
ciates group. This work is best understood in the light of
their previous TWS work, which is discussed in detail in
Section III.B.2.

The paper under discussion shows signs of having been
hastily written and contains references to several internal
documents in preparation. This is clearly an early attempt
along these lines and will be expanded and clarified in sub-
sequent papers. The extensions to compilers mentioned
here fall into two broad categories: a descriptive meta-
language ~D (discussed in Section III.B.2) and a series of
macro facilities.

The extensions to languages using macro techniques fall
into three basic categories: text, syntactic, and computa-
tional macros. Text macros are assumed to be well under-
stood and similar to those described above. I t is in treating
syntactic macros that Cheatham begins to face seriously
the problems of adapting macro concepts to compilers.

There are two kinds of syntactic macros considered
together; basic features of both are free format and type
specification for parameters. An example would be

L E T N B E I N T E G E R
M A C R O S Q U A R E N M A T R I X M E A N S ' A R R A Y [i : N ,

i :N] ' .

The advantage of free format over the conventional
(operator), (operand list) format is obvious; the specifica-
tion of parameter types allows conditional assembly and
better error detection. The call of this syntactic macro
would be set off by a special delimiter (e.g. %) and would
have a detectable termination. The second approach,
which avoids the use of special delimiters, is to add the
macro form directly to the syntax tables of the translator.
The corresponding declaration would be:

L E T N B E I N T E G E R
S M A C R O S Q U A R E N M A T R I X A S (attribute) M E A N S

' A R R A Y [i : N , i :N] '

where (attribute) is a syntactic type in the definition of
the underlying language. Both MACROS and SMACROS
would be implemented by substituting the descriptors
(cf. Section III.B.2) of the appropriate actual parameters.
Neither of these schemes presents an implementation
problem in TRANGEN, but either of them could have drastic
results if misused.

In discussing syntactic macros, Cheatham touches upon
the problem of adding "semantics" to the macro definition.
This is the analog of the many-many macro and the
assembly time actions used in meta-assemblers. Cheath-
am's conclusion that this approach is not feasible should
be compared with the meta-assembler approach which has
put the most of its eggs in this basket. His solution is to
provide a number of primitive operations (e.g. table ex-
pansions) and to point to the existence of a complete meta-
language (TRANGEN) behind the extendible language.

The third type of macro extension is called the computa-

Volume 11 / Number 2 / Feb rua ry , 1968 Communica t i ons o f t h e A C M 101

tional macro. With this technique the substitutions are
made in the intermediate code resulting from a declared
macro. The intermediate code for the macro body is
produced (with formal parameters) in advance; so this
technique is restricted to constructs for which the inter-
mediate code can be compiled independent of context. If
this condition can be met, the computational macro is a
useful and efficient tool. A simple computational macro
might be the following function for a 4 X 4 upper left
triangular matrix M.

T A K E I, J AS INTEGER
MAP M(/, J) = (11-I) • 1/2 -4- J - 6 ;

where T A K E and M A P are declarators in the language.
Since this code is for array accessing, it should not be
inserted into the source text, and the computational macro
form is most appropriate. As Cheatham points out, com-
putational macros have long been used by compiler writers
to produce accessing code for arrays. The paper includes
several examples of accessing functions, a subject tha t
reappears in the discussion of Per]is and Galler's paper in
the next section. The important point is tha t Cheatham
has provided a procedural way of describing access func-
tions, while Perlis and Galler t ry to generate the code from
nonprocedural descriptions.

C.6. ALGOL C (Galler and Perlis [Gall 67])
This is a very long, difficult, and important paper by

two of the outstanding workers in the field of programming
languages. Although there are many significant aspects of
the paper, we discuss here only those dealing with extend-
ible compilers. Other topics are treated in Section IV.C as
significant first steps in new research areas.

The basic idea is, once again, to add macro-like facilities
to a high level language. For this purpose they define a
version of ALGOL [Naur 63b] called ALGOL C which is
meant to be well suited to extension. Any extension of
ALGOL C is called an ALGOL D and a program in any of
these can be mechanically reduced to an equivalent of
ALGOL C program. The extensions are accomplished
through constructs rather like Cheatham's SMACROS
which add to the syntax tables of the translator. Because
they want to do the macro processing in very sophisticated
ways, Perlis and Galler allow redefinitions only in a few
fixed categories. The base language ALGOL C contains
many features for handling arrays as well as those more
directly concerned with extendibility.

Among the latter are operators for conversion between
location and value: (a) A unary operator with integer
result:

l o c o f x

where x is a (procedure identifier), (variable), or (array
identifier), loc o f x is essentially the address of the
word(s) confabbing the value of x. (b) Two binary opera-
tors whose left operand is a (type} and whose right oper-
and is an i n t e g e r expression, representing the "address"

of some (procedure), (variable}, or (array):

(type} ve of x
(type) pic of x.

These represent "value contents of" and "procedure identi-
fier contents of," respectively. Thus

r e a l vc o f (loc o f x) = x

if X is a variable of (type) r e a l . (c) The notions of location
and value are extended to (procedure}s with the help of an
application operator ®. The precise syntax changes are
bound up with the array conventions, but revised defini-
tions of (primary) and (function designator) should con-
vey the intent.

(primary) :: = (unsigned number) [(variable) [(function designa-
tor) I ((arithmetic expression))] loc of (procedure identifier) I
(type) ve o f (arithmetic expression)

(function designator) : : = (procedure identifier) O (actual param-
eter part) I (pic of (arithmetic expression)) O (actual parameter
part)

Thus one is able to manipulate the names of procedures in
much the same way as address variables and could, for
example, have procedure arrays. These additions to ALGOL
to form ALGOL C constitute only a small part of the extra
mechanism; most of it is embedded in the various forms of
ALGOL D.

All ALGOL D languages will have fairly much the same
syntax. The common syntax for all ALGOL Ds is the same
as ALGOL C, except for the replacement of (type), (arith-
metic expression}, (Boolean expression), and (assignment
statement}, with a set of rules which enable the definition
of special forms for these syntactic types. The introduction
of new definitions occurs as a series of declarations at the
begimfing of a block. The detailed description of this
process is quite complicated, and we present only an over-
view followed by an example.

The basic intention is to allow the definition of new
data types and their associated operators. The problems of
finding symbols for these operators is solved by assuming
a large alphabet of boldface characters. By assuming an
operator precedence grammar (cf. Section II.B.1), one can
define the precedence of new operators in relation to
operators of known precedence as in MAD [Ar 66]. The
remaining problems with operators involve data types
and will be deferred for a few sentences.

New data types are defined in terms of ALGOL C or
previously defined types by a m e a n s statement. This
may include formal parameters which, if present, play a
crucial role in all further processing, e.g. matrix (u, v)
m e a n s a r r a y [l : u , l : v] .

One then combines operator and type information in a
set of context statements. A context s tatement describes,
for an operator, the data types of its operands and its
result. I t also contains a (string) which is (eventually)
reducible to the appropriate ALGOL C text. The following
example of (pseudo) LISP definitions should help to
clarify these notions.

102 Communications of the ACM Volume 11 / Number 2 / February, 1968

The basic LISP predicates a t o m and eq are assumed to
have been defined as Boolean procedures:

Boolean procedure a t o m (x) ; l i s t x;
a t o m := cdr x = O;

Boolean procedure eq (x , y) ; l i s t x , y ;
eq := car x = car y A a t o m (x) /~ a t o m (y);

The following definitions are then used to organize lists as
structures of names.

(1) l i s t means integer array [1:2];
(2) cons ~-*;
(3) car .> cons;

(4) cdr ~ car;
(5) of < cons;
(6) l i s t a cons l i s t b ~ l i s t Vlist(a,b)V;

(7) car l i s t a -~ l i s t la[1]v;
(8) cdr l i s t a -~ l i s t Va[2]v;
(9) loe of l i s t a ~ integer,

(10) integer a := l i s t b ----- integer 'a := loe of b';

Statement (1) defines the new data type l i s t as a two-
element integer array. Statements (2) through (5) state the
relative precedence of the four LISP operators. Statements
(6) through (9) define expressions; e.g. (7) defines the c a r

of a l i s t " a " to be the first element of the modeling array
and specifies tha t it is to be treated as a l i s t . Statement
(10) defines the assignment statement for assigning a list
to an integer variable. The paper also includes definitions
of the EVAL function and of various sequencing operators
over list structures.

This example does justice neither to LISP nor to the
Galler-Perlis system. The full design of their system has
ALGOL C defined by a similar definition set in the outer-
most block. In each subsequent block the translator builds
a type table and a context table using the local definition
set. The actual processing of local ALGOL D texts is quite
involved. This arises from the facts tha t contexts are
recursive and that ALGOL C text can be interspersed with
locally defined text. The discussion in the paper is further
complicated by a desire to optimize the computation in
addition to producing ALGOL C code.

We have deliberately, if not successfully, distorted the
intent of Galler and Perlis' paper. They are also concerned
with arrays and, more particularly, with saving space in
matrix calculations. I t would have been preferable on all
sides for them to have made the separation of issues them-
selves. As we have mentioned, the paper contains import-
ant discussions of subjects other than extendible compilers.
Its contribution to our topic is more theoretical than
practical. They show that very sophisticated macro proc-
essing is possible and can lead to substantive changes in
an algebraic language. One would guess, however, tha t
inefficiency at translation time and sensitivity to program-
ming errors would seriously restrict its applicability. There
is, in addition, a general question of how often one would
want to change a high-level language; this is taken up again
in Sections IV.C.

P~I,3FERENCES FOR III.C
Benn 64a, 64b Brook 60b, BroP 67, Che 64a, 66, Fer 66, Gal 67,

Gar 66, GraM 6.5, Hal 67a,b,e, IBM 66, Lea 66, MeI1 60, Men 63,
Moo 65, Star 65, Str 65, Wai 67.

IV. R E L A T E D TOPICS AND CONCLUSIONS

A. Other Uses o f S y n t a x - D i r e c t e d T e c h n i q u e s

Very early in the TWS development it was observed
that syntax-directed techniques could be used in a wide
variety of problems. A syntax-directed approach can be
considered whenever the f o r m of the input to a program
contains a significant part of the c o n t e n t . Individual
applications of syntax-directed techniques tend not to get
written up. The applications presented here are based
largely on personal knowledge and, though perhaps repre-
sentative, are certainly not comprehensive.

The TWSs described in Section I I I vary widely in the
ease with which they are put to other uses. The syntax-
directed symbol processors are the most flexible and seem
to be the most widely applied. One such system, AED
[Ross 66, 67] was designed from the outset to be a general
purpose processor. Because of certain peculiarities of
at t i tude and terminology, the AED project has had little
effect on other TWS efforts.

The syntax phase of AED is based on the precedence
technique similar to those described in Section II.B. By
incorporating type checking and the ability to add hand-
coded syntax routines, the AED parser becomes more
powerful at the cost of violating the underlying theory.
I t is, however, the intermediate representation of AED
statements that is most interesting. This is based on the
use of p l e x e s , which are data structures whose elements
each can have many links as well as data. The construction
and processing of the "modelling plex" are accomplished
with a set of macro routines. These might include routines
for code generation, computer graphics or programmed tool
commands. References [Ross 63, 67] are good introductions
to the AED system with detailed examples of its use in
several problem areas.

The essential features in the AED system are the pre-
cedence matrix in syntax and the plex manipulations in
semantics. A somewhat different approach to the syntax-
directed universe can be developed from the general
compiler-compiler model discussed in Section III .B. In
this scheme the entire semantic mechanism, including the
choice of data structures, can be different for each applica-
tion area. In the VITAL [Mond 67] effort, two basically
different data structure languages (both written in VITAL)
are being compared in a syntax-directed graphics package
[Rob 66] which is itself based on VITAL.

Most of the other applications of TWSs have been in
symbol manipulation tasks of one sort or another. Some
of the first applications [Scho 65] were in symbolic mathe-
matics. A TWS would be used to help model the structure
of an expression, perhaps for simplification or differentia-
tion. The use of TWSs (especially COGENT, META) in
symbolic mathematics is currently widespread and has
given rise to systems [Cla 66] constructed specifically for
that purpose. There have also been a few pure mathema-
ticians (e.g. [Gro 66]) who have found the syntax-directed
model useful.

Volume 11 / Number 2 / February, 1968 Communications of the ACM 103

The most widespread and least surprising app!ication
of TWSs is in problems of format conversions. These
arise in connection with large data files and in translating
between closely related source languages. Once again, the
syntax-directed symbol processors of Section III.A have
been used the most often. These systems have also been of
some use in such varied tasks as: logic design, translating
geometric descriptions, simulation, and logging routines.
There are also a number of applications of TWS tech-
niques to produce command sequences for special purpose
devices. For example, a fairly gophisticated TWS [Cas 66]
was used in translating commands for various components
of a satellite tracking system.

In addition to their direct application in many fields,
the TWSs have inspired work in several others. One active
area has been the syntactic description of pictures. The
syntax-directed approach to picture processing seems to be
increasingly popular [cf. ShaA 67, An 67], but one early
worker [Nar 66] appears (in some sections of [Nar 67]) to
reject this approach. The pattern matching features in-
corporated in the new list processing languages lAb 66, It
66] are partially inspired by TWSs, and the related field of
artificial intelligence has some syntax-directed projects

underway.
The field of computational linguistics in both its theoreti-

cal and practical aspects is closely related to TWS studies.
The applications here, though fewer than one would ex-
pect, have been significant. The syntactic theories of
computational linguistics and TWSs both are based on the
early work of Chomsky [Chom 63] and share many ideas.
The implementations of English syntax (especially [Kun
62]) developed concurrently with top-down TWSs, but the
natural language efforts have been slow to incorporate the
efficiency improvements developed in TWS work. In
applied semantics the DEACON project [Th 66], whose
approach was quite novel to linguists, can be looked upon
as a straightforward application of TWS techniques (cf.
[Nap 67, Col 67]). One can expect to see more interaction
between these research areas as linguists attempt to test
semantic theories and TWS workers attempt to cope with
nonprocedural languages.

The last, but by no means the least of the applications
considered here, is to teaching. Several of the TWSs
described above have been used as the basis for courses
on translator writing. These have ranged from undergrad-
uate courses to faculty seminars and have been well
regarded. Although such courses can be taught without
machine problems, they are much more successful when
the students have easy access to the TWSs under discus-
sion.

REFERENCES FOR IV.&
Ab 66, An 66, Brook 67a, Cas 66, Chom 65, Cla 66, Col 67, Gro 66,

Hal 66, 67b, I t 66, Kun 62, Mond 67, Nap 67, Nar 66, 67, Rob 66,
Ross 63, 66, 67, Scho 65, ShaA'67, Th 66.

B. F o r m a l Studies o f S e m a n t i c s

Computer science owes much to mathematics and is
beginning to pay off that debt. Both the syntax (Section
II.C) and semantics of programming languages have in-
spired formal treatment. In this section we discuss briefly
the developments most relevant to TWSs and provide an
entr6e to the literature on the formal semantics of pro-
gramming languages.

Any formal study of the semantics of programming
languages immediately confronts the problem of separating
syntax from semantics. Programming languages combine
ideas from logic (where the problem is solved) and natural
language (where it is no longer taken seriously). In most
treatments of programming languages, syntax is taken to
be precisely those aspects of language describable in the
syntactic metalanguage under discussion. This practice
has the unpleasant effect of changing the definition of
syntax with each change in metalanguage.

Computer scientists trained in logic (e.g. [Tix 67]) would
like us to adopt the definitions used there: any property of
a string which can be described in terms of its form is
syntactic. Thus, whether or not a string is a theorem in
some calculus is a syntactic, though perhaps undecidable,
question. This approach has not proved effective for
natural language and has immediate problems in program-
ruing languages. For example, are the statements

X ~ Y/O.O
Li: go to L1

syntactically well-formed in ALGOL? Surely, an algorithm
capable of handling data types could detect these errors,
and the question is now one of how far to go. I t is not
obvious that one could produce a notion of syntax which
satisfied a logician's tastes and still left well-formedness
of programs a decidable property.

The situation is further complicated by the fact that all
major languages contain statements unparsable by the
formal syntax alone. A good example is the labelled E N D

construct in PL / I ([IBM 66]) and even ALGOL is still not
free of such constructs [Knu 67]. Thus, in practice, syntax-
directed compilers must incorporate "semantic" features
in the syntactic phase. One ingenious approach to the
separation question is the abstract syntax [McCar 62a] of
McCarthy. He is mainly concerned with semantics and
considers (analytic) syntax to be just the set of predicates
and functions necessary to extract pertinent information
from the form of a source string. This does not "solve"
the problem of defining syntax, but it does enable one to
consider semantics without facing the separation question.

As usual, formal studies of semantics have lagged be-
hind work on the syntax of programming languages. By
far the best general work on this subject is [Ste 66] where
the discussions, even more than the papers, provide an
overview of formal semantics. The various formalizations
that have been presented are all procedural; they are
either abstract machines or imperative formalisms such as

104 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / Number 2 / February , 1968

the X-calculus [Chu 51]. This is reasonable to expect, but
greatly restricts the choice of existing mathematical
models.

Since the formalizations are procedural, one might prefer
the word "effect" to "meaning" in the description of
programming languages. This is not the place to defend
the notion of semantics as effect, and we adopt i t merely
as a convenient way of looking at things. This view does
lead one to expect a program to have different effects
depending on an "environment," and this will prove useful
in our discussion. It might also lead one to suspect that the
choice of semantic metalanguage will be influenced by the
intended lise of a formal description.

The existing efforts in formal semantics may be sepa-
rated into those concerned with proofs about programs and
those interested in elucidating the processing of programs
by computers. Among the latter, One might include the
semantic metalanguages described in Section III.B., al-
though this is not de rigueur. There are, however, slightly
abstracted translation models (e.g. [Wir 66@ which are
considered acceptable. In any such model a language can
have very different effects depending on whether its transla-
tor is an interpreter or a compiler. This seems reasonable
to programmers but disturbs mathematical types who
would prefer to see meaning reside in the algorithm rather
than in the program. A related set of developments is the
attempt to define all programming languages by reduction
to a single high level [Ste 66] or machine-like [Brat 61,
Ste 61] language.

The approaches to formalization described above are
more closely related to TWSs but are far too complex to be
very useful in proofs. For those who consider proofs to
be the sole end of formalization (and who are reading this
paper at all) the preceding paragraph will have been con-
sidered an anathema. Most mathematically based at-
tempts at formalization have stressed tractability and have
almost all been based on existing mathematics. There are
only a few imperative systems in logic, and each has been
used in forinalizing some aspect of computer science. Most
of the work in formal semantics is based on the X-calculus
of Church [Chu 51] and the combinator calculus of Curry
[Cur 58].

Both of these theories were primarily concerned with
the role of variables, and their successes in programming
languages have been largely in that area. The X-expression
plays a crucial role in LISP and is discussed as a program-
ming concept in various LISP documents. I t is also the most
popular vehicle for attempting to formalize semantics.
The work of Landin and Strachey [Landi 66] is particu-
larly interesting because they combined their research
with the development of an extension of ALGOL 60 called
CPL [Burs 65, Cou 65]. The applications of X-calculus to
semantics have been pursued most diligently by Landin.
In a series of papers he considers relationships between
programming languages (ALGOL) and an augmented X-
calculus, called imperative applicative expressions (IAE).

The declaration and binding of variables in ALGOL is
modelled quite clearly, and the formalization has helped
point out some weak spots in ALGOL. The IAE system
(like pure LISP) is purely functional and must represent
statements as 0-adic functions with side effects on the
environment. In fact, much of Landin's description of
ALGOL can be viewed as a generalization of the "program
feature" in LISP [McCar 62b]. Thus far these efforts have
neither achieved the desired descriptive clarity nor main-
tained the tractability of k-calculus in accordance with
the original plan. The most conspicuous benefit of this work
has been CPL [Cou 66], which is an extremely civilized
language. There is presently an active group at MIT
wlfieh is pushing this approach as far as it is ever likely to
go.

Although he introduced the X-calculus into computer
science, McCarthy has taken a somewhat different ap-
proach to formal semantics. His term "theory of computa-
tion" indicates that he is more concerned with algorithms
than with algorithmic languages. His approach utilizes a
state vector, operations upon it, abstract syntax, and
conditional expressions. Typical state functions are c(x,d)
-- the contents of symbolic position x in state vector c--
and a(x,z,d)--the state resulting from substituting z for x
in the state vector d. He is then able to get conditional ex-
pression definitions of machine code-like operations and
higher level constructs described by the abstract syntax.
The resulting formalism is fairly tractable and McCarthy
and his students have been able to push through a number
of proofs [McCar 67]. Most recently, Painter [Pai 67] was
able to prove the correctness of a "compiler."

A more recent and intuitively more satisfying approach
has been developed by Floyd [Flo 67]. He considers the
flow chart of a program written in an ordinary (fixed)
programming language. The basic idea is to attach a
proposition (applying to the state vector) at each connec-
tion in the flow chart; the proposition is to hold whenever
that connection is taken during execution (thought of as
interpretation). With these propositions and some related
mechanisms, Floyd establishes techniques for proving
statements of the form "If the initial state satisfied R 1 then
the final state will satisfy R2, if reached." Proofs of termi-
nation are handled by showing that some function of, say,
the positive integers decreases as the program is executed.
There are current efforts to automate both the generation
of propositions and the proofs of correctness for restricted
languages.

There have also been several approaches to formaliza-
tion of semantics which lie between these extremes. One
approach [Don 67] uses a version of post canonical systems
[Pos 43] to describe both the syntax (including type-
matching, etc.) and compilation of programs. The defini-
tions attained appear reasonable, but it must be seen
whether they are of any use in compilation or in proofs.
Another adaption of existing mathematics has been at-
tempted by van Wijngarten and de Bakker [Bak 65, 67,

V o l u m e lI / Number 2 / February, 1968 C o m m u n i c a t i o n s o f t h e ACM 105

Wij 66]. They t ry to reduce the complexity of the semantic
model by using a universal machine which can read and
interpret simple and powerful rules. The rules are used
cumulatively to define what amounts to a Markov (Mark
59] algorithm description of the source language. The
difficulty is tha t the formalism is so primitive that the
description of ALGOL is literally a book [Bak 67] and
neither proofs nor insight seem likely to result.

There have also been a number of at tempts to define
abstract machines to carry out the semantics of program-
ruing languages. The most ambitious of these is the RASP
of [Elg 64], but this work has apparently not been con-
tinued. An interesting recent paper by [Nar 67] contains a
formalization which combines many features discussed
above. Narasimhan defines languages and machines in
closely related formalisms involving flow charts, functions
on state variables, declarations, and selection and address-
ing operators. The approach seems promising, but there
are no concrete results yet, and one of his basic assump-
tions is highly questionable. His requirement tha t a trans-
lator be as simple as possible leads Narasimhan to the con-
clusions that syntax and recursion are of no value. He also
states (without references) that TWS efforts have all failed
and interest in the field is waning.

Perhaps our description of the work in formal seman-
tics has been sufficiently shallow to be misleading. Most of
these efforts have their comrades and fellow travelers, and
the development is richer than we suggest; the references
at the end of this section should cover all major trends
related to TWSs. The impact of formal semantics, es-
pecially the proof-oriented kind, has been limited to a few
isolated insights. No work has had the impact of, e.g.,
Krohn and Rhodes on automata theory. I t is our conjec-
ture tha t this breakthrough is not to be found in existing
imperative logics; programming languages will have to be
faced directly as mathematical and natural languages have
been. Minsky and Paper t [Min 67] have expressed a similar
belief:

Good theories rarely develop outside of the context of well-
understood real problems, and it is perhaps not surprising that
work directed sharply toward obtaining an "abstract theory of
computation," e.g. the mathematical developments in current
theories of recursive functions, automata, formal linguistics and
the like, has been disappointing in the extent of its practical
illumination, despite its often elegant mathematical quality.

REFERENCES FOR IV.B
Bak 65, 67, Braf 63, Burg 64, Burs 65, Ca162, Chu 51, Cu167, Cur 58,

Don 67, Elg 67, Flo 67, Ir 61, 63b, Knu 67, Landi 63, 65, 66, Luc
65, McCar 62a, 67, Min 67, Nar 67, Org 67, Pal 66, Rig 62, Ste 64,
Tars 56, Tix 67, Wir 66c, Zar 67, Zero 66.

C. Summary and Research Problems

The TWSs described in this paper represent the most
recent developments in a long line of research by many
outstanding computer scientists. Each category described
in Section I I I has its peculiar strengths and weaknesses
and a preferred problem domain. After summarizing the

relations between the various categories, we suggest a
number of fruitful areas for future research.

The automatic constructors of recognizers, described in
Section II .B, are tools which are potentially useful in any
problem attacked with a syntax-directed approach. By
automatically producing an efficient recognizer, such
systems should extend the useful range of syntax-directed
techniques. The major problem is to find a convenient
way of embedding semantic definitions in the synthetic
syntax. A solution to this problem would also produce a
marked improvement in the capabilities of the syntax-
directed symbol processors of Section III .A. These TWSs
all have fairly convenient methods for introducing seman-
tics, but all share the use of relatively inefficient recog-
nizers. The already far-reaching applications of such
systems could be significantly widened by the development
of more efficient recognizers.

The recta-assemblers described in Section III .C.1-3 are
presently much better suited to assembler writing than
compiler writing. They have, however, introduced several
significant additions to macro languages which will have a
long range effect. By extending the facilities of meta-
assemblers for translation time actions and adding a
syntax phase, one could make them comparable to the
syntax-directed processors of Section III .A.

The compiler-compilers of Section I I I .B are the high
point in the evolution of specialized TWSs. Although
specialization has made them by far the most useful for
compiler writing it has its a t tendent costs. The compiler-
compilers are harder to implement and are often unsuited
to tasks appreciably different from compiling. As the
semantic languages a t tempt to encompass more sophisti-
cated programming constructs, one can expect such sys-
tems to become even more specialized. There is, of course,
a risk of overspecialization, and some TWS workers feel
that a more general syntax-directed processor like COGENT
(Section III .B.3) will have greater survival value.

The work on extendible compilers (Section II I.C.4-6) is
more recent and is difficult to assess accurately, Mthough
it seems clear tha t some macro facility should be included
in any high level language. The more exotic systems may
be limited in their usefulness. Ideally, one would like to be
able to extend a language in macro fashion and later in-
corporate the extensions efficiently in the compiler. The
CC system (Section III .B.3) has both facilities, and al-
though it does not solve the problem, it would be a good
facility for experimenting with solutions.

None of the TWSs discussed here is a panacea. We have
at tempted to show that it is unreasonable to expect one,
and the results of various at tempts at a universal program-
ruing system of any kind tend to support this position.
We do feel that , taken as a whole, the TWS efforts have
solved many of the significant problems in compiler
writing. There are now enough available techniques to
satisfy a great variety of possible TWS requirements and
the outstanding problems are in specific topics.

106 Communications of the ACCM Volume 11 / Number 2 / February, 1968

The syntactic aspects of TWSs have received consider-
able attention and have fewer outstanding questions. Three
problems that do come to mind are closely related to
semantics and to one another. One problem is to find a
satisfactory way of embedding extra syntactic features to
allow "syntax" to correspond more elosely to one's intui-
tion [Gil 66, Don 67]. A related issue is the absence of an
adequate technique for embedding semantics in the rules
of a synthetic grammar without knowledge of the details of
the recognizer-constructing program being used. Finally,
there is the problem of graceful degradation in automatic
recognizer constructing programs. One would like the
system to use efficient teehniques wherever possible and
automatieally move to slower, more general sehemes
rather than quit when the going gets rough. In addition,
the problem of automatic recovery from syntax errors
could use eonsiderab!y more attention [EvA 63, Ir 65].

There has been much less work on the postsyntaetie
aspects of TWSs. Three basically different approaches to
this "semantics" problem are: first, to provide a general
purpose list-processing or other symbol manipulation
capability (eft Section III.A) ; second, to provide a number
of data structures and built-in routines especially de-
signed for compiler-writing (el. Section III.B); and third,
to combine these facilities with code brackets and a ma-
chine independent speeifieation of output (Section III.B. 1).
By making use of macros and subroutines, either of the
first two techniques can look, to the average user, like the
automated system. From this point of view the key prob-
lem in semantics is finding general purpose routines for
handling significant aspects of compiler writing. We feel
that the TWS approach has been proven feasible and that
the general problem should now be considered in the
development stage. There are, to be sure, several kinds of
programming languages (e.g. simulation [Te 66]) still
beyond the pale, but each has a few basic concepts that
need to be studied first. In short, future research in TWSs
should be directed toward understanding (and eventually,
automating) the outstanding problems in programming
languages.

With this formulation of TWS research, we have, of
course, provided a guaranteed annual project for everyone.
A justification for this ean be found in the many contribu-
tions to programming systems which have resulted from
considering metaproblems. In the remainder of this section,
we discuss a number of interesting problems whieh might
be amenable to a TWS approach and provide an entree into
the literature for each. The references listed at the end of
this section for each subject are either very recent, or
comprehensive, or they have already been used as refer-
enees in this paper.

One question of long standing that is still open is the
formal description of machine languages. A solution here
could be used as a third input to a TWS, describing the
target machine. This problem has been attacked, both
theoretieally and directly, but nothing has eome close to

being usable by a TWS. The availability of parallel
processors adds a new level of complexity or, better, a new
research area. Most of the work on software for parallel
processors has been eoneerned with particular machines
and is not within the scope of this paper. There have been
some significant abstract [Kar 66] and concrete [Shed 67,
Sto 67] theories which might serve as a foundation for
research in parallelism. Parallelism in high level languages
[Dij 65] is also beginning to receive attention.

Another hoary question concerns a theory of eode selec-
tion and enhancement (the "optimization" problem). Not
only has the theory been weak, but there are still only a
half-dozen or so types of code enhancement in general use
by compiler writers. The most striking improvements in
program performance usually eome from restructuring
the entire approaeh to the problem. This could be called
optimization in the large, but we discuss it as one aspect of
nonproeedural programming. The accepted definition of
"nonproeedural," like that of "semanties," has yet to
appear. A programming system will be called nonpro-
eedural to the extent that it makes selections and rear-
rangements of procedural steps in response to some higher
order problem statement.

Nonprocedural programming languages have been dis-
cussed under many rubries: declarative languages, problem
oriented languages, questionnaire systems and the like.
Most of this work is theoretically uninteresting (ef. [You
65]); one writes a large routine and the user supplies
parameters. Fairly good nonproeedural systems for limited
problem areas have been developed in computer graphics,
relational languages [Roy 67], array processing [Gal 67],
and numerical analysis [Ri 66]. The analog computer, of
course, has always been programmed this way, and some
prom_ising systems [Schl 67] are being developed by extend-
ing the languages used in hybrid computing. Cheatham
envisions adding nonproeedural features of a general sort
to the extendible compiler discussed in Section III.C.5.
Another approach would be to use the more sophistieated
syntax forms and transformations developed in natural
language processing. We have felt for some time that
TWS efforts shared many interests with natural language
systems. There have been the so-ealled query languages
[Corn 66] and, of course, COBOL [Saturn 61], but these
make only superficial contact with the problem. The
reeent interest in conversational and nonprocedural pro-
gramming languages along with the syntax-directed natu-
ral language systems (ef. Section IV.A) should lead to
significant interchange of ideas.

There are several open problems eoneerning the connec-
tion between TWSs and executive systems. One of the
major benefits of a TWS is eliminating the effort (often
more than half the total) of interfacing each compiler to
the executive. One indication of the past work in this area
is that the word "executive" has not occurred before this
paragraph. There have always been small groups inter-
ested in "environmental" questions for compilers [Leo 66],

Volume 11 / Number 2 / February, 1968 Communications of the ACM 107

but they had little effect before the time sharing revolution.
The (hoped for) availability of large multiaccess time-
sharing systems gives rise to several additional research
problems related to TWSs. The main task of any large
timesharing executive is resource allocation. The resources
to be allocated include programs, such as compilers, as
well as various memory and processing units. The research
problem is to devise a scheme for allowing translators to
exchange information with the executive so as to produce
significantly better system performance. The most pressing
need in current systems is for main memory, and there
have been several schemes [Bob 67, Coh 67, Roy 67] to
help reduce swapping time for particular languages. A
related problem is the optimal (not maximal) use of pure
procedure in both the TWS [Feld 67] and the resulting
object code. While an elegant compiler-executive interface
will be very difficult to achieve, even a theoretically
uninteresting solution should prove of great practical
value.

Two other problems relating to executive systems are
mentioned briefly here. Control languages should be im-
proved by adding syntax processing; ideally using the
same syntax code already in the TWS. A more ambitious
project would be the application of syntax-directed tech-
niques to the construction of executive programs them-
selves. One additional related problem is debugging aids.
There has been a great deal of work on on-line debugging
systems [EvT 66], but most of it has been at the assembly
language level, except for Project MAC. There have been
some good symbolic dump facilities in particular batch-
made compilers, but there have not found their way into
print or into TWSs. There has also been very little effort
[Ir 65] on the problems of automatic error detection and
recovery in syntax-directed processors. Once again, even a
bad system would be of great value to users.

The final research area discussed here is the study of
data structures. This field seems to include everything
from matrix manipulations to file handling and has strong
interrelationships with areas of computer science. In some
sense, data structures are the current problem in computer
science, and it would be presumptuous to try to survey the
outstanding issues. We mention a few aspects connected
with TWSs and indicate how data structure considerations
occur in the other research problems mentioned here.

One central question in any TWS is the choice of data
structures built-in at both translation and execution time.

The survey in Section II describes the translation time
structures; essentially nothing has been done to provide
built-in structure operators for execution time. Many
sophisticated data structure languages have been written
using TWS (e.g. lab 66, I t 66, Rov 67]), but the structure
operators have all been hand-coded. There have been
several recent attempts (e.g. [Ross 66, IBM 66, Wir 66b])
to devise a single universal data structure; such a structure
could easily be incorporated in a TWS. The problem is that
current proposals all become very inefficient in some area
where data structures are now applied. The question of
choosing the right structure for a given algorithm takes
one far into nonprocedural programming. Similarly, one
could make major advances in global optimization and
natural language processing with data structure improve-
ments. In fact, there are rich connections among all the
research problems mentioned here and many others as
well; the TWS problem will, by its nature, always be
related to severn frontiers of programming research.

Our brief survey of recent TWS efforts has turned out to
be an embarrassingly long paper. We have attempted to
show how a considerable number of bright people, working
almost in isolation, have brought about a reasonable under-
standing of many aspects of systems programming. With
better communication and higher scientific standards, one
could hope for even more significant advances and more
rapid application of the ideas developed in research. I t was
this hope that led us to write this paper and perhaps led
you to read it.

I~EFERENCES FOR IV.C
Theory of machine instructions: Brat 61, Bur 64, Car 62, Don 67,

Elg 64, Gil 67, Maur 65, Nar 67, Ste 61.
Parallelism: Dij 65, Kar 66, Kuc 67, Mark 67, Shed 67, Sto 67.
Code selection and enhancement, general references: Ar 61, Grie

65, Hill 62, Hor 66, Lucc 67.
Nonprocedural languages: Che 66, Gall 67, Ri 66, Roy 67, Schl

67, Sib 61, Wil 64b, You 65.
Natural language processing: Bar 64, Chom 65, Col 67, Cra 66,

Hal 66, Int 63, Kun 62, Nap 67, Nar 67, Th 66.
Executive interface: Feld 67, Le 66, Orch 66, Nob 63.
Paging: Bob 67, Coh 67, Den 65, Roy 67.
Debugging: EvA 63, EvT 66, Ir 65.
Data structures: Ab 66, Brook 67c, Gall 67, IBM 66, I t 66, Pra 65,

Pra 66, Rov 67, Sta 67, Wir 66b.

Acknowledgments. The authors would like to thank
John Reynolds and the many other people who contrib-
uted suggestions and criticism.

RECEIVED JUNE 1967; REVISED OCTOBER 1967

108 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 11 / Number 2 / F e b r u a r y , 1968

V. BIBLIOGRAPHY

Ab 66

An 66

Ar 61

Ar 66

Bac 57

Bac 59

Bak 65

Bak 67

Bar 64

Barn 62

Bart 63

Ben 64a

Ben 64b

Ber 62

Bob 67

Braf 63

Brat 61

Brook 60a

Brook 60b

Brook 61

Brook 62a

ABRAHAMS, P W. The LISP 2 programming lan-
guage and system. Prec. AFIPS 1966 FJCC, Vol.
29, pp. 661-676.

ANDERSON, R . H . A two dimensional syntax for
mathematical notation. Unpublished report.
Harvard U., Cambridge, Mass., 1966.

ARDEN, B. W. , GALLER, B. A. , AND GRAHAM, R. M.
An algorithm for equivalence declarations.
Comm. ACM $ (July 1961), 310-314.

, - - , AND - - . Michigan Algorithmic De-
coder. U. of Michigan Press, Ann Arbor, Mich.,
1966.

BACKUS, J. W. ~T AL. The FORTRAN automatic
coding system. Prec. Western Joint Comput.
Conf. 1957, pp. 188-198.

BACKUS, J .W. The syntax and semantics of the
proposed international algebraic language of the
Zurich ACM-GAMM Conference. Prec. Internat.
Conf• on Information Processing, UNESCO,
1959, pp. 125-132. Burg 64

DE BAKKER, J. Formal definition of algorithmic
languages. MR74, Mathematisch Centrum,
Amsterdam, May 1965. Burk 65

Formal definition of programming lan-
guages. Mathematisch Centrum Tract No. 16,
Amsterdam, 1967. Burs 65

BAR HILLEL, Y. Language and Information.
Addison-Wesley Publishing Company, Inc.,
Reading, Mass., 1964. Can 62

BARNETT, M . P . , AND FUTRELLE, R . P . S y n t a c t i c
analysisby digital computer. Comm. ACM 5 (Oct. Car 62
1962), 515-526.

BARTON, R.S. A critical review of the state of the
programming art. Prec. AFIPS 1963 SJCC, Vol.
23, pp. 169-177. Car 63

BENNETT, R . K . , AND KVILEKVAL, A. SET, self ex-
tending translator. Data Processing, Inc., March Cas 66
1964.

- - , AND NEUMANN, D .H . Extension of existing Che 64a
compilers by sophisticated use of macros. Comm.
ACM 7 (Sept. 1964), 541 (actually about assemb-
lers). Che 64b

BERMAN, R . , SHARP, J . , AND STURGES, L. Syn-
tactical charts of COBOL 61. Comm. ACM 5 (May
1962), 260. Che 64c

BOBROW, D. G., AND MURPHY, D. Structure of a
LISP system using two-level storage. Comm. Che 65
ACM 10 (March 1967), 155-160.

BRAFFORT, P., AND HIRSCHBERG, D . (Eds .) Com-
puter Programming and Formal Systems. North- Che 66
Holland Publishing Co., Amsterdam, 1963.

B~TMAN, H. An alternate form of the UNCOL
diagram. Comm. ACM ~ (March 1961), 142.

BROOX~R, R. A., AND MORRIS, D. An assembly
program for a phrase structure language. Corn-
put. J. 3 (1960), 168-174.

, AND Some proposals for the realization
of a certain assembly program. Comput. J. 3
(1960), 220-231.

- - , AND A description of Mercury Auto-
code in terms of a phrase structure language. Cla 66
Annual Review in Automatic Programming, Vol.
P, 1961, pp. 29-66.

- - , AND - - . A general translation program for Coh 67
phrase structure languages. J. ACM 9 (Jan.
1962), 1-10.

Brook 62b

Brook 63

Brook 67a

Brook 67b

Brook 67c

BroP 67

BroS 63

Chom 63

Chom 65

Chu 51

- - ET AL. Trees and routines. Comput. J. 5
(1962), 33-47.

- - ET AL: The compiler-compiler. Annual Re-
view in Automatic Programming, Vol. 3, 1963, p.
229.

- - , MORRIS, D., AND ROHL, J .S. Compiler-com-
piler facilities in Atlas Autocode. Comput. J. 9
(1967), 350-352.

, AND - - . Experience with the com-
piler-compiler. Comput. J. 9 (1967), 345--349.

, AND ROHL, J. S. Simply partitioned data struc-
tures: The compiler-compiler reexamined. Ma-
chine Intelligence I , Collins and Michie, (Eds.),
Oliver and Boyd, London, 1967.

BROWN, P . J . The ML/I macro processor. Comm.
ACM 10 (Oct. 1967), 618-623.

BROWN, S. A., DtLC.YTON, C. E.', AND MITTMAN, B.
A description of the APT language. Comm. ACM
6 (Nov. 1963), 649~-658.

BURGE, W.H. The evaluation, classification and
interpretation of expressions. Prec. ACM 19th
Nat. Conf., 1964, p. A1.4.

BURKHARDT, W. Universal programming lan-
guages and processors. Prec. AFIPS 1965 FJCC,
Vol. 27, pp. 1-21.

BURSTELL, R.M. Some aspects of CPL sematics.
No. 3, Experimental Programming Rpts., Edin-
burgh U., Edinburgh, April, 1965.

CANTOR, D. G. On the ambiguity problem of
Backus Systems. J. ACM 9 (Oct. 1962), 477-479.

CARACCIOLO DIFoRINO, A. On a research project
in the field of languages for processor construc-
tion. Prec. IFIP Congress, Munich, 1962, pp.
514-515.

Some remarks on the syntax of symbolic
programming languages. Comm. ACM 6 (Aug.
1963), 456.

CASTLE, J. A command program compiler. Gen-
eral Electric MSD, King-of-Prussia, Pa., 1966.

CHEATHAM, T. E. The architecture of compilers.
CAD-64-2-R, Computer Associates, Inc., Wake-
field, Mass., 1964.

ET AL. Preliminary description of the trans-
lator generator system, II. CA-64-1-SD, Compu-
ter Associates, Inc., Wakefield, Mass., 1964.

, AND SATTLEY, K . Syntax directed compiling.
Prec. AFIPS 1964 SJCC, ¥oi. 25, pp. 31-57.

• The TGS-II translator-generator system.
Prec. IFIP Congress, New York, 1965, pp 592-
593.

The introduction of definitional facilities
into higher level programming languages. Prec.
AFIPS 1966 FJCC, Vol. 29, pp. 623-637.

CHOMSXV, N. Formal properties of grammars. In
Handbook of Mathematical Psychology, Vol. 2,
Luce, Bush and Galanter (Eds.), John Wiley &
Sons, Inc., 1963, pp 323-418.

Aspects of the Theory of Syntax. The MIT
Press, Cambridge, Mass., 1965.

CHURCH, A. The Calculi of Lambda-Conversion.
Annals of Math. Studies, No. 6, Princeton U.
Press, Princeton, N. J., 1951.

CLAPP, L. A syntax-directed approach to auto-
mated aids for symbolic math. Summary in
Comm. ACM 9 (Aug. 1966), 549.

COHEN, J. A use of fast and slow memories in list
processing languages. Comm. ACM 10 (Feb.
1967), 82-86.

V o l u m e 11 / Number 2 / February , 1968 Communica t ions of the ACM 109

Col 67

Corm 66

Con 63

Cou 66

Cou 67

Cra 66

Cul 62

Cur 58

Den 65

Dij 63

Dij 65

Don 67

Ear 65

Ear 67

Ei 63

Ei 64

Elg 64

Eng 61

Eva 64

EvT 66

Feld 64

COLES, S. Syntax-directed interpretation of Feld 66
natural language. Doctoral dissertation. Car-
negie-Mellon Inst., Pittsburgh, Pa., 1967.

CONNORS, W.B. ADAM--a generalized data man- Feld 67
agement system. Proc. AFIPS 1966 SJCC, Vol.
28, pp. 193-203.

CONWAY, M. E. Design of a separable transition-
diagram compiler. Comm. A C M 6 (July 1963), Per 66
396.

COULOURIS, G. F., AND GOODEY, T . J . The CPL1 Fie 67
system manual. PID12/GFC, Inst. of Comput.
Sci., U. of London, London.

• The compiler processor project. Internal Flo 61
Rep., Imperial College, London, April 1967.

CRAIG, J. A., BEREZNER, S. C., CARNEY, H . C . , Flo 62a
AND LONGYEAR, C . R . D E A C O N : DirectEnglish
Access and CONtrol. Proc. AFIPS 1966 FJCC, Flo 62b
Vol. 29, pp. 365--380.

CULIK, K. Formalstructure of ALGOL and sim-
plification of its description• Symbolic Languages Flo 63
in Data Processing, Gordon and Breach, New
York, 1962, pp. 75-82. Flo 64a

CURRY, H. B., AND FEYS, 1~. Combinatory Logic,
Vol. I . North-Holland Publishing Co., Amster- Flo 64b
dam, 1958.

DENNIS, J. B. Segmentation and the design of
multiprogrammed computer systems. J. A C M 12 Flo 67
(Oct. 1965), 589-602•

DIJKSTRA, E.W. On the design of machine inde- Gall 67
pendent programming languages. Annual Re-
view in Automatic Programming, Vol. 3, 1963,
pp. 27-42. Gar 64

Solution of a problem in concurrent pro-
gramming control. Comm. A C M 8 (Sept. 1965), Gar 66
569.

DONOVAN, J. J., AND LEDGARD, H. F. Canonic
systems and their application to programming Gea 65
languages. Mem. MAC-M-347, Project MAC,
MIT, Cambridge, Mass•, April, 1967. Gil 66

EARLEY, J. C. Generating a recognizer for a
BNF grammar. Computation Center Rep., Gil 67
Carnegie Inst. of Tech., Pittsburgh, Pa., 1965•

An LI~(K) pursing algorithm. Carnegie
Inst. of Tech., Pittsburgh, Pa., 1967, (mimeo).

EICKEL, J., PAUL, M., BAUER, F. L., AND SAMEL- Gin 66a
son, K. A syntax controlled generator of formal
language processors. Comm. A C M 6 (Aug. 1963),
451-455• Gin 66b

Generation of parsing Mgorithms for
Chomsky 2-type languages. 6401, Mathema- Gle60
tisches Insti tut der Technischen Hochschule,
Munich, 1964.

ELGOT, C. C., AND ROBINSON, A. Random-access
stored-program machines, an approach to pro- Gor 61
gramming languages. J. A C M 1I (Oct. 1964),
365-399.

ENGL'UND, D., AND CLARK, E. The CLIP-trans- Gor 63
lator. Comm. A C M 4 (Jan. 1961), 19-22.

EVANS, ARTHUR. An ALGOL 60 compiler. An-
nual Review in Automatic Programming, Vol. ~,
1964, pp. 87-124.

EVANS, W., AND DARLEY, D. On-line debugginfi
techniques: a survey. Proc. A_FIPS 1966 FJCC,
Vol. 29, pp. 37-50.

FELDMAN, J .A . A formal semantics for computer
oriented languages. Carnegie Inst. of Tech., Pitts-
burgh, Pa., 1964.

GraM 65

GraR 64

Grau 62

A formal semantics for computer languages
and its application in a compiler-compiler.
Comm. A C M 9 (Jan. 1966), 3-9.

- - , AND CURRY, J. The compiler-compiler in a
time sharing environment. Lecture notes on
Advanced Computer Organization, U. of Michi-
gan, Ann Arbor, Mich., 1967.

FERGUSON, D.E. Evolution of the meta-assembly
program. Comm. A C M 9 (March 1966), 190-196.

FIERST, J. CABAL Memos. Computer Center
Rep., Carnegie Inst. of Tech., Pittsburgh, Pa.,
1967.

FLOYD, R.W. A descriptive language for symbol
manipulation. J. A C M 8 (Oct. 1961), 579-584.

On ambiguity in phrase structure languages.
Comm. A C M 5 (Oct. 1962), 526,534.

On the nonexistence of a phrase structure
grammar for ALGOL-60. Comm. A C M 5 (Sept.
1962), 483-484.

Syntactic analysis and operator precedence.
J . A C M 10 (July 1963), 316-333.

Bounded context syntactic analysis. Comm.
A C M 7 (Feb. 1964), 62-67.

The syntax of programming languages--a
survey. I E E E Trans. EC13, 4 (Aug. 1964),
346-353.

Assigning meanings to programs. A M S
Symposium in Appl . Math. 19, 1967.

GALLER, B., AND PERLIS, A. J. A proposal for
definitions in ALGOL. Comm. A C M 10 (April
1967), 204-219.

GARWICK, J. V. GARGOYLE, a language for
compiler writing. Comm. A C M 7 (Jan. 1964), 16.

- - , BELL, J., ANn KRmER, L. The GPL lan-
guage. TER-05, Control Data, Palo Alto, Calif.,
1966.

GEAR, C.W. High speed compilation of efficient
object code. Comm. A C M 8 (Aug. 1965), 483-488.

GILBERT, P. On the syntax of algorithmic lan-
guages. J. A C M 13 (Jan. 1966), 90-107.

- - , AND MCLELLAN, W.G. Compiler generation
using formal specification of procedure-oriented
and machine languages. Proc. AFIPS 1967
SJCC, Vol. 30, pp. 447-455.

GINSBURG, S. The Mathematical Theory of Con-
text Free Languages. McGraw-Hill, Inc., New
York, 1966.

, AND GREIBACH, S. Deterministic context
free languages. In f . Contr. 9 (1966), 620-648.

GLENNIE, A. E. On the syntax machine and the
construction of a universal compiler. Tech.
Rpt. No. 2, Computation Center, Carnegie
Inst. of Tech., Pittsburgh, Pa., 1960.

GORN, S. Specification languages for mechanical
languages and their processors, a baker's dozen.
Comm. A C M $ (Dec. 1961), 532-542.

Detection of generative ambiguities in
context-free mechanical languages. J. A C M 10
(April 1963), 196-208.

GRAHAM, M• L., AND INGERMAN, P.Z. A universal
assembly mapping language. Proc. ACM 20th
Nat. Conf., 1965, pp. 409-420.

GRAHAM, R. M. Bounded context translation.
Proc. AFIPS 1964 SJCC, Vol. 25, pp. 17-29.
GRAU, A. A. A translator-oriented symbolic pro-

gramming language. J. A C M 9 (April 1962),
480-487.

110 Communica t ions of tile ACM Volume 11 / Number 2 / February , 1968

Gre 62

Grie 65

Grie 67a

Grie 67b

Grif 65

Gro 66

Hal 64

Hal 66

Hal 67a

Hal 67b

Hal 67c

Hals 62

Hill 62

Hoa 65

Hor 66

Hus 62

IBM 66

Ing 62

Ing 66

Int 63

Ir 61

Ir 63a

GREEN, ,1. Symposium on languages for processor Ir 63b
construction. Proc. IFIP Congress, 1V~unich,
1962, pp. 513-517.

CRIES, D., PAUL, M., AND WIEttLE, I'i. R. Some Ir 64
techniques used in the ALCOR-ILLINOIS 7090.
Comm. ACM 8 (Aug. 1965), 496-500. Ir 65

The use of transition matrices in compiling.
Tech. Rpt. CS 57, Computer Science Dept., I t 66
Stanford U., Stanford, Calif., March 1967 and
Comm ACM 11 (Jan. 1968), 26-34.

Internal notes on the compiler writing
system. Computer Science Dept., Stanford U.,
Stanford, Calif., 1967. Kar 66

GRIFFITHB, W. V., AND PETRICK, S. R. On the
relative efficiencies of context-free grammar
recognizers. Comm. ACM 8 (May 1965), 289-299.

GROSS, M. Applications geometriques des lan- Kerr 67
gages formels. ICC Bull. 5 (Sept. 1966), 141-167.

HALPERN, M. XPOP: a metalanguage without
metaphysics. Proc. AFIPS 1964 FJCC, Vol. 26,
pp. 57-68. Kir 66

Foundations of the case for natural-lan-
guage programming. Proc. AFIPS 1966 FJCC,
Vol. 29, pp. 639-649. Knu 62

Toward a general processor for program-
ming languages. Comm. ACM 11, (Jan. 1968), Knu 65
15-26.

Foundations of the case for natural Knu 67
language programming. I E E E Spectrum (March
1967), 140-149. Kuc 67

A manual of the XPOP programming sys-
tem. Electronic Sciences Lab. Lockheed Missiles
& Space Company, Palo Alto, Calif., March Kun 62
1967.

I'IALSTEAD, ~/~. ~:~. Machine-Independent Computer
Programming. Spartan Books, Washington,
D.C., 1962.

HILL, V., LANGMAACK, H., SCH~.VARZ, IX. R., AND
SEEOMOLLER, G. Efficient handling of sub-
scripted variables in ALGOL 60 compilers. Proc.
Symbolic Languages in Data Processing, Gordon
and Breach, New York, 1962, 331-340.

I-IOARE, C. A. R. A programming language for
processor construction. Notes from NATO smn-
mer school lectures, 1966.

HORWITZ, L. P., KARP, ~:~. M., ~ILLER, R. E., AND
WlNOG~AD, S. Index register allocation, o r.
ACM 18 (Jan. 1966), 43-61.

HUSKEY, HARRY D. Languages for aiding compiler
writing (panel discussion). Proc. Symbolic
Languages in Data Processing, Gordon and Lang 64
Breach, New York, 1962, 187-204.

IBM System/360 Operating System PL/I Language
Specification. Form C28-6571-4.

INGERMAN, P. Z. Techniques for processor con-
struction. Proc. IFIP Congress, Munich 1962, Lea 64
pp. 527-528.

A Syntax Oriented Translator. Academic
Press, Inc., New York, 1966. Lea 66

International Standards Organization. Survey of
programming languages and processors. Comm. Leo 66
ACM 6 (March 1963), 93.

InoNs, E. T. A syntax directed compiler for Let 65
ALGOL 60. Comm. ACM 4 (Jan. 1961), 51-55.

The structure and use of the syntax-directed
compiler. Annual Review in Automatic Program-
ruing, Vol. 3, 1963, pp. 207-227.

Lande 62

Landi 63

Landi 65

Landi 66

Landw 64

Towards more versatile mechanical trans-
lators. AMS Symposium in Appl. Math. 15,
1963, pp. 41-50.

Structural connections in formal languages.
Comm. ACM 7 (Feb. 1964), 67-71.

An error correcting parse algorithm. Comm.
ACM 6 (Nov. 1965), 669-673.

ITURRIAGA, •., STANDISH, W. A., KRUTAR, R. A.,
AND EARLEy, J. C. Techniques and advantages
of using the formal compiler writing system FSL
to implement a formula ALGOL compiler. Proc.
AFIPS 1966 SJCC, Vol. 28, pp. 241-252.

KARP, R. M., AND MILLER, R . E . Properties of a
model for parallel computations: determinacy,
termination, queueing. SIAM J. (Nov. 1966),
1390-1411.

KERR, R. I'i., AND CLEGG, $. The Atlas ALGOL
Compiler--an ICT implementation of ALGOL
using the Brooker-Morris syntax-directed com-
piler. Comput. J. (1967).

•IRKLEY, C., AND RULIFSON, J. LOTS, a syntax-
directed compiler. Internal Rep., Stanford
Research Inst., Menlo Park, Calif., May 1966.

KNUTH, D. E. History of writing compilers.
Proe. ACM 17th Natl. Conf., 1962, pp. 43, 126.

On the translation of languages from
left to right. Inf. Contr. 8 (Oct. 1965), 607-639.

The remaining trouble spots in ALGOL 60.
Comm. ACM 10 (Oct. 1967), 611-618.

KucK, D. Programming the ILLIAC IV. Talk
given at AFIPS 1967 SJCC. Paper not yet avail-
able.

KUNO, S., AND OETTINGER, A. G. Multiple-path
syntactic analyzer. Information Processing 62
(IFIP Congress), Popplewell (Ed.), North-
Holland Publishing Co., Amsterdam, 1962,
pp. 306-311.

LANDEN, W. I'i., AND WATTENBURG, W. I'i. On the
efficient construction of automatic program-
ming systems. Proe. ACM 17th Natl. Conf.,
1962, p. 91.

LANDIN, P. J. The mechanical evaluation of ex-
pressions. Comp. J. 6 (1963), 308.

A correspondence between ALGOL 60 and
Church's X-notation. Comm. ACM 8 (Feb. and
March 1965), 89-101,158-167.

The next 700 programming languages.
Comm. ACM 9 (March 1966), 157-166.

LANDWEBER, P .S . Decision problems of phrase
structure grammars. IEEE Trans. EC, 13 (Aug.
1964), 354-362.

LANGMAACK, H., AND EICKEL, J. Pr~tzisierung der
begriffe Phrasenstruktur und strukturelle Mehr-
deutigkeit in Chomsky-Sprachen. Rep. No. 6414,
Rechenzentrum der Technischen Hochschule,
Munich, 1964.

LEAVENWORTH, B. M. FORTRAN IV as a
syntax language. Comm. ACM 7 (Feb. 1964),
72-80.

Syntax macros and extended translation.
Comm. ACM 9 (Nov. 1966), 790-793.

LEONARD, G., AND GOODROE, J. More extensible
machines. Comm. ACM 9 (March 1966), 183-188.

LETICHEVNKII, A. A. The representation of con-
text-free languages in automata with a push-
down type store. Cybernetics (Kibernetika).
Vol. 1, No. 2, The Faraday Press, New York
(1965), 81-86.

Volume 11 / Number 2 / February , 1968 Communica t ions of the ACM 111

Luc 65

Lucc 67

Mark 61

Mar 67

Mas 60

Maur 65

May 61

McCAR 62a

McCar 62b

McCar 67

McC1 65

McI1 60

McKee 66

Men 63

Met 64

Min 67

Mond 67

Moo 65

Mor 67

Nap 67

Nar 66

Nar 67

Naur 60

Naur 63a

LUCAS, P. Definition of a subset of PL/1 by finite
local state vectors. Working paper to IFIP
WG2.1, July, 1965.

LuccIO, F. A comment on index register alloca-
tion. Comm. A C M 10 (Sept. 1967), 572-574. Nob 63

MARKOV, A.A. Theory of Algorithms. US Bureau
of Standards, OTS 60-51085, available from
Clearing House, Springfield, Va. Nor 63

MARTIN, D., AND ESTRIN, G. Models of computa-
tions and systems. J. A C M 15 (April 1967),
281-294. Op 62

MASTERSON, K.S. Compilation for two computers
with NELIAC. Comm. A C M 3 (Nov. 1960),
607-611. Orch:66

MAURER, W. Atheoryof computer instructions.
Mem. MAC-M-262, Project MAC, MIT Cam-
bridge, Mass., Sept• 1965. 0rg 67

MAYOH, B . H . Letter to the editor correcting Ir
61. Comm. A C M 5 (June 1961), 284.

McCARTHY, J. Toward a science of computation.
Information Processing 6~ (IFIP Congress), Pai66
Popplewell (Ed.). North-Holland Publishing Co.,
Amsterdam, 1962, pp. 21-28.

ET AL. LISP 1.5 programmers manual. Par61
Computation Lab Report, MIT (1962).

, AND PAINTER, J. Correctness of a compiler
for .arithmetic expressions. A M S Symposium in
Appl. Math. 19, 1967•

McCLuRE, R . M . TMG--a syntax-directed com-
piler. Proc. ACM 20th Natl, Conf., 1965, pp. Paul 62
262-274.

McILaov , M. D. Macro instruction extension of
compiler language. Comm. A C M 8 (April 1960), Plas 66
214-220.

McKEEMAN, W. M. An approach to computer
language design. Tech. Rpt. CS 48, Computer Pos 43
Science Dept., Stanford U., Stanford, Calif.,
Aug. 1966.

MEALY, G. A generalized assembly system• RM- Pra 65
3646-Pg Rand Corp., Santa Monica, Calif.,
Aug. 1963.

METCALFE, H .H . A parametrized compiler based
on mechanical linguistics. Annual Review in

Pra 66
Automatic Programming, Vol. 5, 1964, pp. 125-165.

MINSKY, M. L., AND PAPERT, S. Perceptions and
pattern recognition. Mem. MAC-M-358, Project
MAC, MIT, Cambridge, Mass., Sept. 1967. Rab 62

MONDSCHEIN, L. VITAL compiler-compiler refer-
ence manual. TN 1967-1, Lincoln Lab., MIT,
Lexington, Mass., Jan. 1967. Ran 64

MOOERS, C., AND DEUTSCH, L. P. TRAC, a text
handling language. Prec. ACM 20th Natl.
Conf., 1965, pp. 229-246. Rey 65

MORRIS, D•, AND WILSON, I• A system program
generator. Computer Science Dept., U. of Man-
chester, Manchester, 1967 Ri 66

NAPP~R, R. B. E. The third-order compiler. A
context for free man-machine communication•
Machine Intelligence I, Collins and Michie (Eds.). Rig 62
Oliver and Boyd, London, 1967.

NARASIMHAN, R. Syntax-directed interpretation
of classes of pictures. Comm. A C M 9 (March
1966), 166-173.

Rob 66 • Programming languages and computers: a
unified meta theory• In Advances in Computer 8.
Academic Press, Inc., New York, 1967, Chap• 5.

NAVR, P. (Ed.) Report on the algorithmic Ros64a
language ALGOL 60. Numer. Math. P (1960),
106-136; Comm. A C M 8 (May 1960), 299-314.

Documentation problems: ALGOL 60. Ros 64b
Comm. A C M 6 (March 1963), 77-79.

Naur 63b • Revised report on the algorithmic language
ALGOL 60. Comm. A C M 6 (Jan. 1968), 1-17;
Numer. Math. 5 (1963), 420-452; Comp. J. 5
(1963), 349-367.

NOBLE, A. S., AND TALMADGE, R . B . Design of
an integrated programming and operating sys-
tem, I and II. I B M Syst. J . 2 (June 1963), 152-181.

NORTHCOTE, R. S. The structure and use of a
compiler-compiler system. Proc. Australian
Comput. Conf., Dec. 1963•

OPLER, A. "Tool"--a processor constructionlan-
guage. Proc. IFIP Congress, Munich, 1962,
pp. 513-514.

0RCHARD-HAYS, WILLIAM. Multilevel operating
systems. Comm. A C M 9 (March 1966), 189-190,
(abstract only).

OR•ASS, R. J. A mathematical theory of com-
puting machine structure and programming.
RC1863, IBM, Yorktown Heights, New York,
1967•

PAINTER, J. Semantic correctness of a compiler
for an ALGOL-like language. AI Rep. No. 44.
Stanford U., Stanford, Calif., 1966•

PARIKH, R. J. Language generating devices.
Quarterly progress rep. no. 60, Research Lab.
of Electronics, MIT, Jan. 1961, 199-212. Re-
printed with minor editorial revisions under the
title: On context-free languages. J. A C M 13 (Oct.
1966), 570-581.

PAUL, M. ALGOL 60 processors and a processor
generator. Proc. IFIP Congress, Munich, 1962,
pp. 493-497.

PLAS~OW, J•, AND SCHUMAN, S. The TRANGEN
system on the M460 computer. AFCRL-66-516
(July 1966).

POST, E. L. Formal reductions of the general
combinatorial decision problem, Am. J. Math• 66
(1943), 197-217•

PRATT, T. W. Syntax-directed translation for
experimental programming languages. TNN-41,
Computation Center U. of Texas, Austin, Texas,
1965.

- - , AND LINDSAY, R. K. A processor-building
system for experimental programming language•
Proc. AFIPS 1966 FJCC, Vol. 29, pp. 613-621.

RABINOWITZ, I. N. Report on the algorithmic
language FORTRAN II. Comm. A C M 5 (June
1962), 327-337.

RANDELL, B., AND RUSSEL, D. J. ALGOL 60
Implementation. Academic Press, Inc., London,
1964.

REYNOLDS, J.C. An introduction to the COGENT
programming system. Proc. ACM 20th Natl.
Conf., 1965, pp. 422---436.

RICE, J . , AND ROSEN, S. NAPSS, numerical
analysis and problem solving system. Proc.
ACM 21st Natl. Conf., 1966, pp. 51-56•

RIGUET, J. Programmation et theories des
categories. Proc. Rome Symposium on Symbolic
Languages in Data Processing, Gordon and
Breach, New York, (1962), pp. 83-98.

ROBERTS, L. G. A graphical service system with
variable syntax. Comm. A C M 9 (March 1966),
173-176.

ROSEN, S. A compiler-building system developed
by Brooker and Morris. Comm. A C M 7 (July
1964), 403--414.

Programming systems and languages. Proc.
AFIPS 1964 SJCC, Vol. 25, pp. 1-15.

112 Communica t ions of tlle ACM Volume 11 / Number 2 / February , 1968

Ross• 63

Ross 64

Ross 66

Ross 67

Roy 67

Rut 62

Sam 60

Sam 62

Samm 61

Schl 67

Schm 63

Sch 64

Scho 65

Schor 64

Schii 63

Sh 58

ShaA 67

Shaw 63

Shed 67

Sib 61

Sta 67

Star 65

Ste 61

ROSS, D., AND RODRtGUEZ, J. Theoretical founda- Ste 66
tions of the computer aided design system. Proc.
AFIPS 1963 SJCC, Vol. 23, pp. 305-322.

Ross, D.T. On context and ambiguity in parsing.
Comm. ACM 7 (Feb. 1964), 131-133. Sto 67 -

AED bibliography. Mere. MAC-M-278-2,
Project MAC, MIT Cambridge, Mass., Sept:
1966. Str 65

The AED approach togenera l ized com-
puter-aided design. Proc. ACM 22nd Natl. Tar 56
Conf. 1967, pp. 367-385.

ROVNER, P., AND FELDMAN, J. An associative Tay 61
processing system for conventional digital com-
puters. TN 1967-19, Lincoln Lab., MIT, Lexing-
ton, Mass., April 1967. Te 66

RUTISHAUSER, H. Panel on techniques for proces-
sor construction. Proc. IFIP Congress, Munich,
1962, pp. 524--531.

SAMELSON, K., AND BAUER, F. L. Sequential Th66
formula translation. Comm. ACM 8 (Feb. 1960),
76-83. Tix 67

Programming languages and their process-
ing. Proc. IFIP Congress, Munich, 1962, pp.
487-492.

SAMMET, J. E. A definition of COBOL 61. Proc. Tro 67
ACM 16th Natl. Conf., 1961.

SCHLESINGER, S., AND SABHKIN, L. POSE: a Wai67
language for posing problems to a computer.
Comm. ACM 10 (May 1967), 279-285. War 61

SCHMIDT, L. Implementation of a symbol manipu-
lator for heuristic translation. Proc. ACM 18th
Natl. Conf., 1963. War 64

SCHNEIDER, F. W., AND JOHNSON, G.D. META-3;
A syntax-directed compiler writing compiler to
generate efficient code. Proc. ACM 19th Natl. Weg 62
Conf. 1964, p. D1.5-1.

SCHORR, H. Analytic differentiation using a
syntax directed compiler. Comput. J. 7 (Jan. Wij 66
1965), 290--298.

SCHORRE, D. V. META-II: A syntax-oriented
compiler writing language. Proc. ACM 19th
Natl. Conf., 1964, p. D1.3.

SCHUTZENBERGER, M. P. Context-free languages Wil 64a
and pushdown automata. Inf. Contr. 6 (Sept.
1963), 246-264.

SHARE Ad-Hoe Committee on Universal Lan-
guages. The problem of programming communi- Wil 64b
cation with changing machines: a proposed
solution. Comm. ACM 1 (Aug. 1958), 12--18. Wir 66a

SHAW, A. A formal description and parsing of
pictures. Doctoral dissertation, Computer Sci-
ence Dept., Stanford U., Stanford, Calif., 1968. Wir 66b

SHAW, C. J. A specification of JOVIAL. Comm.
ACM 6 (Dec. 1963), 721-735.

SHEDLER, G. Parallel numerical methods for the Wir 66c
solution of equations. Comm. ACM 10 (May
1967), 286-291.

SIBLEr, R.A. The SLANG-system. Comm. ACM $ Yer 65
(Jan. 1961), 75--84.

STANDISH, T. A. A data definition facility for
programming languages. Computer Science You 65
Rep., Carnegie Inst. of Tech. Pittsburgh, Pa.,
May 1967.

STARX, R. ALTEXT--mull iple purpose language. Zar 67
Lockheed Missiles & Space Company Tech.
Rep. 6-75-65-15, March, 1965.

STEEL, T. B. A first version of UNCOL. Proc. Zem 66
Western Joint Comput. Conf., 1961, pp. 371-378.

(Ed,) Formallanguage descriptionlanguages
for computer programming. Proc. IFIP Conf.,
Baden, Sept. 1964, North-Holland Publishing
Co., Amsterdam, 1966.

STONE, H.S . One-pass compilation of arithmetic
expressions for parallel processor. Comm. ACM
10 (April 1967), 220=223.

STRACHEY, C. A general purpose macrogenerator.
Comput. J. 8 (1965), 225--241.

TARSKI, A. Logic, Semantics, Metamathematics.
Clarendon Press, London, 1956.

TAYLOR, W., TURNER, L., AND WAYCHOFF, R. A
• syntactical chart of ALGOL 60. Comm. ACM 14

(Sept. 1961), 393.
TEICHROEW, D., AND LUnIN, J. F. Computer

simulation--discussion of the technique and
comparison of languages. Comm. ACM 9 (Oct.
1966), 727-741.

THOMPSON, F. B. English for the computer.
Proc. AFIPS 1966 FJCC, Vol. 29, pp. 349-356.

TIXIER, V. Recursive functions of regular expres-
sions in language analysis. Tech. Rpt. CS 58,
Computer Science Dept., Stanford U., Stanford,
Calif., March 1967.

TROUT, R .G. A compiler-compiler system. Proc.
ACM 22nd Natl Conf., 1967, pp. 317-322.

WAITE, W. A language independent macro
processor. Comm. ACM 10 (July 1967), 433--441.

WARSHAL~, S. A syntax directed generator.
Proc. Eastern Joint Comput. Conf., 1961, pp.
295-305.

- - , AND SHAPIRO, R. M. A general-purpose
table-driven compiler. Proc. AFIPS 1964 SJCC,
Vol. 25, pp. 59-65.

WEGNER, P. (Ed.) Introduction to Systems Pro-
gramming. Academic Press, Inc., New York,
1962.

VAN WIJNGAARDEN, A. Recursive definition of
syntax and semantics in Formal Language Des-
cription Languages for Computer Programming,
North-Holland Publishing Co., Amsterdam,
1966, pp. 13-24.

WILKES, M.V. An experiment with a self-compiling
compiler for a simple list-processing language.
Annual Review in Automatic Programming,
Vol. 4, 1964, pp. 1-48.

Constraint-type statements in program-
ming languages. Comm. ACM 7 (Oct. 1964), 587.

WlRTH, N. A programming language for the 360
computers. Tech. Rpt. CS 53, Computer Science
Dept., Stanford U., Stanford, Calif., Dec. 1966.

, AND HIOARE, C. A.R. A contribution to the
development of ALGOL. Comm. ACM 9 (June,
1966), 413--432.

, AND WEBER, H. EULER--a generalization
of ALGOL, and its formal definition: Part I,
Part II. Comm. ACM 9 (Jan., Feb. 1966), 13-25,
89-99.

YERSHOV, A.P. ALPHA--an automatic program-
ming system of high efficiency. Proc. IFIP
Congr., New York, 1965, pp. 622--623.

YOUNG, J. W., JR. Nonprocedural languages.
7th Ann. ACM Tech. Syrup., S. Calif. Chapter,
March 1965.

ZARA, R. F. A semantic model for a language
processor. Proc. ACM 22nd Natl. Conf., 1967,
pp. 323-339.

ZEMANEK, H. Semiotics and programming lan-
guages. Comm. ACM 9 (March 1966), 139-143.

Volume 11 Number 2 / February , 1968 Communica t ions o f t h e ACM 113

