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ABSTRACT 

A simultaneous equation model is developed to describe temporal trends and 

shifts in demand among five modes of passenger transportation in the Netherlands. 

The modes are car driver, car passenger, train, bicycle, and public transit 

(bus-tram-metro). The time period is one year (1984-1985). The data are from the 

week-long travel diaries at six-month intervals of a national panel of households in 

the Nether- lands. The model explains the weekly trip rates for each mode in terms 

of three types of relationships: links from demand for the same mode at previous 

points in time (temporal stability or inertia), links to and from demand for other 

modes at the same point in time (complementarity and competition on a synchronous 

basis), and links from demand for other modes at previous points in time 

(substitution effects). A significant model is found with fifteen inertial links, 

twenty-one synchronous links, and sixteen cross-lag links among the variables. It is 

proposed in interpretations of the link coefficients and overall effects ef one 

variable on another that relationships among the modes are evolving over time. In 

particular, the model captures the effect of a public transit fare increase that 

occurred during the time frame of the panel data. 



INTRODUCTION 

This research is aimed at developing a model of changes in demand for 

passenger transport modes over time. The specific application is to changes in 

demand for five modes in the Netherlands--car driver, car passenger, train, bicycle 

(an important mode in that country) and bus-tram-metro (considered as one 

mode)--at. three points in time: Spring 1984, Autumn 1984 and Spring 1985. The 

model attempts to capture temporal trends and shifts in demand among modes that 

might be caused by events such as a public transit fare increase. Demand changes in 

general could be caused either by situational factors, such as changes in income, 

employment status, residential location or household structure, or by factors 

external to the individual travelers, such as travel costs or levels of service. 

The model attempts to explain the level of demand for each mode of 

transportation in terms of sets of structural relationships involving three sets of 

explanatory variables: (1) the demand for the same mode at previous points in time, 

(2) the demand for other modes at the same point in time, and (3) the demand for 

other modes at previous points in time. To accomplish this, simultaneous equations 

are estimated using panel data. In panels, the same individuals are surveyed at 

multiple points in time. The data used are from a national panel in the Netherlands 

that had approximately 5,600 respondents for its first three waves. The variables in 

the model are summarized from the week-long travel diaries completed by the panel 

respondents. 

The measure of modal demand used in the modeling was the total number of 

trips made by each person over the course of a week at each point in time. This use 

of multi-day travel data is an important aspect of this reseach. There is 
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considerable variation in the numbers of trips by mode on a weekly basis, and 

infrequent use of a mode (e.g., car passenger travel on weekends only, or train use 

once a week) is less subject to measurement error when measured on a weekly 

rather than daily basis. 

METHODOLOGY 

In a structural relationships approach (also known as causal analysis, path 

analysis, or simply simultaneous equations), the phenomenon under study is specified 

in terms of cause-and-effect relationships. This is done prior to empirical testing 

of the model and estimation of the coefficients, based on theories and prior 

empirical results. The relationships are always unidirectional in that they each 

postulate that one variable influences another, and not conversely. If reciprocal 

influences appear to be appropriate, then relationship can be specified in both 

directions, but each relationship in general would have a different coefficient. In 

this way, many structural equations models incorporate both direct and "feedback" 

influences. Overviews of structural relationship approaches can be found in Bielby 

and Hauser (1977), Duncan (1975), and Heise (1975). 

The format for the specific structural relationships approach of the present 

modeling effort can be illustrated by organizing the demand variables in flow 

diagrams according to a five by three matrix, as shown in Figure 1. The rows of this 

matrix represent the five modes (cross-sectional information) and the columns 

represent the three waves, each six months apart (temporal information). (The 

bus-tram-metro mode is abbreviated as "btm" in all figures.) Three types of 

unidirectional relationships are then specified to link these variables. 
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ORGANIZATION OF VARIABLES AND HYPOTHETICAL VARIABLE LINKS BY TYPE 
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First, diachronal relationships between demand levels of the same mode at 

two points in time capture inertia or stability over time in mode usage. Examples of 

possible "inertial links" are denoted by the "I" flows in Figure l. The inertial links 

between successive panel waves in particular are expected to be strong because of 

the relatively short period of time between the waves (six months). Also, due to 

implementation of biannual waves, inertial links between the first and third waves, 

in the presence of links between successive waves, will capture seasonal demand 

patterns. Such seasonal patterns have been shown to be present in the Dutch panel 

data (T. Golob et al., 1986). 

Second, synchronous relationships (exemplified by the "S" flows in Figure 1) 

are used to capture complementarity (positive links) and substitution (negative links) 

among the modes at any one point in time. These links are postulated on the basis 

of results from cross-sectional travel demand studies and known facts about the 

competitiveness of passenger travel modes. For example, strong negative links are 

expected from the car driver mode to many other modes, and reciprocal positive 

links are expected between train and bus-tram-metro (the latter mode being 

typically used as an access and egress mode for the former mode, and both of these 

public transport modes are often used by non-car owners). 

Third, and finally, cross-lagged relationships (the "L" flows in Figure 1) relate 

the use of one mode at one point in time to another mode at a later point in time. 

These links can capture systematic adjustments in mode demand (Kenny and 

Harackiewicz, 1979). The present approach in specifying the model was to test 

cross-lagged hypotheses after firmly establishing both synchronous and inertial 

relationships. Significant cross-lagged relationships thus represent dynamics of 

demand that cannot be explained by combinations of inertial and synchronous 

changes. 
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The estimation of model parameters involves simultaneously finding the 

coefficients for each of the three types of links that reproduce the sample data in 

some optimal manner. This is accomplished using either least squares (two-stage, 

three-stage or partial least squares) or maximum likelihood methods. Both 

two-stage least squares and maximum likelihood methods were used in the present 

application, the former being employed as initial values for the iterative maximum 

likelihood solution using the LISREL program (Llnear Structural RELationships by 

the Method of Maximum Likelihood) (Joreskog and Sorbom, 1984) introduced by 

Joreskog (1973). There were only slight differences between the estimates produced 

by the two methods. However, the LISREL maximum likelihood method provided 

extensive diagnostics concerning model goodness-of-fit and possible improvements, 

and these estimates are documented here. 

Unstandardized variables were used in the model because all variables were 

measured in the same scale: trips per week. Thus, the model estimation involved 

reproducing the variable variance-covariance matrix, as opposed to the correlation 

matrix. Denoting: 

S (kxk) = sample variance - covariance matrix for the k = 15 

variables (5 modes at 3 points in time), and 

}: (kxk) = estimated variance - covariance matrix reproduced by the 

model, 

the objective function for the least-squares initial values is 

F = tr [(S - ):)2]12 
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and the objective function for the maximum-likelihood estimates is 

F = loglrl + tr (sr-1)- log ISi -k (2) 

Parameter standard errors are computed from the probability limits of the 

second-order derivatives of function (2). 

Assessing model goodness-of-fit is accomplished first by consulting the 

chi-square statistic computed from the log-likelihood ratio. This statistic, with 

degrees of freedom (d), equal to the number of free entries in the 

variance-covariance matrix minus the number of parameters in the model (d = (k + 

l)k/2 - t), can be used to test the hypothesis that the model can be rejected and is a 

general index of goodness-of-fit. Second, an adjusted goodness-of-fit index that 

measures the relative amount of variances and covariances accounted for by the 

model is given by 

AGFI = l - [k (k + 1 )/2d] ( 1-GFI) 

GFI = 1 - tr (S - r)2/tr (52) 

(3) 

(4) 

and d denotes the degrees-of-freedom of the model. The AGFI is independent of 

sample size and robust against deviations from normality, but its distribution is 

unknown for hypothesis testing. Finally, the parameter t-statistics and correlations 

provide information regarding model specification errors. All hypothesis test were 

conducted at the p=.05, or 95 percent confidence interval. 

The estimate of the variance-covariance matrix involves (k + l)k/2 equations, 

with the number of unknowns equal to t (the number of model parameters). A 

necessary condition for the model to be identified is thus that t < (k + l)k/2, or in 

this case, t < 120. Further conditions for identification are described in Goldberger 
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(1964), Geraci (1976) and Joreskog (1977). Identification in the present study was 

aided by the constraint of having only forward-directed diachronal links. 

THE PANEL DATA 

The data source is an ongoing panel in the Netherlands begun in 1984 (J. 

Golob, et al., 1986). The sample of about 1,800 households per wave is continually 

refreshed to replace drop-outs. It is stratified by life cycle, income and community 

type and is clustered in twenty communities throughout the Netherlands. The first 

three panel waves, providing the data for the present study, were conducted in 

March 1984, September-October 1984, and March 1985. Each of these first three 

waves involved a household questionnaire and separate questionnaires and travel 

diaries for all household members over eleven years of age. 

Weekly trip rates measuring modal demand were estimated using all 5,614 

persons who responded in at least one wave of the panel. Of these persons, 2,274 

responded in all of the first three waves, while the remainder dropped out after one 

or two waves or were added as replacements after the first or second waves. The 

pair-wise deletion methods was used in the computation of the variance-covariance 

matrix in order to utilize all information and minimize biases due to selective panel 

drop-out (Kitamura and Bovy, 1986): the samples employed in computing 

cross-sectional covariances were all respondents who participated in a specific 

wave, and the samples for diachronal covariances were all respondents common to 

the two specific waves. The minimum sample size for any pair of variables was 

2273. 

Results from an analysis of biases introduced by the under- reporting of trips 

over time in the seven-day diary (Golob and Meurs, 1986) were used in determining 

which modes were to be included in the analysis. The reporting of walking trips was 
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found to be substantially biased, and this mode was excluded. The biases in 

reporting of trips by vehicular modes were similar, mode by mode, and should not 

affect the results of the present trip-rate analysis. Analyses of changes in mode 

demands based on dichotomous use/non-use variables by individual mode are 

reported in T. Golob et al. (1986). The present analysis considers all modes together. 

ESTIMATION OF THE COMPLETE MODEL 

The flow diagram for the model for five modes at three points in time is 

shown in Figure 2. The log-likelihood ratio chi-square for this model is 59.1 with 53 

degrees-of-freedom. This relatively low value for the degrees-of-freedom 

represents a good fit as the model cannot be rejected on the basis of this statistic. 

Moreover, the adjusted goodness-of-fit index (the AGFI of equation (3)) is 0.997, 

indicating an excellent replication of the trip-rate variance-covariance matrix. 

2 
The coefficients of determination (R values) for each endogenous variable 

are listed in Figure 2. All variables with the exception of car driver in wave one 

were endogenous; that is, they were influenced by at least one other variable. The 

2 
R values for wave one can be disregarded because there is no prior information 

on which to base the estimation of these variables. Regarding the wave two and 

three demand levels, the degrees of explanation for car driver and bike are the 

highest, with car passenger the lowest, and bus-tram-metro (btm) and train 

intermediate. 

The model has fifteen inertial links, twenty-one synchronous links, and 

sixteen cross-lagged links, for a total ·of fifty-two links. With the addition of 

fifteen free error parameters, one for each observed variable (no error term 

covariances were found to be significant), the model thus has sixty-seven 

parameters. All of the links, with one exception, had coefficients that were 
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FIGURE 2 

FLOW DIAGRAM OF ESTIMATED COMPLETE MODEL WITH 67 PARAMETERS 
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significantly different from zero at the p = .05 level. The complete set of 

coefficients and associated t-statistics are listed in Appendix A. These results are 

interpreted on a sub-model basis by the three types of links (inertial, synchronous, 

and cross-lagged) in the next three sections. 

THE INERTIAL SUB-MODEL 

The coefficients for the inertial links are shown in Figure 3. These 

coefficients indicate the direct effects on demand level at one point in time from 

demand levels for the same mode at previous points in time. The coefficients with 

the highest values as a group are the inertial links from wave one to wave two, and 

the highest of these are for car driver, bike and train. Of these three modes, train 

sustains the highest temporal stability in demand from wave two to wave three. 

The links from wave one to wave three for each of the five modes can be 

interpreted as seasonality effects (waves one and three being in the spring of 

successive years, wave two being in the intervening autumn). All of these links are 

of modest strength and are highly significant, confirming results reported in Golob, 

et al. (1986). The lowest seasonality coefficient is that for the car passenger mode. 

Overall, car driver, train and bike exhibit the highest degree of temporal 

stability. Car passenger exhibits the lowest. Bus-tram-metro (btm) shows 

relatively low inertia between successive waves, but a relatively high seasonality 

component of stability. 

THE SYNCHRONOUS SUB-MODEL 

The direct effects associated with the synchronous (or cross-sectional) links 

are shown in Figure 4. The strongest influence for all three waves is that of 

bus-tram-metro on bicycle. This indicates that these two modes are competitive, 
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LINK COEFFICIENTS FOR INERTIAL SUB-MODEL 
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with bus-tram-metro being the dominant mode: high use of btm causes low use of 

bike, but not conversely. The similarly negative influences of car diver and car 

passenger on bike appear to be decreasing over time, and indeed bike begins to 

exhibit a reciprocal influence on car driver in the third wave. 

The complementary relationships between train and bus-tram-metro also 

appear to be evolving over time. The positive influence from btm to train decreases 

(from 0.11 in wave one to 0.05 in wave two to insignificance in wave three), while 

the positive influence from train to btm increases (from insignificance in wave one 

to 0.15 in wave two to 0.33 in wave three). All efforts to estimate a significant 

model with consistent synchronous links between these modes at all three waves 

failed, leading to the conclusion that the synchronous structure is indeed changing 

over time. A possible interpretation of the evolution in the relationships between 

this pair of models is that bus-tram-metro is becoming more of an access-egress 

mode for train over time. 

THE CROSS-LAG SUB-MODEL 

The cross-lagged effects over successive waves are shown in Figure 5, and 

those over the year-long period from wave one to wave three are shown in Figure 6. 

Consistently strong positive links were found from bus-tram-metro demand in wave 

one to bike demand in wave two (Figure 5) and wave three (Figure 6). These 

indicate that there was a shift from bus-tram-metro demand in March 1984 to bike 

demand on both a short-term (autumn 1984) and seasonally adjusted (March 1985) 

basis. This result is consistent with a public transport fare increase on April 1, 

1984 that particularly affected the fare level for school-aged children; bike and 

bus-tram-metro are known to be competitive modes for this population segment. 
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There are also negative links from train in waves one and two to btm in wave 

three (-0.17 and -0.12 respectively). This could indicate that there was a modest 

shift during 1984 from train to modes that are generally competitive with 

bus-tram-metro. This is potentially consistent with heavy annual turn-overs in 

train season tickets for commuters. Several other cross-lagged links are relatively 

weak but significant. It appears that the model has captured some shifts in 

passenger transport demand in the Netherlands over the March 1984 to March 1985 

period. 

CALCULATED TOT AL EFFECTS 

The total effect of one variable on another in such a structural relationships 

model as that diagrammed in Figure 2 is generally not simply the direct effect 

expressed in terms of the link coefficients described in the previous section. The 

total effect of one variable on another includes both direct effects and indirect 

effects manifested by paths through intermediate variables (Land, 1969; Blalock, 

1971). In some cases the direct and indirect effects are of the same sign and 

reinforce each other, while in the other cases the different effects partially cancel 

each other. 

The total effects implied by the five-mode model of Figure 2 are listed in 

matrix form in Table 1. Each entry in this matrix represents the total effect from 

the row modal demand level to the column modal demand level. For small changes, 

it is possible to interpret the total effects as the change in the column variable that 

would result from a unit (one trip) increase in the row variable. 
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TABLE l 

TOTAL EFFECTS FOR THE FIVE-MODE MODEL 

To 

Wave l Wave 2 Wave 3 
car car car car car car 

From driver train pass. bike btm driver train pass. bike btm driver train pass. bike btm 

car driver -.01 -.08 -.31 -.06 0.76 -.01 -.06 -.33 -.05 0.68 -.01 -.06 -.29 -.06 
train 0.67 -.05 0.10 -.01 0.66 -.01 -.03 0.01 
car pass. -.01 -.21 -.04 0.02 -.01 0.49 -.21 -.02 0.03 -.02 0.41 -.22 -.04 
bike -.10 0.01 0.71 0.01 -.10 -.01 0.01 0.65 -.01 
btm 0.11 -.46 0.04 0.10 -.01 -.45 0.54 -.01 0.08 -.03 -.44 0.54 

car driver -.01 -.08 -.16 -.02 0.50 -.01 -.03 -.11 -.02 
train 0.01 -.08 0.15 -.01 0.60 -.01 -.10 0.15 r--.. 
car pass. -.14 0.01 -.01 0.44 -.12 -.02 .--i 

bike -.05 0.01 0.01 0.04 -.01 
btm 0.05 -.54 0.01 -.09 0.01 -.04 -.46 0.51 

car driver 0.01 -.08 -.06 -.03 
train 0.01 -.01 -.12 0.33 
car pass. 0.01 -.01 -.13 
bike -.08 0.01 0.01 0.01 
btm 0.03 -.01 -.37 -.01 



The total effects in Table 1 with absolute value greater than 0.04 are 

reproduced in Table 2 to facilitate interpretation. (The value of 0.04 is arbitrary in 

its present case but is approximately the critical value for correlation coefficients 

with the given sample sizes.) The total effects to the demand levels in the third 

wave, given by the entries in the last five columns in Table 2, are of most interest 

because they reflect influences of both six months and one year durations. 

The total effect on demand for the car driver mode in wave three is greatest 

from car driver demand in waves one and two (the inertial effects). There are also 

substantial negative effects on car demand from bike demand in all time periods; 

this shows that bike is competitive with the car driver mode in the Netherlands. 

Finally, there is a negative total effect from bus-tram-metro in wave two to car 

driver in wave three, indicating that pensons who used btm after the April l, 1984 

fare increase tended to use the car driver mode less in the following spring. These 

persons represent the basic public transit market. 

Train demand is the least influenced by demand for other modes. The train 

demand level in wave three is influenced only by a person's train demand in the 

previous time periods and by bus-tram-metro demand in wave one (one year prior). 

There is no substantial effect on wave three train demand from wave two btm 

demand because positive and negative effects along different paths between the two 

variables cancel. 

Car passenger demand was previously shown to have the weakest inertial 

direct effects and these are exhibited in the levels of direct effects from prior 

demand for the same mode (0.41 and 0.44); these are the lowest among the five 

modes. Substantial non-inertial effects on car passenger demand are found only 

from car driver demand one year prior and during the same period. The competitive 
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TABLE 2 

TOTAL EFFECTS FOR THE FIVE-MODE MODEL WITH ABSOLUTE VALUE GREATER THAN 0.04 

To 

Wave 1 Wave 2 Wave 3 
car car car car car car 

From driver train pass. bike btm driver train pass. bike btm driver train pass. bike btm 

car driver -.08 -.31 -.06 0.76 -.06 -.33 -.05 0,68 -.06 -.29 -.06 
train 0.67 -.05 0.10 0.66 
car pass. -.21 0,49 -.21 0.41 -.22 
bike -.10 0.71 -.10 0.65 
btm 0.11 -.46 0.10 -.45 0.54 0.08 -.44 

car driver -.08 -.16 0,50 -.11 
train -.08 0.15 0.60 -.10 0.15 O'l 
car pass. -.14 0.44 -.12 ,-f 

bike -.05 0,54 
btm 0,05 -.54 -.09 -.46 0.51 

car driver -.08 -.06 
train -.12 0.33 
car pass. -.D 
bike -.08 
btm -.37 



relationship from the dominant car driver to car passenger demand appears to be 

stronger on a seasonally adjusted basis. 

There are substantial direct effects from almost every other variable to 

bicycle demand in wave three. All of these direct effects, with the exception of the 

inertial links representing temporal stability in bike use, are negative. Thus, bike 

demand is higher for those persons who do not use the other four modes. But, the 

converse is not generally true; there are no substantial effects from bike to other 

modes with the exception of car driver. Bike users tend to make little use of the 

car driver mode but their use of other modes is not systematically lower. 

Finally, bus-tram-metro demand in wave three is affected by three other 

demand levels in addition to inertial effects. This demand level is negatively 

affected by car driver demand one year prior and is positively affected by train 

demand at the same point in time and train demand six months prior. Thus, the 

complementary influence of train on btm diminishes with the length of the time 

lag. Again, this could reflect the relatively high turn-over in train season tickets. 

By comparing the total effects from train at waves two and three to btm at wave 

three with similar effects from train at waves one and two to btm at wave two, it 

appears that the complementary influence of train or btm is also diminishing over 

time for the spring 1984 to spring 1985 time period. 
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DIRECTIONS FOR FURTHER RESEARCH 

It can concluded that interrelationships among the levels of demand for 

alternative passenger travel modes at multiple points in time can be effectively 

represented by structural relationships that take the form of linear simultaneous 

equations. However, while a good model fit was demonstrated for demand levels for 

the five modes at the second and third points in time, the model structure was not 

intended to explain cross-sectional variation in demand at the initial point in time. 

Such an explanation would typically involve level of service variables, as well as 

personal and household characteristics. The resulting extended model would 

represent an integration of conventional modal split modeling, possibly involving 

discrete choice models, and the dynamic modeling of the present research. 

Unfortunately, level of service variables were unavailable for the Dutch panel 

sample at the time of the present research, but it appears that efforts are underway 

to compute such variables for at least a subsample of the panel households. 

Another fruitful extension of the present modeling involves segmenting the 

population on the basis of either personal and household characteristics or level of 

service attributes. The model structures for the segments could then be compared 

statistically; it is possible to analyze data for several segments simultaneously by 

constraining any number of LISREL model parameters to be equal over segments and 

by testing the equality of unconstrained parameters (Joreskog and Sorbom, 1984, 

Chapter V). Segmentations based on personal and household characteristics could be 

used to test hypotheses relating variables such as income, life cycle, and age to 

levels of inertia and volatility in mode usage. For instance, do higher income adults 

exhibit more inertia in car usage than their lower income counterparts? 

Segmentations based on level of service attributes could lead to refined 

interpretations of substitution effects and might provide useful information 
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concerning market demand for specific modes. The sample sizes in the Dutch panel 

are generally appropriate for such segmentations, and the sample is spatially 

distributed in twenty communities with varying bus-tram-metro and rail levels of 

service. Further efforts are required. 
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APPENDIX TABLE 1 

COEFFICIENTS AND T-VALUES FOR THE COMPLETE TRIP RATE MODEL 

Link 
Coefficient From To 

Type Number Wave Mode Wave Mode Coefficient T-Value 

1 1 car driver 2 car driver 0.73 54.5 
2 2 car driver 3 car driver 0.49 26.5 
3 1 car driver 3 car driver 0.28 15.5 

I 4 1 train 2 train 0.67 40.3 
N 5 2 train 3 train 0.60 30.7 
E 6 1 train 3 train 0.26 12.6 
R 7 1 car passenger 2 car passenger 0.50 28.4 
T 8 2 car passenger 3 car passenger 0.44 23.6 
I 9 1 car passenger 3 car passenger 0.20 10.9 
A 10 1 bike 2 bike 0.69 46.5 
L 11 2 bike 3 bike 0.53 30.3 

12 1 bike 3 bike 0.26 14.7 
13 1 bus-tram-metro 2 bus-tram-metro 0.53 35.1 
14 2 bus-tram-metro 3 bus-tram-metro 0.50 28.4 
15 1 bus-tram-metro 3 bus-tram-metro 0.27 16.9 

16 1 car driver 1 car passenger -.08 -9.91 
17 1 car driver 1 bike -.36 -20.4 
18 1 car driver 1 bus-tram-metro -.07 -11.3 
19 1 car passenger 1 bike -.23 -5.50 
20 1 bus-tram-metro 1 bike -.46 -7.60 

s 21 1 car passenger 1 bus-tram-metro -.04 3.01 
y 22 1 bus-tram-metro 1 train 0.11 11.4 
N 23 2 car driver 2 car passenger -.08 -6.61 
C 24 2 car driver 2 bike -.18 -13.1 
H 25 2 car driver 2 bus-tram-metro -.02 -5.73 
R 26 2 car passenger 2 bike -.14 -4.57 
0 27 2 bus-tram-metro 2 bike -.54 -8.85 
N 28 2 train 2 bus-tram-metro 0.15 4.07 
0 29 2 bus-tram-metro 2 train 0.05 3.94 
u 30 3 car driver 3 car passenger -.08 -7.68 
s 31 3 car driver 3 bike -.08 -5.42 

32 3 car driver 3 bus-tram-metro -.03 -5.91 
33 3 car passenger 3 bike -.13 -4.48 
34 3 bus-tram-metro 3 bike -.37 -6.86 
35 3 train 3 bus-tram-metro 0.33 10.0 
36 3 bike 3 car driver -.08 -5.52 
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APPENDIX TABLE 1 (continued) 

Link 
Coefficient From To 

Type Number Wave Mode Wave Mode Coefficient T-Value 

37 1 car driver 2 car passenger 0.04 3.17 
38 1 bike 2 car driver -.10 -6.35 

C 39 1 bus-tram-metro 2 bike 0.17 3.07 
R 40 2 car driver 3 car passenger 0.05 4.63 
0 41 2 train 3 bus-tram-metro -.12 -3.30 
s 42 2 car passenger 3 bus-tram-metro -.02 -2.48 
s 43 2 bike 3 train 0.01 3.20 

44 2 bike 3 bus-tram-metro -.02 -3.51 
L 45 2 bus-tram-metro 3 car driver -.13 -2.89 
A 46 2 bus-tram-metro 3 train -.02 -1.70 
G 47 2 bus-tram-metro 3 car passenger -.05 -2.05 
G 48 1 car driver 3 train -.01 -2.66 
E 49 1 train 3 bus-tram-metro -.17 -5.05 
D 50 1 car passenger 3 train -.01 -2.35 

51 1 bike 3 train -.01 -3.01 
52 1 bus-tram-metro 3 bike 0~11 2.35 
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