
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Electric Vehicle Route Planning in the Presence of Stochasticity

Permalink
https://escholarship.org/uc/item/7hk65093

Author
Rajan, Payas

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hk65093
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Electric Vehicle Route Planning in the Presence of Stochasticity

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Payas Rajan

March 2022

Dissertation Committee:

Dr. Chinya V. Ravishankar, Chairperson
Dr. Vassilis J. Tsotras
Dr. Ahmed Eldawy
Dr. Amr Magdy

Copyright by
Payas Rajan

2022

The Dissertation of Payas Rajan is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This work, like all other works, is a result of inputs from several people, and I’d like to thank

everyone who helped me along the way. The first order of thanks, of course, goes to my

advisor, Dr. Ravishankar. Thank you, for your patience, for being so generous with your

time, and teaching me how to think clearly. Big thanks also to Daniel Delling at Apple,

for giving me the opportunity to work with and learn from so many other people, Moritz,

Michael, Dennis, Christian, Casey, Sofia. Chapter 3 was written during the internship, and

provided a boost when it was most needed.

Thanks also to Megan Danielson and Mikel Maron at Mapbox for allowing us

access to the dataset used in chapters 4 and 5, and to Guoyuan Wu and Matthew Barth

for the dataset used in chapter 2. Finally, thanks to Abhishek, Ravdeep, Amrita, and my

parents for being such amazing pillars of personal support.

iv

To everyone I’ve ever learned from.

v

ABSTRACT OF THE DISSERTATION

Electric Vehicle Route Planning in the Presence of Stochasticity

by

Payas Rajan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2022

Dr. Chinya V. Ravishankar, Chairperson

Electric Vehicle (EV) route planning is an important but hard problem, since battery ca-

pacity is limited, charging times are long, and charging stations are sparsely distributed. It

is nonetheless critical to improving the time and energy efficiency of future transportation

systems, and to promoting EV adoption, by reducing driver range anxiety. EV routing is

usually modeled as a Shortest Feasible Path (SFP) problem, which ensures a non-negative

State of Charge along the route, taking both travel time and energy consumption to be de-

terministic and known in advance. In practice, however, travel time and energy consumption

are both stochastic variables, which can be hard to estimate accurately.

This dissertation presents a set of techniques to advance our abilities to address

such stochasticity. First, we show how to accurately predict energy consumption and travel

times along routes using phases, a new structuring abstraction for vehicle speed profiles.

Contrary to conventional wisdom, using phases outperforms even microscopic energy es-

timation models. We show that using phases to generate synthetic trips preserves the

real-world variance in travel times and energy consumptions of real-world trips.

vi

Next, we show how to efficiently encapsulate the tradeoffs between travel times and

robustness of feasible routes against deviations in energy consumptions using the Starting

Charge Map and Buffer Map constructs. Further, we generalize the SFP problem to permit

stochastic travel times and energy consumptions using two different probabilistic definitions

of route feasibility. These definitions allow drivers to maintain route feasibility either in

expectation, or by setting explicit lower bounds on stranding probability.

We also study how to effectively apply well-known speedup techniques, such as

Contraction and Edge Hierarchies, for route planning with stochastic edge weights. We

show that the choice of weight representations has a significant impact on the routing query

runtimes, and introduce the tiering technique, which significantly improves query times for

three different stochastic routing objectives. We evaluate all presented methods on realistic

routing instances.

Lastly, we generalize the problem of identifying dwell regions for trajectory sets to

that of finding shared dwell regions, and present two novel approaches to the problem. We

show that our solutions outperform the state-of-the-art by nearly a factor of three.

vii

Contents

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Our contributions . 2

2 The Phase Abstraction 5
2.1 Introduction . 5

2.1.1 EV-Specific Issues in Estimation Models 6
2.1.2 Our Contributions . 7

2.2 Background and related work . 8
2.3 EV modeling and energy estimation . 12

2.3.1 An instantaneous EV model . 12
2.3.2 Mesoscopic EV modeling with phases 16
2.3.3 Energy Consumption over a Phase 19

2.4 Generating realistic speed profiles . 20
2.4.1 Trip modeling with Markov Chains & KDE 21

2.5 Experiments . 23
2.5.1 Validating the phase-based energy estimation model 23
2.5.2 Evaluating the speed profile generation model 31

3 Robustness Generalizations of the Shortest Feasible Path Problem 33
3.1 Introduction . 33
3.2 Related Work . 35
3.3 Preliminaries . 37

3.3.1 Charging Function Propagation (CFP) 39
3.4 Starting Charge Maps . 41

3.4.1 Reverse Charging Function Propagation 42
3.5 Buffer Maps . 48

3.5.1 Iterative Charging Function Propagation 49
3.6 Experiments . 56

viii

3.6.1 Preparing a realistic EV Routing instance 56
3.6.2 Reverse Shortest Feasible Path Queries & Starting Charge Maps . . 58
3.6.3 Iterative CFP and Buffer Maps . 60

4 Stochastic Route Planning for Electric Vehicles 62
4.1 Introduction . 62

4.1.1 Our Contributions . 64
4.2 Related Work . 65

4.2.1 Stochastic Route Planning . 66
4.3 Problem Setup . 67

4.3.1 Travel Times and Energy Depletion 68
4.3.2 E-Feasible Routing . 69
4.3.3 p-Feasible Routing . 70

4.4 Charging Function Propagation for E-Feasible Routing 71
4.4.1 The Depletion Function Along Route Legs 72
4.4.2 Dijkstra Search for E-feasible Routes 73

4.5 Charging Function Propagation for p-Feasible Routing 76
4.5.1 Dijkstra Search for p-feasible Routes 78

4.6 Stochastic Contraction Hierarchies . 80
4.7 Experiments . 81

4.7.1 Preparing a realistic routing instance 81
4.7.2 Results . 83

5 The Tiering Technique for Stochastic Contraction & Edge Hierarchies 87
5.1 Introduction . 87

5.1.1 Contraction and Edge Hierarchies 88
5.1.2 Handling Uncertain Edge Weights 88

5.2 Related Work . 91
5.3 Background . 92

5.3.1 Stochastic Route Planning . 92
5.3.2 Edge Hierarchies . 94

5.4 Uncertain Hierarchies . 96
5.4.1 Tiering in Hierarchies . 97
5.4.2 Uncertain Edge Hierarchies . 99
5.4.3 Stochastic Query Processing . 103
5.4.4 Uncertain Contraction Hierarchies 108
5.4.5 Stable Distributions and Limitations 109

5.5 Experiments . 110
5.5.1 Baselines for Deterministic Routing 110
5.5.2 Stochastic Routing . 112

6 Shared Dwell Regions 119
6.1 Introduction . 119

6.1.1 Our contributions . 121
6.2 Preliminaries . 121

ix

6.2.1 Dwell Regions . 122
6.2.2 Pointwise Dense Regions . 123

6.3 Approximate dwell region processing . 124
6.3.1 The Replay (Online) Method . 125
6.3.2 The Offline Method . 127

6.4 Experiments . 130
6.4.1 The Replay Method . 130
6.4.2 The Offline Method . 131

7 Conclusions 134
7.1 Summary . 134
7.2 Outlook . 137

Bibliography 138

x

List of Figures

2.1 The solid line is a speed profile segment for a 2013 Nissan Leaf. For τ =
0.5m/s2, we see three phases of average accelerations 1.20, 0 and−1.21 m/s2

respectively. The dotted blue line is the modeled velocity in each phase. . . 16
2.2 EV routes for data collection in Riverside, CA. 24
2.3 Instantaneous model EI(T) vs phase-based model EΦ(T). Negative errors

are underestimates by model. 25
2.4 Mean Absolute Percentage Error (MAPE) for EI(T) and EΦ(T), for various τ . 27
2.5 CDF of % deviation from real-world measurements, for different phase types.

In acceleration and deceleration phases, higher τ values yield more accurate
estimates, while in constant speed phases, the reverse is true. See Section
2.5.1. 28

2.6 Using KDE to learn the PDF of the acceleration and time spent in each type
of phase. The contour plots show the 2-D PDF for trips on Route 1, with
τ = 0.5. Part (d) shows the KDE estimates for the time interval PDF for
rest phases. 29

2.7 Energy consumed and distance traveled versus time for actual trips versus
100 trips generated by our model. Solid lines show mean values, and error
bands show 95% confidence intervals. The mean distance traveled and en-
ergy consumption over time for observed and synthetic trips are close, with
significant overlap in the error bands. This shows that our model generates
trips that match the natural variance in energy consumption and distance
traveled over time. 30

3.1 Comparing SFP and RSFP problem setups. While charging functions map
the time spent charging to an EV’s SoC at departure, inverted charging func-
tions map the EV’s SoC at arrival at the charging station to the least possible
charging time required to reach target. 44

3.2 ‘Virtual’ vertices added to the graph. 47
3.3 Augmented CFP setup. 50

xi

3.4 Each line on the X-Y plane represents a label li ∈ L for iteration N . High-
lighted blue label line segment represents the minimum time label lmin. The
slope of blue label line segment is ρ ∈ lmin, and the X-intercept is equal
to travel time τt ∈ lmin. It intersects with two other label line segments
at ι1 and ι2. Similarly, let intersection points be {ι1, ι2, ..., ιn} if L contains
more labels. b′ for the next iteration is equal to the minimum buffer SoC in
{ι1, ι2, ..., ιn} (SoC of shown green line). 53

4.1 Stochastic route planning, classified by routing objective, edge distribution,
and result. Our work finds energy-feasible routes that maximize probability
of arrival before deadline. 66

4.2 E-feasible queries. Edges have two weights: a travel time distribution (be-
low), and an expected energy depletion (above). Shaded nodes are charging
stations, with piecewise-linear charging functions. The CFP search propa-
gates travel time distributions using convolutions. 72

4.3 p-Feasible queries. Travel time and energy depletion are both distributions.,
propagated by the CFP search using convolutions. While the non-dominated
search stops only when QG becomes empty, the probabilistic budget route
search can stop when TP (t) drops to 0. 76

5.1 Histograms are better lower levels of a hierarchy (blue edges), as they can
represent arbitrary distributions. At higher levels (green edges), shortcuts
connect vertices farther away, and distributions such as Gaussians offer com-
pactness and fast convolutions, while losing little accuracy. 89

5.2 Tiering in shortcut hierarchies. Distributions are represented as histograms
in Tier H, and as Gaussian approximations in Tier G. 100

5.3 Computing approximation error on a path in UEH. Gaussian approximations
are used only on the tier-G subpath. When this subpath is known, KLD-
UEH uses Pinsker’s inequality (Equation 5.1) to find the total error, while
HD-UEH propagates an error term in Dijkstra’s search labels. 107

5.4 Preprocessing times for the tiered and untiered uncertain EHs and CHs on
the contracted Tile 0230123 road network. 113

5.5 Query times for all three query types, using the tiered and untiered uncertain
CHs and EHs on the contracted road network for Tile 0230123. 114

6.1 The online shared dwell region method using a segment tree of movement
event time intervals. For query 〈Tstart, Tend, dq, tq〉, we extract all events in
the time interval 〈W = Tstart, Tend〉 from the segment tree, find corresponding
object locations, and increase the cell counts within a radius dq of the object.
Each cell cij holds a list of 〈τs, τe〉 pairs, where τs is the time when cij first
came within a radius dq of an object O, and τe is the time when cij ceased
to be within a radius dq from O. We extract the entries where (τe− τs) ≥ tq.
The resulting set of cells form the shared dwell regions. 126

xii

6.2 The offline method to compute shared dwell regions: In the preprocessing
step, we create the shown 2-D grid. The x-axis shows the snapshots at which
we maintain the state of object movements, the y-axis indexes the grid by
number of objects present inside a cell. Each cell, in the grid stores a list of
〈i, distance, cjk〉 tuples, where i is the ID of the object Oi in the trajectory
dataset, distance is the distance of Oi from the center of cjk. 128

xiii

List of Tables

2.1 Our notations . 13
2.2 Effect of τ on mean % of time spent in each phase. 28
2.3 Regime parameters used to generate synthetic trips 31

3.1 Our road network is taken from OpenStreetMap, public charging stations
data from the Alternative Fuel Data Center [5], elevations from NASADEM
[106] and an energy consumption model from a Nissan Leaf 2013 [54]. . . . 57

3.2 Average performance of 1000 queries running RCFP vs. variants of standard
CFP. The EV is always assumed to start with 100% SoC at source. CFP
with stopping criterion terminates after finding only one feasible route, and
is therefore much faster than regular CFP which returns all feasible routes.
RCFP can be seen to perform at par with CFP without stopping criterion.
Time shown in seconds, also shown—no. of labels extracted from priority
queue, alternative routes to t, and the no. of times search reached target.
Targets found differ between RCFP and CFP because of the difference in
dominance criteria. 58

3.3 Continuation of RCFP results for 64 and 128 kWh. 58
3.4 Average performance of Iterative CFP to answer 1000 Buffer Map queries

(with 50 and 100% starting SoC) between random vertices on the Oregon
road network. 60

4.1 Stochastic EV routing queries considered in this chapter. 64
4.2 Symbols used in this chapter. 71
4.3 Single-criterion probabilistic budget routing queries [132] vs. our E-feasible

and p-feasible queries on the Tile 0230123 graph. Times (seconds) are aver-
ages over 100 random vertex pairs. The energy consumption model is for a
Nissan Leaf 2013 with 12 kWh battery and 50% starting SoC. 84

4.4 E-feasible and p-feasible query performance on the Tile 0230123 graph, with
real-world charging station and elevation data. Times (seconds) are over 500
random vertex pairs. Energy consumption model is for a Nissan Leaf 2013
fitted with a 12 kWh battery and 50% starting SoC. 85

xiv

4.5 Average Jaccard Index for 500 random E-feasible and p-feasible routes, with
p = 0.85. The index is 0 when the routes are edge-disjoint, and 1 when they
are identical. 85

5.1 The DIMACS graphs and the LA area OSM graph used to evaluate our CH
and EH implementation, for fixed edge weights. Tile 0230123 is a part of the
LA area OSM graph between Long Beach and Oxnard, covering most of LA
city. We contract all vertices with degree < 2 for Tile 0230123. 111

5.2 Deterministic routing using the distance metric: Our CH and EH imple-
mentation uses an adjacency list representation for both speedup techniques,
and performs better than the original EH implementation but is slower than
RoutingKit. The performance gap between CH and EH techniques when us-
ing the same underlying graph representation is lesser than originally reported.116

5.3 Deterministic routing using the travel time metric: Our CH and EH imple-
mentation uses an adjacency list representation for both speedup techniques,
and performs better than the original EH implementation but is slower than
RoutingKit. The performance gap between CH and EH techniques when us-
ing the same underlying graph representation is lesser than originally reported.117

5.4 Effect of approximation error on route travel times in UEH and UCH: Routes
generally take slightly more time when edge weight approximations are used
as compared to Untiered hierarchies. 118

6.1 Comparing the cost of maintaining a window of W position updates, adding
E new point updates, and the approximation error for queries in our method
vs. the online method presented in [160]. Here, lG is the side of a cell in the
considered grid, k is the number of vectors maintained around the origin, dq
is the query distance. 127

6.2 Query times (in seconds) for the dwell regions with different values of k vs.
the pointwise dwell regions queries on the GeoLife trajectory dataset. Note
that our query times do not change, since k affects the quality of approxima-
tion only in the original algorithm [160]. The quality of our approximation
depends only on the number of cells in the accumulation grid AG, which we
set to the maximum value, 25000 × 25000 cells here. Each cell in the grid
covers a 11.11m × 11.11m area, which suffices to capture the accuracy of
GPS traces (5 ∼ 10 meters) in the GeoLife dataset. 132

6.3 Comparing the preprocessing times of our offline shared dwell regions method
with the τ index on the T-Drive trajectory dataset containing 10,357 trajec-
tories and 15 million points. For the τ index, we set k = 8, and used a linear
partitioning scheme for the time dimension. 133

6.4 Comparing the query times of our offline shared dwell regions method with
the τ index on the T-Drive trajectory dataset. For the τ index, we set k = 8,
and used a linear partitioning scheme for the time dimension. The query
times shown are the averages for dq = {250, 500, 1000, 1500, 1900} meters
and tq = {10, 20, 30} minutes. 133

xv

List of Algorithms

1 Identify phases in a speed profile . 18

2 Aggregate consecutive phases in ΦC . 20

3 Building the two-level Uncertain Edge Hierarchy 102

xvi

Chapter 1

Introduction

Route planning has been extensively studied over the last two decades, and several

methods for fast routing on large road networks are now commonly used [13, 149]. However,

Electric Vehicles (EVs) have limited battery capacities and much longer charging times,

while the charging infrastructure remains sparse and fragmented among different providers.

EV route planning, therefore, must consider energy consumption along routes in order to

increase the effectiveness of transportation systems and to minimize the risk of the drivers

getting stranded [133, 140].

Much prior work on EV routing attempts to find feasible routes, on which a non-

negative State of Charge (SoC) can be maintained on the EV [18, 19]. However, they also

assume that the energy consumptions and travel times of vehicles along the road network are

deterministic values that are known exactly [18, 19, 155, 151, 154]. In practice, though, these

parameters depend significantly on transient factors such as driver aggressiveness, weather,

and the state of wear of the battery, and may only be estimated as random variables [53].

1

In this thesis, we provide a set of techniques that enable EV route planning to

be effective in presence of such stochasticity. Our contributions span several subproblems,

which we discuss in the remainder of this section.

1.1 Our contributions

Our first contribution is in the domain of EV modeling and energy estimation.

Several kinds of energy consumption models exist in literature, and can be classified as

microscopic, mesoscopic or macroscopic, depending on the temporal granularity at which

they operate. In chapter 2, we present phases, a new structuring abstraction for EV speed

profiles, which we use to derive an accurate and mesoscopic energy consumption model that

is tunable with only one parameter. We evaluate the accuracy of our model using real-world

data collected from 52 hours of trips on a Nissan Leaf 2013. Further, we also show that

phases can be used to build a simple, yet effective, synthetic speed profile generation model

that preserves the variance in energy consumption and travel times of real-world trips.

Our next two contributions are in the domain of EV route planning algorithms.

EV routing is often modeled as the NP-hard Shortest Feasible Path (SFP) problem, which

minimizes the total travel time while maintaining a non-negative SoC for the EV at all

points along the route. SFPP admits an EXPTIME solution called the Charging Function

Propagation (CFP) [18, 19]. However, using CFP for real-world routes presents two major

problems: the SFP model presumes all energy consumption estimates are perfect, and the

problem returns only the shortest feasible paths, which may not suffice for a wide variety

of drivers considering the different levels of acceptable risk for different driving scenarios.

2

In chapter 3, we first introduce the Starting Charge Map (SCM) and Buffer Map (BM)

constructs which encapsulate the trade off between robustness of feasible EV routes and

travel times. Then, we present two generalizations of SFPP which allow us to compute

SCM and BM exactly and efficiently.

Next, in chapter 4, we generalize the SFP problem to explicitly allow stochastic

edge weights. However, doing so requires us to revisit the traditional definitions of feasibility

of routes to accommodate probabilistic values of energy consumption and travel times.

Therefore, we define E- and p- feasibility, which allow the user to maintain a non-negative

SoC along the route either in expectation, or provide a lower bound on the probability of

not getting stranded along the route. We then generalize CFP to accept stochastic edge

weights and return E- or p- feasible routes. In order to speed up our queries, we extend

the multicriteria Contraction Hierarchies to allow stochastic edge weights, and evaluate our

methods on a real-world dataset containing speeds on road network edges in the Los Angeles

area over a span of four and a half months.

In chapter 5, we study the performance of Contraction Hierarchies [64, 120] and

Edge Hierarchies [73] when the edge weights are probability distributions, for three stochas-

tic routing objectives: the mean-risk routes [115], probabilistic budget routing and non-

dominated routes [120]. Similar to [84], we observe that most time for answering such

queries is spent computing convolutions of edge weight distributions. Therefore, we intro-

duce the tiering technique of using various edge weights representations at different tiers of

shortcut hierarchies. We apply tiering to both Contraction and Edge Hierarchies, and show

that it leads to a reduction in both preprocessing and query times.

3

Chapter 6 is a departure from the route planning methods discussed in the earlier

chapters, and generalizes the dwell regions problem of [160] to the case of multiple moving

objects. We define the shared dwell regions and N/S-shared dwell region queries, and

present two novel methods to answer the queries by casting the problem as a Pointwise

Dense Region query of [110]. Our experiments on real-world trajectory datasets show that

the proposed methods outperform the baseline methods by up to a factor of 3.3x.

4

Chapter 2

The Phase Abstraction

2.1 Introduction

Many spatiotemporal applications need route planning. Traditional route planning

methods find minimum-time routes, assuming motion at the maximum speed allowed by

traffic or law [13, 149]. However, this assumption is invalid for Electric Vehicles (EVs), since

EV battery capacity is limited, and energy losses from wind resistance grow quadratically

with speed. Higher speeds shorten travel time, but may cause unsustainable battery drain.

Therefore, EV route planning requires finding a suitable trade-off between travel time and

energy consumed over the set of paths between a source and a destination vertex in the

road network.

Given its importance to spatiotemporal applications, the database community has

begun to work on energy estimation models, both for internal combustion vehicles [70, 71],

as well as EVs [87, 94, 162]. Historically, such work has been studied by traffic engineers as

energy estimation [54, 171, 165, 43, 42, 128], and speed profile estimation [117, 118].

5

Addressing these problems independently is not useful for EV route planning,

where explicit time-energy tradeoffs must be made. Current methods differ widely in how

they approach this tradeoff. Some use energy consumption as the sole route-selection crite-

rion [23, 50, 139], while others attempt bi-criteria search on time and energy [20, 26, 67, 94].

2.1.1 EV-Specific Issues in Estimation Models

EV estimation models are complicated by EV-specific features, such as regenerative

braking. EVs typically use regenerative braking at low decelerations and mechanical braking

at high decelerations, say, when avoiding collisions. Decelerations may occur in three modes:

regenerative braking, mechanical braking, or by stepping off the pedal (cruising). Energy

recovery may be significant only in the first case. Besides, the deceleration threshold that

triggers different braking modes can be context-dependent. Often, the EV may forego

energy recovery when the battery status of charge is high [157]. It is not straightforward for

an EV energy estimation model to determine whether or not a deceleration event recovers

energy. Static models designed for internal combustion vehicles like [32] cannot handle such

additional EV-specific complexities.

The effectiveness of any EV route planning method depends on the accuracy of en-

ergy and time estimates. All energy consumption models represent vehicle trips as sequences

of smaller movement units. Thus, microscopic energy estimation models [54, 171, 165] work

with instantaneous (or per-second) vehicle movement, while mesoscopic models [42, 36]

use coarser units, such as transits over network edges. Understandably, models using dif-

ferent abstractions of movement differ significantly in accuracy and computational costs.

Limited battery capacity and inadequate charging infrastructure also cause range anxiety

6

[33, 48, 60, 135], though current EV range may suffice for most trips [109]. Psychological

studies suggest that people treat machines as if they were human [134], and that greater

user trust in EVs may help counter range anxiety. Improved route planning and range

estimation are useful in helping build such trust [80, 108].

2.1.2 Our Contributions

Our first contribution is the definition and development of the phase abstraction

of EV movement, using which we derive a tunable mesoscopic EV energy consumption model

(Section 2.3.2). Our estimation model requires only a single parameter, τ , which suffices to

capture the complexity induced by regenerative braking.

Second, in Section 2.4, we develop a stochastic model to generate realistic trips

along a path, given a set of past trips along the same path. Our model is able to generate a

set of speed profiles which exhibit the real-world variance in energy consumption and travel

times observed in past trips. In practice, one would not expect any two trips, even by the

same vehicle, at same times of the day, and on the same route, to take the same time or

consume the same amount energy. Model-generated speed profiles are currently used in

traffic simulators like POLARIS [10] to perform regional energy use analysis [11], and it is

essential that this natural variance in these parameters be preserved.

To generate realistic speed profiles, our approach first models the set of past trips

as sequences of phases and learns relevant parameters using Markov chains and Kernel

Density Estimation (KDE). Then, it generates speed profiles using a random walk on the

Markov chain to model phase transitions, sampling the PDF functions obtained from KDE

to derive the average acceleration and duration of each phase. Energy and time estimates

7

for route planning can then be obtained from the generated speed profiles by applying our

phase-based EV energy consumption model.

We evaluate our energy and speed profile generation models using 52 hours of

real-world data from a 2013 Nissan Leaf. Though current literature assumes that models at

a lower temporal granularity yield better energy estimates [1, 158], our phase-based meso-

scopic energy estimation model outperforms even analytic microscopic energy consumption

models. Our speed profile model, tunable with τ , generates speed profiles up to 1250 sec-

onds long that are a close match real-world data for distance and energy consumed over

time.

This paper augments prior work by the authors [131] in three ways: first, it presents

detailed experiments explaining why the proposed phase-based model outperforms the ana-

lytic instantaneous energy estimation models. Second, it elaborates how τ acts as a smooth-

ing parameter and shows the effect of different values of τ on estimation accuracy. Lastly, it

presents a detailed description and experimental results from using our speed profile genera-

tion model, demonstrating how the variances in energy consumption and distance travelled

over time in synthetic trips matches those observed in real-world trips.

2.2 Background and related work

Many route planning algorithms were developed in the last fifteen years, following

the 9th DIMACS challenge [13, 149]. Route planning for conventional vehicles is usually

treated as a shortest-path problem, with edge weights modeling time or distance. EV route

planning is more complex, and requires three components: estimating EV behaviour along

8

a path, an energy model to map EV behaviour to energy consumption, and a route planning

algorithm that can trade-off energy for time or distance. These components have typically

been addressed in isolation.

Estimating vehicle behaviour along a path: Traffic engineers routinely monitor, model,

and predict aggregated traffic parameters such as flow, speed, and travel time for routes

[86, 117, 145, 163]. Such models use statistical methods such as ARIMA [163] and neural

networks [86, 117, 145] to learn vehicle speed and flow at different times of the day using

data collected from sensors on roads. Other work [118] tries to estimate individual vehicle

speed profiles from aggregated traffic parameters at different points along a path.

In [82, 147], each step in a random walk on a Markov chain gives the speed estimate

for one second. In contrast, our trip generation model (Section 2.4) models vehicle behaviour

as a series of phases. We use a phase-centric, rather than an edge-centric approach, since per-

edge energy consumption estimates lose information about state transitions within edges,

losing accuracy for longer trips, as in [168, 40].

Energy estimation models: Energy estimation models vary widely in complexity, speed,

resource requirements and accuracy. They may derive their estimates from historical trips

[117, 128], analytically [54], or a combination of both [171, 94]. In terms of temporal

granularity, energy estimation models can be microscopic, mesoscopic or macroscopic. We

discuss these three classes of energy estimation models below-

9

Microscopic models produce an energy estimate per second of the trip, and there-

fore must make second-by-second calculations, which makes them slower and more compu-

tationally expensive than models belonging to the other two categories. They also require

an accurate per-second model of vehicle behaviour as input [171, 165, 90, 128, 54]. How-

ever, they are useful when high per-estimate accuracy is required. Sophisticated powertrain

simulators like Autonomie [7] and FASTSim [107] may also be used as microscopic models.

Mesoscopic models are temporally coarser, and provide energy estimates for aggre-

gated representations of vehicle behaviour such as micro-trips [143], kinematic parameters

such as speed and distance [42], transits on network edges [41, 158], or spatial features such

as road segments [143, 98, 81, 128]. When static edge energy costs are to be applied to each

edge of the road network, generalized frameworks such as EcoMark 2.0 [71] can be be used

to compare the accuracy of edge weights obtained from different energy estimation models.

However, finding the right aggregated representation (or ‘abstraction’) of move-

ment for EVs is a harder problem than such models acknowledge. It is known [92] that

the movement abstraction used affects both accuracy and computational cost. The use of

both mechanical and regenerative braking complicates matters. Low decelerations at high

speeds recover no energy. Neither do very high decelerations, where braking is mechanical.

Moreover, a time lag typically precedes any regenerative energy recovery, since the electrical

system must switch from battery drain mode to charge mode. Even worse, both the range

of accelerations in which energy recovery occurs, and the switch delay are highly dependent

on the EV-specific hardware. Therefore, tunability is critical for mesoscopic models.

10

SIDRA-4Mode [32], a mesoscopic model for internal combustion vehicles, defines a

set of four modes, namely, idle, cruise, acceleration and deceleration. Trips are modeled the

vehicle having followed a sequence of modes, and energy consumption is estimated for each

mode analytically. While this usage of four modes to represent vehicle movement appears

analogous to our idea of phases, it should be noted that models like SIDRA-4Mode, due

to being designed for internal combustion vehicles, are not tunable, and thereby ignore the

complexity induced in energy estimation models due to EV-specific issues. We make the

phases abstraction effective through proper parameterization. We show that using a single

tuning parameter τ suffices for an accurate energy consumption model for EVs.

Macroscopic models are the coarsest, and model energy consumption using aggre-

gated parameters like average speed, total elevation gain [12, 158], or road type [170]. Macro-

scopic models are fast, but likely to be the least accurate in estimating energy consumption

for individual vehicles. Some models rely on clustering or machine-learning [94, 143, 43, 41]

to map the vehicle behaviour along a path to the energy consumption and hence require

large training datasets. Such datasets are often hard to obtain, so these models may be

especially unsuitable when estimates are required for several different paths on the underly-

ing road network or under varying traffic conditions. Our estimation model (Section 2.3.2),

is analytic, and does not depend on historical trip data.

EV route planning algorithms: Some recent route-planning and speedup methods seek

battery-optimal paths [8, 23, 139, 50]. Others are based on the constrained shortest path

problem, and add time as another weight on the edges and seek minimum-time paths while

maintaining battery feasibility [151, 18]. Other approaches provide the full set of pareto-

11

optimal paths accounting for both time and energy consumption [20]. Some works also

model the time-energy consumption tradeoff as per-edge tradeoff functions [26, 25]. Another

degree of freedom in these models is the presence and the type of recharging stations that

they account for. Early work on electric vehicle routing tends not to consider recharging

stations [8, 139, 50]. Some recent work accounts for specific types of recharging stations

(say, battery swapping stations) [154, 67], or for variable recharge times at such stations

[18, 99].

2.3 EV modeling and energy estimation

We present the standard instantaneous model, define phases, and develop a phase-

based energy estimation model.

2.3.1 An instantaneous EV model

We consider vehicle paths on the X,Y plane. We use the following definitions in

the rest of the paper: A path P is a sequence of points {x1x2...xn−1xn}, where xi ∈ R2. A

speed profile S = {v1v2 . . . vn−1vn} of a moving vehicle is a sequence of instantaneous speeds

vi ∈ R. A trip T = 〈S, P 〉 consists of a speed profile S over a path P . vi is the speed of

vehicle at point xi.

Problem definition: An EV with a given set of vehicle-specific parameters starts

from rest at source s ∈ R2 and travels to a destination t ∈ R2 along a path P with a speed

profile S. Our goal is to accurately estimate the total energy consumed by EV while

travelling along the trip T = 〈S, P 〉.

12

Table 2.1: Our notations

Symbol Parameter Value
M Mass of EV 1961 kg
Af Frontal area 2.3316 m2

ρ Air density 1.2256 kg/m3

c1 Rolling resistance constant 5.74× 10−5

c2 Rolling resistance constant 0.0080
β gc1 5.62× 10−4

γ gc2 0.0784
CD Drag coefficient 0.28
D (ρAfCD)/(2M) 2.0401× 10−4

η1 Drivetrain loss factor 1.1944
η2 Recovery efficiency 0.62
v(t) Speed at time t
a(t) Acceleration at time t
θ(t) Road’s angle
τ phase threshold
(S, P) (Speed profile S, path P)
EI(S) Instantaneous model’s

energy estimate
EΦ(S) Phase-based model’s

energy estimate
EM (S) Measured energy

consumption

13

Estimating energy consumption

To move the EV along P , the vehicle powerplant must do enough work to maintain

the vehicle at speed v(t), working against gravity on inclines and overcoming dissipative

losses due to rolling friction and wind resistance. The standard approach models these three

dissipative forces as follows (see [54], for example).

The drag force is
(
ρAfCD

2

)
v2(t), where ρ is the air density, Af is the vehicle’s aerodynamic

cross section and CD is the drag coefficient. To simplify our equations, we defineD =
ρAfCD

2M ,

where M is the mass of the EV.

The rolling resistance is N(c1v(t) + c2), where c1 and c2 are constants and N =

Mg cos θ(t) is the normal reaction of the road surface inclined at angle θ(t).

The gravitational resistance to motion is Mg sin θ(t).

We assume that the EV is fitted with regenerative brakes, and account for driv-

etrain and regenerative braking inefficiencies as follows. Let P0 be the power that the

powerplant must produce if the drivetrain were 100% efficient, and P be the power that it

must actually produce to have the same effect on the vehicle. Let Q0 be the energy recov-

ered when the regenerative brakes are 100% efficient, and Q be the actual energy recovered.

We define η1 = P
P0

and η2 = Q
Q0

. Since the direction of current is reversed in the two cases,

we use η1 > 0 and η2 < 0.

Let a(t) be the (signed) acceleration at time t. Let

α(t) = a(t) +Dv2(t) + g cos θ(t)(c1v(t) + c2) + g sin θ(t) (2.1)

14

Assuming the EV starts from rest, let v(x) be the speed, a(x) be the acceleration and θ(x)

be the road’s angle at a distance x from the start. Then, v(x) =
√

2a(x)x. Transforming

α(t) to make distance traveled x the independent variable,

α′(x) = a(x) + 2Dxa(x) + g cos θ(x)[c1

√
2a(x)x+ c2] + g sin θ(x) (2.2)

Since drivetrain and recovery efficiencies are modeled separately, the force to be overcome

by the powerplant during acceleration at position x is

G(x) = Mα′(x) (2.3)

The energy consumed (or recovered) over a trip segment of length d is given by

EI(T) = η

∫ d

0
G(x)dx, η =

η1 if accelerating,

η2 if decelerating.

(2.4)

Microscopic energy estimation models, such as the one above, estimate energy consumption

for each instant and aggregate to get the total energy consumption. Such models can be

computationally expensive, but have generally been regarded as the most accurate class of

models [1, 158].

15

Acceleration

 Phase

Constant Speed

 Phase Deceleration

 Phase

0

20

40

60

80

0 20 40
Time (s)

S
pe

ed
 (

km
/h

)

Figure 2.1: The solid line is a speed profile segment for a 2013 Nissan Leaf. For τ = 0.5m/s2,

we see three phases of average accelerations 1.20, 0 and−1.21 m/s2 respectively. The dotted

blue line is the modeled velocity in each phase.

2.3.2 Mesoscopic EV modeling with phases

Intuitively, a phase is a trip segment defined by an acceleration profile. Let τ be

a phase threshold and let a be the average acceleration of the vehicle during time interval

(t1, t2). The vehicle is in an acceleration phase during (t1, t2) if a > τ , a constant speed

phase if −τ ≤ a ≤ τ , or a deceleration phase if a < −τ . An example appears in Figure 2.1.

Let S = {v1v2 . . . vN} be a speed profile given as a series of speeds indexed by time

instants. At instant k, the EV is accelerating if vk+1 ≥ vk, and decelerating if vk+1 < vk.

Without loss of generality, we classify vk+1 = vk as acceleration. We can now assign one of

the labels ‘A’, ‘D’ or ‘R’ to each instant, according to whether the vehicle is accelerating, de-

celerating or at rest. Let the speed profile S generate the label sequence λS = {L1L2 . . . LM},

where Li ∈ {A,D,R}.

Next, we define a run as a series of consecutive of ‘A’s or of ‘D’s in a label sequence.

Given an acceleration threshold τ , we define four types of phases as follows:

16

Acceleration Phase: A maximal run of ‘A’ labels during which the average acceleration

exceeds τ .

Deceleration Phase: A maximal run of ‘D’ labels during which the average acceleration

is lower than −τ .

Constant Speed Phase: A maximal run of ‘A’ or ‘D’ labels where the average acceleration

is between −τ and τ inclusive.

Rest Phase: A maximal run of ‘R’ labels.

Algorithm 1 gives pseudocode to identify phases. Given a speed profile S, the label

sequence λS of S, and a phase threshold τ , it finds the runs for which the average acceleration

lies in the ranges given in the definitions above. It also partitions the speed profile S into a

set ΦA(S) of acceleration phases, a set ΦD(S) of deceleration phases, a set ΦC(S) of constant

speed phases and a set ΦR(S) of rest phases. Let Φ(S) = ΦA(S)∪ΦD(S)∪ΦC(S)∪ΦR(S)

be the set of phases for S.

In practice, the EV’s instantaneous speed suffers transient fluctuations due to

factors such as driver behavior, road conditions, traffic, and wind speed. Applying the def-

inition of phases as continuous label runs directly to a real-world speed profile is likely to

produce many short constant speed phases of only a few seconds each. However, our exper-

iments show that modeling the speed profile at this level of detail can be counterproductive.

Therefore, we use Algorithm 2 to aggregate consecutive constant speed phases into longer,

but fewer constant speed phases.

17

Algorithm 1 Identify phases in a speed profile

procedure ExtractPhases(S, λS , τ)
ΦA,ΦC ,ΦD,ΦR ← φ
for i← 1 to |S| do

if λiS = ‘R’ then
φC ← maximal run of ‘R’
ΦR ← ΦR ∪ {φC}

else if λiS = ‘A’ then
φA ← maximal run of ‘A’
if average acceleration in φA > τ then

ΦA ← ΦA ∪ {φA}
else

ΦC ← ΦC ∪ {φA}
end if

else if λiS = ‘D’ then
φD ← maximal run of ‘D’
if average acceleration in φD < −τ then

ΦD ← ΦD ∪ {φD}
else

ΦC ← ΦC ∪ {φD}
end if

end if
increment i by the length of added phase

end for
return ΦA,ΦC ,ΦD,ΦR

end procedure

18

2.3.3 Energy Consumption over a Phase

Equation 2.4 yields the energy consumed if the force experienced at a distance x

from the start is G(x) in some phase. Let E(p) denote the energy consumption in phase p.

Let ap be the average acceleration (or deceleration), dp be the distance traveled, and up be

the velocity at the start of phase p. For a flat road, θ ≡ 0. We define β = gc1, γ = gc2. Let

the drivetrain and recovery efficiency factors be η1 and η2. Given speed profile S, we get

upon integrating Equation 2.4,

E(p) =

Mη1[Du2
pdp + βupdp + γdp], p ∈ ΦC(S)

Mη1E, p ∈ ΦA(S)

Mη2E, p ∈ ΦD(S)

0, p ∈ ΦR(S)

, (2.5)

where

E = apdp +Ddp(u
2
p + apdp) +

2β

3ap
(u2
p + 2apdp)

3
2 + γdp.

When the road slopes, θ 6≡ 0, and the sin θ and cos θ terms are relevant. We find, however,

that it is unnecessary to model the effects of gravity in a microscopic manner for each

instant, as other models do. Instead, if the end points of a phase p are qi and qj , we simply

correct for the work Wp = Mg(h(qj)− h(qi)) done to raise the EV between qi and qj .

19

Algorithm 2 Aggregate consecutive phases in ΦC

procedure ConstantSpeedPhaseAggregation(ΦC)
for i← 1 to |ΦC | do

t← i
while φt and φ(t+1) are consecutive segments of trip do

φi ← {φi ∪ φt} . φi is the ith phase in ΦC

ΦC ← ΦC − φt
t← t+ 1

end while
ΦC ← {ΦC ∪ φi}

end for
return ΦC

end procedure

The energy consumption EΦ(T) for a trip T = 〈S, P 〉 is

EΦ(T) =
∑

p∈Φ(S)

(E(p) +Wp) (2.6)

2.4 Generating realistic speed profiles

Synthetic speed profiles are needed for prospectively estimating energy and time

along a path P , for route planning, or in models like POLARIS [10] to estimate region-wide

energy use. However, we must also generate realistic variations in the speed profiles of

different trips along the same P . We show how to use the phase abstraction to capture

enough information from historical trips to generate synthetic trips that model the time

taken and energy consumed accurately.

Our objective is not to produce spatially accurate instantaneous speed profiles,

as [117, 118] seek to do. Rather, it is to generate realistic speed profiles sufficiently close

to historical trips to permit accurate distance and energy estimates. Thus, our generated

speed profiles need not have spatial fidelity over the path P . We could generate equivalent

20

vehicle behaviour at a point different from that in input speed profiles, and still produce

accurate time and energy estimates.

2.4.1 Trip modeling with Markov Chains & KDE

Let Λ = {λ1, λ, . . . , λN} and Φ = {Φ1,Φ2, . . . ,ΦN} be the set of label sequences

and set of phases, respectively, for historical trips T1, T2, . . . , TN . We learn the phase tran-

sition probabilities and phase duration and accelerations from T1, T2, . . . , TN . We use a

four-state Markov chain to simulate phase transitions and a set of 2-D kernel density esti-

mates for accelerations and time durations in each phase. We show that we can produce

realistic speed profiles from these parameters.

Definition 1. An EV Behaviour Model is Γ = 〈M,K〉, where M is the Markov phase

transition model and K is the set of phase parameter PDFs, extracted from historical trips.

Markov modeling of phase transitions

A Markov chain is a stochastic model comprising states and state transition prob-

abilities. The probability of switching to state Xi+i from state Xi at time step i depends

only on the transition probability PX,Y = NX→Y
NX

, where NX→Y is the number of times the

chain transitions from state X to Y and NX is the total number of times the chain is in

state X.

21

We use a Markov chain having four states, one corresponding to each type of phase.

If state X ∈ {‘A’, ‘D’, ‘C’, ‘R’}, the transition matrix M for the Markov chain becomes

M =

PA,A PA,C PA,D PA,R

PD,A PD,C PD,D PD,R

PC,A PC,C PC,D PC,R

PR,A PR,C PR,D PR,R

,

where PX,Y = NX→Y
NX

. Naturally, M is right-stochastic.

KDE modeling of phases

We extract phase durations and average accelerations from Λ and Φ as a 2-D

histogram of the observed time duration and accelerations for the ‘A’, ‘D’, and ‘C’ phases.

For ‘R’ phases, a 1-D histogram of time duration suffices. Sampling these histograms

directly yields poor estimates when N is small. Hence, we use kernel density estimation

with a truncated Gaussian kernel to fit a 2-D PDF of the duration and accelerations of the

‘A’, ‘D’, and ‘C’ phases. For ‘R’ phases, a 1-D Gaussian kernel is used.

Regimes

We would expect EV behavior on city roads to differ significantly from that on

highways. A regime is a trip section with consistent behavior. We learn a regime-specific

behavior model ΓR = 〈MR,KR〉 for each regime R. The set of regimes observed may vary

by trip. For example, trips that also include unpaved or graveled roads may need more

regimes than trips that only use paved roads and highways.

22

Generating synthetic speed profiles

Let x denote the distance along the route. If regime Rk applies to road segment

(xk, xk+1), we use ΓRk
to generate a trip section for that segment. We expect some variation

in xk and xk+1 over trips, and use their mean observed starting and ending locations. Say

the EV enters regime Rk in phase p1. The next trip phase p2 is obtained from a random

walk on MRk
starting from state p1, and a sample drawn from the estimated PDF in KRk

for p2 to get the average acceleration and duration of p2. This random walk terminates

when the EV has arrived at xk+1. The full generated speed profile over path P is the

concatenation of the speed profiles for all the regimes along P .

2.5 Experiments

We now validate the phase-based energy estimation model and speed profile gen-

eration method of Sections 2.3 and 2.4.

2.5.1 Validating the phase-based energy estimation model

For a description of data post-processing, see [128]. We compare the energy esti-

mates of our model (Section 2.3.1) with those of the analytic microscopic estimation models

of [54], and observed real-world energy consumption. the Center forEnvironmental Research

& Technology at UC Riverside. We are grateful to the authors of [171, 128] for this data.

23

(a) Route 1 (b) Route 2 (c) Route 3

Figure 2.2: EV routes for data collection in Riverside, CA.

Data collection and processing

The real-world dataset was collected from a 2013 Nissan Leaf over three routes in

(location elided for anonymity) for 52 hours (Figure 2.2). The EV was fitted with a Trimble

Lassen iQ GPS receiver and a CONSULT III plus kit to log vehicle parameters such as

latitude and longitude, battery voltage and current, and auxiliary power consumption for

air conditioning, etc. Data was collected for 10 trips along Route 1, 16 trips along Route

2 and 26 trips along Route 3. Each trip lasted an hour. The EV always started with a

battery charge state greater than 60%. The raw data from the vehicle sensors was processed

as follows:

Frequency synchronization: GPS and CONSULT III kit data collection frequencies were

synchronized, and output at 1Hz.

Trip data synchronization: the GPS and CONSULT III kit time reference bases were coordi-

nated. Cross-correlation was applied using vehicle speed to synchronize their data streams.

Map matching: Map matching was used align the GPS traces with locations on the under-

lying road network.

24

Elevation data fusion: Elevation data from a high-resolution Trimble R8 device was added

to the the map-matched traces.

Phase-based energy estimates

We compared the energy consumption estimates EI(T) of the standard instanta-

neous model (Eqn. 2.4) and the estimates EΦ(T) of our model (Eqn. 2.5, 2.6) against the

ground truth EM (T), the actual measured energy consumption of the EV. Figure 2.3 shows

the percentage errors.1 The EV parameter values are as in [54], and shown in Table 2.1.

●

●

●

−60

−30

0

30

60

EI(T)

%
err

or
in

tot
al

en
erg

y c
on

su
me

d

−60

−30

0

30

60

EΦ(T), τ=0.1

●

−60

−30

0

30

60

EΦ(T), τ=0.5

−60

−30

0

30

60

EΦ(T), τ=0.9

Figure 2.3: Instantaneous model EI(T) vs phase-based model EΦ(T). Negative errors are

underestimates by model.

The box-and-whisker plots in Figure 2.3 show the percentage error distribution of

estimates by the instantaneous model and our model with τ ∈ {0.1, 0.5, 0.9}. Our model

outperforms the instantaneous model, producing percentage errors much closer to zero. We

discuss our choice of τ in Section 2.5.1.

The model of [43] tries to augment the simple instantaneous estimation model

of Section 2.3.1 by trying to account for factors such as the weather, temperature, road

1Percentage error is 100×
(
estimate−measured

measured

)
.

25

types and traffic lights. Since each of these factors is highly variable and can cause speed

profiles to vary significantly, a mesoscopic model accounting for these factors would need

to consider a number of abstractions exponential in the number of factors considered. Such

approaches yield little real gain, yet add unnecessary complexity and reduce the generality

of the instantaneous model. Systems such as Autonomie [7] and FastSIM [107] try to work

with more precise vehicle characteristics such as power and efficiency maps for the EV motor.

However, they still lack the detailed engine models for the EV used in our experiments, a

Nissan Leaf 2013.

MAPE (Mean Absolute Percentage Error)2 is a performance metric widely used

for estimation models [66, 105]. Figure 2.4 shows that our mesoscopic model achieves per-

estimate MAPE very close to that of the microscopic instantaneous model. This is an

unexpected result, and a revealing insight: microscopic models may not always be the best

option for EV energy estimation, even for simple metrics, such as total energy consumed

over an entire trip. They do offer better per-estimate results, but are much more expensive,

accumulate error quickly, and are prone to drift.

Understanding τ

We can see τ as a smoothing parameter, not just as a way to aggregate micro-

scopic behaviour into mesoscopic phases. Speed fluctuates constantly, due to factors such

as driver action or the environment, but vehicle behavior is broadly consistent within phases,

2If we make n estimates over a trip, and the percentage errors for these estimates are e1, e2, . . . , en, then
MAPE = |e1|+|e2|+···+|en|

n
.

26

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

EI(T)

M
A

P
E

●

0.0

2.5

5.0

7.5

10.0

EΦ(T), τ=0.1

●

●

●

0.0

2.5

5.0

7.5

10.0

EΦ(T), τ=0.5

●

●

●

●

0.0

2.5

5.0

7.5

10.0

EΦ(T), τ=0.9

Figure 2.4: Mean Absolute Percentage Error (MAPE) for EI(T) and EΦ(T), for various τ .

despite any fluctuations. Hence, it is overkill to model instantaneous speed and accelera-

tion, applying η1 or η2 to compute energy expenditure or recovery, as microscopic models

do. Thresholding the average acceleration over a whole run using τ smoothes out local

variations, and captures the high-level behavior well.

This approach also allows us to tune our model’s sensitivity to transient behaviour.

Lower τ increases sensitivity to local fluctuations, and higher τ has the opposite effect. At

τ = 0, our model becomes the instantaneous energy consumption model. Table 2.2 gives

the mean percentage of time spent in different phases for different τ values. Clearly, small

changes in τ can significantly affect how a trip is modeled as phases.

Effect of τ on estimation error

Figure 2.5 shows the CDF of the percentage deviations from real-world measure-

ments for each phases type for various τ . Figure 2.5(a) and (b) show that lowering τ

27

0.00

0.25

0.50

0.75

1.00

−100 0 100 200
% Error

F
ra

ct
io

n
of

 p
ha

se
s

colour
t = 0.1
t = 0.5
t = 0.9

(a) Errors in acceleration phases

0.00

0.25

0.50

0.75

1.00

−100 0 100 200
% Error

F
ra

ct
io

n
of

 p
ha

se
s

colour
t = 0.1
t = 0.5
t = 0.9

(b) Errors in deceleration phases

0.00

0.25

0.50

0.75

1.00

−100 0 100 200
% Error

F
ra

ct
io

n
of

 p
ha

se
s

colour
t = 0.1
t = 0.5
t = 0.9

(c) Errors in constant speed phases

Figure 2.5: CDF of % deviation from real-world measurements, for different phase types. In

acceleration and deceleration phases, higher τ values yield more accurate estimates, while

in constant speed phases, the reverse is true. See Section 2.5.1.

Table 2.2: Effect of τ on mean % of time spent in each phase.

Phase Type τ = 0.1 τ = 0.5 τ = 0.9

Acceleration 45.3% 18.8% 4.5%

Deceleration 35.0% 15.9% 4.8%

Constant Speed 19.6% 65.2% 90.6%

increases errors in acceleration and deceleration phases, since it is now easier for a local

transient to falsely qualify as an acceleration or deceleration phase. This holds up to a

point; the CDF of errors for τ = 0.5 and τ = 0.9 are similar. Conversely, Figure 2.5(c)

shows that higher τ raises the error in constant speed phases, since it is harder for a phase to

qualify as an acceleration or deceleration phase, raising the probability of misclassification

as a constant speed phase.

28

0

20

40

60

0.8 1.2 1.6

Acceleration (m/s)

P
ha

se
 d

ur
at

io
n

(s
)

(a) Acceleration phase

0

20

40

60

−2.0 −1.5 −1.0 −0.5

Acceleration (m/s)

P
ha

se
 d

ur
at

io
n

(s
)

(b) Deceleration phase

0

20

40

60

−0.5 0.0 0.5 1.0

Acceleration (m/s)

P
ha

se
 d

ur
at

io
n

(s
)

(c) Constant speed phase

0.00

0.02

0.04

0.06

0 10 20 30 40
Time interval

P
ro

ba
bi

lit
y

de
ns

ity

(d) Rest phases

Figure 2.6: Using KDE to learn the PDF of the acceleration and time spent in each type of

phase. The contour plots show the 2-D PDF for trips on Route 1, with τ = 0.5. Part (d)

shows the KDE estimates for the time interval PDF for rest phases.

29

Route Estimated energy consumption Estimated distance travelled

1

City Highway City

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0 400 800 1200
Time (s)

E
ne

rg
y

co
ns

um
ed

 b
y

E
V

 (
J)

Trips
Actual
Synthetic

City Highway City

0

10000

20000

30000

40000

50000

0 400 800 1200
Time (s)

D
is

ta
nc

e
co

ve
re

d
by

 E
V

 (
m

) Trips
Actual
Synthetic

2

City Highway City

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0 400 800 1200
Time (s)

E
ne

rg
y

co
ns

um
ed

 b
y

E
V

 (
J)

Trips
Actual
Synthetic

City Highway City

0

10000

20000

30000

40000

50000

0 400 800 1200
Time (s)

D
is

ta
nc

e
co

ve
re

d
by

 E
V

 (
m

) Trips
Actual
Synthetic

3

City Highway City

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0 400 800 1200
Time (s)

E
ne

rg
y

co
ns

um
ed

 b
y

E
V

 (
J)

Trips
Actual
Synthetic

City Highway City

0

10000

20000

30000

40000

50000

0 400 800 1200
Time (s)

D
is

ta
nc

e
co

ve
re

d
by

 E
V

 (
m

)

Trips
Actual
Synthetic

Figure 2.7: Energy consumed and distance traveled versus time for actual trips versus

100 trips generated by our model. Solid lines show mean values, and error bands show

95% confidence intervals. The mean distance traveled and energy consumption over time

for observed and synthetic trips are close, with significant overlap in the error bands. This

shows that our model generates trips that match the natural variance in energy consumption

and distance traveled over time.

30

τ = {0.1, 0.5, 0.9} give the best results for our dataset and for the metrics we use.

However, the optimal τ depends on EV specifics, the metric used, and on factors such as

traffic and weather. We offer the following heuristic: a lower τ value is better for trips

where accelerations and decelerations are frequent, such as travel along roads with traffic

and traffic lights. A higher τ is recommended for trips with longer sections of uninterrupted

high speeds, say, on highways. Despite its simplicity and use of only one tuning parameter,

our model produces high-quality energy consumption estimates which are close to real-world

values.

2.5.2 Evaluating the speed profile generation model

Table 2.3: Regime parameters used to generate synthetic trips

Route Regime start, end time (s) τ

1 City (0, 280) 0.5

1 Highway (281, 842) 0.9

1 City (843, 1250) 0.5

2 City (0, 280) 0.5

2 Highway (281, 815) 0.9

2 City (816, 1250) 0.5

3 City (0, 232) 0.5

3 Highway (233, 643) 0.9

3 City (644, 1250) 0.5

Two regimes, ‘City’ and ‘Highway’ suffice to model our dataset. Figure 2.6 shows

the contour plots for PDFs estimated for the ‘City’ regime from trips along Route 1.

We generated a hundred synthetic speed profiles for each of the three routes in our

dataset, using historical trips between 10–11 AM. Figures 2.7 plots the energy consumed

and distance traveled versus time for the generated and the real-world trips over Routes

31

1–3. It also shows the regimes along the route and the mean and spread in distance and

energy values. On Route 1, for instance, ‘City’ regimes correspond to time intervals (0, 280),

and (843, 1250), and a ‘Highway’ regime to interval (281, 842). Coincidentally, the first 1250

seconds of trips along all three routes in our dataset consist of sections with regimes in the

same order {City, Highway, City}.

Since our approach learns regime-specific models, different τ can be used in each

regime. In our data, for instance, τ = 0.5 is best for the ‘City’ regime, but τ = 0.9 is

better for Highway regimes. The slopes of mean energy consumption in Figure 2.7 differ

significantly for the regimes. Table 2.3 shows the starting and ending times for each regime

and τ value.

Figure 2.7 shows that the variance in energy consumed and distance travelled over

time increases with time even for the real-world data. The mean distances over time in

generated trips are very close to real-world values within the parameters of this variance.

The 95% confidence intervals overlap substantially, showing the accuracy and generality of

our model.

32

Chapter 3

Robustness Generalizations of the

Shortest Feasible Path Problem

3.1 Introduction

Several factors can cause an Electric Vehicle (EV) to get stranded along a route:

They often have shorter ranges than internal combustion (IC) vehicles, charging stations

can be sparse and fragmented among different providers. For drivers, this stranding risk

manifests as range anxiety and range stress [49, 61, 124, 125, 133, 140]. To alleviate range

anxiety, route planning for EVs must consider battery constraints while selecting routes

[50, 93, 94, 152, 154].

Previous work [18, 19] models EV routing with charging stops as the NP-hard

Shortest Feasible Path Problem (SFPP): Given a road network modeled as a weighted,

directed graph with energy consumptions and travel times on each edge; charging stations

0This work was done while the author was an intern at Apple Inc.

33

on a subset of vertices and their respective concave charging functions; a source vertex, a

destination vertex and a starting battery SoC, find a path that minimizes the total travel

time including charging time while maintaining a non-zero battery SoC at all points along

the route. The Charging Function Propagation (CFP) algorithm solves SFPP in exponential

time and space.

In practice, however, the shortest feasible path might not be sufficient. First, the

energy consumptions on edges are derived from estimation models that are not perfectly

accurate [43, 54, 129, 131]. Second, the energy consumption of an EV depends on several

factors that are difficult to even estimate: driver aggressiveness, age of the battery, wear

and tear of the EV. Each of these factors can affect the energy consumption significantly

[3, 55]. Third, users may have varying risk tolerances, and thus a one-size-fits-all approach

is not sufficient to alleviate range anxiety when serving routes for a large number of EV

drivers.

In this work, we introduce two generalizations of SFPP which are used to compute

two constructs, the Starting Charge Map (SCM) and Buffer Map (BM). Both SCM and

BM are computed between a source vertex s and target vertex t. Evaluating SCMst for

a valid starting SoC βs gives the corresponding shortest feasible path between s and t,

while evaluating BMst for buffer energy b returns a shortest feasible path where the SoC is

guaranteed to never drop below b along the route.

The SCM and BM allow route planning systems to access a larger set of alterna-

tive feasible paths than the standard CFP algorithm, which returns only a single feasible

path. This variety in paths has several applications–recommending EV drivers alternative

34

routes, generating suggestions like charging extra at s to save travel time, or letting users

choose the degree of acceptable risk for a trip. Both problems can be solved by brute force

approaches that run CFP for all possible values of βs or b. However, since βs or b can take

an infinite number of possible values, such an approach would simply not terminate. In this

paper, we make the following contributions:

• We introduce the Starting Charge Map (SCM) and Buffer Map (BM) that encapsulate

a set of alternative routes to help alleviate range anxiety for a wide variety of EV

drivers.

• Computing SCM and BM using standard CFP requires several expensive runs of the

algorithm. We present fast, exact algorithms that compute the two abstractions with

acceptable real-time performance on large graphs.

• We evaluate our algorithms on realistic instances, using real-world road networks of

California and Oregon, an energy consumption model taken from a Nissan Leaf 2013

[54], and a dataset of public EV charging stations [5]. Our results show good perfor-

mance even without the use of preprocessing techniques for shortest path queries.

3.2 Related Work

Most current EVs suffice for a majority of trips that drivers take, as shown in

[109]. However, range anxiety, defined as an EV driver’s fear of getting stranded along a

route is often cited as a major hindrance to widespread EV adoption [59, 62]. Prior work

shows that perceived range anxiety is inversely related to the degree of drivers’ trust in the

35

EVs [80, 133, 61, 140, 83]. Route planning for EVs, therefore, has two objectives: Minimize

travel times under battery constraints, and reduce surprise for the driver to minimize range

anxiety.

Early works on EV route planning like [8, 139] consider the problem of minimiz-

ing energy consumption along routes insted of standard route planning formulations that

minimize travel time [13]. Since then, many additions have been proposed to the EV rout-

ing problem to make it more realistic. Several newer variants consider battery-swapping

stations [50] or charging functions [18, 25, 99, 155]. Some works [68, 152, 154] model EV

routing as a multicriteria Dijkstra’s search [97], which returns a set of pareto-optimal routes

that are not dominated in either travel time or energy consumption. Conversely, some other

works like [18, 25] present EV routing as an extension of the Constrained Shortest Path

problem. These problems seek to minimize total travel time including charging time, while

constraining the total energy consumption of paths to levels allowed by realistic battery

capacities. Another line of research considers “profile queries”, which look for all optimal

shortest paths depending on a certain state [141], e.g., the initial state of charge of an EV

[22, 27] or the current point in time [24, 47, 56].

Underlying all EV routing algorithms is an assumption that the energy consump-

tions assigned to graph edges are accurate. In practice, this is difficult to achieve with

existing energy consumption models [43, 54, 53, 129, 131, 98]. EV energy consumption is

affected by several factors including traffic conditions, driver aggressiveness, battery health

and regular wear-and-tear of the vehicle, which are hard to estimate. Recently, [3] showed

that each of these factors can impact the energy consumption along short routes by as

36

much as 40%. Similarly, [131] show a high variance in EV energy consumptions for short

trips. To mitigate the effects of inaccurate estimates, [140] recommend holding a safety

margin between 12 and 23% of battery capacity. Only few EV routing algorithms [55, 76]

accommodate buffer energy for variance in energy consumption estimates or provide robust

routes.

3.3 Preliminaries

Our setup is similar to the standard shortest feasible path problem [18, 19]. We

consider a road network modeled as directed graph G = 〈V,E〉, with V the set of vertices

and E : V × V the set of edges. We are given two edge weight functions d : E → R≥0

and c : E → R that assign the travel time and energy consumption to each e ∈ E. An

s − t path in G is a sequence of adjacent vertices P = [s = v1v2 . . . vn = t], such that

∀1 ≤ i ≤ n, (vi, vi+1) ∈ E holds.

For a path P , the total driving time is d(P) = Σn−1
i=1 d(vi, vi+1). The consumption

profile, fP : [0,M] → [−M,M] ∪ {−∞} is a function that maps the starting SoC βs to

residual SoC βt at t after traversing P . fP can be negative due to energy recuperation along

P , or −∞ if it is not possible to traverse P with starting SoC βs. fP (β) can be computed

using a 3-tuple 〈inP , costP ,maxP 〉, where inP is the minimum SoC required at s to traverse

P , costP = Σn−1
i=1 c(vi, vi+1), and outP is the maximum SoC possible at t after traversing P

[50]. Conversely, we define an inverse consumption profile f−1
P : [−M,M]→ [0,M] ∪ {∞},

which maps residual SoC βt to the starting SoC βs. We evaluate both functions as:

37

fP (β) =

−∞ if β < inP

outP if β − costP > outP

β − costP otherwise

, f−1
P (β) =

∞ if β > outP

inP if β + costP < inP

β + costP otherwise

Let fφ(β) and f−1
φ (β) be identity SoC profiles that always map a given SoC

β to itself. Given two paths P = [v1v2 . . . vk] and Q = [vk+1 . . . vn], we can get the

concatenation P ◦ Q = [v1 . . . vkvk+1 . . . vn] and a linked consumption profile fP◦Q as

inP◦Q = max{inP , costP + inQ}, outP◦Q = min{outQ, outP − costQ}, and costP◦Q =

max{costP+costQ, inP−outQ}, if outP ≥ inQ; otherwise, P◦Q is infeasible and fP◦Q ≡ −∞.

Lastly, an (inverse) SoC profile f1 is said to dominate f2 if ∀β ∈ [0,M], f1(β) ≥ f2(β).

A set S ⊆ V marks the available charging stations on the road network. Each

v ∈ S is assigned a concave, monotonically increasing charging function cfv : R≥0 → [0,M]

that maps the charging time at v to the resultant SoC after charging. Conversely, we also

define the inverse charging function cf−1
v : [0,M] → R≥0. To obtain the time it takes to

charge from β1 to β2, we compute cf−1(β2)− cf−1(β1).

Definition 2. A shortest feasible path P between a source s ∈ V and a target t ∈ V for an

EV with a starting SoC βs ∈ [0,M] is one that minimizes the total trip time (travel time +

charging time) while maintaining a non-negative battery SoC at all points on P .

For this work, we add two constraints to the original definition of charging func-

tions: First, we require that all charging functions have a minimum initial SoC of 0 and are

able to fully charge EVs to M SoC. This constraint is realistic as any real-world charging

38

station can charge an EV with an empty battery to its full capacity. Second, similar to [18],

we require all charging functions to be piecewise linear.

3.3.1 Charging Function Propagation (CFP)

CFP [18, 19] is a generalization of the bicriteria Dijkstra’s algorithm [97] with two

major differences: First, the set of labels at a vertex represent all possible tradeoffs between

charging time and the resultant SoC after charging at the last station, and second, the

decision how much to charge at a station is taken at the immediately following station the

EV visits. This is because the amount of charge needed at u ∈ S is dependent on energy

consumed by the EV between u and the next station v ∈ S. If vi and vj are two consecutive

charging stations on a path P = [v1 . . . vn], we call the subpath [vi . . . vj] a leg of P .

Assume that we want to find a shortest feasible path between s, t ∈ V for starting

SoC βs. For all v ∈ V , we maintain sets Luns(v) for unsettled and Lset(v) for settled labels.

For vertex v, a label of the CFP search is a 4-tuple ` = 〈τv, βu, u, f[u...v]〉 where τv is the

total travel time from s to v except the charging time at the last charging station u, βu

is the EV’s SoC on arriving at u and f[u...v] is the consumption profile of subpath [u . . . v].

The CFP search propagates through G as follows:

1. At s: A label ` = 〈0, βs, s, fφ〉 is added to the travel time ordered min-priority queue

PQ.

2. Search reaches a non-charging vertex v 6= t: Let path P = [s = v1 . . . vk = v] and total

travel time τP = Σk−1
i=1 d(vi, vi+1). Create label 〈τP , βs, s, fP 〉 and add to Luns(v).

39

3. Search reaches first charging station vertex v 6= t: Let path P = [s . . . v] and total

travel time over P be τP . Create label 〈τP , fP (βs), v, fφ〉 and add to Luns(v).

4. Search reaches a non-charging vertex v 6= t: Let ` = 〈τv, βu, u, f[u...v]〉 be the current

label extracted from PQ. Since u is the last charging station, let subpath P = [u . . . v]

and the total travel time over P be τP . Add label 〈τ[s...v], f[s...v](βs), u, fP 〉 to Luns(v).

5. Search reaches a subsequent charging vertex v 6= t: Let ` = 〈τv, βu, u, f[u...v]〉 be the

current label extracted from PQ. Since u is the last charging station, let leg L =

[u . . . v] of path P = [s . . . v], and the total travel time over P be τP . Compute

the SoC function b`(τ) := τP + fL(cfu(βu, τ − τP)). Since all charging functions are

assumed to be piecewise linear, it suffices to create one label per breakpoint of b` [18].

For breakpoint B = (τB, SoCB), create a label 〈τB, SoCB, v, fφ〉 and add to Luns(v).

6. Search reaches destination t : Terminate and backtrack to extract a path from s to t.

The label sets for all v ∈ V are used to minimise the total number of dominance

checks among labels for v. Luns is implemented as a min-heap with total feasible travel

time as the key, and the following invariant is maintained: The minimum label ` in Luns(v)

is not dominated by any label in Lset(v). Label ` dominates `′ iff b`(τ) ≥ b`′(τ) when τ ≥ 0.

As the number of labels created during CFP search can be exponential, the algo-

rithm belongs to the EXPTIME class. A combination of A* search using potential functions

and Contraction Hierarchies [65] can be used to speed up CFP on large graphs in practice.

When both speedup techniques are combined, the result is called the CHArge algorithm

[18, 19].

40

3.4 Starting Charge Maps

Definition 3. For a given source s ∈ V and target t ∈ V , a starting charge map SCMst :

[0,M] → P is a function that maps a starting charge βs to the corresponding shortest

feasible path P .

An SCM is a generalization of the shortest feasible path problem where the start-

ing SoC βs is unknown. First, it can be used to recommend users faster routes that they

can take if the starting SoC is higher. For example, given an SCM , it is trivial to generate

recommendations for EV drivers like “The best path with your current SoC takes 45 min-

utes, but you might save 10 minutes if you spend 15 more minutes charging at your present

location before starting your trip”. Such recommendations can be particularly useful to EV

drivers for routes with flexible starting times. Second, different trips taken by an EV user

might have different levels of risk aversion, and an SCM can be used to show users feasible

paths that suit the current scenario. As an example, consider two EV trips, the first through

an urban area with a high density of charging stations during daytime, and a second trip

through a sparsely populated area after nightfall. In the first scenario, most drivers might

trade off a higher stranding risk for shorter travel times, while the preferences might be

reversed for the second route. SCMs can be used to explore such alternatives and present

them to the driver. Asking the driver to charge longer might reduce the risk, while allowing

to start with a lower SoC usually increases the risk. Lastly, in most applications, routes

are computed on a server and sent to the users on mobile clients. Since battery constraints

apply for EV routing, more information about the vehicle needs to be sent to the server

than for regular Internal Combustion (IC) vehicles. If instead of individual routes, SCMs

41

are computed and sent to the client for display, the current SoC no longer needs to be sent

to the routing server, which may result in better privacy for the drivers.

A brute force approach to compute SCMst is to run the CFP algorithm for all

values in [0,M]. However, since [0,M] contains an infinite number of values, this is clearly

not feasible. Even if we discretize the domain and restrict it to only percentage val-

ues that are multiples of a small fixed integer k, running CFP 100
k times, once each for

{0, k, 2k, 3k, ..., 100}%, would still be too slow for interactive routing applications where

queries need to be answered quickly. A better approach is to run a series of binary searches

in the starting SoC range [0,M] such that on iteration i, the search returns a breakpoint

starting SoC β ∈ [0,M], where the shortest feasible paths for starting SoC β and (β + ε)

differ by at least one edge. However, if |SCMst| = N , such an approach would take N logN

runs of the CFP algorithm. In the next section, we present an algorithm that computes

SCMst in N runs.

3.4.1 Reverse Charging Function Propagation

First, we introduce the following intermediate problem:

Definition 4. The Reverse Shortest Feasible Path (RSFP) Problem:

Given a graph G = 〈V,E〉, edge weight functions d : E → R≥0 and c : E → R that represent

travel time and energy consumption on edges respectively, a source s ∈ V and a target t ∈ V ,

a set S ⊆ V marked as charging stations, and an SoC βt, find a shortest path P such that

SoC never drops below 0 along P and has a residual SoC at least βt at t.

42

As RSFP is closely related to the regular shortest feasible path problem, it can be

solved with a reverse variant of the CFP algorithm. Note that several operations needed for

CFP are not symmetric, e.g., f(P ◦Q) 6= f(Q◦P). Following, we detail the Reverse Charging

Function Propagation (RCFP) algorithm and extend it to compute Starting Charge Maps.

The Reverse CFP works on a backward graph G′, obtained by reversing the direc-

tions of all edges in G. The RCFP search starts at t with residual SoC βt and propagates

towards s. At v ∈ V , a label `′ is defined as 〈τt, β′u, u, f[v...u]〉, with τt the total travel time

on subpath [t . . . v], u the last charging station encountered in the search, β′u the SoC after

charging at u, and f[v...u] the consumption profile of subpath [v . . . u].

A key difference between forward and reverse CFP search labels is that while a

label ` for the forward search contains βu, the SoC before charging at the last charging

station u, `′ stores β′u, the SoC after charging at u. Computing β′u is only possible in

reverse CFP search, because of the following: As forward CFP search reaches v, only the

exact energy consumption on [u . . . v] is known, and therefore CFP needs to keep track of all

possible charging scenarios at previous charging station u until the search reaches t or the

next charging station. However, in RCFP search, the exact energy consumption between

v and the target or next charging station u is known. Thus, as RCFP search reaches a

charging station or origin, we know exactly how much charge is needed to travel from v to

u, and have residual SoC β′u. Both forward and reverse CFP maintain two label sets for

each v ∈ V : Luns(v) for unsettled and Lset(v) for settled labels.

Further, for RCFP, we transform all cfv to inverse charging functions cf−1
v . At

v ∈ S, cf−1
v returns the time required to charge an empty battery to resultant SoC β′. Note

43

(a) CFP runs on G with piecewise linear, concave charging functions.

(b) RCFP runs on backward graph G′ with inverse charging functions.

Figure 3.1: Comparing SFP and RSFP problem setups. While charging functions map the

time spent charging to an EV’s SoC at departure, inverted charging functions map the EV’s

SoC at arrival at the charging station to the least possible charging time required to reach

target.

that under our assumptions, the inverse charging functions are piecewise linear, convex and

monotonically decreasing. RCFP propagates through G′ as follows:

1. At t: A label `′ = 〈0, βt, t, f−1
φ 〉 is added to the travel time ordered min-priority queue.

2. Search reaches a non-charging vertex v 6= s: Let path P = [v = v1 . . . vk = t] and total

travel time be τP = Σk
1d(vi, vi+1). Create label 〈τP , βt, t, f−1

P 〉 and add to Luns(v).

3. Search reaches first charging station vertex v 6= s: Let path P = [v . . . t], total travel

time over P be τP . Create label 〈τP , f−1
P (βt), v, f

−1
φ 〉 and add to Luns(v).

4. Search reaches a non-charging vertex v 6= t: Let ` = 〈τv, βu, u, f[u...v]〉 be the current

label extracted from PQ. Since u is the last charging station, let subpath P = [u . . . v]

and the total travel time over P be τP . Add label 〈τ[s...v], f
−1
[s...v](βs), u, f

−1
P 〉 to Luns(v).

44

5. Search reaches a subsequent charging vertex v 6= s: Let `′ = 〈τt, β′u, u, f−1
[u...v]〉 be

the current label extracted from PQ. Since u is the last charging station, let leg

L = [u . . . v] and path P = [v . . . t]. Let the total travel time over P be τP . Next,

compute the Starting SoC function b′`′(β) := τP + max(0, cf−1
u (f−1

` (β)) − cf−1
u (β′u)).

Again, since we assume that all inverted charging functions are piecewise linear, it

suffices to create one label per breakpoint of b′`′ . For breakpoint B = (τB, SoCB),

create a label 〈b′`′(SoCB), SoCB, v, f
−1
P 〉 and add to Luns(v).

6. Search reaches destination s: Terminate and backtrack to extract a path from t to s.

A label `′1 is said to dominate `′2 iff b′`′1
(β) ≤ b′`′1(β) for β ≥ 0.

Lemma 5. If a shortest feasible s− t path exists, running the RCFP algorithm from t to s

with βt = 0 finds it.

Proof. Let P be a shortest feasible s − t path in G. Now, we show that RCFP computes

the correct solution (travel time and starting SoC) for P . We distinguish three cases:

• P contains no charging stop: The linking operation on (inverse) consumption profiles

is associative [22]. Further, the order in which labels are added to Luns(v) does not

affect the correctness of the algorithms. Therefore, a shortest feasible path is found

regardless of search direction and the correctness of RCFP follows from that of CFP

[19].

• P contains a single charging stop: Let u be the charging stop on P , which divides P

into subpaths [s . . . u] and [u . . . t]. As the RCFP search starts from t and reaches u,

the departure SoC at u is set to in[u...t], the minimum SoC required to ensure feasibility

45

of P . Charging more at u only increases the charging time without any corresponding

decrease in travel time, which in turn increases the total travel time along P , violating

the assumption that P is the shortest feasible path. On subpath [s . . . u], the RCFP

search proceeds as in case (1).

• P contains multiple charging stops: Let u and u′ be two consecutive charging stations

on P , which divide P into subpaths [s . . . u], [u . . . u′] and [u′ . . . t]. Lemma 2 in [19]

shows that for CFP, the optimal departure time at u always corresponds to charging

to either in[u...u′] or to a breakpoint of cfu. Similarly, after the RCFP search reaches

u, the departure time at u′ always corresponds to charging to either in[u...u′], or to a

breakpoint of cf−1
u′ , which is optimal.

Next, we show that the minimum time label in RCFP search is not dominated by

other labels and reaches s the first. The first claim follows from the dominance criterion

for RCFP, which is symmetric to that of CFP: A label `v is dominated if it results in a

higher total travel time for every possible initial SoC at v. This implies that a dominated

label can not result in a unique optimal solution, since replacing the sub-path to the target

it represents with the sub-path of the label dominating it would result in a better or equal

solution. Lastly, since labels are ordered by travel time at all Luns(v), the label with

minimum total travel time reaches s first.

Computing SCM with Reverse CFP

If the Reverse CFP algorithm does not terminate when the search reaches s and is

instead allowed to continue to run until PQ is empty, we would have the set of all pareto-

46

Figure 3.2: ‘Virtual’ vertices added to the graph.

optimal feasible paths from s to t at s. This set of pareto-optimal feasible paths forms the

Starting Charge Map between vertices s and t.

Theorem 6. If the RCFP algorithm is run from t ∈ V with βt = 0 until the priority queue

is empty, the Pareto-set of labels at every s ∈ V is equivalent to SCMst.

Proof. We prove Theorem 6 by showing that after running the RCFP from t, a starting

SoC βs, the label set at s contains a label that corresponds to SCMst(βs). For this, we add

temporary virtual vertices s(M−x) and an edge from s(M−x) to s with energy consumption

x to the network, as depicted in Figure 3.2. From Lemma 5, we know that RCFP can

compute a shortest feasible path P from s(M−x) to t. Note that by construction, P must

contain s and in[s...t] ≤ x, since (M − x) energy is consumed on the edge from s(M−x) to s.

Thus, a label ` must exist at s that represents the shortest feasible path from s to t and

requires an initial SoC of at most x.` corresponds to SCMst(x). Since the computation of

RCFP in the network without s(M−x) is independent of the existence of s(M−x), the RCFP

algorithm has to compute the label ` before the priority queue runs empty even if s(M−x)

is not part of the network.

47

3.5 Buffer Maps

Like Starting Charge Maps, a Buffer Map is a generalization of the Shortest Fea-

sible Path Problem; albeit instead of unknown starting charge βs, the lower bound of

minimum allowed SoC along the path is raised from 0 to an arbitrary b ∈ [0,M]. Formally,

Definition 7. A buffer map BMst : [0,M] → P between a source s ∈ V and target t ∈ V

is a function that maps a given buffer SoC b ∈ [0,M] to the corresponding shortest feasible

path P such that the EV maintains at least b SoC at all points in P .

Further, like SCMs, Buffer Maps can be used to show alternative routes to EV

drivers who can decide upon the degree of acceptable stranding risk along the route. How-

ever, a key difference between the two abstractions and their usage is that while SCMs are

used to get alternative routes depending on the starting state of the EV, alternative routes

in buffer maps differ on the basis of projected EV behaviour along the route. In this way,

alternative routes in BMs offer strong guarantees against stranding risk for EV drivers;

not surprisingly, they are also more expensive to compute. Note that this problem would

also qualify as what is referred to as “profile query” in the literature, since we ask for an

optimal solution for arbitrary initial SoC [22, 27]. However, unlike [22, 27], we consider a

multi-criteria variant of this problem and also allow intermediate charging stops.

For each distinct b, a run of the CFP algorithm can yield a shortest feasible path

with the minimum SoC equal to b. A brute force approach to computing a Buffer Map is

to run CFP several times, setting b to each value in [0,M]. However, this approach is not

feasible since the interval [0,M] contains infinite values. In the next subsection, we present

an exact, practical algorithm to compute a buffer map.

48

3.5.1 Iterative Charging Function Propagation

Each EV path consists of a sequence of legs. We define:

Definition 8. Given an SoC b ∈ [0,M], a critical leg of a shortest feasible path P is one

on which the SoC drops to b.

CFP computes the exact amount of charge that an EV charges at every station

along a feasible route P in order to minimize total travel time. However, to ensure that

the minimum SoC of the EV along P never drops below a given b ∈ [0,M], the EV must

charge extra on the charging stations adjacent to critical legs along P . The amount of extra

energy to charge at such stations is exactly equal to that required to maintain at least b

SoC along the route, and is called the buffer energy.

Our approach to computing a Buffer Map BMst for a given source s ∈ V and

target t ∈ V works in iterations. Every iteration starts with choosing a value b′ ∈ [0,M].

An augmented variant of CFP is run that returns a shortest feasible path P ′ such that the

minimum SoC of the EV along P ′ is equal to b′. A collection of all such P ′ constitutes the

set of paths in BMst. Therefore, our approach has two components: first, an augmented

variant of the CFP that respects the buffer SoC b′, and second, an algorithm that computes

the increase in b′ on every iteration.

Augmenting CFP

The first iteration of our algorithm starts with b′ = 0. The augmented CFP search

starts from s with an SoC βs and propagates towards t. Assume that the search requires

charging at consecutive stations u′ and u, and reaches v ∈ V . Let the breakpoints of cfu′

49

be [B1
u′B

2
u′ . . . B

m
u′], where Bi

u′ = (τ iu′ , SoC
i
u′), 1 ≤ i ≤ m where SoC ′i is EV’s resultant SoC

after charging for time τ iu′ . Similarly, the breakpoints of cfu are [B1
uB

2
u...B

n
u].

Figure 3.3: Augmented CFP setup.

Recall that CFP sets the amount of charge added to the EV at a station only

after the search reaches the next charging station. Let the EV’s SoC be ψu′ at departure

after charging at station u′. Also, let Bu′ = (τu′ , SoCu′) be the breakpoint of cfu′ with SoC

immediately lesser or equal to ψu′ , and Bu′ = (τu′ , SoCu′) be the next breakpoint after

Bu′ . Therefore, SoCu′ ≤ ψu′ < SoCu′ . Figure 3.3 shows an example of the Bu′ and Bu′

corresponding to a given ψu′ . Similarly, given cfu and ψu, SoCu ≤ ψu ≤ SoCu.

At v ∈ V , a label of the search is given by l = 〈τv, βu, u, f[u...v], ρv, δv〉, where τt,

βu, u, and f[u...v] are analogous to regular CFP, ρv is the time required to add unit buffer

energy to the EV on the current path, and δv is the maximum SoC up to which it can be

charged without a loss in charging rate (due to concavity of charging functions).

Lemma 9. Let P be a shortest feasible s − t path with k charging stops on P and b be

the minimum allowed SoC along P . Assume that the EV arrives at ith charging station

with SoC αi, charges for ti time, and departs with SoC ψi. Further, let C be the charging

stations at the beginning of critical legs in P . To increase the buffer energy along P by ε,

50

increasing departure SoC ψi to (ψi + ε) on all stations in C is an optimal solution if:

1. On charging stations in C, f(ψi + ε) − f(ψi) = ε, i.e. charging ε more increases the

residual SoC at t by ε.

2. On all non-critical legs, the minimum allowed SoC is at least b + ε.

3. For all charging stations in C, the charging function is differentiable and does not

have breakpoints with SoCs in range [ψi, (ψi + ε)].

4. For all charging stations at the end of a critical leg, the charging function is differen-

tiable and does not have a breakpoint in SoC range [αi, (αi + ε)].

Proof. First, note that increasing ψi at all charging stations in C by ε is sufficient to increase

the total buffer by ε —this follows immediately from conditions (1) and (2).

Let a solution S be the set of charging stops and charging times along path P ,

resulting from an Augmented CFP run between vertices s to t. We will show that no other

solution can result in a lower total travel time along path P without changing at least one

edge in P . Assume for contradiction, a solution S′ has a lower total travel time than S

along same path P . In order to increase the buffer energy for S by ε, ψi for each charging

station in C must be increased by at least (ψi + ε). This can only be achieved by charging

additional energy at a station on P .

Let j be the charging stop closest to t at which charging time differs between S and

S′. We claim that there must be a critical leg after departing from j and that its departure

SoC is (ψj + ε)—if this were not the case, we could decrease the departure SoC at j to

(ψj + ε), which would be sufficient to increase buffer energy by ε, giving us a faster solution

51

and contradicting the assumption that S is optimal. This implies that we can decrease the

departure SoC at j to (ψj + ε), which is sufficient to increase buffer energy by ε, which gives

us a faster solution contradicting the assumption that S is optimal. Since the departure

SoC on j is equal to (ψj + ε), the arrival SoC at j must be greater. In other words, we

charge more at some other stop i so we can charge less at j. But then, we can create a

faster solution for buffer energy b as follows: there exists a δ > 0 such that we can charge

δ more at i and charge δ less at j (since the charging function is concave and differentiable

around ψj , the charging rate remains the same as for (ψj + ε)). This contradicts the fact

the solution S for buffer SoC b was optimal.

The CFP search starts from s with ρs = 0 and δs = M . Assume that the search

reaches charging station u after charging at a prior station u′. Let lu = 〈τv, βu, u, f[u...v], ρv, δv〉

be the current label extracted from priority queue. If ψu′ = b′, i.e. the leg [u′ . . . u] is a

critical leg, we set δu = min(δu′ , SoCB2 − SoCB1 , SoCu − cfu(f[u′...u](ψu′))), where SoCB1

and SoCB2 are the SoC of the first and second breakpoints of the SoC function of lu.

We also set ρu = ρu′ +
(τu′−τu′)

(SoCu′−SoCu′)
− (τu−τu)

(SoCu−SoCu)
. If [u′ . . . u] is not a critical leg, the

δu = min(δu′ , in[u′...u] − b′), and ρu = ρu′ .

A label lu dominates l′u if the SoC function of lu dominates the SoC function of lu′ ,

and ρu ≤ ρu′ . In other words, a label l dominates l′ if it represents a faster path to which

the buffer energy can be added at a faster rate.

52

Computing b′ for the next iteration

On an iteration, we let the augmented CFP run and collect the complete set of

non-dominated labels at target t. Let the set of labels collected at t be L. The Augmented

CFP search guarantees that every li ∈ L represents a feasible path where the SoC along the

path does not drop below b. Let the label lmin have the minimum total travel time of all

l ∈ L. Next, we need to determine the maximum buffer energy that can be added at stations

adjacent to critical legs of the shortest feasible path P found in the current iteration, while

ensuring that no other feasible path becomes a better (faster) choice than P . We can solve

this problem geometrically on an X-Y plane, where X and Y axis represent the buffer SoC

and the total travel time of the EV respectively.

Figure 3.4: Each line on the X-Y plane represents a label li ∈ L for iteration N . Highlighted

blue label line segment represents the minimum time label lmin. The slope of blue label line

segment is ρ ∈ lmin, and the X-intercept is equal to travel time τt ∈ lmin. It intersects with

two other label line segments at ι1 and ι2. Similarly, let intersection points be {ι1, ι2, ..., ιn}
if L contains more labels. b′ for the next iteration is equal to the minimum buffer SoC in

{ι1, ι2, ..., ιn} (SoC of shown green line).

For a label lt, we draw a label line segment with slope ρt ∈ lt, and the X-intercept

equal to the total travel time τt of l. Further, the maximum ordinate of the line segment is

53

given by δt ∈ lt. Figure 3.4 shows an example where L contains three labels. The next step

is to find the globally minimum buffer SoC, δmin to which the EV can be charged the fastest

among all labels in L. To find such a value, we start with the label line segment for lmin,

and find its intersections with all other label line segments on the plane. Let the set of such

intersections be {ι1, ι2, ..., ιn}. Since Figure 3.4 has only three label line segments, it shows

two intersection points ι1 and ι2. Thus, δmin is given by the buffer SoC of the intersection

point that lowest on the Y-axis in the plane. For the next iteration, we set b′ = δmin and

add the feasible path represented by lt to the buffer map BM .

Lemma 10. The global delta selection algorithm is correct, i.e. no feasible path has a

lower total travel time and can add buffer energy faster than the chosen route given by the

algorithm.

Proof. We prove geometrically. Since all charging functions are convex with a positive slope,

the slopes of all label line segments in the X-Y plane are positive. Further, since lmin has

the smallest X-intercept, in buffer SoC interval [0, SoC of ι1], no other label in L can charge

the EV to a higher buffer SoC in lesser time.

As we increase b′ on each iteration, the augmented CFP search becomes more

selective and the number of feasible paths from s to t decreases, since only on fewer paths

would an EV be able to maintain a higher minimum SoC. The iterations terminate when

b′ becomes high enough so the CFP search does not return any feasible paths.

Theorem 11. The Iterative CFP algorithm terminates and computes BMst correctly.

Proof. We have already argued that we compute ρ and δ correctly for labels propagated by

the Augmented CFP search, and that for label l it gives us the minimum additional required

54

charging time in order to increase the buffer energy by any value in [0, δ] on the feasible

path represented by l. We now show that the solutions added to the buffer map are indeed

optimal and there is no remaining path with a shorter time for some value of buffer energy.

Assume for contradiction, that we add a label l to the buffer map, for which there exists a

label l′ that offers a faster solution for some buffer energy. Observe that this implies that

it is not a part of the Pareto set at the target, since the global delta computation finds the

best label in that set by lemma 10. We can now distinguish two cases:

1. l′ represents a feasible path with at least one critical leg: Since l′ can not have a faster

(minimum) traversal time than l by construction (the algorithm selected l and added

it to the buffer map because it is the label with minimum travel time), it can only

become the better solution after adding additional charge so it yields shorter total

travel time for higher buffer energy. In other words, l′ offers a better charging rate

and therefore is not dominated by l, which implies that it (or another dominating

label) must be a member of the Pareto set. This must result in a lower intersection

point on the Y-axis than δ during the global delta computation, which contradicts

our assumption.

2. l′ represents a feasible path with no critical leg: This implies it has no charging stop

(if there was a label with a charging stop but no critical leg, we could always charge

less to obtain a faster solution). This means it cannot be dominated by l because it

has ρ = 0, and therefore it or another single-leg path must be a part of the Pareto

set, which implies that it is taken into account when computing the global value of δ,

again leading to a contradiction.

55

Several factors can affect the total number of iterations required to compute BM :

the distance between s and t, the total number of charging stations required to reach from s

to t, which in turn depends on the parameters of the EV under consideration. The number

of iterations further depends on the number of breakpoints in charging functions along the

feasible paths from s to t. However, in practice, the number of iterations remains small for

the following reasons: First, cfu, u ∈ S are usually simple, linear functions up to 80% charge

and only have a small number of breakpoints in the 80− 100% range. Next, most EV trips

tend to not have a large number of charging stops along the way, and as EV ranges increase,

this number would further decrease.

3.6 Experiments

We implemented our algorithms in C++ using Apple clang version 10.0.1 with

−O3 optimizations. All experiments were run on macOS 10.14.6 using a Mac Pro 6,1 with

a quad-core Intel Xeon E5 (3.7 GHz base clock). The processor has 256 KB of per-core L2

and 10 MB of shared L3 cache. The machine has 64 GBs of DDR3-ECC memory clocked

at 1866 MHz.

3.6.1 Preparing a realistic EV Routing instance

We extract the road networks of Oregon and California from OpenStreetMap

(OSM)1 and label each edge with travel time equal to geographic distance divided by the

1https://openstreetmap.org/

56

https://openstreetmap.org/

Table 3.1: Our road network is taken from OpenStreetMap, public charging stations data

from the Alternative Fuel Data Center [5], elevations from NASADEM [106] and an energy

consumption model from a Nissan Leaf 2013 [54].

Dataset Vertices Edges Charging stations

Oregon (contracted) 502327 710107 323
California (contracted) 2547618 3741891 1406

maximum allowed speed for the road segment type. We contract all vertices with degrees

≤ 2 for our experiments, keeping only the largest connected component of the network.

Table 3.1 shows the size of road networks after contraction.

Next, we add the elevation to each vertex of the network, taken by sampling the

NASADEM elevation dataset at 30m resolution [106]. The elevation is required to compute

the energy consumption on every edge of the network, which we derive from a microscopic

EV energy consumption model for a Nissan Leaf 2013 [54].

Lastly, we extract the locations of public EV charging stations in Oregon and

California from the Alternative Fuels Data Center [5]. For each charging station in the

dataset, we mark the vertex geographically closest to it as the charging station. We assign

each charging station vertex one of three charging functions: i) a slow linear function that

charges the EV to full battery in 120 minutes; ii) a fast charging function that charges

the EV to 80% in 30 minutes and to full capacity in 60 minutes, and iii) a fastest charging

function that charges to 80% capacity in 20 minutes, and to full in 40 minutes. We arbitrarily

assign 60% of all charging stations the slow charging function, another 30% stations the

fast, and the remaining 10% the fastest charging functions.

To allow for tests with reasonable running times, we make it easier for a label

to dominate another in the (Reverse) CFP search. We do this by adding a constant slack

57

energy consumption ε to the dominance criterion in all three algorithms. Given labels `1

and `2, `1 dominates `2 iff all breakpoints of `1’s SoC function have a higher energy than

breakpoints of `2’s SoC function after decreasing each breakpoint by ε energy. We set ε to

1% of the total battery capacity of the EV. Similar modifications to the dominance criteria

have been proposed in earlier work, e.g. see [14, 25].

3.6.2 Reverse Shortest Feasible Path Queries & Starting Charge Maps

Table 3.2: Average performance of 1000 queries running RCFP vs. variants of standard

CFP. The EV is always assumed to start with 100% SoC at source. CFP with stopping

criterion terminates after finding only one feasible route, and is therefore much faster than

regular CFP which returns all feasible routes. RCFP can be seen to perform at par with CFP

without stopping criterion. Time shown in seconds, also shown—no. of labels extracted

from priority queue, alternative routes to t, and the no. of times search reached target.

Targets found differ between RCFP and CFP because of the difference in dominance criteria.

16 kWh 32 kWh
Alg. Time kLabels Routes Targets Time kLabels Routes Targets

CFP (Stp) 1.767 933 0.709 709 1.510 873 0.895 895
CFP 3.853 1758 4.962 709 3.629 1973 5.634 895
RCFP 4.861 2477 7.703 710 3.502 2370 7.176 895O

re
go

n

CFP (Stp) 34.847 10141 0.722 722 21.805 8645 1.0 1000
CFP 70.076 19684 8.88 722 61.171 21596 9.837 1000
RCFP 66.096 22571 11.467 724 46.617 22191 11.645 1000

C
al

if
or

n
ia

Table 3.3: Continuation of RCFP results for 64 and 128 kWh.

64 kWh 128 kWh
Time kLabels Routes Targets Time kLabels Routes Targets

CFP (Stp) 0.877 730 1.0 1000 0.678 621 1.0 1000
CFP 2.648 1859 5.205 1000 2.521 1751 5.04 1000
RCFP 2.641 2071 6.599 1000 2.241 1877 5.76 1000O
re

go
n

CFP (Stp) 13.919 6631 1.0 1000 7.221 5006 1.0 1000
CFP 47.197 18273 8.429 1000 25.182 13752 6.304 1000
RCFP 36.568 19079 9.897 1000 16.255 12220 6.563 1000

C
al

if
or

n
ia

58

Tables 3.2 and 3.3 shows the results of running 1000 SFP and RSFP queries with

several standard EV battery capacities (16, 32, 64, and 128 kWh) between random vertices

in the road networks of Oregon and California. The table compares the performance of

three algorithms–forward CFP with stopping criterion, which makes the search terminates

as soon as it reaches t; full forward CFP that runs till all pareto-optimal feasible paths from

s to t are found; and the Reverse CFP algorithm as presented in Section 3.4.

We find that the CFP with stopping criterion performs at least a factor of two

faster than full CFP that computes the pareto-optimal set of feasible paths. This is hardly

surprising as the full CFP offers a richer set of routes which planners can use, in lieu of more

computational overhead. However, if faster queries are desirable at the cost of alternative

routes, the same technique can be applied to the reverse CFP algorithm with little effort.

Target pruning [21] is another closely related technique that can achieve the same goal.

We observe that for both networks, SFP and RSFP query times generally decrease

with increase in range of the EV, with a notable exception of capacity increase from 16 to

32 kWh, in which case the reverse search query times increase for the Oregon network and

full CFP query times for the California network. This can be explained as follows: As

the battery capacity increases, the (R)CFP search is able to reach vertices farther away.

However, with increase in range, the slack energy ε also increases, making it easier for a

label to dominate another, so fewer labels are settled in the search. The net effect of the

two opposing factors, in this case, is that the total query time increases.

59

Table 3.4: Average performance of Iterative CFP to answer 1000 Buffer Map queries (with

50 and 100% starting SoC) between random vertices on the Oregon road network.

Range Time (s) kLabels Iterations Avg. |BM | Targets

16 kWh 67.405 30754 7.03 6.103 640
32 kWh 99.310 45685 9.987 9.061 878
64 kWh 32.571 25441 9.37 8.538 1000
128 kWh 17.440 15316 7.013 6.359 1000

50
%

16 kWh 198.395 57545 10.573 9.57 709
32 kWh 85.484 47106 14.285 13.29 895
64 kWh 53.706 37930 14.225 14.22 1000
128 kWh 14.240 16183 10.611 9.635 1000

10
0%

3.6.3 Iterative CFP and Buffer Maps

Table 3.4 shows the results of 1000 Iterative CFP queries between random vertices

in the Oregon network. We do not report the running times for California, since they were

found to be impractical with some queries running for more than 3 hours.

The total running time of the Iterative CFP algorithm has two components: The

cost of Augmented CFP runs and the cost of computing the minimum global δ energy in

each round. The cost of global delta computation is negligible in practice, since the number

of Augmented CFP labels reaching the target vertex is often low. In Table 3.4, note that

an Augmented CFP run takes longer than full CFP. This is caused due to inclusion of an

additional parameter (charging rate) in the dominance criteria of the Augmented CFP.

The Iterative CFP is slower than the other algorithms discussed. This is expected

as the algorithm involves running several iterations of an exponential-time shortest path

computation. Our networks do not use standard speedup techniques like Contraction Hier-

archies (CHs) [65], their multicriteria variant [63], or CRP [45, 46], though. Applying any

of these techniques can significantly reduce query times by reducing the number of vertices

60

explored to find shortest paths. A combination of speedup techniques such as CHs and

A* search could be further applied for even greater speedups [15] at the cost of additional

complexity.

61

Chapter 4

Stochastic Route Planning for

Electric Vehicles

4.1 Introduction

Routing methods for Electric Vehicles (EVs) cannot just minimize travel time, but must also

address driver range anxiety. EVs have limited battery capacity, charging times are long,

and the charging infrastructure remains relatively sparse, so a major concern is stranding,

which occurs when the battery’s State of Charge (SoC) reaches zero en route. A route for

an EV is hence considered feasible only if the SoC along the route never reaches zero.

Merely trying to minimize travel time greatly increases the risk of stranding, since

energy consumption is typically quadratic in vehicle speed. Standard formulations such as

[19, 50, 99] model EV routing as a generalization of the NP-hard Constrained Shortest Path

problem [79, 164], and seek to minimize travel time while maintaining a non-zero SoC along

62

the route. Some recent work [17, 112] even tries to exercise direct control over travel time

and route feasibility, by pre-determining and assigning optimal EV travel speeds for each

road segment.

Most existing problem formulations also assume that travel times and energy con-

sumption values on road network edges are deterministic. In practice, both travel time and

energy consumption are stochastic, and difficult to estimate reliably [3, 53, 131]. In such a

context, even routing algorithms offering strong feasibility guarantees are of limited value.

Approaches that pre-determine and assign vehicle speeds for each edge are not practical,

since speed is not always a variable under driver control, but rather a result of prevalent

traffic conditions.

Consequently, travel times and route feasibility may only be defined probabilisti-

cally. Stochastic routing algorithms [37, 58, 116, 115, 114, 120, 121, 122, 84, 167], model

travel times along network edges as random variables with given probability distributions,

and allow richer query semantics, such as finding paths to maximize the probability of ar-

rival before a deadline [52], or finding the latest departure time and path to guarantee a

certain probability of arrival before a deadline [111]. Despite recent improvements [132],

stochastic routing is typically several orders of magnitude slower than deterministic routing,

since obtaining travel time distributions along a path requires very expensive convolutions

of its edge distributions.

Limited work exists on stochastic route planning for EVs. [39] assumes lognormal

travel-time and Gaussian energy-consumption distributions, and uses bicriteria search to

find the Pareto-optimal routes optimizing energy consumption and travel time reliability.

63

[77] allows arbitrary distributions of travel times on edges and charging stations, and uses

multicriteria search to minimize the cost of charging and travel time, subject to a minimum

reliability threshold, on small synthetic graphs with randomly generated edge weights and

charging station placements. [144] allow correlated travel time distributions between edges,

and use bicriteria search on travel times and energy consumptions. They assume deter-

ministic energy consumptions, and run experiments on a network of only a few hundred

vertices.

4.1.1 Our Contributions

We study EV routing when both travel times and energy consumptions are stochas-

tic. The travel time on each edge e ∈ E of a road network G = 〈V,E〉 is always a random

variable Te with a known distribution (estimated from data, say). The energy consumption

εe along e is a function of EV speed and distance. We introduce two probabilistic defini-

tions of route feasibility: We say that a route is E-feasible if the SoC of the EV is always

maintained above zero in expectation, and p-feasible if the probability of route feasibility is

at least p. We show how to enhance stochastic routing queries for travel times with these

feasibility criteria to find non-dominated feasible routes and probabilistic budget feasible

routes. Our work addresses the four types of stochastic routing queries in the cells of the

following table:

Table 4.1: Stochastic EV routing queries considered in this chapter.

E-Feasibility p-Feasibility

Non-Dominated Routes X X
Probabilistic Budget Routes X X

64

We address these queries by generalizing the Charging Function Propagation al-

gorithm of [18, 19] to accommodate stochastic edge weights. We evaluate our methods

experimentally using a realistic road network instance with travel time distributions de-

rived from traffic speeds observed over four and a half months in the Los Angeles area,

and real-world elevations and charging station locations. Further, we apply an uncertain

variant of Contraction Hierarchies [64] to speed up our queries and present results. Our re-

sults indicate that in general, E-feasible routing queries can be computed much faster than

p-feasible queries, and produce similar routes for longer routes with higher time budgets.

4.2 Related Work

EV routing has been typically modeled as energy-aware routing, with objective

functions ranging from minimizing the total energy consumption [50, 139], to minimizing

travel time while maintaining route feasibility [8, 19, 112, 152], to multicriteria search on

both travel time and energy consumption [68]. In contrast, most prior work on routing

Internal Combustion-based vehicles merely minimizes the total travel time [13, 149].

More attention is now being paid to real-world issues. Examples include allowing

battery-swapping stations [154], partial recharges at stations [19, 99, 18, 155] and maintain-

ing battery buffer to relieve range anxiety [130, 76, 55]. Many challenges remain, however.

The energy consumption models are imperfect, and factors such as battery wear, driver ag-

gressiveness [100], or traffic conditions are hard to model, but can have a significant impact.

Data also suggests that drivers may prefer familiar paths to shortest paths [178, 96].

65

4.2.1 Stochastic Route Planning

Stochastic route planning goes back to [58], which attempted an exact solution for

the shortest path problem in stochastic graphs, using Monte Carlo simulations to derive

path weights. It is now known that driver behavior changes if travel time is stochastic

[57, 148], so problem variants have been explored. Existing work can be categorized in

three ways: by objective function, the forms assumed for edge probability distributions,

and by targeted outcome. For conciseness, we discuss our categorization here, and show

references in Figure 4.1.

Stochastic
Routing

Routing Objective Distribution Type Algorithm Output

minimize E[T]
[30, 102, 101]

maximize Pr[T < d]
[52], This work.

lower-bound Pr[T < d]
[111]

In functional form
[95, 39, 144, 116]

In arbitrary form
[111, 75, 55, 58, 120,
138, 114], This work.

Driver Policy
[30, 52, 138, 84, 113]

Actual Routes
[111, 116, 115, 114, 95, 39,
144, 120, 75], This work.

Figure 4.1: Stochastic route planning, classified by routing objective, edge distribution, and

result. Our work finds energy-feasible routes that maximize probability of arrival before

deadline.

By routing objective: Routing objectives can be quite varied, such as minimizing ex-

pected time [30, 102, 101], maximizing the on-time-arrival probability [52], maintaining

on-time-arrival probability above a given threshold [111]. Some works [144, 39, 77] apply

stochastic routing algorithms to EVs, while others [2] route multiple EVs collaboratively,

on-line.

66

By distribution: The edge distributions assumed can have a functional form, or be ar-

bitrary without a closed form. This choice also affects the edge weight representations

used. For functional forms, storing the distributional parameters suffices, but arbitrary dis-

tributions require more space-intensive representations such as histograms. Further, with

functional forms, a small number of observations can suffice to capture real-world behaviour,

but histograms require much more data. Edge weight representations have been shown to

significantly affect the runtime performance of stochastic shortest path queries [122, 132].

Output: Adaptive methods [119, 111] output policies for drivers to make routing decisions

on-line, as they reach vertices or edges during the drive. In contrast, a-priori approaches

produce routes before travel begins. [111] showed that adaptive approaches can produce

strictly better solutions than the a-priori approaches, but are much more computationally

expensive. Recently, performance improvements to policy-based approaches, such as the

Stochastic On-Time Arrival problem have also been proposed [138, 113, 84].

4.3 Problem Setup

A road network is a directed graph G = 〈V,E〉 where V is the set of vertices and

E : V × V is the set of edges. An s-t path P = [s = v1, v2 · · · , vn = t] is a sequence of

adjacent vertices in the road network G. A set C ⊆ V is marked as charging stations.

Definition 12 (State of Charge). The State of Charge (SoC) of an EV is the charge status

of the EV’s battery, lying between 0 and the battery capacity M . We denote the SoC on

arrival at a vertex v by vβ and the SoC at departure from v by βv. We have βv ≥ vβ if the

EV charges its batteries at node v, and βv = vβ otherwise.

67

Each c ∈ C has a monotonically increasing, piecewise-linear charging function Φc

such that Φc(cβ, tc) 7→ βc where tc is charging time. We require cβ ≥ 0, and βc ≤M [130].

Definition 13 (Leg and Prefix). A subpath L = [c1, . . . , v, . . . , c2] is a leg of path P iff

c1, c2 are successive charging stations along P . Each λv = [c1, . . . , v], v 6= c2 is a prefix of

L.

4.3.1 Travel Times and Energy Depletion

The travel time along each edge e is a random variable Te with a known probability

distribution. For problem tractability, we assume that the EV travels on e at a uniform

speed drawn from the distribution Te. This is reasonable, since variable travel time on an

edge can be easily modeled by splitting an edge into several smaller edges.

Let e1, e2, . . . , en−1 be the edges along path P , and let ek have travel time distribu-

tion Tk. The aggregate travel time distribution for the path P is TP = T1 ∗T2 ∗ · · · ∗Tn−1,

where ∗ denotes linear convolution. Let T∅ be the Dirac “delta” distribution defined so

that T∅(0) = 1 and T∅(x) = 0 at x 6= 0. Now, T∅ functions as a convolution identity, so

T∅ ∗ TP = TP .

We assign to each edge e a function εe : R+ → R, which maps a travel time to

the battery energy depleted by travel along e. The total energy depletion is the sum of the

work done along e by the EV against air resistance, rolling resistance, and against gravity.

The wind resistance grows quadratically with speed. If t is the travel time along edge e,

68

these three terms cause εe(t) to assume the form

εe(t) =
ae

t2 − be
+
ce
t

+ de. (4.1)

where ae, be, ce, de are fixed coefficients for each edge e. We can derive the edge energy

depletion distribution De from the travel time distribution Te using Equation 4.1, thereby

associating probabilities with energy depletions. A path may have negative energy depletion;

EVs have regenerative brakes, and can accumulate charge, say, when going down a slope.

We can also aggregate energy depletion distributions using convolutions. If e1, e2, . . . , en−1

are the edges along a path P , and edge ei has the depletion distribution Di, the aggregate

energy depletion distribution for P is DP = D1 ∗ D2 ∗ · · · ∗ Dn−1. By analogy with

T∅, we define D∅ to be the Dirac “delta” function corresponding to energy depletion, so

that D∅ ∗DP = DP . Sometimes, as with expected-feasibility queries, it suffices to add

expectations directly, since E[D1 ∗D2] = E[D1] + E[D2].

4.3.2 E-Feasible Routing

In this class of queries, we assume that the travel times are stochastic, but define

feasibility in terms of the expectations for the energy depletion distributions. Say that an

EV starts from vertex s with State of Charge (SoC) βs ∈ [0,M] and wishes to travel to

vertex t along the s-t path P . Let leg L = [c, . . . , c′] of P lie between charging stations c

and c′ along P .

Definition 14 (E-Feasible Path). Leg L is expected-feasible (or E-feasible) iff E[Dλ] ≤ βc,

where Dλ is the depletion distribution for all prefixes λ of L, and βc is the EV’s SoC when

69

it departs c. A path P = [L1, L2, . . . , Ln] is E-feasible iff each of its legs Li is E-feasible.

We consider two E-feasible queries:

Query 1 (Non-Dominated E-feasible Paths). Find the set of E-feasible s-t paths such that

their travel time distributions are not dominated by any other path.

Query 2 (Probabilistic Budget E-feasible Path). Find an E-feasible s-t path that maximizes

the probability of reaching t before a given deadline d.

4.3.3 p-Feasible Routing

Definition 15 (p-Feasible Path). A leg L of a path is p-feasible if the probability of travers-

ing L without being stranded is at least p. A route P with legs L1, L2, . . . , Ln is p-feasible

iff each leg Li is p-feasible. We call p the non-stranding probability.

Analogous to the E-Feasible case, now, we consider the following two p-feasible

queries, that we seek to answer.

Query 3 (Non-Dominated p-Feasible Paths). Find the set of s-t paths whose travel time

distributions are not dominated by any other path, and which ensure that probability not

being stranded is at least p.

Query 4 (Probabilistic Budget p-Feasible Paths). Find an s-t path which maximizes the

probability of reaching t before a given deadline d, while keeping the probability of not being

stranded is at least p.

70

Sym Meaning Sym Meaning

TP Travel time distribution on path P T∅ Convolution identity for T

DP Energy depletion distribution on path P D∅ Convolution identity for D

δλ Depletion function for leg prefix λ δ∅ Depletion function for null path

uβ SoC on arrival at vertex u βu SoC at departure from vertex u

Φc Charging function at charging station c εe Energy depletion function on edge e

Table 4.2: Symbols used in this chapter.

4.4 Charging Function Propagation for E-Feasible Routing

The CFP algorithm of [19] uses only deterministic edge weights, but we show how

to extend it to answer expected-feasible stochastic shortest path queries. As in [19], we

ensure that the SoC on departing a charging station suffices to complete the ensuing leg.

Our Dijkstra’s search labels maintain the set of all possible tradeoffs between charging time

and the resulting SoC.

However, complexities arise since we use stochastic travel times. The deterministic

case can simply use a min-priority queue ordered by travel times, but distributions can be

ordered in different ways. For simplicity, we will use usual stochastic ordering [142] to order

the travel time distributions in the priority queue, under which two random variables X

and Y obey X � Y iff Pr[X > x] ≤ Pr[Y > x],∀x ∈ (−∞,∞). Other stochastic orderings,

such as the hazard rate or likelihood ratio ordering, may result in interesting tradeoffs for

the EV, but are beyond the scope of this paper. Also, deterministic travel times can be

simply added along a path, but travel time distributions must be convolved to aggregate

travel time distributions.

For expected-feasible routes, we will use stochastic travel times, but expected

values for energy depletion. That is, let e1, e2, . . . , en be the edges comprising a path

71

s t
2 3 1 -5 6

SoC SoC

Charging TimeCharging Time

0.0

0.2

0.4

0.6

30 60 90
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

Figure 4.2: E-feasible queries. Edges have two weights: a travel time distribution (be-

low), and an expected energy depletion (above). Shaded nodes are charging stations, with

piecewise-linear charging functions. The CFP search propagates travel time distributions

using convolutions.

P , and let edge ei have travel time and energy depletion distributions Ti and Di. For

expected-feasible routing, the aggregate travel time distribution TP = T1 ∗T2 ∗ · · · ∗Tn, and

the aggregate energy depletion value is E[DP] = E[D1] + E[D2] + . . .+ E[Dn].

4.4.1 The Depletion Function Along Route Legs

Even if the energy depletion over leg L = [c1, . . . , v, . . . , c2] is deterministic with

value EL, departing c1 with an SoC of βc1 = EL may not suffice to complete L. For instance,

L may go up a hill, climbing which requires more energy than βc1 . Similarly, c2β, the arrival

SoC at c2, may not equal βc1 + EL when EL < 0, since the SoC can never exceed M .

Consider a prefix λ = [c, . . . , v] of some leg that starts with charging station c.

Let sλ be the minimum starting SoC required to traverse λ, eλ be the maximum ending

SoC possible at v, and let cλ = E[Dλ]. The depletion function δλ (similar to SoC profiles

in [18, 19]) for prefix λ maps the SoC at the start of λ to the SoC at the end of λ, and is

72

defined as

δλ(βc) = vβ =

−∞, if βc < sλ,

eλ, if βc − cλ > eλ,

βc − cλ, otherwise.

(4.2)

The depletion function for a null path comprising a single vertex s is the identity depletion

function δ∅ : βs. 7→ βs, Let P1 = [vi, vi+1, . . . , vj] and P2 = [vj+1, vj+2, . . . , vk], be contiguous

segments, and P = P1P2 = [vi, . . . , vk] be their concatenation. In this case, we have

sP = max{sP1 ,cP1 + sP2}, eP = min{eP2 ,eP1 − cP2} and cP = cP1 + cP2 .

4.4.2 Dijkstra Search for E-feasible Routes

We find expected-feasible paths via Dijkstra search using two types of priority

queues: the global queue QG holds the travel time distributions from s to all other vertices

in the road network G, and per-vertex queues Lu(v) and Ls(v). Lu(v) and Ls(v) hold

the unsettled and settled search labels at vertex v respectively. All priority queues are

ordered by T[s...v] using the usual stochastic ordering � defined above. Each label in Ls(v)

corresponds to an s-v path already known to be feasible, and gives the required charging

time at the last charging station. Consequently, as in [19], we maintain the invariant that

the minimum element in Lu(v) is not dominated by any label in Ls(v).

The EV leaves s having acquired an SoC of βs at s, so we treat s as a charging

station, by default. One of our major challenges in the search will be to determine at which

stations to charge, and for how long. Our search hence remembers the last charging station c

along the route in the search labels, since dropping to an SoC below a permissible threshold

73

signals the need to include a charging time at c, and update route times accordingly.

The Search Algorithm

When the search reaches vertex v, the label at v is a four-tuple 〈T[s...v], cβ, c, δ[c...v]〉,

where T[s...v] is the travel time distribution for the subpath [s . . . v], c is the last charging

station enroute from s to v, cβ is the arrival SoC at c, and δ[c...v] is the depletion function

of the subpath [c . . . v]. We note that the charging times at some charging stations may be

zero.

A label is extracted from Lu(v) on each search iteration, where v is the minimum-

travel travel time vertex in QG. It is then settled, and added to Ls(v). A label in Ls(v)

represents a path from s to v that we know to be feasible, along with the exact charging

time at the last charging station. A label in Lu(v) represents a potentially feasible path

that we haven’t checked for feasibility. If an unsettled label in Lu(v) is dominated by a

label in Ls(v), we can discontinue search along that path and discard that label, because

we already know a better feasible path. The search proceeds as follows:

1. At s: Mark s as a charging station. Add the label 〈T∅, sβ, s, δ∅〉 to Lu(s).

2. At a non-charging vertex v: Let ` = 〈T[s...v], cβ, c, δ[c...v]〉 be the label extracted from

Lu(v). Since ` indicates that c is the last charging station encountered, add label

〈T[s...v], δ[s...v](sβ), c, δ[c...v]〉 to Lu(v) and update the travel times for v in QG.

3. At a charging vertex v: Let label ` = 〈T[s...v], cβ, c, δ[c...v]〉 be the minimum element

extracted from Lu(v). Let tc be the charging time at the last charging station c, so

that βc = Φc(cβ, tc) is the SoC when the EV departs c.

74

The CFP algorithm of [18, 19] uses only deterministic travel times, but our travel

times are distributions. As [18] shows, however, the charging times corresponding to

the breakpoints of the charging function Φc(·) capture the information required to

make the required tradeoffs between charging times and travel times. To see how we

approach the problem, let τ represent some value for the travel time from s to v, and

compute

b`(tc, τ) :=

δ[c...v](βc) if tc > 0 and T[s...v](τ) > 0

−∞ otherwise

Since the charging function Φc(·) is assumed to be piecewise linear, its breakpoints

induce breakpoints for b`. For a given value of τ we need to create one label per

breakpoint of b` [18]. For a fixed τ and each breakpoint B = (tB,SoCB) of b`, we add

to Lu(v) the label 〈tB, SoCB, v,T∅〉, and update the travel times to v in QG.

In principle, τ can take an infinite number of values. We handle this difficulty by dis-

cretizing the domain of Te. We use histograms to represent Te in our implementation,

and generate one set of breakpoints per histogram bin (see section 4.7.1 for details).

4. At the destination t: End search, backtrack using parent pointers to extract an s-t

path.

A label ` is said to dominate another label `′ if b`(t, τ) ≥ b`′(t, τ) for all t > 0 and all τ > 0.

If we end the search only when QG is empty, not simply when t is reached, we

obtain the E-feasible non-dominated paths. For E-feasible probabilistic budget paths, we

end the search when TP (d) = 0, i.e. the probability of reaching t within the time budget d

75

drops to 0.

4.5 Charging Function Propagation for p-Feasible Routing

s t

SoC SoC

Charging TimeCharging Time

0.0

0.2

0.4

0.6

30 60 90
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

0 50 100
Energy (kJ)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200
Energy (kJ)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Energy (kJ)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Energy (kJ)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Energy (kJ)

P
ro

ba
bi

lit
y

Figure 4.3: p-Feasible queries. Travel time and energy depletion are both distributions.,

propagated by the CFP search using convolutions. While the non-dominated search stops

only when QG becomes empty, the probabilistic budget route search can stop when TP (t)

drops to 0.

For p-feasible routing, we must consider the actual depletion distribution DP for

a path P , not simply E[DP], which sufficed for expected-feasible paths. As with expected-

feasible paths, we must also deal with the travel time distribution TP . If path P has the

edges e1, e2, . . . , en, then TP = T1 ∗ T2 ∗ · · · ∗ Tn and DP = D1 ∗D2 ∗ · · · ∗Dn.

We say that a leg L of a route is p-feasible if the probability of successfully travers-

ing L without being stranded is at least a query-specific threshold p. A route P with legs

L1, L2, . . . , Ln is p-feasible iff each leg Li is p-feasible.

76

We will call p the non-stranding probability. We can use p to place a bound on the

maximum energy depletion we can accommodate over a path P . Let

cP (p) = arg max x{DP (x) ≤ p},

so that cP (p) is the highest energy depletion that could occur along P with a probability

of no more than p, that is, to ensure a non-stranding probability of p.

We define the stochastic depletion function analogously to Equation 4.2. Let sP (p)

be the minimum starting SoC at s required to traverse P with non-stranding probability

p. Similarly, let eP (p) be the maximum SoC possible on arriving at vertex t with at least

probability p, and cP = DP . The stochastic depletion function for P is

σP (βs, p) = tβ =

−∞, if βs < sP (p),

eP (p), if βs − cP (p) > eP (p),

βs − cP (p), otherwise.

(4.3)

Let σ∅ be the identity stochastic depletion profile for a null path, so that σ∅(βs, p) =

βs. If P1 = [vi, vi+1, . . . , vj] and P2 = [vj+1, vj+2, . . . , vk], the depletion profile of the

concatenated path P = P1P2 = [vi . . . vk] is given by sP (p) = max{sP1(p),cP1(p) + sP2(p)},

eP (p) = min{eP2(p),eP1(p)− cP2(p)} and cP = cP1 ∗ cP2 .

77

4.5.1 Dijkstra Search for p-feasible Routes

The label at vertex v is a four-tuple 〈T[s...v], cβ, c, σ[c...v]〉, where T[s...v] is the travel

time distribution for the subpath [s . . . v], c is the last charging station enroute from s to

v, cβ is the arrival SoC at c, and σ[c...v] is the stochastic depletion function of the subpath

[c . . . v].

As for E-feasible routes, we maintain a global priority queue QG storing the travel

time distributions from s, and queues Lu(v) and Ls(v) to store the unsettled and settled

labels at vertex v respectively. All queues use the usual stochastic ordering. On each search

iteration, a label is extracted from Lu(v), where v is the minimum-travel time vertex in

QG, settled, and added to Ls(v). Each label in Ls(v) represents a feasible path from s to v,

including the charging time at the last charging station. Each label in Lu(v) represents a

potentially feasible path whose feasibility is yet unverified. If a label ` ∈ Lu(v) is dominated

by `′ ∈ Ls(v), we can prune the search along that path and discard `, because a faster feasible

path is already known. p-feasible queries have four parameters: the source vertex s, the

destination vertex t, the βs, and the given p. The search proceeds as follows:

1. At s: Mark s as a charging station. Add the label 〈T∅, sβ, s, σ∅〉 to Lu(s).

2. At a non-charging vertex v: Let ` = 〈T[s...v], cβ, c, σ[c...v]〉 be the label extracted from

Lu(v). Since c is the last charging station encountered on the route represented by `,

add label 〈T[s...v], σ[s...v](sβ, p), c, σ[c...v]〉 to Lu(v) and update the travel times for v in

QG.

3. At a charging vertex v: Let ` = 〈T[s...v], cβ, c, σ[c...v]〉 be the label extracted from Lu(v).

78

Let tc be the charging time at the last charging station c, so βc = Φc(cβ, tc). As with

E-feasible routes, the charging times corresponding to breakpoints of Φc(·) suffice to

make the required tradeoff between charging and travel times. Let τ represent some

value for travel time from s to v, and compute

b′`(tc, τ, p) :=

σ[c...v](βc, p) if tc > 0 and T[s...v](τ) > 0

−∞ otherwise

Since Φc(·) is piecewise linear, its breakpoints induce breakpoints for b`. Moreover, p

is already known at query time, so for a given value of τ , we only need to create one

label per breakpoint of b′` [18]. For a fixed τ and each breakpoint B = (tB,SoCB) of

b′`, we add to Lu(v) the label 〈tB, SoCB, v,T∅〉, and update the travel times to v in

QG.

As with E-feasible routes, τ can take an infinite number of values, but we use his-

tograms to represent Te, and we need to generate only one set of breakpoints per

histogram bin.

4. At the destination t: End search, backtrack using parent pointers to extract an s-t

path.

For a given p, a label ` dominates another label `′ if b′`(t, τ, p) ≥ b′`(t, τ, p) for all t > 0 and

τ > 0. If the search terminates only when QG is empty, the resulting s-t paths are the

p-feasible Non-Dominated Paths. For Probabilistic Budget queries, we end the search only

when it reaches far enough for the probability of reaching t within the time budget d is 0.

79

4.6 Stochastic Contraction Hierarchies

For deterministic queries, Contraction Hierarchies (CHs) [64] are widely used for

speed up. Graph vertices are ranked, and ‘contracted’ in ranked order. If u-v-w is a

shortest path from u to w, vertex v is “contracted” by adding an edge u-w, and removing

v from the graph. Such shortcuts significantly speed up the query-time Dijkstra search.

The vertex ranks and the edge-weight hierarchy significantly affect preprocessing and query

times [16]. A multicriteria CH variant is used in [153] for constrained shortest paths with

positive weights. The CHArge algorithm [19, 18] combines a partial multicriteria CH with

A* search. It contracts most graph vertices, creating a partial multicriteria CH but keeps

an uncontracted core with charging stations. A* search using potential functions is used in

the core to find routes at query time.

CHs have also been applied recently to stochastic route planning [120, 132]. How-

ever, we are interested in finding feasible routes that satisfy the energy bounds on EVs.

Our queries are stochastic, and in fact doubly so. Travel time is always stochastic, and

energy depletion is also stochastic for p-feasible queries. The stochastic dominance criterion

is known to be too restrictive in practice [179], so it is hard to find dominating paths for

most shortest paths in the network. Since the added shortcuts in CHs must not violate

correctness, we can only avoid adding a shortcut covering a shortest path P only if we can

find another witness path that dominates P [64, 153].

We solve this problem by relaxing our definition of dominance as follows. For

distributions TP and DP , we use the restricted-dominance criterion of [28], which checks if

the CDF of one distribution is greater than that of the other within a fixed interval I, which

80

we set to two standard deviations on each side of E[TP] or E[DP]. For search labels, we use

a definition of ε-dominance similar to that of [14, 130]. We say that a label `1 dominates

another label `2 if all breakpoints of b`1 or b′`1 have SoCB values within ε of b`2 or b′`2 . We

set ε = 2% of battery capacity in our experiments.

4.7 Experiments

Our algorithms were implemented in Rust 1.60.0-nightly with full optimizations

and run on an Intel core i5-8600K processor with 3.6GHz base clock, 192KB of L1, 1.5 MB

of L2, and 9 MB of L3 cache and equipped with 64GB of dual-channel 3200MHz DDR4

RAM.

4.7.1 Preparing a realistic routing instance

We extracted traffic speeds from Mapbox Traffic Data1 for Tile 0230123,2 between

15th July and 30th November, 2019. Tile 0230123 covers Los Angeles county between Long

Beach and Oxnard, and yielded a graph with 559,271 vertices and 1,058,450 edges. The

dataset contained speed updates for an edge subset at 5-minute intervals, which we aggre-

gated into weekday and weekend speed histograms. We discarded the weekend histograms

due to sparsity, and and used only the weekday speeds for our experiments. We added

latitudes and longitudes for each vertex from the OSM dataset taken from GeoFabrik,3

contracted the degree-2 vertices, and extracted the largest connected component. This step

resulted in the final routing graph of 244,728 vertices and 453,942 edges.

1https://www.mapbox.com/traffic-data
2https://labs.mapbox.com/what-the-tile
3https://download.geofabrik.de/north-america/us/california/socal.html

81

https://www.mapbox.com/traffic-data
https://labs.mapbox.com/what-the-tile
https://download.geofabrik.de/north-america/us/california/socal.html

We added elevation data from the NASADEM dataset [106] at 30M resolution to

each vertex, using bilinear interpolation to estimate elevations at vertex locations. Lastly,

we obtained charging stations from the Alternative Fuels Data Center,4 marking the vertex

closest to each charging station as the charging vertex. The charging function Φc on each

vertex c was linear, and either (1) a slow, charging to 100% in 100 minutes, or (2) fast,

charging up to 80% in 30 minutes, and up to 100% in 60 minutes. We randomly assigned

the slow charging function to 70% of charging stations, the fast charging function to the

rest.

Energy consumption parameters for εe on all edges e were derived using the vertex

elevations and the values ae, be, ce, de used for Nissan Leaf 2013 in [54]. To force the search

to require charging en route for feasibility, we assumed that the EV had a 12 kWh battery.

Choice of edge weight representation: Histograms capture arbitrary Te and De dis-

tributions, but take more space. Functions may be less faithful to real-world distributions,

but are compact and may lead to faster queries in some cases [132]. We used histograms

to represent the travel time and energy consumption distributions on edges since it allowed

us to represent arbitrary distributions while keeping the implementation simple.

Applying Contraction Hierarchies: Building a full CH by contracting all vertices of

the graph can be prohibitively expensive due to the high cost of contracting the highest

ranked vertices. So, we build a only partial CH by contracting 97% of the vertices, keeping

an uncontracted core containing all the charging stations on the network. Queries are run

in three stages—from s to a vertex in the core restricted to using only (upward) edges

from lower to higher ranked vertices, backward search from t to a vertex in the core using

4https://afdc.energy.gov/fuels/electricity_locations.html

82

https://afdc.energy.gov/fuels/electricity_locations.html

downward edges, and a simple bidirectional search within the core of the network.

4.7.2 Results

Using stochastic edge weights raises many challenges that do not arise for de-

terministic weights. Two obvious issues are maintaining route feasibility, and aggregating

edge distributions Te and De into path distributions TP or DP , which requires expensive

convolutions. Several other issues also arise, two of which we will discuss.

Number of histogram bins: The time and energy value ranges in the path

distributions TP ,DP increases linearly with the number of edges in P , so more histogram

bins are needed to maintain accuracy. As in the deterministic case, the Dijkstra search

labels track the travel time-charging time tradeoff. The labels represent histograms, so the

label sizes increase with the number bins used for TP and DP . Labels become progressively

heavier for longer routes, raising the cost of all operations on the distributions, (convolution,

dominance checks, etc.).

At charging stations, moreover, we must create a set of breakpoints per bin of

the energy depletion histogram. More breakpoints are created for charging stations further

along the route, increasing costs and making label dominance checks labels more difficult.

We also note that the CH shortcuts represent longer routes, whose histograms

have more bins than the original graph edges. Shortcut edges are hence more expensive to

handle than original graph edges, decreasing the utility of shortcuts in speeding up route

planning queries.

Ensuring stochastic feasibility: Standard probabilistic budget routes use a

single criterion, such as travel time [120, 132]. In contrast, our queries must handle search

83

with two criteria to maintain feasibility. Further, the number of breakpoints in the charging

functions along a route determines the number of labels generated.

Table 4.3: Single-criterion probabilistic budget routing queries [132] vs. our E-feasible and

p-feasible queries on the Tile 0230123 graph. Times (seconds) are averages over 100 random

vertex pairs. The energy consumption model is for a Nissan Leaf 2013 with 12 kWh battery

and 50% starting SoC.

Ignoring E-feasible p-feasibleRoutes

d Feasibility Routes p = 0.8 p = 0.85 p = 0.9

5 min. 6.192 10.662 13.313 12.222 11.41
15 min. 19.999 24.711 39.977 40.24 37.11
25 min. 45.384 38.123 79.875 77.8 76.34

Table 4.3 quantifies the overhead of maintaining feasibility of routes in stochastic

settings, and compares the query times for single-criteria probabilistic budget routes (time

only, feasibility ignored) with those of our two-criteria feasible probabilistic budget routes.

Single-criteria routing is fastest, followed by E-feasible routing, and p-feasible routing. The

anomaly for d = 25 minutes can be understood as follows. Multicriteria search must explore

a larger set of routes from the source than single-criteria queries, because it needs to return

the pareto frontier of routes, rather than a single route. The E-feasible and p-feasible queries

must also carry and update per-vertex labels, and maintain more information in each label to

capture the travel time-charging time tradeoffs. However, we use the restricted dominance

criterion for E-feasible and p-feasible routes but not for the single-criteria routes, making

the cost per convolution is slightly lower for the two feasible-path queries. This suffices to

make E-feasible routing slightly faster for longer routes than even single-criterion queries.

Table 4.4 compares E-feasible and p-feasible queries, for longer deadlines. E-

84

Table 4.4: E-feasible and p-feasible query performance on the Tile 0230123 graph, with

real-world charging station and elevation data. Times (seconds) are over 500 random vertex

pairs. Energy consumption model is for a Nissan Leaf 2013 fitted with a 12 kWh battery

and 50% starting SoC.

Query Feasibility Time Budget (d)
Type Threshold 10 min. 20 min. 30 min. 40 min.

E-feasible — 18.01 34.975 48.662 72.198

p = 0.8 32.221 53.001 86.479 96.98
p = 0.85 28.112 51.556 85.55 95.77
p = 0.9 27.863 51.003 84.62 96.01

p-feasible

feasible queries are generally faster than p-feasible queries because they must convolve

only TP , but p-feasible queries convolve both TP and DP . p-feasible queries with higher p

thresholds tend to run slightly faster, as they can prune the search quicker than searches

run with lower p.

Table 4.5: Average Jaccard Index for 500 random E-feasible and p-feasible routes, with

p = 0.85. The index is 0 when the routes are edge-disjoint, and 1 when they are identical.

Queries Compared d (min.) Avg. Jaccard Index

10 min 0.71
20 min 0.74
30 min 0.88
40 min 0.96

E-feasible and p-feasible,
for p = 0.85

Table 4.5 shows how similar the E-feasible and p-feasible routes are, using the

average Jaccard Similarity between the set edges of a route chosen by each of them. The

Jaccard similarity for two routes P1 and P2 is the number of edges common to both divided

85

by the number of edges in their union. That is,

J(P1, P2) =
|{e ∈ P1} ∩ {e ∈ P2}|
|{e ∈ P1} ∪ {e ∈ P2}|

The Jaccard index clearly increases with the time budget, so the E-feasible and

p-feasible routes are more similar when the routes are longer. This is because longer routes

require more convolutions, making DP closer to the Gaussian, which is more concentrated

near its mean. In such cases, the pruning of edges forced by the feasibility criterion brings

the set of edges of E-feasible routes closer to the set of edges for p-feasible routing. For

shorter routes, however, the difference between the two types of queries is higher. Hence,

if stronger feasibility guarantees are desired for shorter routes, p-feasible queries may be

better.

86

Chapter 5

The Tiering Technique for

Stochastic Contraction & Edge

Hierarchies

5.1 Introduction

For route planning, road networks are traditionally modeled as graphs with static

edge weights representing travel times. In practice, however, no two vehicles travelling along

the same road segment can be expected to take the exactly same amount of time. A more

accurate model would represent edge weights as stochastic quantities, drawn from discrete

or continuous travel time distributions. Fixed edge weights yield unique shortest paths, but

with stochastic edge weights, one can define shortest paths only in a probabilistic sense.

The shortest path computation is also more complicated, since edge weight distributions

87

cannot be directly compared. Route planning with stochastic edge weights allows for several

types of shortest path queries [4, 6, 34, 37, 38, 74, 113, 116, 114, 115, 95, 102, 119, 120, 137,

169, 167, 180, 176]. Since stochastic route planning is inherently a harder problem than

its deterministic counterpart, speedup techniques have been explored to make queries more

practical [95, 120].

5.1.1 Contraction and Edge Hierarchies

Contraction Hieararchies (CHs) [64, 65] and Edge Hierarchies (EHs) [73] are speedup

techniques originally developed for deterministic route planning, and find shortest paths in

two stages. In the preprocessing stage, shortcut edges are added to the graph. In the query

stage, these shortcut edges help answer shortest path queries quickly. CHs and EHs are

similar, and work as follows: given a road network modeled as a graph with travel times

as edge weights, each vertex (or edge) is assigned a rank, and the contraction operation

is applied to all vertices (or edges) in increasing order of rank. Contracting a vertex adds

a shortcut edge to the graph if it lies on the shortest path between its two of its neigh-

bour vertices (or edges). The query stage runs a bidirectional Dijkstra’s algorithm from

the source and target vertices, settling only vertices (relaxing only edges) that have higher

ranks than the source or target.

5.1.2 Handling Uncertain Edge Weights

CHs have been applied in uncertain settings [120], but no prior work exists on

applying EHs in uncertain contexts. EHs have higher preprocessing costs since they pre-

process more edges, and offer a finer grained hierarchy. They are also known to have worse

88

Figure 5.1: Histograms are better lower levels of a hierarchy (blue edges), as they can

represent arbitrary distributions. At higher levels (green edges), shortcuts connect vertices

farther away, and distributions such as Gaussians offer compactness and fast convolutions,

while losing little accuracy.

query times for scalar edge weights. Nevertheless, EHs are more selective in relaxing edges

in the query phase, and hold the the promise of better performance when relaxing edges is

expensive. Finding stochastic shortest paths is one such application.

When edge weights are modeled as probability distributions, a major cost of finding

shortest paths is computing convolutions of edge weights. Edge weight distributions can

be represented in different ways, including histograms and continuous functions [169, 115].

The choice of edge weight representation can significantly affect shortest path query times,

since each makes a different tradeoff between error, convolution costs, and space usage.

The Tiering Idea

In this work, we present the tiering technique for CHs and EHs, which intuitively

works as follows: The set of shortcut edges in a CH or EH with uncertain weights is divided

into a series of tiers, each tier using an edge weight representation suitable for that tier.

89

For instance, lower-ranked shortcut edges are likely to connect local vertices, with travel

time distributions that are unusual and non-standard. Histograms, which can represent

arbitrary distributions well, are likely to be better representations here. However, shortcuts

ranking higher in the CH or EH connect far-away vertices, and represent travel over many

graph edges. Their edge weight distributions are aggregations over multiple distributions,

and likely to converge to stable distributions, such as the Gaussian. For most high-ranked

shortcuts, using a simple Gaussian distribution offers fast convolutions and is compact and

accurate.

We apply tiering to both EHs and CHs, and present Uncertain Contraction Hi-

erarchies (UCHs) and Uncertain Edge Hierarchies (UEHs), whose edge weights represent

stochastic travel times. Given a graph G = 〈V,E〉, a source s ∈ V and destination t ∈ V ,

we study UCHs and UEHs for the following types of stochastic queries:

1. Non-dominated routes: Find routes between s and t that have edge weight distribu-

tions not dominated by other routes.

2. Probabilistic budget routes: Find a route that maximises the probability of travel cost

being within a given budget b.

3. Mean-risk routes: Given a risk aversion coefficient c ≥ 0, find routes minimizing

(mean travel time + c ∗
√

variance).

We show that tiered UCHs and UEHs offer much faster stochastic routing query times than

their non-tiered variants for all three query types, when coupled with proper heuristics.

Current literature suggests that EHs have inferior query performance to CHs.

However, we show that for all query types, UEHs can have query times comparable to UCHs,

90

under the proper optimizing heuristics. UEHs, however, still require higher preprocessing

times. This is because while the query algorithms for both EH and CH are very similar,

EHs relax far fewer edges due to their finer grained hierarchy, but CHs offer better stalling

performance.

5.2 Related Work

Stochastic route planning dates to as far back as 1968, when [58] presented a

Monte Carlo method to estimate the joint probability distribution of the shortest path in a

graph with edge weights assumed to be probability distributions. Recent work on stochastic

routes can be categorized in several ways: i) path versus edge-based algorithms, ii) whether

edge weights are known when the vehicle reaches an edge iii) histogram versus continuous

distributions used as edge weights. We look at these categorizations in this section.

Static vs adaptive edge weights: Two routing scenarios are possible here. First,

given a graph and a set of edge weight distributions, we are to find the shortest path for

a given definition of ‘shortness’ [120, 115, 114]. Second, the exact edge weight is ‘revealed’

when the search reaches a vertex, such as in the Stochastic On-Time Arrival (SOTA) and

SPOTAR problems [113, 137, 6, 84], we are required to find the optimal policy for the driver

to follow in order to have the highest probability of reaching the destination before deadline.

Path vs. edge centric routing: Most work on stochastic and deterministic routing

is edge-centric. Edge weights or distributions are considered to be independent and the

smallest unit of a path in a graph. Some authors [6, 40, 167, 169] argue that stochastic

route planning should use paths and not edges as the smallest unit of routing, since travel

91

times between edges of a network can be correlated.

Histograms vs. distributions: Edge weight distributions may be modeled as func-

tions [116, 115, 114, 95], or as histograms [6, 120, 169]. Histograms discretize time, and are

easy to create from spatiotemporal probe data, but perform well only with sufficient data.

Functions are difficult to obtain, but do not depend on the availability of data. A very

recent preprint [78] attempts to bridge this divide by combining the advantages of the two

representations.

5.3 Background

We are given a graph G = 〈V,E〉, where V is the set of vertices and E ⊆ V × V

is the set of edges, and a stochastic edge weight function W : E → R mapping each

edge e to a random variable Re ≥ 0. A path is a sequence of vertices [v0v1v2...vn] where

(vi, vi+1) ∈ E. An s-t path is a path [s = v0v1v2...vn = t] with s and t as the first and last

vertices respectively.

The cost of path P is the sum of all stochastic edge weights along P , and is denoted

cost(P). If we have edges e1, e2, . . . , ek along P , with weight distributionsW (e1),W (e2), . . . ,W (ek),

we denote the aggregate distribution along P through the convolution
∑k

i=1W (ei).

5.3.1 Stochastic Route Planning

We are interested in three types of stochastic routing queries: probabilistic budget

routing, non-dominated routes, and routes that optimize the mean-risk objective.

92

Probabilistic budget and non-dominated routing

In probabilistic budget routing [120], we are given a source s ∈ V , a target t ∈ V

and a cost budget b ≥ 0. We are to find an s-t path P that maximizes the probability

that cost(P) ≤ b. A simple example would be a driver trying to reach an airport before a

deadline b, which is the budget. We would want a route that maximises the probability of

reaching the airport before the deadline.

The goal of non-dominated routing or pareto-optimal routing is to find to find the

full set of paths between source and destination vertices that are not dominated by other

paths. A path P is said to dominate another path P ′ if the travel times for P are always

lower than that for P ′. Edge weights in these problems can be required to satisfy the First-

In-First-Out (FIFO) property. This ‘no overtake’ rule guarantees that vehicles using the

same path will complete the trip in the same order that they started it. Stochastic routing

has been studied both for cases when the edge weights satisfy the FIFO property [102, 180]

and they do not [120].

The Mean-risk model

In the mean-risk model of paths, the objective is to minimize a linear combination

of the mean and variance of edge weights along the path [114]. A typical metric to minimize

is travel time delays along a path. Formally, we have a graph G = 〈V,E〉 and an edge weight

function W : E → R that assigns a Gaussian travel time delay distribution to each e ∈ E,

a source s ∈ V , a target t ∈ V , and a risk-aversion coefficient c ≥ 0. Then, if µ : E → R+

is a function that maps each edge e to its mean µe of travel time delays and τ : E → R+

93

maps every edge e to the variance τe of its travel time delay, our objective is to find a path

P from s to t that minimizes
∑

e∈P (µe + c
√
τe).

The work in [95] showed how to make routing practical under the mean-risk model

by dividing routing into two stages. In the preprocessing stage, a set of distance oracles [159]

are created from the inputs. In the query stage, the distance oracles are used to speed up

the queries. However, a drawback of this method is that c must lie within a pre-specified

range.

5.3.2 Edge Hierarchies

Edge Hierarchies were introduced in [73] as a speedup technique for deterministic

(non-stochastic) routing, and are closely related to Contraction Hierarchies [64]. Both

techniques add shortcut edges to the graph in the preprocessing stage. The query phase

consists of running a slightly modified bidirectional Dijkstra’s search, where both forward

and backward searches only settle vertices (or relax edges) that are ranked higher than the

source in forward search and the target in the backward search. We detail the two stages

in the remainder of this section.

The preprocessing stage

Let G = 〈V,E〉 be a graph and W : E → R+ be a function that assigns static

non-negative weights to each e ∈ E. Each edge in E is first given a rank according to some

heuristic. Let r(u, v) be the rank of the edge (u, v).

Initially, all edges are unranked. In each iteration, an unranked edge (u, v) is

picked, and the contraction operation applied to it as follows: a Dijkstra’s run is used to

94

determine if (u, v) lies on the shortest path between any unranked edges (u′, u) and (v, v′).

If it does, shortcut edges (u, v′) and (u′, v) are added to a set S. Next, the algorithm

computes a minimum vertex cover of the bipartite graph in S. The edges that remain after

the minimum vertex cover are then added to G and (u, v) removed.

The edge ranking heuristic can make a significant difference in both preprocessing

and query times. In [73], the edges are ranked in rounds. At the beginning of each round,

a subset of remaining unranked edges is picked. Edges are picked in increasing order of the

number of shortcuts that would be added if they were to be contracted. The next round

begins after all edges in the current round have been ranked. While the optimal order of

edges can be found for Contraction Hierarchies [103, 16], finding the optimal ordering of

edges to contract remains an open problem.

The query stage

In the query stage, rank 0 is assigned to the source s ∈ V and target t ∈ V .

Bidirectional Dijkstra’s is now run so that in every iteration, only edges (u, v) with r(u, v) >

r(u) are relaxed. Also, the distance of a vertex v from source is updated in the priority

queue while relaxing edge (u, v), r(u) = r(u, v). The Dijkstra’s search yields the shortest

path between s and t.

The query stages of Contraction and Edge Hierarchies use stalling techniques to

terminate search early, significantly lowering query times. CHs are known to perform well

with stall on demand, where forward search terminates at v ∈ V when a shortest path can

not be found via the incoming edges in the backward search [73]. Similarly, the backward

search terminates at v ∈ V when a shortest path cannot be found via outgoing edges in

95

the forward search. However, stalling on demand can be potentially wasteful as it may

relax every edge twice: once for settling, and once for stalling. Therefore, EHs use stall

in advance, where the search relaxes every edge at most once. This is achieved as follows:

when search reaches vertex v all edges (v, v′) that are both higher and lower ranked than

vertex v in the search are relaxed. The updated distance for lower ranked edges is then

stored in a separate label, which can be used to check the distance in the stalling check.

EHs have been explored in some depth in [73], with results showing that CHs

outperform EHs significantly. Our work shows however (Section 5.5), that this large perfor-

mance disparity is not inherent to EHs. Our implementation of EHs, which uses adjacency

lists, shows significant performance gains over that of [73].

5.4 Uncertain Hierarchies

Three major factors affect the performance of speedup techniques, beyond low-

level optimizations: the structure of the road network, the available ‘hierarchy’ in edge

weights that can be exploited by adding shortcuts to the graph, and the runtime cost of

basic operations required to compute edge weights. For instance, CHs are known to perform

well for graphs with a low road or skeleton dimension, and perform much better if travel

times are used as edge weights, rather than physical distances between the vertices [31, 85].

Further, the cost of operations required on edge weights is a significant component of the

algorithm engineering required for data structures such as the Time-dependent Uncertain

Contraction Hierarchies [120]. Our goal in this section is to develop Uncertain Contraction

and Edge Hierarchies for stochastic routing.

96

Problem Definition: Given a road network modeled as a graph G = 〈V,E〉

where V is the set of vertices and E : V ×V is the set of edges, and an edge weight function

W : E → R that assigns to all e ∈ E a random variable in R with range R+ representing

uncertain travel times. Given a source s ∈ V and target t ∈ V , we are to answer the

following three queries:

1. Probabilistic budget routes: Given a budget b, find an s-t path P that maximizes the

probability of cost(P) ≤ b.

2. Non-dominated routes: Find the complete set of paths between s and t such that no

route is ‘dominated’ by another.

3. Mean-risk routes: Given a risk-aversion coefficient c ∈ R+, find an s-t path P to

minimize
∑

e∈P (µe + c
√
τe), where µe and τe are the mean and variance of the travel

time on e ∈ E.

5.4.1 Tiering in Hierarchies

Travel-time distributions are often derived from collected trajectory data [169,

120, 35, 95] or other traffic sensors [9]. Broadly, there are two ways to represent uncertain

edge weights: using histograms [120, 6, 169] or using continuous functions [115, 74, 167, 95].

Speed-up techniques for graphs with uncertain edge weights benefit greatly if the edge

weight representations have the following properties:

1. Accuracy : The representation should capture all the information about the edge cost

distribution without errors.

97

2. Cheap convolutions: Convolution is a basic operation in finding shortest paths, so

representations that offer cheaper convolutions can improve query performance.

3. Space efficiency : Compact edge weight representations can have improve cache per-

formance, reducing query times.

Histograms and continuous distributions make different tradeoffs between these properties.

Since most real-world data is collected by sampling periodically, rather than continuously,

histograms are usually the most accurate representations of available information. However,

the source distributions can be arbitrary, so convolving two histograms can be expensive. In

contrast, convolutions are much faster when the edge weights resemble stable distributions

such as the Gaussian.

When using continuous functions to represent edge weight distributions, compact-

ness and the convolution costs depends on the properties of the edge weight distributions.

If all functions are stable distributions such as the Gaussian [115, 95], convolution is just

the two additions, since for two random variables F = N (µ1, σ
2
1) and G = N (µ2, σ

2
2),

F ∗G = N (µ1 + µ2, σ
2
1 + σ2

2). However, using more complex representations, like Gaussian

Mixture Models, can be less compact and have high convolution costs [167].

Definition 16. A tier T in a CH or EH is the set of shortcut edges with ranks τTmin ≤

r(e) < τTmax for given thresholds τTmin and τTmax.

A tier T is marked as a histogram tier or a function tier depending on whether

histograms or continuous functions are used to represent the edge weights for edges in T .

For edges in a histogram tier, a histogram with a fixed bucket width w and number of

98

buckets b is used to represent edge weights. Similarly, edge weights in a function tier are

represented by a mixture of one or more stable probability distributions.1.

Definition 17. A tiered contraction or edge hierarchy is a series of tiers [T1, T2, ...TN] such

that τ
T(i+1)

min = τTimax + 1, i = 1, . . . , N .

The next problem is to choose the number and type of tiers for the hierarchy.

Here, the Central Limit Theorem suggests a useful heuristic: edges with weights derived

from a large number of convolutions are likely to have distributions that approximate the

Gaussian. Using this heuristic, we use a two-tiered contraction or edge hierarchy, which

contains a histogram tier H with thresholds τHmin and τHmax, and a Gaussian tier G with

thresholds τGmin and τGmax that uses a Gaussian distribution for weights of all edges in G.

Note that [120] uses a similar heuristic for pruning Dijkstra’s search. However,

an important difference is that we use the central limit theorem to alter the structure of

the contraction or edge hierarchy in the preprocessing stage. Moreover, we do not consider

time-varying edge weights.

5.4.2 Uncertain Edge Hierarchies

We model Uncertain Edge Hierarchies (UEHs) as two-tiered hierarchies. We now

show their construction and use to answer the three types of stochastic routing queries

under consideration.

1A stable probability distribution is one such that the linear combination of two or more random variables
with the distribution results in the same distribution.

99

Figure 5.2: Tiering in shortcut hierarchies. Distributions are represented as histograms in

Tier H, and as Gaussian approximations in Tier G.

Preprocessing

The edges in E are ranked in rounds. In each round, for every unranked edge,

we find the number of edges that would be added to G if they were ranked in this round.

Then, a set of edges that would add the minimum number of edges among their neighbor

edges is picked and added to the ranking set S in increasing order. We then rank edges in

S in the current round.

To rank an edge (u, v), we first run the witness search to find shortest paths from

u′ to v′ such that (u′, u) ∈ E and (v, v′) ∈ E. If (u, v) is on the shortest path from u′ to v′,

we add (u, v) to S. Then, we find the bipartite minimum vertex cover MVC over S, and

add all edges in MVC to G.

100

Determining the Tier Thresholds

We must next find suitable thresholds for the histogram tier H and the Gaussian

tier G of the UEH. Since H is the lower tier, τHmin = 1.

We find τGmin as follows. Since the number of edges is very large, we use sampling,

and examine only one in λ edges. Let e be a sampled edge with edge weight histogram

W (e). We first construct a Gaussian distribution N (µe, σ
2
e) with mean and variance equal

to that of W (e). We next sample this Gaussian and construct a histogram G(e). Finally,

we compute the KL-divergence [88] between G(e) and W (e) for the shortcut edges e being

added. Given two discrete distributions G,W on a probability space χ,

DKL(W‖G) =
∑
x∈χ

W (x) log
W (x)

G(x)
.

If the KL-divergence is less than a predetermined similarity threshold σT for all the edges

to be added, we set τGmin = λ and τHmax = λ − 1. Algorithm 3 shows the pseudocode for

computing UEHs.

The sampling frequency λ and similarity threshold σT are configuration parameters

for the UEH. Since λ depends on the number of edges in the EH, 1 ≤ λ ≤ |E|. The

paramaeter λ presents a tradeoff between preprocessing times and query times. Similarly,

σT trades off the accuracy for the routing query times. Setting a low λ means that we check

for threshold of tiers H and G more often while building the UEH, resulting in faster query

times but a much higher preprocessing cost. Conversely, setting λ too high would make tier

H contain more edges than strictly required, and the queries would no longer benefit from

101

Algorithm 3 Building the two-level Uncertain Edge Hierarchy

1: procedure BuildEdgeHierarchy
2: currentRank ← 0, T ← ‘H ′

3: while unranked edges remain in G do
4: Pick unranked edge (u, v); r(u, v)← currentRank
5: for unranked (u′, u) do
6: for unranked (v, v′) do
7: if (u, v) lies on shortest path from u′ to v’ then
8: S ← S ∪ {(u′, u), (v, v′)}
9: end if

10: end for
11: end for
12: MVC ← Bipartite Minimum Vertex Cover over S
13: if currentRank is a multiple of λ then
14: for e ∈MVC do
15: µe ← mean, νe ← variance of W (e)
16: KL← KL ∪ {DKL[W (e) ‖ N (µe, ν

2
e)]}

17: end for
18: if all edges in KL have similarity < σT then
19: T ← ‘G′

20: end if
21: end if
22: Add edges in MVC to tier T
23: currentRank ← currentRank + 1
24: end while
25: end procedure

102

the cheaper cost of convolutions in tier G. On the other hand, setting a high σT means we

approximate edge weight histograms with Gaussian distributions even when the two differ

significantly, reducing query accuracy. Finally, setting σT too low slows down queries as

the UEH contains mostly edge weight histograms that have a high computational cost for

convolutions.

5.4.3 Stochastic Query Processing

Let s ∈ V be the source and t ∈ V be the destination. Since each edge is assigned

an integer rank as in the deterministic EH, there exists an up-down path between s and t

[73]. The search algorithm is a bidirectional Dijkstra’s run from s and t, which first sets

the vertex ranks r(s) = 0 and r(t) = 0. Then, search in both directions expands only

edges with rank greater than r(v) after reaching vertex v. If the distance of a vertex v

from source is updated in the priority queue while relaxing edge (u, v), r(u) is set to r(u, v).

The key difference UEHs and standard deterministic EHs, however, is that UEHs have edge

weights represented as either histograms or continuous functions. Therefore, as the search

progresses, it may relax edges from one or both tiers H and G. Whenever a Dijkstra’s

search starting from tier T ∈ {H,G} reaches some edge e 6∈ T , we call e a boundary edge.

Lemma 18. A shortest path between any two vertices s and t in a UEH can contain at

most two boundary edges.

Proof. Since all shortest paths in a UEH are up-down paths, let P = [s = v1, v2, ..., vm, ..., vn =

t] be a shortest path such that r((vi, vi+1)) < r((vi+1, vi+2)) for 1 ≤ i < m, and r((vj , vj+1)) >

r((vj+1, vj+2)) for m ≤ j ≤ n. Only one of two cases can arise.

103

First, if rank r((vm−1, vm)), < τGmin, all edges in P lie in tier H, and P has no

boundary edges. Second, if r((vm−1, vm)) ≥ τGmin, we must have i, j ∈ [1, n] such that

r((vi, vi+1)) ≤ τGmin ≤ r((vi+1, vi+2)), and r((vj , vj+1)) ≥ τGmin ≥ r((vj+1, vj+2)). Then,

(vi+1, vi+2) and (vi+1, vi+2) are the two boundary edges in P .

Error Bounds for KL Divergence

In a UEH, the weight of a shortcut edge e is the convolution of all edge weight

distributions that the shortcut replaces. However, if e lies in tier G, we store only a Gaussian

approximation of the exact distribution such that the maximum KL Divergence between

the two is σT . The maximum error this approximation induces for an edge weight is given

by Pinsker’s inequality [126]:

‖W (e)−N (µe, ν
2
e)‖1 ≤

√
2σT , where (5.1)

‖W (e)−N (µe, ν
2
e)‖1 = sup{|W (e)(x)−N (µe, ν

2
e)(x)|, x ∈ R}

Here, ‖W (e)−N (µe, ν
2
e)‖1 is the L1 distance between the exact edge weight distribution of

edge e, W (e) and N (µe, ν
2
e), its Gaussian approximation. The L1 distance is the maximum

difference between the two values for any observation x ∈ R for which they are defined.

As longer shortcuts are added to the UEH at higher levels, we can determine

the rate at which the edge weight distributions converge to Gaussian distributions. Us-

ing Lemma 18, an s-t shortest path P can be divided into a sequence of three subpaths

{PH , PG, PH′} where PH and PH′ lie in tier H and PG lies in tier G. The edge weights in PH

and PH′ are exact histograms that induce no error, while those in PG use approximations

104

with Gaussian distributions. Let s(e) represent the edges in G that each shortcut edge

e ∈ PG replaces. Then, the total number of “unpacked” edges in PG is Σe∈PG
s(e). Finally,

the rate at which convolutions of edge weights in PG converge to a Gaussian distribution is

given by the Berry-Esseen theorem [29, 51],

sup|Sn(x)− Φ(x)| ≤ CΣn
i=1ρi√

(Σn
i=1σi)

3
, where x ∈ R. (5.2)

Here, Sn(x) is the CDF of Σe∈PG
W (e), Φ(x) represents CDF of the standard Gaussian

distribution, C = 0.56 [146], ρi is the expected value of third moment of ith edge weight

<∞, σi is the variance of ith edge and n is the total number of unpacked edges Σe∈PG
s(e).

Equation 5.2 can be used to get the rate of convergence and error in a shortest

path query only after all the edges along the shortest path from s to t are known. Further,

every query can then be as inaccurate as the bound given by Equation 5.2.

Using the Hellinger Distance

An alternative approach to the UEH would be to use the Hellinger Distance

(HD) [72] instead of KL-Divergence for constructing the hierarchy. For discrete proba-

bility distributions P = {P1, P2, ..., Pk} and Q = {Q1, Q2, ..., Qk}, the Hellinger distance

is H(P,Q) = 1√
2

√
Σk
i=1

(√
Pi −

√
Qi
)2

. Unlike KL Divergence, HD satisfies the triangle

inequality, which can be used to reduce the approximation error by storing the HD in each

edge weight in tier G, and including it in the dominance criterion in the query phase. Each

stochastic routing query then returns the pareto-optimal set of routes with two objectives:

to minimize the distance from s to t, and to minimize the approximation error. We call this

105

new variant of UEHs the HD-UEH. The original version of UEH is called the KLD-UEH,

since it uses the KL Divergence to construct the hierarchy.

Query Processing Details

We now consider the three types of queries described in Section 5.4.

(1) Non-dominated routes: To find non-dominated routes, we maintain two label sets at

all vertices. At v ∈ V , Lun(v) and Lset(v) respectively store the unsettled and settled labels

for a Dijkstra search. Before each query, all sets are emptied. A bidirectional Dijkstra

search starts from source s and target t, setting r(s) = r(t) = 0. On reaching vertex v, a

Dijkstra label `v = 〈dist(v), ξv〉 is created and added to Lun(v), where dist(v) represents the

convolution of all edge weights on the current path from s to v, and ξv is the error term. In

KLD-UEH using KL-Divergence, ξv is set to a null value. In the HD-variant of UEH, when

the search reaches a vertex u, on relaxing edge (u, v), we set ξv = ξu +HD(u, v). Since HD

satisfies the triangle inequality, HD(s, v) < HD(s, u) +HD(u, v).

We bound the approximation error in an HD-UEH as follows. Assume that P =

[s = v1, ..., vb, vb+1..., vb′ , vb′+1, ..., vn = t] is a shortest path, where (vb, vb+1) and (vb′ , vb′+1)

are the boundary edges. P comprises the three subpaths S = [v1, ..., vb], S
′ = [vb+1, ..., v

′
b]

and S′′ = [vb′+1, ..., vn], where S and S′′ lie in tier H, and S′ lies entirely in tier G. Only S′

can cause an approximation error in P .

We quantify the error from S′ as follows. Assume that a Dijkstra search starts from

vb and reaches vb′ , spawning a label `′ at vb′ . Let ξb′ ∈ `′ be the error term in label `′. Let

CS′ be the convolution of the edge-weight histograms along the path, so CS′ = Σe∈S′W (e).

106

Figure 5.3: Computing approximation error on a path in UEH. Gaussian approximations

are used only on the tier-G subpath. When this subpath is known, KLD-UEH uses Pinsker’s

inequality (Equation 5.1) to find the total error, while HD-UEH propagates an error term

in Dijkstra’s search labels.

Let costS′ be the convolution of the Gaussian approximations along the path. Then, ξb′

is an upper bound on the Hellinger Distance between costS′ and CS′ . By the definition of

Hellinger Distance,

ξb′ >
1√
2
‖costS′ − CS′‖2

To compute the non-dominated routes, we do not terminate the Dijkstra search on reaching

vertex t. The search terminates only when the priority queue contains no more vertices.

(2) Probabilistic budget routes A Probabilistic Budget Route query runs exactly like a non-

dominated route query, with an additional pruning criterion: on relaxing an edge (u, v), we

compare the distance from the s to v and compare it with b. If the search reaches a vertex

with distance from source greater than b, it is terminated.

(3) Mean-risk objective Our method is similar to [95], which creates a set K of distance

oracles [159] with deterministic edge weights, to ε−approximately answer shortest path

107

queries that minimize the mean-risk objective. In their settings, ∀e ∈ E, W (e) = N (µe, τ
2
e).

Then, given an ε, they set ξ =
√

ε
1+ε , L = min(τe) and U equal to the maximum variance

along any path in G. Finally, they show that it suffices to build distance oracles with edge

lengths lk = kµe + τe for each k ∈ {L, (1 + ξ)L, (1 + ξ)2L, ..., U}, and collected in set K.

In [95], all the edge weights distributions are Gaussian. In a UEH, in contrast,

only edges weights in tier G are Gaussian. Therefore, we build a set K of deterministic

EHs for the subset of complete graph in tier G. Further, we set ε to a very low value, in

order to avoid have approximation errors from both our approximations and their method.

Therefore, we get ξ close to 1 and derive L and U empirically from the dataset.

A query for a risk aversion coefficient c runs like one for Non-Dominated Routes,

with one change: after a Dijkstra search from s ∈ V reaches a boundary edge be, the search

in tier G runs a shortest path query on all EHs in set K. The path with minimum (µ+c
√
τ)

among all shortest path queries is the shortest path in tier G. After the second boundary

edge be′ along the search is reached, it progresses to target t ∈ V by convolving histograms

on the path.

5.4.4 Uncertain Contraction Hierarchies

We also model Uncertain Contraction Hierarchies (UCHs) as two-tiered hierar-

chies. The a lower tier H holds low-ranked local edges using histograms, and an upper tier

G, storing only Gaussian approximations of edge weights. The thresholds of tier H are

given by τHmin and τHmax, and those of tier G are given by τGmin and τGmax. We now describe

the preprocessing and query algorithms for UCHs.

108

Preprocessing

We proceed as with UEHs. First, all vertices are ranked using a heuristic or an

exact method. Then, the vertices are contracted in order of rank, and on every λth vertex

contracted, we compute the KL-Divergence (or Hellinger Distance) between the edge weight

of the shortcut being added and a Gaussian with same mean and variance. If on contracting

v ∈ V , the KLD or HD of all shortcuts being added to the graph is less than σT , we set the

threshold τGmin to the rank of vertex v.

Query Processing

All three query types can be handled with algorithms similar to those for UEHs,

with two differences. First, while building UCHs for minimizing the mean-risk objective,

we create CHs instead of EHs for the shortcut edges in tier G. Second, as with their

deterministic versions, we use stall on demand for UCHs and stall in advance for UEHs.

5.4.5 Stable Distributions and Limitations

Our heuristic for tiering in a hierarchy uses edge weight representations at the

lower levels more faithful to real-world data, but approximates with stable distributions at

higher tiers, so convolutions are cheaper. This heuristic may not be universal, however. For

example, some works use the log-normal and beta distributions as edge weights [84]. Our

current heuristic also relies on convergence of edge weight distributions to stable distribu-

tions, such as Gaussians, for longer routes. We have found that this works well for travel

times, but further work is needed to validate this for more general distributions. There may

be statistical limit theorems that may be helpful for constructing suitable heuristics.

109

5.5 Experiments

To evaluate our methods, we implemented our algorithms in Rust and compiled

them with rustc 1.54.0−nightly with full optimizations. All experiments are then run on

an Ubuntu Linux machine running kernel 5.4.0 equipped with an Intel i5-8600K 3.6 GHz

processor with 1.5 MB of L2 and 9 MB of L3 cache. The machine has 64 GBs of DDR4-2133

Mhz RAM.

5.5.1 Baselines for Deterministic Routing

The work in [73] suggests that CHs outperforms EHs significantly. However, their

implementation uses adjacency arrays for CH, and adjacency lists for EH, confounding the

effects of this difference with possible factors inherent to EHs. Our experiments show that

the implementation makes a big difference, and any inherent performance disparities are

smaller than previously thought. These are fairer comparisons between CH and EH.

First, we compare our implementation against reference implementations of Con-

traction and Edge Hierarchies, using static edge weights. We use the CH implementation

from the RoutingKit library2 and the EH 3 made available by the authors. Both reference

implementations recommend using the GCC compiler toolchain, so they were compiled with

GCC 10.2 with full optimizations. All benchmarks were run on the same machine. The

graph datasets used are from the 9th DIMACS challenge 4 and an instance of the road

network of Los Angeles area taken from OpenStreetMaps (OSM). The edge weights in DI-

MACS instances are pre-populated. For the OSM dataset, we use the Vincenty’s distance

2https://github.com/RoutingKit/RoutingKit
3https://github.com/Hespian/EdgeHierarchies
4http://www.diag.uniroma1.it//~challenge9/

110

https://github.com/RoutingKit/RoutingKit
https://github.com/Hespian/EdgeHierarchies
http://www.diag.uniroma1.it//~challenge9/

between coordinates of adjacent vertices, and divide the distance by the maximum speed

allowed on the road type to obtain travel times.

Dataset Source Vertices Edges

New York DIMACS 264346 733846
Bay Area DIMACS 321270 800172
California & Nevada DIMACS 1890815 4657742
USA West DIMACS 6262104 15248146
Los Angeles Area OSM 2549286 1666283
Tile 0230123 (contracted) OSM 244728 453942

Table 5.1: The DIMACS graphs and the LA area OSM graph used to evaluate our CH and

EH implementation, for fixed edge weights. Tile 0230123 is a part of the LA area OSM

graph between Long Beach and Oxnard, covering most of LA city. We contract all vertices

with degree < 2 for Tile 0230123.

Our implementation uses a different language and compiler toolchain than both

reference implementations. Moreover, both our CH and EH implementations represent

graphs as adjacency lists. This is in contrast with RoutingKit, which uses adjacency arrays.

The effects of this choice are clearly visible in Table 5.3. Our EH implementation has

much better preprocessing and query performance than the implementation in [73]. This

is because our implementation shows much better cache utilization than that of [73]. For

CHs, our implementation has somewhat better preprocessing times with travel times as

edge weights, but worse preprocessing times with the distance metric. The query times of

our CH implementation are worse than RoutingKit for both metrics due to the difference

in graph representations.

111

5.5.2 Stochastic Routing

Our CH and EH implementations are generic, and support scalar or composite

edge weights such as histograms and continuous functions. We benchmark the three kinds

of stochastic queries on Tileset 0230123, a subset of the Los Angeles OSM graph.5.

The travel time distributions are obtained from the Mapbox traffic data API 6 for

Tile ID 0230123, which updates the edge travel times at 5-minute intervals. We collected

the data for four and a half months between 15th July and 30th November 2019, giving us

42,299 travel time updates of the underlying graph edges. These updates were grouped into

30-minute intervals over the 24 hours in a day, then histograms extracted separately for

weekdays and weekends. The weekend travel time histograms are much sparser than those

for weekdays, and are therefore not used for our experiments. This is because both UCHs

and UEHs use histograms to represent edge weights at lower levels of the hierarchy, which

are known to be inaccurate when number of observations is low [78].

To ensure reasonable query processing times, we contracted the vertices in the road

network with degree ¡ 2. This reduces the number of graph vertices and edges significantly,

speeds up preprocessing and query times without losing accuracy. This method is used for

maps derived from OpenStreetMaps in prior works [13].

Preprocessing Times: Figure 5.4 shows preprocessing times for all three query

types. Non-Dominated Routes and Probabilistic Budget Routes can both be computed on

the same underlying graph, so we construct only one UEH and UCH of each type for these

query types. The preprocessing times for Mean-risk routes, however, are much larger than

5https://labs.mapbox.com/what-the-tile/
6https://www.mapbox.com/traffic-data

112

https://labs.mapbox.com/what-the-tile/
https://www.mapbox.com/traffic-data

61,119

18,797

51,916

16,121

59,120

15,486

ND & PB Routes MR Routes

Preprocessing Times (seconds)
Uncertain Edge Hierarchies

Untiered

KLD

HD

(a) Uncertain Edge Hierarchies

33,129

100,199

21,496

62,941

23,768

68,132

ND & PB Routes MR Routes

Preprocessing Times (seconds)
Uncertain Contraction Hierarchies

Untiered

KLD

HD

(b) Uncertain Contraction Hierarchies

Figure 5.4: Preprocessing times for the tiered and untiered uncertain EHs and CHs on the

contracted Tile 0230123 road network.

for the other queries. This is because we must construct a set of EHs or CHs for a subset

of the graph to answer mean-risk queries. For all hierarchies, we set σT = 0.2 and λ = 100.

We see that the Untiered hierarchies take the longest time to build, followed by

the HD and KLD variants of UEH, and the HD and KLD variants of UCH. This is because

of the convolution on histograms is expensive. The Untiered UCH and UEH lack tier G

which offers cheap convolutions, and incur a high cost for witness searches, increasing the

preprocessing time. UCH has lower preprocessing time than UEH because of the same

reasons as in deterministic routing; it offers a coarser hierarchy, needs to to preprocess far

fewer vertices, and can avoid the costly Minimum Vertex Cover computation on each vertex

contraction.

Query times The query times are shown in Figure 5.5. Routes minimizing the

mean-risk objective tend to be the fastest to compute. This is due to having a set of

deterministic EHs and CHs for shortcuts in tier G. The very low cost of finding routes

in a deterministic hierarchy outweighs having to run the shortest path queries for each

113

23
,6

54

10
,5

53

50
,0

01

61
,1

43

8,
16

8

3,
33

1

16
,9

43

26
,9

95

11
,9

13

5,
01

1

20
,1

23

34
,8

24

ND Routes PB, 5 mins PB, 15 mins PB, 25 mins

Query Performance (milliseconds)
Uncertain Edge Hierarchies

Untiered

KLD

HD

(a) Non-Dominated and Probabilistic Budget

routes with

b ∈ {5, 15, 25} minutes.

12
,1

31

5,
32

4

21
,5

26

39
,5

32

9,
32

4

3,
42

5

15
,7

42

27
,1

55

10
,5

92

5,
16

4

18
,9

29

32
,2

22

ND Routes PB, 5 mins PB, 15 mins PB, 25 mins

Query Performance (milliseconds)
Uncertain Contraction Hierarchies

Untiered

KLD

HD

(b) Non-dominated and Probabilistic Budget

routes with

b ∈ {5, 15, 25} minutes.

7,426

8,291

7,138

4,618
5,003

4,441

5,929
6,243

4,922

MR, c = 0.5 MR, c = 1.0 MR, c = 1.5

Query Performance (milliseconds)
Uncertain Edge Hierarchies

Untiered KLD HD

(c) Mean-risk routes with c ∈ {0.5, 1.0, 1.5}

4,748

6,957

4,999

5,928

7,111

5,786
6,458

7,694

6,822

MR, c = 0.5 MR, c = 1.0 MR, c = 1.5

Query Performance (milliseconds)
Uncertain Contraction Hierarchies

Untiered KLD HD

(d) Mean-risk routes with c ∈ {0.5, 1.0, 1.5}

Figure 5.5: Query times for all three query types, using the tiered and untiered uncertain

CHs and EHs on the contracted road network for Tile 0230123.

114

EH or CH in K. For Probabilistic Budget Routes, the query time increases as the budget

increases, because the search can reach vertices farther from the source. However, for mean-

risk routes, the correlation between c and query times is not well-defined, and can depend

on the locations of source and target vertices, variance in edge weights in the vicinity, etc.

Next, we see that for all three query types, Untiered hierarchies are the slowest,

followed by Hellinger Distance variants of the UEH and UCH. The KLD variants tend to be

the fastest. This is due to three reasons: first, HD-UEH and HD-UCH store the Hellinger

Distance on each edge of the road graph, and on running queries, include it in the dominance

criterion for Dijkstra’s labels. In other words, in KLD-UCH or UEH, a Dijkstra’s search

label at vertex v, `v dominates `′v iff the route represented by `v always takes more time to

traverse than one represented by `′v. For the HD variants presented, in addition to travel

time dominance, `v must have a smaller Hellinger Distance as compared to `′v. This makes

it hard for a label to dominate another, and fewer searches can be pruned, which results in

slower query times.

Effect of approximation error on routes Since tiered hierarchies approximate

edge weight histograms in tier G, they trade off some accuracy for better query processing

times. Table 5.4 shows the percentage change in mean travel times for a 100 random

stochastic routing queries running on untiered versus tiered hierarchies.

We note that generally, the travel time increases when approximate edge weights

are used. This is because when Gaussian approximations of histograms are computed in

tier G, the Gaussians approximations typically tend to overestimate the histograms.

115

C
o
n
tr

a
c
ti

o
n

H
ie

ra
rc

h
ie

s
E

d
g
e

H
ie

ra
rc

h
ie

s

D
a
ta

se
t

P
re

p
ro

ce
ss

in
g

(m
s)

Q
u

er
y

(µ
s)

P
re

p
ro

ce
ss

in
g

(m
s)

Q
u

er
y

(µ
s)

R
tK

t
O

u
rs

%
G

ai
n

R
tK

t
O

u
rs

%
G

ai
n

[7
3]

O
u

rs
%

G
ai

n
[7

3]
O

u
rs

%
G

ai
n

N
ew

Y
or

k
7
18

3
7
1
30

0.
7%

15
23

-5
3.

3%
42

74
56

28
54

71
33

.2
%

41
35

14
.6

%
B

ay
A

re
a

4
32

9
4
2
20

2.
5%

10
15

-5
0.

0%
26

70
31

24
16

91
9.

5%
27

22
18

.5
%

C
A

&
N

V
28

0
65

27
2
9
7

2.
7%

16
29

-8
1.

3%
15

92
97

2
12

58
82

9
21

.0
%

46
39

15
.2

%
U

S
A

W
es

t
96

3
88

90
3
0
1

6.
3%

22
51

-1
31

.8
%

47
83

18
8

37
72

30
6

21
.1

%
62

53
14

.5
%

L
.A

.
A

re
a

6
15

8
5
5
43

10
.0

%
13

20
-5

3.
8%

38
48

92
31

85
24

17
.2

%
33

27
18

.2
%

T
.

02
3
01

2
3

3
95

4
4
5
23

14
.4

%
9

16
-7

7.
8%

29
71

23
27

99
23

5.
8%

26
20

23
.1

%

TravelTime

T
a
b

le
5
.2

:
D

et
er

m
in

is
ti

c
ro

u
ti

n
g

u
si

n
g

th
e

d
is

ta
n

ce
m

et
ri

c:
O

u
r

C
H

an
d

E
H

im
p

le
m

en
ta

ti
on

u
se

s
an

ad
ja

ce
n

cy
li

st
re

p
re

se
n
ta

ti
on

fo
r

b
ot

h
sp

ee
d

u
p

te
ch

n
iq

u
es

,
a
n

d
p

er
fo

rm
s

b
et

te
r

th
an

th
e

or
ig

in
al

E
H

im
p

le
m

en
ta

ti
on

b
u

t
is

sl
ow

er
th

an
R

ou
ti

n
gK

it
.

T
h

e

p
er

fo
rm

an
ce

ga
p

b
et

w
ee

n
C

H
a
n

d
E

H
te

ch
n

iq
u

es
w

h
en

u
si

n
g

th
e

sa
m

e
u

n
d

er
ly

in
g

gr
ap

h
re

p
re

se
n
ta

ti
on

is
le

ss
er

th
an

or
ig

in
al

ly

re
p

o
rt

ed
.

116

C
o
n
tr

a
c
ti

o
n

H
ie

ra
rc

h
ie

s
E

d
g
e

H
ie

ra
rc

h
ie

s

D
a
ta

se
t

P
re

p
ro

ce
ss

in
g

(m
s)

Q
u

er
y

(µ
s)

P
re

p
ro

ce
ss

in
g

(m
s)

Q
u

er
y

(µ
s)

R
tK

t
O

u
rs

%
G

ai
n

R
tK

t
O

u
rs

%
G

ai
n

[7
3]

O
u

rs
%

G
ai

n
[7

3]
O

u
rs

%
G

ai
n

N
ew

Y
o
rk

1
1
72

8
1
2
94

8
-1

0.
4%

31
45

-4
5.

2%
75

02
50

68
52

68
8.

7%
82

71
13

.4
%

B
ay

A
re

a
65

7
4

69
3
0

-5
.4

%
19

27
-4

2.
1%

44
85

75
32

94
55

26
.6

%
52

44
15

.4
%

C
A

&
N

V
4
6
36

6
5
0
53

7
-9

.0
%

39
71

-8
2.

1%
30

61
04

1
26

88
51

91
.2

%
11

7
10

2
12

.8
%

U
S

A
W

es
t

1
5
69

9
4

1
6
74

8
7

-6
.7

%
59

10
8

-8
3.

1%
91

50
45

6
77

52
13

9
15

.3
%

18
6

15
2

18
.3

%
L

.A
.

A
re

a
88

5
3

94
1
2

-6
.3

%
26

44
-6

9.
2%

66
15

73
54

32
12

17
.9

%
72

63
12

.5
%

T
.

02
3
0
12

3
54

2
3

81
2
1

-4
9.

8%
13

22
-6

9.
2%

45
00

32
39

21
91

12
.9

%
43

32
25

.6
%

Distance

T
a
b

le
5.

3:
D

et
er

m
in

is
ti

c
ro

u
ti

n
g

u
si

n
g

th
e

tr
av

el
ti

m
e

m
et

ri
c:

O
u

r
C

H
an

d
E

H
im

p
le

m
en

ta
ti

on
u

se
s

an
ad

ja
ce

n
cy

li
st

re
p

re
se

n
ta

-

ti
on

fo
r

b
ot

h
sp

ee
d

u
p

te
ch

n
iq

u
es

,
an

d
p

er
fo

rm
s

b
et

te
r

th
an

th
e

or
ig

in
al

E
H

im
p

le
m

en
ta

ti
on

b
u

t
is

sl
ow

er
th

an
R

ou
ti

n
gK

it
.

T
h

e

p
er

fo
rm

an
ce

ga
p

b
et

w
ee

n
C

H
a
n

d
E

H
te

ch
n

iq
u

es
w

h
en

u
si

n
g

th
e

sa
m

e
u

n
d

er
ly

in
g

gr
ap

h
re

p
re

se
n
ta

ti
on

is
le

ss
er

th
an

or
ig

in
al

ly

re
p

o
rt

ed
.

117

C
h

a
n

g
e

in
m

e
a
n

U
n

c
e
rt

a
in

C
o
n
tr

a
c
ti

o
n

H
ie

ra
rc

h
ie

s
U

n
c
e
rt

a
in

E
d

g
e

H
ie

ra
rc

h
ie

s
tr

a
v
e
l

ti
m

e
s

(%
)

U
n
ti

er
ed

K
L

D
H

D
U

n
ti

er
ed

K
L

D
H

D

N
on

-d
om

in
at

ed
R

ou
te

s
0

+
5
.9

%
+

3
.3

%
0

+
7
.1

%
+

5
.4

%

P
ro

b
ab

il
is

ti
c

B
u

d
ge

t
R

ou
te

s
b

=
5

m
in

u
te

s
0

-1
3
.6

%
-8

.6
%

0
+

4
.6

%
+

4
.7

%
b

=
15

m
in

u
te

s
0

+
6
.2

%
+

5
.3

%
0

+
9
.5

%
+

7
.7

%
b

=
25

m
in

u
te

s
0

+
8
.1

%
+

6
.7

%
0

+
5
.9

%
+

5
.9

%

T
a
b

le
5
.4

:
E

ff
ec

t
of

a
p

p
ro

x
im

at
io

n
er

ro
r

on
ro

u
te

tr
av

el
ti

m
es

in
U

E
H

an
d

U
C

H
:

R
ou

te
s

ge
n

er
al

ly
ta

ke
sl

ig
h
tl

y
m

or
e

ti
m

e
w

h
en

ed
ge

w
ei

gh
t

ap
p

ro
x
im

a
ti

o
n

s
ar

e
u

se
d

a
s

co
m

p
ar

ed
to

U
n
ti

er
ed

h
ie

ra
rc

h
ie

s.

118

Chapter 6

Shared Dwell Regions

6.1 Introduction

A region R is called a dwell region for a moving object O if, given a threshold

distance dq and duration tq, every point of R remains within distance dq of O for at least

time tq [160]. Dwell region queries can be considered a generalization of the stay points

problem [91], which finds applications in several different domains: wildlife exploration,

finding intergalactic habitable zones [69, 104], trajectory summarization [175, 123], etc.

In this work, we are interested in shared dwell regions between different trajecto-

ries. In particular, we seek to answer the following queries efficiently:

Query 5 (Shared Dwell Region). Given a set of trajectories S, and a query (W, tq, dq),

where W is a time window, and tq is a duration and dq is a duration, find the set of regions

R = {R1, R2, . . . , Rn} such that all points in each Ri remain within distance dq of all

trajectories in S, for some duration t ≥ tq within the time window W .

119

That is, within time window W , each Ri is an intersection of dwell regions corre-

sponding to a given threshold distance dq and duration tq for all trajectories in S.

Query 6 (N/S Shared Dwell Region). Given a set of trajectories S, and a query

(W,N, tq, dq), where W is a time window, N < S is a count, dq is a duration, and tq

is a duration, find the set of regions R = {R1, R2, . . . , Rn} such that all points in each Ri

remain within distance dq of at least N trajectories in S, for some duration t ≥ tq within

the time window W .

In [160], the authors propose an online algorithm to approximate the dwell region

to arbitrary precision, by maintaining the projections of each point in the trajectory in k

directions in R2. A näıve approach to solving the shared dwell region queries would be

to simply find the dwell regions of all trajectories in the given dataset, and then to find

their intersections. However, finding the dwell regions of each trajectory individually can

be prohibitively expensive when the number of trajectories is large. Since [160] uses k

heaps to answer an online dwell region query for a single trajectory, a total of k|S| heaps

must be maintained as point updates are received for any trajectory. Moreover, once the

dwell regions for all trajectories are found, finding the precise shared dwell region requires

additional work, since each dwell region can be of arbitrary shape and size.

In this work, we present an alternative method of finding approximate shared dwell

regions by casting the problem as a variant of the pointwise dense region problem of [110].

At time t, a point p ∈ R2 is said to be ρ-dense if the a square of side l with p as its center

contains at least n moving objects, so that the density dt(p) = n
l2
≥ ρ. A pointwise-dense

region is a collection of contiguous ρ-dense points at time t. In [110], the authors present a

120

filtering-refinement approach to finding all ρ-dense regions at t. We show that this approach

can be extended to answer the Shared N/S dwell regions queries efficiently, for both online

and offline settings.

6.1.1 Our contributions

• We show that the shared and N/S shared dwell region queries can be formulated

as variants of the pointwise dense region queries, yielding efficient approximate algo-

rithms that can answer queries quickly.

• We propose two methods: an online method that we call the replay method, which

can be used to determine shared dwell regions as location updates are received from

points, and an offline method, which can be used for archived sets of trajectories.

Our methods are simple to implement, easily parallelizable, and make efficient use of

hardware to achieve fast query times.

• We evaluate our methods on the T-Drive trajectory dataset containing 17 million

GPS points collected from 10,000 real-world taxis over the span of a week in Beijing,

China.

6.2 Preliminaries

In this section, we review the existing work on Dwell Region and the Pointwise

Dense Region queries, and briefly describe the existing solutions proposed in literature.

121

6.2.1 Dwell Regions

Definition 19 (Dwell Regions). A region R is a dwell region for a moving object O if,

given a threshold distance dq and duration tq, every point of R remains within distance dq

of O for at least time tq.

[160] present an online method to compute the dwell regions for a moving object,

which is based on the following observation: The smallest dwell region that can exist is a

single point, which is also the center of the smallest enclosing circle, SECS , of points in S.

This case occurs when the objects are equally angularly spaced around SECS , and dq is

equal to the radius of SECS . Further, the center of SECS is a part of all dwell regions, if

they exist, for any values of tq and dq. Therefore, the method maintains an approximation

of SECS by a k-sided polygon, which can be updated quickly as more points are received.

A detailed description of the method follows:

Point updates: For a moving object, two data structures are maintained: a window

of location updates S of fixed size, and a set of k max-heaps. Each max-heap stores the

projection of points in S on k unit vectors at the origin, spaced so they divide the unit circle

into equal sectors. The heaps are used to maintain MBPS , a k-sided Minimum Bounding

Polygon of points in S. Using MBPS , we can derive a lower bound bSECSc, and upper

bound dSECSe on the radius of SECS .

Query processing: When a query (dq, tq) is received, if dq < bSECSc, no dwell region

can exist, and no further processing is required. If dq > dSECSe, a dwell region definitely

exists, and can be derived by computing the intersections of circles with radii rq and centers

at frontier points in the k directions. Similarly, if bSECSc < dq < dSECSe, the radius of

122

SECS can be determined exactly using the convex hull of frontier points, which can then

be used to determine whether a dwell region exists. Since the number of frontier points

is shown to be much smaller than the total number of points in a trajectory, the method

scales to a large number of trajectories.

However, this method is not a good fit for the shared and N/S dwell region queries

we are interested in. This approach requires us to maintain k heaps for each of the S

trajectories from which point updates are being received, in order to answer the queries

online. This can be prohibitively expensive in both memory and time. Moreover, the

algorithm assumes that position updates received from different objects are known with

perfect accuracy, which in practice, is unlikely to be the case.

6.2.2 Pointwise Dense Regions

Definition 20 (l-square neighbourhood). An l-square neighbourhood Slp of a point p is the

square centered around p with edge length l, including the right and top edges, but excluding

the left and bottom edges.

Definition 21 (point density). The point density dt(p) at a time t of a point p is the

value nt(S
l
p)/l

2, where nt(S
l
p) is the number of moving objects located within Slp at time t.

Definition 22 (ρ-density). Given ρ ≥ 0, point p is considered ρ-dense with respect to an

l-square neighbourhood at time t, if dt(p) ≥ ρ. A region is ρ-dense with respect to l-square

neighbourhoods at time t if every point inside the region is ρ-dense at time t.

[110] offer a filtering-refinement approach to answer the pointwise dense region

queries exactly, which works as follows: The approach maintains two data structures to

123

store the point updates of moving objects: a density histogram DH, and a TPR-tree

containing all positions received from moving objects. The temporal extent of trajectories

is partitioned into bins of fixed duration H. Then, for each timestamp τ ∈ [t, t + H], the

spatial extent of moving objects is divided into a grid of size G = m×m. m is chosen such

that the cell edge length lc = L/m ≤ lmin/2, where L×L is the extent in which the objects

are moving on the plane. Then, any pointwise dense region queries can be answered for

l-square neighourhoods with l ≥ lmin in two stages- filtering and refinement.

In the filtering stage, using DH, the cells in G are classified as either guaranteed

dense, guaranteed not dense, or candidate cells for further processing. In the refinement

stage, a band sweep is carried out to identify dense areas within each candidate cell. The

sweep uses a band of width l and computes pointwise densities only when a vertical line

at center of the band touches points within the cell (tracked using the TPR-tree). [110]

shows that the filtering-refinement approach scales well to large areas and number of points,

and also provides approximation algorithms using Chebyshev polynomials that can answer

Pointwise Dense Region queries quickly.

6.3 Approximate dwell region processing

In this section, we outline two methods to determine approximate dwell region

queries. Our methods are based on the following observation: each location reading from

objects is not perfectly accurate, and depends on the quality of the sensors, the immediate

environment etc. So, it is wasteful to represent the location of a moving object exactly as

it is received, as only a small number of significant digits of the received location may be

124

actually correct. Therefore, we divide the spatial area of trajectories into a grid with cell

size approximately equal to the accuracy to which each object’s location may be known in

the dataset. For instance, a grid size of 25000 × 25000 cells suffices to divide the extent of

Beijing into cells of side approximately 11 meters, which roughly matches the accuracy of

most consumer-grade GPS sensors. This transformation allows us to represent the position

in a point update of a trajectory as an ID of a grid cell. Our methods then use this

property to build efficient methods to find shared dwell regions between trajectories. Since

our methods essentially quantize the spatial extent of considered trajectories, we can only

answer the shared dwell regions queries approximately, with a minimum resolution set by

cells of the considered spatial grid. The resulting algorithms are less general than that of

[160], but we show that they result in faster query times.

6.3.1 The Replay (Online) Method

Intuitively, our method works as follows: since we assume that the spatial extent

of trajectories is divided into a grid of a given size, now we can track the movement of

objects in the real world on this spatial grid, and extract the regions that are common to

at least N of dq-square neighbourhoods of trajectories.

We track the movement of objects on the spatial grid in terms of the movement

events they generate. We say that a movement event occurs for an object if its location

changes between two consecutive point updates. To track the set of movement events, we

create a segment tree ST over a 2-D plane, with one axis being the IDs of the moving objects

in the dataset, and the other axis being timestamps. Figure 6.1 illustrates our method.

125

Object ID

Timestamps

Segment Tree

Spatial Grid

T

Tstart Tend

Movement

Event

Figure 6.1: The online shared dwell region method using a segment tree of movement event

time intervals. For query 〈Tstart, Tend, dq, tq〉, we extract all events in the time interval

〈W = Tstart, Tend〉 from the segment tree, find corresponding object locations, and increase

the cell counts within a radius dq of the object. Each cell cij holds a list of 〈τs, τe〉 pairs,

where τs is the time when cij first came within a radius dq of an object O, and τe is the time

when cij ceased to be within a radius dq from O. We extract the entries where (τe−τs) ≥ tq.
The resulting set of cells form the shared dwell regions.

Point Update: A position update Ui,t = 〈i, x, y, t〉 indicates that moving object Oi has

coordinates x, y at time t. From Ui,t, we generate a movement event, which is a 3-tuple

〈tprev, t, i〉, where tprev is the timestamp of last position update received from Oi before Ui,t.

A movement event e is a horizontal line on the considered plane, indexed by the ST .

Query: When a query 〈Tstart, Tend, tq, dq〉 is received, we first extract all movement events

in the time interval 〈Tstart, Tend〉 into a set M . Then, for each event in e ∈ M , we retrieve

the object’s positions p1 = 〈x1, y1〉 at time tprev and p2 = 〈x2, y2〉 at time t. Next, we iterate

over all cells in the grid whose centers are within (2∗dq)-square neighbourhoods of p1 and p2,

increasing the counter for each cell so encountered. We call this operation the application

126

of event e on the grid G. Each cell cij in G also holds a list of tuples 〈τs, τe〉, where τs is the

timestamp at which cij entered the dq-square neighbourhood of a moving object O, and τe

is the timestamp at which cij stopped being a part of the dq-square neighbourhood of O.

After all events in M have been applied to G, we filter the cells with counts greater

than or equal to N . Then, for each filtered cell, we find intervals where (τe − τs) ≥ tq. If

such an interval exists for a cell cij , the cell is marked. The set of all marked cells is finally

returned as the result of the shared dwell region query. Table 6.1 compares the algorithmic

complexity of our method with the original SEC-tracking method of [160].

Table 6.1: Comparing the cost of maintaining a window of W position updates, adding E

new point updates, and the approximation error for queries in our method vs. the online

method presented in [160]. Here, lG is the side of a cell in the considered grid, k is the

number of vectors maintained around the origin, dq is the query distance.

Method Maintaining W E point updates Approximation Error

Heaps-based [160] O(kW log(W)) kE log(W) Error in SECS = O(1/k2)

Pointwise (
dq
lG

)2W O(
dq
lG

)2E Inv. proportional to l2G

6.3.2 The Offline Method

We now seek to build an index for large datasets of archived trajectories, in order

to answer shared dwell region queries quickly. The replay method applies all movement

events in a specified time window to the spatial grid at query time. While this method

requires minimal preprocessing, i.e. only building the segment tree, which can be done

for several million movement events in only a few seconds (In our experiments, building

a segment tree for all movement events in the T-Drive dataset of 17 million points takes

127

Time slot

No. of  
objects 
in a cell

1

2

3

4

5

6

7

<obj_ID, distance, cell_ID>, <obj_ID, distance, cell_ID>,

<obj_ID, distance, cell_ID>, <obj_ID, distance, cell_ID>,

.

.

.

Figure 6.2: The offline method to compute shared dwell regions: In the preprocessing step,

we create the shown 2-D grid. The x-axis shows the snapshots at which we maintain the

state of object movements, the y-axis indexes the grid by number of objects present inside

a cell. Each cell, in the grid stores a list of 〈i, distance, cjk〉 tuples, where i is the ID of the

object Oi in the trajectory dataset, distance is the distance of Oi from the center of cjk.

only 7.3 seconds). However, archived trajectory datasets can be large, and as the number

of movement events increases, the cost of applying events to the grid at query time can

become prohibitively expensive.

To keep the problem tractable, we make the following simplifying assumptions-

first, we place two explicit bounds on the dwell region queries we shall answer: we say

that Dmin ≤ dq ≤ Dmax, and that Tmin ≤ tq ≤ Tmax, and that tq is always a multiple

of T ′. These bounds are reasonable as they can be tuned according to the context and

128

the application that dwell region queries are being used for. Say, for a dataset containing

human trajectories, Tmin values of less than the order of a few seconds or Tmax values of

larger than a few hours are not likely to be of much practical use. Bounds on the dq, the

query radius for the shared dwell region, may be similarly justified. We also assume that

the number of objects allowed to be within the same cell of the spatial grid is bounded by

a constant C.

Preprocessing: We set Tmin and Tmax to the temporal extent of the considered dataset,

i.e. let the first point update in the dataset be at time Tmin, and the last update be at time

Tmax. We divide the time interval [Tmin, Tmax] into T +1 time slots, and maintain the state

of moving objects at T snapshots of time. We then set T ′ = Tmax−Tmin
T+1 .

For each snapshot T , we maintain an array of size C, each cell of the array con-

taining a list of 3-tuples 〈i, distance, cjk〉, where i is the index of the moving object Oi, and

distance is the euclidean distance from the center of cell cjk to Oi. The collection of all such

arrays gives us an index that can now be queried to determine the shared dwell regions.

To preprocess the trajectories in a given dataset, we iterate over all points in the

given dataset, and for each point p, select the cells within the 2 ∗Dmax neighborhood of p

that are not in the 2 ∗ Dmin neighborhood. For all selected cells, we then- i) increase the

counter ii) determine and add the 〈i, distance, cjk〉 tuple to cell cjk. Figure 6.2 illustrates

the index built by the preprocessing method.

Query: When a query 〈Tstart, Tend, dq, tq, N〉 is received, we can then answer it as follows:

Since we know that tq is always a multiple of T ′, we need to only aggregate the results

from
tq
T ′ snapshots. We start with the snapshot at Tstart, and filter cells with counts of

129

objects ≥ N . Then, we iterate over the lists maintained in all filtered cells, extracting the

tuples with distance ≤ dq, and store them in a set Fstart. Similarly, we extract the sets

Fstart+T ′ , Fstart+2T ′ , . . . Fend, and collect them into a set F ′. Lastly, we extract the cell IDs

in the tuples that are common to all sets in F ′, and return them as a result to the shared

dwell region query.

6.4 Experiments

We implemented our algorithms in C++, and compiled using GCC 11.2 with all

optimizations enabled. Our parallel segment tree implementation is taken from the Parallel

Augmented Maps library 1. We benchmarked our code on a machine with the 6-core Intel

i5-8600K with 3.7 GHz base clock, and 192 KB of L1, 1.5 MB of L2 and 9 MB of L3 caches.

The machine is equipped with 64 GBs of DDR4-2133 MHz, dual-channel RAM.

6.4.1 The Replay Method

To compare our methods with those of [160], we test our queries on the GeoLife

dataset, containing 24 million locations of 8,970 trajectories collected from 182 users over

a period of three years (April 2007 to August 2012) in Beijing, China [177].

Table 6.2 shows the mean running times of 3 shared dwell region queries with tq=

30 minutes, dq = 1.2 miles and randomly chosen T = 24 hours between the online method

of [160] and our method. Note that the running times for the baseline method include only

the time taken to return the dwell regions of individual trajectories, which we must then

post-process to find the intersections between each pair of dwell regions. However, the time

1https://github.com/cmuparlay/pam

130

required to find such intersections is likely to be small, if for parity with our method, we

assume that the dwell regions are found as the intersections of squares of sides 2∗dq, rather

than circles of radius dq.

6.4.2 The Offline Method

To compare our methods with the τ -index [161], we use the T-Drive dataset [173,

172]. The dataset contains trajectories of 10,357 taxis over the span of a week from February

2 to February 8, 2008 in Beijing, China; a total of 15 million GPS locations.

Table 6.3 compares the preprocessing times for τ -index built with different number

of temporal partitions using linear partitioning with that of our method. We see that our

preprocessing time increases with an increase in Dmax. This is because for all point updates,

each cell in the 2 ∗Dmax neighborhood needs to be updated.

Finally, table 6.4 compares the query times of our method for different values of

N against the τ -index. Note that using the τ -index does not return the exact dwell region,

but only the center and radius of the smallest enclosing circle SECS , and the subsequence

of points in the trajectory that form a dwell region. To determine the approximate dwell

region, we must then draw the 2∗dq neighborhoods of each point, and find the intersections

of squares. However, the cost of such an operation is linear in the number of points that

form the dwell region, which should be a small fraction of all points in the trajectory.

131

T
a
b

le
6
.2

:
Q

u
er

y
ti

m
es

(i
n

se
co

n
d

s)
fo

r
th

e
d

w
el

l
re

gi
on

s
w

it
h

d
iff

er
en

t
va

lu
es

of
k

v
s.

th
e

p
oi

n
tw

is
e

d
w

el
l

re
gi

on
s

q
u
er

ie
s

on

th
e

G
eo

L
if

e
tr

a
je

ct
or

y
d

a
ta

se
t.

N
ot

e
th

at
ou

r
q
u

er
y

ti
m

es
d

o
n

ot
ch

an
ge

,
si

n
ce
k

aff
ec

ts
th

e
q
u

al
it

y
of

ap
p

ro
x
im

at
io

n
on

ly
in

th
e

o
ri

gi
n

a
l

a
lg

or
it

h
m

[1
6
0
].

T
h

e
q
u

al
it

y
of

ou
r

ap
p

ro
x
im

at
io

n
d

ep
en

d
s

on
ly

on
th

e
n
u

m
b

er
of

ce
ll

s
in

th
e

ac
cu

m
u

la
ti

on
gr

id

A
G

,
w

h
ic

h
w

e
se

t
to

th
e

m
a
x
im

u
m

va
lu

e,
25

00
0
×

25
00

0
ce

ll
s

h
er

e.
E

ac
h

ce
ll

in
th

e
gr

id
co

ve
rs

a
11

.1
1m
×

11
.1

1m
ar

ea
,

w
h

ic
h

su
ffi

ce
s

to
ca

p
tu

re
th

e
ac

cu
ra

cy
of

G
P

S
tr

ac
es

(5
∼

10
m

et
er

s)
in

th
e

G
eo

L
if

e
d

at
as

et
.

T
(h

rs
)

k
d
q

(m
il

es
)

t q
(m

in
)

T
im

e
(s

)
M

u
lt

it
h

re
a
d

ed
T

im
e

(s
)

D
w

el
l

R
eg

io
n

P
o
in

tw
is

e
S

p
e
e
d

u
p

D
w

el
l

R
eg

io
n

P
o
in

tw
is

e
S

p
e
e
d

u
p

24
4

1.
2

30
3
0
2
.6

7
3
1
1
.0

6
0
.9

7
5
8
.9

4
6
9
.0

4
0
.8

5
24

6
1.

2
30

4
2
8
.9

6
3
1
1
.0

6
1
.3

8
8
4
.2

4
6
9
.0

4
1
.2

2
24

8
1.

2
30

6
3
1
.1

8
3
1
1
.0

6
2
.0

3
1
2
3
.5

6
5

6
9
.0

4
1
.7

9
24

10
1.

2
30

7
0
4
.6

7
3

3
1
1
.0

6
2
.2

5
1
3
7
.5

8
2

6
9
.0

4
1
.9

9
24

12
1.

2
30

9
0
1
.4

1
3
1
1
.0

6
2
.8

8
1
7
6
.1

6
0

6
9
.0

4
2
.5

5
24

14
1.

2
30

1
0
2
7
.3

1
3
1
1
.0

6
3
.3

0
2
0
3
.4

6
9
.0

4
2
.9

4

132

Table 6.3: Comparing the preprocessing times of our offline shared dwell regions method

with the τ index on the T-Drive trajectory dataset containing 10,357 trajectories and 15

million points. For the τ index, we set k = 8, and used a linear partitioning scheme for the

time dimension.

No. Partitions Time(s) Dmax(m) Time(s)

3 3300.590 275 4111.299
4 3336.064 550 5596.71
5 3544.470 825 6211.223
6 3674.585 1000 6998.672
7 3789.073 1100 7598.429

Table 6.4: Comparing the query times of our offline shared dwell regions method with the

τ index on the T-Drive trajectory dataset. For the τ index, we set k = 8, and used a linear

partitioning scheme for the time dimension. The query times shown are the averages for

dq = {250, 500, 1000, 1500, 1900} meters and tq = {10, 20, 30} minutes.

No. Partitions Query Time(s) N Query Time(s)

3 0.119 2 0.156
4 0.154 3 0.114
5 0.168 4 0.103
6 0.193
7 0.196

133

Chapter 7

Conclusions

This dissertation presented a set of techniques to address stochasticity in the energy

consumptions and travel times for Electric Vehicle route planning.

7.1 Summary

In chapter 2, we presented phases, a simple new abstraction for modeling EV

movement, and derived a mesoscopic energy estimation model that is tunable using a single

parameter, τ . We showed that our model captures EV-specific complexities such as regen-

erative braking, and has an accuracy comparable to per-second models, despite operating

at a lower temporal resolution. Further, we used Markov chains and kernel density esti-

mation to learn the patterns of movement in historical data, using it to generate synthetic

trips that capture the real-world variance in distance and energy consumption. Our models

were evaluated using 52 hours of real-world driving data collected on a Nissan Leaf 2013 in

Riverside, California.

134

Next, in chapter 3 we showed how to capture the tradeoffs between travel times and

robustness of feasible routes against deviations in energy consumptions using the Starting

Charge Map and Buffer Map constructs. The two constructs can be helpful in preventing

EV users’ range anxiety and enabling other use cases, such as minimizing trip time by

charging more at the starting point. Computing both constructs involved extending the

Shortest Feasible Path problem [19, 18] in two different ways, essentially increasing its

output by another dimension. We proposed a simple approach, largely symmetric to the

standard Charging Function Propagation (CFP) algorithm to compute the Starting Charge

Maps. However, computing Buffer Maps required a more sophisticated approach, involving

multiple runs of the CFP algorithm. We tested our methods on real-world road networks

of Oregon and California, showing that while our approach for Starting Charge Maps could

easily scale to large graphs, computing Buffer Maps required significantly more time.

In chapter 4, we studied EV routing when both energy consumptions and travel

times are stochastic. The standard definition of feasibility of routes, however, does not

apply to stochastic edge weights. Therefore, we defined the E- and p− feasibility criteria

for stochastic EV route planning, and extended the CFP algorithm to permit stochastic edge

weights. Our criteria allow drivers to maintain feasibility either in expectation, or setting

explicit lower bounds on stranding probability. We also extend the multicriteria Contraction

Hierarchies to accept stochastic edge weights, and evaluated our methods on a real-world

road network of the Los Angeles Area. Our results showed that adding the feasibility criteria

to standard stochastic route planning methods only results in a 30-40% slowdown, while

offering strong guarantees against stranding, which can significantly improve experience

135

and reduce range anxiety for EV drivers. Further, our results indicate that the E- and

p- feasible routes tend to become more similar as the length of routes increases, while E-

feasible routes can be computed much faster than p-feasible routes. This result indicates

that using expected values of energy consumptions might be sufficient for ensuring a high

degree of confidence in route feasibility.

In chapter 5, we studied the effective application of well-known speedup tech-

niques such as Contraction and Edge Hierarchies to routing with stochastic edge weights.

We showed that the tradeoff between the accuracy, compactness and cost of convolution

offered by different edge representations must be carefully managed to achieve fast query

times for stochastic route planning. Then, we introduced the tiering technique that di-

vides hierarchies into tiers of distinct edge weight representations to improve query times.

Our experiments using a real-world traffic speeds dataset of the Los Angeles road network

showed that the tiering technique works well for three different stochastic routing objectives,

offering a speedup of as much as 3x for some queries.

Lastly, in chapter 6, we generalized the problem of identifying dwell regions for

individual trajectories [160] to that of finding shared dwell regions between a set of trajec-

tories. Prior methods of computing dwell regions maintain k heaps per object in the tra-

jectory dataset, which can get quickly expensive. Therefore, we present two novel methods-

an online, and an offline method, of answering the shared dwell region queries based on

the Pointwise-Dense Regions approach of [110]. Our methods simulate the movement of

trajectories in R2 on a grid of fixed size, keeping track of the cells in the grid that are in

proximity of multiple objects, in order to answer queries quickly. Our methods are simple

136

to implement and easy to parallelize, and our results show that they can achieve a speedup

of up to 3.3x over the baseline method on real world datasets.

7.2 Outlook

There are several directions for future research that may build upon the work

presented in this thesis. For instance, all presented algorithms focus on point-to-point routes

between a given source and destination. However, other applications such as routing electric

trucks or delivery vehicles may seek to maximize other metrics such as goods delivered while

maintaining E- or p- feasibility along routes. For such applications, generalizations of the

standard Vehicle Routing Problem with E- or p- feasibility may be developed, which may

find several important real-world applications.

Standard EV routing algorithms such as the CFP have been shown to scale well to

large graphs. Still, the number of labels generated for such methods remains exponential,

making the memory consumption the major bottleneck in adapting such algorithms in

real-world systems. More research may look into the problem of reducing the number of

generated labels by relaxing the strict dominance criteria prevalent in current literature.

However, relaxing the dominance criteria may result in a larger set of routes and slower

queries, so the tradeoff between stringency of dominance criteria and time complexity and

the memory requirements of EV route planning algorithms needs to better understood.

Lastly, while this thesis worked with the standard measure-theoretic probabilities,

applying non-additive probabilities and Dempster-Shafer belief functions to capture the lack

of available information about edge weights may be an interesting avenue for research.

137

Bibliography

[1] Kyoungho Ahn and Hesham Rakha. The effects of route choice decisions on vehicle
energy consumption and emissions. Transp. Res. Part D: Trans. Environ., 13(3):151–
167, May 2008.

[2] Niklas Akerblöm, Yuxin Chen, and Morteza Haghir Chehreghani. An online learning
framework for Energy-Efficient navigation of electric vehicles. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20),
pages 2051–2057, 2020.

[3] Yazan Al-Wreikat, Clara Serrano, and José Ricardo Sodré. Driving behaviour and
trip condition effects on the energy consumption of an electric vehicle under real-world
driving. Appl. Energy, 297:117096, September 2021.

[4] Saad Aljubayrin, Bin Yang, Christian S Jensen, and Rui Zhang. Finding non-
dominated paths in uncertain road networks. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems, number Article 15 in SIGSPATIAL ’16, pages 1–10, New York, NY, USA,
October 2016. Association for Computing Machinery.

[5] Alternative Fuels Data Center. Electric vehicle charging station locations. https:

//afdc.energy.gov/fuels/electricity_locations.html, 2021. Accessed: 2021-
6-9.

[6] Georgi Andonov and Bin Yang. Stochastic shortest path finding in Path-Centric
uncertain road networks. In 2018 19th IEEE International Conference on Mobile
Data Management (MDM), pages 40–45, June 2018.

[7] Argonne National Labs. Autonomie. https://www.autonomie.net/. Accessed: 2019-
10-15.

[8] Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The
shortest path problem revisited: Optimal routing for electric vehicles. In KI 2010:
Advances in Artificial Intelligence, Lecture Notes in Computer Science, pages 309–
316. Springer, Berlin, Heidelberg, September 2010.

138

https://afdc.energy.gov/fuels/electricity_locations.html
https://afdc.energy.gov/fuels/electricity_locations.html
https://www.autonomie.net/

[9] Mohammad Asghari, Tobias Emrich, Ugur Demiryurek, and Cyrus Shahabi. Proba-
bilistic estimation of link travel times in dynamic road networks. In Proceedings of the
23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems, SIGSPATIAL ’15, pages 47:1–47:10, New York, NY, USA, 2015. ACM.

[10] Joshua Auld, Michael Hope, Hubert Ley, Vadim Sokolov, Bo Xu, and Kuilin Zhang.
POLARIS: Agent-based modeling framework development and implementation for
integrated travel demand and network and operations simulations. Transp. Res. Part
C: Emerg. Technol., 64:101–116, March 2016.

[11] Joshua Auld, Omer Verbas, Mahmoud Javanmardi, and Aymeric Rousseau. Impact
of Privately-Owned level 4 CAV technologies on travel demand and energy. Procedia
Comput. Sci., 130:914–919, 2018.

[12] Fouad Baouche, Rochdi Trigui, Nour Eddin El Faouzi, and Romain Billot. Energy
consumption assessment for electric vehicles. In International symposium on recent
advances in transport modeling, page 5 p., April 2013.

[13] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route
planning in transportation networks. In Algorithm Engineering, Lecture Notes in
Computer Science, pages 19–80. Springer, Cham, 2016.

[14] Lucas S Batista, Felipe Campelo, Frederico G Guimarães, and Jaime A Ramı́rez. A
comparison of dominance criteria in many-objective optimization problems. In 2011
IEEE Congress of Evolutionary Computation (CEC), pages 2359–2366, June 2011.

[15] R Bauer, D Delling, P Sanders, D Schieferdecker, and others. Combining hierarchical
and goal-directed speed-up techniques for dijkstra’s algorithm. Algorithms, 2008.

[16] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space
size in contraction hierarchies. Theor. Comput. Sci., 645:112–127, September 2016.

[17] Moritz Baum. Engineering Route Planning Algorithms for Battery Electric Vehicles.
PhD thesis, KIT, 2018.

[18] Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias
Zündorf. Shortest feasible paths with charging stops for battery electric vehicles.
In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems, page 44. ACM, November 2015.

[19] Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias
Zündorf. Shortest feasible paths with charging stops for battery electric vehicles.
Transportation Science, 53(6):1627–1655, November 2019.

[20] Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and
Dorothea Wagner. Speed-Consumption Tradeoff for Electric Vehicle Route Plan-
ning. In Stefan Funke and Matúš Mihalák, editors, 14th Workshop on Algorithmic

139

Approaches for Transportation Modelling, Optimization, and Systems, volume 42 of
OpenAccess Series in Informatics (OASIcs), pages 138–151, Dagstuhl, Germany, 2014.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[21] Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and
Dorothea Wagner. Speed-Consumption tradeoff for electric vehicle route planning.
In \’u, editor, 14th Workshop on Algorithmic Approaches for Transportation Mod-
elling, Optimization, and Systems, OpenAccess Series in Informatics (OASIcs), pages
138–151. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.

[22] Moritz Baum, Julian Dibbelt, Thomas Pajor, Jonas Sauer, Dorothea Wagner, and
Tobias Zündorf. Energy-Optimal routes for battery electric vehicles. Algorithmica,
December 2019.

[23] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-optimal
routes for electric vehicles. In Proceedings of the 21st ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, pages 54–63.
ACM, 5 November 2013.

[24] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner, editors. Dynamic
Time-Dependent Route Planning in Road Networks with User Preferences, volume
9685 of Lecture Notes in Computer Science. Springer International Publishing, Cham,
2016.

[25] Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Zündorf. Modeling
and engineering constrained shortest path algorithms for battery electric vehicles. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 87, 2017.

[26] Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Consumption
profiles in route planning for electric vehicles: Theory and applications. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 75, 2017.

[27] Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Consumption
profiles in route planning for electric vehicles: Theory and applications. In 16th
International Symposium on Experimental Algorithms (SEA 2017). drops.dagstuhl.de,
2017.

[28] Roger L Berger. A nonparametric, intersection-union test for stochastic order. Tech-
nical report, North Carolina State University. Dept. of Statistics, 1986.

[29] Andrew C Berry. The accuracy of the gaussian approximation to the sum of indepen-
dent variates. Trans. Amer. Math. Soc., 49(1):122–122, jan 1941.

[30] Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path
problems. Math. Oper. Res., 16(3):580–595, August 1991.

[31] Johannes Blum and Sabine Storandt. Lower bounds and approximation algorithms
for search space sizes in contraction hierarchies. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, August 2020.

140

[32] D P Bowyer, R Akçelik, and D C Biggs. Guide to fuel consumption analysis for urban
traffic management. Technical report, Australian Road Research Board, 1985.

[33] Gail Helen Broadbent, Danielle Drozdzewski, and Graciela Metternicht. Electric ve-
hicle adoption: An analysis of best practice and pitfalls for policy making from expe-
riences of europe and the US. Geography Compass, 12(2):e12358, February 2018.

[34] Zhiguang Cao, Hongliang Guo, Jie Zhang, Dusit Niyato, and Ulrich Fastenrath. A
data-driven method for stochastic shortest path problem. In 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), pages 1045–1052, October
2014.

[35] Lily Chai and Morgan Herlocker. Generating accurate speed estimations using aggre-
gated telemetry data. (20190063939:A1), February 2019.

[36] N Chang, D Baek, and J Hong. Power consumption characterization, modeling
and estimation of electric vehicles. In 2014 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 175–182, November 2014.

[37] Anthony Chen and Zhaowang Ji. Path finding under uncertainty. J. Adv. Transp.,
39(1):19–37, September 2005.

[38] Bi Yu Chen, William H K Lam, Agachai Sumalee, Qingquan Li, and Mei Lam Tam.
Reliable shortest path problems in stochastic Time-Dependent networks. J. Intell.
Transp. Syst., 18(2):177–189, April 2014.

[39] Xiao-Wei Chen, Bi Yu Chen, William H K Lam, Mei Lam Tam, and Wei Ma. A bi-
objective reliable path-finding algorithm for battery electric vehicle routing. Expert
Syst. Appl., 182:115228, November 2021.

[40] Jian Dai, Bin Yang, Chenjuan Guo, Christian S Jensen, and Jilin Hu. Path cost distri-
bution estimation using trajectory data. Proceedings VLDB Endowment, 10(3):85–96,
November 2016.

[41] C De Cauwer, W Verbeke, J Van Mierlo, and T Coosemans. A model for range
estimation and Energy-Efficient routing of electric vehicles in Real-World conditions.
IEEE Trans. Intell. Transp. Syst., pages 1–14, 2019.

[42] Cedric De Cauwer, Joeri Van Mierlo, and Thierry Coosemans. Energy consumption
prediction for electric vehicles based on Real-World data. Energies, 8(8):8573–8593,
August 2015.

[43] Cedric De Cauwer, Wouter Verbeke, Thierry Coosemans, Saphir Faid, and Joeri
Van Mierlo. A Data-Driven method for energy consumption prediction and Energy-
Efficient routing of electric vehicles in Real-World conditions. Energies, 10(5):608,
May 2017.

[44] Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk, and Renato F Werneck.
PHAST: Hardware-accelerated shortest path trees. J. Parallel Distrib. Comput.,
73(7):940–952, July 2013.

141

[45] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Cus-
tomizable route planning. In Experimental Algorithms, pages 376–387. Springer,
Berlin, Heidelberg, May 2011.

[46] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Cus-
tomizable route planning in road networks. Transportation Science, 51(2):566–591,
May 2015.

[47] Daniel Delling and Dorothea Wagner. Time-Dependent route planning. In Robust and
Online Large-Scale Optimization, Lecture Notes in Computer Science, pages 207–230.
Springer, Berlin, Heidelberg, 2009.

[48] Ona Egbue and Suzanna Long. Barriers to widespread adoption of electric vehi-
cles: An analysis of consumer attitudes and perceptions. Energy Policy, 48:717–729,
September 2012.

[49] Matthias Eisel, Ilja Nastjuk, and Lutz M Kolbe. Understanding the influence of in-
vehicle information systems on range stress – insights from an electric vehicle field
experiment. Transp. Res. Part F Traffic Psychol. Behav., 43:199–211, November 2016.

[50] Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning for electric
vehicles in large networks. In AAAI, 2011.

[51] Carl-Gustav Esseen. On the liapunoff limit of error in the theory of probability. Ark.
Mat. Astron. Fys., A28(9):1–19, 1942.

[52] Y Y Fan, R E Kalaba, and J E Moore. Arriving on time. J. Optim. Theory Appl.,
127(3):497–513, December 2005.

[53] C Fiori, V Marzano, V Punzo, and M Montanino. Energy consumption modeling in
presence of uncertainty. IEEE Trans. Intell. Transp. Syst., pages 1–12, 2020.

[54] Chiara Fiori, Kyoungho Ahn, and Hesham A Rakha. Power-based electric vehicle en-
ergy consumption model: Model development and validation. Appl. Energy, 168:257–
268, April 2016.

[55] Matthew William Fontana. Optimal routes for electric vehicles facing uncertainty,
congestion, and energy constraints. PhD thesis, Massachusetts Institute of Technology,
2013.

[56] Luca Foschini, John Hershberger, and Subhash Suri. On the complexity of Time-
Dependent shortest paths. Algorithmica, 68(4):1075–1097, April 2014.

[57] Mogens Fosgerau. The valuation of travel time variability. Technical report, Interna-
tional Transport Forum, 2016.

[58] H Frank. Shortest paths in probabilistic graphs. Oper. Res., 17(4):583–599, 1969.

142

[59] Thomas Franke and Josef F Krems. Interacting with limited mobility resources:
Psychological range levels in electric vehicle use. Transp. Res. Part A: Policy Pract.,
48:109–122, February 2013.

[60] Thomas Franke and Josef F Krems. What drives range preferences in electric vehicle
users? Transp. Policy, 30:56–62, November 2013.

[61] Thomas Franke, Isabel Neumann, Franziska Bühler, Peter Cocron, and Josef F Krems.
Experiencing range in an electric vehicle: Understanding psychological barriers: Ex-
periencing range. Appl. Psychol., 61(3):368–391, July 2012.

[62] Thomas Franke, Nadine Rauh, Madlen Günther, Maria Trantow, and Josef F Krems.
Which factors can protect against range stress in everyday usage of battery electric
vehicles? toward enhancing sustainability of electric mobility systems. Hum. Factors,
58(1):13–26, February 2016.

[63] Stefan Funke and Sabine Storandt. Polynomial-time construction of contraction hi-
erarchies for multi-criteria objectives. In Proceedings of the Meeting on Algorithm
Engineering & Expermiments, pages 41–54, Philadelphia, PA, USA, 2013. Society for
Industrial and Applied Mathematics.

[64] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In Experimental
Algorithms, pages 319–333. Springer, Berlin, Heidelberg, May 2008.

[65] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact
routing in large road networks using contraction hierarchies. Transportation Science,
46(3):388–404, August 2012.

[66] Konstantinos N Genikomsakis and Georgios Mitrentsis. A computationally efficient
simulation model for estimating energy consumption of electric vehicles in the context
of route planning applications. Transp. Res. Part D: Trans. Environ., 50(Supplement
C):98–118, January 2017.

[67] Michael T Goodrich and Pawe l Pszona. Two-Phase bicriterion search for finding fast
and efficient electric vehicle routes. 10 September 2014.

[68] Michael T Goodrich and Pawe l Pszona. Two-phase bicriterion search for finding fast
and efficient electric vehicle routes. In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pages 193–
202. ACM, November 2014.

[69] Michael Gowanlock and Henri Casanova. In-Memory distance threshold similarity
searches on moving object trajectories. International Journal on Advances in Soft-
ware, 2014.

[70] Chenjuan Guo, Yu Ma, Bin Yang, Christian S Jensen, and Manohar Kaul. EcoMark:
Evaluating models of vehicular environmental impact. In Proc. 20th Intl. Conference

143

on Advances in Geographic Information Systems, SIGSPATIAL’12, pages 269–278,
New York, NY, USA, 2012. ACM.

[71] Chenjuan Guo, Bin Yang, Ove Andersen, Christian S Jensen, and Kristian Torp. Eco-
Mark 2.0: empowering eco-routing with vehicular environmental models and actual
vehicle fuel consumption data. Geoinformatica, 19(3):567–599, July 2015.

[72] E Hellinger. Neue begründung der theorie quadratischer formen von unendlichvielen
veränderlichen. J. Reine Angew. Math., 1909(136):210–271, July 1909.

[73] Demian Hespe and Peter Sanders. More hierarchy in route planning using edge hi-
erarchies. In 19th Symposium on Algorithmic Approaches for Transportation Mod-
elling, Optimization, and Systems (ATMOS 2019), OpenAccess Series in Informatics
(OASIcs), pages 10:1–10:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany.

[74] Jilin Hu, Bin Yang, Chenjuan Guo, and Christian S Jensen. Risk-aware path selection
with time-varying, uncertain travel costs: a time series approach. VLDB J., 27(2):179–
200, April 2018.

[75] Ming Hua and Jian Pei. Probabilistic path queries in road networks: traffic uncer-
tainty aware path selection. In Proceedings of the 13th International Conference on
Extending Database Technology, EDBT ’10, pages 347–358, New York, NY, USA,
March 2010. Association for Computing Machinery.

[76] G Huber, K Bogenberger, and H van Lint. Optimization of charging strategies for
battery electric vehicles under uncertainty. IEEE Trans. Intell. Transp. Syst., pages
1–17, 2020.

[77] Ehsan Jafari and Stephen D Boyles. Multicriteria stochastic shortest path problem
for electric vehicles. Networks Spat. Econ., 17(3):1043–1070, September 2017.

[78] Tobias Skovgaard Jepsen, Christian S Jensen, and Thomas Dyhre Nielsen. UniTE –
the best of both worlds: Unifying Function-Fitting and Aggregation-Based approaches
to travel time and travel speed estimation. April 2021.

[79] H C Joksch. The shortest route problem with constraints. J. Math. Anal. Appl.,
14(2):191–197, May 1966.

[80] Malte F Jung, David Sirkin, Turgut M Gür, and Martin Steinert. Displayed uncer-
tainty improves driving experience and behavior: The case of range anxiety in an
electric car. In Proc. 33rd Annual ACM Conference on Human Factors in Computing
Systems, pages 2201–2210. ACM, April 2015.

[81] J Kang, T Ma, F Ma, and J Huang. Link-based emission model for eco routing.
In 2011 11th International Conference on ITS Telecommunications, pages 207–212,
August 2011.

144

[82] Dominik Karbowski, Aymeric Rousseau, Vivien Smis-Michel, and Valentin Ver-
meulen. Trip prediction using GIS for vehicle energy efficiency. 2014.

[83] Johannes Kester. Security in transition(s): The low-level security politics of electric
vehicle range anxiety. Security Dialogue, 50(6):547–563, December 2019.

[84] Moritz Kobitzsch, Samitha Samaranayake, and Dennis Schieferdecker. Pruning tech-
niques for the stochastic on-time arrival problem - an experimental study. July 2014.

[85] Adrian Kosowski and Laurent Viennot. Beyond highway dimension: Small distance
labels using tree skeletons. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’17, pages 1462–1478, Philadelphia, PA,
USA, 2017. Society for Industrial and Applied Mathematics.

[86] Johannes Geir Kristinsson, Ryan Abraham McGee, Anthony Mark Phillips,
Ming Lang Kuang, Wenduo Wang, Jungme Park, Yi Murphey, and Chen Fang. Ve-
hicle speed profile prediction using neural networks. (20150344036:A1), December
2015.

[87] Benjamin Krogh, Ove Andersen, and Kristian Torp. Analyzing electric vehicle energy
consumption using very large data sets. In Database Systems for Advanced Applica-
tions, pages 471–487. Springer International Publishing, 2015.

[88] S Kullback and R A Leibler. On information and sufficiency. aoms, 22(1):79–86,
March 1951.

[89] Solomon Kullback. Information Theory and Statistics. Wiley, 1959.

[90] James Larminie and John Lowry. Electric Vehicle Technology Explained. John Wiley
& Sons, September 2012.

[91] Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, and Wei-Ying Ma.
Mining user similarity based on location history. In Proceedings of the 16th ACM
SIGSPATIAL international conference on Advances in geographic information sys-
tems, number Article 34 in GIS ’08, pages 1–10, New York, NY, USA, November
2008. Association for Computing Machinery.

[92] Weixia Li, Guoyuan Wu, Yi Zhang, and Matthew J Barth. A comparative study
on data segregation for mesoscopic energy modeling. Transp. Res. Part D: Trans.
Environ., 50:70–82, January 2017.

[93] Yan Li, Pratik Kotwal, Pengyue Wang, Yiqun Xie, Shashi Shekhar, and William
Northrop. Physics-guided energy-efficient path selection using on-board diagnostics
data. ACM/IMS Trans. Data Sci., 1(3):1–28, September 2020.

[94] Yan Li, Shashi Shekhar, Pengyue Wang, and William Northrop. Physics-guided
energy-efficient path selection: a summary of results. In Proceedings of the 26th
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, pages 99–108. ACM, November 2018.

145

[95] S Lim, C Sommer, E Nikolova, and others. Practical route planning under delay
uncertainty: Stochastic shortest path queries. Robot. Sci. Syst., 2013.

[96] Antonio Lima, Rade Stanojevic, Dina Papagiannaki, Pablo Rodriguez, and Marta C
González. Understanding individual routing behaviour. J. R. Soc. Interface, 13(116),
March 2016.

[97] Ernesto Queirós Vieira Martins. On a multicriteria shortest path problem. Eur. J.
Oper. Res., 16(2):236–245, May 1984.

[98] Michail Masikos, Konstantinos Demestichas, Evgenia Adamopoulou, and Michael
Theologou. Energy-efficient routing based on vehicular consumption predictions of
a mesoscopic learning model. Appl. Soft Comput., 28:114–124, March 2015.

[99] Sören Merting, Christian Schwan, and Martin Strehler. Routing of electric vehi-
cles: Constrained shortest path problems with resource recovering nodes. In OASIcs-
OpenAccess Series in Informatics, volume 48. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik GmbH, Wadern/Saarbrücken, Germany, 2015.

[100] Sebastiano Milardo, Punit Rathore, Marco Amorim, Umberto Fugiglando, Paolo
Santi, and Carlo Ratti. Understanding drivers’ stress and interactions with vehi-
cle systems through naturalistic data analysis. IEEE Trans. Intell. Transp. Syst.,
pages 1–12, 2021.

[101] Elise D Miller-Hooks and Hani S Mahmassani. Least expected time paths in stochas-
tic, Time-Varying transportation networks. Transportation Science, 34(2):198–215,
May 2000.

[102] Elise Deborah Miller-Hooks. Optimal routing in time-varying, stochastic networks:
Algorithms and implementations. PhD thesis, The University of Texas at Austin,
1997.

[103] Nikola Milosavljević. On optimal preprocessing for contraction hierarchies. In Pro-
ceedings of the 5th ACM SIGSPATIAL International Workshop on Computational
Transportation Science, IWCTS ’12, pages 33–38, New York, NY, USA, November
2012. Association for Computing Machinery.

[104] Ian S Morrison and Michael G Gowanlock. Extending galactic habitable zone modeling
to include the emergence of intelligent life. Astrobiology, 15(8):683–696, August 2015.

[105] Ladan Mozaffari, Ahmad Mozaffari, and Nasser L Azad. Vehicle speed prediction via
a sliding-window time series analysis and an evolutionary least learning machine: A
case study on san francisco urban roads. Engineering Science and Technology, an
International Journal, 18(2):150–162, June 2015.

[106] J P L Nasa. NASADEM merged DEM global 1 arc second V001, 2020.

[107] National Renewable Energy Labs. FASTSim: Future automotive systems technol-
ogy simulator. https://www.nrel.gov/transportation/fastsim.html. Accessed:
2019-10-15.

146

https://www.nrel.gov/transportation/fastsim.html

[108] Myriam Neaimeh, Graeme A Hill, Yvonne Hübner, and Phil T Blythe. Routing
systems to extend the driving range of electric vehicles. IET Intel. Transport Syst.,
7(3):327–336, September 2013.

[109] Zachary A Needell, James McNerney, Michael T Chang, and Jessika E Trancik. Po-
tential for widespread electrification of personal vehicle travel in the united states.
Nature Energy, 1:16112, August 2016.

[110] Jinfeng Ni and Chinya V Ravishankar. Pointwise-Dense region queries in spatio-
temporal databases. In 2007 IEEE 23rd International Conference on Data Engineer-
ing, pages 1066–1075, April 2007.

[111] Yu (marco) Nie and Xing Wu. Shortest path problem considering on-time arrival
probability. Trans. Res. Part B: Methodol., 43(6):597–613, July 2009.

[112] Patrick Niklaus. A unified framework for electric vehicle routing. Master’s thesis,
KIT, November 2017.

[113] Mehrdad Niknami and Samitha Samaranayake. Tractable pathfinding for the stochas-
tic On-Time arrival problem. In Experimental Algorithms, pages 231–245. Springer
International Publishing, 2016.

[114] Evdokia Nikolova. Approximation algorithms for reliable stochastic combinatorial
optimization. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 338–351. Springer Berlin Heidelberg, 2010.

[115] Evdokia Nikolova, M Brand, and David R Karger. Optimal route planning under
uncertainty. ICAPS, 2006.

[116] Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In Algorithms – ESA 2006,
pages 552–563. Springer Berlin Heidelberg, 2006.

[117] J Park, D Li, Y L Murphey, J Kristinsson, R McGee, M Kuang, and T Phillips.
Real time vehicle speed prediction using a neural network traffic model. In The 2011
International Joint Conference on Neural Networks, pages 2991–2996, July 2011.

[118] Jungme Park, Yi Lu Murphey, Ryan McGee, Jóhannes G Kristinsson, Ming L Kuang,
and Anthony M Phillips. Intelligent trip modeling for the prediction of an origin–
destination traveling speed profile. IEEE Trans. Intell. Transp. Syst., 15(3):1039–
1053, 2014.

[119] Axel Parmentier and Frédéric Meunier. Stochastic shortest paths and risk measures.
August 2014.

[120] Simon Aagaard Pedersen, Bin Yang, and Christian S Jensen. Fast stochastic routing
under time-varying uncertainty. VLDB J., October 2019.

147

[121] Simon Aagaard Pedersen, Bin Yang, and Christian S Jensen. Anytime stochastic
routing with hybrid learning. Proceedings VLDB Endowment, 13(9):1555–1567, May
2020.

[122] Simon Aagaard Pedersen, Bin Yang, and Christian S Jensen. A hybrid learning
approach to stochastic routing. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 1910–1913, April 2020.

[123] Rafael Pérez-Torres, César Torres-Huitzil, and Hiram Galeana-Zapién. Full On-Device
stay points detection in smartphones for Location-Based mobile applications. Sensors,
16(10), October 2016.

[124] D Pevec, J Babic, A Carvalho, Y Ghiassi-Farrokhfal, W Ketter, and V Podob-
nik. Electric vehicle range anxiety: An obstacle for the personal transportation
(r)evolution? In 2019 4th International Conference on Smart and Sustainable Tech-
nologies (SpliTech), pages 1–8, June 2019.

[125] Dario Pevec, Jurica Babic, Arthur Carvalho, Yashar Ghiassi-Farrokhfal, Wolfgang
Ketter, and Vedran Podobnik. A survey-based assessment of how existing and po-
tential electric vehicle owners perceive range anxiety. J. Clean. Prod., 276:122779,
December 2020.

[126] M S Pinsker. Information and Information Stability of Random Variables and Pro-
cesses. Holden-Day, 1964.

[127] Claudius Proissl and Tobias Rupp. On the difference between search space size and
query complexity in contraction hierarchies. In Proceedings of the 2021 SIAM Con-
ference on Applied and Computational Discrete Algorithms (ACDA21), Proceedings,
pages 77–87. Society for Industrial and Applied Mathematics, January 2021.

[128] Xuewei Qi, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew J Barth. Data-driven
decomposition analysis and estimation of link-level electric vehicle energy consump-
tion under real-world traffic conditions. Transp. Res. Part D: Trans. Environ., August
2017.

[129] Xuewei Qi, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew J Barth. Data-
driven decomposition analysis and estimation of link-level electric vehicle energy con-
sumption under real-world traffic conditions. Transp. Res. Part D: Trans. Environ.,
64:36–52, October 2018.

[130] Payas Rajan, Moritz Baum, Michael Wegner, Tobias Zündorf, Christian J West, Den-
nis Schieferdecker, and Daniel Delling. Robustness generalizations of the shortest feasi-
ble path problem for electric vehicles. In Matthias And Federico, Müller-Hannemann,
editor, Proceedings of 21st Symposium on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2021), Open Access Series in In-
formatics (OASIcs), pages 11:1–11:18, Dagstuhl, Germany, September 2021. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

148

[131] Payas Rajan and Chinya V Ravishankar. The phase abstraction for estimating energy
consumption and travel times for electric vehicle route planning. In Proceedings of
the 27th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’19, pages 556–559, New York, NY, USA, 2019.
ACM.

[132] Payas Rajan and Chinya V Ravishankar. Tiering in contraction and edge hierarchies
for stochastic route planning. In Proceedings of the 29th International Conference on
Advances in Geographic Information Systems, SIGSPATIAL ’21, pages 616–625, New
York, NY, USA, November 2021. Association for Computing Machinery.

[133] Nadine Rauh, Thomas Franke, and Josef F Krems. User experience with electric
vehicles while driving in a critical range situation – a qualitative approach. IET Intel.
Transport Syst., 9(7):734–739, July 2015.

[134] Byron Reeves and Clifford Ivar Nass. The media equation: How people treat computers,
television, and new media like real people and places. Cambridge University Press New
York, NY, USA, 1996.

[135] Zeinab Rezvani, Johan Jansson, and Jan Bodin. Advances in consumer electric ve-
hicle adoption research: A review and research agenda. Transp. Res. Part D: Trans.
Environ., 34:122–136, January 2015.

[136] Matthias Ruß, Gunther Gust, and Dirk Neumann. The constrained reliable shortest
path problem in stochastic Time-Dependent networks. Oper. Res., 69(3):709–726,
May 2021.

[137] G Sabran, S Samaranayake, and A Bayen. Precomputation techniques for the stochas-
tic on-time arrival problem. In 2014 Proceedings of the Sixteenth Workshop on Algo-
rithm Engineering and Experiments (ALENEX), Proceedings, pages 138–146. Society
for Industrial and Applied Mathematics, December 2013.

[138] Guillaume Sabran, Samitha Samaranayake, and Alexandre Bayen. Precomputation
techniques for the stochastic on-time arrival problem. In 2014 Proceedings of the
Meeting on Algorithm Engineering and Experiments (ALENEX), Proceedings, pages
138–146. Society for Industrial and Applied Mathematics, December 2013.

[139] M Sachenbacher, M Leucker, A Artmeier, and J Haselmayr. Efficient Energy-Optimal
routing for electric vehicles. AAAI, 2011.

[140] S Sautermeister, M Falk, B Bäker, F Gauterin, and M Vaillant. Influence of mea-
surement and prediction uncertainties on range estimation for electric vehicles. IEEE
Trans. Intell. Transp. Syst., 19(8):2615–2626, August 2018.

[141] René Schönfelder and Martin Leucker. Abstract routing models and abstractions in
the context of vehicle routing. In Twenty-Fourth International Joint Conference on
Artificial Intelligence, June 2015.

149

[142] Moshe Shaked and J George Shanthikumar. Stochastic Orders. Springer New York,
October 2006.

[143] R Shankar and J Marco. Method for estimating the energy consumption of electric
vehicles and plug-in hybrid electric vehicles under real-world driving conditions. IET
Intel. Transport Syst., 7(1):138–150, March 2013.

[144] Liang Shen, Hu Shao, Ting Wu, William H K Lam, and Emily C Zhu. An energy-
efficient reliable path finding algorithm for stochastic road networks with electric
vehicles. Transp. Res. Part C: Emerg. Technol., 102:450–473, May 2019.

[145] Luou Shen. Freeway Travel Time Estimation and Prediction Using Dynamic Neural
Networks. PhD thesis, Florida International University, July 2008.

[146] I G Shevtsova. An improvement of convergence rate estimates in the lyapunov theo-
rem. Dokl. Math., 82(3):862–864, December 2010.

[147] Jaewook Shin and Myoungho Sunwoo. Vehicle speed prediction using a markov chain
with speed constraints. IEEE Trans. on Intell. Transp. Syst., November 2018.

[148] Kenneth A Small, Clifford Winston, and Jia Yan. Uncovering the distribution of
motorists’ preferences for travel time and reliability. Econometrica, 73(4):1367–1382,
July 2005.

[149] Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys
(CSUR), 46(4):45, April 2014.

[150] S Storandt and S Funke. Enabling E-Mobility: Facility location for battery loading
stations. AAAI, 2013.

[151] Sabine Storandt. Quick and energy-efficient routes: Computing constrained shortest
paths for electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, IWCTS ’12, pages 20–25, New
York, NY, USA, 2012. ACM.

[152] Sabine Storandt. Quick and energy-efficient routes: Computing constrained shortest
paths for electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, IWCTS ’12, pages 20–25, New
York, NY, USA, 2012. ACM.

[153] Sabine Storandt. Route planning for bicycles — exact constrained shortest paths made
practical via contraction hierarchy. In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, 2012.

[154] Sabine Storandt and Stefan Funke. Cruising with a Battery-Powered vehicle and not
getting stranded. In AAAI, volume 3, page 46, 2012.

[155] Martin Strehler, Sören Merting, and Christian Schwan. Energy-efficient shortest
routes for electric and hybrid vehicles. Trans. Res. Part B: Methodol., 103(Supplement
C):111–135, 1 September 2017.

150

[156] Yihan Sun, Daniel Ferizovic, and Guy E Belloch. PAM: parallel augmented maps.
SIGPLAN Notices, 53(1):290–304, February 2018.

[157] Tesla. Model S owner’s manual, October 2019.

[158] L Thibault, G De Nunzio, and A Sciarretta. A unified approach for electric vehicles
range maximization via eco-routing, eco-driving, and energy consumption prediction.
IEEE Transactions on Intelligent Vehicles, pages 1–1, 2018.

[159] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM, 51(6):993–1024, November 2004.

[160] M R Uddin, C V Ravishankar, and V J Tsotras. Online identification of dwell regions
for moving objects. In 2012 IEEE 13th International Conference on Mobile Data
Management, pages 248–257, July 2012.

[161] Reaz Uddin, Mehnaz Tabassum Mahin, Payas Rajan, Chinya V Ravishankar, and
Vassilis J Tsotras. Dwell regions: Generalized stay regions for streaming and archival
trajectory data. Under Review.

[162] Toshiaki Uemura. Pre-Estimation of electric vehicle energy consumption on unfamil-
iar roads and actual driving experiments. In Proceedings of the VLDB 2019 PhD
Workshop, 2019.

[163] Billy M Williams and Lester A Hoel. Modeling and forecasting vehicular traffic flow
as a seasonal ARIMA process: Theoretical basis and empirical results. J. Transp.
Eng., 129(6):664–672, November 2003.

[164] Christoph Witzgall and Alan J Goldman. Most profitable routing before maintenance.
In OPERATIONS RESEARCH, page B82. . . . RD, STE 400, LINTHICUM HTS, MD
. . . , 1965.

[165] Xinkai Wu, David Freese, Alfredo Cabrera, and William A Kitch. Electric vehicles’
energy consumption measurement and estimation. Transp. Res. Part D: Trans. Env-
iron., 34(Supplement C):52–67, January 2015.

[166] Chi Xie and Nan Jiang. Relay requirement and traffic assignment of electric vehicles.
Computer-Aided Civil and Infrastructure Engineering, 31(8):580–598, August 2016.

[167] B Yang, C Guo, C S Jensen, M Kaul, and S Shang. Stochastic skyline route planning
under time-varying uncertainty. In 2014 IEEE 30th International Conference on Data
Engineering, pages 136–147, March 2014.

[168] Bin Yang, Jian Dai, Chenjuan Guo, Christian S Jensen, and Jilin Hu. PACE: a
PAth-CEntric paradigm for stochastic path finding. VLDB J., 27(2):153–178, April
2018.

[169] Bin Yang, Jian Dai, Chenjuan Guo, Christian S Jensen, and Jilin Hu. PACE: a
PAth-CEntric paradigm for stochastic path finding. VLDB J., 27(2):153–178, April
2018.

151

[170] Enjian Yao, Zhiqiang Yang, Yuanyuan Song, and Ting Zuo. Comparison of electric
vehicle’s energy consumption factors for different road types. Discrete Dyn. Nat. Soc.,
2013, December 2013.

[171] Fei Ye, Guoyuan Wu, K Boriboonsomsin, and M J Barth. A hybrid approach to
estimating electric vehicle energy consumption for ecodriving applications. In 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC),
pages 719–724, November 2016.

[172] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from
the physical world. In Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’11, pages 316–324, New York, NY,
USA, August 2011. Association for Computing Machinery.

[173] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun,
and Yan Huang. T-drive: driving directions based on taxi trajectories. In Proceed-
ings of the 18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS ’10, pages 99–108, New York, NY, USA, November 2010.
Association for Computing Machinery.

[174] Quan Yuan, Wei Hao, Haotian Su, Guanwen Bing, Xinyuan Gui, and Abolfazl
Safikhani. Investigation on range anxiety and safety buffer of battery electric vehicle
drivers. Journal of Advanced Transportation, 2018, June 2018.

[175] Mingxuan Yue, Yaguang Li, Haoze Yang, Ritesh Ahuja, Yao-Yi Chiang, and Cyrus
Shahabi. DETECT: Deep trajectory clustering for Mobility-Behavior analysis. In 2019
IEEE International Conference on Big Data (Big Data), pages 988–997, December
2019.

[176] Jie Zheng, Ling Wang, Shengyao Wang, Yile Liang, and Jize Pan. Solving two-
stage stochastic route-planning problem in milliseconds via end-to-end deep learning.
Complex & Intelligent Systems, 7(3):1207–1222, June 2021.

[177] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations
and travel sequences from GPS trajectories. In Proceedings of the 18th international
conference on World wide web, WWW ’09, pages 791–800, New York, NY, USA, April
2009. Association for Computing Machinery.

[178] Shanjiang Zhu and David Levinson. Do people use the shortest path? an empirical
test of wardrop’s first principle. PLoS One, 10(8):e0134322, August 2015.

[179] Weiwei Zhuang, Yadong Li, and Guoxin Qiu. Statistical inference for a relaxation
index of stochastic dominance under density ratio model. J. Appl. Stat., pages 1–19,
August 2021.

[180] A K Ziliaskopoulos and H S Mahmassani. A Time-Dependent shortest path algorithm
for Real-Time intelligent Vehicle/Highway system. Transportation Research Record
Journal of the Transportation Research Board, (1408):94–100, January 1993.

152

	List of Figures
	List of Tables
	Introduction
	Our contributions

	The Phase Abstraction
	Introduction
	EV-Specific Issues in Estimation Models
	Our Contributions

	Background and related work
	EV modeling and energy estimation
	An instantaneous EV model
	Mesoscopic EV modeling with phases
	Energy Consumption over a Phase

	Generating realistic speed profiles
	Trip modeling with Markov Chains & KDE

	Experiments
	Validating the phase-based energy estimation model
	Evaluating the speed profile generation model

	Robustness Generalizations of the Shortest Feasible Path Problem
	Introduction
	Related Work
	Preliminaries
	Charging Function Propagation (CFP)

	Starting Charge Maps
	Reverse Charging Function Propagation

	Buffer Maps
	Iterative Charging Function Propagation

	Experiments
	Preparing a realistic EV Routing instance
	Reverse Shortest Feasible Path Queries & Starting Charge Maps
	Iterative CFP and Buffer Maps

	Stochastic Route Planning for Electric Vehicles
	Introduction
	Our Contributions

	Related Work
	Stochastic Route Planning

	Problem Setup
	Travel Times and Energy Depletion
	E-Feasible Routing
	p-Feasible Routing

	Charging Function Propagation for E-Feasible Routing
	The Depletion Function Along Route Legs
	Dijkstra Search for E-feasible Routes

	Charging Function Propagation for p-Feasible Routing
	Dijkstra Search for p-feasible Routes

	Stochastic Contraction Hierarchies
	Experiments
	Preparing a realistic routing instance
	Results

	The Tiering Technique for Stochastic Contraction & Edge Hierarchies
	Introduction
	Contraction and Edge Hierarchies
	Handling Uncertain Edge Weights

	Related Work
	Background
	Stochastic Route Planning
	Edge Hierarchies

	Uncertain Hierarchies
	Tiering in Hierarchies
	Uncertain Edge Hierarchies
	Stochastic Query Processing
	Uncertain Contraction Hierarchies
	Stable Distributions and Limitations

	Experiments
	Baselines for Deterministic Routing
	Stochastic Routing

	Shared Dwell Regions
	Introduction
	Our contributions

	Preliminaries
	Dwell Regions
	Pointwise Dense Regions

	Approximate dwell region processing
	The Replay (Online) Method
	The Offline Method

	Experiments
	The Replay Method
	The Offline Method

	Conclusions
	Summary
	Outlook

	Bibliography

