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ABSTRACT
BACKGROUND: Maternal inflammation can result from immune dysregulation and metabolic perturbations during
pregnancy. Whether conditions associated with inflammation during pregnancy increase the likelihood of autism
spectrum disorder (ASD) or other neurodevelopmental disorders (DDs) is not well understood.
METHODS: We conducted a case-control study among children born in California from 2011 to 2016 to investigate
maternal immune-mediated and cardiometabolic conditions during pregnancy and risk of ASD (n = 311) and DDs (n =
1291) compared with children from the general population (n = 967). Data on maternal conditions and covariates were
retrieved from electronic health records. Maternal genetic data were used to assess a causal relationship.
RESULTS: Using multivariable logistic regression, we found that mothers with asthma were more likely to deliver
infants later diagnosed with ASD (odds ratio [OR] = 1.62, 95% CI: 1.15–2.29) or DDs (OR = 1.30, 95% CI: 1.02–1.64).
Maternal obesity was also associated with child ASD (OR = 1.51, 95% CI: 1.07–2.13). Mothers with both asthma and
extreme obesity had the greatest odds of delivering an infant later diagnosed with ASD (OR = 16.9, 95% CI:
5.13–55.71). These increased ASD odds were observed among female children only. Polygenic risk scores for
obesity, asthma, and their combination showed no association with ASD risk. Mendelian randomization did not
support a causal relationship between maternal conditions and ASD.
CONCLUSIONS: Inflammatory conditions during pregnancy are associated with risk for neurodevelopmental disor-
ders in children. These risks do not seem to be due to shared genetic risk; rather, inflammatory conditions may share
nongenetic risk factors with neurodevelopmental disorders. Children whose mothers have both asthma and obesity
during pregnancy may benefit from earlier screening and intervention.

https://doi.org/10.1016/j.bpsgos.2023.09.008
While the nongenetic causes of neurodevelopmental disorders
are largely unknown, there is increasing evidence that lifestyle
factors, environmental exposures, and maternal conditions
during pregnancy that induce inflammation are associated with
increased risk (1). Epidemiological research has found asso-
ciations between autism spectrum disorder (ASD) and other
neurodevelopmental disorders (DDs) and maternal immune-
related conditions around the time of pregnancy including
infection (2), asthma, allergy, and autoimmune disease (1,3,4).
Evidence is accumulating regarding associations between
ASD and DDs and maternal obesity (1,5) and specific car-
diometabolic disorders preceding or developing during preg-
nancy, such as hypertension, type 2 diabetes, gestational
diabetes, and preeclampsia (6–15). The diversity of conditions
associated with altered neurodevelopment suggests that
maternal inflammation during pregnancy, which is often trig-
gered by these conditions, may provide a common link to
altered neurodevelopment in children.
ª 2023 THE AUTHORS. Published by Elsevier
open access article under the CC BY-NC-N

N: 2667-1743 Biological Psychiat
Under normal homeostatic conditions, the maternal immune
system maintains a pathogen-free and noninflammatory envi-
ronment for the developing fetus (16,17). However, maternal
immune activation during pregnancy may adversely affect pro-
gramming of the fetal immune, metabolic, and neurological
systems, with long-lasting effects into adulthood (18–20). Fluc-
tuations in levels of maternal inflammatory molecules, including
cytokines, chemokines, and antibodies, have been shown to
have adverse developmental consequences for the fetus (21–23).

Most prior epidemiological studies investigating maternal
immune activation have focused on single maternal conditions
and their associations with specific neurodevelopmental disor-
ders. Many have been limited by small sample sizes, lack of
rigorous definitions of exposure or outcomes, retrospective
study design, and inability to control for important covariates.
Determination of whether shared genetic risk, shared environ-
mental risk, or the physiology of the conditions explain any
association remains unanswered.
Inc on behalf of the Society of Biological Psychiatry. This is an
D license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In the current study, we explored the risk of ASD and DDs
in the context of common maternal conditions associated
with inflammation and maternal genetics. We hypothesized
that maternal inflammation during pregnancy stemming
from immune or metabolic dysregulation adversely affects
child neurodevelopment and that individual and combina-
tions of maternal conditions are differentially associated
with neurodevelopmental outcomes. We integrated
maternal genetic data to parse whether genetic or nonge-
netic risk factors are shared between maternal conditions
and neurodevelopmental disorders.

METHODS AND MATERIALS

The study population for the IMPaCT (Immune and Metabolic
Markers during Pregnancy and Child Development) Study was
selected from children born at Kaiser Permanente Northern
California (KPNC) from January 2011 to January 2016, who
survived to age 2 years and whose mothers received health
care during the 2 years prior to delivery. KPNC is a large in-
tegrated health care system serving .4.5 million members and
with a sociodemographic profile similar to the local and
statewide California population, although the extremes of the
income distribution are underrepresented (24). All mothers had
previously consented to participate in the Research Program
on Genes, Environment, and Health (RPGEH) pregnancy
cohort (25), including donation of a blood sample during the
first and second trimesters of pregnancy and permission to
access their own and their child’s KPNC electronic health re-
cords (EHRs) for future studies. In December 2019, we
retrieved information on demographic and clinical character-
istics of mothers and their children prospectively recorded in
their KPNC EHRs. At the time of data extraction, children were
3 to 8 years old. Study procedures were approved by the
KPNC Institutional Review Board.

Child Outcomes

Three groups of children were included: children with ASD (n =
311), children with DDs (n = 1291), and children from the
general population (GP) (n = 967) (Table S1). ASD diagnoses
were based on the DSM criteria that were in effect at the time
of diagnosis (DSM-IV or DSM-5) (26). Children with ASD had an
ASD diagnosis recorded in their EHR on at least one occasion;
80% were diagnosed at a KPNC ASD evaluation center by a
multidisciplinary team using a standardized protocol, including
the Autism Diagnostic Observation Schedule (27). The
remaining 20% were diagnosed by developmental behavioral
pediatricians, child psychiatrists, pediatric neurologists, or
general pediatricians.

Children included in the DD group had at least one
diagnosis of intellectual disability, cerebral palsy, language
delay, motor disorder, global delay, or learning disorder
recorded in their KPNC EHR and no diagnoses of ASD.
Attention-deficit/hyperactivity disorder (ADHD) was not
included given the young age at the time neuro-
developmental diagnoses were ascertained. GP control
participants were randomly sampled in proportion to the
birth-year distribution of cases from the children in the study
birth cohort who had no diagnoses of ASD or DDs recorded
in their KPNC EHR.
40 Biological Psychiatry: Global Open Science January 2024; 4:39–50
Maternal Conditions During Pregnancy

We examined 10 maternal immune-mediated and car-
diometabolic conditions: prenatal infections, asthma, allergy,
autoimmune disease, gestational diabetes (GDM), pre-
eclampsia, gestational hypertension, and preexisting chronic
hypertension, diabetes, and obesity (Table S1). Clinician di-
agnoses were identified from the maternal inpatient and
outpatient EHRs. Pregnancy was defined as the time between
the last menstrual period and the date of delivery. Obesity
class was determined by prepregnancy body mass index (BMI)
recorded in the year prior to the last menstrual period and
closest to the start of pregnancy (class I, BMI = 30.0–34.9;
class II, BMI = 35.0–39.9; class III, BMI $ 40) (28). For partic-
ipants with missing BMI (8.4%), BMI was imputed using the
fully conditional specification method (29).

Covariates

Data on maternal sociodemographic and child characteristics
shown to be significantly associated with risk of neuro-
developmental disorders or maternal immune-mediated and
cardiometabolic conditions in previous studies were extracted
from KPNC EHRs and birth certificate files (Table 1). Data on
maternal psychiatric conditions (yes or no) and maternal anemia
(yes or no) during pregnancy were extracted from the EHRs.

Statistical Analyses

We fit crude and adjusted logistic regression models to esti-
mate associations between maternal pregnancy conditions
and child neurodevelopmental outcomes. The final adjustment
set (child sex, birth year, maternal age, maternal race, and
maternal education) included variables not considered in-
termediaries in the pathway under investigation. We first
examined the association of individual maternal conditions
with each child outcome in separate logistic regression
models. We further examined maternal obesity by modeling
the association by obesity class and by continuous BMI using
restricted cubic splines and a linearity test. For individual
maternal conditions that showed a statistically significant as-
sociation with either ASD or DD, we examined joint effects by
assessing both multiplicative interaction by including two-way
interaction terms and additive interactions by computing the
RERI (relative excess risk due to interaction) (30). To assess
whether estimated associations varied by child’s sex, we
conducted all analyses stratified by child’s sex and ran ana-
lyses with two-way interaction terms between child sex and
the maternal condition.

Genetic Analyses

Genetic analyses were pursued for conditions significant in the
primary analysis. See the Supplemental Methods for sample
collection and genotyping methodology. Genome-wide asso-
ciation study (GWAS) summary statistics for asthma (31) and
BMI (32) were used to generate polygenic risk scores (PRSs)
for individuals in the IMPaCT dataset using PRS-CSx (33) with
1000 Genomes linkage disequilibrium reference panels. Meta-
analysis of the asthma and BMI GWAS was performed with
METAL (34). All linear associations were done using lm or glm
from the R stats package, and pseudo-R2 values were calcu-
lated with the pscl package (35). Genetic principal components
www.sobp.org/GOS
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Table 1. Characteristics of the IMPaCT Case-Control Study Sample, Kaiser Permanente Northern California

Characteristic All, N = 2569 ASD, n = 311 DD, n = 1291 GP, n = 967

Maternal Age at Birth, Years 31.30 (5.21) 31.67 (5.34) 31.49 (5.32) 30.92 (5.00)

Maternal Race/Ethnicity

Asian 534 (20.79%) 64 (20.58%) 266 (20.60%) 204 (21.10%)

Black 148 (5.76%) 20 (6.43%) 80 (6.20%) 48 (4.96%)

Hispanic 619 (24.09%) 69 (22.19%) 323 (25.02%) 227 (23.47%)

Other 107 (4.17%) 11 (3.54%) 52 (4.03%) 44 (4.55%)

White 1145 (44.57%) 144 (46.30%) 561 (43.45%) 440 (45.50%)

Unknown 16 (0.62%) 3 (0.96%) 9 (0.70%) 4 (0.41%)

Maternal Education

Less than high school 66 (2.57%) 5 (1.61%) 38 (2.94%) 23 (2.38%)

High school 309 (12.03%) 37 (11.90%) 163 (12.63%) 109 (11.27%)

College 1527 (59.44%) 192 (61.74%) 757 (58.64%) 578 (59.77%)

Postgraduate 422 (16.43%) 46 (14.79%) 212 (16.42%) 164 (16.96%)

Unknown 245 (9.54%) 31 (9.97%) 121 (9.37%) 93 (9.62%)

Parity

0 1164 (45.31%) 167 (53.70%) 561 (43.45%) 436 (45.09%)

1 880 (34.25%) 87 (27.97%) 451 (34.93%) 342 (35.37%)

2 373 (14.52%) 38 (12.22%) 195 (15.10%) 140 (14.48%)

3 105 (4.09%) 11 (3.54%) 60 (4.65%) 34 (3.52%)

41 38 (1.48%) 6 (1.93%) 17 (1.32%) 15 (1.55%)

Unknown 9 (0.35%) 2 (0.64%) 7 (0.54%) 0 (0%)

Plurality

Singleton 2468 (96.07%) 294 (94.53%) 1223 (94.73%) 951 (98.34%)

Multiplea 101 (3.93%) 17 (5.47%) 68 (5.27%) 16 (1.65%)

Gestational Age

,35 weeks (very preterm) 61 (2.37%) 8 (2.57%) 46 (3.56%) 7 (0.72%)

35–37 weeks (preterm) 214 (8.33%) 32 (10.29%) 130 (10.07%) 52 (5.38%)

$38 weeks (term) 2294 (89.30%) 271 (87.14%) 1115 (86.37%) 908 (93.90%)

Child Sex

Female 1031 (40.13%) 69 (22.19%) 474 (36.72%) 488 (50.47%)

Male 1538 (59.87%) 244 (77.81%) 817 (63.28%) 479 (49.53%)

Child Year of Birth

2011 330 (12.85%) 32 (10.29%) 178 (13.79%) 120 (12.41%)

2012 396 (15.41%) 45 (14.47%) 215 (16.65%) 136 (14.06%)

2013 663 (25.81%) 79 (25.40%) 326 (25.25%) 258 (26.68%)

2014 689 (26.82%) 92 (29.58%) 326 (25.25%) 271 (28.02%)

2015 483 (18.80%) 63 (20.26%) 238 (18.44%) 182 (18.82%)

2016 8 (0.31%) 0 (0.00%) 8 (0.62%) 0 (0%)

Values are presented as mean (SD) or n (%).
ASD, autism spectrum disorder; DD, other neurodevelopmental disorders; GP, general population control; IMPaCT, Immune and Metabolic Markers during Pregnancy

and Child Development.
aOnly one child per multiple pregnancy was included in the analytic dataset.
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and ancestries were computed with PLINK (36) and used as
covariates in analyses in addition to child’s sex, mother’s age,
and year of birth.

Mendelian randomization (MR) was performed using the
TwoSampleMR package (37) comparing the asthma and BMI
meta-analysis and summary statistics from a large ASD GWAS
(38). After pruning for linkage disequilibrium using the LDlinkR
package (39), single nucleotide polymorphisms were selected
using 3 approaches that are described in the Results. The
power of MR analyses was calculated with mRnd (40).
Biological Psychiatry: Glob
Analysis of genetic correlation between meta-analysis and
GWAS summary statistics was performed with linkage
disequilibrium score regression (41,42).

RESULTS

The study population was diverse in maternal race/ethnicity
(approximately 55% non-White) (Table 1). Most mothers (76%)
had at least some college education. Maternal race/ethnicity
and education level did not differ across study groups; how-
ever, the percentage of first-born children (53.7%) and the
al Open Science January 2024; 4:39–50 www.sobp.org/GOS 41
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male:female ratio (3.5:1) were highest in the ASD group. Chil-
dren with ASD and DDs were more likely to have been born
preterm (12.9% and 13.6%, respectively) and to be a twin
(5.5% and 5.3%, respectively) than GP control participants.

Maternal Conditions Associated With ASD and DDs

Compared with the GP control group, maternal asthma was
associated with increased odds of child ASD (adjusted odds ratio
[adj-OR] = 1.62, 95% CI: 1.15–2.29) (Table 2). Results were
similar when conducted separately by asthma treatment status
(Table S3). Maternal obesity was also associated with increased
odds of child ASD (adj-OR = 1.51, 95% CI: 1.07–2.13) (Table 2).
We observed a trend of increasing ASD odds with increasing
level of maternal obesity, with the highest ASD odds associated
with obesity class III (adj-OR = 2.27, 95% CI: 1.21–4.24). When
maternal obesity was modeled as continuous BMI, the associa-
tion showed an increasing linear trend (Figure 1); (nonlinearity p
value = .53). In race/ethnicity-stratified analyses, asthma and
obesity were associated only in the White subset, although in-
teractions were not statistically significant (Table S2).

Maternal asthma was also associated with increased odds
of child DDs compared with the GP control group (adj-OR =
1.30, 95% CI: 1.02–1.64) (Table 2) and in sensitivity analyses
accounting for asthma treatment (Table S3). GDM was also
associated with increased odds of child DD (adj-OR = 1.37,
95% CI: 1.06–1.77).

Joint Associations Between Maternal Conditions
and Child ASD and DDs

Compared with women with neither condition, the odds of
having a child with ASD were higher among women with both
Table 2. Associations of Individual Maternal Immune-M
Neurodevelopmental Outcomes

Maternal Conditions

ASD, n = 311 DD, n = 1291 GP, n = 967

n (%) n (%) n (%)

Immune-Mediated

Allergy 55 (17.7%) 204 (15.8%) 134 (13.9%) 1.3

Asthma 64 (20.6%) 223 (17.3%) 136 (14.1%) 1.5

Autoimmune 27 (8.7%) 140 (10.8%) 96 (9.9%) 0.8

Infection 163 (52.4%) 635 (49.2%) 464 (48.0%) 1.1

Cardiometabolic

GDM 39 (12.5%) 202 (15.7%) 108 (11.2%) 1.1

Diabetes 3 (0.96%) 20 (1.55%) 13 (1.34%) 0.7

Obesity 97 (31.2%) 356 (27.6%) 233 (24.1%) 1.5

Obesity class I 50 (16.1%) 186 (14.4%) 137 (14.2%) 1.3

Obesity class II 26 (8.4%) 102 (7.9%) 58 (6.0%) 1.6

Obesity class III 21 (6.8%) 68 (5.3%) 38 (3.9%) 2.0

Preeclampsia 14 (4.5%) 57 (4.4%) 36 (3.7%) 1.2

Hypertension 40 (12.9%) 141 (10.9%) 93 (9.6%) 1.3

Chronic 13 (4.2%) 42 (3.3%) 27 (2.8%) 1.5

Gestational 28 (9.0%) 113 (8.8%) 75 (7.8%) 1.1

ASD, autism spectrum disorder; DD, other neurodevelopmental disorders; GDM, ge
aAdjusted models include child sex, birth year, maternal age, maternal race, and m

condition.
bStatistically significant association.
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asthma and obesity (adj-OR = 2.72, 95% CI: 1.57–4.71,
interaction p value = .47). Women with asthma and obesity
class III had more than a 16-fold increased odds of having a
child with ASD (adj-OR = 16.9, 95% CI: 5.13–55.71, interaction
p value = .005) (Table 3). The combination of asthma and
obesity was also associated with higher odds of child DD (adj-
OR = 1.64, 95% CI: 1.11–2.43, interaction p value = .72). The
relative excess risk due to interaction showed no statistically
significant additive interactions (Table 3). Additional adjust-
ment for maternal diagnosis of psychiatric conditions or ane-
mia during pregnancy did not alter the results (data not shown).

Neither the combination of asthma and GDM nor the com-
bination of obesity and GDM further elevated the odds of ASD
or DDs above those observed for each condition individually,
and there were no statistically significant multiplicative or ad-
ditive interactions (Table S4).

Sex Differences

The odds of ASD associated with maternal asthma and hy-
pertension were much higher among female offspring than
male offspring, representing statistically significant differences
by child sex (interaction p values of .02 and .001, respectively)
(Table 4). Higher odds of ASD among female offspring were
also observed for maternal obesity, although sex differences
were not statistically significant. Maternal allergy was associ-
ated with increased odds of DDs among female offspring only
(interaction p value = .02).

In combination with asthma, obesity was associated with a
5-fold increased odds of ASD (adj-OR = 5.6, 95% CI: 2.5–12.8;
interaction p value = .03), and obesity class III was associated
with a 10-fold increase in ASD risk (adj-OR = 10.8, 95% CI
2.7–44.1) (Table 5), both among female offspring only. Asthma
ediated and Cardiometabolic Conditions With Child

ASD vs. GP DD vs. GP

Crude OR
(95% CI)

Adjusteda OR
(95% CI)

Crude OR
(95% CI)

Adjusteda OR
(95% CI)

4 (0.95–1.88) 1.23 (0.86–1.77) 1.17 (0.92–1.48) 1.16 (0.91–1.48)

8 (1.14–2.20)b 1.62 (1.15–2.29)b 1.28 (1.01–1.61)b 1.30 (1.02–1.64)b

6 (0.55–1.35) 0.82 (0.52–1.31) 1.10 (0.84–1.45) 1.09 (0.82–1.44)

9 (0.92–1.54) 1.18 (0.90–1.54) 1.05 (0.89–1.24) 1.06 (0.89–1.26)

4 (0.77–1.69) 1.01 (0.67–1.52) 1.48 (1.15–1.89)b 1.37 (1.06–1.77)b

1 (0.20–2.52) 0.60 (0.16–2.22) 1.15 (0.57–2.33) 1.05 (0.51–2.15)

1 (1.11–2.07)b 1.51 (1.07–2.13)b 1.20 (0.98–1.48) 1.19 (0.95–1.49)

3 (0.91–1.94) 1.31 (0.87–1.99) 1.07 (0.83–1.38) 1.09 (0.83–1.42)

3 (0.98–2.70) 1.43 (0.81–2.52) 1.38 (0.98–1.96) 1.35 (0.94–1.94)

1 (1.14–3.55)b 2.27 (1.21–4.24)b 1.41 (0.93–2.14) 1.36 (0.87–2.11)

2 (0.65–2.29) 0.99 (0.51–1.90) 1.19 (0.78–1.83) 1.15 (0.75–1.77)

9 (0.93–2.05) 1.32 (0.87–2.00) 1.15 (0.87–1.52) 1.12 (0.85–1.49)

2 (0.77–2.98) 1.20 (0.59–2.44) 1.17 (0.72–1.91) 1.00 (0.61–1.66)

8 (0.75–1.85) 1.16 (0.72–1.86) 1.14 (0.84–1.55) 1.14 (0.84–1.56)

stational diabetes; GP, general population control; OR, odds ratio.
aternal education. The reference group for each condition is the absence of the
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Figure 1. Spline model for continuous body mass
index (BMI). When modeled using restricted cubic
splines, the association of BMI with autism spectrum
disorder (ASD) risk showed an increasing linear trend
(p value for nonlinearity = .53). Although the plot
shows a slight U-shape with a potential increase in
ASD risk among women who were underweight, we
note that the confidence bands below a BMI of 21
are extremely wide, showing no statistically signifi-
cant difference as confirmed by the test for nonlin-
earity. GP, general population control; OR, odds
ratio.
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and GDM did not jointly increase the odds of ASD or DDs in
either male or female offspring (Table 5). However, GDM and
obesity were jointly associated with higher odds of DDs in
female offspring only (Table 5). There were no statistically
significant additive interactions (Table 5).
Polygenic Risk Scoring

We first performed a set of PRS analyses to determine whether
the observed associations could be explained by shared ge-
netic risk, i.e., the same alleles happen to predispose mothers
to both asthma/BMI and to having offspring with ASD.
Biological Psychiatry: Glob
Because evidence for asthma and obesity associations were
found only in White individuals (Table S2), all PRS and sub-
sequent analyses were performed on the subset with European
ancestry (n = 571) as determined by genetic principal
component clustering. We used external summary statistics
from asthma and BMI GWAS (32) to predict maternal diagnosis
using the IMPaCT genetic data. The PRS for asthma explained
2.36% (p = 1.06 3 1026) of the variance in asthma in the
IMPaCT mothers. The PRS for BMI explained 6.07% (p =
8.02 3 10213) of the variance in BMI. The PRS for the meta-
analyzed combination of asthma and BMI explained 4.92%
(p = 8.54 3 1027) of the variance of a combined asthma-
al Open Science January 2024; 4:39–50 www.sobp.org/GOS 43
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Table 3. Joint Effects of Maternal Asthma During Pregnancy and Prepregnancy Obesity on Child Neurodevelopmental
Outcomes

Obesity Class

No Asthma Asthma

Interaction
p Value RERI (95% CI)nASD or DD/nGP

a
Adjusted OR
(95% CI)b nASD or DD/nGP

a
Adjusted OR
(95% CI)b

ASD vs. GP

Not obese 179/642 1.0 (ref) 35/92 1.37 (0.88–2.15) – –

Obese all classes 68/189 1.29 (0.91–1.84) 29/44 2.72 (1.57–4.71)c .47 0.79 (20.76 to 2.33)

Obese class I 39/113 1.25 (0.81–1.93) 11/24 1.85 (0.84–4.11) .80 20.11 (21.70 to 1.48)

Obese class II 20/43 1.48 (0.81–2.72) 6/15 1.34 (0.47–3.76) .48 20.62 (22.50 to 1.27)

Obese class III 9/33 1.06 (0.47–2.37) 12/5 16.90 (5.13–55.71)c .005 11.47 (23.50 to 26.43)

DD vs. GP

Not obese 803/642 1.0 (ref) 132/92 1.20 (0.89–1.60) – –

Obese all classes 265/189 1.14 (0.91–1.42) 91/44 1.64 (1.11–2.43)c .72 0.20 (20.61 to 1.01)

Obese class I 144/113 1.06 (0.80–1.40) 42/24 1.42 (0.84–2.42) .97 0.03 (20.88 to 0.95)

Obese class II 69/43 1.25 (0.83–1.89) 33/15 1.72 (0.91–3.23) .91 0.00 (21.27 to 1.27)

Obese class III 52/33 1.22 (0.77–1.95) 16/5 2.62 (0.92–7.43) .46 1.01 (21.76 to 3.79)

ASD, autism spectrum disorder; DD, other neurodevelopmental disorders; GP, general population control; OR, odds ratio; ref, reference category; RERI, relative excess
risk due to interaction.

an represents counts for ASD, DDs, or GPs.
bAdjusted models include child sex, birth year, and maternal age, race, and education. Obesity and asthma were both included in the models simultaneously.
cStatistically significant association.
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obesity (BMI . 30) phenotype. We tested the association of
each PRS generated with the child ASD outcome to assess
shared genetic risk, and none were significant (p . .05),
although we may have had low power. We observed a
moderate correlation (rG = 0.108, p = .0041) between
the meta-analyzed combination of asthma and BMI and the
ASD proband GWAS. This correlation would place it in the
w30th percentile of 235 phenotypes tested with the same
Table 4. Sex Differences in the Associations of Individual Mate

Conditions

ASD vs. GP

Adjusted ORa in
Male Children

Adjusted ORa in
Female Children

Allergy 1.05 (0.69–1.61) 1.87 (0.98–3.59)

Asthma 1.23 (0.81–1.87) 2.93 (1.63–5.25)c

Autoimmune 0.67 (0.39–1.17) 1.38 (0.62–3.07)

Fever 1.27 (0.84–1.90) 1.05 (0.55–2.01)

Infection 1.16 (0.85–1.59) 1.21 (0.73–2.01)

Metabolic 0.78 (0.35–1.76) 1.17 (0.39–3.53)

GDM 1.02 (0.64–1.62) 0.99 (0.42–2.29)

Diabetes 0.81 (0.20–3.33) –
d

Obesity 1.34 (0.89–2.02) 1.96 (1.08–3.55)c

Obesity class I 1.14 (0.69–1.88) 1.76 (0.87–3.54)

Obesity class II 1.47 (0.78–2.77) 1.29 (0.41–4.10)

Obesity class III 1.77 (0.79–3.94) 3.22 (1.28–8.11)c

Preeclampsia 0.98 (0.48–2.04) 1.00 (0.22–4.56)

Hypertension 0.82 (0.49–1.39) 3.26 (1.70–6.24)c

Chronic hypertension 0.58 (0.23–1.42) 6.23 (2.00–19.4)c

Gestational hypertension 0.84 (0.47–1.51) 2.21 (1.03–4.71)c

ASD, autism spectrum disorder; DD, other neurodevelopmental disorders; GDM, ge
aAdjusted models include child sex, birth year, maternal age, maternal race, and m
bp Value for two-way interaction term between maternal condition and child sex.
cStatistically significant association.
dModel did not converge due to data sparsity within cells.
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ASD dataset, making it an unlikely explanation for the strong
association with maternal conditions (50% shared
genetics).
Mendelian Randomization

To test whether the physiology of maternal asthma, BMI, or
their combination could be causal for the ASD outcome, we
rnal Conditions With Child Neurodevelopmental Outcomes

DD vs. GP

p Valueb
Adjusted ORa in
Male Children

Adjusted ORa in
Female Children p Valueb

.15 0.90 (0.66–1.23) 1.61 (1.12–2.31)c .02c

.02c 1.04 (0.76–1.43) 1.68 (1.18–2.38)c .05c

.15 1.01 (0.70–1.45) 1.21 (0.79–1.86) .52

.63 1.04 (0.76–1.42) 0.72 (0.51–1.02) .12

.89 0.93 (0.74–1.17) 1.26 (0.97–1.62) .08

.56 1.45 (0.85–2.47) 1.09 (0.61–1.95) .48

.95 1.37 (0.99–1.91) 1.37 (0.91–2.04) .99

.98 1.51 (0.58–3.92) 0.56 (0.16–1.93) .21

.29 1.04 (0.78–1.40) 1.40 (1.01–1.93)c .18

.32 0.85 (0.59–1.22) 1.41 (0.97–2.06) .05

.84 1.17 (0.73–1.87) 1.64 (0.94–2.85) .35

.33 1.62 (0.88–3.00) 1.10 (0.58–2.10) .38

.98 0.85 (0.49–1.46) 1.83 (0.91–3.66) .09

.001c 0.93 (0.64–1.34) 1.44 (0.94–2.22) .12

.001c 0.70 (0.38–1.26) 2.15 (0.86–5.35) .04c

.05c 0.97 (0.65–1.47) 1.40 (0.88–2.22) .25

stational diabetes; GP, general population control group; OR, odds ratio.
aternal education, and the interaction term for child sex by maternal condition.
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Table 5. Joint Effects of Maternal Prepregnancy Obesity, Asthma During Pregnancy, and Gestational Diabetes on Child
Neurodevelopmental Outcomes Stratified by Child Sex

Maternal Condition

No asthma Asthma

p-int RERI (95% CI)

Female Male Female Male

OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a

ASD vs. GP

Not obese 1.0 (ref) 1.0 (ref) 2.54 (1.15–5.61)b 1.08 (0.64–1.84) .08 21.12 (24.57 to 2.32)

Obese all classes 1.70 (0.89–3.27) 1.17 (0.78–1.76) 5.60 (2.45–12.82)b 1.75 (0.89–3.45) .03 20.83 (27.93 to 6.27)

Obese class I 1.74 (0.80–3.76) 1.10 (0.66–1.83) 4.53 (1.46–14.05)b 1.04 (0.37–2.89) .06 23.35 (210.72 to 4.01)

Obese class II 0.96 (0.21–4.36) 1.63 (0.83–3.19) 4.38 (0.82–23.26) 0.86 (0.25–2.91) .12 24.09 (213.26 to 5.07)

Obese class III 2.44 (0.76–7.88) 0.65 (0.23–1.85) 10.81 (2.66–44.05)b –
c

– –
c

DD vs. GP

Not obese 1.0 (ref) 1.0 (ref) 1.68 (1.08–2.60)b 0.91 (0.62–1.34) .04 20.85 (21.89 to 0.18)

Obese all classes 1.28 (0.92–1.77) 1.03 (0.76–1.39) 1.98 (1.14–3.43)b 1.36 (0.80–2.33) .33 20.25 (22.03 to 1.54)

Obese class I 1.26 (0.85–1.87) 0.91 (0.62–1.32) 2.28 (1.11–4.70)b 0.79 (0.37–1.68) .05 21.71 (23.77 to 0.34)

Obese class II 1.49 (0.81–2.76) 1.09 (0.64–1.87) 2.05 (0.73–5.76) 1.54 (0.70–3.39) .66 20.04 (23.18 to 3.26)

Obese class III 1.10 (0.54–2.25) 1.32 (0.71–2.45) 1.23 (0.35–4.38) –
c

– –
c

ASD vs. GP

No GDM 1.0 (ref) 1.0 (ref) 3.00 (1.58–5.70) 1.38 (0.88–2.16) .04 20.33 (23.42 to 2.77)

GDM 1.01 (0.36–2.80) 1.18 (0.70–1.96) 1.89 (0.36–9.88) 0.59 (0.19–1.88) .26 22.55 (27.01 to 1.90)

DD vs. GP

No GDM 1.0 (ref) 1.0 (ref) 1.67 (1.15–2.45)b 1.08 (0.76–1.53) .09 20.53 (21.48 to 0.42)

GDM 1.46 (0.92–2.30) 1.48 (1.02–2.15)b 1.94 (0.81–4.64) 1.05 (0.52–2.12) .38 20.61 (22.70 to 1.48)

No GDM GDM

Female Male Female Male

OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a p-int RERI (95% CI)

ASD vs. GP

Not obese 1.0 (ref) 1.0 (ref) –
d 0.82 (0.43–1.56) – –

Obese all classes –
d 1.10 (0.72–1.66) –

d 1.39 (0.70–2.75) – –

Obese class I –
d 0.89 (0.52–1.54) –

d 1.43 (0.59–3.48) – –

Obese class II –
d 1.10 (0.55–2.19) –

d 1.80 (0.55–5.84) – –

Obese class III –
d 2.04 (0.87–4.80) –

d 0.49 (0.05–4.57) – –

DD vs. GP

Not obese 1.0 (ref) 1.0 (ref) 1.63 (1.04–2.54)b 0.90 (0.61–1.32) .53 20.12 (21.35 to 1.10)

Obese all classes 1.33 (0.95–1.86) 1.03 (0.76–1.40) 2.02 (1.16–3.53)b 1.30 (0.76–2.24) .72 0.69 (20.93 to 2.32)

Obese class I 1.31 (0.87–1.96) 0.91 (0.62–1.33) 2.44 (1.17–5.11)b 0.73 (0.34–1.59) .30 0.87 (20.96 to 2.70)

Obese class II 1.57 (0.84–2.93) 1.05 (0.61–1.82) 1.94 (0.69–5.47) 1.49 (0.67–3.32) .26 21.86 (27.82 to 4.10)

Obese class III 1.15 (0.56–2.36) 1.30 (0.69–2.45) 1.28 (0.36–4.59) –
d

– –

ASD, autism spectrum disorder; DD, other neurodevelopmental disorders; GDM, gestational diabetes; GP, general population control; OR, odds ratio; RERI, relative
excess risk due to interaction.

aAdjusted models include child sex, birth year, and maternal age, race, and education. For each combination of maternal conditions, both conditions (i.e., obesity and
asthma, GDM and asthma, GDM and obesity) were included in the model simultaneously.

bStatistically significant association.
cNo male GP control participants were exposed to both asthma and obese class III.
dModel did not converge due to data sparsity within cells.
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performed MR analyses. This rationale relies on the assump-
tion that any cause of asthma/BMI (including genetic causes)
would proportionally increase risk for ASD outcomes, and
thus, we can use genetic risk factors for asthma/BMI as in-
struments. Power for an MR study relating the obesity-asthma
phenotype meta-analysis to the ASD GWAS (38) was deter-
mined to be 0.97 for the European-ancestry data based on the
proportion of variance explained by the PRS. Because the ASD
GWAS measures proband rather than maternal genetic risk,
Biological Psychiatry: Glob
the estimated variance explained was reduced by half after
adjusting for the sharing of 50% of genetics between children
and mothers. In this conservative case, the power was found
to be 0.78. Because it is not advisable to perform two-sample
MR with the full PRS (inclusion of invalid instruments can bias
results), both MR-Egger and inverse variance-weighted MR
were performed on 3 sets of overlapping single nucleotide
polymorphisms between the autism GWAS summary statistics
and the asthma and BMI GWAS: 1) all genome-wide significant
al Open Science January 2024; 4:39–50 www.sobp.org/GOS 45
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(capturing maximum variance explained), 2) the top 20 single
nucleotide polymorphisms (balancing variance explained and
strong instruments), and 3) genome-wide significant filtered for
F-statistic . 10 (a criterion for a strong MR instrument)
(maximizing instrument strength). MR-Egger p values were
.656, .0947, and .742, respectively. Inverse variance-weighted
MR p values were .292, .972, and .508, respectively. Therefore,
the relationship between the obesity-asthma phenotype and
child ASD was not supported as being causal in nature.
DISCUSSION

This study investigated common immune-mediated and
cardiometabolic conditions during pregnancy and their as-
sociations with distinct neurodevelopmental outcomes within
a large, well-characterized integrated health care delivery
system. Asthma and obesity were independently associated
with a higher likelihood of child ASD. Furthermore, women
with both asthma and obesity were substantially more likely
to deliver infants who were later diagnosed with ASD or DDs.
The odds of having a child with ASD, but not DDs, increased
among women with extreme obesity and asthma. Further-
more, results differed by child sex, with the combination of
maternal asthma and obesity increasing the odds of ASD
among female offspring only.

When investigating causal relationships underlying these
associations, PRSs for asthma, obesity, and their combina-
tion in mothers were not found to be associated with ASD in
children, and the genetic correlation was modest. Similarly,
an MR analysis of the combination of asthma and obesity
and the relationship with ASD showed no significant rela-
tionship. The results of MR do not support the hypothesis
that the association with ASD is due to the physiology of the
condition(s) because in that scenario genetic risk factors
would be expected to proportionately increase ASD risk;
similarly, risk did not seem to be equivalently elevated across
race/ethnic groups. These results do not invalidate the
detected associations; rather, they suggest that associations
may not be driven by shared genetic risk or by the conditions
themselves, but instead by other shared risk factors. One
plausible factor is air pollution, which has been shown to be
associated with asthma (43), obesity (44), and ASD and other
neurodevelopmental disorders (45,46). This study was not
able to address air pollution directly; however, future studies
with data on maternal inflammatory conditions during preg-
nancy, environmental exposures such as air pollution, and
child neurodevelopmental outcomes are warranted.

We may not have had sufficient power to rule out shared
genetics or causality in several plausible scenarios. First, the
strongest PRS associations expected under those hypothe-
ses would be observed directly in the ASD probands, whose
genetic data are not included in IMPaCT. Second, there may
be a small subset of overlapping pathways, and given the
small amount of variance predicted by PRS, we could be
underpowered to detect partial correlation. In our MR anal-
ysis, the strongest associations expected would be with
maternal genetics, but we had only proband ASD GWAS
available. The power calculations were performed based on
the prediction of the full PRS for BMI-asthma meta-analysis;
however, we do not know whether meta-analysis best
46 Biological Psychiatry: Global Open Science January 2024; 4:39–50
captures the true model of the BMI and asthma relationship
to ASD risk, and the MR instruments may not have the full r2

of the PRS upon which our power analysis was based. In
addition, there are biological subtypes of both asthma and
obesity that this analysis does not recognize. Further refining
relevant subtypes and corresponding GWAS data could
improve our power in the future.

Asthma has been rising in prevalence among reproductive-
aged individuals and can be exacerbated during pregnancy
(47), increasing risk of perinatal complications (48). Our finding
of a relationship between maternal asthma and child ASD and
DDs is consistent with epidemiological literature linking asthma
during pregnancy to child neurodevelopmental conditions,
including ASD, intellectual disability, and ADHD (49–55). This
evidence is corroborated by a rodent asthma model showing
that induction of allergic asthma during early and late gestation
increased anxiety-like and repetitive behaviors in offspring
(56–58). While some studies have shown no association be-
tween maternal asthma and ASD (59,60), 2 large studies,
conducted in Sweden and the United States, have strength-
ened the evidence in support of a link between the conditions
(49,51). Furthermore, these studies are consistent with our
findings of no confounding by shared familial factors or use of
asthma medications. However, in a separate U.S.-based study
relying on retrospective report of medication use, mothers who
used asthma medication during pregnancy had slightly
elevated odds of having a child with ASD compared with
mothers who had asthma but did not use treatment (51).
Studies incorporating information on asthma severity and
medication may help clarify these data.

Obesity affects 29% of reproductive-aged women (61) and
is linked to greater cardiometabolic risk and inflammation. Our
findings of higher odds of ASD among children of mothers with
obesity are consistent with systematic reviews and meta-
analyses finding strong support for the idea that prepreg-
nancy obesity is a risk factor for child ASD, ADHD, and
cognitive delays (62–64). Our analysis also replicated the linear
relationship between higher BMI and odds of ASD observed
across populations (65,66). However, other studies suggest
that the strength of association between maternal obesity and
ASD diminishes after adjusting for paternal BMI or in sibling
study designs (67,68).

To our knowledge, this is the first study to examine the joint
association of asthma and obesity and their underlying ge-
netics with ASD and DD risk. The interrelationship and co-
occurrence of obesity and asthma have been recognized for
some time (69). Several prospective studies have demon-
strated that high BMI increases the risk of incident asthma and
exacerbation of symptoms, especially among women (69–71).
Studies also suggest a genetic underpinning of obesity with
adult-onset nonatopic asthma (72). Furthermore, a unique
immune and metabolic profile seems to distinguish obesity-
related asthma from other asthma endophenotypes (73),
which may have implications for neurodevelopmental
outcomes.

We found that GDM was associated with significantly higher
odds of DDs but not ASD. The literature suggests that GDM is
associated with a range of developmental delays and psychi-
atric conditions in offspring (10,11,74–78). In contrast, our null
ASD finding conflicts with a meta-analysis of 18 studies
www.sobp.org/GOS
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supporting an increased risk of ASD associated with GDM (79).
However, one previous large U.S.-based case-control study
found no association between GDM during pregnancy and
ASD (80). Given the high heterogeneity across these studies
(79), future work should consider how the timing, severity, and
pharmacologic clinical management of GDM and variation in
phenotypes among racial and ethnic groups may affect these
relationships.

Multiple studies have observed an interaction between
maternal obesity and GDM on risk of neurodevelopmental
conditions (7,10,64,81). However, our analysis did not repli-
cate this joint association or find evidence of an interaction
between GDM and asthma with respect to ASD or DDs.
Larger future studies could consider active management of
asthma and GDM during pregnancy and the severity of these
conditions. Furthermore, pregestational diabetes mellitus
was not associated with either child outcome in our study,
but previous studies have found evidence that maternal
overweight/obesity and pregestational diabetes may jointly
increase the risk of child ASD (81,82). We did not adjust for
multiple comparisons because the primary hypotheses were
1) prespecified and 2) preceded by prior relevant data in
earlier studies following the rationale outlined by Rothman
and Savitz (83–85). The 10 maternal conditions selected for
this study were all based on evidence from prior studies, and
we conducted 20 primary tests of association, 10 for ASD
and 10 for DDs.

Animal studies suggest that maternal inflammation has a
more deleterious impact on the neurodevelopment of male
offspring (86–88), although some evidence suggests unique
responses in female offspring (89,90). To date, few epidemio-
logical studies have explored these sex differences in humans,
where the maternal inflammation from chronic conditions may
be very different from the short-term inflammation induced in
animal models (4). Our findings indicate that certain maternal
conditions, including asthma, obesity, and preexisting and
gestational hypertension, may increase the odds of ASD and
DDs in girls but not boys. However, it is worth noting that other
studies have reported conflicting findings, with stronger cor-
relations of maternal obesity and ASD in boys or no sex dif-
ferences (91,92).

Emerging evidence suggests that fetal sex, possibly
through genetic and hormonal influences on the placenta and
immune signaling, may not only modulate fetal susceptibility
to maternal inflammation but also shape the maternal in-
flammatory response (93–98). Maternal asthma demon-
strates an example of this complex interplay. In a cohort of
children with ASD, maternal asthma was more common
among boys than girls; however, maternal asthma was more
strongly associated with behavioral and emotional problems
in girls than in boys (4). Furthermore, studies have docu-
mented greater asthma exacerbations and inflammation
among pregnant women with asthma carrying a female
compared with a male fetus (96,97). These relationships
require greater scrutiny.
Strengths and Limitations

This study has several key strengths. First, we used a large,
well-characterized pregnancy cohort within the membership of
Biological Psychiatry: Glob
an integrated health delivery system that is generally repre-
sentative of pregnancies across the insured population of
California. Using comprehensive longitudinal clinical informa-
tion on mothers and children, we were able to look at child
outcomes with respect to multiple maternal medical conditions
prospectively documented by clinicians during pregnancy
while controlling for key confounders. Diagnoses of ASD were
ascertained by rigorous clinical assessment, thereby reducing
possible misclassification. The observed ASD prevalence of
approximately 2% among KPNC members ,10 years old
approximates recent figures from multisource surveillance
systems (99), and the demographic profile of KPNC’s patients
with autism is similar to that of other populations (e.g., 80%
male). Our genetic approaches of using PRS and MR further
take advantage of large external resources relevant to ASD,
asthma, and obesity.

Our findings should also be interpreted in light of several
limitations. First, we lacked data on potential confounders and
moderators, such as breastfeeding, maternal diet, physical
activity, multivitamin use, smoking, and air pollution. We did
not have information on asthma severity, although adjustment
for use of asthma medications did not appreciably alter results.
We did not have a sufficient sample size to rigorously examine
developmental phenotype differences, and the age of study
children precluded robust examination of ADHD. Because
associations with asthma and obesity were primarily observed
in individuals of European ancestry and external genetic re-
sources are primarily available to match European ancestry,
genetic analyses were limited to our European ancestry sub-
set. Furthermore, despite sex differences in associations, due
to power limitations and availability of high-quality sex-strati-
fied summary statistics, genetic analyses were not performed
in a sex-stratified manner.

Conclusions

In summary, we found evidence that common maternal
inflammatory-related conditions during pregnancy indicate risk
for neurodevelopmental disorders in children. Children of
women with both asthma and obesity may be especially
vulnerable to adverse outcomes. Future studies should
consider asthma endophenotypes, specifically the unique in-
flammatory state of obesity-related asthma. Studies should
also continue to explore how fetal responses to maternal
inflammation may differ by biological sex. Future analyses in
the IMPaCT study will integrate maternal and child genetic
profiles with environmental exposures, maternal inflammatory
conditions, and pregnancy and newborn immune biomarkers,
which may shed light on key biological pathways and preg-
nancy time points and inform early detection and prevention
strategies.
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