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Abstract

Recombination Activating Genes 1 and 2 (RAG1 and RAG2) play a critical role in T and B cell 

development by initiating the recombination process that controls expression of T cell receptor 

(TCR) and immunoglobulin genes. Mutations in the RAG1 and RAG2 genes in humans cause a 

broad spectrum of phenotypes, including severe combined immune deficiency (SCID) with lack of 

T and B cells, Omenn syndrome, leaky SCID, and combined immune deficiency with granulomas 

or autoimmunity (CID-G/AI). Using next generation sequencing, we analyzed the T and B cell 

receptor (TCR, BCR) repertoire in 12 patients with RAG mutations presenting with Omenn 

syndrome (n=5), leaky SCID (n=3), or CID-G/AI (n=4). Restriction of repertoire diversity skewed 

usage of Variable (V), Diversity (D), and Joining (J) segment genes, and abnormalities of CDR3 

length distribution were progressively more prominent in patients with a more severe phenotype. 

Skewed usage of V,D and J segment genes was present also within unique sequences, indicating a 
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primary restriction of repertoire. Patients with Omenn syndrome had a high proportion of class-

switched immunoglobulin heavy chain transcripts and increased somatic hypermutation rate, 

suggesting in vivo activation of these B cells. These data provide a framework for better 

understanding the phenotypic heterogeneity of RAG deficiency.

Introduction

The RAG1 and RAG2 proteins are expressed in developing lymphocytes and play a critical 

role in the assembly of interspersed Variable (V), Diversity (D), and Joining (J) gene 

elements at the immunoglobulin (Ig) and T cell receptor (TCR) loci, thereby initiating the 

VDJ recombination process that allows development of B and T cells and the establishment 

of adaptive immunity. Patients with null mutations in the RAG1 or RAG2 genes manifest a 

block in the development of B and T cells, resulting in T− B− severe combined immune 

deficiency (T− B− SCID). However, hypomorphic mutations in the RAG genes may allow 

development of a variable number of B and T cells, associated with various distinct clinical 

and immunological phenotypes. In particular, Omenn syndrome (OS) is characterized by 

generalized skin rash, lymphadenopathy, hepatosplenomegaly, eosinophilia, 

hypogammaglobulinemia but elevated serum IgE, lack of circulating B cells and the 

presence of oligoclonal, activated, autologous T cells (1). Atypical or leaky SCID (LS) is 

characterized by the presence of T (and in some cases, B) cells, with variably affected T cell 

function and without clinical features of OS (2). Another form of LS with expansion of T 

cells expressing the γδ form of the TCR occurs especially in patients with cytomegalovirus 

infection (3, 4). More recently, hypomorphic RAG mutations were identified in patients with 

delayed-onset combined immunodeficiency associated with granulomas and/or 

autoimmunity (CID-G/AI) (5, 6), or in other, more rare, milder and atypical presentations, 

including CD4 lymphopenia (7), common variable immune deficiency (8), selective 

deficiency of anti-polysaccharide antibody responses (9), and pyoderma gangrenosum (10). 

These heterogeneous clinical phenotypes are associated with a broad spectrum of nonsense, 

frameshift, in-frame deletion or insertion, and missense mutations of the RAG1 and RAG2 
genes that affect various domains of the respective proteins (11).

By individually introducing a large number of human RAG1 and RAG2 genetic variants into 

Abelson virus-transformed Rag1−/− (or Rag2−/−) pro-B cells carrying an inverted GFP 

cassette flanked by recombination signal sequences (RSS), we previously demonstrated that 

the severity of the clinical presentation correlates with the level of residual recombination 

activity supported by the mutant RAG1 protein (12, 13). In this assay, mutations with low 

levels of recombination activity generated fewer rearrangements at the endogenous 

immunoglobulin heavy chain (Ighc) locus, as compared to mutations with higher residual 

activity (12), suggesting that individual RAG mutations may exert different effects on 

immune repertoire diversity and composition. Here, we report the results of next generation 

sequencing (NGS) of T and B cell repertoire composition and diversity in 12 patients with 

RAG mutations, representative of the extended phenotypic spectrum of the disease. Our 

results demonstrate that abnormalities of T and B cell repertoires correlate with the severity 

of the clinical and immunological phenotype, thus further supporting genotype-phenotype 

correlation in this disease. Distinctive signatures of individual V, D, and J gene usage, and of 
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CDR3 composition and length distribution have been identified in patients with different 

phenotypes, and may contribute to the generation of an immune repertoire enriched in self-

reactive specificities.

Results

Patient Characteristics

The 12 patients included in this study were assigned to three distinct groups, based on the 

clinical and immunological phenotype (2) (Table S1). Five patients (OS1-OS5) presented 

with clinical and laboratory features of OS. Three patients (LS1-LS3) presented with LS and 

severe CMV infection, and two of them had an increased proportion of TCRγδ+ T cells 

(γδT). Four patients (CID1-CID4) were included in the CID-G/AI group based on a clinical 

history of autoimmunity and/or presence of granulomas. Eleven patients carried RAG1 and 

one patient carried RAG2 bi-allelic mutations, for a total of fifteen RAG1 and one RAG2 
distinct mutant alleles. Recombination activity of the mutant alleles was tested using 

Abelson virusimmortalized Rag1−/− or Rag2−/− pro-B cells as previously described (12, 13). 

Patients in the OS and LS subgroups carried RAG mutant alleles that supported only modest 

levels of recombination activity (<7% of wild-type, with a mean of 2.29%). By contrast, 

patients in the CID-G/AI group carried at least on one RAG mutant allele that conferred 

higher levels of recombination activity (Table S2).

Progressive restriction of the immune repertoire correlates with the severity of the clinical 
phenotype

To analyze and compare IGH and TRB repertoire diversity in patients with various clinical 

phenotypes associated with RAG mutations (Fig. 1A and Table S1), we have performed 

NGS of the IGH and TRB transcripts expressed by circulating B and T cells, respectively. 

The number of total and unique sequences of rearranged IGH and TRB products for each of 

the RAG-deficient patients and healthy infant controls is reported in Table S2. Of note, 

productive IGH rearrangements were detected in 3 out of five OS patients, despite virtual 

lack of circulating B cells. A lower ratio of unique/total IGH and TRB sequences was 

detected in RAG-mutated patients vs. healthy controls (Table S2), and this difference 

reached statistical significance for the IGH repertoire (p<0.05).

A graphical representation of repertoire diversity is conveyed by tree maps of the IGH and 

TRB (Fig. 1B) repertoires, where each dot represents a unique V-J pair and the size of each 

dot corresponds to the frequency of that rearrangement in the total population of sequences 

obtained. Marked reduction of both TRB and IGH repertoire diversity, associated with 

clonotypic expansions, was detected in samples from OS patients, and to a lesser extent in 

patients with LS. By contrast, a more diversified IGH repertoire was present in samples from 

the CID-G/AI group. However, the TRB repertoire of CID-G/AI patients was characterized 

by restrictions and clonotypic expansions.

To provide more quantitative measures of repertoire diversity and complexity, we took 

advantage of commonly used ecological parameters. In particular, the Shannon’s H index 

measures repertoire diversity, taking into account both the number of total sequences and 
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clonal size distribution in the overall repertoire. As compared to healthy donors, RAG-

deficient patients had a lower Shannon’s H index for both IGH (Fig. 1C) and TRB (Fig. 1D) 

repertoires. When the same analysis was applied to each of the three subgroups of patients 

with RAG deficiency (CID-G/AI, LS, and OS), a significant reduction of the Shannon’s H 

index was observed only for the IGH repertoire in OS patients (fig. S1, A and B). Next, to 

assess more precisely clonal size distribution, we calculated the Gini-Simpson index of 

unevenness, which measures the inequality in the relative representation of species observed 

in a given sample, so that the higher the Gini Simpson index, the more unequal the 

distribution of individual clonotypes. An uneven distribution of both IGH and TRB 
clonotypes was observed in RAG-deficient patients vs. controls (Fig. 1, E and F). This 

difference was statistically significant for OS patients, but a clear trend was observed for the 

TRB repertoire of CID-G/AI and LS patients (fig. S1, C and D).

To analyze further the presence of clonotypic expansions, we estimated the diversity 50 

(D50) index (14), which corresponds to the percentage of unique CDR3 sequences that 

account for 50% of the total number of sequences observed. Less than 10% of the unique 

clonotypes accounted for 50% of the total number of IGH sequences in patients with OS 

(Fig. 1G). Clonotypic expansions, resulting in markedly reduced D50, were observed in the 

TRB of all RAG-mutated patients, irrespective of their clinical phenotype (Fig. 1H). The top 

100 most abundant IGH and TRB CDR3 (CDR-H3, CDR-B3) clonotypes accounted for less 

than 0.3% of all transcripts in healthy donors. With the exception of a single clonotype in 

patient CID3, all patients with CID-G/AI showed a similar representation of CDR-H3 

clonality, whereas a significant expansion of CDR-H3 clonotypes was detected in patients 

with OS and in patient LS3 (Fig. 1I). A different pattern was observed for the top 100 CDR-

B3 clonotypes. In particular, two CDR-B3 clonotypes accounted for more than 50% of all 

total sequences in patient OS4, and a significant expansion of CDR-B3 clonotypes was also 

observed in patients with CID and LS (Fig. 1J). Overall, these data demonstrate that 

restriction and clonotypic expansions characterize both the TRB and the IGH repertoires of 

patients with OS, whereas in patients with CID-G/AI and LS abnormalities of repertoire 

diversity are comparatively subtle and largely confined to T cells.

Finally, to assess whether analysis of the T and B cell repertoire may distinguish RAG-

deficient patients from healthy controls, we used Principal Component Analysis (PCA) 

based on five variables: the number of total and unique sequences, Shannon’s H index, Gini-

Simpson index, and recombination activity of the mutant RAG protein. PCA successfully 

segregated healthy donors from the patients (Fig. 1, K and L), and permitted discrimination 

amongst different groups (CID-G/AI, LS and OS) of RAG-deficient patients, especially with 

respect to the IGH repertoire (Fig. 1K).

Non-stochastic restriction of IGH and TRB repertoires and skewed usage of V, D, and J 
genes in RAG-mutated patients

The analysis of repertoire diversity and composition among unique and total sequences 

permits distinguishing between constraints that occur during generation of the primary 

repertoire vs. secondary effects that occur in the periphery, such as clonotypic expansions in 

response to non-self or self-antigens. To determine whether RAG mutations alter targeting of 
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individual V, D, and J genes, we generated heat maps comparing usage of these genes in 

unique IGH (Fig. 2A) and TRB (Fig. 2B) sequences from healthy controls and patients. In 

these panels, coding genes are ordered according to their location along the chromosome, 

making it possible to ascertain whether skewed gene usage could reflect topological 

constraints. The summary for the Chi-squared test for goodness of fit shows that in most 

RAG-mutated patients the distribution of V, D and J gene usage among unique IGH and 

TRB sequences was distinct from that observed in healthy controls (Fig. 2, A and B). 

Results were similar when the same analysis was applied to total sequences (fig. S2, A and 

B).

The frequency of individual V, D, and J gene usage among unique sequences of the IGH 
repertoire was different in healthy controls and RAG-mutated patients (Fig. 2C, upper 

panel). For example, the IGHJ3 gene was the second most frequently utilized IGHJ gene in 

patients with RAG deficiency, whereas it was only fourth in order in healthy controls. 

Conversely, IGHJ6 was the second most commonly utilized gene in controls, but was only 

fourth in order in RAG-mutated patients. The IGHD6 gene was the third in frequency among 

healthy controls, but it was the most commonly used in patients LS1 and OS5. Similar 

abnormalities were also observed in the frequency of usage of TRBV, TRBD, and TRBJ 
genes in patients vs. controls (Fig. 2D, upper panel). Moreover, for both IGH and TRB 
repertoires, the distribution of gene usage varied among RAG-mutated patients. The 

observation that such differences were present when analyzing unique sequences suggested 

that hypomorphic RAG mutations may alter selection of genes involved in V(D)J 

recombination during generation of the primary immune repertoire. To test this hypothesis, 

we analyzed the pattern of usage of individual V, D, and J genes at early stages of B and T 

lymphocyte development. In particular, we compared the frequency of IGHV, IGHD, and 

IGHJ gene usage in IGH transcripts from immortalized Rag1−/− pro-B cells engineered to 

express wild-type or mutant human RAG1 (12). As shown in Fig. 2C, lower panel, the 

frequency of usage of individual V, D, and J genes among rearranged IGH products was 

different when comparing cells reconstituted with wild-type or mutant RAG1. To assess 

whether RAG mutations affect composition of T cell repertoire at early stages of T cell 

development, we analyzed the frequency of usage of TRBV, TRBD, and TRBJ genes among 

productive TRB rearrangements during in vitro T cell differentiation of induced pluripotent 

stem cells (15). A different pattern of gene usage was observed in control vs. RAG1 mutant 

cells (Fig. 2D, lower panel). Altogether, these data confirm what observed in vivo in the 

patients (Fig. 2C and 2D, upper panels) and indicate that hypomorphic RAG mutations 

affect not only the efficiency, but also the quality of the V(D)J recombination process.

To further illustrate this, PCA of individual IGHV, D and J gene usage clearly segregated 

patients from controls, and even distinguished among patients with different phenotypes 

(Fig. 2E, left panels). In the variable plot analysis (Fig. 2E, right panels), the distribution of 

the ten most abundantly used IGHV, IGHD, and IGHJ genes along PC1 and PC2 is shown 

for the entire population of subjects analyzed. By overlaying sample and variable plots, it 

was possible to define which genes are preferentially utilized in each subgroup of patients. 

Thus, the T and B cell repertoire of CID-G/AI patients included over-representation of 

IGHV 3-9; IGHD 2-2, 3-9, 4-11, 4-17, 7-27; and, IGHJ3 genes. The IGHJ 1, 2 and 4 genes 

were more abundantly used in patients with OS and LS, and IGHD 2-8 and IGHD6-25 were 
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preferentially used in OS patients. Similarly, PCA segregated the patients from the controls 

based on usage of TRBV, TRBD, and TRBJ genes (Fig. 2F), with clear distinction among 

the various groups of RAG-mutated patients when the analysis was conducted on TRBV and 

TRBJ gene usage. Upon overlaying sample plots with variable plots, patients with CID-G/AI 

were found to have increased usage of TRBJ 1-1, 1-3 and 1-5, whereas overutilization of 

TRBV5-8, 11-2, 4-1 and 18 was detected in patients with LS, and preferential usage of 

TRBJ 2-7 was observed in patients with OS. Similar results were obtained when PCA 

analysis of IGH and TRB gene usage was conducted on total sequences (fig. S2, C, D, E and 

F). Altogether, these data demonstrate that usage of individual V, D, and J genes 

distinguishes RAG-mutated patients from controls, with a specific signature of gene 

expression among patients with distinct phenotypes.

Abnormalities of CDR3 length and amino acid composition

Abnormalities of the Complementarity Determining Region 3 (CDR3) of immunoglobulin 

and T cell receptor molecules CDR3 length and composition often have a significant impact 

on the ability to mount effective adaptive immune responses to a wide range of non-self 

antigens, and may also contribute to increased recognition of self antigens in patients with 

autoimmune diseases (16, 17). Analysis of CDR3 length distribution of both unique (Fig. 3, 

A and B) and total (fig. S3, A and B) IGH and TRB transcripts demonstrated progressive 

skewing of the CDR3 length profile from patients with less severe to patients with more 

severe clinical phenotype. In order to better define abnormalities of CDR3 length 

distribution, we calculated the CDR3 complexity score, and measured CDR3 skewness and 

kurtosis (18–20). In particular, the complexity score takes into account the number of major 

peaks of CDR3 length (defined as those with amplitudes of at least 10% of the sum of all 

peak heights), and their height contribution to the sum of all peak heights. Skewness 

measures the asymmetry of CDR3 length distribution above and below the mean. Finally, 

kurtosis measures the amount of events in the central part of the CDR3 distribution as 

opposed to the tails, and therefore defines the degree of peakedness. Significant differences 

in the complexity score, skewness and kurtosis of the CDR-H3 length profiles of IGH 
repertoire were observed for both unique and total sequences from OS patients, whereas the 

CDR-H3 profile of CID-G/AI and LS patients was similar to the profile observed in healthy 

controls (Fig. 3, C, D, and E; fig. S3, C, D, and E). The CDR-H3 length was not 

significantly different in patients vs. controls (Fig. 3F and fig. S3F). No significant 

differences were observed for the TRB repertoire (Fig. 3, G to J; fig. S3, G to J), although 

there was a trend towards reduced kurtosis in all patient groups. Overall, the observation that 

a similar pattern was detected in unique and total sequences from RAG-mutated patients 

further indicates that abnormalities of IGH and TRB repertoires in these patients can be 

predominantly attributed to the effect of RAG mutations in shaping the primary repertoire.

The CDR3 length is determined not only by the length of V, D and J gene sequences that are 

part of it, but also by the addition of palindromic (P) and ‘N’ nucleotides that contribute to 

its junctional diversity. The germline index (GI) can be used to estimate the abundance of P 

and N nucleotides, and is calculated by dividing the number of nucleotides in the CDR3 that 

are encoded by V, D and J genes by the total number of nucleotides contained in the CDR3, 

generating a value between 0 and 1 (21). A GI value of 1 indicates lack of P and N 
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nucleotide addition; thus, the higher the GI, the lower the junctional diversity. With the 

exception of a lower proportion of unique sequences containing P nucleotides in patients 

with OS, no significant differences were observed in P and N nucleotide addition (fig. S4) 

and in GI value (fig. S5, A and B) within IGH and TRB sequences from patients with RAG 
mutations and controls. Furthermore, CDR-B3 sequences from RAG-mutated patients had a 

GI value between 0.8 and 0.85, which is similar to the GI value observed in healthy controls 

in this study (fig. S5A) and in previous reports (21). Finally, when comparing the proportion 

of unique (fig. S5C) and total (fig. S5D) CDR-B3 sequences with a GI=1, there was a trend 

towards a reduced proportion of these among total sequences from patients with RAG 
mutations, irrespective of the disease phenotype. The average hydrophobicity of the amino 

acids within the CDR-H3 loop of circulating B cells forms a Gaussian distribution centering 

on neutrality to mild hydrophilicity (22, 23). In patients with RAG deficiency, skewed usage 

of V, D, and J genes may affect amino acid composition and the hydrophobicity profile of 

the CDR-H3 region, with potentially important consequences for antigen binding. We have 

observed increased usage of IGHJ3 in patients with CID-G/AI (Fig. 2A) and decreased 

usage of IGHJ6 in all of the patients (Fig. 4A). The IGHJ6 gene encodes for five tyrosine 

residues (Y) in the CDR-H3, whereas IGHJ3 and IGHJ5 do not encode for any tyrosine 

residue (Fig. 4B). Indeed, a low content of tyrosine residues was detected in the CDRH3 

region of immunoglobulin transcripts from patients with RAG mutations, reaching statistical 

significance in patients with CID-G/AI (Fig. 4C). This decreased presence of tyrosine 

residues was associated with abnormalities of the hydrophobicity profile of the CDR-H3 

region in seven out of eight RAG-mutated patients, as measured by the normalized Kyte-

Doolittle index of hydrophobicity of unique (Fig. 4D) and total (Fig. 4E) CDR-H3 

sequences, suggesting that enrichment for immunoglobulin transcripts with an altered 

hydrophobicity profile in patients with RAG mutations occurs at the level of primary 

repertoire generation and is not simply due to expansion of selected clonotypes in the 

periphery.

OS is characterized by infiltration of peripheral tissues by activated, possibly self-reactive T 

cells. Recent data have shown that the hydrophobicity of amino acids (aa) at positions 6 and 

7 of the 13 aa-long CDR-B3 promote the development of self-reactive T cells (24). Amino 

acid composition at positions 6 and 7 of the 13 aa-long CDR-B3 was very conserved in 

healthy controls, but not in RAG-mutated patients (Fig. 4F and 4G, upper panels). 

Furthermore, increased usage of hydrophobic amino acids was observed at both positions 6 

and 7 in patient OS2, whereas the CDR-B3 of patient OS4 was enriched for hydrophobic aa 

at position 7 (Fig. 4F and G, lower panels).

Abnormalities of immunoglobulin class switching and somatic hypermutation in patients 
with OS

Abnormalities of T and B cell development in patients with RAG mutations compromise 

immune responses in peripheral lymphoid organs, including production of antibodies of 

various isotypes. In particular, low IgG and low IgA, but elevated IgE serum levels, are 

typically seen in patients with OS, and may be observed also in LS (25). However, virtual 

lack of B cells in patients with OS has so far precluded analysis of the distribution of B cells 

expressing various isotypes in the periphery of these patients. NGS analysis of the B cell 
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repertoire, with use of RNA as a template and reverse primers in the IGHC region, permitted 

analysis of the relative abundance of immunoglobulin transcripts containing various heavy 

chain isotypes in the peripheral blood of patients with RAG mutations and healthy controls. 

Consistent with the notion that unswitched cells comprise the majority of circulating B cells 

in normal individuals, switched transcripts represented less than 5% of all IGH productive 

transcripts detected in healthy controls both within both unique (Fig. 5, A and B) and total 

(fig. S6, A and B) sequences, as also previously reported (26). By contrast, an increased 

frequency of IGHG transcripts was observed within unique and total sequences of CID3, 

LS3, OS1, OS3 and OS5 patients, and increased frequency of IGHE transcripts was 

observed in OS1 and OS3 patients (Fig. 5A and fig. S6). Overall, patients with OS showed 

an increased frequency of IGHG and IGHE transcripts (Fig. 5B and fig. S6B). The most 

abundant CDR-H3 clonotypes accounted for a large proportion of total sequences in patients 

with OS (Fig. 5C), and were mainly represented by IGHE and/or IGHG transcripts (Fig. 

5D). These data suggest that the few circulating B cells in patients with OS are represented 

by oligoclonal populations that have switched to IgE and IgG.

Somatic Hyper Mutation (SHM) introduces additional diversity in the IGH repertoire of 

mature B cells and allows selection of high-affinity antibodies. The SHM rate per 1000 

nucleotides (nt) for all combined isotypes was higher in RAG-deficient patients than in 

controls, and this increase was more pronounced in patients with OS (Fig. 5E). When SHM 

was analyzed separately for the various isotypes, healthy controls showed a lower rate of 

SHM in IGHM transcripts than in switched transcripts, as expected. As compared to healthy 

controls, patients CID1, CID2, LS1 and OS5 had a higher SHM rate among IGHM 
transcripts (Fig. 5E). As for IGHG transcripts, a lower rate of SHM was observed in most of 

the patients compared to controls, with the exception of patients CID2 and OS5 (Fig. 5E). In 

the latter, a higher rate of SHM rate was observed also among IGHE transcripts. To 

determine whether SHM detected in Ig transcripts from patients with RAG deficiency 

reflects in vivo antigen-mediated selection, we have assessed the distribution of replacement 

and silent mutations based on the Lossos multinomial model (27) (fig. S7). A clear evidence 

for antigen-mediated selection was observed in switched transcripts from patients OS3 and 

OS5 (Fig. 5F). Furthermore, both in patients with CID-G/AI and in controls, the rate of 

SHM was slightly increased in the preferentially rearranged IGHV3-9 gene as compared to 

the mean in all other genes, and this phenomenon was associated with clear evidence of 

antigen-mediated selection (Fig. 5G). Overall, these data indicate that despite restriction of 

primary repertoire generation, B cell function in patients with RAG deficiency remains 

intact with respect to CSR and SHM.

Mapping the disease-related mutations onto the synaptic-RAG complex models

Recently, crystallography and cryo-electron microscopy have allowed high resolution 

determination of the RAG1/RAG2 heterotetrameric complex (28, 29). We have mapped the 

twelve missense mutations from our patient cohort onto the cryo-electron microscopy 

structure in complex with synapsed RSS DNAs (28), and compared the predicted structural 

and functional effects (Fig. 6A) with analysis of recombination activity (12). The RAG1 
mutations at positions R396, R404, R737, R841 and R973 resulted in less than 10% 

recombination activity (12). While residues R396, R737 and R973 directly engage in RSS 
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binding using their side chains, residue R841 plays a role in stabilizing the closed 

conformation of the synaptic RAG complex by forming a salt bridge with the symmetric 

RAG1 (28) (Fig. 6B). The RAG1 mutation at position R404 likely affects RSS binding and 

conformation of the nonamer binding domain dimer because it stacks with R443 of the other 

RAG1 monomer (28, 29) (Fig. 6B). In contrast, the RAG1 mutation H612R did not 

compromise the recombination activity (12), likely due to the compensation of RSS binding 

by the mutated arginine (Fig. 6B).

Discussion

In the present study, we have demonstrated that the T and B cell repertoire of patients with 

OS is characterized by markedly reduced diversity, and a non-stochastic restriction of V, D, 

and J gene usage. Restriction of TRB repertoire diversity, with skewed V-J gene usage, in 

OS patients has also been reported by Yu et al. in four patients with OS (21). These data 

suggest that severe RAG mutations may impose constraints during generation of primary T 

and B cell repertoires, and that peripheral expansion in response to self or non-self antigens 

is not the only factor involved in the dominance of few T cell clonotypes.

In contrast to what is known about T and B cell abnormalities in patients with OS, limited 

information is available on the richness and complexity of T and B cell repertoire in patients 

with milder forms of RAG deficiency. Flow cytometric analysis of the expression of various 

TCR Vβ families and CDR3 spectratyping have revealed that patients with CID-G/AI and 

with CD4 lymphopenia often maintain a largely polyclonal T cell repertoire, although in 

some cases underand over-representation of individual TCR Vβ families have been 

documented (5, 7, 30, 31). However, these methods have limitations and do not permit 

analysis of CDR3 composition and use of individual V, D, and J genes. Here, we have shown 

that patients with CID-G/AI have reduced T cell repertoire diversity, with clonotypic 

expansions, and maintain a largely diversified B cell repertoire, with even distribution of 

individual clonotypes, but skewed usage of IGHV, IGHD, and IGHJ genes. We have also 

demonstrated that analysis of repertoire diversity and composition may distinguish not only 

RAG-mutated patients from controls, but correctly identifies patients with distinct clinical 

phenotypes. However, genotype-phenotype correlation in RAG deficiency is not absolute. 

Ijspeert et al. have demonstrated that patients carrying RAG mutations that affect the same 

region in the non-core domain of the RAG1 molecule, and allow similar levels of 

recombination activity, may present with distinct clinical and immunological features, thus 

emphasizing the role played by other genetic and epigenetic factors in determining the 

phenotype (32).

The catalytic core of RAG1 contains two coding flank-sensitive regions, at amino acid (aa) 

609–614 (33) and aa 892–977 (34). Several RAG1 mutations associated with CID-G/AI fall 

within these coding flank-sensitive regions (11, 28), including the p.H612R mutation in 

patient CID1 and the p.F974L mutation in patient CID3. Studies in vitro had suggested that 

missense mutations in the coding flank-sensitive regions of RAG1 may perturb repertoire 

composition not just by affecting DNA cleavage, but also by preferentially targeting some 

coding elements (35). Indeed, patients CID1 and CID3 showed a skewed usage of individual 

V, D, and J genes. In particular, we have demonstrated increased usage of IGHV3-9, 
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IGHV4-31, and IGHV3-23, that are also expressed by autoantibody-secreting B cells in 

patients with tumors (36). These data suggest that perturbation of repertoire composition 

may contribute to the immune dysregulation observed in patients with CID-G/AI.

The length and amino acid composition of the immunoglobulin CDR3 region affect 

recognition of antigens. Progressive reduction of CDR3 length, and increase of highly 

hydrophobic and hydrophilic sequences during differentiation from immature to naïve and 

memory B cells are paralleled by a progressive decrease in the proportion of self-reactive B 

cell specificities during B cell ontogeny (37). We identified abnormalities of hydrophobicity 

profile of the CDR-H3 region in seven out of eight patients with hypomorphic RAG 
mutations, including all three patients with CID-G/AI tested. Close examination of amino 

acid composition revealed decreased frequency of tyrosine residues, which are abundant in 

CDR-H3 sequences of peripheral blood B cells from healthy controls (38). These 

abnormalities reflected markedly decreased usage of the IGHJ6 gene, which encodes for five 

tyrosine residues. Furthermore, we have reported that the CDR-B3 of patients with OS is 

characterized by an increased frequency of hydrophobic amino acids at positions 6 and 7 of 

the CDR-B3, which has been previously associated with promotion of self-reactive T cells 

(24).

The analysis of the distribution of immunoglobulin heavy chain isotypes and somatic 

hypermutation has revealed unexpected features in patients with hypomorphic RAG 
mutations. In particular, we observed that the majority of immunoglobulin heavy chain 

transcripts in patients with OS were represented by switched transcripts, and IgE in 

particular. Direct μ to ε CSR has been previously reported in immature B cells from a mouse 

model with hypomorphic Rag1 mutations (39). We have also demonstrated the presence of 

SHM in Ig transcripts from patients carrying hypomorphic RAG mutations, including 

patients with OS, who have very low to undetectable circulating B cells, disorganized 

secondary lymphoid organs, with lack of follicles and germinal centers, where SHM is 

actively induced (40). Our observation of CSR and SHM in peripheral blood B cells from 

patients with OS is consistent with previous evidence of Blimp1+ CD138+ plasma cells in 

lymph nodes from patients with OS, and with homeostatic expansion of immunoglobulin-

secreting cells and increased expression of Activation-Induced Cytidine Deaminase 

(AICDA), in mouse models of this disease (41, 42).

Although this study offers insights into the mechanisms underlying the immunopathology 

and phenotypic heterogeneity of human RAG deficiency, it has important limitations, 

including the small sample size of each phenotypic subgroup of patients analyzed, and the 

inability to study both T and B cell repertoires in each patient. Despite these limitations we 

have provided a detailed analysis of T and B cell repertoire in patients with hypomorphic 

RAG mutations that are illustrative of the entire phenotypic spectrum of the disease. After 

introduction of newborn screening for SCID and related conditions, RAG mutations have 

emerged as the most common genetic defect associated with OS and atypical SCID (43). 

Detailed analysis of the immune repertoire in RAG-mutated patients may have important 

predictive implications, and may influence therapeutic interventions.
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Material and Methods

Study Design

One to 5 ml of EDTA-blood samples were obtained upon written informed consent from 

patients diagnosed with RAG deficiency and a known clinical and immunological 

phenotype. The study was performed under the approval of the Institutional Review Board 

of Boston Children’s Hospital, Harvard Medical School. For healthy controls, de-identified 

left-over blood samples were used, that had been obtained from children at the age of 9 

months to 4 years at the time of regular well-child visits.

Generation and Analysis of T and B cell receptor repertoire by NGS

Equal amounts of total RNA extracted from peripheral blood of patients with RAG 

deficiency (n=5 for patients with OS; n=3 for patients with LS; and n=4 for patients with 

CID-G/AI) and from peripheral blood of healthy infants (n=3 for TRB and n=4 for IGH; age 

range: 9 months-4 years) were used as template to semi-quantitatively amplify the 

rearrangements at the endogenous T cell receptor beta (TRB) and immunoglobulin heavy 

chain (IGH) loci according to the manufacturer’s protocol (iRepertoire, Inc) (44). PCR 

products were purified and sequenced using the GS Junior 454 platform (Roche, Inc).

Raw sequences were filtered for PCR errors, and resulting FASTA sequences were 

submitted to IMGT HighV-QUEST, and analyzed for V, D, and J gene usage, composition 

and length of the CDR-3, Kyte-Doolittle index of hydrophobicity, SHM and antigen-

mediated selection using the IgAT software (45), as previously described (23). The 

sequences of TRB and IGH transcripts, upon processing through IMGT, are posted in the 

Supplementary Table 3. The diversity indices of Shannon’s H entropy and Gini Simpson’s D 

indexes were calculated using the VDJ statistics file from IgAT analysis and the PAST 

program, as described (23). D50 was calculated by determining the cumulative frequency of 

total sequences that constitute 50% of the cumulative unique sequences frequency (14). D50 

is graphically represented by plotting the cumulative frequency of total sequences on the x-

axis against cumulative frequency of unique sequences on the y-axis and then finding the 

intercept on the y axis of values that correspond to 50% on the×axis. Graphical 

representation of V-J pairing and the relative distribution of distinct rearrangements, 

hierarchical tree maps and isotype usages were generated using the iRepertoire software. All 

raw data used for the analyses represented in the various Figures are posted in 

Supplementary Table 3.

The complexity Score of the CDR3 length distribution was determined based on the 

followingcalculation (46):

where:

N = number of all the sequences studied (either unique or total
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MP = major peak, defined by constituting at least 10% of N

mp = number of all the MP

nMP = number of sequences in each MP

NMPs = number of MP

RAG activity

The activity of various RAG mutant proteins was determined by a flow cytometric-based 

assay as previously described (12, 13), and expressed as percentage of the recombination 

activity of the wild type protein.

Statistical analysis

Unpaired t-test was used to compare the patient blood samples to infant controls for 

variables with normal distribution. For non-parametric variables, the Mann-Whitney test was 

used. The χ2 test was used for categorical values. For all multiple t-tests, post hoc 

Bonferroni correction was applied. ANOVA with Dunnett’s correction for multiple 

comparisons was used when comparing more than two groups. The analyses were performed 

using PRISM version 6 (Graph Pad). Non-hypothesis driven statistical analysis of Principal 

Component Analysis (PCA) was performed using the Excel add-in Multibase package 

(Numerical Dynamics, Japan).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Progressive IGH and TRB repertoire restriction with increased clonality in the patients 
with RAG deficiency
Schematic representation of RAG1 and RAG2 protein with the mutations of the 12 patients 

according to the severity of clinical presentation from top to bottom (A). Tree maps 

representing the diversity and clonality of IGH and TRB (B) repertoires from healthy donor 

controls (representative data from two subjects are presented) and patients with RAG 
mutations. Each dot represents a unique V to J joining, and the size of the dot represents the 

relative frequency of that rearrangement in the entire population. No amplification products 

were obtained for IGH repertoire from patients CID4, LS2, OS2, and OS4, and for TRB 
repertoire for patients CD1, LS1, OS1, OS3, and OS5. Quantification of the diversity (C, D) 
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and unevenness (E, F) of the IGH (C, E) and TRB (D, F) repertoires using Shannon’s H 

index of diversity and Gini- Sipmson’s index of unevenness in healthy controls (blue 

circles), and patients with CID-G/AI (purple boxes), LS (green boxes), and OS (red boxes). 

The cumulative frequencies of unique versus total CDR3 clonotypes are shown for IGH (G) 

and TRB (H) repertoires (CDR-H3 and CDR-B3, respectively). Mean values ± SE are 

shown; t-test was used for statistical analysis. Representation of the frequency of the top 100 

most abundant clones for IGH (I) and TRB (J) sequences in RAG-mutated patients and 

healthy controls (mean ± SE; ANOVA with post hoc test of Dunnett’s multiple comparisons 

with *** 0.001 < p < 0.01 and * p < 0.05). Sample plots illustrating the segregation of the 

various patient groups from healthy controls based on primary component (PC) 1 and 2 

determined by five variables (RAG recombination activity, Shannon’s H, Gini-Simpson, 

number of total and unique sequences) for the IGH (K) and TRB (L) repertoires.
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Fig. 2. Differential usage of V, D and J genes in the IGH and TRB repertoires of patients with 
RAG deficiency
Heat map representing the frequency of V, D and J gene usage among unique IGH (A) and 

TRB (B) sequences from healthy controls and RAG-mutated patients. Relative frequency of 

usage of IGHV and IGHD gene families, and of individual IGHJ genes, in healthy controls 

and in patients (C, upper panel) and in Abelson virus-transformed pro-B cell lines 

expressing various RAG1 mutations (C, lower panel). Relative frequency of usage of TRBV 
gene family and of TRBD and TRBJ genes in healthy controls and in patients (D, upper 

panel) and in iPS-derived thymocytes (D, lower panel). In panel E, differential usage of 
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IGHV, IGHD and IGHJ genes, segregating control and patient samples and the various 

genes according to PC1 and PC2 is shown as sample plots (left panels) and variable plots 

(right panels). In panel F, differential usage of TRBV, TRBD and TRB genes, segregating 

control and patient samples and the various genes according to PC1 and PC2 is shown as 

sample plots (left panels) and variable plots (right panels).
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Fig. 3. Characteristics of the CDR3 region of IGH and TRB unique sequences in peripheral blood 
lymphocytes
Distribution of the length of the CDR3 region of IGH (CDR-H3) (A) and TRB (CDR-B3) 

(B) unique sequences from peripheral blood of patients with RAG deficiency and healthy 

controls (C1-C4; C6-C8). In panels A and B, the distribution of the CDR3 length in healthy 

controls is depicted as a blue line (representing mean values ± SE). Complexity scores (C, 
G), skewness (D, H), kurtosis (E, I) and average length in nucleotides (nt) (F, J) of the IGH 
(C-F) and TRB (G-J) CDR3 unique sequences in patients with RAG deficiency and 

Lee et al. Page 22

Sci Immunol. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



controls. In panels C-J, for each group, mean values are shown, and statistical significance 

was assessed by ANOVA.
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Fig. 4. Abnormal amino acid composition of CDR3 in the IGH and TRB sequences
Frequency of usage of the IGHJ6 gene among unique CDR-H3 sequences (A). Summary of 

the Y content in the IGHJ genes (B). Percentage of tyrosine residues in the CDR-H3 of 

unique and total sequences (C). Summary of CDR-H3 hydrophobicity profile depicted as 

average Kyte-Doolittle index of hydrophobicity (mean ± SE) in patients and healthy control 

blood samples for unique (D) and total (E) sequences. (**, p<0.01; ***, p <0.001; ****, p < 

0.0001; one-tail unpaired t-test). Amino acid composition of CDR-B3 in patients and 

healthy control for amino acid positions 6 (F) and 7 (G) of the 13 aa-long CDR-B3.
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Fig. 5. Distribution of immunoglobulin heavy chain isotypes, somatic hypermutation and 
antigen-driven selection in peripheral blood B cells of patients with RAG deficiency
Frequency of immunoglobulin heavy chain constant gene usage among unique IGH 
sequences from peripheral blood lymphocytes of RAG-deficient patients and healthy 

controls (A and B). In panel B, mean values ± SE are shown (one-tail, unpaired t-test). 

Contribution of the most abundant clonotype to the total number of IGH sequences in 

patients and controls (C). Distribution of various isotypes among the most abundant IGH 
transcript (D). Rate of somatic hypermutation (SHM) in IGH transcripts (E, mean ± SE; 

unpaired t-test). Frequency of unique IGH transcripts displaying evidence of antigen-
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mediated selection based on the distribution of replacement and silent mutations (F). Rate of 

SHM and antigen mediated selection in IGHV3-9 for patients with CID-G/AI and healthy 

controls with line at the mean (G).
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Fig. 6. Mapping the disease-related mutations onto the synaptic-RAG complex models
Overview of the disease-related mutations shown as space filling models mapped onto the 

ribbon diagram of the synaptic RAG complex structure (PDB ID 3JBY, top and bottom 

view) (A). Residues in zebrafish rag1 and rag2 and the equivalent residues that have been 

mutated in patients are labeled. Only one RAG1-RAG2 subunit is labeled for explicitness on 

the side view. Labeled in purple and red are residues that are mutated in patients with CID-

G/AI and OS, respectively. Residues affected by mutations that correspond to the allele with 

lower recombination activity in compound heterozygous patients are labeled in black. 

Examples of the detailed interactions between the equivalent residues from patients and the 

RSS intermediates or partner residues (PBD ID 3GNA and 3JBY) (B). Equivalent residues 

that have interaction with RSS intermediates are shown as sticks and highlighted in magenta. 

The nucleotides in the RSS intermediates that have interaction with protein residues are 

shown as sticks and highlighted in cyan. The partner residues are shown as sticks and 

highlighted in marine. Potential interactions are displayed as red dashed lines. z is 

abbreviated for zebrafish and m is for mouse. All molecular representations were generated 

in PyMOL (http://www.pymol.org) (47).
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