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Abstract—We present an iterative breadth-first approach to
maximum clique enumeration on the GPU. The memory required
to store all of the intermediate clique candidates poses a signif-
icant challenge. To mitigate this issue, we employ a variety of
strategies to prune away non-maximum candidates and present a
thorough examination of the performance and memory benefits of
each of these options. We also explore a windowing strategy as a
middle-ground between breadth-first and depth-first approaches,
and investigate the resulting tradeoff between parallel efficiency
and memory usage. Our results demonstrate that when we are
able to manage the memory requirements, our approach achieves
high throughput for large graphs indicating this approach is a
good choice for GPU performance. We demonstrate an average
speedup of 1.9x over previous parallel work, and obtain our best
performance on graphs with low average degree.

Index Terms—parallel, GPU, maximum clique, graph algo-
rithms

I. INTRODUCTION

The maximum clique(s) of a graph is the largest group(s)
of fully connected vertices. As one of Karp’s 21 NP-complete
problems, the maximum clique problem is among the most
studied combinatorial problems in graph theory. While this
problem has been widely studied from a theoretical point of
view, it can also be a useful tool for many real world graph
applications including: social network analysis [1], Internet
topology analysis [2], and systems biology [3].

The most common approach to finding maximum cliques
is a depth-first branch and bound algorithm, in which a new
vertex is added to the clique-in-progress at each level of the
search tree, and bounds on the best possible solution for each
branch are computed at every branch point and compared
to the current best clique found so far to determine which
vertex to add next. Backtracking algorithms like these are
notoriously difficult to implement efficiently on GPUs. When
Jenkins et al. implemented the closely-related maximal clique
enumeration problem on the GPU, they found that they could
not achieve more than a modest speedup over a single-threaded
CPU implementation due to challenges with high divergence,
workload imbalance, and irregular memory access patterns [4].

In this paper, we focus primarily on maximum clique
enumeration — finding every clique of the maximum size in
a graph. Although most previous work has focused on finding
just one of the maximum cliques, we believe that solving for
all maximum cliques is more broadly useful. We highlight the
following contributions:

• A breadth-first search approach to maximum clique enu-
meration on the GPU.

• A variety of methods to reduce memory via pruning,
including different heuristics and traversal orderings.

• A data structure designed specifically for efficiently
expanding many lists of vertices in parallel to track
candidate cliques.

• A windowed search scheme (for finding a single, maxi-
mum clique when memory constraints prevent enumera-
tion) which allows us to explore a middle-ground between
a depth-first and breadth-first search and the tradeoffs
between memory usage and available parallel work.

• A parallel heuristic which manages to find a clique of
maximum size for 97% of the datasets in our test set
before we even begin running the exact algorithm.

Our code will be open-sourced to enable future work on
maximum clique and other graph algorithms on the GPU.

II. BACKGROUND

Given a graph G = (V,E), a clique, C ⊆ V , is a subset of
vertices such that each vertex in C is connected to every other
vertex in C via an edge, i.e., the subgraph induced by C is a
complete subgraph of G. The maximum clique(s), Cω , are the
clique(s) with the largest cardinality. The size of the maximum
clique is also known as the clique number of a graph, denoted
as ω(G). Different applications may have use for the clique
number on its own, the clique number and multiplicity, the list
of the vertices belonging to one of the maximum cliques, or
the members of all cliques of size ω.

A. The Search Tree

Since our aim is to find the exact maximum clique(s) of a
given graph, we must use a systematic approach to consider all
possible combinations of vertices in order to guarantee that we
have found the largest set(s) of fully connected vertices. This
problem is often solved using branch and bound algorithms,
with the goal of swiftly eliminating most of these combinations
via discerning choices of bounds and traversal order of the
search tree. The basic branching algorithm is as follows: begin
with an empty clique set, C, and a set of candidate vertices,
P , which initially includes all vertices in G. Then, following
some ordering scheme, select a vertex v ∈ P to add to C,
and filter out vertices in P not connected to v. Next, select
another vertex remaining in P , filter again, and repeat until



P is empty, then note this clique and its size. Backtrack to
the previous decision point, select a different vertex from the
candidate set, and continue on, maintaining a record of the
largest clique found so far, until all combinations have been
exhausted. In the complete branch and bound algorithm, this
search tree traversal is pruned by applying bounds at each
branch point to reduce the number of unfruitful branches that
are explored before returning the solution.

B. Bounding the Search

Most implementations use three bounds in pruning the
search space: (1) a lower bound on the maximum clique size,
(2) an upper bound on the largest clique a vertex belongs to,
(3) an upper bound on the largest clique within each set of
vertices.

1) Setting an Initial Lower Bound: The size of the largest
clique found so far serves as the lower bound on the maximum
clique size; however, a heuristic can be used to find a lower
bound before beginning the search, in order to preprune the
candidate list. Due to the computational complexity of the
maximum clique problem, there is a substantial body of
previous work on a wide variety of heuristics, which aim to
avoid paying the cost of computing an exact solution. Selecting
a heuristic involves a trade-off of work between preprocessing
and the exact computation.

2) Pruning Individual Vertices: If we have an upper bound
on the largest possible clique a vertex can belong to, then
we can compare this against the largest clique found so far
and determine whether or not the vertex could be a member
of a larger clique. If not, we can ignore this vertex entirely.
A simple upper bound for a vertex is its degree plus one.
However, we can obtain a tighter bound using the concept of
k-cores. A k-core of a graph is a vertex-induced subgraph in
which all vertices have degree at least k [5]. The largest value
of k for which a vertex is a member of a k-core is its core
number. The largest clique a vertex could be a member of
is its core number plus one. We compare the effectiveness of
pruning using vertex degrees and core numbers.

3) Finding Upper Bounds for Sets of Vertices: As we
traverse the search tree, we use an upper bound on the largest
clique contained within the candidate set, P , in order to
determine whether to continue to explore the branch or prune
it. The most straightforward upper bound is |C| + |P |, the
size of the current clique set plus the size of the candidate set.
Alternatively, we can find a tighter upper bound using other
metrics, such as vertex coloring.

C. GPU-Specific Considerations

When designing algorithms for GPUs, we must tailor
our implementations to their unique architecture in order
to achieve high performance. GPUs are optimized for high
throughput, while CPUs are optimized for low latency. Be-
cause we have thousands of threads available for computation
on a single GPU, we care less about work efficiency and more
about maximizing available parallelism and how to best split
this work up between threads. Ideally, work is distributed in a

balanced way to take full advantage of the compute available.
We should also avoid divergence between threads’ execution
paths, particularly threads within the same 32-thread grouping,
known as a warp in the CUDA programming model. Threads
in the same warp run in lockstep, so when some threads take
a different execution path, the others are idling.

As described in Section II-A, the most common method for
traversing the search tree is a depth-first approach with back-
tracking; however, these types of algorithms map poorly onto
the massive parallelism of GPUs, due to a lack of available
parallel work, high divergence, and imbalanced workloads [4].
If we choose a depth-first algorithm, we could traverse the
search tree in a fine-grained thread-parallel or coarse-grained
warp-parallel fashion. Both options present challenges for an
efficient GPU implementation. In a fine-grained thread-parallel
traversal, each thread is assigned its own subtree to search
independently. Because the depth of subtrees is irregular and
unpredictable, this leads to high divergence and an unbalanced
workload. For a coarse-grained warp-parallel traversal, threads
in each warp traverse the search tree as a group and work
cooperatively to compute the new candidates and bounds at
each branch point. Although this avoids the high divergence
of the fine-grained traversal, it reduces the amount of parallel
work available and does not provide enough work for all
threads when the candidate list is shorter than warp-sized.

Another GPU optimization to keep in mind is that in
order to maximize memory bandwidth, we should use coa-
lesced memory accesses whenever possible – that is, we want
neighboring threads to access values stored in a contiguous
chunk of memory. Again, due to the irregular nature of the
search tree, the length of candidate lists is highly variable,
making it difficult to arrange coalesced memory accesses.
Finally, GPU RAM size is limited, and in order to avoid the
additional communication costs associated with out-of-core
implementations, we aim to keep overall data use small enough
to fit into GPU memory.

D. Breadth-First Strategy

As the basis of our implementation we chose a breadth-
first exploration of the search tree in order to maximize the
available parallelism, minimize divergence, and improve load
balancing. In a breadth-first traversal, we take all branches
at each level before moving deeper into the tree. When
performing the search sequentially, this is not ideal, because
the maximum cliques are found at the deepest leaves of the
tree; however, the massively parallel nature of GPUs allows
us to explore many of these branches simultaneously instead.
Though it will likely require more work overall because we
are not updating the lower bound throughout the computation,
we can utilize the many available threads, so we hope this
allows us to finish the entire search more quickly.

Although a breadth-first approach maximizes the available
parallelism, the space required to store all cliques and candi-
dates at once is a limitation of this approach. For a depth-first
search, when we reach the end of a path, if the solution found
is not a new maximum, the clique and its associated data are



discarded. In a parallel breadth-first search, all branches are
taken at once, so we need to store all k-cliques at each level
of the tree, which may be impractical, particularly for large or
dense graphs. In our work, we investigate ways to overcome
these memory constraints via pruning and some deviations
from the typical breadth-first traversal.

III. RELATED WORK

Maximal cliques are cliques not contained within a larger
clique. The maximum clique(s) of a graph is the largest of the
maximal cliques. The search trees for finding maximal or max-
imum cliques are similar, but because maximal cliques can be
of any size, it is not possible to use bounds to prune the search.
However, similar techniques for parallelizing the search may
be useful in both problems. Previous parallelizations of maxi-
mum clique and maximal clique enumeration algorithms have
primarily targeted multi-threaded or distributed CPU systems,
though there have also been a few GPU implementations.

1) Search Tree Traversal: Most parallelizations of maximal
and maximum clique algorithms have taken a depth-first
approach, including implementations on both CPUs [1], [2],
[6], [7] and GPUs [4], [8]. Though we have found no previ-
ous breadth-first maximum clique implementations, a couple
implementations of maximal clique enumeration on CPUs [3]
and GPUs [9] use a breadth-first traversal to increase available
parallelism and easily output maximal cliques in order of
increasing size. For these implementations, the authors find
that the memory requirements for a breadth-first approach limit
the size and/or density of the graphs they are able to solve.
In their maximal clique enumeration implementation on the
GPU, Wei et al. take an interesting middle ground approach,
exploring one broader subtree at a time in parallel [10]. To
avoid running out of memory, they select the width of this
subtree based on an upper bound on the number of maximal
cliques from Moon and Moser’s theorem [11]. In our work,
we use a similar technique of exploring a smaller subtree
(windowing), and because we are able to prune many of the
candidate cliques, the memory requirements for storing the
candidates in each subtree are smaller.

2) Parallelization: Previous CPU maximum clique imple-
mentations have used a fine-grained thread-parallel traversal,
which does not translate well to GPUs, as described in Sec-
tion II-C. GPU maximal and maximum clique implementations
using a coarse-grained warp-parallel traversal have suffered
from insufficient parallel work and imbalanced workload [4],
[8]. Breadth-first implementations can instead utilize an itera-
tive data-parallel approach [9], which tends to be better suited
to massive parallelism available on GPUs. This is the approach
we chose for both the exact computation and all preprocessing,
because it allows us to match the parallelism to the problem
size at each stage. Once again, Wei et al. chose a mixed
approach, using data-parallel operations for some parts of the
computation and warp-parallel operations for others [10].

3) Data Structures: In order to efficiently utilize memory,
we must make careful choices in the data structures we use

for storing the graph and candidate cliques. Some CPU imple-
mentations create one copy of the graph per worker [1], [6], or
partition the graph and give one partition to each worker [2].
Due to the limited memory size per thread, these are not
practical options for a GPU implementation. The choice of
graph data structure determines the speed of computing set
intersections for filtering out unconnected vertices. The fastest
intersections use bitwise operations [3], [7], [8]; however, this
requires storing the graph as an adjacency matrix, which is
very space-inefficient. An adjacency list structure, such as
compressed sparse row format (CSR), saves memory, but
requires either linear or binary (if sorted) searches for each
edge. A middle ground option is to use hash tables to compute
set intersections [9]. In some previous work different data
structures are chosen based on the size of the input graph and
amount of available memory [1], [4], [6]. Because our work
is aimed at larger graphs and we have limited memory space
on the GPU, we chose a CSR with sorted adjacency lists and
binary searches for set intersections.

For breadth-first implementations, we also need a data
structure for storing the large number of candidate cliques.
Lessley et al. use hash tables for storing cliques and computing
set intersections [9]. Wei et al. store the subgraphs for each
active subtree using a CSR-like representation with labels for
which set (current clique, candidate, already-explored) each
vertex belongs to [10]. In this work, we introduce a new data
structure for storing intermediate candidate cliques, which is
compact and allows for coalesced memory accesses.

4) Bounds and Pruning: Previous parallel maximum clique
implementations use coloring [2], [7], [8] or core numbers [1]
to prune the search tree and choose the order of traversal. We
compare the effect of using core numbers and vertex degrees
for pruning and ordering the search. Rossi et al. also use a
parallelized greedy heuristic to set an initial lower bound and
improve pruning in earlier stages of the search [1]. We also use
this approach, which is particularly important for a breadth-
first implementation, because the lower bound is not improved
throughout the search, as it is in a depth-first implementation.
We hope that by pruning the search using a high-quality initial
lower bound, we are able to sufficiently mitigate the memory
requirements of a breadth-first traversal.

IV. IMPLEMENTATION

We find the maximum cliques by performing a breadth-first
traversal of the search tree via an iterative process. In each
iteration, we launch one thread per candidate vertex across all
of the candidate lists in the current level. Each thread adds its
vertex to its the clique set and generates the list of candidates
for the next level of the search. We wait until all threads have
finished, then repeat the process for the next level of the search
tree.

The steps of our implementation are as follows: (1) (option-
ally) compute the vertex k-core decomposition of the graph,
(2) find an initial lower bound maximum clique via a greedy
heuristic, (3) form the initial lists of 2-cliques/candidates, (4)
perform the iterative process described above, adding vertices



to the clique lists and generating new candidate lists for the
next iteration. Each of these steps is performed in parallel
on the GPU. We use the graph loader from the Gunrock GPU
graph library [12] in preprocessing to convert the input dataset
into CSR format, which we store in GPU global memory
to utilize throughout the rest of the computation. For the
vertex k-core decomposition, we use the implementation from
the Gunrock applications examples. We also make use of
NVIDIA’s CUB library throughout our implementation for its
optimized scan, reduce, select, and sort operations [13]. In this
section, we describe the details of our implementation, as well
as a modified version of the breadth-first approach, in which
we explore only a subset of the candidates at a time, which
we refer to as a windowed breadth-first search.

A. Heuristic

A heuristic is used to establish a lower bound on the max-
imum clique size. As described in Section II-B1, the choice
of heuristic involves a tradeoff of work between preprocessing
and the exact algorithm. We selected a greedy heuristic rather
than a more complicated heuristic because we are aiming to
minimize preprocessing time, and we expect that the GPU can
handle a large amount of work in the exact algorithm stage. We
have two different implementations of the greedy heuristic: (1)
the single run version in which we run the greedy algorithm
once and use the GPU threads to filter the vertex list in parallel
and (2) the multi-run version where we run many instances of
the greedy algorithm in parallel on the GPU. For both versions,
we provide an option to use either the vertex degrees or core
numbers for determining the greedy ordering.

1) Single Run Heuristic: The greedy heuristic is as follows:
start with a list of all vertices and pick the vertex with the
highest degree (or core number) to add to the clique-in-
progress, then remove any vertices not connected to this vertex.
From the remaining vertices, add the vertex with the highest
degree (or core number) to the clique and once again filter
out any vertices not connected to this vertex. Repeat until no
vertices remain in the list. The size of the clique found this
way serves as a lower bound on the maximum clique size.

In our GPU implementation of this heuristic, we first create
a list of all vertices in the graph and use the GPU to sort the
vertices descending degree (or core number) order. We pull the
first vertex, v0, out of the candidate list and filter the vertex
list on the GPU using a parallel select operation, removing any
vertices which are not neighbors of v0. Then we pick the next
vertex from the filtered candidate list, and filter the list again.
This process repeats until there are no vertices remaining in
the list. The number of iterations of this greedy algorithm is
the lower bound clique size, ω.

2) Multi-Run Heuristic: For the multi-run greedy heuristic,
we use the same greedy algorithm as the single-run heuristic,
except that we run many instances of it in parallel, each
with a different starting vertex. The implementation makes
use of a variety of data-parallel operations which are well-
suited to the GPU. The details are shown in Algorithm 1. As
in the single run version, we begin with a list of all vertices

sorted by decreasing degree/core number, and also a list of
the vertices’ degrees/core numbers, which we use to select
the next vertex to add to each of the cliques-in-progress in
each iteration. We select the number instances of the heuristic
we would like to run, h ≤ |V |, and use the h vertices with
the highest degree/core numbers as the seed vertices for each
of the runs. We create segmented arrays containing all of the
neighbor vertices and their degrees/core numbers for each of
the seeds. Then we begin to iterate. First, we find the vertex
in each segment with the highest degree/core number using
a segmented max operation. We use one thread per segment
to flag each vertex in the segment that is connected to this
vertex. Next, we use a select operation to filter the vertex
and degree/core number arrays, removing vertices that are
not connected. Then we remove empty segments with one
more select operation and update the segment indices via a
scan operation. We iterate until there are no candidate vertices
remaining in any of the segments. As in the single run version,
the number of iterations is the lower bound on the maximum
clique size, but in this case it represents the largest clique
found across all h parallel runs of the greedy heuristic. We
expect that using the best of multiple runs will result in a
better lower bound and, therefore, better pruning.

B. Clique List Data Structure

An important consideration for our breadth-first parallel
implementation is how to store all of the cliques and candidate
lists. In parallel in each iteration, we are creating a new
candidate list for each of the current candidate vertices across
all candidate lists. The size of each of these new candidate
lists can vary widely between cliques and between iterations
of the algorithm, making it impossible to preallocate the
appropriate amount of memory. As mentioned in Section II-D,
memory size is a significant concern for the breadth-first
implementation, so we would also like to store cliques and
candidate vertices as compactly as possible and avoid storing
any duplicate information.

a) Criteria: The goal is to build a minimally-sized data
structure that supports the following operations: (1) add a
variable number of total items in each iteration, (2) track which
clique each of the newly-added candidate vertices belongs to,
and (3) delete data for cliques that have been pruned. Parallel
operations take place with one thread per candidate vertex, so
we would like to store all candidates in a contiguous block of
memory to achieve coalesced accesses.

b) Our Solution: The data structure we chose, which
we call a clique list, is essentially a linked list wherein each
node of the list contains a pair of arrays, vertexID and
sublistID. Figure 1 shows the clique list for an example
graph. Each node in the clique list contains all of the necessary
data for one iteration of the search. vertexID contains the
candidate vertices for that level, and sublistID contains
the index in the previous clique list node where the last vertex
added to the clique is stored. Effectively, the sublistID
is a pointer into the previous clique list node’s vertexID
array. The sublistID array allows us to identify which



A A A A B B B C C D

B D F G C D E D E E

sublistID=

vertexID=

D E F

G F G

k=2

0 1 2 3 4 5 6 7 8 9 10 11 12

numCliques=13

0 1 2 4 4 5 7

D G G D E E E

sublistID=

vertexID=

k=3

0 1 2 3 4 5 6

numCliques=7

0

3

E

sublistID=

vertexID=

0

k=4

numCliques=1

AA

BB

DD

C

E

G F

Fig. 1: An example graph and the clique list structure used to find
its maximum clique. To illustrate how the clique list structure works,
let’s walk through how to read out the maximum clique, represented
by the circled blocks. We start at the head of the list, which is the
most-recently added node, for k = 4. There is only one clique of size
4, so this graph only has one maximum clique. vertexID4[0] = E
means vertex E is in the clique, and sublistID4[0] = 3, so we
follow the previous pointer to the clique list node for k = 3
and find vertexID3[3] = D. Now we have the clique set C =
{E,D}, and we use the sublistID3[3] = 4 as a pointer into the
clique list node for k = 2, where both vertexID2[4] = C and
sublistID2[4] = B represent vertices in the clique. Therefore,
the maximum clique of this graph is C = {E,D,B,C}.

vertices belong to the same candidate list and, at the end of the
computation, to read out all of the vertices in the maximum
clique(s). The first node of the clique list is different from the
others. Because there is no need for indices into a previous
node’s vertex array, we combine the data for the first two levels
of the search tree into one node by using sublistID to store
the vertex IDs for the first level of the tree.

c) Discussion: This data structure allows us to simulta-
neously expand all cliques in each iteration, allocating memory
as needed, and to track which vertices belong to each clique.
Iterating through the linked list to read out the clique vertex
sets is cumbersome, but within each iteration of the search,
we only need to know the current candidate vertices in order
to check their connections and generate the candidate list for
the next iteration; therefore, we only need to access values in
previous nodes of the linked list at the end of the computation
to read out the members of the maximum clique(s). We avoid
storing duplicate information because each of the k-cliques
generated from the same (k − 1)-clique points back to their
shared ancestor in the previous clique list node. This struc-
ture also allows for coalesced accesses, because neighboring
threads read from consecutive values in the vertexID and
sublistID arrays. One drawback of this data structure is
that it is very difficult to delete data for cliques that have
been ruled out as candidates for the maximum clique, because
sublistID values would need to be updated in all nodes
of the clique list structure. We could not find another data
structure that met our other criteria and allows for simpler
deletions, so we accept this downside and do not delete any
data for eliminated cliques.

C. Setup: Forming the 2-Clique List

Before running the breadth-first search, we must set up the
first node of the clique list containing all of the 2-cliques.
This is essentially a list of the edges in the graph stored as an
array of source vertices and an array of destination vertices.

We create the 2-clique list on the GPU using data-parallel
operations. The steps are: (1) one thread per vertex determines
the number of neighbors in its sublist (2) prune sublists shorter
than lower bound clique size determined in heuristic (3) a scan
operation to determine start indices for sublists and amount
of memory to allocate for 2-clique list (4) one thread per
unpruned sublist outputs the vertices for that sublist.

In order to avoid storing duplicate cliques and wasting work
throughout the rest of the computation, we use only one of
the two directed edges that represent each undirected edge
in the original graph, known as an orientation of the graph.
We do not explicitly modify the graph, but instead select
the desired edges when forming this initial clique list node.
From each reciprocal edge pair, we keep the edge where the
source vertex has lower degree. Orienting the graph by degree
improves pruning over orientation by index, because vertices
with lower degree have shorter adjacency lists. Selecting these
vertices as the source vertices means that the initial sublists
are shorter on average and thus a greater proportion of sublists
will be smaller than ω̄. In addition to pruning entire sublists,
we also pre-prune individual vertices by comparing their
degree/core number to the lower bound found in the heuristic.
After performing all pruning, it is possible that there may be
only one sublist remaining, representing the clique discovered
by the heuristic. If this is the case, we can skip the full
exact algorithm because we have already found the singular
maximum clique.

The final preprocessing operation is to sort vertices by
degree within their candidate lists. Without this sort, vertices
will be in the same order as they are stored in the adjacency
lists — sorted in order of increasing index values. By sorting
vertices according their degrees, we hope to improve pruning,
because the vertices near the beginning of the candidate lists
are assigned more edge lookups than vertices later in the
list. This means lookups for missing edges are moved to
earlier iterations, enabling us to prune them earlier in the
search. Additionally, placing the low degree vertices at the
beginning of the candidate lists means a greater fraction of
edge lookups are in shorter adjacency lists, which reduces the
average lookup speed.

D. Breadth-First Maximum Clique

The iterative breadth-first search, detailed in Algorithm 2,
now proceeds as follows: one thread for each vertex in the
clique list checks whether it is connected to each of the vertices
that follow it in its sublist, and tallies the number of successful
edge lookups. Each successful lookup represents a (k + 1)-
clique. The length of this new sublist is compared to ω̄ to
determine whether it should be pruned before returning the
count. Next, we use a scan operation to find the start indices
for the new sublists and amount of memory to allocate for the
(k+1)-clique list. If there are no new cliques, we have reached
the end of the search, and we use the current clique list node to
read out the vertices in the maximum clique(s). Otherwise, we
assign one thread per vertex to output the candidate vertices
for its new sublist.



This breadth-first approach provides the ability to easily
launch a different number of threads in each iteration to
match the number of candidate vertices formed in the previous
iteration. This avoids the load imbalance of having each thread
traverse multiple levels of the search tree, which would result
in both many dead-end threads and threads with vast search
trees to explore. The largest portion of the computation in each
iteration is the edge checks, each of which consists of a binary
search (lines 5 and 19) on the candidate vertex’s adjacency list
within the CSR. Unfortunately, these memory accesses will not
be coalesced, because neighboring threads are responsible for
different candidate vertices. However, individual threads may
receive some benefit from caching, because all of their reads
will be in the same part of the graph data structure.

E. Windowed Search

As mentioned in Section II-D, one of the challenges for a
breadth-first implementation is the large memory requirement
for storing all candidates simultaneously. Particularly for large
and/or dense graph datasets, there may be more candidate
cliques than can fit in GPU memory, even after pruning. For
these instances, we consider an approach for solving for only
one maximum clique, rather than enumerating all maximum
cliques. We implement a windowed variation on the breadth-
first search, wherein we split up the initial list of 2-cliques
and run our breadth-first maximum clique algorithm on one
subset (window) of candidates at a time. Although a fully
depth-first search provides little parallelism and creates too
much divergence and workload imbalance between threads to
perform well on a GPU, we hope that modifying the search
to be less broad can offer a balance between parallelism and
memory requirements.

a) Implementation: We want to ensure that the window
boundary is between sublists, since candidate vertices use the
information for all vertices that follow them in their sublist.
To find the end of a sublist closest to the nominal end of
the window, we use the GPU threads to quickly read a chunk
of sublistID values and check if their index is the end
of a sublist, and if so, write their index to a global variable
using an atomicMin. When we have finished searching one
window, we update the lower bound if a new largest clique has
been found, find the tail for the next window, and repeat until
we have finished all windows. With windowing, we have the
ability to choose an ordering for the search, as other depth-first
implementations do. We experiment with sorting the source
vertices in the 2-clique list by their degrees or core numbers
and describe our findings in Section V-C.

b) Discussion: It is still possible that the combinations
from a relatively small set of 2-cliques can lead to a very large
list of candidates for larger cliques. The choice of window size
is important, because we want to provide enough work to keep
the GPU busy, but keep the clique list small enough to stay
within memory bounds. We expect graphs with higher average
degree to work best with a smaller window, because the
number of candidates will probably increase more quickly with

each iteration. We test a variety of window sizes and traversal
orderings and describe the trade-offs we find in Section V-C.

Algorithm 1 Multi-Run Greedy Heuristic
1: function GETNEIGHBORCOUNTS(G, vertices, neighborCounts)
2: neighborCounts[threadID]← |N(vertices[threadID])|

3: function SETUPNEIGHBORTHRESHOLDS(G, vertices, neighborCounts, vertexThresholds, indices,
neighbors, neighborThresholds)

4: offset← indices[threadID]
5: count← 0
6: for u ∈ N(v) do
7: neighbors[offset + count]← u
8: neighborThresholds[offset + count]← vertexThresholds[u]
9: INCR(count)

10: function CHECKCONNECTIONS(G, neighbors, indices, maxIndices, flags, connectedCounts)
11: v ← neighbors[maxIndices[threadID]]
12: currentIndex← indices[threadID]
13: segmentEnd← indices[threadID + 1]
14: count← 0
15: while currentIndex < segmentEnd do
16: u← neighbors[currentIndex]
17: if u ∈ N(v) then
18: flags[currentIndex]← TRUE
19: INCR(count)
20: else
21: flags[currentIndex]← FALSE
22: INCR(currentIndex)
23: connectedCounts[threadID] = count

24: function MULTIRUNGREEDYHEURISTIC(G, vertices, vertexThresholds, h)
25: ▷ vertices sorted in order of descending degree or core number
26: for all vertices do
27: GETNEIGHBORCOUNTS(G, vertices, neighborCounts)
28: indices←CUBSCAN(neighborCounts)
29: for all vertices do
30: SETUPNEIGHBORTHRESHOLDS(G, vertices, neighborCounts, vertexThresholds, indices,

neighbors, neighborThresholds)
31: numSegments← h
32: ω̄ ← 1
33: while numSegments > 0 do
34: maxIndices←CUBSEGMENTEDMAX(neighborThresholds)
35: for all segments do
36: CHECKCONNECTIONS(G, neighbors, indices, maxIndices, flags, connectedCounts)
37: (neighbors, numCandidates)←CUBSELECT(neighbors, flags)
38: (neighborThresholds, numCandidates)←CUBSELECT(neighborThresholds, flags)
39: if numCandidates = 0 then
40: break
41: (nonzeroCounts, numSegments)←CUBSELECTIF(connectedCounts) ▷ keep values > 0
42: indices←CUBSCAN(nonzeroCounts)
43: INCR(ω̄)
44: return ω̄

V. RESULTS

We evaluate our maximum clique implementation on the 58
largest real-world datasets (all datasets with |E| > 10k)1 eval-
uated in Rossi et al.’s paper [1], downloaded from the Network
Repository [14]. These include social, web, road, biological,
technological, and collaboration networks ranging in size from
10k to 106M edges. We use Rossi et al.’s Parallel Maximum
Clique (PMC) [1], a multi-threaded CPU implementation, as
our main comparison, because no code is publicly available for
previous GPU maximum clique implementations. We also note
that Rossi’s implementation only finds one of the maximum
cliques, while our implementation enumerates all cliques of
maximum size. We randomize the vertex indices, to avoid
any bias from the ordering of the original datasets that could
affect the comparisons for sorting by index and degree. We
also preprocess the datasets (before forming the CSR data
structure) to ensure all graphs are undirected and contain no
loops. We run all GPU and CPU experiments on a Linux

1Our implementation is OOM for two datasets (friendster and flickr), so
they do not appear in performance data, but are included in Table I.



Algorithm 2 Breadth-First Maximum Clique Enumeration
1: function COUNTCLIQUES(G, cliqueListk , ω̄, counts)
2: i← threadID + 1
3: connected← 0
4: while sublistIDk[threadID] = sublistIDk[i] do
5: if vertexIDk[i] ∈ N(vertexIDk[threadID]) then
6: INCR(connected)
7: INCR(i)
8: if connected+k< ω̄ then ▷ pruning by sublist length
9: connected← 0

10: counts[threadID] = connected
11: return

12: function OUTPUTNEWCLIQUES(G, cliqueListk , offsets, cliqueListk+1)
13: i← threadID + 1
14: cliqueOffset← offsets[threadID]
15: if cliqueOffset = offsets[threadID + 1] then
16: return
17: count← 0
18: while sublistIDk[threadID] = sublistIDk[i] do
19: if vertexIDk[i] ∈ N(vertexIDk[threadID]) then
20: vertexIDk+1[cliqueOffset + count]← vertexIDk[i]
21: sublistIDk+1[cliqueOffset + count]← threadID
22: INCR(count)
23: INCR(i)
24: return

25: function MAXCLIQUES(G, ω̄, cliqueListk , cliqueCountk)
26: k ← 2
27: while cliqueCountk > 1 do
28: for all candidates in cliqueListk do
29: COUNTCLIQUES(G, cliqueListk , counts)
30: offsets←CUBSCAN(counts)
31: cliqueCountk+1 ← offsets[cliqueCountk − 1]
32: if cliqueCountk+1 = 0 then
33: break
34: for all candidates in cliqueListk do
35: OUTPUTNEWCLIQUES(G, cliqueListk , offsets, cliqueListk+1)

36: if cliqueCountk+1 = ω̄ − k + 1 then
37: break ▷ maximum clique was found by heuristic
38: INCR(k)
39: return cliqueListk

workstation with a 2.8GHz 24-Core AMD EPYC 7402 CPU
and 512GB of main memory and an NVIDIA Tesla A100
GPU with 40GB of on-board memory. Our code2 is compiled
with CUDA 11.6. For both the overall throughput results
and comparison with PMC in Section V-A, we report the
results from the fastest configuration (for our implementation:
the best combination of heuristic, window size, and other
preprocessing; for PMC: the best number of threads) for each
dataset. Reported runtimes for our implementation and PMC
represent the average of 5 runs, and do not include the time
to load the graph dataset onto the GPU, but do include the
heuristic runtime and other preprocessing.

Key Takeaways:
• Our implementation performs best for larger graphs with

low average degree.
• We achieve significant speedups over PMC on low degree

graphs, while they tend to be faster for high degree
graphs.

• For some graphs with high average degree and other hard
to prune graphs, our implementation runs out of memory
for storing candidate cliques.

• Breaking the search up into smaller windows does enable
us to solve more hard to prune graphs, but at a significant
performance cost.

• Better pruning does not dependably improve runtimes, so

2Our implementation is available at https://github.com/owensgroup/
GPUMaximumClique.

the goal is to minimize preprocessing time and prune just
well enough to avoid running out of memory.

• The overall best heuristic is the multi-run degree-based
heuristic. Smaller graphs perform best with a simple
heuristic, while the hardest to prune graphs perform best
with the multi-run core number heuristic.

A. Overall Performance

a) Performance vs Average Degree: The most consis-
tent factor determining the performance of our imple-
mentation is the average degree of the graph. As shown
in Figure 2, the number of edges processed per second
decreases as the average vertex degree increases. There are
a few factors at play here. First, graphs with higher degree
are harder to prune because many of the vertices’ degrees (or
core numbers) will be larger than the heuristic lower bound.
Therefore, candidates stick around for more iterations of the
exact algorithm, requiring more work. Second, vertices in high
degree graphs have larger adjacency lists, which corresponds
to longer sublists in our algorithm. The workload for a thread
in each iteration is dependent on the length of its sublist and its
position within the sublist. With longer sublists, each iteration
of the main loop has a longer runtime, and there is greater
divergence and poorer load balancing amongst threads. Third,
because each edge lookup requires a binary search, larger
adjacency lists increase the work for each of these operations.

b) Performance vs Graph Size: We achieve higher
throughput as the graph size increases; however, the
challenge is to avoid running out of memory (OOM)
while solving these larger graphs, while also maintaining
enough work to keep the GPU busy throughout the entire
computation. Figure 3 demonstrates that the runtime per edge
decreases as the number of edges increases. This indicates that
the GPU is able to handle these additional edges, and we may
be able benefit from still greater efficiencies when scaling up
to larger (but still low degree) graphs. However, when solving
these larger graphs, particularly if they do not also have a
very low average degree, there may be too many intermediate
candidate cliques to fit in GPU memory. The solution to
this problem is to improve pruning, but over-pruning leaves
the GPU under-utilized in the early and late iterations, when
there are fewer candidate cliques. So the key to optimal GPU
performance is keeping the peak low enough to stay in GPU
memory, while still leaving enough work in the early and late
iterations to fill the GPU.

c) Comparison with Previous Work: We find that our
implementation outperforms PMC for low degree graphs,
while PMC is faster for high degree graphs, as shown in
Figure 4. In general, the performance of their implementation
is more dependent on the number of edges in the graph than
the average vertex degree, while ours has the opposite trend.
PMC is uses a fine-grained parallel depth-first implementation,
which makes efficient use of the powerful threads available
on the CPU, but the smaller number of threads means tbe
maximum throughput is less than what can be achieved on
the GPU. Therefore, our implementation is more perfor-

https://github.com/owensgroup/GPUMaximumClique
https://github.com/owensgroup/GPUMaximumClique
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Fig. 2: Throughput (including all preprocessing) for fastest configu-
ration on each dataset for basic breadth-first version and version with
windowing. For both the regular breadth-first and windowed versions,
performance is inversely correlated with average vertex degree.
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Fig. 3: Throughput (including all preprocessing) for fastest configu-
ration on each dataset for basic breadth-first version and version with
windowing. For both the regular breadth-first and windowed versions,
throughput is higher for larger graphs.

mance scalable, except for the memory requirements of
our breadth-first implementation. Adding the windowing
option to our implementation does help to mitigate the
memory requirements of the breadth-first implementation,
but it comes at a performance cost. As you can see at
the bottom of Figure 4, for the handful of graphs where
only the windowed version is successful, PMC is significantly
faster. Dividing the problem up into small enough windows to
keep the memory requirements manageable tends to reduce
the amount of parallel work so much that we cannot take
advantage of the parallel power of the GPU.
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Fig. 4: Speedup over Rossi PMC for the fastest configurations of our
regular breadth-first and windowed implementations.

B. Heuristics

For some small and/or low average degree graphs, it is
possible to run the exact maximum clique computation without
computing an initial lower bound. However, we find that
without a heuristic lower bound to prune the search, we
typically run out of memory when attempting to solve larger
and/or higher degree datasets. As described in Section IV-A,
we implemented four different versions of greedy heuristics. In
these experiments, the multi-run heuristics use all vertices in
the graph as seeds, i.e., h = |V |. We analyze the comparative
effectiveness of the heuristics by comparing them along three
metrics. (1) Accuracy: how close is the estimated lower bound
to the true maximum clique size? (2) Pruning: how much
memory do we save when pruning using these lower bounds,
and is this sufficient to avoid OOM? (3) Speedup: does this
pruning result in an overall speedup, or is the additional
preprocessing time greater than the time saved in the exact
computation?

1) Accuracy: Of our four heuristic options (single-run
degree, single-run core number, multi-run degree, and
multi-run core number) the multi-run versions provide
much better lower bounds than the single-run options.
Table I summarizes the mean error in the heuristic clique
size across all datasets for each of our heuristics and the
heuristic used in Rossi et al.’s PMC. Figure 5a shows how
the runtime for each of our heuristics varies across graphs of
different sizes. For the single-run versions, using core numbers
does usually improve the the lower bound significantly, but it
comes at the cost of a much longer runtime. The multi-run
degree and multi-run core number heuristics result in similar
accuracy, with the degree version finding a larger clique for
some datasets and the core number version finding a larger
clique for others, and for many datasets both versions succeed
in finding a clique of the maximum size. Overall, the lower
bounds from our multi-run heuristics are comparable to those
of the heuristic used in PMC, which uses a similar algorithm



TABLE I: Comparison of heuristic error and number of graphs
solvable (out of 58 total) using full breadth-first maximum
clique

Heuristic Mean Error Solved Graphs OOM

None 100% 19 67.2%
Single-run degree 63.3% 21 63.8%
Single-run core number 40.6% 35 39.7%
Multi-run degree 3.9% 50 16.0%
Multi-run core number 3.0% 47 10.3%
Rossi PMC 2.5% 58 0%

to that of our multi-run core number heuristic.
2) Pruning Quality: We find that the multi-run heuristics

provide the best pruning and allow us to solve more
datasets without running out of memory; however, graphs
where the average degree is close to or larger than the
maximum clique size are difficult to prune, even with an
accurate lower bound. Figure 5b shows that the quality of the
lower bound is the main determining factor in achieving high
levels of pruning. The multi-run heuristics achieve both the
highest accuracy and the largest fraction of candidate cliques
pruned. However, there are some datasets where even an
accurate lower bound does not allow us to prune the candidates
very aggressively. In our analysis, we found that in cases when
the lower bound is not significantly larger than the average
degree, pruning is less effective. This makes sense, because
all of the upper bounds used in pruning are related to degree.
Candidate lists are pruned based on their lengths, which are
determined by the lengths of the vertices’ adjacency lists.
Vertices are pre-pruned based on their degree (or core number,
which is typically correlated with degree). In instances where
the heuristic finds one of the maximum cliques there is no
way to increase pruning by improving the heuristic.

We do find that the improvement in pruning from more
complex heuristics enables us to solve more datasets without
going OOM, as shown in Table I, though these heuristics
do typically have longer runtimes. If increased pruning also
results in a faster runtime for the exact algorithm, this presents
a tradeoff between preprocessing and main algorithm runtime.
However, because our implementation runs in parallel for a
fixed number of iterations, pruning the candidate lists past a
certain point will not significantly improve the runtime of the
exact algorithm, because we are not utilizing the full capacity
of the GPU.

3) Speedup: For graphs that can be solved without using
a heuristic, it is typically fastest to to skip the heuristic
altogether or use the single run degree heuristic. For larger
or more dense graphs, the multi-run heuristics do provide
speedups over the single run core number heuristic, and
the multi-run degree heuristic is usually the fastest option.
Table II shows speedups for the breadth-first version when
switching from less complex heuristics to the more complex
ones (order of simplest to most complex: none, single-run
degree, single-run core number, multi-run degree, multi-run
core number). Because for many datasets, our implementation
is OOM when we run it with no heuristic or one of the

TABLE II: Geometric mean overall speedups comparison for
different heuristics. Speedup numbers represent the perfor-
mance improvement from using the heuristic listed in the
column value over the baseline listed on the left of each row.

Baseline Single Deg Single Core Multi Deg Multi Core

None 1.0x 0.4x 1.1x 0.4x
Single Degree — 0.2x 0.3x 0.1x
Single Core — — 2.9x 1.1x
Multi Degree — — — 0.9x

less accurate heuristics, we must use four different baselines
in our comparison. The values listed in each row are the
geometric mean speedups across all the datasets that require
that baseline heuristic in order to complete the maximum
clique computation without running out of memory. I.e., the
datasets represented in the “None” row of Table II correspond
to those counted in the “None” row of Table I.

a) No Heuristic Baseline: When no heuristic is required
to run the maximum clique computation without running
OOM, using the single run degree heuristic to set an initial
lower bound can provide a small speedup. For this group of
datasets, it is the ones with large maximum clique sizes that
are more likely to get a speedup when adding a heuristic for
the additional pruning. This is because the work saved in each
iteration adds up over many iterations of the exact algorithm.

b) Single Run Core Number Heuristic Baseline: For
graphs that can run with the single run core number heuristic,
the multi-run degree heuristic delivers the best performance.
Graphs with larger maximum clique sizes receive the biggest
speedups with the multi-run degree heuristic over the single
run core number heuristic. There are two reasons for this. (1)
Each iteration of the multi-run heuristic requires more work
than that of the single-run heuristic. (2) These datasets have
maximum cliques that are considerably larger than the next
largest clique, so as long as the heuristic succeeds in finding
(one of) the maximum clique(s), the search is easy to prune.
All three heuristics (single run core number, multi-run degree,
multi-run core number) succeed at finding a clique of size ω
for these graphs and achieve a high level of pruning.

c) Multi-Run Degree Heuristic Baseline: For graphs that
require the multi-run heuristics to avoid OOM, about half run
faster with the degree heuristic and half run faster with the
core number heuristic. These are almost all Facebook datasets,
which tend to have average degree higher than their maximum
clique size, and are therefore hard to prune. This makes the
high accuracy of the multi-run heuristics essential, and the
additional accuracy and tighter vertex pruning upper bounds
from the core numbers more likely to be beneficial.

4) Recommendations for Selecting a Heuristic: As a gen-
eral rule, the fastest runtime is typically achieved by using
the simplest heuristic for which pruning is sufficient to
avoid running out of memory. The best default choice
for an unknown dataset is the multi-run degree heuristic.
For graphs with fewer edges and/or lower degree, likely no
heuristic will be needed, while larger and higher degree graphs
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Fig. 5: Overall performance results for our breadth-first and windowed maximum clique implementations.

will benefit from the multi-run heuristics. Figures 5a and 5c
show that heuristic runtime increases with the number of
edges, but not with the average degree. This further supports
the conclusion that a more complex heuristic is likely to be
beneficial for graphs with high degree.

As can be seen in Figure 5a, the k-core vertex decompo-
sition increases the heuristic runtime significantly. Choosing
a different k-core implementation could reduce the cost of
this operation. However, since the core numbers only increase
the accuracy by an average of 0.9% for the multi-run im-
plementation, even a fast k-core computation is not likely
to yield a large improvement in overall runtime for most
datasets. Therefore, with no prior knowledge about the dataset,
we recommend starting with the multi-run degree heuristic,
forgoing the k-core computation. Then only if the run is OOM
with this heuristic, would we recommend trying the multi-run
core number version instead.

C. Windowing

Our goal with windowing was to reduce the number of
candidates that need to be stored simultaneously, thereby
reducing the memory requirements and allowing us to find
the maximum clique for more datasets without running out of
memory. We can see from the overall performance results in
Figures 2 and 3 that using windowing generally decreases
throughput, as we would expect when reducing the available
parallel work. In this section, we look at how the choice of
window size creates a tradeoff between this runtime increase
and memory use reduction. We also test whether we can
achieve any benefits from altering the order of the search by
sorting the source vertices in the 2-clique list by their degrees.

1) Memory Use: Windowing reduces the memory re-
quirements by an average of 85-94%, with greater reduc-
tions for smaller window sizes. Searching the neighbor-
hoods of more highly connected vertices first requires more
memory than searching less connected vertices first or a
random ordering. For the regular breadth-first implementa-
tion, all candidates are stored until the search is complete, so
memory use is only reduced by improving pruning. With win-
dowing, memory requirements are determined by the largest
subtree generated from a single window, which is affected

by both pruning quality and window size. Pruning is affected
by all factors discussed in previous sections, and can also be
improved when a new best clique is found, increasing the
lower bound for later windows. Pruning reduces work, but
does not necessarily have a large effect on peak memory use,
because we only need to store the clique lists generated from
one window (as well as that of the best clique so far). We find
that windowing improves pruning by an average of 20-26%,
depending on the window size, but the reduction in memory
usage is the most significant improvement.

Unsurprisingly, smaller window sizes provide larger mem-
ory savings, as shown in Figure 6. We find that by using
windowing, we are able to solve 4 more (for a total of 56
out of 58 datasets) of the graph datasets that are OOM with
the full breadth-first implementation. Sorting source vertices
in descending degree order, thereby searching more highly
connected vertices’ neighborhoods first, uses more memory
than searching in order of ascending degree or (randomized)
index order. We might expect that prioritizing highly connected
vertices would improve memory usage because the maximum
clique(s) are more likely to contain these high-degree vertices,
but we are also orienting the graph by degree, so larger cliques
are more likely to be in low-degree vertices’ candidate lists
than they would be with index-based orientation. However,
we also find that sorting the source vertices in ascending order
does not significantly reduce peak memory usage over random
order, suggesting that it is generally challenging to predict
which sublist(s) the largest clique(s) are located in.

2) Runtime: The smaller the window, the longer the
runtime. Changing the traversal order does not have a
significant effect on runtime. We measure the speedups
for the windowed version over the full breadth-first version
and see a geometric mean speedup of 0.53x for a window
size of 1024 and 0.89x for a window size of 32768. The
runtime increases as the window size shrinks, which is to
be expected, because we run the main loop on each window
sequentially, so as the number of windows increases, so
does the runtime. Additionally, depending on the number of
candidates generated in the search, smaller windows may not
provide enough parallelism to keep the GPU filled with work.
Sorting source vertices did not have a significant effect on
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Fig. 6: Memory usage for windowed computation compared to full
breadth-first maximum clique, using multi-run degree-based heuristic.

runtime. This suggests that performance is limited by the lack
of available parallelism, since reducing the amount of work
is not affecting the runtime. Overall, we find no memory or
performance benefit in changing the order of search from a
randomized order; however, depending on the default ordering
of the graph dataset, it may be worthwhile to try sorting
vertices in ascending degree order if needed to avoid OOM.

3) Recursive Windowing: Although we only implement
windowing on the first level of the search, it is possible
to perform windowing in later stages and/or multiple times
during the search. The results shown in this section indicate
that this would be an effective strategy for further reducing
memory usage, but that the performance cost will also be quite
high. Multiple windows could be explored simultaneously by
different thread blocks in order to increase parallelism, but
because the number of candidates generated by a window is
unpredictable, managing the memory resources is challenging.
Increasing windowing also moves the implementation further
towards a regular depth-first implementation, which, as dis-
cussed in Section II-C, is not ideal for GPU performance.

VI. CONCLUSIONS

Memory requirements are the biggest constraint for our
maximum clique implementation. Although there are a variety
of strategies for improving pruning, we find that the fastest
configuration is typically one that uses minimal preprocessing
while simultaneously managing to avoid OOM. The goal is
to choose a pruning strategy that is ”good enough” and not
expend any further effort on pruning after that. This indicates
that the breadth-first strategy was a good choice for the GPU,
because indeed, the GPU performs well when it has lots of
work, even if it could be ”easily” eliminated. However, BFS
is not ideal for this problem in general, because (1) memory
limits are easily reached with a combinatorial problem like
this, and (2) the search will never finish early because what
we are solving for is the depth itself.
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