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Abstract 

 

Crossed wires: Cross-sectoral dynamics of planning climate-resilient electricity systems 

 

by 

 

Julia Katalin Szinai 

 

Doctor of Philosophy in Energy and Resources 

 

Designated Emphasis in Development Engineering 

 

University of California, Berkeley 

 

Professor Andrew Jones, Co-Chair 

 

Professor Daniel Kammen, Co-Chair 

 

The impacts of climate change—including rising temperatures, changing precipitation 

patterns, declining snowpack, and more frequent extremes—are already occurring, and are 

projected to intensify, around the world. As both a source of greenhouse gas (GHG) emissions 

and an infrastructure system vulnerable to such climate change impacts, the electricity sector 

faces a dual mitigation and adaptation challenge: decarbonizing generation with renewable 

sources, while also adapting to changing resource availability and demands under climate 

change. Long-term electricity resource planning—which has historically focused on minimizing 

the cost of building and operating the grid to maintain reliability—must therefore shift to plan for 

climate resilience. Climate-resilient electricity systems are flexible, efficient, diverse, and 

redundant to be able to respond to climate stressors and maintain clean, reliable, cost-effective 

electricity. Further, climate change does not affect the electricity system in isolation. Failing to 

account for cross-sectoral interactions in planning may overlook cascading vulnerabilities, and 

lead to unintended consequences that jeopardize system resilience. Therefore, grid planners must 

also account for interactions with other sectors and their feedbacks on electricity supply and 

demand. However, methods for considering cross-sectoral interdependencies and resilience 

under climate change are both understudied in the literature and not part of electricity system 

planning in practice.  

To address these challenges, in this dissertation I study the electricity systems of the 

Western United States (WUS), and the case of California—a state that is the world’s sixth largest 

economy, the 12th largest source of GHG emissions, and one of North America’s most “climate-

challenged” regions in terms of impacts such as water stress and extreme heat. In my dissertation 

chapters, I focus on the cross-sectoral interactions between the electricity and transportation 

systems, and between the electricity and water systems. Grounded in systems thinking, I 

uniquely tie together transportation, water, and energy resource operations and planning 

methods, in consideration of sectoral differences in management and modeling. My research is 

informed by both academic literature and engagement with key stakeholders through co-

production to improve the decision-relevance of the results. Overall, by evaluating how climate 

mitigation strategies, climate impacts, and adaptation measures across sectors affect grid 
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outcomes, I aim to demonstrate the value of, and necessity for, modernizations to the electricity 

system planning paradigm to increase climate resilience and account for cross-sectoral dynamics.  

In Chapter 1, I analyze the interplay between electricity decarbonization and 

transportation electrification, otherwise known as vehicle-grid integration. These energy 

transitions require planners to consider how electric vehicle (EV) charging can complement, 

rather than challenge, grid operations. However, there is no consensus on the value and 

feasibility of EV charge management strategies for a highly renewable grid, such as that of 

California, because electricity markets and charging behaviors are often inadequately represented 

in the literature. Through a novel linkage of an agent-based mobility model and a high-resolution 

electricity dispatch model, this chapter quantifies the achievable benefits, in terms of avoided 

grid operating costs and renewable curtailment, of managed charging compared to the 

unmanaged charging alternative.  

In Chapter 2, I study the interactions between electricity and water systems, commonly 

referred to as the energy-water nexus. Electricity is used to power all stages of the managed 

water cycle including water extraction, conveyance, treatment, distribution, use, and disposal. 

However, the implications of evolving water and electricity systems on the energy usage and 

GHG associated with California’s water are not clear. Chapter 2 forecasts the energy and GHG 

footprint related to urban and agricultural water in California out to 2035, given recent trends in 

declining water demand, shifts to local water sources, and increasing renewable energy on the 

grid. By evaluating different water sector pathways, the analysis demonstrates the energy and 

GHG savings co-benefits of water conservation across different regions, which can help in 

achieving state climate mitigation goals.  

Climate change is likely to stress the interactions between electricity and water resources 

highlighted in Chapter 2. However, the ways and extent that such cross-sectoral 

interdependencies may exacerbate or offset climate change impacts and related adaptation 

strategies are unclear. Chapter 3 synthesizes the fragmented literature and develops a generalized 

framework for understanding how climate change may affect the energy-water relationship. A 

case study of California by the end-century—when climate impacts on water supply, air-

conditioning demand, and hydropower are expected to be greatest—finds that energy 

requirements of some water sector adaptation strategies may exceed the direct climate impacts 

on the energy system, demonstrating the value of cross-sectoral coordination to ensure efficient 

and reliable energy and water provision. 

Despite the compounding risk of climate change on coupled energy-water systems shown 

in Chapter 3, most electricity planning models omit these interactions, which could result in 

future capacity shortfalls from unanticipated resource changes. Chapter 4 fills this gap with a 

novel model linkage that evaluates the range of climate impacts on water resources across the 

WUS, and how the buildout of the region’s electricity system may subsequently need to change 

to account for, and maintain resilience in the face of, changes in hydropower availability and 

energy use related to water. The results quantify the additional redundancy and diversity, in 

terms of generation and transmission capacity resources, needed to make the grid resilient to 

both water-related climate change impacts and decarbonization. 

While many benefits of coordination have been demonstrated in the literature, in the 

independently managed energy and water sectors, cross-sectoral interactions are still not 

typically or explicitly operationalized into decision-making. One possible explanation for this 
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gap between the theory and practice of the nexus is that scientists working at the nexus may not 

be engaging directly with stakeholders to understand and adjust their research based on the kind 

of information, norms, and methods used by practitioners. Chapter 5 uses a co-production 

approach through a focus group and surveys with water managers to improve the decision-

relevance of Chapter 4 modeling efforts. The results highlight the climate impacts of concern to 

WUS water managers for providing reliable water services, the explicit and implicit ways that 

energy interactions affect water management decisions, the diverse tradeoffs managers consider 

when weighing decisions, and the metrics they use to evaluate the tradeoffs. 

I conclude the dissertation with a summary of ongoing work as well as recommendations 

for both policy-makers and researchers on ways to evaluate and plan for cross-sectoral dynamics 

and climate resilience for the electricity system. 
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Introduction 
1. Background and motivation 

The impacts of climate change—including rising temperatures, changing precipitation 

patterns, declining snowpack, earlier snowmelt, and more frequent and intense extremes—are 

already occurring, and are projected to intensify, around the world [1]. Coupled human and 

natural systems, or socio-ecological systems, are vulnerable because of their exposure, 

sensitivity, and limited resilience to such climate perturbations [2]. Decreasing anthropogenic 

greenhouse gas (GHG) emissions from fossil fuels used for energy generation, transportation, 

buildings, and industry is a key mitigation strategy to reduce or slow such climate change 

impacts [3]. At the same time, there is increasing recognition that even with ambitious mitigation 

efforts some impacts are unavoidable in the near term, thus responding to climate change also 

requires adaptation actions to reduce vulnerability to stressors occurring now and anticipated in 

the future [4]. Synthesized across many definitions and disciplines, adaptation can be broadly 

described as an adjustment in human or natural systems that alters the exposure, reduces the 

sensitivity, or increases the climate resilience of a system [5], [6].  

Climate resilience is the ability of a system to adapt to, and cope with, such climate 

perturbations while continuing to provide or improve upon essential services [2], [7]–[9]. The 

goal of developing climate-resilient infrastructure systems is to reduce GHG emissions, while 

simultaneously having flexibility and redundancy to function under changes in both average and 

extreme weather [10], [11]. Incorporating these concepts of climate resilience into infrastructure 

planning has been gaining interest from governments, utilities, and other organizations 

concerned about being able to deliver the historical level of services with systems predicated on 

climate stationarity [12]–[14]. However, gaps in understanding and in practice remain on how 

best to account for the uncertainties of climate projections, impacts on infrastructure, and socio-

economic conditions; the already aging and degrading state of many systems [15]; the long lead 

time, costs, and lifetimes of infrastructure [13]; and other non-climatic political or economic 

stressors [14]. 

An added complexity to this climate resilience planning challenge is that the 

infrastructure systems are often systems-of-systems comprised of multiple sectors that have 

feedbacks among them [16], [17]. These systems often also have disconnected governing 

institutions with different organizational objectives, scales, and information [18]–[20]. Despite 

these complexities, it is important to comprehensively consider these cross-sectoral dependencies 

because evaluating and adapting to climate impacts for individual sectors alone may 

underestimate climate risks [21], [22]. Ignoring interactions and feedbacks may lead to 

compounding impacts of climate change, and/or “maladaptation” if one sector’s adaptation 

strategy inadvertently increases the climate vulnerability of another [21], [23], [24].  

Incorporating cross-sectoral interactions and decision-relevant information for electricity 

system planning under climate change 

This dissertation centers on the challenges of planning a climate-resilient electricity 

system. As both a source of GHG emissions from fossil fuel generation, and an infrastructure 

system vulnerable to climate change impacts, the electricity sector faces a dual mitigation and 

adaptation challenge: decarbonizing generation with renewable sources, while also adapting to 

changing resource availability and demands as well as risks to physical infrastructure, such as 
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from sea level rise and wildfire (which itself could be exacerbated by grid infrastructure as a 

source of ignition) under climate change [25]–[28]. Rolling blackouts in response to recent 

extreme weather events across the United States, like in California during the West-wide 2020 

heat storm [29], in Texas during the 2021 cold-snap [30], or in the Pacific Northwest’s 2021 

record-breaking heat wave [31], suggest that the current grid infrastructure, and by extension the 

electricity planning paradigm, is ill prepared to both mitigate and adapt the grid for climate 

resilience. Long-term electricity resource planning has historically focused on minimizing the 

cost of building and operating the grid to maintain reliability[32],1 but in the context of climate 

change, resilient electricity systems must also be flexible, efficient, diverse, and redundant to be 

able to respond to climate stressors and maintain clean, reliable, cost-effective electricity [34]. 

Climate change also does not affect the electricity system in isolation [5]. Failing to 

account for cross-sectoral interactions in planning may overlook cascading vulnerabilities across 

time and geography, and lead to unintended consequences or missed opportunities that 

jeopardize grid resilience [16], [17], [22]. Risks may be exacerbated when adaptation actions in 

one sector are maladaptive and adversely impact the other, such as increasing energy use or 

reducing generation [23], [35]. Therefore, electricity system planners must account for 

interactions with other sectors that have typically been outside the grid planning process—but 

which are also responding to climate drivers—because their activities may now directly affect 

electricity supply and demand. In particular, the transportation and water are two sectors that will 

have increasing interaction with the electricity sector in the context of climate change. As a 

major source of GHG emissions, transportation electrification is a key strategy for mitigation, 

but one that could add massive new energy demands and operational challenges for grid 

operators in simultaneously integrating intermittent renewable resources [36]. The electricity 

sector must also account for potentially propagating impacts from the climate-vulnerable water 

sector, through interdependencies also known as the energy-water nexus, because water systems 

in many regions can have large energy demands and contribute to energy supply through 

hydropower [16], [37].  

Despite recognition of the importance and benefit of considering such cross-sectoral 

dynamics, transportation and water system interactions under climate change have not been 

operationalized as part of standard grid planning practices [26]. One possible explanation for this 

gap between the theory and practice is that scientists working across sectors may not be engaging 

directly with stakeholders to understand and adjust their research based on the kind of 

information and methods that are used by practitioners on the ground [38]. Co-producing 

information jointly with scientists and practitioners can help make the information credible, 

legitimate, and salient for use in decision-making [39]. Such stakeholder engagement has been 

effective in revealing non-technical barriers to effective adaptation and coordination between 

sectors, and can augment technical modeling assumptions, scenario creation, and model design 

for decision-relevance and improved climate information usability [40]–[42]. 

 
1 Reliability in electricity systems is defined in terms of both adequacy (ability of the system to supply energy to customers at all 

times, given scheduled and reasonably unexpected unscheduled outages), and operating reliability (ability of the system to 

withstand sudden disturbances such as an unanticipated loss of a generator, while avoiding cascading blackouts) [33]. 
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2. Overall dissertation goals, research questions, and structure 

In this dissertation I aim to demonstrate the value of, and necessity for, modernizations to 

the electricity planning paradigm to increase climate resilience and account for cross-sectoral 

dynamics. I do this by evaluating how climate mitigation strategies, climate impacts, and 

adaptation measures across sectors affect grid outcomes. Overall, my goal is to advance 

understanding toward answering:  

How can cross-sectoral linkages be accounted for in planning a climate-resilient electricity 

system?  

Grounded in systems thinking, I uniquely tie together literature on 1) power systems 

operations and planning, 2) climate change impacts, mitigation, and adaptation, 3) cross-sectoral 

interactions between the electricity and transportation systems and between the electricity and 

water systems, and 4) co-production of decision-relevant science (Figure 1). In this dissertation, I 

develop and apply these methodologies to the Western US (WUS) where such complex 

challenges are playing out today, and where accounting for interactions with the transportation 

and water systems has become an operational imperative to planning an electricity system. 

Throughout this research, I have an emphasis on the case of California— a state that is the 

world’s sixth largest economy, the 12th largest source of GHG emissions [36], and one of North 

America’s most “climate-challenged” regions in terms of impacts such as water stress and 

extreme heat [7]. 

My dissertation spans the electricity, transportation, and water sectors and answers five 

specific research questions across a spectrum of climate change mitigation and adaptation 

approaches (Figure 2). Chapter 1 analyzes the impact of transportation electrification in 

California and how electric vehicle (EV) charge management may increase grid resilience by 

providing flexibility to balance intermittent renewables. In Chapters 2 through 5, I study linked 

electricity and water systems in California and the broader WUS. Chapter 2 evaluates the energy 

and GHG footprint of California’s urban and agricultural water systems in the near term, given 

emerging trends in the state’s water and energy supply and demand portfolios. Chapter 3 

identifies cross-sectoral vulnerabilities and feedbacks of water and energy systems under climate 

change, looking ahead to the end of the century. Given these linkages, Chapter 4 evaluates the 

Figure 1. Dissertation main themes. 
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range of climate impacts on water resources in the WUS, and how the buildout of the region’s 

electricity system may subsequently need to change to account for changes in hydropower 

availability and energy use related to water. Chapter 5 is an analysis of a focus group and surveys 

conducted through a co-production process with water planners to understand if and how they 

consider energy when deciding to adapt their water systems to climate change. I conclude the 

dissertation with a summary of ongoing work as well as recommendations for both policy-

makers and researchers on ways to evaluate and plan for cross-sectoral interactions and climate 

resilience for the electricity system. 

 

In the following sections of the introduction, I provide the background and motivation for 

these chapters, and how they support my overall research aim to demonstrate the value and 

necessity of a new electricity planning paradigm for increased climate resilience. 

2.1  Chapter 1: Reduced grid operating costs and renewable energy curtailment with electric 

vehicle charge management 

The transportation sector is the largest contributor to emissions in California (39% of 

GHG), and the state’s climate mitigation strategy (to reduce overall emissions 40% by 2030 and 

80% by 2050) has centered around electrification in parallel with decarbonization of generation 

resources (targets of 5 million EVs on the road by 2030, and 100% carbon-free generation by 

2045). These energy transitions require electricity system planners to consider the cross-sectoral 

implications of how EV charging can complement, rather than challenge, grid operations 

increasingly dominated by intermittent solar and wind sources [43]. Prior research suggests that 

with high levels renewable energy, off-peak time-of-use (TOU) and smart charge management 

strategies can make EVs a complementary flexible grid resource [44]. However, there are gaps in 

evaluating the feasibility and value of these strategies at high vehicle and renewable adoption 

levels [45] because electricity market dispatch and drivers’ charging behaviors are often 

Figure 2. Dissertation chapter outline and research questions. 
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inadequately represented [46]–[50]. Much of the literature either (1) has not included realistic 

charging behaviors which account for divers’ mobility needs and charging infrastructure 

availability, or (2) has not evaluated charging demand in an electricity system operational model 

that can simulate dynamic grid dispatch [51]–[53], thereby estimating benefits which may not be 

achievable.  

In Chapter 1, I build on these efforts with a novel linkage of a more robust and realistic 

simulation of the transportation sector (with an agent-based mobility model [46]) and the power 

sector (with a production cost model [27], [54]), to quantify the hourly impacts and annual 

wholesale market value and renewable energy curtailment that California policymakers can 

reasonably expect with large scale EV and renewable adoption.  

2.2 Chapter 2: The future of California’s Energy-Water-GHG Nexus 

Energy is integral to all aspects of managing and using water in California. Prior studies 

have estimated that about 20 percent of California’s total statewide electricity use, a third of non-

power plant natural gas consumption, and 88 billion gallons of diesel consumption are related to 

water – from collection and treatment to use and wastewater management – with a large share 

associated with heating water [55]. However, many factors have since evolved in California’s 

water demand and supply portfolio, and the implications of multiple, ongoing changes to the 

state’s water resources on future energy use and GHG emissions are not well understood. 

California has experienced a dramatic decoupling between water use and economic growth over 

the last 40 years [56]. Urban water suppliers also are pursuing local water supply options [57], 

many of which are more energy-intensive than traditional water sources but still less energy-

intensive than imported water [58]. While agricultural water use has remained relatively flat 

since the 1980s, it is particularly dependent on unsustainable groundwater extraction, and 

pumping has become increasingly energy-intensive as groundwater levels have fallen around the 

state [59]. Climate change, with impacts on water availability, quality, and demand, is 

accelerating these trends [60]. Water and energy changes in California also affect GHG 

emissions for the state. Electricity generation, the main energy source for the provision and 

treatment of water, is undergoing structural reform to decarbonize. There are also state programs 

to incentivize switching to electric water heating, which is the most energy-intensive end-use of 

water and is still largely done using natural gas water heaters. 

Given this complex set of factors affecting the water and energy systems in the state, 

there is a need to update estimates of water-related energy and GHG footprints. Some prior 

studies are out-of-date and do not incorporate the decarbonizing electricity mix, both urban and 

agricultural water, the major energy use of water heating, or the entire state [55], [61]–[65]. 

Chapter 2 builds on these previous analyses to quantify the combined impact of emerging trends 

on California’s water (including population growth, climate change, and policies to promote 

water efficiency and alternative water supplies) and electricity (including generation 

decarbonization) on the state’s water-related energy and GHG footprints from 2015 to 2035. 

Based on the results of the analysis, the chapter includes recommendations for water and energy 

sector planners to find mutually beneficial strategies to lower energy use and GHG emissions. 

2.3 Chapter 3: Evaluating cross-sectoral impacts of climate change and adaptations on the 

energy-water nexus: a framework and California case study 

Chapter 2 demonstrates that electricity and water systems are inextricably linked through 

energy demands for using, moving, and treating water and wastewater. In California and 
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worldwide, water is also a key input to electricity generation, for hydropower and cooling of 

thermoelectric power plants [37], [38], [66]–[68]. Climate change and the resulting shifts in the 

global hydrologic cycle [69], [70] may strengthen or strain these nexus connections in new and 

uncertain ways [71]. For example, higher temperatures and shifts in precipitation and snowpack 

could simultaneously increase irrigation water demand and energy for water pumping, while 

reducing surface water and hydropower availability [72], [73]. Further, as shown in Chapter 2, 

water sector measures commonly sought during long-term declines in surface water, including 

water recycling, desalination, or groundwater recharge and withdrawal, can be relatively energy-

intensive [67], [74]–[77]. Some of these impacts have already occurred during recent droughts in 

California, foreshadowing how the state’s energy-water nexus may fare under these impacts of 

climate change [21]. The drought response of the state’s water sector transferred and 

compounded vulnerability to its electricity sector—increased groundwater pumping spiked 

electricity consumption, while hydropower deficits were replaced by GHG-emitting fossil 

generation [35], [78]. 

Because water and electricity system climate vulnerabilities and adaptations are often 

studied in isolation, there is limited understanding of how multiple interactive risks and 

feedbacks between them may propagate [16], [17], [21], [22]. Typically climate vulnerability 

analyses evaluate electricity [25], [72], [79] or water system [80] risks with the assumption that 

all else remains fixed, or assess climate-related changes to supplies or demands separately [72], 

[81]–[83]. Many studies that are focused on demonstrating how integrated energy and water 

systems’ management improves efficiency, increases equitable resource access, and maximizes 

synergies [38] only characterize historical conditions [61], [84], [85]. The cross-sectoral 

tradeoffs of climate adaptation strategies, such as the energy footprint of alternative water 

supplies, are particularly understudied despite recognition that ignoring such externalities could 

lead to maladaptation, whereby one sector’s adaptation strategies increase climate vulnerabilities 

in another [23], [85], [86].   

In Chapter 3, I review and synthesize this fragmented literature and develop a generalized 

framework for understanding implications of climate change on the energy-water nexus. I apply 

this framework in a case study to quantify the range of end-century direct climate impacts on 

California’s water and electricity resources and estimate the magnitude of the indirect cross-

sectoral feedback of electricity demand from various water adaptation strategies.  

2.4 Chapter 4: Planning for climate change impacts on electricity and water systems in the 

Western US with a cross-sectoral modeling approach 

Chapter 3 finds that the main ways electricity and water systems are impacted by climate 

change in the WUS are through changing water supply availability, irrigation water demand, 

hydropower generation, and electric demand for cooling. Yet, there are few examples of grid 

planners considering such impacts of climate change or water system interactions in modeling 

efforts for future grid expansion, and existing examples only analyze select impacts [87], [88]. 

To inform their decision-making, electricity system planners traditionally use capacity expansion 

optimization models to decide what type of technology, where, and when to build new capacity 

that meets forecasted loads and operational constraints [89]. However, capacity expansion 

models that incorporate water linkages are uncommon and primarily have focused on water 

constraints on thermal power plant cooling. These constraints are less relevant in the WUS where 

there is a relatively minimal share of freshwater for thermoelectric cooling [90]–[92]; in 

California, for example, the dependency on cooling water is further decreasing as the generation 
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mix is transitioning to renewable resources that do not require cooling water [90], [91]. 

Additionally, limited work has been done on incorporating climate impacts on both changes in 

“water-for-energy” (i.e. hydropower) as well as “energy-for-water” (i.e. changes to energy 

demand for groundwater pumping, conveyance, water treatment, etc.). Since climate change is 

projected to have significant impacts on both water supply availability as well as water demand, 

the energy usage related to supplying, transporting, treating, using, and disposing of water in the 

region will change correspondingly and affect the overall energy demand grid planners must plan 

to meet. These are key areas for further research given that grid infrastructure predicated on 

climate stationarity is unlikely to be resilient to future conditions. 

I address these gaps in Chapter 4 by connecting a high-resolution grid capacity expansion 

model with a water resources model that combines climatically-driven physical hydrology and 

management of both water supply availability and demand allocation. The objective of this work 

is to evaluate the optimal buildout of Western Electricity Coordinating Council (WECC) 

electricity infrastructure in response to climate impacts and water sector interactions by 2050. 

This analysis (1) quantifies the climate impacts on hydropower and energy demand for water 

under a range of potential futures; and (2) quantifies the sensitivity of the electricity grid buildout 

and operations to climate impacts on hydropower and water-related energy demand. 

2.5 Chapter 5: Assessing climate adaptation decisions at the energy-water nexus 

Many energy-water nexus studies demonstrate how integrated systems’ management 

improves efficiency, increases equitable resource access, and maximizes synergies [38]. There is 

also recognition in the literature [73], [93] of the importance of accounting for climate impacts 

on such linked energy and water systems, because the cross-sectoral interactions could 

exacerbate the effects of warming. Yet, in the two independently managed sectors, it appears that 

energy-water interactions are not typically or explicitly operationalized into decision-making 

[18], [94], and many ideas and tools of the nexus have remained conceptual [38]. Nexus 

challenges for climate adaptation in particular tend to not be in the forefront of decision criteria 

and are often considered outside the scope or jurisdiction for resource managers of individual 

sectors to evaluate [20]. One possible explanation for this gap between the theory and practice of 

the nexus is that scientists working at the nexus may not be engaging directly with stakeholders 

to understand and adjust their research based on the kind of information, frameworks, 

institutional norms, and analytical methods that are used by practitioners on the ground; only a 

small share of nexus literature includes stakeholder engagement and decision support methods 

[38].  

Active scientist-stakeholder interaction and engagement are highlighted as ways to 

narrow this gap and make climate information more decision-relevant for adaptation planning 

[95], [96]. Participatory approaches, such as the workshops or focus groups, are effective 

methods to reveal non-technical barriers to effective adaptation and coordination between 

sectors, and can augment technical modeling assumptions, scenario creation, and model design 

for decision-relevance and improved climate information usability [40]–[42]. One form of 

scientist-stakeholder interaction is co-production, whereby information is jointly produced 

through the collaboration between scientists and stakeholders, and values and knowledge are 

incorporated from both communities [97]. In addition to addressing gaps in knowledge creation, 

co-production can help scientists conduct their analysis and present their results in consideration 

of the different facets of decision-making, including in institutional norms, local context, and 

specific costs and benefits [98]. 
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Chapter 5 uses the collaborative process of co-production between scientists and 

stakeholders to improve the decision-relevance of energy-water nexus modeling. Through a 

focus group and surveys between researchers and water managers, the work aims (1) to co-

produce research questions and scenarios to explore with energy-water nexus modeling 

described in Chapter 4; (2) to understand in fundamental ways how climate and energy 

information is currently used by water managers; and (3) to hear from managers and scientists on 

what scientific information about these interactions can potentially help inform the management 

context under future climates. 
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Chapter 1: Reduced grid operating costs and renewable energy 

curtailment with electric vehicle charge management  
 

 Chapter 1 focuses on climate change mitigation efforts and the cross-sectoral interactions 

between the electricity system and an electrified transportation system in California and the 

WUS. The analysis quantifies the value, in terms of avoided grid operating costs and renewable 

energy curtailment, of managed electric vehicle charging with a 50% renewable grid in 

California and electric vehicle adoption scenarios up to California's 5 million vehicle target. By 

integrating a detailed agent-based mobility model with a high-resolution power systems dispatch 

model, this analysis provides realistic estimates of the availability of managed charging services, 

and recommendations on targeted charging strategies that maximize benefits to a power system 

such as California’s with a high share of renewable energy. The work in this chapter was 

published in the journal Energy Policy as an article titled, “Reduced grid operating costs and 

renewable energy curtailment with electric vehicle charge management,” and is included in this 

dissertation with permission of my co-authors Colin Sheppard, Nikit Abhyankar, and Anand 

Gopal. 

 

 

1. Introduction 

The number of plug-in electric vehicles (PEVs) on the road, including both fully battery 

electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), has surpassed 3 million 

worldwide and is growing steadily [99]. Widespread PEV adoption can enable oil independence 

[100], save on fuel costs for drivers [101], and lower greenhouse gas (GHG) emissions [102], 

among other benefits. Increasing the share of renewable energy (RE) on the power grid in 

parallel with vehicle electrification generates a cleaner PEV fuel source and thus accelerates 

GHG emissions reductions [36]. 

However, shifts to a PEV-dominant vehicle fleet and decarbonized generation mix can 

challenge grid operations. PEV charging typically begins as soon as a driver arrives home from 

their evening commute and plugs in the vehicle [46], [103]. This charging load often coincides 

with the power system’s peak demand [103] and increases ramping needs and costs through the 

dispatch of inefficient and expensive fossil generators. High penetrations of intermittent wind 

and solar photovoltaic (PV) sources may also increase the need for curtailment or require other 

strategies to mitigate imbalances between energy supply and demand [104]–[106]. 

California is an ideal region to study interactions between an electrified fleet and a high-

RE grid because such transitions are already underway and will likely accelerate in the next 

decade. In 2012, the Governor set a state goal of 1.5 million zero emission vehicles (ZEVs)—

which include hydrogen fuel cell electric vehicles (FCEVs)2 and PEVs—by 2025, and the goal 

has since been extended to 5 million vehicles by 2030 [108], [109]. With about 500,000 PEVs 

currently on the road, California has about half of the U.S.’s PEVs and about 15% of the world’s 

PEVs [99], [107]. The state has charging infrastructure investments [110]–[112], growing 

vehicle model options [113]–[115], and other policy support [116]–[118] to help achieve the 

 
2 We do not evaluate the impact of FCEVs in this report, because they comprise a much smaller share of ZEVs in California 

[107]. 
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vehicle targets. For the power sector, through a Renewable Portfolio Standard (RPS), California 

mandated in 2015 that 50% of electricity consumption come from RE sources by 2030 [119]. In 

2018, the 50% RPS requirement was accelerated to 2026, on the way to 60% RPS by 2030 and 

an ultimate goal of 100% zero-carbon resources by 2045 [120]. 

 Prior research suggests that if PEV charging is managed, the vehicles could both alleviate 

peak loads and serve as a complementary grid resource to integrate more RE [43]. Time-of-use 

(TOU) charging and “smart” charging are two such managed charging strategies that have been 

commonly studied and piloted [43], [121], [122].3 Under TOU charging, drivers are incentivized 

by a lower electricity rate to charge during off-peak hours, often pre-programming the start time 

through the charger or PEV. With smart charging, PEVs usually participate in a demand 

response program whereby an aggregator (utility or third-party) remotely controls active 

charging to be on or off through the charger or vehicle software. The aggregator shifts charging 

to times that provide most grid benefit, when prices are low and/or RE is abundant, bidding the 

total flexible load of many PEVs into the wholesale electricity market. 

To plan for high adoption rates of both PEVs and RE, policymakers need an 

understanding of the impacts and benefits that managed charging, also known as Vehicle-Grid 

Integration (VGI), can realistically provide at scale. However, California’s related policy 

guidance lacks consensus on the systemwide value of VGI, calling for improved quantification to 

inform program design, investments, and business models [45]. Accordingly, the purpose of this 

research is to assess the impacts on California’s planned 2025 power system, including operating 

cost and RE curtailment, resulting from unmanaged, TOU, and smart charging at various PEV 

adoption levels. Because utilities are ahead of schedule to meet their 2030 RPS goal [126], and 

the targets have been since been expedited, we evaluate the California grid in 2025 with a 50% 

RPS. 

Bulk power system impacts have been studied in numerous contexts, varying in results 

depending on a system’s generation portfolio, PEV adoption level, and charging schemes [43]. 

For example, in several geographies, [44], [127], [52], [128], [129], [53], [130]–[135], [47], [48] 

compare outcomes of unmanaged and managed charging strategies, finding that overall, 

managed charging leads to lower costs, reduced emissions, and higher utilization of RE. [53], 

[128]–[131], [133], [135] use dispatch models to estimate generation with PEVs while [47], [53], 

[127], [129] also plan generation portfolios with consideration of PEV charging load profiles. 

[44], [128], [129], [53], [134], [135], [48], [136] examine the interaction between PEV charging 

and RE resources, showing that PEV charging schemes can lower RE curtailment. [132], [135] 

compare PEV flexibility value with that of stationary storage. 

Although VGI has been analyzed widely, much of the existing literature has either 

simplified the representation of charging strategies or grid dispatch. Without first robustly 

accounting for mobility (i.e. drivers’ travel demands), charging infrastructure, and drivers’ 

preferences, the availability of grid services provided by managed PEVs could be overestimated 

[46]–[50]. For example, [52], [53], [127], [135] aggregate travel patterns inferred from travel 

surveys to characterize PEV charging. Because this approach cannot account for individuals’ 

mobility constraints and assumes unlimited chargers, charging demands could be misrepresented. 

 
3 Vehicle-to-grid (V2G) charging is also a managed charging strategy. V2G allows for bi-directional power flow between the 

vehicle and grid such that the vehicle can both discharge energy to the grid and charge from the grid. We do not model bi-

directional power flow from the vehicle to the grid (V2G) or participation in ancillary services [123], because of the low marginal 

benefits and greater complexity and transaction cost of these strategies relative to just one-directional charging [124], [125]. 
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Previous work [46] demonstrates significant differences in timing and magnitude of loads when 

PEVs have access to unlimited chargers versus to the actual limited number of installed chargers; 

when chargers are abundant, charging is evenly distributed between morning and evening peaks, 

whereas charging occurs primarily in the evening with limited chargers. Studies including [44], 

[127], [135] assume PEVs park at certain locations and times, presuming they are plugged into a 

VGI-enabled charger [136], thereby potentially overestimating availability by ignoring actual 

charger scarcity. Secondly, neglecting to model PEV loads endogenously within the dispatch of a 

RE-dominated wholesale electricity market may skew the demand for, and therefore the value of 

their grid services. [44] uses a purely engineering input-output method to model the system, [52] 

conducts a macro-level supply-demand matching analysis, and [132] uses non-PEV loads and 

RE profiles as the only grid-related model inputs. These approaches may inflate VGI value by 

ignoring electricity market dynamics and competing sources of flexibility in the dispatch such as 

stationary storage and gas generation.  

As a result, the existing literature lacks realistic estimates of managed charging services, 

and their value in a power system such as California’s with a high share of RE. Building on other 

studies, we compare grid impacts from managed and unmanaged PEVs, while representing 

constrained infrastructure, mobility, and the dynamic electricity market. We first use a novel 

agent-based travel behavior model—Behavior, Energy, Autonomy, Mobility (BEAM) [46], 

[137]—that represents PEV drivers’ charging choices given constrained infrastructure. Agent-

based models are seen as best to capture neglected traveler behaviors [138], and are 

distinguished by: 1) simulating individual drivers (agents) in a virtual transportation system with 

a detailed road network and 2) dynamically representing agents’ behavior contingent on the 

virtual environment and each other. Agents’ choices are based on empirical studies of human 

behavior. We then link the outputs of BEAM with PLEXOS, a unit commitment and economic 

dispatch model, to simulate PEV charging within the grid at an hourly resolution. PLEXOS is an 

industry-standard software developed by Energy Exemplar and used by system operators 

worldwide [139] for simulating grid operations, including to model VGI [128], [129], [140], 

[141]. PLEXOS uses mixed integer optimization to minimize the cost of meeting load given 

physical (e.g. generator capacities, transmission limits) and economic (e.g. fuel prices, start-up 

costs) parameters. Through this integration of BEAM and PLEXOS, we compare unmanaged 

charging to smart and TOU charging under four scenarios of PEV adoption ranging from 0.95 

million (4% of the current California automobile fleet) to 5 million PEVs (20% of the current 

fleet).  

 Section 2 describes the two models and their linkage, and the methodology and data for 

each PEV charging scenario. Sections 3 and 4 discuss the 2025 California hourly and annual 

results, conclusions, and policy implications. 
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2. Methodology, Data, and Scenarios 

 Figure 3 illustrates our VGI methodology, beginning with the BEAM mobility model, 

continuing with the scaling of individual PEVs’ charging sessions to 2025 California-wide, and 

ending with the PLEXOS grid simulation with scenarios of PEV charging strategies and 

adoption. 

2.1 BEAM: Agent-based PEV mobility and charging model 

BEAM is an extension of the open source transportation systems modeling framework 

Multi-Agent Transportation Simulation (MATSim), which simulates individuals and their 

detailed interactions with the transportation system. Prior work describes MATSim and BEAM 

in depth [46], [137], [138]. BEAM simulates the daily travel patterns of individual drivers 

(where and when people drive between home, work, shopping mall, etc.) in their personal 

vehicles. These agents make their trips in a PEV and make charging-related decisions to 

maximize their utility by considering their battery’s state of charge (SOC), their remaining 

mobility needs for the day, their location, the number of accessible chargers at a site, the level of 

chargers, the cost, and the distance to their next activity [46]. BEAM’s charging behavior model 

contains terms that simulate the difference between PHEVs and BEVs; charging away from 

home provides less utility to PHEV drivers, reflecting a lower sense of urgency to top off their 

battery. The BEAM simulation outputs data from each PEV’s charging sessions including: 

charging session start and end time, end time of active power delivery, charging location, charger 

level, energy delivered (kWh), and maximum power of the charger and vehicle’s charge 

controller (kW). With these outputs we construct PEV charging scenarios (Section 2.3) for 

PLEXOS. 

  

Figure 3. Vehicle-grid integration modeling framework and methodology. The approach links an agent-based mobility model 

(BEAM) with a unit commitment and economic dispatch model (PLEXOS) to evaluate grid outcomes of PEV charging. 
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Table 1: Key assumptions used in BEAM modeling for the San Francisco Bay Area. 

PEV Vehicles and Characteristics A 

Make/Model Type Battery capacity 

(kWh) 

Fuel economy 

(kWh/mi) 

L2 

Charging 

limit (kW) 

DCFC 

Charging 

limit (kW) 

# 

Vehicles 

NISSAN LEAF BEV 45 0.30 7.0 50.0 16,598 

CHEVROLET VOLT PHEV 28 0.31 7.0 50.0 10,804 

TESLA MODEL S BEV 113 0.33 20.0 120.0 10,102 

TOYOTA PRIUS PLUG-IN PHEV 12 0.29 7.0 20.0 8,599 

FIAT 500e BEV 37 0.29 7.0 50.0 3,989 

FORD FUSION PHEV 11 0.34 3.3 - 4,168 

FORD C-MAX PHEV 11 0.35 7.0 - 3,490 

BMW I3 BEV 50 0.27 7.4 50.0 2,721 

GEM - Various Models BEV 19 0.20 - - 1,806 

VOLKSWAGEN E-GOLF BEV 36 0.29 7.2 50.0 1,516 

FORD FOCUS BEV 50 0.32 6.6 - 1,265 

CHEVROLET SPARK EV BEV 30 0.28 3.3 50.0 921 

TOYOTA RAV4 EV BEV 63 0.44 10.0 50.0 764 

All other BEVs BEV 41 0.37 varied varied 888 

All other PHEVs PHEV 17 0.47 varied varied 858 

Electric Vehicle Miles Traveled B 

Vehicle Type eVMT Comments 

BEVs 11,000 Average annual electric vehicle miles traveled per vehicle. Used to scale electricity 

demand for aggregated fleet for whole year, and based on assumption that all 

batteries are 50% higher capacity in 2025 than they are in 2016. PHEVs 7,600 

Charging Infrastructure C 

Market Sector Level # Chargers Charging limit (kW) 

Residential L2 68,489 Typically 7 kW, up to 20 kW for some vehicles (see A) 

Workplace L1 330 1.92 kW 

Workplace L2 4,900 Typically 7 kW, up to 20 kW for some vehicles (see A) 

Workplace DCFC 210 Typically 50 kW, up to 120 kW for some vehicles (see A) 

Public L1 130 1.92 kW 

Public L2 900 Typically 7 kW, up to 20 kW for some vehicles (see A) 

Public DCFC 160 Typically 50 kW, up to 120 kW for some vehicles (see A) 

Battery capacities are for 2025 (scaled 50% larger than 2016 levels). “All other BEVs” and “All other PHEVs” values represent 

weighted averages. Sources: A. Scenarios, Evaluation, Regionalization, and Analysis model by National Renewable Energy 

Laboratory, Original Equipment Manufacturer specifications, and U.S. Department of Energy fuel economy website; B. San 

Francisco Bay Area Metropolitan Transportation Commission and California Air Resources Board; C. U.S. Department of 

Energy Alternative Fuels Data Center and ChargePoint data. 

BEAM simulates mobility and charging behaviors for the approximately 68,000 BEVs 

and PHEVs registered in the San Francisco Bay Area in 2016. The number of vehicles and their 

spatial distribution are based on ownership estimates from the Scenarios, Evaluation, 

Regionalization, and Analysis (SERA) model developed by the National Renewable Energy 

Laboratory (NREL) [142]. PEV attributes are based on Original Equipment Manufacturer 

(OEM) specifications and the U.S. Department of Energy (DOE) fuel economy website [143]. 

Driver mobility is from the San Francisco Bay Area Metropolitan Transportation Commission’s 

(MTC) activity-based travel demand model [144], [145]. The drivers’ charging preferences are 

calibrated to observed 2016 charging session data received from ChargePoint, the largest 

charging infrastructure provider in the United States (Ch. 1 Appendix Table D1). We assume San 

Francisco Bay Area driving behavior is representative of other parts of California. According to 

MTC, the daily per capita vehicle miles traveled (VMT) in the San Francisco Bay Area (24.8) 

are almost equivalent to that of Los Angeles (23.7) [146]. Congestion levels are also very 

similar; in 2017, drivers in both metropolitan areas spent 12% of total driving time in congestion 
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[147]. More explicitly modeling driving behavior across California is an area for future 

refinement. 

The charging infrastructure is modeled in detail in BEAM to include the number of 

parking spaces with physical access to chargers, resulting in the formation of queues at occupied 

chargers. We assume all drivers have a charger at home [148] and include a relatively small 

share of other chargers based on Alternative Fuels Data Center and ChargePoint data; we model 

about 5,400 workplace chargers (Level 1, Level 2 and DC Fast chargers), 1,200 public chargers 

(Level 1, Level 2 and DC Fast chargers), and 68,000 residential chargers (Level 2) for the San 

Francisco Bay Area (Table 1) [149]. In two infrastructure sensitivity analyses, we assess 

potential impacts on our results of additional workplace chargers (Ch. 1 Appendix A), and 

different DC Fast charging assumptions (Ch. 1 Appendix B). 

To reflect anticipated technology improvements and subsequently higher PEV utilization 

by our 2025 study year, we assume the PEV fleet has battery capacities—and therefore a driving 

range—1.5 times greater than that of the original 2016 fleet. For example, the Nissan Leaf’s 

second-generation model (2017-present) has a range of 1.5 times the range of a 2016 Leaf. 

Evidence suggests that the electric vehicle miles traveled (eVMT) is strongly correlated to 

battery capacity and vehicle range [150], [151] and we therefore also scale the resulting charging 

load of the aggregated fleet to correspond to the larger batteries. While proportional scaling of 

aggregated load does not completely account for the timing and charging power associated with 

increased travel demand, this approximation maintains the temporal distribution of individual 

vehicle loads developed within BEAM. This adjustment corresponds to BEVs driving 11,000 

electric-miles and PHEVs driving 7,600 electric-miles on average per vehicle owner, annually. 

Given the rapidly evolving PEV market, we evaluate the implications of an even greater share of 

high-range PEVs (Ch. 1 Appendix B). 

There are several limitations of the BEAM version used in this analysis. BEAM is 

calibrated to charging behavior from 2016 ChargePoint data, which may differ by 2025. The 

calibration data also excludes Teslas, and therefore BEAM may over-represent the behavior of 

lower range vehicles, especially in the frequency of residential charging (although 961 

residential chargers were included in the data). Additionally, PEV energy consumption in BEAM 

is derived from a simple calculation based on the average fuel economy of the vehicle and 

BEAM does not consider other forms of mobility, such as electrified ride-hailing. 

2.2 PLEXOS: Power sector dispatch model 

PLEXOS performs a unit-commitment and economic-dispatch simulation using mixed-

integer programming and the Xpress-MP 28.01.13 mathematical solver [152] to minimize an 

objective function of operating costs, subject to constraints including imports, generator 

capacities, and a linearized DC optimal power flow [139] (Ch. 1 Appendix C). We populate 

PLEXOS with the scaled PEV loads and constraints from BEAM and data from a California 

stakeholder-validated database originally created by the California Independent System Operator 

(CAISO) for the state’s 2024 grid planning process [153]–[155]. We use a version released in 

November 2016 that CAISO updated with a 50% RPS RE portfolio and 2025 loads [154], [155]. 

Additional information on the CAISO database is described in regulatory documents [153]–

[156]. Several studies have been conducted with variants of the same database [104], [157]–

[159].  
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The PLEXOS simulation covers the Western U.S. grid, or Western Electricity 

Coordinating Council (WECC) geography, and is a zonal model such that the transmission 

network is broadly represented as paths between utility zones and not as individual lines. There 

are 25 utility zones, including eight in California [153]. California loads and distributed rooftop 

solar PV estimates come from a California Energy Commission (CEC) forecast [154], [160]. The 

total annual 2025 load for the California utility zones, net of distributed solar PV and energy 

efficiency, is 298 TWh. We remove 6.1 TWh of PEV load4 included in the original load forecast 

to avoid double-counting when adding the PEV loads from BEAM [162]. Non-California loads 

come from the WECC Transmission Expansion Planning Policy Committee (TEPPC).  

The 125 TWh RE portfolio (Table 2) in this analysis is forecasted by CAISO to meet a 

50% RPS mandate (based on [153], [154], [160], [163]). We set PLEXOS to curtail California 

in-state solar PV, wind, and solar thermal generation if electricity prices reach a -$150/MWh 

floor price, the lower limit for economic bids in the CAISO market [153], [164].  

Table 2: RE capacity and available annual generation in 50% RPS scenario. 

 Biogas Biomass Geothermal Small 

Hydro 

Large 

Solar PV 

Small 

Solar PV 

Solar 

Thermal 

Wind Total 

Capacity (MW) 228 635 2,076 986 19,316 2,073 1,021 14,649 40,986 

Energy (GWh) 1,511 4,120 15,775 3,104 53,611 4,995 2,412 39,779 125,307 

% of RE 1.2% 3.3% 12.6% 2.5% 42.8% 4.0% 1.9% 31.7% 100% 

RE generation and capacity values include RPS-eligible out-of-state capacity. Source: California Independent System Operator. 

We model the conventional thermal and hydro generators as specified in the CAISO 

database, including several generic fossil generators that represent authorized new plants 

expected to be built by 2025 in California [153], [154], [165], and excluding California’s 

remaining nuclear plant whose license expires by 2025 [166]. Generators are characterized in 

PLEXOS by start-up and shut-down times and costs, operations and maintenance (O&M) costs, 

heat rates, emissions rates, and energy limits for hydropower. Fuel prices vary by generator 

location, using natural gas price forecasts from the CEC for California and natural gas and coal 

prices from TEPPC for the rest of WECC [153], [154]. The GHG price we include from CAISO 

is $20.75/metric ton CO2-eq, which is added to California fossil generators’ variable generation 

cost [153]. Per the CAISO’s methodology, for resources imported from outside California, 

except dedicated imports, a CO2 cost adder is added to the transmission wheeling charge [153]. 

We also include 1,300 MW of stationary storage mandated in California [153], [167], and non-

PEV demand response [153]. 

California’s hourly net exports are constrained such that exports minus imports cannot 

exceed 2000 MW [156]. We also model dedicated imports to California entities, including from 

certain fossil and large hydropower resources, and 70% of out-of-state RPS-eligible RE [153]. 

Regulation and load-following reserve requirements are calculated by CAISO based on 

variability and forecast error in load and RE [168]. Renewable generators can provide up to half 

of their energy as downward load-following reserves, satisfying up to half the downward load-

following requirement [154].  

For each PEV scenario (Section 2.3), we run PLEXOS deterministically, one month at a 

time for a full year. Each run first optimizes over a month-long time horizon to accommodate 

generators with monthly energy limits, and then conducts daily chronological optimizations to 

 
4 The CEC generated this PEV load forecast based on their 2025 mid-case vehicle adoption scenario, assuming 75% of charging 

occurs 10pm to 6am [161]. 
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balance load by dispatching generation for each hour. PLEXOS co-optimizes for energy and 

reserves provision to achieve a minimum cost result. The optimization is run to globally 

minimize costs across all generators in the WECC area, but our analysis focuses on results for 

California.  

The PLEXOS solution for 2025 for each scenario includes hourly generator dispatch, RE 

curtailment, zonal prices, and California imports/exports. We calculate the California total 

system cost, often referred to as production cost, by summing costs of generation (from fuel, 

startup/shutdown, and variable O&M) and emissions (for CO2) for all generators in California. 

Because the state is a net electricity importer from neighboring regions [153], we include the 

hourly import costs and export revenue (negative costs) by adding the product of net interstate 

power flows and the electricity price in the utility zone receiving the power [169]. Finally, we 

add the total system costs from out-of-state generators serving as dedicated exporters to 

California. Since our focus is on operational impacts of PEVs and we hold infrastructure fixed, 

our California total system cost calculation does not include capital costs, such as for building 

new generators. We also do not include distribution system costs. Even at higher PEV 

penetrations, distribution system upgrades are forecasted to contribute only a small component of 

California utilities’ costs [170]. Lastly, our study’s hourly resolution is standard for dispatch 

models, but could slightly underestimate ramping costs [171] and prevents study of intra-hour 

impacts of PEV charging for which more research is warranted.  

2.3 PEV Adoption and Charging Strategy Scenarios 

We run the PLEXOS optimization with constant grid parameters (Section 2.2) under 1 

base case scenario with no PEVs included and under 12 PEV scenarios (Table 3) that each test a 

charging strategy at a range of California PEV adoption from a CEC forecast [172]. “Low” (0.95 

million) and “High” (2.5 million) scenarios represent CEC’s estimate if PEV prices remain more 

or less expensive than gasoline vehicles, and “Mid” (2.1 million) scenarios are CEC’s estimate of 

“most likely compliance” with California’s ZEV Program5 [172], [173]. We add “Reach” 

scenarios (5 million) to estimate impacts of very aggressive PEV market transformation, which 

would achieve the Governor’s extended target. 

Table 3: Scenarios of 2025 California PEV adoption and energy. 

PEV Adoption A 

 Low Mid High “Reach” 

Number of BEVs (60% of PEVs) 570,000 1,260,000 1,500,000 3,000,000 

Number of PHEVs (40% of PEVs) 380,000 840,000 1,000,000 2,000,000 

Total Number of PEVs 950,000 2,100,000 2,500,000 5,000,000 

PEVs % of Current CA Auto Stock 4% 8% 10% 20% 

Annual PEV Loads B 

  Low Mid High “Reach” 

Unmanaged charging load (GWh) 2,728 6,030 7,179 14,358 

TOU charging load (GWh) 2,728 6,030 7,179 14,358 

Smart charging load (GWh) 2,744 6,062 7,215 14,417 

PEV Load as % of CA Load 1% 2% 2% 5% 

A. Total Number of PEVs is from California Energy Commission (CEC) 2015 California Energy Demand Forecast for 2016–

2026, assumed split 60% BEVs and 40% PHEVs. The Current Auto Stock assumed is 25.5 million registered automobiles from 

 
5 The California ZEV Program regulation (in place in some form since 1990) requires that each automaker hold a certain number 

of ZEV credits, which reflects the share of ZEVs produced out of the total number of cars the manufacturer sold in California 

each year. Each ZEV vehicle produced receives a number of credits based on its range, and automakers with surplus credits can 

bank or trade credits with other manufacturers [117]. The California Governor’s executive orders setting 1.5 million and 5 

million ZEV targets are complementary policies to accelerate ZEV adoption. 
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California Department of Motor Vehicles. B. Annual PEV Loads is the scaled load from BEAM. The PEV load as % of CA load 

is of 292 TWh of California load in the PLEXOS model, net of solar PV, energy efficiency and PEV loads. Smart charging total 

loads are <1% more than the unmanaged and TOU loads due to the load shifting efficiencies assumed for the smart charging 

storage resource in the PLEXOS dispatch. 

Scenarios: 

• Base case scenario: No PEVs included in California load. 

• Unmanaged charging scenarios: Low (0.95 million), Mid (2.1 million), High (2.5 

million), Reach (5 million) PEV adoption, all PEVs charging unmanaged. 

• Smart charging scenarios: Low (0.95 million), Mid (2.1 million), High (2.5 million), 

Reach (5 million) PEV adoption, all PEVs participating in an aggregator-based smart 

charging program. 

• TOU charging scenarios: Low (0.95 million), Mid (2.1 million), High (2.5 million), 

Reach (5 million) PEV adoption, all PEVs responding to a residential overnight off-peak 

TOU rate. 

 We do not forecast customer participation rates for any charging strategy because the 

scenarios are meant to characterize the maximum potential wholesale market value—under more 

realistic mobility, charging infrastructure, and grid assumptions—if all California PEVs 

participated in a given charging strategy. Therefore, our results are the foundation for future 

work to assess benefits of specific smart charging or TOU tariff designs. Sections 2.3.1 and 2.3.2 

describe how the scenarios are constructed with BEAM and PLEXOS. 

2.3.1 Modeling PEV charging strategy scenarios in BEAM 

2.3.1.1 Unmanaged charging 

Charging sessions are first simulated for individual vehicles in BEAM as unmanaged, 

such that a PEV starts charging as soon as it is plugged in, and we record the energy delivered 

during each session as the unmanaged load for an individual PEV. 

2.3.1.2 Smart charging 

We use outputs from the BEAM unmanaged charging simulation to construct individual 

vehicle energy and power constraints for smart charging, similar to the methodology of [47]. 

These constraints characterize a flexible resource to be dispatched by PLEXOS (Section 2.3.2.2). 

We assume smart charging PEVs are plugged-in at the same times as if unmanaged, but that the 

timing of active charging within those periods is flexible as long as the delivered energy is 

equivalent to that of the unmanaged case. Smart charging flexibility is thereby limited to within 

individual charging sessions, rather than across different sessions. We assume that 1) drivers’ 

travel needs are too highly valued and their plans too inflexible to charge at entirely different 

times of the day because chargers are not universally available, 2) drivers do not unplug 

immediately after active charging ends unless there is a queue, and 3) drivers have sufficient 

foreknowledge and willingness to indicate their expected departure times for an aggregator to 

schedule active charging (similar to [174]). We do not model drivers leaving earlier than 

expected, but only 5% of BEV charging events in BEAM start with a critically low remaining 

range of 20 miles or less; these BEVs would only need to charge on average 36 uninterrupted 

minutes to reach a 20-mile minimum in case of unexpected early departure. 
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The cumulative energy delivered for unmanaged charging is the maximum constraint, 

representing the earliest possible charge, for each smart session. The minimum cumulative 

energy constraint assumes that active charging is delayed until the last possible moment, while 

still delivering equivalent energy by the end of the session, as in [174]. For three representative 

PEVs, Figure 4 illustrates an example of the maximum (earliest) and minimum (latest) smart 

charging cumulative energy constraints for a week of the BEAM simulation. Within the area 

bounded by these curves, any monotonically increasing trajectory can be achieved with smart 

charging, subject to the target SOC and the maximum power of the PEV and charger. The curves 

meet between charging sessions. In BEAM, the probability that drivers charge at home each day 

is based on a distribution derived from ChargePoint data, in which the average residential 

charger was used 93% of the days. 

2.3.1.3 Overnight time-of-use charging 

We represent the response to TOU rates in a second BEAM simulation by forcing the 

charging sessions to begin at staggered times (to avoid inducing a sudden demand spike) 

between 10 PM and 2 AM—approximately the range of start times of California’s current 

residential off-peak rate periods [175]–[177]—for those PEVs that would already be plugged in 

overnight at home if unmanaged. Within BEAM, we record the energy delivered during each 

PEV’s TOU session. We do not explicitly model a TOU electric rate but assume the off-peak 

price would be sufficiently low to incentivize all drivers to pre-program charging for those times. 

PEV drivers enrolled in current California TOU rates are very responsive to off-peak periods, 

especially with a large peak/off-peak price differential [121], [178].  

Figure 4. Illustrative sample smart charging constraints of 3 individual PEVs. Maximum (upper line) and minimum (lower line) 

cumulative energy constraints bound possible smart charging trajectories for three representative PEVs in the first week of the 

BEAM simulation. 
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2.3.2 Representing PEV charging scenarios in PLEXOS 

2.3.2.1 Aggregation of PEV charging loads and constraints 

For the unmanaged and TOU charging scenarios we aggregate the loads, and for the 

smart charging scenarios we aggregate the constraints, across the individual vehicles in BEAM 

by summation [174]. For each scenario, we do this summation separately for BEVs and PHEVs 

for the San Francisco Bay Area. These aggregated loads and constraints from a typical weekday 

(the second day of a three-day BEAM run) are used to construct a full week based on observed 

ChargePoint charging data. This construction occurs by repeating the full day of hourly loads 

from BEAM seven times to create a week, and then scaling the profiles separately by charger 

location (residential, workplace, and public) to match the normalized daily average loads from 

ChargePoint by charger location. Weekend loads are adjusted to mimic the observed 

ChargePoint weekend load shapes. These weekly loads and constraints are repeated to create an 

annual data set for San Francisco Bay Area. 

These aggregated San Francisco Bay Area loads and flexibility constraints produced by 

BEAM for the three charging strategies in 2016 are then increased linearly by vehicle type (BEV 

and PHEV) to represent the eight California utility zones modeled in PLEXOS in 2025. The 

scaling occurs in two parts: 1) first by the ratio of the current San Francisco Bay Area PEV stock 

to that of each California utility area from the California Vehicle Rebate Program (CVRP) data 

[116], and then 2) by the ratio of the current California-wide stock totaled from CVRP data 

compared to a CEC state forecast ranging from 0.95 million to 2.5 million PEVs for 2025, and a 

“Reach” adoption level of the Governor’s targeted 5 million PEVs [179] (Section 2.3). Because 

the state forecast is reported for PEVs in aggregate, we assume that 60% of the 2025 stock will 

be comprised of BEVs and 40% of PHEVs, similar to trends found in the CVRP data [116]. 

Finally, the annual loads for the TOU cases are normalized to equal the annual unmanaged loads 

for each level of PEV adoption, allowing for results comparison across charging strategies. 

Implicit in this overall scaling process of PEV loads from the San Francisco Bay Area in 2016 to 

California in 2025 is that the state’s charging infrastructure will continue to grow, such that the 

proportion of chargers to vehicles is the same as current levels. Given the planned large-scale 

infrastructure investments [110]–[112] and the Governor’s goal of installing 250,000 additional 

chargers by 2025, we think this is a reasonable assumption [109]. The final loads for each PEV 

adoption scenario are shown in Table 3. 

2.3.2.2 Incorporating PEVs into PLEXOS  

For the unmanaged and TOU charging scenarios, for each utility zone we add the 

aggregated and scaled 2025 PEV load to the non-PEV load as a fixed load profile in PLEXOS. 

We model smart charging loads in PLEXOS as the sum of a fixed load plus net generation of a 

dispatchable storage resource. The fixed load is the unmanaged PEV load for each utility. The 

storage resource for each utility is dispatched as part of the PLEXOS WECC-wide optimization 

to either discharge energy during high priced times (equivalent to PEVs not charging when 

unmanaged vehicles would have otherwise charged) or consume energy during low priced times 

(equivalent to PEVs charging when unmanaged vehicles would not have charged). This 

represents load shifting a collection of PEVs by an aggregator in a smart charging program. The 

storage resource starts full at the beginning of each PLEXOS simulation, and if not dispatched by 

the optimization, the smart load equals the load of the unmanaged scenario. 
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 We constrain the total size (in GWh) of the smart charging storage facility to be the 

largest difference between the maximum and minimum energy constraints of the aggregated 

PEVs in each utility zone (from Section 2.3.2.1). We limit the storage resource’s SOC to be 

greater than the hourly difference between the maximum and minimum cumulative energy 

constraints of the aggregated vehicles. We enforce time-varying maximum power constraints on 

discharging the storage resource, corresponding to the unmanaged load. The time-varying 

maximum power constraint for charging the storage resource depends on the capacity of all grid-

connected PEVs and available chargers in each hour under unmanaged charging. We set the 

round-trip efficiency of the storage resource to 99% (instead of 100%) so that PLEXOS first 

dispatches a zero-marginal-cost generator before the flexible smart charging load. Because the 

PLEXOS simulation runs one month at a time, we account for edge effects by constraining the 

storage resource to return to the starting SOC by the end of each month. 

3. Results and Discussion 

3.1 Hourly Grid Impacts 

For the same level of PEV adoption, even with PEVs comprising 1% to 5% of total 

California loads (Table 3), the PLEXOS results show the choice of charging strategy noticeably 

impacts hourly grid operations, in terms of net load shapes, hourly RE curtailment, and 

wholesale electricity prices. 

Figure 5 illustrates these key system outcomes averaged hourly across three seasonally 

representative months of grid operation with 2.5 million PEVs; results are similar with other 

adoption scenarios. The majority of the unmanaged PEV load occurs between 3pm and 11pm 

(row B), after the predominant commute home. Unmanaged charging yields higher prices (row 

D) and exacerbates the evening peak of the system’s load net of solar PV, solar thermal, and 

wind generation (row A). TOU charging, by design, is concentrated overnight at home starting at 

10pm and lasting until the early morning (row B). TOU charging creates smoother prices (row 

D), and avoids peak load times (row A) but also most RE curtailment (row C). In contrast, smart 

PEVs, as dispatched by PLEXOS, charge in the late morning and the late afternoon (row B) to 

reduce RE curtailment especially in spring (row C), surging again when prices drop around 

11pm (row D). This pattern follows the timing of low-priced generation (row D) of solar PV 

during the day and wind plus baseload plants overnight.  
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Figure 6. Weekday charging session flexibility duration and energy demanded by location and hour. The panels show for a 

typical weekday in the San Francisco Bay Area BEAM simulation (before scaling to California 2025 levels), the energy 

demanded by location and the hours of flexibility to shift load within charging sessions (based on the time between active 

charging and unplugging). 

Figure 5. California net load, PEV charging, RE curtailment, and average prices with 2.5 M PEVs. These figures are for 2.5 

million PEVs and outcomes averaged hourly across three seasonally representative months of grid operation; results are 

similar with other PEV scenarios. A. California system load net of solar PV, solar thermal, and wind generation; B. 

Unmanaged, TOU, and smart charging PEV loads; C. Curtailment of California solar PV, solar thermal, and wind 

generation; D. Load-weighted average price of California utility regions. 
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Figure 5 suggests smart charging is the most favorable strategy for California hourly grid 

operations because of its flexibility to lower net load peak, smooth prices, and reduce 

curtailment. Subsequently, this study’s linked transportation model can identify when and where 

PEVs can supply such hourly flexibility to target VGI policies, subject to mobility needs and 

charger availability. For a typical weekday in the San Francisco Bay Area BEAM simulation 

(before scaling to California 2025 levels), Figure 6 shows the energy demanded in unmanaged 

charging sessions and the duration of availability flexibility, based on the time between the end 

of active charging and unplugging. Most charging sessions occur at home in the afternoon and 

during grid peak hours. These residential sessions have the greatest flexibility (12+ hours) to 

shift charging and therefore contribute most of the smart charging benefits we see in the hourly 

outcomes (Figure 5). In contrast, there are relatively few charging sessions at work or public 

locations, and those sessions, concentrated in the mid-morning hours, have much less flexibility 

since drivers are both parked for shorter times and have queues that require unplugging 

immediately after active charging. A sensitivity testing the addition of four and eight times more 

workplace chargers shows only a minor increase in energy demanded and hours of daytime 

flexibility (Ch. 1 Appendix A). 

Together, these results suggest that in terms of location and timing, residential smart 

charging policies are the most efficient way to capture the majority of hourly grid flexibility. 

Even when there is remaining RE curtailment and negative pricing in the middle of the day 

(Figure 5)—which would be ideal times to shift additional PEV loads—the marginal value from 

increased smart charging at work or public chargers appears limited. These results appear robust 

to a higher buildout of DC Fast chargers: with a 20-fold increase in public DC Fast charging 

sessions, the number of charging-hours that can be shifted only decreases 3% and most 

flexibility still occurs at home (Ch. 1 Appendix B). Similarly, if the 2025 PEV fleet includes a 

greater share of high-range vehicles, we expect marginally less morning charging and slightly 

shorter duration evening flexibility but not a significant change to overall grid costs and 

curtailment (Ch. 1 Appendix B). 

3.2 Annual Grid Impacts 

The following section compares the annual total system cost and renewable curtailment 

impacts for California, resulting from hourly charging and grid interactions for each of the PEV 

scenarios. 

Table 4: California annual total system costs and renewable curtailment results. 

California total system costs A 

 Total system costs 

($ Millions) 

 Avoided cost relative to 

Unmanaged 

($ Millions) 

Share of Incremental Cost 

Avoided (%) 

PEV 

Scenario 

Base Unmanaged Smart TOU  Smart TOU Smart TOU 

No PEVs 6,514 - - -  - - - - 

Low - 6,711 6,592 6,620  119 91 60% 46% 

Mid - 6,946 6,738 6,778  208 168 48% 39% 

High - 7,024 6,783 6,829  241 195 47% 38% 

Reach - 7,792 7,104 7,244  688 548 54% 43% 

California renewable energy curtailment B 

 Curtailment (GWh)  Curtailment relative to 

Unmanaged (GWh) 

Curtailment relative to 

Unmanaged (%) 

PEV 

Scenario 

Base Unmanaged Smart TOU  Smart TOU Smart TOU 
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No PEVs 1,347 - - -  - - - - 

Low - 1,274 1,155 1,324  -119 50 -9% 4% 

Mid - 1,191 953 1,294  -238 103 -20% 9% 

High - 1,164 902 1,287  -262 123 -23% 11% 

Reach - 1,013 608 1,230  -405 216 -40% 21% 

A. Total system costs reflects the grid operating cost and includes the cost of generation and emissions for power plants located 

within California and the out-of-state import cost and export revenue. Avoided cost relative to Unmanaged is the difference in 

cost between the Unmanaged and Smart (or TOU) cases. Share of Incremental Cost Avoided is the Avoided cost relative to 

Unmanaged divided by the cost increase between the Unmanaged and No PEV cases for each PEV adoption scenario. B. 

Curtailment is of California’s solar PV, solar thermal, and wind generation. Curtailment relative to Unmanaged (GWh) is the 

difference in curtailment between the Unmanaged and Smart (or TOU) cases. Curtailment relative to Unmanaged (%) is the 

avoided curtailment divided by the curtailment under the Unmanaged case for each PEV adoption scenario. 

3.2.1 Total System Cost 

When PEVs are added to the grid, California’s annual total system costs (grid operating 

costs described in Section 2.2) increase in all scenarios because of additional generation used to 

meet load. However, for the same number of vehicles, the charging strategy significantly affects 

the degree to which costs increase. The difference in total system cost increases from smart or 

TOU charging compared to unmanaged charging are what we consider the value of a given 

managed charging strategy. 

Figure 7. Annual California total system cost. Annual total system cost for California includes the grid operating cost from 

generation, emissions, and net imports. 
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We find that smart charging provides the greatest annual value among the charging 

strategies tested. Smart charging avoids $120 to $690 million of California total system cost 

increases per year with 0.95 million to 5 million PEVs, compared with the same number of 

unmanaged vehicles (Figure 7, Table 4). Therefore, by managing PEVs with smart charging, 

California can save about 50% of the incremental cost of adding the new vehicle loads to the 

grid. Across the state, these savings are significant, on the order of 2% to 10% of California’s 

total system costs with 0.95 to 5 million smart PEVs, respectively. While smart charging results 

in lower total system costs than with TOU charging, similar to the findings of [52], the difference 

in value between the two strategies is not large. Compared to unmanaged charging, TOU 

charging provides California $90 to $550 million in value per year. Consequently, these cost 

savings compared to unmanaged charging amount to 1% to 8% of California’s annual total 

system cost with 0.95 to 5 million TOU charging PEVs. 

Across PEV adoption levels, smart charging incurs lower system costs relative to 

unmanaged charging because of lower peak loads (less expensive generators are used) and 

because more PEV load is served by RE (Ch. 1 Appendix Table D.2). TOU charging decreases 

system costs relative to unmanaged charging because of reduced load (Figure 5)—and thus 

reduced ramping primarily from natural gas generation—during evening peak demand hours. 

Under both managed charging strategies, the system dispatches less demand response to reduce 

peak loads and displaces some use of stationary storage (Ch. 1 Appendix Table D.2), increasing 

Figure 8. Avoided total system cost increases relative to Unmanaged PEVs. Avoided incremental cost percentage is the 

incremental cost from smart or TOU charging divided by the incremental cost of unmanaged charging. The per-PEV system cost 

savings from smart charging and TOU charging is the annual avoided incremental cost divided by the number of PEVs for each 

adoption scenario. 



 25 

the option value, or the opportunity for future use, of these flexible resources for other grid 

needs. 

With both managed strategies, the share of unmanaged charging costs that are avoided 

and the per PEV value are non-linearly related to increasing levels of PEV adoption. When 

divided by the number of PEVs assumed for each scenario, the total system cost savings are 

relatively low, averaging about $120/PEV per year with smart charging and about $90/PEV per 

year with TOU charging (Figure 8). We note, however, that this value would be spread more 

broadly across ratepayers and is not necessarily what would accrue directly to drivers; the driver 

savings from managed charging would also depend on factors including the enablement cost for 

demand response aggregators of smart charging and the particular level of TOU rates. Because 

this analysis takes the societal perspective and focuses on statewide wholesale market value, we 

do not simulate specific business models or rate designs to determine monetary benefits at the 

customer level. To fully evaluate the customer impacts, future research must also quantify 

additional value streams of managed charging, such as from avoided investment in infrastructure 

upgrades or distributed stationary storage, which also may make managed charging more 

financially attractive to drivers [180]. 

Consistent with [127], our results also show that at very high PEV levels, both smart and 

TOU charging strategies can defer capital costs for building new generating and transmission 

capacity. If 5 million PEVs are deployed, unmanaged PEV charging stresses the system peak to 

the point that about 2,500 MWh of load are unserved in California over two days in July, while 

smart or TOU charging PEVs can still be accommodated by existing generators without any 

unserved load. In our simulation, when there is not enough generation to meet load (within a 

utility zone or with imports), a zone’s electricity price spikes, up to the level of a market ceiling 

price set at $2000/MWh. Because we calculate California’s total system cost to include price 

times net imports into the region, the high total system cost for unmanaged charging with 5 

million PEVs—and the greatest per PEV value for smart and TOU charging—is driven by the 

increased imports during spikes of California regional market prices around this price ceiling. 

These results show that without a charge management policy, California’s grid as it is planned 

for 2025 may reach a saturation point at the state’s 5 million PEV goal and require added 

resources to avoid unserved energy. 

3.2.2 RE Curtailment 

VGI policies that reduce RE curtailment are favorable because curtailment—although a 

reliable way to maintain grid stability—raises a system’s operating cost and is an inefficient use 

of RE assets [10]. Curtailment is often invoked because of transmission congestion, but also 

occurs when must-run inflexible resources and minimal levels of thermal generation exceed load 

minus exports [181]. Lowering curtailment can increase investor confidence in developing future 

RE projects, and enable emissions reductions [182]. Our results show that smart charging is best 

able to shift load to times with excess RE, when power is priced negatively. With 0.95 to 5 

million PEVs, compared with unmanaged vehicles, smart charging lowers annual RE curtailment 

by an additional 9% to 40%, or about 120 to 410 GWh, respectively (Figure 9, Table 4). 

Dividing the avoided curtailment by the annual PEV load, it is estimated that with smart 

charging about 4% of PEV load is served by RE energy that would have otherwise been curtailed 

if the vehicles were left unmanaged (Ch. 1 Appendix Table D.3). In contrast, across all PEV 

adoption scenarios TOU charging results in more curtailment than does unmanaged charging, 

because most of the RE generation, dominated by solar PV, does not coincide with overnight 
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PEV load. For TOU charging to reduce curtailment, off-peak periods may need to be augmented 

with more hours that overlap with solar generation. 

 Because utilities consequently deliver less RE to comply with regulations, curtailment 

also necessitates additional RE capacity or resources such as energy storage, quickly ramping 

generators, or flexible loads to compensate [105], [106], [164]. The additional monetary value of 

curtailment reductions therefore depends on the avoided capital cost of overbuilding RE plants 

and the cost of alternative curtailment-reduction measures. Although we find that annual 

curtailment even with unmanaged charging is only 1.4% to 1.1% of RE generation (Ch. 1 

Appendix Table D.3), more study is needed of future higher RE levels when PEV charging may 

play a much more significant role in reducing curtailment and thus overall costs and emissions in 

California. 

4. Conclusions and Policy Implications 

 Previous literature, including [44], [127], [52], [128], [129], [53], [130], [132], shows 

managed charging can save on grid costs and reduce RE curtailment. However, most prior work 

does not fully account for constraints on mobility, charging infrastructure, and grid dispatch, 

thereby estimating benefits which may not be achievable. This study improves on these models 

through more robust and realistic simulation of both the transportation and power sectors, to 

represent the hourly impacts and annual wholesale market value and curtailment that California 

policymakers can expect with large scale PEV and RE adoption. We find unmanaged charging 

Figure 9. Annual California renewable energy curtailment. Annual curtailment of California in-state solar PV, solar thermal, and 

wind generation for each charging strategy and PEV adoption scenario. 
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coincides with peak loads and yields higher prices, while smart charging occurs during low-

priced times to avoid peaks and lower curtailment; TOU charging also reduces peak impacts. 

Annually, even with our more realistic assumptions, California can save between $120 to $690 

million of grid operating costs by managing PEVs with smart charging, and $90 to $550 million 

with overnight TOU charging. The introduction of practical limitations further reduces the 

average per-vehicle value of these managed charging strategies to the order of $100 per PEV 

annually compared to the $100 to $300 per PEV range seen in previous studies [43]. 

Nonetheless, the aggregate VGI values still make a significant difference for the California 

system: comprising up to about 8% or 10% of the state’s 2025 expected grid operating costs, 

making managed charging overall a beneficial policy for the state to pursue. Especially at the 5 

million PEV penetration ultimately targeted by state, some form of charge management becomes 

essential to avoid new generation or transmission investments. Lastly, smart charging lowers the 

cost of achieving California’s RE targets through curtailment reductions. Overnight TOU 

charging is counterproductive to RE integration efforts because it results in higher annual 

curtailment than even unmanaged PEVs. 

In terms of hourly grid impacts, annual total system cost savings, and RE curtailment 

reductions, we find that smart charging is overall a more valuable managed charging policy for 

California. Our detailed mobility model demonstrates most flexibility exists at residential 

locations rather than at work or public locations. This residential flexibility contributes nearly all 

the smart charging value by avoiding evening peak times and utilizing solar generation. 

Therefore, smart charging targeted at residential customers, who typically already have home 

chargers, appears to be the biggest opportunity and most cost-efficient policy for the state. Many 

chargers available today can be upgraded for smart charging for about $100, and some PEV 

models have smart charging software onboard [132], [122]. However, for residential smart 

charging to be implemented at a large scale, careful consideration is needed to design programs 

that monetize multiple value streams [180], [183] to increase driver participation incentives and 

overcome other consumer adoption barriers including perceived restricted mobility, concerns 

about data privacy, and aversion to new technologies [47], [49], [184]–[186]. Smart charging 

pilots have highlighted the importance of customer education on RE benefits, and of 

guaranteeing minimum charge levels [122], [184], [187].    

Overnight TOU rates achieve the majority of smart charging cost savings, have been 

effective among current adopters [121], and may have fewer customer acceptance barriers [188], 

however, our results show they are detrimental for RE integration. Given these tradeoffs, 

California might additionally consider a policy adjusting residential TOU off-peak periods to 

include some daytime hours and to establish daytime commercial TOU rates to capture a greater 

share of RE. Some utilities are moving towards these rates to produce curtailment reductions that 

cannot be achieved with overnight charging [189]. Further work on impacts of these new TOU 

rates is needed and on market segmentation for PEV flexibility to account for customer 

heterogeneity in desired levels of user involvement, financial subsidy, and environmental benefit 

[185], [190], [191]. 

 These estimates of VGI value are California-specific and will also depend on the 

evolution of the generation mix (such as higher RE levels), curtailment-reduction policies (such 

as better coordination with neighboring areas), distributed energy resources (such as other 

“smart” loads), and flexible supply-side resources (such as stationary battery storage). However, 

the relative value of managed compared to unmanaged PEVs is applicable to other systems 
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considering both high PEV and RE deployment. We conclude that regions with dual 

transportation electrification and grid decarbonization policies can benefit from hybrid smart 

charging and TOU strategies to avoid grid operating costs, RE curtailment, and capacity 

expansion. 
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Chapter 2: The future of California’s Energy-Water-GHG Nexus 
 

Chapter 2 introduces the concepts of cross-sectoral interactions between the electricity 

system the water system, also known as the energy-water nexus. This analysis evaluates the 

combined impact of emerging trends on California’s water (including population growth, climate 

change, and policies to promote water efficiency and alternative water supplies) and electricity 

(including generation decarbonization) on the state’s water-related energy and GHG footprints 

from 2015 to 2035. The analysis builds on prior work that last evaluated the water sector’s state-

wide energy footprint almost 20 years ago, and on regional or sectoral analyses that did not look 

at (1) both urban and agricultural water trends across all of California or (2) consider the 

widespread and connected nature of the state’s water infrastructure in aggregate. This analysis 

tests scenarios of future water demand and climate to evaluate the sensitivity of the energy and 

GHG footprints to conservation efforts and climate impacts. The work in this chapter includes 

selections of a technical report titled, “The Future of California’s Energy-Water-GHG Nexus” 

that I wrote with co-authors Sonali Abraham, Heather Cooley, and Peter Gleick. The report will 

be published by Next 10 in collaboration with the Pacific Institute in September 2021, and the 

copyright to the report is owned by Next 10. The chapter is included in this dissertation with 

permission from Next 10 and my co-authors. 

 

 

1. Introduction 

California's energy and water systems are closely connected. Water is a key input for 

energy production, and energy is integral to all aspects of water management and use in 

California. About 18% of California’s electricity generation has come from hydropower on 

average [192], and water is also used to cool thermoelectric power plants. Prior studies have 

estimated that in California nearly 20 percent of annual statewide electricity use, a third of non-

power plant natural gas consumption, and 88 billion gallons of diesel fuel consumption are 

related to water – from collection and treatment to use (such as water heating) and wastewater 

management [55]. The State Water Project – which pumps water from Northern California to 

communities across the state including over the Tehachapi Mountains to Southern California – is 

the single largest electricity user in the state [193]. These interdependencies are commonly 

referred to as the water-energy nexus.  

Many factors affect California’s water demand and supply portfolio, and the implications 

of multiple, ongoing changes to the state’s water resources on future energy use are not well 

understood. California’s urban water demand has been declining significantly with time, 

decoupling water use from population growth and economic output in the state [56]. At the same 

time, ongoing water-scarcity concerns and continued population growth are prompting water 

planners to pursue alternative, local water-supply options [57], many of which are more energy-

intensive than traditional water sources, but still less energy-intensive than imported water [58]. 

Similarly, declining water quality and new contaminants are leading water suppliers to adopt 

more energy-intensive treatment options like UV purification, ozonation, and reverse osmosis. In 

the agricultural sector, water use has stayed relatively flat since the 1980s while the economic 

value of crop production has increased significantly [56]. However, groundwater pumping, 

heavily relied on by the agricultural sector, is increasingly energy-intensive as groundwater 
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levels fall in many parts of the state [59]. Climate change, with impacts on water availability, 

quality, and demand [60], is likely to accelerate these trends. 

Water and energy trends in California also affect greenhouse gas (GHG) emissions for 

the state. Shifts in water supplies and demands affect energy usage related to water and the GHG 

emissions associated with that energy usage. In California, electricity generation, the main 

energy source for the provision and treatment of water, is undergoing structural reform to 

decarbonize. The state has committed to reach 100% carbon-free electricity by 2045, including 

intermediate requirements of 50% renewable generation by 2026 and 60% renewable generation 

by 2030 [194, p. 100]. However, water heating is the most energy-intensive end-use of water and 

is still largely done using natural gas water heaters. Therefore, energy programs in the state have 

begun to provide incentives for switching natural gas water heaters to more efficient and less 

GHG-intensive electric heat pump water heaters [195]. These complex interactions between 

changing water supply and demand trends, grid decarbonization, and electrification of water 

heaters will affect California’s water-related GHG emissions. 

There are several options for reducing the energy and GHG footprint related to 

California’s water. These include reducing water demand, adopting water sources with low 

energy requirements, and using renewable energy sources. For example, the East Bay Municipal 

Utility District’s (EBMUD) wastewater treatment plant produces more renewable energy onsite 

than is needed to run the facility, selling excess energy back to the electrical grid. Some local 

water-supply strategies, such as Los Angeles’ plans to source an increased share of water 

supplies from recycled water, are energy-intensive, but may offset even more energy-intensive 

imported water supplies. In the agricultural sector, there is an opportunity for energy savings 

with higher efficiency groundwater pumps, especially in Central Valley regions where the 

energy intensity of groundwater pumping may increase from current levels, at the proposed 

minimum thresholds allowed by the 2014 Sustainable Groundwater Management Act (levels of 

groundwater beyond which any reduction would cause undesirable effects in the basin).  

There is a need to update prior estimates of the water-related energy and GHG footprint 

of the urban and agricultural sectors in California given the complex set of trends likely to affect 

water and energy systems in the coming decades. This study builds on previous studies [55], 

[61]–[65] to address this need. 

First, we develop a comprehensive assessment of the energy and GHG footprint related to 

water in California. We examine statewide and regional trends in water supply and demand for 

the urban and agricultural sectors, and calculate associated energy use and GHG emissions under 

various future water scenarios. Second, we offer a set of policy recommendations drawn from the 

scenario analysis for reducing California’s water-related GHG and energy footprint.  

Section 2 of this chapter outlines the energy, GHG, and water data and analysis 

methodology. Section 3 presents results of the energy and GHG emissions associated with 

California’s urban and agricultural water. Section 4 provides conclusions and recommendations. 
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2. Analysis methodology and data 

Energy is required for all stages of the managed water cycle, from extraction or 

generation to conveyance, treatment, distribution, end-use, wastewater collection, and 

wastewater treatment (Figure 10). Our analysis of the energy and GHG emissions related to this 

managed water cycle is comprised of four steps: 1) identification of the energy intensities 

associated with each stage of this water management cycle, 2) calculation of the GHG intensity 

of each energy source related to water, 3) development of scenarios of future water supplies and 

demands for the urban and agricultural sectors, and 4) application of the energy and GHG 

intensities to historical water volumes and each scenario of future water volumes. Given data 

availability, we evaluate the urban and agricultural water sectors separately, and we analyze 

2015 historical data and project future scenarios in 5-year intervals for 2020, 2025, 2030, and 

2035. Each step of the analysis is described in detail below. 

2.1 Energy intensity of California’s water 

Following a similar approach to Cooley et al. (2012) and Diringer et al. (2019) [196], 

[197] to track the total embedded energy of the managed water system, energy intensity values 

(energy use per unit volume of water in units of kWh/acre-foot (AF) for electricity and 

MMBtu/AF for natural gas) are assigned for the extraction, conveyance, and treatment of 

historical and projected water sources, and for the distribution, end-use, wastewater collection, 

and wastewater treatment based on end-use sector (urban and agriculture) for each of 

California’s 10 hydrologic regions.6 These energy intensities are summed to calculate the total 

embedded energy in a particular water source and water demand category and for the system as a 

whole. We use data from Urban Water Management Plans (UWMP) and from the Department of 

Water Resources (DWR) to identify water source and demand categories for the urban and 

agricultural sectors, respectively (details in Section 2.3).7 

 
6 The 10 hydrologic regions are North Coast, San Francisco, Central Coast, South Coast, North Lahontan, Sacramento River, San 

Joaquin Valley, Tulare Lake, South Lahontan, and Colorado River. 
7 We are constrained by the “water supply” and “water demand” categories included in these urban and agricultural water 

datasets. In cases where supply categories cannot be attributed to a specific water source, we make assumptions as noted below. 

Figure 10. Stages of the water cycle with embedded energy. 
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2.1.1 Mapping Water Categories to Energy Use 

We first map the urban and agricultural water supply and demand data to the relevant 

stages of the managed water cycle (Figure 10), starting with categories of water sources (Table 

5) and then water demands (Table 6). We focus on electricity usage throughout each of the 

stages, and only evaluate natural gas usage for water-heating, which is the largest natural gas 

user related to California water [55]. The energy intensity of recycled water, which does not fit 

easily in this framework, is detailed at the end of Section 2.1.1. 

Table 5. Energy intensity categories applied to water sources. 

 Water Cycle Stages Related to Water Sources 

 1. Extraction or Generation 2. Conveyance 3. Treatment a 

Water Sources 

Desalinated Water (Seawater)  Seawater Desalination 

Conveyance 

Seawater Desalination 

Treatment 

Desalinated Water (Brackish) Groundwater pumping  Brackish Desalination 

Treatment 

Exchanges  Local Imported 

Deliveries 

Conventional Drinking Water 

Treatment 

Groundwater Groundwater pumping  Conventional Drinking Water 

Treatment 

Other  Local Surface Water 

Deliveries 

Conventional Drinking Water 

Treatment 

Central Valley Project 

Deliveries 

 Central Valley Project 

Deliveries 

Conventional Drinking Water 

Treatment 

Colorado River Deliveries  Colorado River 

Deliveries 

Conventional Drinking Water 

Treatment 

Other Federal Deliveries  Local Imported 

Deliveries 

Conventional Drinking Water 

Treatment 

State Water Project Deliveries  State Water Project 

Deliveries 

Conventional Drinking Water 

Treatment 

Recycled Water (Indirect 

Potable Reuse) 

Recycled Water (Potable) 

Treatment 

Recycled Water 

Conveyance 

Conventional Drinking Water 

Treatment 

Recycled Water  

(Non- Potable) 

Recycled Water (Non-potable) 

Treatment 

  

Captured Stormwater Groundwater pumping  Conventional Drinking Water 

Treatment 

Supply from Storage  Local Surface Water 

Deliveries 

Conventional Drinking Water 

Treatment 

Surface water  Local Surface Water 

Deliveries 

Conventional Drinking Water 

Treatment 

Local Imports  Local Imported 

Deliveries 

Conventional Drinking Water 

Treatment 

Transfers  Local Imported 

Deliveries 

Conventional Drinking Water 

Treatment 
a Energy intensity values for treatment of water supplies to drinking water standards are only applied to water supplies for the 

urban sector. We assume water used in the agricultural sector does not receive potable treatment. 

1. Water Extraction or Generation: Following the framework of Cooley et al. (2012) [196], 

water supply extraction includes the energy required to pump groundwater from its source to 

Earth’s surface. Energy intensities depend on the depth of groundwater relative to the surface 

and on the pump efficiency. We also apply the energy intensity for groundwater pumping to 

captured stormwater because in some cities, such as Los Angeles, stormwater is used to recharge 

aquifers and requires pumping for extraction [198]. We also add groundwater energy intensities 

for desalinated brackish water, which is typically pumped from aquifers before it is conveyed to 

a desalination treatment plant. Because of limited availability of detailed data, we assume that all 
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groundwater pumps are electric. However, we note that this may slightly overestimate electricity 

use, and underestimate GHG emissions because a small portion of groundwater pumps in 

California use diesel or natural gas, which are both more GHG-intensive than California’s 

current and projected electricity mix [199].8 

This category also includes the energy to “generate” water supplies, namely the incremental 

treatment of wastewater to recycle it for either potable or non-potable reuse, which is described 

in more detail at the end of Section 2.1.1.  

2. Water Conveyance: Energy for water conveyance includes the energy for pumping, lifting, 

and transporting raw or partially-treated water that is at the Earth’s surface from its source to the 

drinking water treatment plant (for the urban sector) or directly to the distribution system (for the 

agricultural sector). The energy for water conveyance primarily depends on the lift (elevation) of 

the water pumped and on the pump efficiency. Conveyance energy is included for deliveries 

from the state’s major inter-basin water transfers including the State Water Project (SWP), 

Central Valley Project (CVP), and Colorado River Aqueduct (CRA); local imports (water 

transferred by local water suppliers from other regions of California); and local surface water 

deliveries. For inter-basin conveyance projects (SWP, CVP, CRA) we use the energy intensity 

values for the furthest delivery point within a given hydrologic region. If there are multiple 

branches of a project within the same region, we calculate a volume-weighted average energy 

intensity across the delivery points in the region. In addition, average hydropower generation per 

unit of water volume on any conveyance project is subtracted from the energy intensity, to 

represent a net value of energy required [64, p. 1].9 Supplies labeled as ‘Other Federal 

Deliveries,’ ‘transfers’ or ‘exchanges’ are assigned the same energy intensity as local imports, 

because the UWMP data do not typically include more detailed information about these 

categories. Supplies labeled as ‘Other,’ ‘Supply from Storage,’ or ‘Return Flows’ are similarly 

assigned the same energy intensity as local surface water. For potable recycled water, we also 

assign an energy-intensity for conveyance (pumping) from the wastewater treatment plant to the 

drinking water treatment plant [201], via an environmental buffer as detailed at the end of 

Section 2.1.1.10 Finally, for desalinated seawater, we include the energy requirements for 

conveyance of ocean feedwater to the desalination plant. 

3. Water Treatment: Water used in the urban sector is assumed to be treated to drinking water 

standards and is assigned a drinking water treatment energy. For all water sources (including 

deliveries from inter-basin water projects, local imports, and stormwater), an average energy 

intensity for conventional water treatment is assigned.11  

 
8 We believe our simplification is appropriate given that the 2018 Irrigation and Water Management Survey by the U.S. 

Department of Agriculture found that 90% of on-farm well pumps and other irrigation pumps are electric, and only 8% of on-

farm well and other irrigation pumps are diesel in California. The remaining 2% of pumps are powered by natural gas or other 

fuels [200].  
9 Electricity generated from hydropower plants on SWP and CVP conveyance projects is also included in the calculation of the 

GHG intensity of California’s total electricity generation, however, the contribution by conveyance project hydropower to 

statewide GHG intensity is nominal relative to the total emissions from all electricity in the state. 
10 We use a simplifying assumption of a uniform energy intensity for conveyance of treated potable water from the wastewater to 

the treatment plant across all hydrologic regions. However, the energy intensity may vary widely according to the terrain and 

decisions regarding buildout, which will affect the total energy requirements of recycled water. 
11 This assumption may overestimate the water treatment for groundwater sources, which in some cases may use a lower level of 

treatment (typically just disinfection, such as with chlorine) [202]. 
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Desalination of seawater and brackish water is included under the Treatment category. It is 

assumed that the desalination technology used is reverse osmosis, which is most common 

worldwide and for existing and proposed plants in California [67]. The energy requirements for 

desalination to drinking water quality (<500 ppm salinity) are much higher with seawater 

(35,000 – 45,000 ppm salinity) than with brackish water (1,500 – 15,000). All desalted water in 

coastal hydrologic regions is assumed to come from seawater, and desalted water in inland 

hydrologic regions is assumed to come from brackish groundwater.  

Supplies for the agricultural sector are assumed to not receive treatment to potable standards 

[201] and therefore have no treatment energy intensities assigned. 

Table 6. Energy intensity categories applied to water demand sectors. 

 Water Cycle Stages Related to Demand Sectors 

 4. Demand Distribution 5. Demand End-Use 6. Demand Wastewater 

Collection 

7. Demand 

Wastewater 

Treatment 

Demand Sectors 

Commercial Urban Water 

Distribution 

Urban Commercial 

Water Heating 

Wastewater Collection Wastewater 

Treatment 

(secondary) 

Industrial Urban Water 

Distribution 

Urban Industrial Water 

Heating 

Wastewater Collection Wastewater 

Treatment 

(secondary) 

Institutional/ 

Governmental 

Urban Water 

Distribution 

Urban Institutional 

Water Heating 

Wastewater Collection Wastewater 

Treatment 

(secondary) 

Landscape Urban Water 

Distribution 

   

Losses Urban Water 

Distribution 

   

Other Urban Water 

Distribution 

 Wastewater Collection Wastewater 

Treatment 

(secondary) 

Residential- 

Indoor 

Urban Water 

Distribution 

Urban Residential 

Indoor Water Heating 

Wastewater Collection Wastewater 

Treatment 

(secondary) 

Residential- 

Outdoor 

Urban Water 

Distribution 

   

Agricultural Agricultural Water 

Distribution 

Agricultural Irrigation   

4. Distribution: Urban water demand volumes are assigned a distribution system energy 

intensity to represent the energy required to pump and pressurize the water for delivery from the 

treatment plant to the end-user. This value varies by the distance and steepness of the terrain over 

which water is pumped (hilly areas require more energy to pump water) [203].  

Agricultural water is assigned an energy intensity for pumping and distributing raw water from 

the primary conveyance or groundwater source to on-farm end-users. 

5. End-use: We model energy for water heating in the residential, commercial, institutional, and 

industrial sectors as the primary urban end-uses, and for irrigation as the primary agricultural 

sector end-use.  

Residential indoor water is assigned electric and natural gas energy intensities for water heating, 

calculated (Section 2.1.2.1) based on the water temperatures used by different appliances and 

state average saturation of electric or gas water heaters [204]–[206]. Residential outdoor water 
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use is not assigned an energy intensity for the end-use category. The estimated indoor share of 

commercial, institutional, and industrial (CII) water volumes are also assigned electric and 

natural gas energy intensities based on the estimated water temperatures of CII end-use 

processes. Landscape water is not assigned an energy intensity. 

Agricultural end-uses are assigned an average energy intensity for irrigation, which often 

requires pumping and pressurization. The energy intensity is calculated (Section 2.1.2.2) based 

on the average share of applied water by crop, the typical energy intensity by irrigation 

technology, and the average irrigation technology for each crop type. 

6. Wastewater collection: Energy is required to collect and move untreated wastewater from 

end-users to the wastewater treatment plant [207]. As with water distribution, wastewater 

collection energy requirements depend on the terrain steepness and distance for pumping 

wastewater to the treatment facility. This energy intensity is assigned to all indoor residential, 

commercial, and industrial water volumes. Agricultural water is assumed to not require 

wastewater treatment, and therefore has no energy for wastewater collection. 

7. Wastewater treatment: Urban wastewater is assumed to be treated to secondary levels.12 The 

energy intensity assigned is an average of requirements across wastewater treatment plant 

capacities, technologies, and efficiencies for secondary treatment. Wastewater treatment energy 

intensities are applied to all indoor residential, commercial, and industrial water volumes. 

Agricultural water is assumed to not require wastewater treatment. 

Recycled water: Recycled water does not fit neatly in the linear progression of the managed 

water cycle steps (Figure 10), because the “source” water for recycled water is treated 

wastewater. Therefore, the energy for incremental levels of treatment beyond standard, 

secondary wastewater treatment for recycled water for potable and non-potable reuse is included 

in the “extraction/generation” category.  

Potable recycled water is assumed to be for indirect reuse, which is currently the only permitted 

form of potable recycled water in the state. With indirect potable reuse, treated recycled water is 

stored temporarily in either a reservoir (surface water augmentation) or in a groundwater aquifer, 

which serves as an environmental buffer before the water is conveyed to a conventional drinking 

water treatment plant and distributed to the end-user [208]. For potable recycled water we 

assume a treatment train following the Orange County Water District Groundwater 

Replenishment System, i.e., after secondary treatment at a wastewater treatment plant, water is 

treated with microfiltration, reverse osmosis, and UV/Advanced Oxidation Processes (AOP). 

Therefore, for potable recycled water we include conveyance energy to represent water transport 

to the environmental buffer and to the drinking water treatment plant from the environmental 

buffer in the “conveyance” category, as well as conventional water treatment in the “treatment” 

category (Table 5).13 

Non-potable recycled water is typically reused for irrigation of food crops, non-food crops, and 

parks or golf courses; cooling; and other industrial uses [209]. The treatment level for non-

potable recycled water depends on the use. For example, irrigation of food crops that have an 

edible part in contact with the recycled water require at least disinfected tertiary treatment, 

 
12 This energy intensity of wastewater treatment may be an underestimate because there are some treatment plants in the state 

which use more energy-intensive tertiary treatment. 
13 We note that the energy for pumping water from the groundwater environmental buffer to the surface is not captured in our 

calculation of the energy intensity of indirect potable recycled water. 
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whereas irrigation of food crops with the edible portion not in contact with the recycled water (or 

other uses such as freeway landscape, cemeteries, certain golf-courses) can use disinfected 

secondary treatment or undisinfected secondary treatment (including vineyards, orchards, not-

fruit bearing trees) [209]. For this analysis, non-potable recycled water is assumed to receive 

disinfected tertiary treatment, and we aggregate the incremental energy requirements for tertiary 

treatment plus disinfection for its energy intensity value. We also include distribution energy to 

pump the non-potable recycled water to the end-user using the same energy intensity as for 

potable water distribution. 

2.1.2 Literature review and estimation of energy intensities of California water cycle 

We review academic literature and technical reports related to the energy usage of 

California’s water system [55], [58], [61], [64], [65], [73], [202], [203], [207], [210], [211, p. 2] 

and collect the range of low-, mid-, and high-energy intensity values from each study for each 

process involved in the water cycle stages described in Section 2.1.1. We use data for each 

hydrologic region if available; otherwise, we use a statewide value. For all water cycle stages 

except for end-use, we average the energy intensity values across the studies for each hydrologic 

region and water cycle process. In this analysis, we use the averages of the “mid” energy 

intensity values. For both the urban and agricultural sectors, we calculate the energy intensity 

values for water end-uses as described below, because these data are not available directly from 

the literature. The final electricity and natural gas energy intensity values we use in this analysis, 

based on the literature and our calculations, are summarized by hydrologic region and water 

cycle stage in Table 8.  

2.1.2.1 Urban end-use energy intensities 

End-use energy intensity for water heating is calculated for residential indoor water use 

as the product of several parameters. First, we estimate the average fuel share of residential water 

heaters (approximately 32% electric, 64% natural gas based on Energy Information 

Administration surveys of the Pacific region [212]). Next, we calculate the energy intensity for 

water heating based on the specific heat formula, which estimates the thermal energy required to 

heat a unit of water a certain number of degrees. We calculate the degrees of heating for each 

end-use as the difference between the average water heater inlet temperature (58 °F) across 

California cities from a prior analysis [213], and outlet temperatures specific to each water end-

use from [196], listed in Ch. 2 Appendix Table 35. For gas water heaters, we apply a typical 

water heater efficiency of 63% to the thermal energy required, and for electric water heaters we 

apply an efficiency of 90% to the thermal energy required.14 We next collect data on the average 

share of residential indoor water for each end-use, summarized in the Ch. 2 Appendix Table 35 

from [206]. Finally, we multiply the fuel share, energy intensity of the water heater for each end-

use, and indoor water share for each end-use to estimate a total weighted average energy 

intensity that is applied to total residential indoor water use (6,800 kWh/AF for electric and 67 

MMBtu/AF for natural gas water heaters).15 The same value is used for residential indoor water 

 
14 The energy required to heat one 1 kg of water by 1 °C is calculated based on the specific heat formula:  

𝑄 = 𝑚𝑐Δ𝑇 , where 𝑄 = thermal energy, 𝑚= mass of water, 𝑐 = specific heat capacity of water (4200 Joules/kg/°C), Δ𝑇 = change 

in temperature, calculated as the difference between the California average inlet temperature (58 °F) and the typical temperature 

for each water end-use. The formula is multiplied by 1/efficiency of the water heater.  
15 We note that the energy requirements for natural gas water heaters are in “primary energy” terms, and therefore not directly 

comparable to electric water heaters which use “secondary energy” that is generated from primary fuel sources and is subject to 

generation and transmission efficiency losses.  
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volumes in all hydrologic regions. Residential outdoor water use is not assigned an energy 

intensity for the end-use category. 

The water end-uses within the CII sectors vary significantly. Here, we focus on the 

energy requirements for water heating on average across all CII water uses. We first assume an 

average share of total CII water use in California among different types of processes (i.e., 

landscaping, laundry, kitchen, industrial process, restroom, cooling, other) based on Gleick et al. 

(2003), as shown in Table 7. Within each of these processes, we estimate the average share of 

water to different end-uses based on Gleick et al. (2003) as shown in Ch. 2 Appendix Table 36. 

Next, we assign temperatures to each end-use in the various process categories (Ch. 2 Appendix 

Table 36), and use the specific heat formula to calculate the energy intensity of heating to that 

temperature from the California average inlet temperature (as described for residential heating). 

We use fuel shares between electric and gas water heaters based on the electric and gas 

proportions of total commercial floor space that uses heating [214]. Finally, we multiply the 

process shares, end-use shares within each process, energy intensity of water heating for each 

process, and the fuel ratios. For electric water heaters, we use the same water heater efficiency 

value as for residential water heaters, and for natural gas water heaters, we calculate the energy 

requirements with higher efficiencies (68%) typical of average commercial water heaters [201]. 

The resulting average energy intensities used for CII water are about 5,200 kWh/AF for electric 

and 30 MMBtu/AF for natural gas water heating. The same value is used for CII indoor water 

volumes in all hydrologic regions. 

Table 7. Estimated CII Water Use by Process from Gleick et al., 2003. 

2.1.2.2 Agricultural end-use energy intensities 

Irrigation is the primary agricultural end-use requiring energy. We estimate the average 

energy intensity for irrigation for each hydrologic region based the regional crop mix and typical 

irrigation technology by crop. First, we estimate the weighted average energy intensity of 

irrigation for each crop type, based on irrigation surveys about the typical irrigation technology 

used for each crop as shown in Ch. 2 Appendix Table 37 [215], and the average energy intensity 

for each irrigation technology (15 kWh/AF for gravity or flood irrigation, 284 kWh/AF for 

standard sprinklers, and 206 kWh/AF for drip/micro-irrigation [199]. We find the average 

applied water for each hydrologic region to each crop type between 1998 – 2002, based on 

available data on applied crop water from DWR’s Agricultural Land and Water Use Estimates 

[216]. Finally, we multiply the weighted average energy intensity of irrigation by crop with the 

average applied water volumes by crop for each region to estimate an average energy intensity of 

irrigation by hydrologic region.  

CII Sub-Sector Percentage of CII Total Water Use 

Landscaping 35% 

Laundry 2% 

Kitchen 6% 

Process 17% 

Other 9% 

Cooling 15% 

Restroom 16% 
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Table 8. California electricity (kWh/AF) and natural gas (MMBtu/AF) energy intensities by hydrologic region, by water cycle 

stage. 

  North 

Coast 

SF 

Bay 

Central 

Coast 

South 

Coast 

Sacra

mento 

River 

San 

Joaquin 

River 

Tulare 

Lake 

North 

Lahont

an 

South 

Lahont

an 

Color

ado 

River 

Electricity Energy Intensity (kWh/AF) 

1. Water Generation/Extraction 

Groundwater Pumping 343 453 479 647 350 365 450 320 433 494 

Recycled (Indirect 

Potable) Treatment 
1,218 1,218 1,218 1,218 1,218 1,218 1,218 1,218 1,218 1,218 

Recycled (Non-

potable) Treatment 
543 543 543 419 508 508 508 508 508 508 

2. Water Conveyance 

Local Surface Water 

Deliveries 
110 110 118 128 118 118 118 110 118 128 

Local Imported 

Deliveries 
116 137 44 44 44 44 44 44 44 44 

Central Valley Project 

Deliveries 
225 650 726 225 225 334 196 NA NA NA 

Colorado River 

Deliveries  
NA NA NA 2,115 NA NA NA NA NA 225 

State Water Project 

Deliveries  
NA 1,031 2,043 3,280 238 501 2,158 NA 3,505 4,000 

Seawater Desalination 

Conveyance 
100 100 100 100 100 100 100 100 100 100 

Recycled Water 

Conveyance 
364 364 364 364 364 364 364 364 364 364 

3. Water Treatment  
Conventional Drinking 

Water Treatment 
237 237 237 227 235 235 235 235 235 235 

Groundwater Drinking 

Water Treatment 
70 70 70 70 70 70 70 70 70 70 

Seawater Desalination 

Treatment 
4,503 4,503 4,503 4,503 4,503 4,503 4,503 4,503 4,503 4,503 

Brackish Desalination 

Treatment 
1,593 1,593 1,593 1,593 1,707 1,707 1,707 1,593 1,593 1,593 

4. Distribution  

Urban Water 

Distribution 
501 977 501 501 54 54 54 54 501 54 

Agricultural Water 

Distribution 
144 144 144 488 19 19 389 144 389 488 

5. End-Use 

Urban Residential 

Indoor Water Heating 
6,830 6,830 6,830 6,830 6,830 6,830 6,830 6,830 6,830 6,830 

Urban Commercial 

Water Heating 
5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 

Urban Industrial Water 

Heating 
5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 

Urban Institutional 

Water Heating 
5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 5,245 

Agricultural Irrigation 98 154 175 181 78 116 121 84 91 98 

6. Wastewater Collection 

Wastewater Collection 104 104 104 111 111 111 111 111 111 111 

7. Wastewater Treatment 

Wastewater Treatment 

(Secondary) 
716 716 716 687 697 697 697 697 697 697 
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Natural Gas Energy Intensity (MMBtu/AF) 

5. End-Use 

Urban Residential 

Indoor Water Heating 
67 67 67 67 67 67 67 67 67 67 

Urban Commercial 

Water Heating 
30 30 30 30 30 30 30 30 30 30 

Urban Industrial Water 

Heating 
30 30 30 30 30 30 30 30 30 30 

Urban Institutional 

Water Heating 
30 30 30 30 30 30 30 30 30 30 

2.2 GHG intensity of California’s water cycle 

To calculate the total GHG emissions associated with California’s water system, we first 

calculate the GHG intensity (emissions of carbon dioxide (CO2) equivalent per unit of energy) of 

the energy sources powering the water system: electricity (metric tons CO2 equivalent/MWh) 

and natural gas (metric tons CO2 equivalent/MMBtu). 

The GHG intensity of electricity depends primarily on the regional fuel mix of 

generation. Because of policy targets in California like the Renewable Portfolio Standard (RPS), 

which requires a certain percentage of electricity be generated from renewable sources like solar 

and wind, electricity generation in California has a relatively low GHG intensity compared to 

neighboring states. The state passed Senate Bill 100 (SB 100) in 2017, which accelerated 

existing RPS targets for electricity and now requires 60% of electricity generation from 

renewable sources by 2030, and 100% of electricity from zero-emissions sources by 2045 [194]. 

California does import electricity from outside the state to meet demands, however, because 

future GHG intensity projections for imported electricity were not available, in this analysis we 

assume that the electricity demand of California’s water system is met entirely by in-state 

generation compliant with the SB 100 renewable targets.16  

The GHG intensity of electricity also varies temporally. For example, during times of 

high electricity demand, electricity may be generated from “peaking” fossil generators that have 

high emissions, while for other times of day, electricity demand may be met primarily from 

renewable generators that produce no GHG emissions. For simplicity, we calculate the California 

annual average GHG intensity of electricity based on the total GHG emissions from in-state 

electric generators divided by the total annual electricity produced.  

Because state policy would drive such substantial changes to the GHG emissions from 

electricity over the time horizon of our analysis, we track the historical and projected GHG 

intensities in our calculations. We use data from the California Air Resources Board on in-state 

emissions and annual electricity generation to calculate the historical annual average GHG 

intensity of electricity generation [217]. For future years, we use the GHG intensities projected in 

electricity system simulations prepared for policy discussions on pathways for California’s 100% 

zero-emissions electricity by 2045 [218]. The GHG intensities for the intervening years between 

historical data and projections are linearly interpolated. The annual GHG intensity values used 

are summarized in Table 9, and decrease from 0.26 tons CO2/MWh in 2015 to 0.10 tons 

 
16 In-state generation includes utilities within the California Independent System Operator (CAISO) region, as well as other 

municipal and irrigation district utilities such as Los Angeles Department of Water and Power and the Imperial Irrigation District. 
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CO2/MWh by 2035. The GHG emissions from natural gas are assumed to be a constant 0.053 

tons of CO2/MMBtu [219]. 

Table 9. GHG Intensity of California Electricity Generation 2015 – 2035 (tons of CO2 equivalent/MWh).
17

 

 Historical observed Interpolated Projected from simulations 

 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2030 2035 

In-state 

generation 
0.26 0.21 0.18 0.20 0.19 0.19 0.19 0.19 0.18 0.18 0.18 0.17 0.17 0.13 0.10 

2.3 Historical and future scenarios of water supply and demand  

The third step of the analysis is to collect historical and develop future scenarios of water 

supply and demand volumes for the urban and agricultural water sectors in California. We 

conduct the analysis separately for the urban and agricultural sectors. 

2.3.1 Urban water sector 

For this analysis, we obtain historical and projected water 

demand and supply from Urban Water Management Plans (UWMPs) submitted by urban water 

suppliers. In California, water suppliers that provide more than 3,000 AF of water annually or 

serve more than 3,000 customers (referred to as urban water suppliers) are required to prepare a 

UWMP every five years and submit those plans to the California Department of Water 

Resources (DWR). Together, the population served by the UWMPs is about 90% of California’s 

total population; we do not analyze the urban water demands not included in the UWMP data 

[220]. The first UWMPs were published in 1990, and the most recent plans as of 2020 are the 

2015 UWMPs.18 We extract actual and projected demand and supply and current population 

data from the 2015 UWMPs from DWR’s public data portal, WUEdata [220]. Suppliers report 

their data in five-year increments. Therefore, our analysis is performed using actual data for 

2015, and projected data for 2020, 2025, 2030, 2035. 

UWMP data are available for a total of 401 water suppliers. We only used data related to 

retail operations for all water suppliers. However, we remove data for eight suppliers, which 

account for 0.4% of the total population reported in the UWMPs, from the analysis since their 

reported numbers are outliers and appear to be reporting errors.19 Data for demand, supply, and 

population are joined with another dataset,20 to match each supplier to its respective hydrologic 

region. Each of these compiled datasets is then grouped and aggregated by hydrologic 

region for further analysis.   

2.3.1.1 Urban water demand data 

Water demand data are extracted from “Table 4-1 Retail: Demands for Potable and Raw 

Water – Actual” and “Table 4-2 Retail: Demands for Potable and Raw 

Water – Projected.” Population data are extracted from “Table 3-1 Retail: Population - Current 

and Projected.” These data are joined with another dataset (“California Urban Water Use Map,” 

n.d.), as referenced above, to assign each supplier to a hydrologic region. Population and each 

demand category are then respectively summed to give totals for each hydrologic region. The 

 
17 The low GHG intensity value in 2017 was due to an overall in renewable generation on the grid as well as to the large increase 

in hydroelectricity production that year, the wettest year on record. 
18 UWMPs for 2020 are under development and will be submitted to DWR in 2021. 
19 These suppliers are Calaveras County Water District, City of Corcoran, City of Exeter, Fruitridge Vista Water Company, City 

of Greenfield, City of Lemoore, South Feather Water and Power, and Truckee - Donner Public Utilities District.  
20 Based on data from the California Department of Public Health via Pacific Institute’s California Urban Water Map [221] 
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UWMP data categorize residential end-use as “multifamily” and “single family.” We separate 

the residential categories into “indoor” and “outdoor” using a ratio for each hydrologic region 

based on a six-year (2011-2016) annual average on indoor and outdoor demand from DWR’s 

Water Balances data [222]. We then apply this ratio to the UWMP data and sum the respective 

categories to get total “indoor residential” and “outdoor residential” water demand for each 

hydrologic region. The final set of demand categories are residential indoor, residential outdoor, 

commercial, industrial, institutional/governmental, landscape, losses, and other. Per-capita 

demand is calculated based on population for the respective year.  

2.3.1.2 Urban water supply data  

Water supply data are extracted from “Table 6-8 Retail: Water Supplies – Actual” and 

“Table 6-9 Retail: Water Supplies – Projected.” These data are joined with another dataset, as 

referred to above, to assign each supplier to a hydrologic region. Each supply category is then 

summed to give totals for each hydrologic region. The UWMPs combine all imported water 

sources into one category. For our study, we disaggregate this category into various imported 

sources of water, e.g., the Colorado River and the State Water Project, based on a six-year (2011-

2016) average using data from DWR’s Water Balances. The UWMPs combine all recycled water 

into one category, regardless of quality. Because of differences in the energy-intensity of 

recycled water for potable and non-potable applications, we split this category into potable and 

non-potable sources using Title 22 recycled water standards [209] and data from the 

2015 UWMP “Table 6-4 Retail: Current and Projected Recycled Water Direct Beneficial Uses 

Within Service Area.” We apply the percentage split between potable and non-potable categories 

by hydrologic region to the supply volumes labeled as “recycled water” in the UWMP data.21 

 
21 The final list of water source categories includes desalinated water (seawater and brackish), exchanges, groundwater, other, 

Central Valley Project deliveries, Colorado River Aqueduct deliveries, local imports, other federal deliveries, State Water Project 

deliveries, recycled water (potable), recycled water (non-potable), stormwater use, supply from storage, surface water, and 

transfers.  
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2.3.1.3 Urban water demand scenarios  

California’s urban water demand has declined significantly over the last two decades 

[56]. A recent analysis of the state’s 10 largest urban water suppliers, serving 25% of the 

population, finds that per-capita water demands declined by an average of 25% between 2000 

and 2015 [223]. Further, the study shows that many water suppliers did not adequately account 

for these trends in their Urban Water Management Plans, and overestimated total demand in 98% 

of the cases examined (Figure 11). Such overestimates of future water demands can result in 

investment in unneeded infrastructure and new sources of supply [223].  

In this analysis, we develop three scenarios of future water demand to study potential 

changes to California’s water-related energy and GHG footprint:  

i. Water Supplier Projections Scenario (High-Case): Total demand is maintained as 

reported in the 2015 UWMPs for 2020, 2025, and 2030. Given that future water supplies 

reported in the UWMP exceed future demand, water supplies are proportionally scaled 

down to match projected demand. This scenario represents the highest future water 

demands as envisioned by water suppliers and includes planned facilities (such as for 

Figure 11. Actual and Projected Total Water Demands for Ten Selected Urban Water Suppliers (Acre-feet) from Abraham et al. 

2020. 
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desalination or water recycling), assumed future changes in per capita water demand, and 

water suppliers’ projections of population growth. 

ii. 2015 Constant Per-Capita Demand Scenario (Mid-Case): System-wide per-capita water 

demand (i.e., for all urban end-use sectors) from the 2015 UWMPs is held constant for 

every future year. Total demand is then estimated by multiplying 2015 per-capita demand 

by projected population for each hydrologic region from the UWMP data. Supplies are 

then adjusted proportionally from UWMP projections to match demand by year and 

hydrologic region. We note that 2015 was not a “historically typical” year because of a 

statewide drought from 2012 to 2016—during which there was a mandate to reduce 

urban water use by 25%. However, monthly water use data from the State Water 

Resources Control Board suggests that urban water use increased slightly after the 

drought but remains lower than pre-drought levels [56], [223].  

iii. Declining Per-Capita Demand Scenario (Low-Case): System per-capita demand is 

decreased by 2 percent annually, based on a 2020 Pacific Institute study which found a 

trend of such decreases among the 10 largest suppliers between the years 2000 to 2015 

[223]. This percentage decline is calculated using 2015 per-capita demand as the base 

year. Total demand is then estimated by multiplying future per-capita demand by 

projected population for each hydrologic region. Supplies are adjusted proportionally to 

match the demand volumes. This scenario represents a future pathway with more 

aggressive conservation and efficiency efforts to reduce urban water usage, and therefore 

the lowest total water demand. 

Table 10 shows how total residential per-capita demand (R-gpcd) and indoor residential 

per-capita demand (indoor R-gpcd) changes between 2015 and 2035 under each of these 

scenarios. Under the Water Supplier Projections Scenario, both the statewide average R-gpcd 

and indoor R-gpcd increase 20% between 2015 (83 R-gpcd, 46 indoor R-gpcd) and 2035 (102 R-

gpcd total, 56 indoor R-gpcd). However, if historical conservation trends continue as is assumed 

under the Declining Per-Capita Demand Scenario, statewide average residential usage drops to 

59 R-gpcd and 32 indoor R-gpcd, respectively. While low, this scenario is similar to the water 

use already achieved in high-efficiency homes equipped with Energy Star and WaterSense 

appliances and fixtures  [224] and in some other regions of the world, such as Israel where 

households on average use 36 R-gpcd [56].  

Table 10. Statewide volume-weighted average residential daily per capita water demand, by scenario (gallons per capita per day, 

R-gpcd and indoor R-gpcd). 

Scenario Residential 

segment 

2015 2020 2025 2030 2035 

Water Supplier Projections 

Scenario (High-case) 

R-gpcd 83 101 102 102 102 

Indoor R-gpcd 46 56 56 56 56 

2015 Constant Per-Capita 

Demand Scenario (Mid-case)22
 

R-gpcd 83 86 87 88 88 

Indoor R-gpcd 46 48 48 48 49 

Declining Per-Capita 

Demand Scenario (Low-case) 

R-gpcd 83 78 71 65 59 

Indoor R-gpcd 46 43 39 36 32 

 
22 Residential per-capita demand increases slightly under the 2015 Constant Per-Capita Demand Scenario, because we keep the 

residential share of total system demand the same as that of each year’s share from the Water Supplier Demand Scenario. For 

example, under the Water Supplier Demand Scenario, in 2015 indoor residential water use was 34% of total urban demand 

(1,842,682/5,432,207 AF), but in 2035 the indoor residential water use share increased to 35% of total urban demand 

(2,723,160/7,815,382 AF). 



 44 

2.3.2 Agricultural Water Sector 

For this analysis, we obtain future water demand and supply delivery data from an 

analysis DWR conducted for its 2018 California Water Plan Update for the three hydrologic 

regions in Central Valley (Sacramento River, San Joaquin Valley, and Tulare Lake) under a 

number of population growth and climate-change scenarios [225]. The data are publicly 

available to download through a Tableau workbook [226]. These data are the results of 

simulations conducted with the integrated water supply and demand modeling platform called 

Water Evaluation and Planning (WEAP), which assessed future water conditions in the Central 

Valley for the urban and agricultural sectors under a combination of five urban growth scenarios 

and 20 climate scenarios from a base year of 2006 through 2100. The data include total demand, 

total supply delivered, and unmet demand (the difference between water demanded and actual 

supply delivered) for each year, Planning Area, and sector (we only analyze the agricultural 

sector results). To be consistent with the time horizon and geographic resolution of our urban 

analysis (described in Section 2.3.1), we limit our agricultural analysis to 2015, 2020, 2025, 

2030, and 2035, and aggregate the data to the hydrologic region. For each of these years, we 

calculate a rolling 10-year average to smooth out the inter-annual variability from the climate 

projections. We focus the agricultural analysis only on California’s Central Valley, which 

comprises about 80% of total state agricultural water use [222].  

2.3.2.1 Agricultural Water Demand Data 

We use the “supplies delivered” variable from DWR’s WEAP simulation results to 

represent agricultural water demand in this analysis, to be consistent with our urban analysis 

where we balance demand and supply and because “supplies delivered” represents water use 

given supply availability to agricultural water users.23  

The WEAP model simulates agricultural water conditions within the three hydrologic 

regions in Central Valley based on the effects of urban growth on agricultural land and climate 

change. The urban growth scenarios are a combination of a low-, mid-, or high-population 

growth rate, and a low-, central-, or high-level of population density.24 In the DWR analysis, it is 

assumed that population growth in Central Valley urban areas will cause agricultural land to go 

out of production, thereby reducing agricultural water demand [225]. This effect on agricultural 

water increases with population growth and decreases with population density. The urban growth 

scenarios available in the results are listed in Table 11.  

Table 11. Urban growth scenarios from DWR simulations, and effect on agricultural water use. 

DWR Scenario Abbreviation Scenario Description 

CTP_CTD Central population growth, current trends density → mid-level agricultural water use 

CTP_HID Central population growth, high density → mid-level agricultural water use 

CTP_LOD Central population growth, low density → mid-level agricultural water use 

HIP_LOD High population growth, low density → low-level agricultural water use 

LOP_HID Low population growth, high density → high-level agricultural water use 

 
23 We do not use the “water demand” variable from WEAP because it represents a theoretical “requested” water demand based on 

crop acreage and climate, which may not be met if there are insufficient supplies after the (user-specified) higher priority urban 

water demands are satisfied [225]. 
24 The low, mid, and high population forecasts from the data we use for this agricultural analysis from DWR’s California Water 

Plan are not necessarily consistent with the population forecasts that are used in the urban analysis, which are based on individual 

water supplier’s projections for their service territories. The DWR report and individual UWMPs do not provide enough 

information to compare the population forecasts used. 

https://public.tableau.com/profile/salma7330#!/vizhome/WEAP_Scenarios/DemandSupplyMultiClimate
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The climate scenarios include results from 10 Global Circulation Models (GCMs), and 

two emissions scenarios (Representative Concentration Pathways or RCP 4.5 and RCP 8.5, 

which represent future radiative warming of 4.5 W/m2 and 8.5 W/m2, respectively), as 

recommended to capture the range of possible climate futures in California [227]. The list of 

GCMs and emissions scenarios are listed in Table 12. While the water supply availability and 

agricultural water demands are affected by changing temperature and precipitation patterns under 

each climate change scenario modeled in WEAP, the variation between climate scenarios (both 

GCMs and emission scenarios) is minimal within our near-term time horizon; the overall impact 

of climate change is expected to be more significant, and vary between GCMs and emissions 

scenarios, closer to the end-century period.25 

Table 12. Climate change scenarios modeled in DWR analysis. 

GCMs Emissions scenarios 

Access10 RCP 4.5 

Access10 RCP 8.5 

Canesm2 RCP 4.5 

Canesm2 RCP 8.5 

Ccsm4 RCP 4.5 

Ccsm4 RCP 8.5 

Cesm1_bgc RCP 4.5 

Cesm1_bgc RCP 8.5 

Cmcc_cms RCP 4.5 

Cmcc_cms RCP 8.5 

2.3.2.2 Agricultural Water Supply 

The supply deliveries in the DWR WEAP analysis results are reported as a total volume 

and do not include the share of water deliveries by source. We obtained a separate dataset from 

DWR of historical water deliveries to the agricultural sector by hydrologic region and source for 

1999 to 2016. For each hydrologic region, we calculate the historical average share of supply 

from each water source (Table 13) and multiply these shares by the total projected supply 

deliveries from each year of the WEAP analysis to estimate water supply by source. This is a 

simplifying assumption given available data and implies that the historical ratio of different 

supply sources will stay constant in the future.26 

Table 13. Historical 1999 – 2016 average share of agricultural water supply by source, by hydrologic region. 

Supply Sources Sacramento Valley San Joaquin Valley Tulare Lake 

State Water Project Deliveries  0.2% 0.3% 8.7% 

Central Valley Project Deliveries 25% 16% 15% 

Other Federal Deliveries  2.8% 0.2% 0.0% 

Surface water 33% 33% 18% 

Local Imports 0.4% 0.0% 0.0% 

Return Flows 6.8% 11% 0.1% 

Groundwater 32% 39% 58% 

Colorado River Deliveries  0.0% 0.0% 0.0% 

2.3.2.3 Agricultural Water Scenarios 

For this analysis, we select combinations of urban growth and climate scenarios from 

DWR’s WEAP simulations that together result in a set of (i) low, (ii) mid, and (iii) high 

 
25 We note that because all the scenarios rely on climate model data which can have small differences for the historical period, 

there are slight differences in the 2015 data between scenarios. We use this simulated WEAP data for 2015 despite these small 

differences to have a fully consistent dataset, rather than mixing data with historical data collected from another source. 
26 The historical agricultural water use categories in the DWR data we use do not include recycled water; however, we recognize 

that there is a small share of agricultural water-supplies that comes from recycled sources [228].  
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agricultural water use scenarios. We first select the three bounding scenarios among urban 

growth scenarios (High Population Growth + Low Density, Central Population Growth + Central 

Density, and Low Population Growth + High Density). For each of these urban growth scenarios, 

we find the climate scenario that produces the highest and lowest unmet demand across the study 

period (2015 – 2035) for the aggregate Central Valley region. The unmet demand is sensitive to 

effects of climate on both supply availability and irrigation demand and therefore captures the 

cumulative climate change impact on agriculture for a given urban growth scenario. For the (i) 

High Population Growth scenario, we select the climate scenario with the maximum unmet 

demand (greatest climate change impact), and for the (iii) Low Population Growth scenario we 

select the climate scenario resulting in minimum unmet demand (smallest climate change 

impact). For the (ii) Central Population Growth scenario, we select the climate scenario with 

maximum unmet demand. We note that these scenarios are largely driven by DWR’s 

assumptions of how urban population growth will affect agricultural land and subsequently water 

use, and do not account for economic factors, such as crop values on domestic and international 

markets, federal and state agricultural policies, and other factors that may have even greater 

impacts on farmers’ land and water use choices [225]. For example, while California’s 

agricultural water use has remained relatively flat since the 1980s, during this time the economic 

value of crop production has grown significantly, by shifting to higher value crops and increased 

adoption of more water-efficient irrigation technologies, such as drip and micro-sprinkler 

systems [56]. 

i. Low Agricultural Water Use Scenario: HIP_LOD (lowest agricultural demand because of 

urban encroachment on agricultural land) with the maximum unmet demand (highest 

climate change impact) based on GCM: CMCC_CMS and emissions scenario: RCP 4.5. 

ii. Mid Agricultural Water Use Scenario: CTP_CTD (central agricultural demand) with 

maximum unmet demand based on GCM: CMCC_CMS and emissions scenario: RCP 4.5 

iii. High Agricultural Water Use Scenario: LOP_HID (highest agricultural demand because 

of least urban encroachment on agricultural land) with the minimum unmet demand 

(lowest climate change impact) based on GCM: GFdl_cm3 and emissions scenario: RCP 

8.5 

2.4 Total energy and GHG of urban and agricultural water scenarios 

For both the urban and agricultural analyses, for each future water scenario, hydrologic 

region, and year, we calculate the total water-related energy use and associated GHG emissions. 

For all the relevant stages of the water cycle described in Section 2.1.1, the corresponding energy 

intensities described in Section 2.1.2 are multiplied by the water supply and demand volumes of 

the scenarios in Sections 2.3.1.3 and 2.3.2.3, and finally summed to estimate total water-related 

energy usage for the urban and agricultural sectors, respectively, in each hydrologic region and 

scenario. For each urban and agricultural water scenario, the GHG intensity by fuel is multiplied 

by the total energy usage of the fuel to calculate total GHG emissions. 

3. Results and Discussion 

3.1 Urban water results 

Here we describe the projected demand, supply, energy, and GHG results of our analysis 

across scenarios for California in aggregate, by hydrologic region, by supply source and demand 

sector, and by water cycle stage for urban water. In each section, we include a high-level 

comparison across scenarios and detailed results for the “mid-case” 2015 Constant Per-Capita 
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Demand Scenario; detailed results for the “high-case” Water Supplier Projections Scenario and 

the “low-case” Declining Per-Capita Demand Scenario are in the Ch. 2 Appendix. 

3.1.1 Urban water demand: historical and future scenarios 

According to data reported by water suppliers in the UWMPs, which represent 90% of 

California’s population, total urban water demand in 2015 was 5.4 million acre-feet (MAF). If 

per-capita water demand is held constant at 2015 levels according to our “mid-case” scenario, 

statewide total urban demand increases 24% (1.3 MAF) between 2015 and 2035 with population 

growth. We compare this result to water suppliers’ projections (“high-case”), and our declining 

demand scenario (“low-case”) that represents a continuation of historical conservation and 

efficiency trends in Table 14 and Figure 12.27  Water suppliers project a 44% increase (2.4 MAF) 

in overall urban water demand between 2015 and 2035, about twice the rate of the 2015 Constant 

Per-Capita Demand Scenario. With increased conservation under the Declining Per-Capita 

Demand Scenario, statewide urban demand would fall by 17% (0.9 MAF) between 2015 and 

2035. 

Table 14. State urban water demand 2015 – 2035, by scenario (AF). 

Scenario 2015 2020 2025 2030 2035 % Change 

2015 

- 2035 

Change 

2015 - 

2035 

Water Supplier 

Projections Scenario 

(High-case) 

5,432,207 6,778,861 7,158,608 7,485,695 7,815,382 +44% 2,383,175 

2015 Constant Per-

Capita Demand 

Scenario (Mid-case) 

5,432,207 5,751,547 6,075,776 6,396,138 6,727,985 +24% 1,295,778 

Declining Per-Capita 

Demand Scenario 

(Low-case)  

5,432,207 5,198,943 4,964,351 4,723,990 4,491,656 -17% -940,550 

Under the 2015 Constant Per-Capita Demand Scenario, the largest absolute and 

percentage change increases come from indoor residential water demand—which is also the 

most energy-intensive end-use sector—and from outdoor residential water demand, respectively 

(Table 15).28 Across the hydrologic regions, (Figure 13), the largest absolute increases in 

residential water demand are in two regions with highly populated urban centers and the highest 

overall urban demands in the state: South Coast (about +456,000 AF) and Sacramento (about 

+175,000 AF). 

Table 15. Annual urban water demand by sector (AF) – 2015 Constant Per-Capita Demand Scenario (Mid-case). 

Demand Sector  2015 2020 2025 2030 2035 

% Change 

2015 

- 2035 

Change 2015 

- 2035 

Residential- Indoor 1,842,682 2,004,389 2,123,692 2,242,569 2,358,832 28% 516,151 

Residential- Outdoor 1,448,045 1,603,035 1,709,520 1,816,070 1,922,994 33% 474,950 

Commercial 682,261 720,403 753,573 785,961 821,041 20% 138,779 

Industrial 216,065 217,743 223,731 227,876 240,385 11% 24,319 

Institutional/ 

Governmental 
162,886 133,502 142,866 152,689 156,521 -4% -6,364 

Landscape 315,900 296,957 306,808 321,261 338,634 7% 22,734 

 
27 See the Ch. 2 Appendix for detailed tables of water demand results for the Water Supplier Projections Scenario and Declining 

Per-Capita Demand Scenario.  
28 Because we do not have data on how water suppliers projected losses, we make a simplifying assumption that losses also scale 

proportionally with demand in our 2015 Constant Per-Capita Demand and Declining Per-Capita Demand Scenarios. 
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Losses 342,822 326,892 346,461 363,382 382,319 12% 39,497 

Other 421,546 448,627 469,124 486,329 507,259 20% 85,713 

Total 5,432,207 5,751,547 6,075,776 6,396,138 6,727,985 24% 1,295,778 

 

Figure 12. A. State urban water demand 2015 – 2035, by scenario. B. Change in state urban water demand between 2015 and 

2035, by scenario. 

A. 

B. 
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Figure 13. 2015 Constant Per-Capita Demand Scenario (Mid-case): A. Change in urban water demand between 2015 and 

2035, by hydrologic region. B. 2035 Urban water demand, by hydrologic region. 

A. 

B. 
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3.1.2 Urban water supply: historical and future scenarios 

To meet projected water demands under the “mid-case” 2015 Constant Per-Capita 

Demand Scenario, water supplies must increase by 1.3 MAF, or 24%, between 2015 (5.4 MAF) 

and 2035 (6.7 MAF).29 This supply increase is largely met using traditional water sources 

(groundwater and surface water)30 (Table 16), but there are also shifts in the supply mix from 

imported water toward local alternative water sources , which have important energy and GHG 

implications. The largest percentage increases in supplies between 2015 and 2035 are from 

brackish desalination (+7000% increase in supply), potable recycled water (+300% increase in 

supply), and captured stormwater (+19,000% increase in supply). Further, there are decreases in 

the statewide shares of imported water from the SWP and CRA from 13% to 12%, and 16% to 

13% respectively, between 2015 and 2035. Although many alternative water sources are energy-

intensive because of the combined energy use for associated supply extraction/generation, 

treatment, and conveyance, in many regions, their energy needs are typically lower than for 

imported water (Table 8).   

Table 16. State annual urban water supply by source (AF) – 2015 Constant Per-Capita Demand Scenario (Mid-case). 

Supply Source 2015 2020 2025 2030 2035 
% Change 

2015 - 2035 

Change 2015 

- 2035 

Central Valley 

Project Deliveries 
259,046 270,119 292,069 310,375 325,568 26% 66,522 

Colorado River 

Deliveries  
871,975 816,885 848,783 877,729 906,259 4% 34,283 

Desalinated 

Water (Brackish) 
205 3,495 7,206 10,860 14,595 7,013% 14,390 

Desalinated 

Water (Seawater) 
27,888 29,882 32,332 32,783 33,238 19% 5,350 

Exchanges 2,216 3,858 1,162 1,083 1,169 -47% -1,047 

Groundwater 2,063,977 2,006,160 2,075,120 2,175,610 2,291,486 11% 227,509 

Local Imports 365,972 350,455 367,474 383,598 400,499 9% 34,527 

Other 98,094 196,039 200,210 212,057 219,965 124% 121,870 
Other Federal 

Deliveries  
28,565 26,593 29,107 31,143 32,428 14% 3,863 

Recycled 

Water- Non Potable 
287,519 346,256 403,475 454,109 495,238 72% 207,719 

Recycled Water- 

Potable 
17,010 29,555 61,305 63,599 68,653 304% 51,643 

State Water 

Project Deliveries  
716,384 687,402 723,632 754,014 784,892 10% 68,508 

Stormwater Use 72 2,242 5,003 8,354 13,642 18,834% 13,569 

Supply from Storage 14,329 24,266 24,801 25,456 26,155 83% 11,827 

Surface water 648,056 943,758 988,764 1,036,668 1,094,451 69% 446,396 

Transfers 30,898 14,583 15,333 18,699 19,748 -36% -11,150 

Total 5,432,207 5,751,547 6,075,776 6,396,138 6,727,985 +24% 1,295,778 

 
Table 17. State urban water supply portfolio in 2015 and 2035 – 2015 Constant Per-Capita Demand Scenario (Mid-case). 

Supply Source % of 2015 Total Supply  % of 2035 Total Supply 

Central Valley Project Deliveries 5% 5% 

Colorado River Deliveries  16% 13% 

Desalinated Water (Brackish) 0.004% 0.2% 

Desalinated Water (Seawater) 1% 0.5% 

Exchanges 0.04% 0.02% 

Groundwater 38% 34% 

Local Imports 7% 6% 

 
29 These water supply values are water production estimates and do not include conveyance losses, such as from the SWP. 
30 See the Ch. 2 Appendix for detailed tables of water supply results for the other scenarios.  
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Other 2% 3% 

Other Federal Deliveries  1% 0.5% 

Recycled Water- Non Potable 5% 7% 

Recycled Water- Potable 0.3% 1% 

State Water Project Deliveries  13% 12% 

Stormwater Use 0.001% 0.2% 

Supply from Storage 0.3% 0.4% 

Surface water 12% 16% 

Transfers 1% 0.3% 

Total 100%  100%  

There is significant variation in how these supply changes are distributed across 

hydrologic regions under the 2015 Constant Per-Capita Demand Scenario (Figure 14). The 

absolute largest increases in groundwater and non-potable recycled water are projected to occur 

in the South Coast, which also sees increases in potable recycled water. Although there are also 

large absolute increases in SWP and Colorado River imports to the South Coast, these sources 

decrease in their shares of the region’s total supply (21% to 18% SWP, 29% to 25% Colorado 

River) between 2015 to 2035. Increases in surface water are dominant in the San Francisco Bay, 

Sacramento River, and Tulare Lake hydrologic regions.  

Under the ‘high-case’ Water Supplier Projections Scenario, the increase in supply needed 

to meet the 44% projected demand between 2015 and 2035 primarily comes from surface water, 

groundwater, and non-potable recycled water (Figure 15). In the Declining Per-Capita Demand 

Scenario, which requires 17% less water by 2035 compared to 2015, the largest absolute 

reductions in supply deliveries come from groundwater, Colorado River water, and SWP, all of 

which are relatively energy-intensive water sources.  

We note several limitations of these results. These results are driven in part by our 

simplifying assumption that increases or decreases in supply deliveries for each year under the 

2015 Constant Per-Capita Demand Scenario and Declining Per-Capita Demand Scenario are 

divided among water sources in the same proportion as water sources for each year in the Water 

Supplier Projections Scenario. As discussed in Section 2.3.1.3, it is unclear whether urban water 

supplier projections of these supply source changes are physically, economically, ecologically, or 

legally possible; we take these estimates as given and make no assessment or adjustment of 

supplies for feasibility, but we note there are already serious constraints on existing supply 

options. In our two alternative demand scenarios, we also do not assume that water agencies 

would change how they prioritize which supply sources to increase or conserve, such as based on 

energy intensity or cost. We also note that projections of groundwater usage to 2035 are from the 

2015 UWMP and do not account for the Sustainable Groundwater Management Act (SGMA), 

which was passed in 2014 and seeks to limit groundwater pumping by 2040. Additionally, what 

appears to be a statewide increase in CVP and SWP volumes from 2015 to 2035 may be a 

consequence of below-average deliveries from those sources in 2015 due to the 2012 – 2016 

statewide drought. 
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Figure 14. 2015 Constant Per-Capita Demand Scenario (Mid-case). A. Change in urban water supplies between 2015 and 

2035, by hydrologic region. B. 2035 Urban water supplies, by hydrologic region. 

B. 

A. 
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Figure 15. A. State total urban water supplies 2015 – 2035, by scenario. B. Change in state urban water supply between 2015 and 

2035, by scenario. 

A. 

B. 
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3.1.3 Energy use for urban water: historical and future scenarios 

The changing water demands and shifts in supply sources described in the previous 

sections can have significant effects on the urban water-related electricity footprint. Between 

2015 and 2035, we find the total annual water-related electricity usage increases by about 21%, 

about 6,300 GWh annually, under the “mid-case” 2015 Constant Demand Scenario (Table 18). 

For context, California’s total economy-wide annual electricity consumption (not only related to 

water) is currently about 300,000 GWh, suggesting that under this scenario projected increases in 

urban water demand could increase the state’s overall annual electricity consumption by about 

2% by 2035. If per-capita demand increases according to water supplier projections (“high-

case”), annual electricity usage for urban water increases by about twice that amount (40% or 

12,000 GWh) between 2015 and 2035 (Table 18, Figure 16).  

In contrast, water conservation and efficiency improvements can lead to significant 

energy savings along the entire managed water cycle (Figure 10) from avoided water supply, 

conveyance, treatment, distribution, heating, and wastewater collection and treatment energy. 

The Declining Per-Capita Demand Scenario (“low-case”) leads to a reduction in total electricity 

usage for urban water by 19% between 2015 to 2035, corresponding with an annual savings of 

5,700 GWh (Table 18, Figure 16). 

Table 18. State annual electricity use related to urban water, by scenario (GWh). 

In all scenarios, the largest share of statewide electricity use is from end-uses, followed 

by conveyance, distribution, and wastewater treatment energy (Figure 16). Under the 2015 

Constant Per-Capita Demand Scenario (Table 19), between 2015 and 2035, the increase in 

electricity usage in absolute terms is also dominated by growing end-use electricity.31 

Table 19. State annual electricity use related to urban water, by water cycle category (GWh) – 2015 Constant Per-Capita Demand 

Scenario (Mid-case). 

Water Cycle 

Category 

2015 2020 2025 2030 2035 2015 - 2035 

% Change 
2015 - 2035 

Change 

Supply 

Extraction or 

Generation 

1,277 1,309 1,416 1,495 1,585 24% 308 

Supply 

Conveyance 
4,321 4,155 4,352 4,518 4,684 8.4% 363 

Supply 

Treatment 
1,308 1,382 1,459 1,529 1,604 23% 296 

Demand 

Distribution 
2,483 2,596 2,714 2,825 2,942 19% 459 

Demand End-

Use 
18,152 19,312 20,381 21,436 22,500 24% 4,348 

 
31 See the Ch. 2 Appendix for detailed tables of energy results for the Water Supplier Projections Scenario and Declining Per-

Capita Demand Scenario. 

Scenario 2015 2020 2025 2030 2035 2015 - 2035 

% Change 

2015 - 2035 

Change 

Water Supplier Projections 

Scenario (High-case) 

29,917 36,516 38,536 40,173 41,781 40% 11,864 

2015 Constant Per-Capita 

Demand Scenario (Mid-case) 

29,917 31,287 32,994 34,610 36,259 21% 6,342 

Declining Per-Capita Demand 

Scenario (Low-case)  

29,917 28,281 26,958 25,562 24,207 -19% -5,710 
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Demand 

Wastewater 

Collection 

323 345 364 382 400 24% 77 

Demand 

Wastewater 

Treatment 

2,053 2,189 2,309 2,425 2,544 24% 491 

While the total urban water-related electricity use increases in the “mid-case” scenario 

(and the “high-case” scenario), the statewide average energy intensity—the total electricity use 

divided by total water use—decreases 2% between 2015 and 2035 (Table 20).32 This appears to 

be driven primarily by a reduced energy intensity of urban water in the South Coast region, 

which has California’s highest total water-related electricity usage (Figure 17), due to its 

relatively high residential water demand (Figure 12) and energy-intensive water supply mix 

(Figure 14).33 By 2035, under the 2015 Constant-Per Capita Demand Scenario, the South Coast 

has a reduced share of energy-intensive imported resources (21% to 18% of South Coast supplies 

from SWP, 29% to 25% of South Coast supplies from Colorado River, from 2015 to 2035) and 

an increase in local water sources (such as 1% to 2% potable recycled water, 6% to 9% non-

potable recycled water, and 0 to 0.4% captured stormwater, between 2015 and 2035).  

Local, alternative water sources have relatively high treatment energy requirements 

compared to traditional water sources; however, in regions like the South Coast, they are still 

typically lower than the energy requirements for conveyance of imported water (except for the 

most energy-intensive source, seawater desalination). For example, extraction, conveyance, and 

drinking water treatment requires about 350 kWh/AF for local surface water and 400 kWh/AF to 

700 kWh/AF, depending on the region, for groundwater (Table 8). By comparison, 

extraction/generation, conveyance, and drinking water treatment requires 500 kWh/AF for non-

potable recycled water, 700 kWh/AF for captured stormwater, 1,800 kWh/AF for indirect 

potable recycled water, 2,100 kWh/AF for brackish groundwater desalination, and 4,600 

kWh/AF for seawater desalination. Energy requirements for SWP and Colorado River 

conveyance and treatment can reach up to 4,200 kWh/AF and 2,300 kWh/AF, respectively, 

depending on the region. 

Table 20. Urban water system energy intensity (electricity) by hydrologic region (kWh/AF). 

 
32 The energy intensity for each hydrologic region for a given year is the same across scenarios because we use the Water 

Supplier Projections Scenario proportions of energy supplies and demands per year and per hydrologic region for all scenarios. 
33 The San Francisco Bay and Sacramento hydrologic regions are the second and third highest overall electricity users, driven by 

high residential water demand. The San Francisco Bay, North Lahontan, South Lahontan, and Colorado River regions also all see 

an increase in energy intensity by 2035, and Tulare Lake has a decrease in energy intensity. The remaining regions (North Coast, 

Central Coast, Sacramento, and San Joaquin Valley) have negligible changes (+ or - < 1%) between 2015 and 2035. 

Hydrologic Region 2015 2035 2015 - 2035 % Change 

Central Coast 4,639 4,638 0.0% 

Colorado River 2,824 3,056 8.2% 

North Coast 5,169 5,170 0.0% 

North Lahontan 4,771 4,887 2.4% 

Sacramento River 3,485 3,466 -0.5% 

San Francisco Bay 5,886 6,104 3.7% 

San Joaquin River 4,241 4,215 -0.6% 

South Coast 6,356 6,274 -1.3% 

South Lahontan 4,102 4,262 3.9% 

Tulare Lake 4,101 4,011 -2.2% 

State Volume-Weighted Average Urban Energy Intensity 5,507 5,389 -2% 
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As noted in Section 2.1.1, California currently does not allow for direct potable reuse 

because state regulators have not yet developed water quality and public health standards [229]. 

As a result, for potable applications, water suppliers are currently required to pump treated 

recycled water to an environmental buffer and then treat it a second time at a conventional 

drinking water treatment plant before distribution and use [208]. We estimate that this increases 

energy usage for indirect potable recycled water by approximately 580 kWh/AF. This would be 

higher in regions with hilly terrain where energy requirements for pumping between the 

wastewater treatment plant to the buffer and drinking water treatment plant are higher. While the 

Figure 16. State urban water-related electricity use 2015 – 2035, by scenario. B. Change in state urban water-related electricity 

use between 2015 and 2035, by scenario. 

A. 

B. 
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regulatory requirements for direct potable reuse have not yet been established, this suggests that 

the energy footprint of potable recycled water could be substantially lower than indirect potable 

reuse because it avoids these additional steps.34 Additionally, some energy-water research 

suggests that there are opportunities to lower the energy usage and/or shift the timing of energy 

demands to avoid peak times of some certain parts of the managed water cycle, such as at 

wastewater treatment plants, through demand response programs and the installation of variable 

speed drives [230]. It is unclear however, if typical treatment plants have the water storage 

capacity available to implement such programs. 

 

 

 
34 In this analysis we assume that proportion of non-potable to potable recycled water is as projected by water suppliers in the 

future which does not take possible change in legislation into account; the energy usage would be higher if a higher share of 

recycled water is treated to potable quality. 
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Figure 17. 2015 Constant Per-Capita Demand Scenario (Mid-case): A. Change in urban water-related electricity use between 

2015 and 2035, by region. B. 2035 urban water-related electricity use, by region. 

A. 

B. 
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Increased water demand, especially for indoor residential uses, is expected to also raise 

natural gas usage. We find that between 2015 and 2035, natural gas usage for water heating in 

the residential and CII sectors increases 25% in the 2015 Constant Per-Capita Demand Scenario 

(from about 150,000,000 to 190,000,000 MMBtu), and 45% in the Water Supplier Projections 

Scenario (Table 21). As with electricity, the Declining Per-Capita Demand Scenario shows that 

water efficiency improvements save natural gas; annual water heating natural gas usage in 2035 

is 16% lower (or about 25,000,000 MMBtu) than in 2015. 

Table 21. State annual natural gas use by urban water heating end-uses, by scenario (MMBtu). 

Scenario 2015 2020 2025 2030 2035 2015 - 

2035 % 

Change 

2015 - 2035 

Change 

Water Supplier 

Projections Scenario 

(High-case) 

154,350,857 194,004,931 205,011,788 214,461,995 223,580,559 45% 69,229,701 

2015 Constant Per-

Capita Demand 

Scenario (Mid-case) 

154,350,857 165,430,605 174,822,102 184,120,659 193,396,108 25% 39,045,251 

Declining Per-Capita 

Demand Scenario 

(Low-case)  

154,350,857 149,536,164 142,842,381 135,985,823 129,112,787 -16% -25,238,070 

3.1.4 GHG emissions related to urban water: Historical and future scenarios 

Our results show that the decarbonization of California’s electricity generation to meet 

SB 100 goals will reduce the GHG emissions associated with urban water-related electricity 

usage. Despite an overall increase in electricity use, GHG emissions decline by more than half (-

52%) between 2015 and 2035 in the 2015 Constant Per-Capita Demand Scenario (Table 22) 

because of large reductions in in-state electricity GHG intensity (Table 9). The decrease in GHG 

emissions is more dramatic in the Declining Demand Scenario (-68%), but still substantial under 

Water Supplier Projections Scenario (-44%). We assume in this analysis that water-related 

electricity demand is met by in-state generation; if California meets water-related electricity 

demand by importing electricity from neighboring regions that have more GHG-intensive (fossil) 

generating portfolios, overall GHG emissions will be higher. 

However, when we account for GHG emissions from natural gas water heating end-uses, 

we find total GHG emissions (from electricity plus natural gas) increase 2% in the Water 

Supplier Projections Scenario between 2015 and 2035 (Table 22). GHG emissions still decline 

under the 2015 Constant Per-Capita Demand Scenario and Declining Per-Capita Demand 

Scenario, but at more modest rates (-12% and -41%, respectively). In this analysis, we hold the 

electric share of water heaters in the residential and CII sectors constant at current levels (about 

30% and 44%, respectively). However, with the state’s energy policy moving in favor of 

electrification across the building sector, a greater share of water heaters may shift to electric 

from natural gas, which would have the effect of driving down overall GHG emissions from the 

water system. 

Table 22. Urban water-related GHG emissions from in-state electricity, by scenario (million tons CO2 equivalent). 

Scenario Fuel 2015 2020 2025 2030 2035 % Change 

2015 - 

2035 

Change 

2015 - 

2035 

Water Supplier 

Projections Scenario 

(High-case) 

Electricity 7.7 7.0 6.8 5.3 4.3 -44% -3 

Natural Gas 8.2 10.3 10.9 11.4 11.9 45% 4 

Total 15.9 17.3 17.7 16.7 16.2 2% 0.3 
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2015 Constant Per-Capita 

Demand Scenario (Mid-

case) 

Electricity 7.7 6.0 5.8 4.6 3.7 -52% -4 

Natural Gas 8.2 8.8 9.3 9.8 10.3 25% 2 

Total 15.9 14.8 15.1 14.3 14.0 -12% -2 

Declining Per-Capita 

Demand Scenario (Low-

case) 

Electricity 7.7 5.4 4.7 3.4 2.5 -68% -5 

Natural Gas 8.2 7.9 7.6 7.2 6.9 -16% -1 

Total 15.9 13.4 12.3 10.6 9.3 -41% -7 

3.2 Agricultural water results 

Here, we describe the projected agricultural demand, supply, energy, and GHG results of 

our analysis across scenarios for Central Valley in aggregate, by hydrologic region, and by 

supply source and demand sector. 

3.2.1 Agricultural water demand: historical and future water scenarios 

Under all three scenarios of future agricultural water (Table 23), total Central Valley 

water supply deliveries35 decline between 2015 and 2035, decreasing by 3% (0.7 MAF) under 

the Low Ag Water Use Scenario, by 2% (0.3 MAF) under the Mid Ag Water Use Scenario, and 

by 5% (1.2 MAF) under the High Ag Water Use Scenario.36 As noted in Section 2.3.2.3, these 

overall declining trends are largely driven by DWR’s assumptions that urban population growth 

will reduce agricultural land and subsequently water use. However, these scenarios do not 

account for economic factors, such as crop values on domestic and international markets, federal 

and state agricultural policies, and other factors that affect farmers’ land use choices [225]. Even 

with decadal averaging, differences in agricultural water deliveries between years are also 

affected by natural inter-annual variations in climatic conditions (temperature, precipitation, and 

evapotranspiration drive irrigation demands).37 The overall effect of climate change across the 

scenarios appears to be minimal in this near-term time horizon. 

Table 23. Central Valley agricultural water supply delivered, by scenario (AF). 

Level 

of 

Ag 

use 

Urban growth, 

climate 

scenarios 

2015 2020 2025 2030 2035 % 

Change 

2015 - 

2035 

Change 

2015 - 2035 

Low 

Ag 

water 

use 

HIP_LOD, 

Cmcc_cms, 

RCP 4.5 

23,342,447 23,863,569 23,775,521 23,223,430 22,618,405 -3% -724,043 

Mid 

Ag 

water 

use 

CTP_CTD, 

Cmcc_cms,RCP 

4.5 

23,448,421 24,050,344 24,034,625 23,554,631 23,071,053 -2% -377,368 

 
35 We use the “supplies delivered” variable from DWR’s WEAP simulation results to represent agricultural water demand to be 

consistent with our urban analysis where we balance demand to equal supply, and because “supplies delivered” represents the 

actual water use given supply availability to agricultural water users in Central Valley. We do not use the “water demand” 

variable from WEAP because it represents a theoretical “requested” water demand based on crop acreage and climate, which may 

not be met if there are insufficient supplies after the (user-specified) higher priority urban water demands are satisfied [225].  
36 The 2015 values differ by scenario because they are all simulated data, even for the historical period, using simulated historical 

climate data from each GCM (climate model) which differ slightly. 2006 is the base year for DWR’s WEAP simulations [225]. 

We use this simulated data for all years to maintain a consistent dataset across all scenarios, rather than mixing with historical 

observed data for 2015. For reference, observed data for 2015 from DWR Water Balance Data shows that the total Applied Crop 

Water across the three Central Valley Hydrologic regions was 24.3 MAF, about equivalent to the average between the “Low Ag 

water use” and “High Ag water use” scenarios (24.2 MAF) [222]. 
37 The Low Ag water use and High Ag water use scenarios are based on DWR WEAP simulations with two different climate 

models, which may have different climate data for particular years and different patterns of underlying inter-annual variability. 

This results in the 2025 water supply deliveries in the High Ag water use scenario to be lower than in the Low Ag water use 

scenario, even though the trend is for the High Ag water use scenario to be higher in the remaining years of this analysis. 
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High 

Ag 

water 

use 

LOP_HID, 

GFdl_cm3, 

RCP 8.5 

25,084,130 24,300,280 23,479,049 24,275,013 23,877,242 -5% -1,206,889 

Across all three scenarios (Table 24), the Tulare Lake hydrologic region, which has the 

highest agricultural water demand among the Central Valley regions, experiences the largest 

percentage declines (up to -7%) in supply deliveries between 2015 and 2035. In contrast, the 

Sacramento River hydrologic region sees an increase in supply deliveries in all but the High Ag 

Water Use Scenario.  

Table 24. Agricultural water supply deliveries (AF) by hydrologic region, by scenario. 

Hydrologic 

Region 

Level 

of Ag 

use 

Urban growth, 

climate 

scenarios 

2015 2020 2025 2030 2035 % 

Change 

2015 - 

2035 

Change 

2015 - 

2035 

Sacramento 

River 

Low 

Ag 

water 

use 

HIP_LOD, 

Cmcc_cms, 

RCP 4.5 

7,791,897 8,124,773 8,281,018 8,054,964 7,926,691 2% 134,794 

San Joaquin 

River 

6,407,804 6,547,874 6,548,395 6,478,338 6,209,435 -3% -198,369 

Tulare Lake 9,142,747 9,190,922 8,946,108 8,690,128 8,482,279 -7% -660,468 

Sacramento 

River 

Mid 

Ag 

water 

use 

CTP_CTD, 

Cmcc_cms, 

RCP 4.5 

7,827,603 8,188,157 8,372,529 8,170,778 8,084,196 3% 256,593 

San Joaquin 

River 

6,445,920 6,615,489 6,644,809 6,602,755 6,374,638 -1% -71,282 

Tulare Lake 9,174,898 9,246,698 9,017,288 8,781,097 8,612,219 -6% -562,679 

Sacramento 

River 

High 

Ag 

water 

use 

LOP_HID, 

GFdl_cm3, 

RCP 8.5 

8,291,290 8,140,020 7,859,446 8,118,026 8,169,114 -1% -122,177 

San Joaquin 

River 

6,912,865 6,640,439 6,403,358 6,671,952 6,501,189 -6% -411,677 

Tulare Lake 9,879,975 9,519,821 9,216,245 9,485,035 9,206,939 -7% -673,036 

3.2.2 Agricultural water supply: historical and future water scenarios 

We find that the largest absolute and percentage decreases in Central Valley agricultural 

water supplies come from SWP deliveries and groundwater, both of which are relatively energy-

intensive water sources. Table 25 shows results for the Mid Ag Water Use Scenario, and Figure 

18 compares differences between 2015 and 2035 supplies across scenarios. We note that these 

results would change if we do not assume that future agricultural water supplies maintain the 

historical proportion of sources. However, declines in SWP deliveries may be likely in the future 

due to climate change impacts [231], and decreased groundwater use is consistent with the goals 

of SGMA especially in regions with over-drafted basins, such as in Tulare Lake, where Figure 

19 shows that supplies are dominated by groundwater use. 

Table 25. Central Valley annual agricultural water supply by source (AF) – Mid Ag Water Use Scenario. 

Supply Source 2015 2020 2025 2030 2035 % 

Change 

2015 

- 2035 

Change    

2015 - 

2035 

State Water Project Deliveries 827,354 834,614 815,022 794,036 778,624 -6% -48,730 

Central Valley Project 

Deliveries 

4,384,778 4,513,291 4,529,638 4,436,782 4,352,714 -1% -32,064 

Other Federal Deliveries 233,993 244,505 249,760 243,989 241,072 3% 7,079 

Surface water 6,386,804 6,575,142 6,604,000 6,480,093 6,345,748 -1% -41,056 

Local Imports 29,808 31,165 31,852 31,099 30,750 3% 942 

Return Flows 1,261,943 1,305,528 1,321,200 1,302,645 1,270,991 1% 9,048 

Groundwater 10,323,741 10,546,099 10,483,153 10,265,987 10,051,153 -3% -272,588 

Total 23,448,421 24,050,344 24,034,625 23,554,631 23,071,053 -2% -377,368 
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Figure 18. A. Central Valley agricultural water supply 2015 – 2035, by scenario. B. Change in total Central Valley agricultural 

water supply between 2015 and 2035, by scenario. 

A. 

B. 
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3.2.3 Energy use for agricultural water: historical and future scenarios 

Despite almost double the water volumes, we find that water-related electricity use for 

agriculture in the Central Valley is about half that of California’s urban areas (14,000 GWh in 

the Mid Ag water use scenario compared to 36,000 GWh in the urban mid-case scenario) in 

2035. This relatively lower energy usage is due to much lower end-use energy use (compared to 

energy-intensive water heating), and the very limited, if any, energy requirements for water 

treatment, wastewater collection, and wastewater treatment within the agricultural sector. 

Declining supply deliveries over time in our scenarios further decrease electricity use related to 

agricultural water in the Central Valley. Across the three scenarios of agricultural water use, 

electricity use decreases from -5% (700 GWh) under the Low Ag Water Use Scenario to -6% 

(876 GWh) under the High Ag Water Use Scenario (Table 26). Among the water cycle 

categories (Figure 20), Central Valley-wide electricity use for agricultural is much more evenly 

split between supply extraction/generation, conveyance, distribution, and end-use than in urban 

areas. 

Figure 19. Mid Ag Use Scenario: A. Change in agricultural water supply by source between 2015 and 2035, by hydrologic 

region. B. 2035 Agricultural water supply volumes by source, by hydrologic region. 

A. B. 
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Table 26. Central Valley electricity use related to agricultural sector, by scenario (GWh). 

Level of Ag use Urban growth, 

climate 

scenarios 

2015 2020 2025 2030 2035 Change 

2015 – 

2035 

% Change 

2015 - 

2035 
Low Ag water 

use 

HIP_LOD, 

Cmcc_cms, 

RCP 4.5 

14,135 14,342 14,144 13,788 13,434 -701 -5% 

Mid Ag water 

use 

CTP_CTD, 

Cmcc_cms, 

RCP 4.5 

14,193 14,444 14,282 13,964 13,678 -515 -4% 

High Ag water 

use 

LOP_HID, 

GFdl_cm3, 

RCP 8.5 

15,230 14,714 14,228 14,684 14,354 -876 -6% 

Electricity use is greatest in Tulare (Figure 21), not just because of high overall 

agricultural water use but also because of relatively high energy intensities for distribution (389 

kWh/AF) and groundwater pumping (450 kWh/AF) compared to neighboring San Joaquin 

Valley (19 kWh/AF for distribution, 365 kWh/AF for groundwater pumping) and Sacramento 

River (19 kWh/AF for distribution, 350 kWh/AF for groundwater pumping). The 2035 energy 

intensity for Tulare’s combined agricultural water supply and demands is 1,009 kWh/AF, about 

three times that in the Sacramento River (313 kWh/AF) and San Joaquin River (396 kWh/AF) 

(Table 27).  

Table 27. 2035 Agricultural water system energy intensity (electricity), by hydrologic region (kWh/AF). 

Hydrologic Region Energy intensity (kWh/AF) 

Sacramento River 313 

San Joaquin River 386 

Tulare Lake 1,009 

Central Valley Volume-Weighted Average Agricultural Energy Intensity 593 

Figure 20. Central Valley electricity use by agricultural water system, by water cycle stage, by scenario. 
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3.2.4  GHG emissions related to agricultural water: historical and future scenarios 

Across all scenarios, GHG emissions associated with Central Valley’s agricultural water 

sector decrease by more than 60% (about 2 million tons) by 2035, due to the combined effect of 

lower electricity use and declining GHG intensity of California’s electricity generating resources 

(Table 28). Since we do not include natural gas energy use for agriculture, this result captures the 

full effect of the decarbonization of California’s electricity generation mix. In comparison, in 

urban California where natural gas GHG emissions are included (and total water demand is 

rising), total GHG increases by 1 million tons in the Water Supplier Projections Scenario. We 

also do not include any emissions from agricultural pumps that use diesel fuel in this analysis 

because of limited available data, but indications are that only a very small share of pumps are 

diesel powered in the state [200].  

Table 28. Central Valley agricultural water-related GHG emissions from in-state electricity, by scenario (million metric tons CO2 

equivalent). 

Level of Ag use Urban growth, 

climate 

scenarios 

2015 2020 2025 2030 2035 Change 

2015 - 

2035 

% Change 

2015 - 

2035 

Figure 21. Mid Ag Water Use Scenario: A. 2015 and B. 2035 Electricity use by Central Valley agricultural water system, by 

water cycle stage, by hydrologic region. 

B. A.

t 
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Low Ag water 

use 

HIP_LOD, 

Cmcc_cms, 

RCP 4.5 

3.65 2.75 2.49 1.82 1.38 -2.3 -62% 

Mid Ag water 

use 

CTP_CTD, 

Cmcc_cms, 

RCP 4.5 

3.67 2.77 2.51 1.84 1.41 -2.3 -62% 

High Ag water 

use 

LOP_HID, 

GFdl_cm3, 

RCP 8.5 

3.94 2.82 2.51 1.94 1.48 -2.5 -62% 

4. Conclusions 

In this analysis, we evaluate the combined impact of emerging pressures on California’s 

water—including population growth, climate change, and policies to shift to water efficiency and 

alternative water supplies—and of electricity generation decarbonization on the energy and GHG 

footprints for urban and agricultural water from 2015 to 2035. 

4.1 Urban 

We find that if urban per-capita water demand is maintained at current (2015) levels, 

statewide urban water demand increases 24% (1.3 million acre-feet, or MAF) between 2015 and 

2035 with population growth. This “mid-case” scenario would result in a 21% increase in water-

related electricity use (from about 30,000 GWh to 36,000 GWh) and a 25% increase in natural 

gas use (from about 150,000,000 to 190,000,000 MMBtu). In contrast, if per-capita water 

demand increases to levels consistent with urban water suppliers’ projections (a “high-case” 

scenario), urban water demand increases by 44% increase (2.4 MAF) between 2015 and 2035, 

resulting in a 40% and 45% increase in related electricity and natural gas use, respectively. As 

the state replaces fossil-fuel generators with more renewable resources, the GHG intensity of 

California’s electricity is expected to decline, and consequently GHG emissions associated with 

urban water-related energy use (electricity and natural gas) is projected to decrease about 12% in 

our mid-case scenario. However, in the high-case scenario, GHG emissions increase 2% because 

growing natural gas use dampens the effect of decarbonization in the electricity sector.  

We find that more comprehensive water conservation and efficiency efforts in urban 

California can lower water-related electricity usage by 19%, natural gas use by 16%, and GHG 

emissions by 41% between 2015 and 2035. Because indoor residential water use is the most 

energy-intensive subsector (driven by high energy requirements for end-use, treatment, and 

wastewater treatment), water conservation and efficiency improvements for this subsector could 

dramatically decrease the energy use and GHG emissions that would result from the mid- and 

high-case scenarios.  

While the total annual electricity use related to urban water increases in the mid-case 

scenario, the average energy intensity of California’s urban water—the total electricity used per 

unit of water used—decreases by 2% between 2015 and 2035. This decrease is driven in part by 

a shift in water supplies away from energy-intensive imports towards alternative sources, 

including brackish desalination, potable recycled water, and captured stormwater. While the 

shares of these alternative sources among the statewide urban water supply portfolio are still 

relatively very small, they have important implications for total energy use because, they are less 

energy-intensive than imported water in most regions of California, especially in the largest 

urban water region of South Coast. For example, Los Angeles’ move to more local water with 

increased water recycling, and stormwater recharge, has reduced the overall increase in energy 

use compared to imported water. In 2035, the city plans to significantly reduce imported water 
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and shift towards local sources, reducing energy use by 64% compared to 2015 values. Further, 

if the city shifted all imported sources to stormwater or direct potable reuse, energy use is 

estimated to further decrease between 27% and 40%.   

4.2 Agricultural 

Central Valley agricultural water use under the mid-case scenario (assuming central 

urban growth and density scenario) is projected to decline by 2%, or 0.3 MAF, between 2015 

(23.4 MAF) and 2035 (23 MAF). This decline is driven only by DWR’s projection that urban 

population growth will encroach on agricultural lands, not including any changes from crop 

prices, changes in agricultural markets, or other external factors that would also affect 

agricultural water use. Under this scenario, the associated electricity use decreases 4% (from 

14,000 GWh to 13,600 GWh), and GHG emissions decrease about 60% (from 3.7 to 1.4 million 

tons CO2).38 The proportionally larger reduction in electricity usage compared to water use is due 

to expected reductions in supply from relatively energy-intensive water sources, i.e., 

groundwater (350 kWh/AF in Sacramento, 365 kWh/AF in San Joaquin, 450 kWh/AF in Tulare) 

and SWP deliveries (240 kWh/AF in Sacramento, 500 kWh/AF in San Joaquin, 2100 kWh/AF in 

Tulare). Likewise, the proportionally larger reduction in GHG emissions is due to statewide 

efforts to decarbonize its electricity generation. Climate change has minimal impacts on 

agricultural water use by 2035 in all three scenarios; however, changes in temperature, 

precipitation, and evapotranspiration are likely to have a much larger effect on both supply 

availability and irrigation water demand toward the end of century.   

There are also large uncertainties in the future energy use of Central Valley agriculture 

because of its dependence on groundwater, which the state has mandated through SGMA to 

reach sustainable levels by 2040. In a case study, we evaluate the sensitivity of agricultural 

energy use in the San Joaquin Valley and Tulare regions to changing groundwater depths. If 

pumping volumes are maintained at current levels and groundwater depths drop to the minimum 

thresholds, overall agricultural water system energy intensity are projected to increase by 20% 

and 6% for the San Joaquin and Tulare regions, respectively. This would increase energy use in 

the San Joaquin and Tulare regions by about 16% in 2035. Permitting groundwater levels to rise 

can reduce the magnitude of the increase, as can improvements in pump efficiency. Likewise, 

shifting the timing of energy usage to coincide with times of renewable electricity generation 

could reduce the impact on GHG emissions. 

4.3 Cross-cutting findings 

Urban water efficiency improvements can have the largest statewide effect on 

California’s water-related energy use and GHG emissions because urban water is much more 

energy-intensive than agricultural water. Even though Central Valley agricultural water use (~23 

MAF) is projected to be about three times that of the urban sector (~7 MAF) by 2035, 

agriculture’s water-related electricity usage is about half, primarily because irrigation end-uses 

are less energy-intensive than water heating for urban end-uses. By 2035 in the mid-case, the 

energy intensity and total GHG emissions related to urban water statewide are about 9 times that 

of Central Valley’s agricultural water (5,400 kWh/AF and 14 million tons CO2 for urban water, 

compared to 600 kWh/AF and 1.4 million tons CO2 for agricultural water by 2035). 

 
38 GHG emissions are entirely from electricity because we do not calculate natural gas agricultural use. 
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Water-related GHG emissions are driven by the pace of California’s electricity 

decarbonization and end-use electrification. With increased renewable resources on the grid, the 

GHG intensity of electricity generation is projected to decrease from 0.26 to 0.1 tons of CO2 

equivalent/MWh between 2015 and 2035. This decrease is estimated to effectively minimize the 

electricity component of the GHG emissions related to urban water. Natural gas usage, mostly 

for heating water in residential and non-residential settings, is projected to rise, causing urban 

GHG emissions to still increase overall. Therefore, there is an opportunity for water-energy 

partnerships to promote the electrification of water-end uses (water heaters) to reduce the state’s 

GHG footprint. 

We identify specific water policies that can play an important role in helping the state 

meet energy and GHG goals. We provide the following recommendations for energy- and GHG-

conscious water policies for (1) reducing energy and GHG emissions associated with end-uses of 

water, (2) reducing energy and GHG emissions associated with the provision of water and 

wastewater services; and (3) supporting cross-sectoral collaborations.  

4.4 Reducing water, energy, and GHG emissions associated with end-uses 

4.4.1 Expand urban water conservation and efficiency efforts. 

Urban water efficiency, for both indoor and outdoor uses of water and within the water 

distribution system, can save energy and avoid the associated GHG emissions for water 

extraction and generation, conveyance, treatment, and distribution. Indoor efficiency can further 

reduce end-use energy requirements and GHG emissions by avoiding, for example, water 

heating, as well as wastewater collection and treatment. Prior studies have shown there is 

significant urban conservation and efficiency potential in California—between 2.9 to 5.2 MAF 

per year [232]—through programs that cut water losses, encourage uptake of efficient devices 

and landscapes, and promote behavioral change through social norming [233]. One analysis 

found that water-efficiency programs during the most recent California drought saved as much 

energy as, and were cost-competitive with, the state’s electric investor-owned utility efficiency 

programs during the same period [234]. Coordinating water and efficiency programs between 

water and energy suppliers can help both sectors meet water and energy goals and make these 

programs more cost-effective.  

4.4.2 Accelerate water heater electrification.  

Within the water management cycle, natural gas water heaters are the single largest 

emitters of GHGs. Electric heat pump water heaters are up to five times more thermally efficient 

than natural gas heaters [235] and can also provide significant GHG savings as the electricity 

system is decarbonized. However, the initial cost of electric heat pump water heaters is typically 

higher than natural gas heaters. Customer incentives that reduce the upfront cost of electric 

heaters can encourage more fuel-switching, lowering the state’s overall GHG emissions. There is 

momentum at the state and local level to accelerate this transition. In 2020, the California Public 

Utilities Commission revised a previous policy preventing utilities from offering fuel-switching 

incentives and subsequently approved $45 million of the state’s Self-Generation Investment 

Program budget to fund electric heat pump water heater rebates [195]. Further, several cities 

around California have passed regulations prohibiting natural gas in new housing developments 

[236], [237]. Together with water efficiency programs that lower hot water usage, incentives for 

electrification of water heaters can help lower the energy and GHG emissions from residential 

and non-residential water use. 
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4.4.3 Expand high-efficiency and more flexible groundwater pumps.  

Maintaining groundwater levels above the minimum thresholds identified in 

Groundwater Sustainability Plans (GSPs) can reduce energy use, energy cost, and GHG 

emissions. More efficient pumps and variable frequency drives can provide additional 

reductions, and rebates can lower the upfront cost of these upgrades [238]. Through demand-

response programs, farmers can also be compensated for operating their groundwater pumps to 

coincide with the timing of lower electricity prices and renewable electricity generation on the 

grid [239], and variable frequency drives can further be automated to adjust to grid needs [125]. 

This can help integrate renewable electricity and lower overall GHG emissions from electricity 

generation.  

4.5 Reducing water, energy, and GHG emissions associated with the provision of water and 

wastewater services 

4.5.1 Provide financial incentives and regulatory pathways for water suppliers to reduce the 

energy- and GHG-intensity of water systems. 

California should make existing financial incentives and programs for energy efficiency 

and GHG reduction available to water suppliers for shifting to less energy-intensive water 

supplies. Energy- and GHG-related programs, such as the state’s cap-and-trade funds [240], or 

state bond money, such as a Climate Resilience Bond [241], are potential funding sources that 

could be provided to water suppliers for developing alternative local sources that save energy 

and reduce GHG emissions. It may also be possible to stack incentives across sectors, such as 

from electric investor-owned utility efficiency programs to account for the range of co-benefits 

of energy and GHG savings.  

California should also prioritize creating regulatory pathways that enable water and 

wastewater services to reduce energy and GHG emissions. Guidance on direct potable reuse 

standards is expected to be issued from the State Water Resources Control Board by December 

2023. Clear state guidelines and regulations allowing direct potable reuse may offer energy and 

GHG benefits over indirect potable reuse, as it could avoid energy, GHG emissions, and costs, 

from the additional conveyance and treatment that is currently required for indirect potable reuse. 

In addition, regulations that address challenges of co-digestion and resource recovery at 

wastewater treatment plants can lower GHG emissions, generate renewable energy, and divert 

organic waste from landfills with existing wastewater infrastructure. Coordination between 

electric and water utilities may provide opportunities to implement demand response programs at 

urban water and wastewater treatment plants to reduce or shift the timing of energy use. This 

could help alleviate stress on the electric grid from additional water-related energy use and allow 

energy demand to coincide with renewable generation to lower the overall GHG intensity related 

to water.  

4.6 Water and energy data reporting and planning 

4.6.1 Expand and standardize water data reporting and energy usage tracking  

A unified set of projections of future water supply and demand portfolios for both urban 

and agricultural water suppliers is not publicly available, therefore we use different urban and 

agricultural datasets for this analysis. Such data - reported in a standardized way across water 

suppliers with harmonized assumptions (such as for population growth and climate change 

impacts) between urban and agricultural suppliers - is essential to understand future water system 
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conditions. These data should also include mandatory reporting of energy usage and energy 

intensity of the water cycle stages for each water supplier. Ultimately the energy intensity of the 

water system must be tracked alongside other state environmental indicators to help California 

meet its energy and GHG goals.  

4.6.2 Formalize coordination between water and energy regulatory agencies about forecasted 

energy demand changes 

If water system energy demands grow as projected, California’s electricity and natural 

gas systems will need to incorporate changes in their infrastructure planning to ensure that 

energy supply will reliably meet energy demand. Formal regulatory proceedings and reporting 

between water suppliers, state water agencies, electric and natural gas utilities, state energy 

regulators, and planning agencies can help facilitate coordinated cross-sectoral planning. For 

example, currently there is no explicit reporting of expected changes in water-related energy 

demand in California’s Integrated Energy Policy Report and associated energy demand forecast 

[242]. As a result, it is unclear if the energy use growth anticipated based on water supplier 

projections has been factored into electricity and natural gas planning and procurement 

decisions. Improvements in coordination between agencies should lead to better integrated 

energy and water planning, reduced costs to consumers, and faster decarbonization of 

California’s water system. 
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Chapter 3: Evaluating cross-sectoral impacts of climate change and 

adaptations on the energy-water nexus: a framework and California case 

study 
 

 Chapter 2 focuses on the near-term energy and GHG footprint related to water in 

California. Chapter 3 builds on this theme of cross-sectoral interactions and evaluates how 

climate change may affect the energy-water system relationship by the end-century. I review and 

synthesize the fragmented climate vulnerability and energy-water nexus literature to develop a 

generalized framework for understanding implications of climate change on the energy-water 

nexus. I apply this framework in a case study to quantify the range of end-century direct climate 

impacts on California’s water and electricity resources and estimate the magnitude of the indirect 

cross-sectoral feedback of electricity demand from various water adaptation strategies. The work 

in this chapter was published in the journal Environmental Research Letters as an article titled, 

“Evaluating cross-sectoral impacts of climate change and adaptations on the energy-water nexus: 

A framework and California case study,” and is included in this dissertation with permission of 

my co-authors Ranjit Deshmukh, Daniel Kammen, and Andy Jones. 

 

1. Introduction  

Water and energy39 systems worldwide are, by design and necessity, interdependent: 

water is an input for hydropower generation and thermal power plant cooling, and electricity 

powers the conveyance, treatment, usage, and disposal of water. These connections have 

commonly been referred to as the “energy-water nexus” [37], [38], [66]–[68]. Climate change 

and the resulting shifts in the global hydrologic cycle [69], [70] may strengthen or strain these 

nexus connections in new and uncertain ways [71]. For example, temperature and precipitation 

changes could simultaneously increase irrigation water demand and energy for water pumping, 

while reducing surface water and hydropower availability [72], [73]. Further, water sector 

adaptation measures commonly sought during long-term declines in surface water, such as water 

recycling, desalination, or groundwater recharge and withdrawal, are energy-intensive [67], 

[74]–[77]. Ignoring such interactive climate impacts in planning reduces the reliability of both 

systems and increases the risk of cascading failures [17], [21], [26], [243], [244]. 

Climate impacts to energy and water sectors have been studied extensively, yet several 

gaps remain in the literature. On the one hand, many climate vulnerability studies evaluate risks 

to individual sectors but have not holistically assessed compounding climate risks, such as those 

inherent in the dynamic relationship between closely coupled electricity and water systems [16], 

[17], [21], [22]. Typically these analyses evaluate electricity [25], [72], [79] or water systems 

[80] in isolation assuming the other remains fixed, or assess climate-related changes to supplies 

or demands separately [72], [81]–[83], making it difficult to account for interdependent impacts 

within and across sectors. On the other hand, many energy-water “nexus” studies—focused on 

demonstrating how integrated systems’ management improves efficiency, increases equitable 

resource access, and maximizes synergies [38]—characterize historical conditions without 

 
39 The terms “energy” and “electricity” are used interchangeably in this analysis; for simplicity, only electricity is considered an 

energy source for the water cycle even though there may be other fuels used (such as diesel or natural gas) by certain water sector 

processes. 
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climate change [61], [84], [85]. The cross-sectoral tradeoffs of climate adaptation strategies, such 

as the energy footprint of alternative water supplies, are particularly understudied despite 

recognition that ignoring such externalities could lead to maladaptation, whereby one sector’s 

adaptation strategies increase climate vulnerabilities in another [23], [85], [86].   

Given such complexity, a conceptual framework describing key system linkages and 

dynamics is essential to guide analysis [245]. In the first half of this paper, we integrate findings 

from the fragmented literature into a generalizable framework that catalogues how the 

relationship between electricity and water systems around the world may evolve under, and adapt 

to, climate change. This framework identifies the most critical cross-system climate impacts, 

adaptations, and feedbacks, to guide long-term planners on what to evaluate to comprehensively 

understand the scale and uncertainties of climate risks and adaptations of their resources. 

Because of regional variations in climate and infrastructure, in the second half of this paper we 

use a case study approach to apply the framework, focusing on the state of California. 

As a semi-arid, populous, and agriculturally-intensive state, California’s electricity and 

water systems are inextricably linked. On average 9% of California’s electricity consumption is 

from water conveyance, treatment of drinking and wastewater, and agricultural pumping [61], 

and 10% of electricity consumption is from water end-uses [55]. The water sector is especially 

energy-intensive because of inter-basin transfers between the wet Northern and dry Southern 

regions [246]. Additionally, about 15% of in-state electricity generation comes from hydropower 

[192]. California, considered one of the most “climate challenged regions in the U.S,”[7] is 

projected to face temperature increases, more frequent droughts, and significant loss of 

snowpack (a major source of water storage) [93], [247], [248]. Recent droughts foreshadow how 

the state’s energy-water nexus may fare under these impacts of climate change [21]. California’s 

water sector’s drought responses transferred and compounded vulnerability to its electricity 

sector—increased groundwater pumping spiked electricity consumption, while hydropower 

deficits were replaced by GHG-emitting fossil generation [35], [78]. In addition, the state has 

already seen several unprecedented climate-related impacts to the electricity grid, such as the 

August 2020 West-wide heat wave that triggered California’s rolling blackouts [29]. 

In our case study, we quantify climate impacts by first synthesizing the range of 

individual water and electricity supply and demand changes projected by California-specific 

studies. Aggregating these projections, we estimate the overall change to the state’s water and 

electricity annual resource balances due directly to climate impacts and indirectly to various 

potential climate adaptations by the end-century. We find that in the electricity sector, increased 

electricity demand for air-conditioning is the primary contributor to supply-demand imbalances. 

In the water sector, California’s future water balance could span a wide range of shortage or 

surplus under climate change, driven mainly by large supply uncertainties. In the event of the 

worst-case water shortage, our results show that water-conserving adaptation measures provide 

large energy savings co-benefits, while other energy-intensive water adaptations may double the 

electricity resource imbalance caused by direct climate impacts alone. Through this analysis, we 

both quantify the compounding climate risks and demonstrate mutually beneficial adaptation 

opportunities that could arise with increased energy-water cross-sectoral coordination. We 

summarize the framework in Section 2, the California case study methodology in Section 3, and 

the case study results in Sections 4 and 5. 
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2. Electricity-Water Nexus Climate Change Adaptation Framework 

The core objective of water and energy resource planners is to ensure adequate supplies 

to balance forecasted demands (subject to environmental, economic, and other constraints) [27], 

[32], [249]. Our framework (Figure 22) thus distills findings from across the literature on how 

climate change may affect these key metrics of annual supply and demand quantities, and 

subsequent resource balances, of regional energy and water systems (linkages 𝑳𝟏 through 𝑳𝟏𝟓). 

This framework provides a first-order, system-level assessment tool for identifying the biggest 

potential climate stressors, the range and order of magnitude of climate adaptation measures that 

may be needed, the possible compounding vulnerabilities due to cross-sectoral feedback effects, 

and key uncertainties and knowledge gaps for further analysis. 

The framework centers (grey box) on the most relevant40 projected climate change 

impacts—increased temperatures, reduced snowpack, changed precipitation patterns, and more 

frequent extremes. Across future emission scenarios, Global Circulation Models (GCMs) project 

climate change will increase surface temperatures worldwide [69]. Although there is uncertainty 

about future precipitation [82], [250], wetter regions, such as the northern high latitudes, are 

expected to become wetter, while some drier regions, such as the mid-latitudes, may become 

drier [250]–[252]. Higher temperatures will also shift precipitation towards rain, while reducing 

accumulation and speeding melt of snowpack, a natural slow-release reservoir that meets warm-

season water demands [253]–[257], [83]. In many regions, the frequency and intensity of storms 

and droughts will also increase [69], [258], [259]. These climate impacts directly affect water 

supply (raw water availability, 𝑳𝟏) and demand (irrigation water, 𝑳𝟐), and electricity supply 

(transmission and generation efficiency, 𝑳𝟑) and demand (air-conditioning, 𝑳𝟒). There are 

subsequent feedbacks, e.g. water supply shifts (𝑳𝟏) affect electricity supply (hydropower 

generation, 𝑳𝟓 and thermoelectric cooling, 𝑳𝟔). In response to a resource imbalance, adaptation 

measures can reduce water demands (𝑳𝟕) or augment water supplies (𝑳𝟗), but may inadvertently 

affect electricity demand (𝑳𝟖, 𝑳𝟏𝟎) and adaptations (𝑳𝟏𝟑). Electricity adaptation strategies can 

expand supply-side capacity (𝑳𝟏𝟏) and either reduce consumption through energy efficiency or 

increase consumption through electrification on the demand-side (𝑳𝟏𝟐). Decarbonization of 

centralized electricity supply can reduce thermal power plant cooling water demands (𝑳𝟏𝟒), and 

decentralized solar generation can power irrigation pumps and expand access to water supplies 

(𝑳𝟏𝟓). Population growth, urbanization, and policy change also affect energy and water systems.  

 
40 Because our focus is on long-term supply and demand balances, we omit climate impacts such as wildfires that primarily affect 

physical infrastructure and short-run reliability. 
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In the framework diagram, changes in electricity supply and demand quantities due to 

climate impacts are denoted with solid yellow linkages and water quantity changes are denoted 

with solid blue linkages. Dotted lines indicate supply and demand must balance in each system. 

Linkages that increase (decrease) quantities have + (-) and are green (red) if they increase 

(decrease) a system’s supply-demand imbalance, i.e. difference between supply and demand. 

Linkages with both + and – indicate disagreement in literature or multiple strategies with 

different effects (e.g. electrification increases while energy efficiency decreases demand; both 

are electricity demand-side adaptations). These linkages are reviewed below. 

 

2.1  Linkages 𝑳𝟏 – 𝑳𝟔: Climate impacts on water and electricity supply and demand 

Studies typically use GCM data and a hydrological model to simulate unimpaired runoff, 

which feeds into a water resource management model to estimate raw water availability, the 

water supply of a managed system (𝑳𝟏) [80], [260]. Such analyses find climate change will 

reduce or increase raw water availability primarily following the effect of regionally 

heterogenous precipitation patterns on runoff [82], [250]–[252], but results diverge due to GCM 

and hydrological model uncertainty [82], [250], [252]. For half the world’s population dependent 

on snowpack for cold-season water storage [253], even with unchanged runoff volumes, raw 

water availability may decline if snowmelt timing shifts and reservoirs cannot store earlier 

Figure 22. Electricity-Water Nexus Climate Change Adaptation Framework. Changes in electricity supply and demand 

quantities are denoted with solid yellow links. Water quantity changes are denoted with solid blue links. Dotted lines indicate 

supply and demand must balance. Impacts that increase (decrease) quantities have + (-) and are green (red) if they decrease 

(increase) a system’s demand-supply imbalance, i.e. difference or gap between demand and supply. Links with + and – indicate 

disagreement in literature or multiple strategies with different effects (e.g. electrification increases while energy efficiency 

decreases demand; both are electricity demand-side adaptations). 
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inflows that coincide with the flood season, when empty reservoir space must be maintained 

[60], [83], [247], [254]–[256], [261]. 

Water demand for irrigated agriculture comprises 85% of global water consumption.[83] 

In many regions, climate change is projected to raise temperatures, decrease precipitation, and 

increase evapotranspiration (ET) [60], together affecting soil moisture and increasing irrigation 

water demand (𝑳𝟐) [81], [252], [262]–[264]. However, factors such as ET differ across 

hydrological models, GCMs, and observational data [250], [265]. For example, some studies 

account for increased atmospheric CO2 causing plant stomata to reduce transpiration, thereby 

decreasing water demand [265]–[268]. Others contend that increased CO2 fertilizes 

photosynthesis [264], [266], which could have an offsetting effect of speeding crop growth, 

enabling multiple plantings, and increasing annual irrigation requirements. 

In the electricity sector, climate change could directly reduce supplies through increased 

transmission line losses and decreased generator efficiencies (𝑳𝟑). Resistive transmission losses 

increase as higher ambient temperatures lower radiative cooling of lines [72], [79], [269]–[271], 

requiring additional electricity generation to compensate [270], [272]. Higher ambient 

temperatures also lower both thermoelectric [79], [87], [273] and solar generating efficiencies 

[87], [274]; wind generation impacts are uncertain [25], [72], [79], [87]. 

Higher temperatures will raise electricity demand (𝑳𝟒) through more frequent usage 

(intensive effect) and new adoption (extensive effect) of air-conditioning [275]–[278]. In some 

regions, increases in demand may be partially offset by reduced heating, but demand is still 

projected to rise annually [72], [275], [278] and most significantly during summer peak times 

[28], [272], [279]. Electricity demand growth is especially pronounced in regions with both 

rising temperatures and incomes [276], [280]. 

Lastly, climate change affects electricity supply—hydropower (𝑳𝟓) and thermoelectric 

generation (𝑳𝟔)— through feedbacks of water supply changes (𝑳𝟏). Hydropower generation will 

change primarily according to raw water availability [25], [72], [79], [281], [282], and based on 

snowmelt dependence [25], [72], [253]. Hydropower reservoirs relying on snowpack storage 

[283], [284] and those with flood control objectives may have reduced summer and annual 

generation due to earlier snowmelt [72], [285], although larger reservoirs have greater 

operational flexibility and less sensitivity to these impacts [260], [284]. Meanwhile, with 

potentially reduced raw water availability and higher water temperatures, generation from 

thermoelectric plants relying on cooling water may decline [25], [72], [286]–[288]. The impact 

depends largely on the climate sensitivity of the cooling technology (once-through and 

recirculating) and water source (surface, groundwater, seawater, wastewater) [67], [282]. Dry-

cooling systems use no water and are not sensitive to these water-related climate impacts, but 

because they are less effective at heat rejection compared to wet-cooling systems, switching to 

dry-cooling could reduce a thermoelectric generator’s overall efficiency performance by 2-7% 

[67][67], [289]. 

2.2 Linkages 𝑳𝟕 – 𝑳𝟏𝟓: Climate adaptations for water and electricity and their feedbacks 

Traditional water supply management approaches, such as construction of reservoir 

storage or conveyance infrastructure, may be limited in the future by over-allocated rivers, social 

and ecological impacts, and costs [81], [232], [290], [291]. A combination of strategies reducing 

water demand (𝑳𝟕) and augmenting supplies with non-traditional sources (𝑳𝟗) may therefore be 

needed to adapt to climate-driven water imbalances [81], [292]. Urban demand-side adaptations 
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include indoor savings from high-efficiency appliances, conservation, and leak repair [204], 

[290], [293]; and outdoor savings from drought-tolerant plants, reduced planted area, and 

optimized irrigation [204]. Agricultural demand-side adaptations include integrated crop water 

management (reducing evaporative soil moisture loss) [294], [295], irrigation efficiency [296] 

(although reducing return flows basinwide [297]), crop-switching [298]–[300], and land 

fallowing [232]. Groundwater recharge, water recycling, and desalination are common supply-

side adaptations [301]. Groundwater recharge artificially infiltrates surface water (including 

flood or stormwater[232], [301]) into aquifers for withdrawal in dry years [302]. Treated 

wastewater can be reused for irrigation, or recycled further for potable use [290], [291], [293], 

[301]. Desalination treats seawater (35,000–45,000 ppm salinity) or brackish water (1,500–

15,000 ppm salinity) to drinking water quality (< 500 ppm salinity) [67], [303]. 

These water sector adaptations have varying energy intensities (energy consumption per 

unit volume of water). Both urban and agricultural demand-side strategies save energy by 

avoiding water supply and conveyance (𝑳𝟖) [76]. Urban conservation further avoids energy from 

drinking water and wastewater treatment [293] and from water heating [290]. Conversely, 

supply-side water adaptations from unconventional sources tend to increase energy demand [58] 

(𝑳𝟏𝟎). Groundwater recharge programs require pumping to withdraw water from storage [74]. 

Water recycling uses advanced treatment to reach potable quality and pumps treated water into 

the distribution system (direct potable reuse) or into groundwater or reservoir storage (indirect 

potable reuse) [76], [201], [291]. Desalination, most commonly from reverse osmosis, is the 

most energy-intensive adaptation; by some estimates seawater desalination uses 25x more energy 

than groundwater pumping[67] and 2x more than recycling [293]. However, the impact of this 

energy consumption on the grid can be managed through electric utility programs that shift the 

timing of demand to coincide with renewable energy generation (𝑳𝟏𝟑) [67], [239].  

Electricity sector adaptations, often primarily motivated by climate change mitigation, 

include supply expansion and decarbonization (through utility-scale renewable generation, 

storage, and transmission capacity, as well as distributed generation, 𝑳𝟏𝟏), and demand 

management (energy efficiency, electrification of end-uses such as transportation, and demand 

response, 𝑳𝟏𝟐). Supply-side strategies that transition from thermal to non-water-intensive solar 

and wind generation [36], [304], [305] decrease water demand for cooling (𝑳𝟏𝟒) [289], [306]. 

Distributed, off-grid generation from solar PV can also power irrigation pumps to expand access 

to surface or groundwater supplies and drip or sprinkler irrigation (𝑳𝟏𝟓) [307]–[309]. Small-

scale, distributed solar-powered desalination has also been deployed to augment water supplies 

in several regions [67]. 

2.3 External factors: Population growth, urbanization, policy drivers 

Population growth, urbanization, and policy changes also compound or offset climate 

impacts on energy and water systems [21], [58], [81]. Population growth increases resource 

demand [82], [310], but impacts vary by density (urbanization). For example, if urban population 

growth creates sprawl and encroaches on agricultural lands, demand for more energy-intensive 

urban water displaces irrigation water demand [311]. Policy drivers, such as regulations limiting 

groundwater extraction, also affect a system’s water supply portfolio and energy intensity [58], 

[312]. For electricity systems, decarbonization policies may increase reliance on climate-

sensitive hydropower resources [281], [282]. 
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3. Methods and Data: California case study 

We apply our framework to California by: 1) synthesizing the range of climate impacts to 

linkages 𝑳𝟏through 𝑳𝟓 from existing studies 2) estimating the subsequent aggregate effect of 

climate change directly on both systems’ annual resource balances, and 3) calculating energy 

consumption (𝑳𝟖, 𝑳𝟏𝟎) tradeoffs of different water adaptation strategies (𝑳𝟕, 𝑳𝟗) in the event of a 

worst-case water shortage.  

We exclude changes to cooling water (𝑳𝟔 or 𝑳𝟏𝟒) because California uses minimal 

freshwater41, and must further reduce thermal generation (excepting small shares of biomass and 

solar thermal) to meet its 2045, 100% carbon-free energy goal [90], [91]. We also omit solar PV 

and wind generation losses in 𝑳𝟑 because of uncertain end-century resources and nominal 

expected impacts (solar capacity declines <2%) [87]. Subsequent analysis is planned for 𝑳𝟏𝟏 

through 𝑳𝟏𝟑, 𝑳𝟏𝟓, and external factors.42    

3.1 Synthesis of climate impacts on water and electricity resource balances 

We review literature quantifying climate change impacts on California’s energy and 

water supply and demands, excluding analyses with limited geographic coverage (apart from 

irrigation and hydropower which are typically analyzed regionally), and collect results from 18 

studies for 𝑳𝟏through 𝑳𝟓. For each linkage, we cull the maximum and minimum of annual 

percentage changes to resources projected for end-century (2070 - 2100),43 characterizing the 

combined uncertainty from different methodologies, GCMs, and emissions scenarios across 

studies (Ch. 3 Appendix A).  

We standardize these ranges as absolute changes in water and energy volumes, applying 

the climate perturbation percentages to historical electricity and water stocks44 (Table 29, Ch. 3 

Appendix B). Finally, to calculate the overall bounding “worst-case” and “best-case” range of 

climate impacts on annual state water and energy balances, for each system the maximum of 

demand changes are subtracted from the minimum of supply changes, and the minimum of 

demand changes are subtracted from the maximum of supply changes, respectively; a positive 

resulting balance change indicates surplus, and a negative balance change indicates shortage. 

These sign conventions and method of calculation are appropriate to bound the systemwide 

worst-case and best-case because the climate impacts on demand and supply are coincident i.e. 

supply will decrease at the same time as demand will increase and vice versa. 

 
41 In 2018, thermal power plants in California withdrew and consumed approximately 0.02 Billion m3 of freshwater, comprising 

0.02% of average annual water supplies [313]. 
42 Our analysis focuses on end-century climate impacts, however, in the nearer term, California’s policies to electrify 

transportation, from internal combustion to electric vehicles (EVs), and buildings, from natural gas to electric space and water 

heating, may have a greater impact on increasing electricity demand than climate change (𝑳𝟏𝟐). One analysis for 2050 projects 

high levels of building electrification and high levels of EV adoption may each increase electricity demand as much as 3x times 

as climate increases the demand for air-conditioning [314]. However, given that end-century climate change impacts on air-

conditioning could be 2x higher than in mid-century [8], [275], and the uncertainty of the future building stock and vehicle fleet 

by the end-century study period, we have not included these effects in our end-century analysis. 
43 The end-century is the time period for which we found the most studies across all the linkages. Ch. 3 Appendix Table 44 

includes projections for mid-century where available. 
44 The literature we review projects average annual resource changes due to climate change. Therefore, we apply the percentage 

changes to average annual historical levels of water and electricity supplies and demands. However, there is significant inter-

annual resource variability in the water sector (e.g. in a recent wet year, 2011, annual surface water supply in California was 

about 99 Billion m3, about twice that of the 50 Billion m3 supply during a drought year, 2015) [222]. Analysis of the impact of 

this inter-annual variability on energy and water balances under climate change is an area for future research. 
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Table 29: Calculations for climate change impacts on California annual water and electricity resource balances. L1,and L2 are 

calculated with 2002 – 2015 average urban and agricultural water balance data from the California Department of Water 

Resources in Billion cubic meters, Bm3 [222]. Electricity linkages are calculated with residential and commercial building (L4) 

and total (L3) 2002-2018 average consumption data from the California Energy Commission [315], and hydropower generation 

data (L5) averaged 2002-2018 from the Energy Information Administration [316] in terrawatt-hours. Irrigation demand changes 

(L2) are calculated for the main agricultural regions (Sacramento Valley, San Joaquin Valley, and Tulare Lake) and hydropower 

changes are calculated by high- (>300m) and low-elevation generators (L5).  

Annual water supply changes Annual water demand changes 

𝐿1, Raw water availability ∆ [𝐵𝑚3] = 

 (𝑇𝑜𝑡𝑎𝑙 𝑢𝑟𝑏𝑎𝑛 𝑎𝑛𝑑 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑤𝑎𝑡𝑒𝑟, 53 𝐵𝑚3)
∗  (% ∆) 

𝐿2, Irrigation water demand ∆ [𝐵𝑚3] = 

(𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑𝑆𝑎𝑐 , 10 𝐵𝑚3) ∗  (% ∆𝑆𝑎𝑐  ) + 

(𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑𝑆𝐽𝑉 , 9 𝐵𝑚3) ∗  (% ∆𝑆𝐽𝑉 ) +  

(𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑𝑇𝑢𝑙𝑎𝑟𝑒  14 𝐵𝑚3) ∗  (% ∆𝑇𝑢𝑙𝑎𝑟𝑒  ) +  

Total change in annual water balance  

Annual water balance ∆ [𝐵𝑚3] = 𝐿1  − 𝐿2 ∶ 

Worst-case water balance ∆ [Bm3] = 𝑚𝑖𝑛(𝐿1)  − 𝑚𝑎𝑥(𝐿2) 

Best-case water balance ∆ [Bm3] = 𝑚𝑎𝑥(𝐿1)  − 𝑚𝑖𝑛(𝐿2) 

Annual electricity supply changes Annual electricity demand changes 

𝐿3, Supply impact of transmission losses ∆ [𝑇𝑊ℎ] = 
( 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, 278 𝑇𝑊ℎ) ∗  (% ∆) 

 

𝐿5, Hydropower generation ∆ [𝑇𝑊ℎ] = 

=  (𝐻𝑦𝑑𝑟𝑜𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛ℎ𝑖𝑔ℎ−𝑒𝑙𝑒𝑣 , 20 𝑇𝑊ℎ)

∗  (% ∆ℎ𝑖𝑔ℎ−𝑒𝑙𝑒𝑣 )  

+  (𝐻𝑦𝑑𝑟𝑜𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑙𝑜𝑤−𝑒𝑙𝑒𝑣 , 11 𝑇𝑊ℎ)  
∗  (% ∆𝑙𝑜𝑤−𝑒𝑙𝑒𝑣 ) 

𝐿4, Air conditioning demand ∆ [𝑇𝑊ℎ] = 

 (𝑅𝑒𝑠. & 𝑐𝑜𝑚𝑚. 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛, 190 𝑇𝑊ℎ)  ∗  (% ∆ ) 

Total change in annual electricity balance 

Annual electricity balance ∆ [𝑇𝑊ℎ] =  (𝐿3  + 𝐿5) −  𝐿4 ∶ 

Worst-case electricity balance ∆ [𝑇𝑊ℎ] = (𝑚𝑖𝑛(𝐿3)  + 𝑚𝑖𝑛(𝐿5))  − 𝑚𝑎𝑥(𝐿4) 

Best-case electricity balance ∆ [𝑇𝑊ℎ] =  (𝑚𝑎𝑥(𝐿3) + 𝑚𝑎𝑥(𝐿5)) − 𝑚𝑖𝑛(𝐿4) 

3.2 Climate adaptations for water shortages and their energy tradeoffs    

If the worst-case, upper end of the water shortage calculated in Section 3.1 is realized, 

significant application of adaptation measures that either augment water supplies or reduce water 

demands may be needed. We estimate the energy balance feedback (𝑳𝟖, 𝑳𝟏𝟎) from residential 

water conservation, agricultural water conservation, groundwater banking, water recycling, and 

desalination adaptation measures (𝑳𝟕, 𝑳𝟗) that could fill the maximum water shortage volume.  

As shown in Table 30, we first calculate the net energy intensity (𝑁𝐸𝐼𝑖,𝑗) of each 

adaptation measure, by summing the average energy intensities of all processes required to 

implement the measure (i.e. treatment, pumping, etc.) [234] as 𝐸𝐼𝑖, and subtracting 𝐸𝐼𝑗 , the 

energy intensity of the water source it may replace because of climate impacts [301]. 

𝑁𝐸𝐼𝑖,𝑗 = 𝐸𝐼𝑖 −  𝐸𝐼𝑗 

where, 

𝐸𝐼𝑖 = Energy intensity of adaptation 𝑖, summing energy intensities of all associated 

processes in 
𝑘𝑊ℎ

𝑚3 ,  𝑖 ∈ {Residential water conservation, agricultural water conservation, 

groundwater banking, water recycling, desalination}. 
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𝐸𝐼𝑗 = Energy intensity of substituted water source 𝑗 in 
𝑘𝑊ℎ

𝑚3 , 𝑗 ∈ {local surface water, 

California volume-weighted average water source, State Water Project deliveries}. 

For example, if climate change effectively reduces deliveries via the energy-intensive 

State Water Project (SWP) inter-basin transfer, the 𝑁𝐸𝐼𝑖,𝑗 of an adaptation measure is net of 

avoided SWP conveyance energy. Because of uncertainties in where and how much of each 

water source may be substituted, for each adaptation we test three 𝐸𝐼𝑗 sensitivities that each 

assume a single source of substituted water 𝑗—local surface water (0.09 kWh/m3), a weighted 

average of all California water supplies (0.32 kWh/m3), and SWP deliveries (1.55 kWh/m3) 

(details on energy intensities in Ch. 3 Appendix A.b). 

Table 30: Net energy intensity of water adaptations in California. Net energy intensity of a water adaptation measure (𝑁𝐸𝐼𝑖,𝑗) is 

the difference in energy intensity of the substituted water source 𝐸𝐼𝑗 and adaptation measure 𝐸𝐼𝑖. 𝐸𝐼𝑖 is the sum of energy spent in 

implementing the measure, using statewide averages of associated processes listed in the table. Negative 𝐸𝐼𝑖 and 𝑁𝐸𝐼𝑖,𝑗 values 

indicate energy savings, and positive values indicate energy consumption. 𝐸𝐼𝑖 of residential water conservation includes energy 

savings from avoided water treatment, urban distribution, water heating, and wastewater treatment. 𝐸𝐼𝑖 of agricultural water 

conservation includes energy savings from avoided agricultural distribution and irrigation. 𝐸𝐼𝑖 of groundwater banking include 

energy for groundwater pumping. 𝐸𝐼𝑖 of water recycling includes energy for incremental treatment above wastewater treatment 

for indirect potable reuse, and for distribution from the treatment plant for storage. 𝐸𝐼𝑖 of desalination includes energy for reverse 

osmosis treatment, averaged across seawater and brackish water, and for distribution from the treatment plant. Three 𝐸𝐼𝑗 are 

included: local surface water (0.09 kWh/m3), California supply-weighted average (0.32 kWh/m3), and the average across delivery 

points of the State Water Project conveyance system (1.55 kWh/m3). 𝐸𝐼𝑖 references: [55], [58], [61], [64], [65], [73], [74], [76], 

[199], [207], [210], [215], [317] 

Water 

adaptation 

measures 𝑖 

Calculation of 𝐸𝐼𝑖 of adaptation measure 

[kWh/m3] 

𝐸𝐼𝑖 of 

adaptation 

measure 

[kWh/m3] 

𝑁𝐸𝐼𝑖,𝑗  with 

𝐸𝐼𝑗 of local 

surface water 

[kWh/m3] 

𝑁𝐸𝐼𝑖,𝑗 with 

𝐸𝐼𝑗 of CA 

avg. water 

source 

[kWh/m3] 

𝑁𝐸𝐼𝑖,𝑗 with 

𝐸𝐼𝑗 of State 

Water Project 

water 

[kWh/m3] 

𝐿7, Residential 

water 

conservation 

−(𝑢𝑟𝑏𝑎𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦, 0.27 
+ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦, 0.17 
+ 𝑟𝑒𝑠. 𝑤𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦, 3.16
+ 𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 𝑡𝑟𝑒𝑎𝑡 𝑒𝑛𝑒𝑟𝑔𝑦, 0.69) 

-4.29 -4.39 -4.62 -5.84 

𝐿7, 

Agricultural 

water 

conservation 

−(𝑎𝑔. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦, 0.21  
+ 𝑎𝑣𝑔. 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦, 0.09) 

-0.30 -0.39 -0.62 -1.84 

𝐿9, 

Groundwater 

banking 

𝐴𝑣𝑔. 𝑔𝑟𝑜𝑢𝑛𝑑𝑤𝑎𝑡𝑒𝑟 𝑝𝑢𝑚𝑝 𝑒𝑛𝑒𝑟𝑔𝑦, 0.38 0.38 0.28 0.05 -1.17 

𝐿9, Water 

recycling for 

potable reuse 

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦, 0.95
+ 𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦, 0.27 

1.22 1.13 0.90 -0.32 

𝐿9, 

Desalination 

𝑅𝑒𝑣𝑒𝑟𝑠𝑒 𝑜𝑠𝑚𝑜𝑠𝑖𝑠 𝑒𝑛𝑒𝑟𝑔𝑦, 2.55
+ 𝑑𝑒𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦, 0.29 

2.84 2.75 2.52 1.30 

 

We then construct five corner case scenarios of each individual adaptation measure 

addressing 100% of the worst-case maximum water shortage volume, and four portfolio 

scenarios, ranging from most to least diversified, combining multiple measures capped at their 

feasible volume limits (Table 31). Portfolio 1 caps residential (indoor plus outdoor) water 

conservation at 1.8 Bm3/year [204] and water recycling at 6.7 Bm3/year [75], [76] with the 

remaining shortage equally satisfied by groundwater recharge, agricultural conservation, and 

desalination. Portfolios 2 through 4 cap residential conservation and recycling, and desalination 

meets the remaining volume. 
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Table 31: Scenarios of water sector climate adaptations. In corner case scenarios, the water shortage volume 𝑊𝑆𝑉𝑖 is equal to 

100% of the worst-case water shortage volume (18 Bm3) calculated in Section 3.1. In portfolio scenarios, 𝑊𝑆𝑉𝑖 contributions of 

several measures sum to address the worst-case water shortage. Water conservation and water recycling are capped at their limits, 

1.8 Bm3/year [204] and 6.7 Bm3/year [75], [76], respectively. 

Finally, for each combination of adaptation scenario 𝑠 and substituted water source 𝑗, we 

calculate the overall energy balance impact, 𝐸𝐵𝑠,𝑗 , as the sum-product of the 𝑁𝐸𝐼𝑖,𝑗  of included 

adaptation measures and associated water volumes 𝑊𝑆𝑉𝑖 from Table 31. 

𝐸𝐵𝑠,𝑗 =  ∑(𝑁𝐸𝐼𝑖,𝑗  )  ∗  (𝑊𝑆𝑉𝑖)

𝑛

𝑖=1

 

where, 

𝑁𝐸𝐼𝑖,𝑗 = Net energy intensity for adaptation measure 𝑖 for substituted water source 𝑗 in 
𝑘𝑊ℎ

𝑚3 , 𝑖 ∈ {Residential water conservation, agricultural water conservation, groundwater banking, 

water recycling, desalination} and 𝑗 ∈ {local surface water, California volume-weighted average 

water source, SWP deliveries}. 

𝑊𝑆𝑉𝑖 = Water shortage volume filled by adaptation measure 𝑖 in 𝑚3, 𝑖 ∈ {Residential water 

conservation, agricultural water conservation, groundwater banking, water recycling, 

desalination}. 

4. Case Study Results and Discussion 

For California’s water system, we find that by end-century, climate change may cause an annual 

average imbalance ranging from an 18 Bm3 shortage in the worst-case to a 24 Bm3 surplus in the 

best-case (Table 32, Figure 23). This large range is dominated by widely differing estimates 

(25% decrease to 46% increase) of raw water availability (𝑳𝟏) [260], [318], [319]. Despite rich 

literature on California hydroclimatic phenomena and on subsets of its water system [75], [247], 

[320] we find relatively little research estimating changes in California’s total managed water 

supply. Further, studies differ on the degree to which any increased November through March 

runoff under climate change could be captured for water supplies, due to concurrent reservoir 

flood control requirements [247], [260]. Increased irrigation water demand (𝑳𝟐) contributes the 

Corner case scenarios 𝑊𝑆𝑉𝑖 filled by 

adaptation measures 

Portfolio scenarios 𝑊𝑆𝑉𝑖 filled by 

adaptation measures 

Corner case 1: 

100% Residential water 

conservation 

 

18    Bm3 

Portfolio 1:  

10% Residential conservation  

18% Agricultural conservation  

18% Groundwater banking 

37% Recycling 

18% Desalination 

 

1.8   Bm3  

3.2   Bm3 

3.2   Bm3 

6.7   Bm3 

3.2   Bm3 

Corner case 2: 

100% Agricultural water 

conservation 

 

18    Bm3 

Portfolio 2:  

10% Residential conservation  

37% Recycling  

53% Desalination 

 

1.8   Bm3 

6.7   Bm3 

9.5   Bm3 

Corner case 3: 

100% Groundwater banking 

 

18    Bm3 

Portfolio 3:  

10% Residential conservation 

90% Desalination 

 

1.8   Bm3 

16.2 Bm3 

Corner case 4: 

100% Water recycling 

 

18    Bm3 

Portfolio 4:  

37% Recycling  

63% Desalination 

 

6.7   Bm3 

11.3 Bm3 

Corner case 5: 

100% Desalination 

18    Bm3   
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remaining imbalance; demands could decrease 2% or increase up to 31% within California’s 

individual agricultural regions [262], [263], [300], [321], [322]. The variation reflects 

assumptions for ET and plant physiology [321], and regional differences in the share of water-

intensive crops [262], [263]. 

In California’s electricity system, climate change may create an annual imbalance 

ranging from a shortage of 6 TWh in the best-case up to a shortage of 42 TWh in the worst-case 

(Table 32, Figure 23). We find that higher electricity demand for air-conditioning (𝑳𝟒) is the 

largest contributor (3% increase to 18% increase) [8], [275], concurring with prior work [272]. 

During summer months, peak demand will increase more sharply (4% to 20% increase) than 

total annual demand [8], [271], [323]. The ranges reflect differences across studies in GCMs, 

spatial resolution, and inclusion of both extensive and intensive growth [275]. On the supply-

side, California’s annual average hydropower generation (𝑳𝟓) could decrease 27% or increase up 

to 14% by end-century, varying by region [283]–[285], [324]–[326]. Absolute declines are 

greatest for high-elevation hydropower (which contributes two-thirds of total average 

hydropower generation) and hot/dry GCM projections, worsening with droughts.45 Despite 

disparities in annual estimates, studies agree seasonally—average hydropower generation (and 

spill) increases over winter and spring, and decreases up to 55% over summer, which exacerbates 

grid reliability planning challenges. Lastly, studies project a nominal 0.1% increase in 

transmission resistive losses (𝑳𝟑) [271], [328]. 

Table 32: Range of end-century annual climate change impacts on California electricity and water systems. Details on all studies 

referenced for each linkage are in Ch. 3 Appendix Table 44. 

Linkage End-century annual % ∆ from 

literature (- decrease/ + increase) 

Ref. Calculated end-century annual 

absolute ∆ 

 
45 For example, hydropower generation in 2015, the worst year of the recent 2012 – 2016 drought, decreased to about 50% of the 

2002-2018 average level [192],[316]. Droughts are projected to become more frequent in California under climate change [327]. 

Figure 23: A. End-century climate impacts on California annual water balance.  B. End-century climate impacts on California 

annual electricity balance. The upper and lower ends of the bars for each linkage show the maximum and minimum calculated 

absolute change as it affects the resource balance. The water and electricity shortage/surplus bars are respectively the sum of the 

supply and demand component changes and represent the aggregate worst-case and best-case changes in resource balances. 

Positive = surplus, negative = shortage. 

A. B. 
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Supply-side 

𝐿1, Raw water availability  
-25% to +46% 

[260], [318], 

[319] -13 to +24 Billion m3 

Demand-side 

𝐿2, Irrigation water demand 

Sacramento Valley: -2% to +31% 

San Joaquin Valley: 0% to +7% 

Tulare Lake: +3% to +7% 

[262], [263], 

[300], [321], 

[322] 

+0.2 to +5 Billion m3 

Worst-case to best-case change in water balance (- shortage/+ surplus) -18 to +24 Billion m3 

Supply-side 

𝐿3, Transmission energy losses 
-0.14% to 0% [271], [328] -0.4 to 0 TWh 

𝐿5, Hydropower generation 
Low elevation: -27% 

High elevation: -20% to +14% 

[283]–[285], 

[324]–[326] 
-7 to -0.2 TWh 

Demand-side 

𝐿4, Air-conditioning demand  
+3% to +18% [8], [275] +6 to +34 TWh 

Worst-case to best-case change in electricity balance (- shortage/+ surplus) -42 to -6 TWh 

 

Figure 24. Energy impacts of water adaptations are comparable to direct climate impacts on electricity. Dotted lines indicate the 

range of the electricity shortage from direct climate change impacts. The panels on the right show energy consumption or 

savings of water adaptations to meet the 18 Bm3 worst-case water shortage. Corner cases meet the full water shortage with a 

single adaptation; portfolios include combinations of measures, as indicated by the percentage share. RC = Residential 

conservation; AC = Agricultural conservation; GW = Groundwater recharge; Recylc = Water recycling for indirect potable 

reuse; Desal = Desalination. Colors indicate water sources replaced by adaptations. SWP = State Water Project. Positive 

indicates surplus, negative indicates shortage. 
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If climate change leads to water imbalances, our analysis finds that a wide range of 

energy impacts is possible from adaptations that meet the 18 Bm3 worst-case supply shortage. 

Figure 24 shows that the energy balance (𝐸𝐵𝑠,𝑗) impacts of several adaptation scenarios 

(including corner cases and portfolios), are on the same order of magnitude or even surpasses 

direct climate impacts on the energy system. 

Among the adaptation corner case scenarios, consistent with prior studies [204], [234], 

[329]–[331], we find that strategies that rely strongly on conservation measures, particularly in 

urban areas, could substantially reduce energy requirements for water sector adaptation. 

Residential conservation saves the most energy (about 80 to 110 TWh saved) by avoiding 

energy-intensive end-uses, conveyance, and treatment. Conversely, if the water shortage is met 

entirely with desalinated water, the energy impact (20 to 50 TWh of additional demand) exceeds 

that of direct climate change induced shortages in the electricity sector, from hydropower 

generation, transmission losses, and air-conditioning combined.  

Diversified portfolios of both demand-side and supply-side adaptations reduce overall 

energy impacts, while also overcoming some of the physical limits [67], [75], [76], infrastructure 

costs [290], public opinion [293], [301], and water pricing [293] implementation barriers that 

make relying on corner cases unrealistic. For example, with a mix of residential and agricultural 

conservation, groundwater recharge, water recycling, and desalination, we find that Portfolio 1’s 

energy impact (ranging from 18 TWh saved to 8 TWh of additional demand) could completely 

or near completely offset direct climate impacts on the energy imbalance. Conversely, energy 

impacts increase with less diversified strategies relying primarily on supply-side measures [58]. 

Portfolios 2, 3, and 4 nearly double the energy imbalance, like the most energy-intensive corner 

cases, because of their high shares of desalination and water recycling. We find that the source of 

water substituted by an adaptation is nearly as important to the overall energy impact as the 

energy demand to implement the adaptation itself. All adaptation corner cases except for 

desalination save energy when substituting energy-intensive SWP water (using the average 

energy intensity across delivery points), whereas if a local or an “average” water source is 

replaced, groundwater banking, recycled water, and desalination would still create energy 

shortages. The most diverse Portfolio 1 saves energy if replacing SWP deliveries, while the 

replacement of average and local surface water supplies still adds to the energy shortage. 

5. Summary and Conclusions 

Previous analyses have characterized either current electricity and water system 

connections, or future climate change vulnerabilities of individual system components in 

isolation. This study unites these two threads of literature and presents a generalizable 

framework which can guide resource managers on evaluating climate impacts on the energy-

water nexus for long-term planning. While this paper applies the framework to the California 

context, the overall concept can be broadly used by planners and researchers to conduct a first-

order, aggregate assessment of cross-sectoral climate vulnerabilities and the tradeoffs among 

available adaptation technologies in regions with closely coupled electricity and water systems. 

The importance of particular linkages will differ by region based on hydroclimatic conditions 

and infrastructure. For example, generation losses depend on the share of thermoelectric plants 

that rely on cooling water, and water supply changes depend on region-specific snowpack 

storage, groundwater dependency, and reservoir operations. Further, the ability to realize co-

benefits and minimize unintended energy impacts of water adaptations will also depend on a 
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number of physical, institutional, environmental, and economic constraints [86] that are 

important criteria for future study and decision-making. 

When applying this framework to California, we find that the range of potential climate-

driven gaps in supply and demand are much larger for the water system (spanning both shortage 

and surplus) than the electricity system, reflecting large water supply uncertainties by end-

century. To better support water and electricity planning efforts, subsequent research can explore 

in more detail how projected hydroclimatic variability and change interacts with constrained 

water infrastructure [25] in the nearer term, at more refined geographic and temporal scales, and 

during extreme events [269], [332].  For example, given available data, our estimates of annual 

average climate change impacts on energy and water resources in California potentially 

underestimate the severity of supply-demand imbalances during the summer months when 

several factors coincide (e.g., irrigation demand increases, raw water decreases, hydropower 

decreases, and air-conditioning increases). 

Overall our findings imply that water sector adaptations could significantly compound 

the direct effect of climate change on the electricity system, suggesting the need for grid 

planning to incorporate not only direct impacts (such as future air-conditioning growth and 

hydropower reductions), but to also coordinate with water resource planners to prioritize energy 

considerations in decision-making and to anticipate water sector adaptations in electricity 

demand forecasts. Closer cross-sectoral adaptation planning could enable jointly funded R&D, 

customer incentives, and programs for water conservation, which would have the greatest mutual 

water and energy saving benefits and help ensure reliable services in both sectors. Climate 

change will bring new and uncertain challenges to strongly interdependent electricity and water 

systems. This analysis demonstrates the substantial benefits of coordinated climate adaptation 

planning between the electricity and water sectors to increase system resilience worldwide. 
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Chapter 4: Planning for climate change impacts on electricity and water 

systems in the Western US with a cross-sectoral modeling approach 
 

Chapter 3 finds that the main ways electricity and water systems are impacted by climate 

change in the Western US are through changing water supply availability, irrigation water 

demand, hydropower generation, and electric demand for cooling. Yet, there are few examples of 

grid planners considering such impacts of climate change or water system interactions in 

modeling efforts for future grid expansion, and existing examples only analyze select impacts 

[87], [88]. I address these gaps in Chapter 4 by connecting a high-resolution capacity expansion 

model with a water model that combines climatically-driven physical hydrology and 

management of both water supply availability and demand allocation. This analysis evaluates the 

optimal buildout of Western US electricity infrastructure in response to climate impacts and 

water sector interactions by 2050. The work in this chapter is in preparation for submission to a 

journal, and is included in this dissertation with permission from co-authors David Yates, 

Patricia Hidalgo-Gonzalez, Martin Staadecker, Pedro Sanchez Perez, Daniel Kammen, and Andy 

Jones. 

 

1. Introduction 

Electricity and water systems are closely connected in the semi-arid Western United 

States (WUS). Electricity use for water services including long-distance conveyance, agricultural 

groundwater pumping, drinking water treatment, and wastewater treatment comprises 6-7% of 

total electricity consumption across the WUS states [61]. Hydropower is also a key source of 

electricity generation, comprising 17%, 37%, 68%, 74%, and 77% of electricity generation on 

average from 1990 – 2019 in California, Montana, Oregon, Washington, and Idaho respectively, 

but with significant year-to-year variability [333]. 

Both systems are each vulnerable to the impacts of climate variability and change. Across 

the region, climate models project higher temperatures and changes to the hydrologic cycle 

including snowpack loss, earlier snowmelt, and more variable precipitation [247], [334]–[336]. 

One study suggests that the threat of such climate change impacts to water resources in the WUS 

is unparalleled anywhere else in the country [335], affecting water supply availability and 

timing, and water demands for agriculture and urban outdoor uses [337]. Because of the 

inherently interconnected nature of the two systems, changing surface water availability affects 

hydropower generation, and in combination with increased water demand, raises associated 

energy use, such as for groundwater pumping [59], [284]. The electricity system further faces the 

compounding threat of higher demands for cooling, especially in the summer months [28], [338]. 

A US grid reliability agency has warned that electricity supplies in several regions including the 

WECC and California in particular are vulnerable this summer (2021) because of high 

temperature forecasts [339].   

While the electricity system must adapt to such climate change impacts, it is also working 

to decarbonize the generation portfolio with zero-emissions resources because it is one of the 

largest sources of GHG, and it is widely held that simultaneously electrifying end-uses is a cost-

effective strategy to also reduce emissions across the primarily non-electric transportation and 

building sectors. California has set targets for 100% carbon-free generation resources by 2045 



 86 

[120, p. 100] and a bill requiring Oregon to reach 100% carbon-free energy by 2040 passed both 

legislative houses and is expected to be signed into law [340]. President Joe Biden’s election 

campaign and proposed infrastructure plan is also targeting a carbon-free power sector across the 

US by 2035 [341]. Reaching such zero emissions targets and integrating renewables will be more 

difficult and more expensive if there is a decrease in carbon-free, dispatchable, and flexible 

resources like hydropower [342], alongside an increase in energy demand related to water. For 

example, in prior California droughts, hydropower generation declined to about half its historical 

level and was replaced by expensive and emitting natural gas generation [192], while energy use 

for groundwater pumping increased as surface water was replaced [35]. As the second year of a 

another drought takes hold in 2021, similar impacts are occurring again, with hydropower in 

California at 7% of state generation, down from a 17% average from 2016 to 2020 [333], [343]. 

Despite recognition in the literature [71], [73], [93], [244] of the importance of climate 

impacts and cross-sectoral linkages to the electricity system, most long-term planning processes 

in the WUS have not explicitly incorporated the three-way interactions between climate change, 

electricity, and water to evaluate how electricity capacity needs may be affected [18]. A number 

of studies have analyzed the impacts of climate change on electricity supply (ie. hydropower or 

thermal power plant cooling) or demand (ie. from increased air conditioning) in the WUS or sub-

regions/states [87], [275], [284], but have not completed the next step to see how those changes 

would subsequently affect the optimal grid buildout. Other analyses focus on how climate 

change impacts grid operations but hold the generation mix and transmission infrastructure fixed 

at their current states [338], [344], which does not account for the very different operating 

requirements of a future grid envisioned by policy that is dominated by intermittent renewable 

generation [345]. If climate-driven changes in demand and supply resources are not holistically 

incorporated in long-term planning processes and modeling, the electricity system may not have 

sufficient redundancy or flexibility to maintain reliability and resilience [25], [34]. 

Electricity system planners traditionally use capacity expansion optimization models to 

decide what type of technology, where, and when to build new capacity that meets forecasted 

loads and operational constraints [89]. Some of these expansion models account for uncertainty 

in future costs or load forecasts [346], but there are only a few examples of studies that include 

additional uncertainty from climate change [87], [88], [347]. These planning models also 

typically consider the grid in isolation, without incorporating cross-sectoral interactions [348]; 

analyses incorporating water linkages are still relatively uncommon and primarily focus on water 

constraints on thermal power plant cooling [349]. These constraints are less relevant in the WUS 

where there is relatively minimal freshwater use for thermoelectric cooling [90]–[92]; in 

California, the dependency on cooling water is further decreasing as the generation mix 

transitions to wind and solar resources that do not require cooling water [90], [91], and we expect 

this trend to apply to other WUS areas with decarbonization. Further, limited work has been 

done on incorporating climate impacts on both “water-for-energy” (i.e. hydropower) as well as 

“energy-for-water” (i.e. energy demand for groundwater pumping, conveyance, water treatment, 

etc.). Because climate change is projected to have significant impacts on both water supply 

availability as well as water demand, the energy usage related to supplying, transporting, 

treating, using, and disposing of water in the region would change correspondingly and affect the 

overall energy demand grid planners must plan to meet.  

The objective of this paper is to evaluate the optimal buildout of a decarbonized WUS 

electricity system, while also adapting to climate impacts and water sector interactions by 2050. 
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To our knowledge there is no existing linked electricity capacity expansion and water 

management analysis that quantifies climate impacts and feedbacks on both water-for-energy 

and energy-for-water on a zero-emissions grid. We address these gaps by connecting a high-

resolution grid capacity expansion model of the Western Coordinating Council (WECC) area 

with a water model that combines climatically-driven physical hydrology and management of 

both water supply and demand over the same WUS geographic area. We evaluate these 

connected models with the downscaled climate projections of an ensemble of 15 Global 

Circulation Models (GCM) that have been selected for skill in characterizing the regionally 

relevant hydroclimatic phenomenon. We assume a baseline scenario wherein the WECC region 

reaches carbon-free generation by 2050. In this analysis, we (1) quantify the climate impacts on 

hydropower and energy demand for water in the WUS under a range of potential climate futures; 

and (2) quantify the sensitivity of the electricity grid buildout and operations to climate impacts 

on hydropower and water-related energy demand. Such large-scale models also enable us to 

evaluate regional interdependencies and the propagation of climate impacts in one location to 

another because of the connected nature of water and electricity infrastructure through long-

distance water conveyance and electricity transmission networks across the WECC. 

We describe the climate scenarios in Section 2.1, the methodology and data for the water 

model in Section 2.2, the electricity model in Section 2.3 and the model integration in Section 

2.4, and the results, discussion, and conclusions in Sections 3 and 4. 

2. Methods 

Figure 25 illustrates our climate-water-energy model integration methodology. We start 

with downscaled GCM climate projections, which are inputs into the water resources model, 

WEAP. We then link energy-related WEAP outputs with the electricity planning model, 

SWITCH, which optimizes the generation and transmission expansion of the WECC grid out to 

2050.  

The analysis brings together different modeling paradigms: SWITCH is a cost-

minimizing model that optimizes future investment to meet demand forecasts, while WEAP uses 

a rule-based priority system to allocate climatically-driven available water supply to demands 

given fixed infrastructure. This approach reflects key differences in the two sectors, with the 

operations and investment of the electricity sector being more centralized and market-based, and 

the operations of the water sector being driven by a legal system of water rights for which 

WEAP’s prioritization scheme is a proxy. In future work, this model coupling will also enable us 

to explore different policies and adaptation strategies in the water sector through a scenario 

approach in WEAP, and to look at their implications for the optimal grid buildout in SWITCH. 

Each step of this analysis is summarized below and detailed in the Chapter 4 Appendix. 
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2.1 Climate scenarios and data 

We run the WEAP model with monthly average Temperature [ºC] and Precipitation 

[mm] variables for each watershed from 2015 – 2055 climate projections of 15 GCMs from the 

Coupled Model Intercomparison Project 5 (CMIP5) ensemble compared to a Reference scenario 

of historical climate.46 All climate scenarios use the Representative Concentration Pathway 

(RCP) 8.5 emissions scenario, which represents a scenario with 8.5 W/m2 of warming by 2100. 

We only use the RCP 8.5 scenario because during our study’s mid-century time horizon the 

projections from the other emissions scenarios are very similar, and the majority of the 

uncertainty comes from differences in GCMs [350]. 

Using a group or ensemble of different GCMs is currently the best practice to account for 

this model uncertainty [351]. We run WEAP with 15 GCMs selected for their skill in simulating 

the climate of our study region as part of a screening process conducted by a Climate Change 

Technical Advisory group for California’s Department of Water Resources (DWR) [227]. The 

DWR model selection process culled the original set of 31 models to 10 GCMs based on 

historical performance over three geographies and metrics: for the global scale using results from 

the IPCC AR5 [352] and model “genetics”, for the Southwest region using metrics and 

methodology from Rupp et al. [353], and for the state of California. Because our study area 

comprises the whole WUS, we have added back in the five models to our ensemble which 

performed well for the Southwest region but which DWR had removed for their performance for 

California-specific metrics. Of the final 15 models, nine of the models are also in the top 15 

GCMs for their performance in the Pacific Northwest region, where much of the WUS 

hydropower is located, based on an evaluation by Rupp et al [353].47 The GCM projections have 

been statistically downscaled based on the Locally Constructed Analog (LOCA) method, which 

 
46 Relative humidity and wind speeds are assumed to remain constant across the climate scenarios. 
47 Two of the remaining top performing GCMs for the Pacific Northwest were not available with the given downscaling method, 

and 1 model was removed because of similar model genetics to that of others in the ensemble. 

Figure 25. Climate-Water-Energy Integrated Modeling Schematic. This schematic describes the integrated modeling 

methodology. Temperature and precipitation data from CMIP5 LOCA downscaled climate projections for the RCP 8.5 emissions 

scenarios are inputs into the WEAP model, which then simulates the monthly water supply available and allocates water to 

demands and hydropower generation. The changes in hydropower generation and water-related electricity demand under the 

climate scenarios compared to the Reference scenario are inputs into the SWITCH model. SWITCH optimizes the investment 

and operations of generation and transmission with adjusted hydropower and energy demands from WEAP, and produces the 

optimal portfolio, dispatch and cost of generation and transmission by load zone and investment period. 
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was the recommended downscaling method in the DWR analysis [227]. The Reference scenario 

is based on historical 1980 – 2010 climate data [354].  

Compared to historical climate data, the ensemble average of the “raw” daily GCM data 

for 2020 - 2060, before downscaling and bias corrections, show drying is concentrated is the 

Southern half of the WUS, while the Pacific Northwest sees increases in precipitation (Figure 26 

A). Temperatures rise across the entire WUS, but at a higher rate in the Inter-Mountain West, 

and to a lesser extent in coastal areas (Figure 26 B). Across the downscaled and bias-corrected 

GCMs, from 2020 – 2050, the projections range from -8% to +12% (-3.6 mm to +5.4 mm) of 

average change in monthly precipitation across the WUS, and -0.1% to +1.2% (-0.3 ºC to +3.5 

ºC) of average change in monthly temperature (Table 33).  

  

Table 33. Summary decadal precipitation and temperature deltas compared to historical data across WUS domain area. The 

projections are based on the LOCA downscaled data from 15 GCMs, and the data is averaged across each 10 year period starting 

from 2015 to 2055, corresponding to the decadal investment periods of the SWITCH model. The table shows differences between 

these decadal average projections compared to the 1980 – 2010 historical average data of the Reference scenario in WEAP. 

GCM Change in average monthly 

temperature relative to 1980-

2010 [ºC] 

Change in total WUS monthly precipitation relative to 1980-2010 [mm] 

 2020 2030 2040 2050 2020 2030 2040 2050 

ACCESS-1.0 1.6 1.9 2.4 3.1 -2.5 mm; -5.4% -2.5 mm; -5.4% -2.8 mm; -6.1% -3.1 mm; -6.7% 

CCSM 1.4 1.7 2.5 2.9 -1.3 mm; -2.9% -2.2 mm; -4.7% 0.8 mm; 1.8% -1.7 mm; -3.6% 

CESM-BGC 1.1 1.8 1.9 2.6 0.2 mm; 0.4% 3.1 mm; 6.6% 1.3 mm; 2.7% 5.4 mm; 11.6% 

CMCC-CMS 1.1 1.4 1.8 2.7 0.3 mm; 0.6% -0.6 mm; -1.3% 4 mm; 8.5% -1.9 mm; -4% 

CMCC-CM 1.2 1.4 2.0 3.0 -1.4 mm; -3% 0.4 mm; 0.8% 3.8 mm; 8.1% -3.6 mm; -7.7% 

CESM-CAM5 1.6 2.0 2.4 3.1 -3.1 mm; -6.7% 3 mm; 6.4% 1.1 mm; 2.4% 4.7 mm; 10.1% 

CNRM-CM5 1.1 1.6 1.7 2.3 -2.4 mm; -5% -0.4 mm; -0.8% 2.3 mm; 4.9% 0.2 mm; 0.4% 

CanESM 1.7 2.2 2.7 3.5 -1.4 mm; -2.9% 1.9 mm; 4.1% 0.7 mm; 1.6% 1.1 mm; 2.4% 

GFDL-CM3 1.5 1.9 2.6 3.2 2.1 mm; 4.4% 3.3 mm; 7.1% 1.2 mm; 2.6% 3.1 mm; 6.7% 

GFDL-ESM2M 0.8 1.0 1.2 1.9 0.3 mm; 0.7% 0.9 mm; 2% 3.7 mm; 7.9% 1.2 mm; 2.6% 

HadGEM2-CC 1.4 1.8 2.8 3.1 0.5 mm; 1.1% -2.8 mm; -5.9% -1 mm; -2.1% 1 mm; 2.2% 

HadGEM2-ES 1.5 2.0 2.4 3.3 -0.2 mm; -0.5% -0.6 mm; -1.2% -2.4 mm; -5.1% 3.2 mm; 7% 

MIROC5 1.2 1.7 2.2 2.8 0.4 mm; 0.9% 0.3 mm; 0.7% -0.9 mm; -2% -2.9 mm; -6.2% 

MPI-ESM-LR 1.2 1.5 2.2 2.5 -1.9 mm; -4.1% 2.1 mm; 4.4% -0.5 mm; -1.2% 1.2 mm; 2.5% 

bcc-csm1-1 1.5 1.9 2.2 2.8 -1.9 mm; -4.1% 1.8 mm; 3.8% -3.3 mm; -7.1% 1.1 mm; 2.4% 

Figure 26. Ensemble difference in A. average daily precipitation [mm/day] and B. average daily temperature [ºC] from historical 

average. The ensemble values are annual average values of daily precipitation and temperature for 2020 – 2060 across all 15 

GCMs, and these are subtracted from annual average values from Livneh 1980 – 2010 historical data at the 1º resolution. These 

maps have been resampled to a higher resolution using a nearest neighbors approach for the purposes of illustration.  

A. B. 
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Ensemble Mean 1.3 1.7 2.2 2.8 -0.8 mm; -1.8% 0.5 mm; 1.1% 0.5 mm; 1.1% 0.6 mm; 1.3% 

 

2.2 WEAP model and data 

WEAP is a hybrid water resources management and watershed hydrology tool, built by 

the Stockholm Environmental Institute. WEAP can test different climate inputs, land uses, and 

demands and policies [355], and separately accounts for irrigated agriculture, urban indoor water 

use based on per-capita use and population, and urban outdoor use [92]. Numerous studies have 

used WEAP to assess climate impacts on water management, including on energy-water linkages 

[38], [356]. In each timestep WEAP solves a series of simultaneous equations for a mass-balance 

that partitions precipitation into rain or snow (a main source of WUS water supplies), and runoff 

or groundwater infiltration based on land cover, temperature, and soil moisture for each of the 

sub-catchments at various elevations, subsequently calculating available water supply and 

irrigation water demand [92], [355]. With a linear program, WEAP then allocates the calculated 

available supplies to demands, in order of user-specified priorities and supply preferences. With 

the rainfall-runoff hydrological modeling capabilities underlying a representation of the water 

system infrastructure and uses of the region, the WEAP model is ideally suited to evaluate 

vulnerability and water management responses under climate change [92]. The mathematical 

formulations of the mass balance and other model components are documented in detail in a 

prior WEAP publication [355]. The WEAP data are summarized in the following section and 

more detail on the data, model, and calibration are in the Ch. 4 Appendix. 

2.2.1 Geographic and temporal resolution 

For this analysis we build a new WEAP model covering the same region as the WECC 

region of the electricity expansion model (Figure 27).48 The WEAP study area includes the 

 
48 The Canadian and Mexican regions of WECC are only partially included because of limited data availability. 

Figure 27. Schematic of WEAP model study area. Blue lines are rivers, orange lines are conveyance, green lines are transmission 

links between demands and supply sources, and the color shaded areas are the various catchments. Red boundaries indicate the 

SWITCH load zone areas. 
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watershed regions of the Columbia River, Snake River, Missouri River, Colorado River, Platte 

River, Salt River, Sacramento River, Feather River, and San Joaquin, among many others. The 

WEAP model also includes built infrastructure such as long-distance conveyance for inter-basin 

water transfers (such as the State Water Project, Central Valley Project, Colorado River 

Aqueduct, and Central Arizona Project), and major reservoirs and hydropower generators.  

The model is run at a monthly time step, for the 2010 - 2060 time horizon, with the first 

and last 5 years of the simulation discarded to account for any artifacts or edge effects of model 

spin-up and end. The model has been calibrated for the historical period of 1980 – 2010 for key 

hydrologic metrics using observational US Geological Survey (USGS) gauge data for 

streamflows and/or reservoir outflows (see Ch. 4 Appendix) [91], [92], [349].  

2.2.2 Demand priorities and supply preferences 

Two user-defined priority systems are used to determine monthly allocations from 

supplies to demand sites, and for instream environmental flow requirements, reservoir storage, 

and hydropower generation [355]. Competing demand sites and flow requirements are allocated 

water according to their demand priorities and sites can share the same priority. These are useful 

in representing water rights, and are also important during a water shortage, in which case higher 

priorities are satisfied as fully as possible before lower priorities are considered. If priorities are 

the same, shortages will be equally shared. Typically, highest priorities are for critical demands 

that must be satisfied during a shortfall, such as an urban water supply. When demand sites are 

connected to more than one supply source, their supply preferences may also be ranked. These 

are attached to transmission links. Using the supply preferences and demand priorities, WEAP 

determines the allocation order to follow when allocating the water. The allocation order 

represents the actual calculation order used by WEAP for allocating water. 

In this analysis, with 1 being the highest priority, we have assigned demand priorities as 

follows: 1) environmental flows, 2) urban indoor, 3) urban outdoor, 3) agriculture, 4) reservoir 

storage, and 5) hydropower. We have assigned supply preferences as follows: 1) reuse (when 

available), 2) surface water, 3) groundwater.  

2.2.3 Catchment delineation and groundwater 

We use WEAP’s built-in “Catchment Delineation” tool to delineate catchments and 

rivers in the WUS, and to calculate land area disaggregated by 1000-meter elevation bands and 

by land use-land cover (LULC) categories (Agriculture, Forest, Grass and Shrub, Other, Urban, 

or Water) from digital elevation data [357]. Many of the catchments are delineated with major 

reservoirs as the outlet points of associated rivers, because a large focus of this analysis is on 

hydropower generation. The catchment delineation process results in 147 rivers and 311 

catchments. Climate data is used for each combination of catchment and elevation band. These 

catchments characterize the hydrology of the land area to calculate runoff, agricultural irrigation 

demand, and urban outdoor irrigation demand. These catchments, along with associated 

groundwater aquifers, provide the source of water supply to meet water demands.  

2.2.4 Water use and water infrastructure 

For each of 50 load zones in SWITCH, we model an urban indoor and an urban outdoor 

water demand node in WEAP. For each urban indoor demand node, total water demand is 

modeled as the product of a water use rate per-capita by sector (either Domestic or Commercial 
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and Industrial, C&I) * regional population. Per-capita rates49 are calculated based on historical 

USGS population and water use data by sector and county [358], and this county-level data are 

aggregated and assigned to WEAP demand nodes based on population-density weighting. 

Because Domestic water data from USGS include both indoor and outdoor water use, we parse 

out the indoor portion based on per-capita indoor water use data collected for specific cities in 

our study area, ranging from 41 (San Francisco) to 68 (Sacramento) gallons per-capita per day 

(Ch. 4 Appendix). For cities for which we cannot find per-capita indoor use, we assign the 

indoor per-capita value from the nearest city with data. The remainder of the water use is 

assigned to the outdoor urban demand nodes, for the urban land-cover areas. For C&I water, we 

make a simplifying assumption that the demand is only for indoor use from the commercial, 

industrial, mining, livestock, aquaculture, and thermoelectric sectors as categorized by USGS 

[358]. We calculate a per-capita C&I water demand as the total water use from these sectors 

divided by population.50 

Water demand for irrigated agriculture is modeled for the irrigated land area, which is the 

agricultural land area multiplied by irrigated fraction for each catchment (IrrigFrac). 𝐼𝑟𝑟𝑖𝑔𝐹𝑟𝑎𝑐 

is calculated as the irrigated land area from the 2017 (MODIS) Irrigated Agriculture Datasets for 

the Conterminous United States [359], divided by the total agricultural area from the 2016 

National Land Cover Database [360]. For the irrigated land area, the water use is calculated as 

part of the mass-balance equation using a Penman-Monteith formulation of evapotranspiration 

(ET), an average representative crop coefficient, and soil moisture thresholds. 

2.2.4.1 Reservoirs, diversions, desalination, and reuse 

We include 132 major reservoirs in the WEAP model of the WUS, which together 

provide 260 Billion m3 of available storage capacity. Reservoir storage is divided into four 

management zones, including conservation, buffer, and inactive pools from top to bottom [355]. 

The conservation and buffer pools, together, constitute the reservoir's active storage. WEAP will 

ensure that the flood-control zone is always kept vacant, i.e., the volume of water in the reservoir 

cannot exceed the top of the conservation pool. WEAP allows the reservoir to freely release 

water from the conservation pool to fully meet withdrawal and other downstream requirements. 

Once the storage level drops into the buffer pool, the release will be restricted according to the 

buffer coefficient, to conserve the reservoir's dwindling supplies. Water in the inactive pool is 

not available for allocation, although under extreme conditions evaporation may draw the 

reservoir into the inactive pool. Parameters to characterize reservoir storage capacity and 

volume-area relationship are from National Inventory of Dams data and state and local water 

resource databases [361]. We also account for evaporation from the surface of the reservoirs for 

each climate scenario, based on the climate data of the catchment where the reservoir is located.  

Major conveyance projects or diversions are included in WEAP. For California, these 

include the State Water Project (California Aqueduct and Coastal, East, and West Branches), 

Central Valley Project, Friant Kern Canal, Los Angeles Aqueduct, Colorado River Aqueduct, 

and the All American Canal; in Arizona, the Central Arizona Project; in Utah, the Central Utah 

Project; in Colorado, the Roberts Tunnel, Moffat Tunnel, Frying Pan-Arkansas and the 

Colorado-Big Thompson Projects. For the State Water Project and Central Valley Project 

 
49 Future research will simulate changes in per-capita water use rates as part of conservation programs.  
50 In reality, these C&I water uses are likely to change by other rates, i.e. production, square footage, electricity use, but because 

we do not have such sectoral data, we make a simplifying assumption that it also changes along with population growth. This is 

an area for future research. 
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diversions, releases are constrained based on available volumes determined by a water year 

categorization, calculated based on a river index of the Pit and Feather Rivers’ streamflow. A 

monthly pattern of maximum releases is also imposed based on historical allocations. Water 

deliveries are driven by monthly demand and constrained by contracted annual volumes. 

We include one desalination plant in Carlsbad, California [362] which provides water to 

San Diego, and also model non-potable reuse to the urban outdoor demand use up to 5% of 

return flows of urban indoor demand nodes in the drier Southwest states (California, Arizona, 

and Nevada).  

2.2.5 Hydropower generators 

We include 194 individual hydropower generators in the WEAP model, which together 

provide 48 GW of capacity. In the US portion of the WECC, these are all the generators greater 

than 30 MW, the threshold used by California for its Renewable Portfolio standard to denote 

“large hydro.” Only one generator is included in Canada, because of limited data available for 

calibration. Hydropower generators are either modeled without storage (as run-of-river) or with 

reservoir storage. Power is generated as the WEAP model releases water from the reservoir, or as 

water flows through the run-of-river turbines, based on the supply and demand priorities 

discussed above. The generators are parameterized based on head, tailwater elevation, and max 

turbine flow. To match the SWITCH baseline hydropower generation as closely as possible, the 

WEAP hydropower is further calibrated to adjust generation to meet the historical average 

monthly pattern, the annual average generation levels, and the annual average capacity factors, 

per the equations and Ch. 4 Appendix. Data is based on EIA net generation, NID dam data, and 

USBR dam and powerhouse data, and filled in as much as possible from other documentation 

from FERC filings, utility websites [361], [363]–[365]. 

2.2.6 Energy demand for water 

Electricity powers all stages of the managed water cycle, including groundwater 

pumping, long-distance conveyance, treatment, use, wastewater treatment, reuse, and 

desalination. In the WEAP model, we track this embedded energy by applying energy intensity 

values (energy use per unit of water, kWh/m3) associated with the water volumes calculated in 

WEAP throughout the stages of the managed water cycle (Figure 28). Energy intensity values 

are either derived from endogenous model data (i.e. groundwater pumping based on water 

depth), calculated from input data (distribution energy, water heating energy, agricultural 

energy), or based on averages from the literature (desalination, treatment, wastewater treatment, 

reuse) as described below and in Ch. 4 Appendix equations. 
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Groundwater pumping energy is calculated based on the lift, pump efficiency, and 

volumetric flow rate. For each groundwater object, the lift in meters is the aquifer water depth 

resulting from the WEAP model for each month. For all groundwater pumping, we assume an 

average pump efficiency of 49% based on [199], [366]. Energy for water conveyance, typically 

for inter-basin water transfers, is calculated based on the lift, pump efficiency, and volumetric 

flow rate. For each conveyance object, the lift in meters is the height that water needs to be 

raised for the specific project (Ch. 4 Appendix). We assume a pump efficiency of 57% (the 

highest pump efficiency in [199]). Gravity- fed conveyance projects, such as the Los Angeles 

Aqueduct, are assumed to consume no energy. Energy for desalination is assumed to be from 

seawater, averaged from literature [55], [58], [61], [64, p. 1], [65, p. 2], [73], [76], [207].  

Water treatment energy, which we assume is with conventional drinking water treatment, 

is applied for all urban demands (domestic indoor and outdoor, and CII). We use an average 

value from the literature [55], [58], [61], [64, p. 1], [65, p. 2], [73], [76], [207]. Water 

distribution energy is the energy required to pump and distribute water from the treatment plant 

to the end-user, and is also applied for all urban demands. Distribution energy increases with 

steeper terrain, and we therefore calculate the average slope-length of each urban demand node 

area based on the topography of the urban land areas [357], [360]. We rank and categorize the 

demand nodes based on their slope-length values with the top third assigned hilly, middle third 

assigned moderate, and bottom third assigned flat distribution energy intensity values (0.79, 

0.41, 0.04 kWh/m3 respectively) [203]. 

Energy for agricultural water use includes the energy intensity for local surface water 

deliveries (averaged from [55], [58], [61], [64, p. 1], [65, p. 2], [73], [76], [207]) and for 

Figure 28. Schematic of managed water cycle and WEAP tracking of energy intensity embedded in each stage of water cycle. 

The diagram on the left shows the stages of the water cycle starting from supply extraction/generation, namely for groundwater 

pumping or desalination, or from conveyance of surface water. Urban water is then treated to potable quality (agricultural water 

assumed not be treated). Water is then distributed to end-users, for irrigation or urban residential or CII uses. Agricultural water 

is then runoff without wastewater treatment, while urban wastewater is treated and then returned to the environment or treated for 

reuse. The panel on the right shows the embedded energy we include in WEAP along each stage of this cycle, and the icons 

reflect how they are illustrated in WEAP. Water for environmental use that is left in streams is not included in this schematic 

because it has no embedded energy. 
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irrigation (pumping and pressurization). The energy intensity for irrigation is calculated as a 

weighted average based on California data for the historical average applied water by crop [216], 

typical irrigation technology installed by crop [215], and the energy intensity for each irrigation 

technology [199] (0.01 kWh/m3, 0.23 kWh/m3 for standard sprinklers, and 0.17  kWh/m3 for 

micro/drip irrigation). Energy for Domestic51 water heating is tracked and is calculated as the 

product of the average electric water heater saturation by state [367, p. 8], the average hot water 

share in typical residential homes (33.2%) [206], and the specific heat of water ( ) 

based on typical water heater characteristics (90% efficiency, about 44 degrees C of warming 

based on average 10 C inlet and 54 C outlet temperatures).  

Energy for wastewater treatment applied to return flows from all urban indoor water, is 

assumed to be for secondary treatment, and is averaged from literature [55], [58], [61], [64, p. 1], 

[65, p. 2], [73], [76], [207]. Runoff from agricultural and urban outdoor water use is assumed to 

not receive wastewater treatment. For water non-potable reuse, we apply an energy intensity for 

incremental treatment above secondary wastewater treatment. 

2.2.7 Calibration 

The catchment parameters in WEAP are adjusted based on a calibration of modeled 

streamflows compared to observed gauge data for USGS gauging locations on rivers and 

diversions. Typically, managed flow is calibrated, including on the Columbia River below Grand 

Coulee Dam, Snake River below Hells Canyon Dam, Missouri River below Fort Peck Dam, 

inflows to Lake Powell, and Sacramento Delta outflow. Figure 29 is a summary of goodness-of-

fit statistics including correlation and bias across key hydrologic points that are simulated in the 

WEAP model across the WUS. 

 
51 We do not track energy use for commercial and industrial water heating because of lack of available data on hot water shares 

of such a diverse set of water end-uses. 

A. B. 

Figure 29. A. Percent bias of simulated vs. observed monthly flows for key USGS gauging locations across the WUS, where the 

size of the dot is monthly average flow for the given location. B. Correlation coefficient of simulated vs. observed monthly flows 

for key USGS gauging locations across the WUS, where the size of the dot is monthly average flow for the given location. 



 96 

Figure 30 shows examples of simulated and observed monthly and annual flow time 

series for the Sacramento-San Joaquin Delta outflow, the Colorado inflows to Lake Powell, and 

the Columbia River below Grand Coulee Dam, respectively. Together, Figure 29 and Figure 30 

demonstrate that the WEAP model is generally skillful at reproducing the large scale hydrologic 

characteristics across the WUS, while there is generally more error in regions with lower flow 

magnitudes such as the headwater regions of the Sierra Nevada of California and the generally 

low flows of rivers such as the Gila River in Arizona. More details on the final catchment 

parameters after calibration are in the Ch. 4 Appendix. 

 

 We compare water supply deliveries from the WEAP Reference case to historical 2000 – 

2010 average reported water use at the state level (Table 34). We compare with 2 sources: USGS 

A. Sacramento Delta Outflows B. Colorado River Inflows into Lake Powell 

C. Columbia River below Grand Coulee Dam 

Figure 30. Monthly (top) and annual (bottom) A. outflows of the Sacramento-San Joaquin Delta of California, B. Colorado River 

inflows into Lake Powell, and C. Columbia river flows below Grand Coulee Dam. Each figure has several goodness-of-fit (GOF) 

statistics including Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), percent bias (PBIAS), and 

Nash-Sutcliffe Efficiency (NSE). 
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data [358] and data collected from individual state water resources websites [368]–[376], which 

were available for some, but not all, of the years as the USGS data. 

Table 34. Comparison of observational water use data and WEAP Reference, Avg. 2000 - 2010 (Million Acre-Feet/ Year). 

 Agricultural Urban 

State USGS 

Data 

State-

level 

Data 

WEAP 

2000 -

2010 

Average 

WEAP 

2000 -

2010 

Min 

WEAP 

2000 -

2010 

Max 

USGS 

Data 

State-

level 

Data 

WEAP 

2000 -

2010 

Average 

WEAP 

2000 -

2010 

Min 

WEAP 

2000 -

2010 

Max 

California 24.00 34.55 32.05 27.81 35.88 7.65 9.07 8.29 7.51 8.90 

Arizona 4.39 5.61 3.99 3.63 4.46 1.32 1.90 1.45 1.29 1.56 

New 

MexicoA 2.60 3.10 0.91 0.78 1.11 0.39 0.58 0.52 0.47 0.56 

NevadaA 1.66 NA 0.36 0.29 0.40 0.89 NA 0.93 0.77 1.05 

UtahA 3.83 3.84 1.31 0.98 1.53 0.77 0.98 0.35 0.31 0.38 

ColoradoB 11.32 13.27 5.33 3.86 6.92 1.31 1.19 0.74 0.66 0.81 

Oregon 5.86 NA 6.05 5.10 6.88 1.33 NA 2.10 1.93 2.26 

Washington 3.26 NA 12.64 11.47 13.57 1.94 NA 1.66 1.53 1.77 

Idaho 15.87 18.50 12.31 10.22 14.11 2.96 3.25 2.41 2.18 2.65 

Montana 8.90 NA 12.69 10.85 14.25 0.42 NA 0.33 0.29 0.38 

WyomingB 4.49 6.02 1.64 1.21 2.00 0.36 0.47 0.28 0.24 0.33 
A The watersheds and water use in New Mexico, Nevada, Utah are not modeled for the full state areas, respectively. B The water 

accounting in Colorado is of applied water deliveries, but the WEAP model accounts for return flows and their reuse.  

As part of the calibration process, we also match WEAP hydropower generation results 

from the Reference scenario (no climate change) as closely as possible to the SWITCH baseline 

scenario (no climate change) before applying the climate change factors when integrating the 

models forward in time. We manually calibrate the average monthly WEAP hydropower 

generation by generator to match the historical observed average generation from the EIA 2004 - 

2018 [364], which is used for the SWITCH baseline scenario, based on the R2 values of each 

generator and the average generation-weighted R2 across all generators (Ch. 4 Appendix). After 

this calibration, the final generation-weighted R2 across all generators is 0.82. 

 

2.3 SWITCH model and data 

To optimize long-term energy system buildout under climate scenarios and given water 

sector adaptations, we use the capacity expansion model SWITCH. SWITCH is an open-source 

model with high spatial and temporal resolution designed to plan a system with high levels of 

renewable resources [377], and has been used to evaluate system expansion in several case 

studies of the Western U.S. [88], [304], [378]. We build on the SWITCH 2.0 (Python) version 

from a recent study [377], and use an academic license of the Gurobi solver [379], to evaluate 

the optimal generation and transmission capacity expansion and operations decisions for the 

WECC region out to 2050. The objective function minimizes the expected value of the total net 

present value of generation and transmission operations and investment. The key decision 

variables include investment in generation and transmission capacity (MW of capacity built of 

each generator and transmission line for each investment period among the set of available 

candidate generators and transmission lines), and dispatch (hourly generation and transmission 

line flows for each generator and transmission line online in that period). It is a linear energy 

transport model where transmission flows (a decision variable) between zones are constrained by 

line limits which are an aggregation of the limits of individual lines between regions.  
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The optimization is subject to a number of constraints, including limits on capacity 

investments in generation and transmission to not exceed available capacity, energy balance 

requirements for hourly load in each zone to equal generation and net imported energy 

transmitted into and out of the zone, the dispatch of generation and transmission flows limited to 

available capacity and line limits net of outages or derating factors, and specific dispatch 

constraints specific to variable generators (solar and wind), hydropower, and battery storage. 

There are also planning reserve constraints, which require the total available capacity of 

generators and imports meet or exceed a percentage above peak annual load (a reserve margin) 

in each “reserves area.” In addition to the above operational and investment constraints, we 

impose two main policy constraints on the model for each investment period: a renewable 

portfolio standard requiring a percentage of annual load to come from renewable sources, and a 

cap on carbon emissions from generation. Below we describe the key data inputs into this 

SWITCH analysis; the data, assumptions, objective function, and key constraints are described in 

more detail in the Ch. 4 Appendix. A complete full mathematical formulation of the SWITCH 

model is described in a prior paper [377]. 

2.3.1 Geographic and temporal resolution 

The WECC study area of this analysis is divided up into 50 “load zone” regions [304], 

[378] (Figure 31), covering all of parts of Washington, Oregon, California, Arizona, Nevada, 

New Mexico, Utah, Idaho, Montana, Wyoming, Colorado, and Texas in the US; British 

Columbia and Alberta in Canada; and the northern portion of Baja California in Mexico. The 

temporal resolution of the analysis includes four investment periods, each of a decadal duration: 

2020 (covering 2016 – 2025), 2030 (covering 2026 - 2035), 2040 (covering 2036 – 2045), and 

Figure 31. WECC study area and SWITCH load zone boundaries. 
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2050 (covering 2046 – 2055). The duration of these investment periods reflect the typical 

planning horizon of a utility, and the length of time often needed to plan and build generation 

and transmission infrastructure. Because of computation limitations on simulating both 

investment and detailed hourly operations, a sample of hours is selected to represent the typical 

grid dispatch for each investment period. In total, 576 hours are simulated (4 periods x 1 

year/period x 12 months/year x 2 days (median and peak day)/month x 6 hours/day = 576 hours). 

The SWITCH dispatch results (i.e. costs, generation, transmission flows, emissions, etc.) from 

these sampled hours are scaled to calculate the typical annual or investment period value (i.e. 

annual operating cost, generation, transmission flow, emissions, etc.).  

2.3.2 Generators 

As inputs into SWITCH, we include the list of individual generators that are existing 

and/or are planned for the WECC region. For the US portion of WECC, we extract the list of 

currently operating generators and their characteristics (such as location, fuel source, generating 

technology, online year, and retirement year if any) from the Energy Information Administration 

(EIA) Form 860 [363]. For thermal generators, use the historical monthly generation and fuel use 

from EIA Form 923 to calculate heat rate (MMBtu/MWh) for the available years 2004 - 2018 

[364]. In the baseline scenario (no climate change), hydropower generators are constrained to 

generate at their average historical monthly capacity factor and above a minimum generating 

level for each hour [304], calculated over the years 2004 – 2018 from the EIA Form 923 and 

repeated for all future investment periods of the SWITCH simulation (from 2020 – 2050). The 

existing generators for the Canadian and Mexican load zones are used from the data previously 

compiled for prior SWITCH-WECC analysis [88], [304]. 

One of the key decision variables in SWITCH is the capacity investment of generation, 

out of a set of candidate generators with specific generating technologies and fuel sources, load 

zone locations, and other physical and financial generating characteristics. Candidate generators 

include solar PV, wind (on- and off-shore), concentrating solar power, geothermal, biomass 

(liquid, solid, and gas), gas, coal, and battery storage technologies. We use the dataset of 

candidate generators that was previously compiled in prior SWITCH-WECC analyses [304], 

with some technology values (natural gas combined cycle, natural gas turbine, battery, wind, 

solar PV, solar CSP, and geothermal) updated based on NREL’s 2020 Annual Technology 

Baseline [380]. Details on the physical characteristics, and the available capacity of existing and 

candidate generators are in the Ch. 4 Appendix.  

2.3.3 Transmission 

The SWITCH optimization includes the construction of new transmission lines and the 

operations of existing and new transmission as decision variables. The model includes a set of 

105 existing aggregated transmission lines between load areas within the WECC, based on a 

prior SWITCH analysis that aggregated the thermal limits of individual high-voltage lines 

between load areas [304]. New transmission capacity may be added to existing transmission 

corridors or constructed between 21 adjacent load zone pairs where there is currently no 

transmission. For both existing and newly constructed transmission lines, the maximum power 

transfer on each line is the thermal limit multiplied by an efficiency factor and a derating factor, 

which is meant to capture the combined effect of loop flows, voltage concerns, power factors 

less than unity, and overloading of individual transmission lines within the bundle, that are 

difficult to model in detail in the linear model [304].  
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2.3.4 Costs 

The SWITCH optimization includes several types of costs in the decision to invest and/or 

operate in generation. Costs for candidate generators include overnight capital cost (applied to 

the built capacity), fixed O&M costs per year of operations, and variable O&M costs per hour of 

operation. Mature technologies (biomass, coal, gas cogeneration, gas steam turbine) are assumed 

to have their real costs stay constant over time, whereas other technologies are assumed to 

decrease costs over time with technology improvements and economies of scale. Capital, fixed 

O&M, and variable O&M costs by generator technology type originate primarily from Black & 

Veatch estimates for the mature technologies [304], [381]. For technologies with changing costs 

over time (battery, solar PV, solar CSP, wind, geothermal, gas CCGT, gas CT), we compile cost 

data from NREL’s 2020 Annual Technology Baseline database [380]. For wind and solar, we 

also account for lower overnight costs in the first investment period from the Production Tax 

Credit and Investment Tax Credit, respectively [382], [383]. For battery storage, we separate out 

the capital costs into $/MW (balance of system battery cost) and $/MWh (battery pack cost 

which would be multiplied by the storage duration hours) costs [380]. The costs we use assume a 

four-hour duration battery. The average costs by decadal investment period, energy source, and 

technology are in Ch. 4 Appendix. Capital costs for existing generators are considered sunk costs 

and we do not include them in the total system costs; they do not affect future investment 

decisions. Variable O&M costs for existing generators are set to be the same as for candidate 

generators. In addition to capital costs for the construction of the generator itself, for candidate 

generators we also add a connection cost to reflect the expense of connecting to the existing grid 

[304]. 

Fuel costs are applied to non-renewable generators (natural gas, coal, fuel oil, uranium) 

and originate from the EIA’s Annual Energy Outlook (AEO) [88]. Gas costs differ by load zone 

based differences in regional market prices and the wellhead price [304] (Ch. 4 Appendix). The 

fuel costs for bio solid generators are based on supply curves derived based on estimates of the 

economically feasible volumes of biomass feedstock available by load zone and different fuel 

price tiers [304]. 

The cost of building new transmission lines is calculated as the product of a line length, a 

base $960/MW-km cost [384], a terrain multiplier that reflects the topography differences that 

make a line more expensive to construct, and an economic multiplier [384] that represents 

differences in labor, permitting, and other “soft” costs between WECC load zones. Transmission 

lines also have a fixed O&M cost applied to reflect upkeep costs for lines. 

2.3.5 Load 

The future load assumed in this analysis was developed in a prior study and represents a 

case of high energy efficiency and building electrification, as well as increased adoption of Zero 

Emissions Vehicles (ZEVs), primarily from electric vehicles [88]. Hourly demand profiles from 

2006 (consistent with the weather-year used for calculating solar and wind capacity factors) from 

FERC Form 714 and a dataset procured from ITRON were used as a base from which demand 

projects (residential, commercial, industrial, transportation) were created and scaled by sector to 

meet policy targets and reflect population growth [385]. Electric vehicles are assumed to charge 

in an “unmanaged” way (without smart charging or time-of-use rates), based on charging profiles 

developed with an agent-based mobility model BEAM [46], [386]. 
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2.3.6 Policies 

We assume that the load zones in the WECC region must meet a planning reserve margin 

of 15%, that is, the model is required to build capacity to meet 115% of the peak load. All 

generator technologies are assumed to be eligible to provide capacity towards meeting the 

planning reserve requirement (details in Ch. 4 Appendix). Future work will evaluate the 

sensitivity of the results to different planning reserve requirements as well as eligibility for 

reserves provision.  

We include existing state Renewable Portfolio Standard (RPS) policies in SWITCH as 

constraints for each period requiring a fraction of electricity demand be generated by renewable 

generators. In addition, we impose a constraint on carbon emissions from generators by 

investment period. In this analysis, for the SWITCH Baseline scenario we assume a decline of 

carbon emissions to 0 by the 2050 investment period for all load zones in WECC, following the 

targets in California [120, p. 10], Oregon, and Biden’s campaign and administration’s policy 

goals to reach carbon-neutral electricity generation by 2035 (Ch. 4 Appendix) [341]. To measure 

compliance with this constraint, SWITCH tracks the emissions from each generator and 

aggregates to the load zone, based on carbon emissions intensity for each fuel source. Future 

research will test alternative Baseline scenarios without a zero-emissions carbon cap to isolate 

the effect of population growth and decreasing technology costs on the buildout of the grid 

infrastructure, before decarbonization policies are imposed. 

2.4 Model “Handshake”  

Changes in hydropower generation and energy use related to water are the two WEAP 

results that are connected with SWITCH, as described below. 

2.4.1 Hydropower 

We use the results from WEAP on hydropower generation under climate scenarios to 

adjust the hydropower generation availability in SWITCH. We first calculate a Reference 

monthly generation for each generator, 𝑊𝐸𝐴𝑃 𝐴𝑣𝑔𝐺𝑒𝑛𝑔,𝑚,𝑅𝑒𝑓 by averaging the WEAP 

generation for each month 2016 – 2055 under the Reference climate scenario. Then for each 

climate scenario and for each generator we calculate 𝑊𝐸𝐴𝑃𝐴𝑣𝑔𝐺𝑒𝑛𝑔,𝑚,𝑅𝑒𝑓, the monthly average 

WEAP generation for each decade corresponding with the SWITCH investment periods. Finally, 

we calculate the “Delta ratio” 𝐶𝐶 𝐷𝑒𝑙𝑡𝑎𝐻𝑦𝑑𝑟𝑜𝑔,𝑚,𝑑 by dividing these monthly average 

generation levels for each decade by the monthly average reference generation for each 

generator. We average these delta ratios for each decade across the generators in each load 

zone.   

To complete the “handshake” with SWITCH, we multiply these monthly Delta ratios for 

each decade from WEAP with 𝑆𝑊𝐼𝑇𝐶𝐻 𝐴𝑣𝑔𝐺𝑒𝑛𝑔,𝑚,𝑅𝑒𝑓, the monthly average power and 

minimum power parameters by generator in SWITCH. For generators that are not modeled in 

WEAP (greater than 30 MW), we use the load zone average delta fractions for each generator in 

that load zone. If there are load zones in SWITCH with no hydropower generators included in 

WEAP, we use the load zone average Delta fractions from the nearest neighboring load zone. 

We also adjust the reserve capacity value that each hydropower generator can provide by 

calculating the new capacity factor (monthly average power/max capacity limit) with the Delta 

ratio-adjusted monthly average power values. 
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𝐶𝐶 𝐷𝑒𝑙𝑡𝑎𝐻𝑦𝑑𝑟𝑜𝑔,𝑚,𝑑 =
𝑊𝐸𝐴𝑃𝑔,𝑚,𝑑

𝑊𝐸𝐴𝑃 𝐴𝑣𝑔𝐺𝑒𝑛𝑔,𝑚,𝑅𝑒𝑓
 

𝑆𝑊𝐼𝑇𝐶𝐻 𝐶𝐶 𝐺𝑒𝑛𝑔,𝑚,𝑑 = 𝐶𝐶 𝐷𝑒𝑙𝑡𝑎𝐻𝑦𝑑𝑟𝑜𝑔,𝑚,𝑑 ∗ 𝑆𝑊𝐼𝑇𝐶𝐻 𝐴𝑣𝑔𝐺𝑒𝑛𝑔,𝑚,𝑅𝑒𝑓 

where g is each hydropower generator greater than 30 MW, m is month, and d is the decade of 

the climate projection. 

2.4.2 Energy demand related to water 

We link the changes in electricity use related to water from WEAP with the total 

electricity demand by load zone in SWITCH. We first sum up the monthly energy use by 

category (water heating, treatment, distribution, groundwater pumping, ag water use, 

conveyance, wastewater treatment, reuse, and desalination) and by load zone across all the 

WEAP objects (urban indoor, urban outdoor, agricultural catchments, transmission links, and 

diversions). We calculate the decadal average monthly energy use for each energy category 

under the WEAP Reference scenario and under each climate scenario in WEAP. For each 

category and load zone, we calculate the absolute monthly delta for each decade as the difference 

between WEAP energy use under the climate scenario and under the Reference.  

Next, we allocate the monthly deltas by energy category and load zone to corresponding 

hourly deltas to match the temporal resolution of SWITCH. We assign each energy category a 

daily “load shape,” which determines the share of a day’s total energy that is used in each hour 

(Figure 32), based on a study of 24-hour patterns of water use of different water sector 

components52 [387], and a mapping of water sectors and processes included in the WEAP model 

(Ch. 4 Appendix). Finally, we multiply that hourly share 𝑊𝑒,ℎ with 1/number of days in each 

month and the monthly deltas for each energy use type and load zone. We sum the resulting 

hourly deltas across all energy types for each load zone 𝐶𝐶 𝐷𝑒𝑙𝑡𝑎𝐸𝑙𝑧,ℎ,𝑑 and add those to the 

Baseline SWITCH hourly load 𝑆𝑊𝐼𝑇𝐶𝐻 𝑅𝑒𝑓𝐿𝑜𝑎𝑑𝑙𝑧,ℎ,𝑑 to calculate the new total hourly load 

under each climate scenario in SWITCH.  

𝐶𝐶 𝐷𝑒𝑙𝑡𝑎𝐸𝑙𝑧,ℎ,𝑑 = ∑(𝑊𝐸𝐴𝑃 𝐸𝑒,𝑚,𝑑 − 𝑊𝐸𝐴𝑃 𝐸𝑒,𝑚,𝑅𝑒𝑓 ∗ 𝑊𝑒,ℎ ∗ 1/𝑑𝑚)

𝑒∈𝑙𝑧

 

𝑆𝑊𝐼𝑇𝐶𝐻 𝐶𝐶 𝐿𝑜𝑎𝑑𝑙𝑧,ℎ,𝑑 = 𝐶𝐶 𝐷𝑒𝑙𝑡𝑎𝐸𝑙𝑧,ℎ,𝑑 + 𝑆𝑊𝐼𝑇𝐶𝐻 𝑅𝑒𝑓𝐿𝑜𝑎𝑑𝑙𝑧,ℎ,𝑑 

where lz is each SWITCH load zone, e is the category of water use or energy demand demand 

(i.e. groundwater pumping, distribution, etc.), h is the hour, and d is the decade of each climate 

projection.  

 
52 We make a simplifying assumption that the energy use associated with each water sector category follows the same 24-hour 

pattern as the water use.  

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cgt%2030%20MW%2C%20m#0
https://www.codecogs.com/eqnedit.php?latex=d#0
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Figure 32. Daily 24-hour profiles of energy use for water services. The profiles show the hourly weight that is assigned for each 

day, based on the type of water use or supply category. These hourly weights are then multiplied by a day weight per month to 

allocate the WEAP monthly total energy use associated with each water category to an hourly interval for SWITCH. 

3. Results and Discussion 

 We first present the results from WEAP related to water supply deliveries, hydropower 

generation, and energy use related to water under the WEAP Reference Scenario (no climate 

change) compared to the climate scenarios.53 Secondly, we highlight key findings from SWITCH 

on capacity buildout, generation, transmission flows, and cost, that incorporate the changes in 

hydropower generation and water-related energy use from WEAP under the climate scenarios 

compared to the SWITCH Baseline Scenario (no climate change). 

 
53 Additional WEAP water system results that are not directly related to energy are detailed in a forthcoming companion paper. 
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3.1 WEAP Results 

3.1.1 Water supplies delivered by sector, and by source 

Across the WUS, water supplies delivered to the agricultural sector, the largest water user 

across the region (80% of supply deliveries), increases significantly under climate warming 

(Figure 33). Across the GCMs, the average annual irrigation water over the study period 

increases by +2% to +8% (+2 km3 to +9km3), compared to the “no climate change” Reference 

scenario. The lack of significant precipitation trends across the GCMs over this period suggest 

that the increase in irrigation water use is driven by temperature increases and soil moisture loss.  

In the urban indoor sector, there is minimal change relative to the reference under the 

climate scenarios, which is expected because indoor use is not sensitive to climate warming. The 

overall increasing trend for all scenarios is from the population growth rate assumption we have 

imposed (Figure 33). Changes relative to the reference under climate warming, ranging from -

3% to +0.2% (-0.7 km3 to +0.1 km3), are due to endogenous or forced conservation in the model 

when demands cannot be met with available supplies, depending on demand and supply 

priorities and operational or physical constraints. Decreased urban indoor water use, especially in 

the Domestic sector, saves energy because of avoided conveyance, treatment, distribution and 

wastewater treatment, as well energy-intensive water heating.  

Urban outdoor use, the smallest of the three sectors, does not have the same increase as 

agricultural use across the climate scenarios because the ensemble warming and drying is very 

pronounced in the Colorado River basin, leading to all the urban water supplies there to be 

constrained. Deliveries to the Los Angeles basin from the SWP are also constrained, and together   

these limit the deliveries to urban outdoor supply, which is a lower priority than indoor, even 

though water demand for outdoor urban uses increases due to warming. Future work will 

evaluate the sensitivity of these results to the underlying assumptions of population growth, 

Figure 33. Total water supplies delivered to Agricultural, Urban Indoor, and Urban Outdoor sectors across the WUS region, 2016 

- 2055, for climate scenarios (all GCMs in gray) compared to Reference scenario (black). 
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priority levels, and crop coefficients, as well as test scenarios of conservation programs in the 

urban and agricultural sectors. 

The supply source of water deliveries also changes under climate warming. Groundwater 

remains constrained based on the assumptions imposed for the historic period simulations, with 

groundwater representing from 30 to 60% of annual supply delivery for agricultural uses, and a 

lower supply preference than that of surface water. Therefore, the model will delivery surface 

water up to its constrained limit, and then use groundwater up to its constrained limit. Under the 

climate scenarios, with increasing demand and surface water supplies hitting their limits, a 

growing share of overall water use is being met by groundwater. In all but two GCM climate 

scenarios, groundwater use exceeds that of the Reference case 100% of the years of the analysis 

(Figure 34). Groundwater pumping has a higher energy intensity than local surface water 

sources, thus this increasing trend has implications for energy use. 

3.1.2 Hydropower 

Under climate warming, there is a declining trend in total annual hydropower generation 

across the WUS. Annual generation is lower than the Reference Scenario 75% - 100% of the 

time for all but three GCMs (Figure 36). With an overall “flattening” of the trend, there are also 

no GCMs that produce annual generation levels at the high end of the range (from 170 to 220 

TWh) seen in the Reference. 

In addition to declines in generation, climate warming causes a damaging seasonal shift 

in hydropower generation, with declines over the summer months and increases in the spring 

months in nearly all GCMs by the 2050 decade (Figure 35). This seasonal shift exacerbates grid 

challenges under climate warming, when we expect increasing loads for air-conditioning during 

peak times over summer months, and curtailment of solar generation over the spring months 

when load is lower and solar production is relatively high. Increases in air-conditioning demand 

have not been included in this analysis but are planned for inclusion as part of future work. 

Figure 34. Annual exceedance of total groundwater supply deliveries to all sectors, 2016 – 2055, for climate scenarios (all GCMs 

in gray) compared to Reference scenario (black). The figure indicates the percentage of years that certain levels of annual 

groundwater supply deliveries are exceeded under each scenario.  
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3.1.3 Energy demand for water  

The strongest signal in climate impacts on energy demand related to water comes from 

increased electricity use related to groundwater pumping, especially in the agricultural sector. All 

scenarios but two have a strong upward trend in electricity use for groundwater pumping and 

increase significantly (more than 2x) relative to 2020 by the end of the 2050 period (Figure 37). 

Figure 36. Annual exceedance percentages of hydropower generation WECC-wide, 2016 – 2055, for climate scenarios (all 

GCMs in gray) compared to Reference scenario (black). The figure indicates the percentage of years that certain levels of annual 

groundwater supply deliveries are exceeded under each scenario. 

Figure 35. Average monthly total WECC hydropower generation in WEAP in 2050 decade (2046 – 2055), with the climate 

scenarios (all GCMs in gray) compared to the Reference scenario (black). The generation is the sum across all hydropower 

generators included in WEAP, which have a nameplate capacity greater than 30 MW. 
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3.1.4 Change in the aggregate energy balance 

For each climate scenario, we calculate annual percent changes in hydropower and water-

related energy use from WEAP as well an aggregate absolute “energy balance” metric to 

quantify the combined annual energy impact of climate change from WUS water resources. 

Decadal average annual changes in hydropower (energy supply) are subtracted from changes in 

water-related energy use (energy demand) to indicate whether climate change results in a net 

energy shortage or surplus, and the overall magnitude of changes that may either exacerbate or 

offset each other [337]. Figure 38 maps the changes in energy balances over time and across the 

different GCMs, with the size of the points varying by the absolute value of the change of energy 

Figure 37. Total WEAP electricity use related to groundwater pumping in the agricultural sector, 2016 – 2055, with the climate 

scenarios (all GCMs in gray) compared to the Reference scenario (black). 

Figure 38. Average annual WECC-wide change in water-related electricity use, hydropower generation, and overall energy 

balance compared to Reference scenario. Roman numerals label each quadrant. Quadrant I includes scenarios with an increase in 

water-related electricity use, and an increase in hydropower generation. Quadrant II includes scenarios with a decrease in water-

related electricity use, and an increase in hydropower generation, representing the offsetting effect that climate warming could 

have on the water sector. Quadrant III includes scenarios with a decrease in water-related electricity use, and a decrease in 

hydropower generation. Finally, Quadrant IV includes scenarios with both an increase in water-related electricity use, and an 

increase in hydropower generation, representing the compounding effect of climate warming on the water sector. 
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balance, and their placement within the four quadrants depending on increases or decreases in 

both electricity use related to water and hydropower generation. 

 Between 2030 and 2050 the energy balances shift to concentrate in the “worst case” 

Quadrant IV (Figure 38), with compounding impacts from both increasing electricity usage 

related to water and decreasing hydropower generation that cause higher overall energy 

(im)balances. These effects are likely to be compounding seasonally, with lower hydropower 

generation and higher energy demand related to water in the summer months. By 2050, no 

climate scenario is in the “best case” Quadrant II, with decreasing energy use related to water, 

and increased hydropower. There is also a shift in relative position between models across the 

decades, highlighting the natural inter-annual climate variability and the non-linearity of climate 

signals and management responses across the models. 

3.2 SWITCH results 

3.2.1 WECC-wide generation, transmission, and storage capacity buildout and dispatch 

To meet climate change mitigation targets through WECC-wide decarbonization by 2050 

and meet forecasted load and operating constraints, under the SWITCH Baseline scenario the 

region sees about a three-fold increase in generating capacity online between 2020 – 2050, from 

about 330 GW to 960 GW (Figure 39 A). The greatest share of generation (43%) comes from 

solar PV by 2050, followed by wind (23%), battery storage (18%), and hydropower (12%) 

(Figure 39 B). 

Increasing electricity use related to water under climate change increases WECC-wide 

total load up to 3% relative to the Baseline scenario (Figure 40). This increasing load, coupled 

with declining hydropower, is replaced in large part by storage, which increases total generation 

WECC-wide up to 5%, depending on the climate scenario. Overall, to simultaneously adapt to 

climate impacts on hydropower and energy use related to water, the WECC region must have an 

additional +0.2% to +7% (+2 GW to +65 GW) more generating capacity online by 2050 

compared to the Baseline scenario (Figure 39 C). For reference, California’s peak demand 

forecasted for the summer of 2021, which has already seen two record-breaking heat waves by 

early July, is about 55 GW [339]. This suggests that in the worst-case, climate change could 

require building as much generating capacity across the WECC as is currently needed to meet 

demand in California (now a 30% share of WECC demand [388]) by 2050. Across the climate 

scenarios, the largest share of additional capacity comes from solar generation, followed by 

battery storage. However, there is significant variability in the overall magnitude of capacity 

additions needed between GCMs compared to the baseline (Figure 39 C). In the worst-case 

climate scenario, projected by the ACCESS-1.0 GCM, online capacity in 2050 is 65 GW greater 

than the Baseline, compared to only 2 GW for the best-case scenario CESM1-CAM5. 

 Decreases in hydropower generation annually and increases in energy demand can be 

seen as driving the capacity additions needed in each investment period (Figure 39 D). 

Decreased hydropower generation is replaced by a mix of generation sources, dominated by solar 

and complemented by battery storage and geothermal. Battery storage and geothermal resources, 

which are both flexible, are needed to replace the dispatchable hydropower, balance intermittent 

solar, and comply with a zero-carbon cap. For example, in ACCESS-1.0, solar generation and 

battery discharge both increase 10% compared to the Baseline by 2050. 
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A. B. 

C. 

D. 

Figure 39. WECC total A. Baseline scenario online generating capacity by energy source for each investment period. B. 

Baseline scenario annual generation by energy source for each investment period. C. Difference in online generating capacity for 

each climate scenario (GCM) compared to Baseline scenario by energy source for each investment period. D. Difference in 

annual generation for each climate scenario (GCM) compared to Baseline scenario by energy source for each investment period. 
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Figure 40. WECC-wide total annual percent change in load and dispatched generation for climate scenarios relative to Baseline 

scenario. The x-axis is the percentage difference in total annual load across the WECC (including both water-related and non-

water-related) for each climate scenario compared to the Baseline SWITCH scenario without climate change. The y-axis is the 

percentage difference in total annual generation for each climate scenario compared to the SWITCH Baseline without climate 

change. Each panel includes the result from the sampled year of each decadal investment period.  

Storage buildouts notably increase under the climate scenarios compared to the baseline 

(Figure 41). In addition to added capacity overall, the ratio of energy capacity online to power 

capacity online, in other words, the duration of storage, increases over 2020-2050 from about 4 

to 6.25 on average across the climate scenarios (although the duration is constrained by the daily 

energy balance requirement). Climate warming, and the resulting decrease in flexible 

hydropower generation, requires longer duration storage to balance a greater share of intermittent 

solar PV and wind generation.  

3.2.2 Climate impacts on regional interdependencies 

 Results aggregated across the WECC can obscure how climate change may stress 

regional interdependencies in such a closely linked region. Figure 42 highlights the spatial 

distribution of decarbonization-related changes from 2020 to 2050 (A, B; D, E), compared to 

impacts of adaptation to the ACCESS-1.0 climate scenario in 2050, which is the worst-case in 

Figure 41. WECC total storage power capacity (GW) and energy capacity (GWh) online for Baseline scenario (black) and 

climate scenarios (all GCMs denoted by color) for each investment period. The ratio of the energy capacity to the power 

capacity represents the average duration of energy storage, which in this analysis is assumed to be from lithium ion battery 

technologies. 
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terms of additional capacity needed under climate warming (C; F). Under the Baseline scenario 

between 2020 and 2050, large investments in solar (+330 GW online), wind (+150 GW online), 

and storage (+190 GW online), push out coal (-20 GW) and gas (-45 GW) generation, with solar 

capacity additions concentrated in the Southwest, and wind and transmission capacity additions 

in Canada and the Inter-Mountain West. Further, there are large investments in transmission 

(+240 GW) over the 2020 – 2050 time frame, especially between British Columbia, Alberta, 

Montana, Wyoming, and Colorado, and within the Southwest, enabling imports/exports of 

growing wind generation in the regions.  

Compared to the structural changes in capacity and dispatch from decarbonization, the 

climate change adaptations are comparatively small even in the worst-case scenario. However, 

there are important shifts in sub-regions of the WECC under climate warming, and these changes 

can be seen in better detail by load zone in Figure 43. In the 2050 period, hydropower generation 

decreases compared to the Baseline are concentrated in the load zones of the Pacific Northwest 

region, in British Columbia, Washington, Oregon, and Idaho (-25% in CAN_BC, -11% in 

OR_WA_BPA, -25% in WA_ID_AVA, -19% in WA_N_CEN), as well as in the Lower 

Colorado basin (-63% AZ_APS_N) in Arizona where warming and drying is concentrated 

(Figure 43). These changes propagate to connected load zones that have historically relied on 

imports. To make up for hydropower shortfalls, generation increases from other sources, notably 

from geothermal in Oregon (by 6700 GWh in OR_E), from solar PV and battery storage in 

Northern California (by 7500 GWh in CA_PGE_BAY and CA_PGE_N), and from wind, solar 

PV, and storage in Arizona (by 16,000 GWh in AZ_APS_N, AZ_PHX, AZ_APS_SW, and 

AZ_SE) and Southern California (by 19,000 GWh in CA_IID and CA_SCE_SE). In some load 

zones, increases in generation or imports are driven by increased load under warming, such as in 

California’s Central Valley (load increases by 24,000 GWh in CA_PGE_CEN and 

CA_SCE_VLY), which has significant growth of groundwater pumping demand. This 

underscores the importance of including changes in both hydropower and energy demands 

related to water when evaluating the comprehensive effect that climate change may have on 

energy-water linkages. 
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Figure 42. Generation and transmission capacity and annual generation and transmission dispatch by load zone of 

Baseline scenario in 2020 period (A, D) and in 2050 period (B, E); and of ACCESS-1.0 Scenario in 2050 period (C, 

F). The circle size indicates total capacity or energy, and the line thickness indicates total capacity or transmission 

flow. A comparison of panels A with B, and D with E shows the effect of decarbonization policies to reach zero-

carbon generation across the WECC by 2050. A comparison of panels B with C and E with F shows the additional 

capacity and generation needed to adapt to the worst-case climate scenario (in terms of additional capacity needed). 

A. 

B. 

C. 

D. 

E. 

F. 
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3.2.3 Costs  

SWITCH finds that reaching the Baseline scenario of a zero-carbon grid by 2050 costs 

about $1000 Billion in Net Present Value (NPV) terms over the 2020 – 2050 timeframe across 

the WECC region, including the cost of transmission and generation capacity, fuel costs, and 

Figure 43. Change in annual dispatch in ACCESS-1.0 climate scenario relative to Baseline scenario for each load zone, by 

investment period and energy source. The dotted line indicates changes in load for each load zone. Exports/Imports are negative 

if they are exports and positive if imports. Battery storage charge is negative because it is a “load” that is matched by battery 

storage discharge that is counted as generation. The first two letters of each load zone name indicates the state where the zone is 

located (or the state with the greatest share of that zone’s area if it spans more than one state). The map of load zones by name is 

in Section 2.3.1. 

A. B. 

Figure 44. WECC total cost 2020 – 2050 in Net Present Value (NPV) terms for A. Baseline scenario. B. Difference in NPV cost 

for each climate scenario relative to Baseline scenario. NPV discounting uses a discount rate of 5% and the lifetime of the 

investments, as detailed in the Chapter 4 Appendix. 
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variable and fixed O&M costs (Figure 44 A). Adapting to the impacts of climate warming and 

building a more resilient electricity grid further increases costs to the WECC power system. 

Climate warming could incur additional costs of $5 Billion to $50 Billion in NPV terms over 

2020 – 2050, which reflect a 1% to 6% increase above the Baseline (Figure 44 B). Most of the 

cost increases come from additional generation, storage, and transmission capacity needed to 

replace declining hydropower and meet increasing load.  

4. Summary and Conclusion 

Electricity and water systems are closely linked in the WUS, and are both vulnerable to 

the impacts of climate change. However, most electricity planning processes and models do not 

explicitly consider climate impacts or feedbacks from water sector interactions. We address these 

gaps by building a water resources model, WEAP, of the WUS that simulates infrastructure and 

water management within a physical hydrology model responsive to climate change. We 

calibrate WEAP to historical observed streamflow, state-level water deliveries, and generator-

level monthly hydropower generation, and then simulate the water system under climate 

scenarios from an ensemble of 15 GCMs selected for their regional performance. WEAP tracks 

changes in hydropower and water-related energy use, and we link these results for each GCM 

relative to a no-climate-change Reference scenario to the electricity system expansion model 

SWITCH. Over four investment periods, SWITCH optimizes the generation and transmission 

buildout and operations to reach 0 carbon emissions across the WECC region by 2050 under a 

Baseline scenario and 15 climate scenarios that include WEAP results. Through this work we 

quantify 1) the climate impacts on water resources in the WUS, 2) the energy implications (in 

terms of hydropower and electricity use related to water) of such climate impacts to water 

resources, 3) and the climate sensitivity in terms of capacity, generation, and cost of the 

connected WECC electricity system. 

WEAP results show that temperature increases are the strongest signals from the GCM 

projections, which drive an increase in irrigation water use in the agricultural sector, and 

subsequently a rise in energy-intensive groundwater pumping. Under nearly all the climate 

scenarios annual hydropower generation levels are lower than in the Reference scenario. There 

are also important seasonal shifts, with hydropower generation decreasing in the summer months 

when most needed to meet peak electricity demand, and increasing in the spring months when 

there is already an oversupply of renewable generation. Overall, by 2050, nearly all GCMs show 

both an increase in energy demand related to water and a decrease in hydropower generation, 

creating an energy imbalance or shortfall that has implications for capacity needs of the grid. 

When connected with SWITCH, we find that adapting to these water-related climate impacts, 

such as increase in total load by up to 3%, requires an additional 0.2% to 7% (+2 GW to +65 

GW) of generating capacity online by 2050 across the WECC, relative to the Baseline scenario. 

At the upper end of this range, the capacity addition exceeds California’s current peak demand. 

Adapting to climate change with this added capacity increases the total cost of grid infrastructure 

by 1% to 6% in the WECC. The results show the added difficulty of meeting mitigation goals 

with the decrease in a carbon-free, flexible resource like hydropower. Shortfall are made up for 

by over-building solar and wind capacity, and building additional flexible resources like 

geothermal and battery storage. We also see the ways that climate impacts can have cascading 

impacts in connected regions of the WECC grid. Declines in Pacific Northwest and Colorado 

River hydropower affect the capacity, generation, and transmission flows of neighboring load 
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zones, and increases in electricity demand for groundwater pumping in the Central Valley of 

California increases electricity imports from connected regions. 

 We recognize that there are many areas for further research to better support the planning 

of a climate resilient grid. Future analysis will include the impact of climate warming on 

electricity use for air-conditioning, in addition to the already included changes in water-related 

electricity use. Additionally, it will be important to test the sensitivity of water resources to 

assumptions on crop coefficients (agricultural water use), population growth and per-capita water 

demand, and the energy intensity related to water. Subsequent research will also evaluate how 

changes in water sector policies and climate adaptation measures could affect the grid buildout. 

For example, because of stressed groundwater resources, water managers may need to replace 

declining surface water with alternative supplies to maintain reliable deliveries [260], [318], 

[326]. There are limited remaining low-energy-intensive water supplies [207], therefore, many 

water adaptation strategies (including desalination, water recycling, and groundwater 

recharge)[67], [74], [75] may also add to electricity capacity needs [75], [76]. Reservoir 

managers may also adjust their operations to maximize water supply storage, which could affect 

hydropower generation patterns. Finally, more study is also needed of how climate extremes, 

such as extended and more intense droughts, could compound the water and electricity systems. 

Overall, our findings support the literature that climate change impacts mediated through 

the water system will have important implications in future grid expansion. In the WUS, where 

the fates of the water and electricity systems are already closely tied, these climate impacts affect 

the timing, magnitude, and spatial distribution of optimal future generation and transmission 

investment and operation. These results suggest that there are benefits to explicitly incorporating 

water sector interactions and climate scenarios into grid expansion models to help ensure a 

climate-resilient grid of the future. 
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Chapter 5: Assessing climate adaptation decisions at the energy-water 

nexus 
 

 An important aim of my research is to produce useful results that inform the development 

of climate resilient infrastructure in practice. This is to counter a major critique of energy-water 

nexus literature, and climate adaptation literature more broadly, that analyses are often 

disconnected from resource management decisions and therefore are not actionable. To improve 

the decision-relevance and usability of my research, I developed and refined the climate-energy-

water nexus framework from Chapter 3 based not only on a synthesis of literature, but also 

through engagement with key water and energy stakeholders. I met with and presented to water 

planners in different divisions of the California Department of Water Resources, and participated 

in and observed workshops at the California Public Utilities Commission as part of the 

regulatory proceeding on climate adaptation of the electricity sector. Through interactions with, 

and feedback from, various energy and water stakeholders, organizations, and fora, I sought to 

have a better understanding of the most important climate-related concerns for decision-makers, 

and to ensure that my framework captured all the cross-sectoral feedbacks they considered most 

critical.  

These engagements with stakeholders improved my understanding of challenges faced by 

practitioners beyond the theory and led me to pursue a co-production approach to develop the 

modeling efforts of Chapter 4. The goal of using co-production was to refine the Chapter 4 

model, research questions, and scenarios to reflect decisions, scales, and information needs of 

decision-makers for their management contexts. In this final dissertation chapter, I discuss the 

focus group and surveys conducted with a group of water managers in the WUS to that end. The 

discussion of initial results with water managers ultimately centered less on the specific results 

and methodology, and instead illuminated the broader ways of when and how energy factors into 

water decisions, often in hidden or implicit ways. This chapter describes the findings of the first 

of several planned focus groups with resource managers and is an area of ongoing work. The 

analysis in this chapter will be prepared for submission to a journal and is included in this 

dissertation with permission from co-authors Kripa Jagannathan, Smitha Buddhavarapu, David 

Yates, and Andy Jones. 

__________________________________________________ 

1. Introduction 

 In arid regions like the Western United States (WUS), energy and water systems are 

closely tied, with about 7% of total electricity use related to water [90], and hydropower 

comprising 17%, 37%, 68%, 74%, and 77% of average electricity generation in California, 

Montana, Oregon, Washington, and Idaho, respectively [333]. These interdependencies are often 

referred to as the “energy-water nexus” [389]. In addition to cross-sectoral linkages, both the 

electricity and water systems of the WUS are large-scale infrastructure networks unto 

themselves, engineered to overcome the spatial and temporal mismatch between resource supply 

availability and demand across the region. For example, seven states import water from the 

Colorado River, and on the grid, California imports the most electricity (25%) out of any US 

state to meet its demand [390]. The two systems are also vulnerable to climate change, with 

climate impacts on WUS water resources in particular unparalleled elsewhere in the country 

[335]. Because they are intricately connected, cascading impacts could occur if changes in one 
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system have feedbacks on the other [71], [244]. Additionally, climate adaptation actions in one 

sector could transfer vulnerability to the other, ie. be maladaptive, if cross-sectoral interactions 

are not considered [23], [35]. 

Many energy-water nexus studies demonstrate how integrated systems’ management 

improves efficiency, increases equitable resource access, and maximizes synergies [38]. There is 

also recognition  of the importance of accounting for climate impacts on such linked energy and 

water systems, because the cross-sectoral interactions could exacerbate the effects of warming 

[21], [73], [93]. Yet, in the two independently managed sectors, it appears that energy-water 

interactions are not typically or explicitly operationalized into decision-making [18], [94], and 

many ideas and tools of the nexus have remained conceptual [38]. Nexus challenges for climate 

adaptation in particular tend to not be in the forefront of decision criteria and are often 

considered outside the scope or jurisdiction for resource managers of individual sectors to 

evaluate [20]. One possible explanation for this gap between the theory and practice of the nexus 

is that scientists working at the nexus may not be engaging directly with stakeholders to 

understand and adjust their research based on the kind of information, frameworks, institutional 

norms, and analytical methods that are used by practitioners on the ground; only a small share of 

nexus literature incorporates stakeholder engagement and decision support methods [38].  

Collaborative and participatory approaches may help address this gap, making energy-

water nexus analyses more actionable in practice through better identification of cross-sectoral 

interactions and the values and needs of stakeholders. In this work, we aim to use the 

collaborative process of co-production between researchers and stakeholders to improve the 

decision-relevance of an ongoing energy-water nexus modeling effort. We do so by bringing 

together scientists and water managers, and eliciting information on the extent to which energy 

interactions play a part in current water sector decisions, and whether and how impacts of 

climate change on the energy system may have feedbacks or complications for these specific 

water sector decisions. We seek to address the following questions: 

Is energy factored into water sector decision-making related to climate change?  

If so, how does energy enter into decisions, and what information is used? 

Through focus group discussions and follow-up surveys with water managers across the 

WUS, we identify the often invisible, implicit ways in which energy considerations underlie 

major water sector decisions—such as those related to financial planning, reservoir operations, 

and drought management—and how these considerations are affected by climate change. Our 

work provides scholars and practitioners looking at adaptive water management a framework to 

examine (1) the critical climate impacts that are compounded due to water-energy interactions, 

(2) the specific management decisions that may be impacted due to consideration of these 

interactions, and (3) the tradeoffs that water managers may need to plan for under climate 

change. These findings on what is most important to stakeholders regarding the nexus and 

climate change, and how they do or do not factor energy considerations into their decisions, can 

be helpful for targeting other needed research efforts beyond the original water-energy modeling 

work directly motivating this project.  
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2. Examining energy-water interactions using co-production 

Co-production is a collaborative process whereby knowledge is jointly produced through 

interactions between scientists and stakeholders, and values and knowledge are incorporated 

from both communities [97]. The process is often iterative, involving multiple interactions, such 

as through focus groups, workshops, or interviews, between scientists and stakeholders to work 

on framing research questions, analyzing findings, or deciding on a research approach [391]. The 

interactions are typically facilitated by “boundary” individuals, organizations, or objects who 

convene, translate, and mediate the exchange of ideas between the different groups involved 

[392], [393]. The literature suggests that co-production of knowledge helps make the resulting 

information more accepted and used by decision-makers [391] because it increases the 

credibility, salience, and legitimacy of the information [39], aligns the scale of the analysis to 

specific decision contexts [391], and allows for a better fit with norms and existing information 

of institutions [98]. Co-production has also been found to be an effective method to reveal non-

technical barriers to effective adaptation and coordination between sectors, and can augment 

technical modeling assumptions, scenario creation, and model design for decision-relevance 

[40]–[42].  

 For this work, we use the co-production approach to understand how water managers in 

the WUS consider energy-water interactions and decisions under climate change, with the goal 

of narrowing the gap between conceptual energy-water nexus ideas and findings and their 

implementation in practice. Through a series of iterative focus groups, surveys and other formal 

and informal interactions, we bring together water managers from across the WUS with scientists 

who are in the process of developing a set of integrated water and energy models of the region.  

The scientists present the overall motivation, methods, and preliminary results of the ongoing 

modeling work, and aim to use the following discussion to gather feedback on the method and 

approach, future scenarios to run, and any results of interest. In addition to helping the scientists 

adjust their research for policy and decision-relevance and improve their understanding of 

underlying systems, another objective of the co-production process is to share insights with 

stakeholders who may not typically consider the cross-sectoral feedbacks under climate change.  

This effort is one part of the much larger HyperFACETS project (Figure 45), which aims 

to conduct climate modeling for management-relevant outcomes and analyze critical multi-sector 

Figure 45. A graphical depiction of the topics being studied in HyperFACETS (inner loop) and different project elements 

(outer loop). The effort described here uses stakeholder engagement to improve the understanding of multi-sector interactions, 

specifically between the energy and water sectors and their related management decisions. 
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interactions [394]. The HyperFACETS project applies principles of co-production to achieve 

these aims, whereby information is jointly produced through collaborations between an 

interdisciplinary group of scientists across nine research institutions and resource managers from 

12 water management agencies and one electric utility, representing several major watersheds in 

the US, including the Sacramento/San Joaquin and Upper Colorado in the WUS. Facilitated by 

dedicated boundary spanners whose primary role is to mediate the scientist-stakeholder 

boundary, the HyperFACETS stakeholders and scientists have been participating in a number of 

focus groups to co-develop science and metrics, and share feedback on ongoing research projects 

to be more decision-relevant [395]. The co-production effort we describe in this work is 

specifically with scientists and stakeholders who are part of the Multi-Sector Interactions 

working group of the HyperFACETS project.  

3. Methods 

We conducted a focus group with seven water and one energy resource managers from 

across the WUS, in Eastern and Western Colorado, Utah, and Southern and Northern California 

who were part of the HyperFACETS project.54 The focus group discussion followed the 

presentation by scientists of a climate-energy-water nexus framework they developed [337], and 

the preliminary results of their ongoing research linking climate projections with a water 

resources model and an energy planning model of the WUS. The linked models, from a 

forthcoming paper55, evaluate the impact of climate change on the water system and how the 

optimal buildout of the grid subsequently changes when incorporating climate impacts and water 

system interactions. The models cover the major rivers, watersheds, built infrastructure, and 

urban and agricultural water demands across the entire WUS, and the electricity system of 

generation and transmission of the corresponding Western Electric Coordinating Council 

(WECC) region of the grid.56 The scientists presented preliminary results on climate projections 

used from an ensemble of Global Circulation Models (GCM), water supply deliveries by sector 

(urban indoor, urban outdoor, agriculture), hydropower generation (annual and monthly), energy 

demand related to water (for groundwater pumping), and the electricity generation and 

transmission capacity buildout and dispatch by region. 

The focus group was facilitated by two boundary-spanners (including two of the authors), 

who asked questions from the stakeholders and moderated the discussion. A 30-minute 

discussion with resource managers followed each of two presentations by scientists (including 

another two of the authors) on the motivation, methodology, and preliminary results of the 

integrated water resources and electricity planning models of the WUS, along with an additional 

20-minute concluding open discussion. After the focus group, stakeholders were asked to fill out 

a survey asking what their main takeaways were, what they learned, and reiterating the main 

ways they think about energy and water sector interactions in their management contexts. In 

addition to questions about the decision-relevance of the particular modeling effort, the 

facilitators also asked broader questions about how the resource managers think about cross-

sectoral questions and adaptation decisions. Using the qualitative data collected from the focus 

 
54 We base our analysis only on comments from the water managers and not the energy manager to be consistent and not skew 

the results.  
55 Szinai, Julia, David Yates, et al. Planning for Climate Change Impacts on Electricity and Water Systems in the  

Western US with a Cross-Sectoral Modeling Approach. Manuscript in preparation. 2021. 
56 Some of the discussion included feedback on the specifics of the modeling and its usability, but we do not describe that here. 
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group discussion and surveys, we conduct a thematic analysis and identify the key ideas that 

emerge. 

We recognize the limitations to the generalizability of this work due to the size and 

nature of the sample. Because of their involvement in the HyperFACETS project, these resource 

managers are not a random selection of stakeholders across the region, but a self-selected group 

with interest and awareness of climate impacts on water and energy resources. However, even 

with a small group, the sample includes a diverse set of resource managers spanning multiple 

jurisdictional levels (including federal, state, regional, and local), watersheds, organizational 

sizes, and functions (including operations, planning, managing water quality and water supply, 

flood control, and power generation) across their agencies. Nonetheless, in order to strengthen 

the findings and reach convergence on key themes, we plan to conduct additional follow-up 

focus group discussions. Future discussions are planned with the same group of stakeholders, 

and the scientists will present updated modeling results that have been adjusted in response to 

initial feedback. We may also expand the sample to additional stakeholders in the region if time 

and resources permit. 

4. Results and Discussion 

The process of co-production between stakeholders and scientists led to a number of key 

themes, which emerged even as the discussion deviated from the original, more targeted 

questions regarding the preliminary results of the energy-water models. The focus group and 

survey responses moved away from the specifics of the models and instead facilitated a rich and 

much broader discussion on the important concerns around climate adaptation and the nexus. 

The presentation of the climate-water-energy nexus framework and preliminary modeling results 

acted as a boundary object for the scientists and water managers, and enabled the identification 

of key climate change impacts at the energy-water nexus, specific adaptation decisions faced by 

water managers as a result of these climate impacts, tradeoffs that management agencies face as 

they consider these adaptation decisions, and the metrics that help evaluate these tradeoffs 

(Figure 46). Here we describe the key themes that emerged from the co-production process. 

 

Figure 46. Key themes of climate impacts at the energy-water nexus, adaptation decisions, tradeoffs, and metrics. 

4.1 Climate change impacts relevant to energy-water interactions 

WUS water managers focused on increasing temperatures, persistent drought, reduction 

in snowpack, and earlier runoff (from snowmelt) as the key climate impacts of concern for their 

systems. They highlighted droughts and low snowpack years as particularly difficult to manage, 

for two underlying reasons that emerged from the discussion. These climate impacts tend to 1) 
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simultaneously decrease water supply and increase water demand, and 2) to also affect connected 

energy supply and demand in ways that compound water management challenges. Some of these 

indirect effects are driven by structural dependencies on the energy system. While not 

immediately obvious, these energy interactions appear to be core factors underlying the water 

sector’s climate vulnerabilities, with one manager even noting in a survey following the 

discussion:  

“Power and water are even more interrelated than I had previously thought.” 

Declining hydropower generation was the most prominent example of how periods of 

water scarcity during droughts could be exacerbated because of energy-water dependencies. 

When hydropower generation decreases and/or shifts to less profitable times of the year, there is 

a resulting loss of revenue from power production for agencies that operate hydropower, at the 

same time as a drop in revenue from water sales and an increase in energy costs for replacement 

power that must be procured in the energy market during high-priced times. This “double 

whammy,” as one water manager called it, can have a destabilizing effect on the business model 

and rate structure of water suppliers, especially those that depend on power generation profits to 

keep water affordable for customers, particularly agricultural users. Reduced hydropower can 

also lead to reductions in water supply reliability, as one water manager remarked: 

“Water supply reliability and power reliability are inseparable. Climate impacts to 

hydropower generation have a direct impact on some utility's ability to provide clean 

drinking water.” 

Further, during such times when reservoir levels are low and drought reserve water 

supplies are needed, water agencies have less flexibility in operating their systems, such as in 

prioritizing lower energy-intensive pumps and treatment plants, driving up energy demand and 

related costs. Alongside these higher energy costs from less efficient operations, water managers 

were also concerned about the increase in electricity demanded from supplemental water sources 

during times of shortage, such as water recycling and desalination, which tend to be more 

energy-intensive. 

Across the discussion of climate impacts of concern, the theme of regional 

interdependencies of both energy and water systems was also prevalent. Several stakeholders 

expressed concern about climate impacts that were correlated in time across different parts of the 

WUS, making it difficult to rely on neighboring regions to import water or hydropower 

generation. Similarly, there was a concern that climate impacts in one area could have (literal) 

downstream effects in another, because the system was designed with such a reliance on moving 

energy and water such long distances. Local resilience, self-sufficiency, distributed generation, 

and energy storage, were proposed by managers to adapt to these imminent climate threats of 

compounding vulnerabilities across space and time.  

4.2 Adaptation decisions 

 From the focus group and survey responses, we identify a number of specific decisions 

that water managers are considering to adapt to these climate impacts of concern, including 

changes to financial planning, increased local power generation, changing reservoir operations, 

alternative water supplies, conservation, and groundwater management.  

While the literature has largely focused on methods for including climate projections into 

water resources models, managers highlighted the need to also incorporate climate information 
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into water agency financial planning and analyses. Because of the extent that droughts can affect 

water utilities on both sides of their balance sheet (from less revenue from water sales and lower 

hydropower production, alongside higher energy demands and costs), several managers 

mentioned the need to adapt both short-term and long-term financial forecasts to proactively 

account for climate risks. One organization is moving to use longer planning horizons along with 

climate scenarios to better anticipate and prepare for changing finances for the utility and its 

customers during droughts. Another manager also mentioned using climate projections in long-

term rate design and the calculation of repayment terms for infrastructure costs, instead of 

predicating analyses on historical climate, because: 

“...we're getting into situations that the power authorities didn't expect or we didn't 

model for them because we're using more of a climatology [historical average climate] 

and not a skillful 10-year projection [projections of climate change].” 

Changing reservoir operations was another key decision area discussed by several water 

agency stakeholders. Water managers emphasized that their first adaptation priority is to 

maximize the operations of their existing assets, before adding expensive new infrastructure that 

can take decades to plan and build. With the overall goal of better managing water storage, some 

water managers have already begun to incorporate improved short-term forecasts of large 

atmospheric river storm events, through Forecast Informed Reservoir Operations (FIRO), to 

optimize the timing and magnitude of water releases and adapt the buffer needed for flood 

control. Several managers are also investigating how reservoir operations may also need to adapt 

so that hydropower generation can be used for balancing an increasing share of intermittent 

renewable generation on the grid.  

 As an adaptation to declining hydropower generation across the WUS under climate 

change, some managers are thinking of investing in other forms of local power generation, 

energy storage, or micro-hydropower to ensure more reliable power (and water) supplies. This is 

consistent with the recurrent focus by managers on increasing local resilience by lowering 

regional interdependencies on imported water and energy supplies, and mitigating cascading 

failures that could result from the propagation of climate impacts across energy and water 

networks. 

 While some managers highlighted the risks from regional interdependencies, others 

viewed the linkages as an opportunity for adaptation by optimizing the timing and location of 

groundwater recharge across a wider, climatically diverse area. Recharging and banking 

groundwater during times and in locations of high rainfall (and lower energy prices), could save 

both water and energy. One manager remarked: 

“We should be taking advantage of those moments when energy is plentiful instead of 

relying on large surface water storage projects. The ground could be our most cost-

effective opportunity moving forward.” 

In addition, water conservation was mentioned in 88% of respondents as an adaptation strategy 

currently being pursued. 

Lastly, water managers mentioned alternative water supplies to use especially as a last 

resort during drought times. 75% of the survey respondents mentioned water recycling, but 

desalination was only mentioned as an option under consideration by 2 out of 8 (25%) of water 

managers polled. 
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4.3 Decision tradeoffs 

 The discussion of adaptation decisions raised the complicated tradeoffs water managers 

consider—including costs, power supply, water supply, environmental flows, and flood 

protection—and which are exacerbated under water scarcity conditions perpetuated by climate 

change. Many of these tradeoffs confirm existing water resources literature on multi-objective 

optimization and integrated resource planning, but here we also identify the implicit and less 

visible energy considerations underlying several tradeoffs of water system adaptation. 

For example, some alternative water sources that may be called upon during scarcity 

conditions to augment supplies have relatively high energy usage and associated GHG 

emissions. So much so, that one manager remarked that their board members “want assurance 

that additional supplies are absolutely necessary and no other option is available.” Similarly, 

during drought conditions, some water managers described having to resort to more energy-

intensive equipment or processes to maintain water supply reliability. Providing flood protection 

by leaving a buffer in reservoirs may also limit the amount of water storage and hydropower 

generation available. Another manager mentioned that environmental flow and water 

temperature requirements imposed during a recent drought also meant less water storage in 

reservoirs and hydropower generation from bypassing turbines.  

Some utilities are actively trying to reduce/optimize energy usage tradeoffs through 

various measures like water conservation, optimizing energy use with grid conditions, installing 

solar power on properties, producing hydropower, reducing waste, and using water to cool/heat 

their own buildings: 

“These decisions are made both from a cost saving standpoint, as well as because there 

is a strong environmental ethic and realization that climate change directly impacts the 

ability to fulfill the mission of delivering safe and reliable water.”  

However, increased awareness of such tradeoffs to the energy system of certain water 

sector decisions do not necessarily mean that water organizations will change their behavior. 

While recognizing that it may not be optimal for the needs of the electric grid, one water 

manager emphasized that they will continue to prioritize their water system operations to meet 

their core objectives of supplying water to meet demands and protect the environment: 

“While good to know, the fact that by 2050 hydropower generation is expected to peak in 

the spring (when not as needed) and decline in summer (when needed to meet peak 

electricity demand) is unlikely to change operations because water agencies will strive to 

prioritize serving our water customers and acting as stewards for the environment.” 

4.4 Energy-water metrics 

 Managers of water systems that are closely tied to energy systems highlighted several 

metrics they use to evaluate the tradeoffs of climate adaptation decisions: energy intensity, 

carbon intensity, and cost (which also affects customer rates). Notably, several managers 

distinguished energy and carbon intensity as evaluation metrics for alternative water supplies, 

and how these may change under drought conditions because of the coincident declining share of 

hydropower generation in the energy supply mix on the grid. Several managers pointed out that 

under such water scarcity conditions, the carbon intensity of energy tends to increase precisely 

during the times that water managers may rely on more energy-intensive projects, compounding 

the impact.  
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“We do really want to consider energy intensity metrics in evaluating new projects. 

Something that's going to be important for us if we have more energy-intensive projects, 

is where this energy is going to come from.” 

Cost and energy and carbon intensity also factor into evaluations of water conservation 

for some water agencies, in terms of seasonal energy, cost, and carbon emissions savings. 

Another water manager mentioned the purchase of carbon offsets for their energy usage, which 

also affects the agencies’ costs.  

Some agencies are not yet fully or explicitly considering energy intensity of their 

operations, but expressed interest and think it will play a role in the future. Despite the 

interconnected nature of the water sector throughout the WUS and the reliance on energy-

intensive inter-basin water transfers in many sub-regions, other water managers shared that they 

do examine the energy intensity of their local systems, but do not necessarily consider the 

regional context. Finally, one manager showed an interest in using cost as an evaluation metric to 

understand and weigh the “costs of doing nothing.” 

5. Conclusion 

Through a co-production process consisting of focus group discussions and follow-up 

surveys with water managers across the WUS, we identify specific climate-energy-water 

interactions and feedback loops that impact operations and planning for water agencies. In doing 

so, we find that energy connections are more prevalent than previously thought, and we 

characterize these often invisible or overlooked drivers of water management decisions, such as 

financial planning for water supply, shifting to alternative water supplies during droughts, and 

modifying reservoir operations. This work also identifies specific tradeoffs that water managers 

might face while dealing with cross-sectoral interactions under climate change. Overall, our 

work highlights the importance of identifying and evaluating critical cross-sectoral connections 

across the climate-energy-water nexus and how this can lead to mutually beneficial, specific 

adaptation decisions for water and energy institutions. These results can guide energy-water 

modeling efforts on developing decision-relevant science. 

It was the exploratory process of co-production with preliminary research results that 

enabled us to gain insights indirectly on water adaptation decisions, main concerns about climate 

impacts, and overall what energy interactions were or were not important to the WUS water 

managers. Despite the presentations being about the specific models, methods, and data used, the 

managers cared much more about how the scientists and their work could shed light on broad-

brush issues and trends, directions of change, and drivers of change. In these early stages of 

research, the precise findings were less useful to the managers than the fact of seeing the cross-

sectoral interactions at all, and also allowed for scientists to understand what was truly 

meaningful to decision-makers. The direction of the discussion suggested that the process to 

getting to results is as important to stakeholders as the results themselves, corroborating the 

importance of co-production of knowledge to close the gap between theory and practice for 

climate adaptation decision-making related to the energy-water nexus. 
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Conclusion 
Long-term electricity resource planning has historically focused on minimizing the cost 

of the grid to maintain reliability, but in the context of climate change, electricity systems must 

also be climate-resilient: flexible, efficient, diverse, and redundant to be able to respond to 

climate stressors and maintain clean, reliable, cost-effective electricity. Further, electricity 

system operations and planning cannot ignore the compounding effects on grid outcomes of 

cross-sectoral interactions that may be exacerbated by climate change impacts, mitigation 

efforts, or adaptation strategies. The five chapters of my dissertation bring together these 

constructs, and I conclude here with a summary of the key findings, areas for ongoing and future 

work, and recommendations for planning a climate-resilient electricity system based on this 

research. 

1. Summary of findings 

EVs can help or hurt in decarbonizing the grid, depending on if the timing, location, and 

magnitude of their charging is flexible and responsive to grid needs. However, modeling efforts 

often oversimplify either vehicle mobility or electricity market dynamics, making it difficult to 

evaluate the fidelity of any estimates of the value of cross-sectoral coordination. Chapter 1 links 

high-resolution models of mobility and power systems and quantifies the demand flexibility and 

resulting cost savings and avoided renewable curtailment that managed EV charging can 

realistically achieve, compared to the unmanaged charging alternative that ignores 

transportation-electricity system interdependencies. The results show that smart charging can 

provide the greatest grid benefit, and has the most potential at residential locations, while 

unmanaged charging exacerbates peak loads. 

Like EV charging, water resources and their use can also save or add to electricity 

demand, depending on the type of use, location, and source of water. Chapter 2 forecasts the 

energy usage and GHG footprint related to urban and agricultural water in California out to 

2035, given recent trends in declining water demand, shifts to local supply sources, and 

increasing renewable energy on the grid. The findings demonstrate that if per-capita water 

demand continues to decline according to historical trends, there are significant energy and GHG 

savings co-benefits from the water conservation across different regions, which also increase the 

efficiency of both systems and may provide redundancy during drought periods that are expected 

to become more frequent under climate warming. Alternatively, if state water demand grows 

according to water supplier projections, energy and GHG emissions could increase and make 

California’s climate goals more difficult to achieve. 

Given the long lifetimes and planning times of infrastructure, it is important to also think 

about how the energy-water dynamics studied in Chapter 2 may evolve in the long term, when 

climate change is likely to play an even larger role. However, the ways and extent that cross-

sectoral interdependencies may exacerbate climate change impacts and related adaptation 

strategies are unclear. Chapter 3 joins the fragmented literature and develops a generalized 

framework for understanding how climate change may affect the energy-water relationship. In 

the case of California—where climate impacts on water supply, air-conditioning demand, and 

hydropower are expected to be greatest—the findings show that energy requirements of certain 

water sector adaptation strategies may even exceed the direct climate impacts on the energy 

system, highlighting the importance of coordination to ensure efficient and reliable energy and 

water provision. 
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Despite recognition in literature and practice of the climate impacts and water 

dependencies highlighted in Chapter 3, most electricity planning models omit these aspects, 

which could result in future capacity shortfalls from unanticipated demand or supply changes. 

Chapter 4 fills this gap with a novel model linkage that evaluates the impact of climate change 

on water resources in the WUS, and the subsequent effects of changes in hydropower generation 

and water-related electricity use on the optimal buildout of the grid. The results quantify the 

additional redundancy and diversity, in terms of generation and transmission capacity resources, 

needed to make the grid resilient to both water-related climate change impacts and 

decarbonization. 

While many benefits of coordination have been demonstrated in the literature, in the 

independently managed energy and water sectors, cross-sectoral interactions are still not 

typically or explicitly operationalized into decision-making. Chapter 5 uses a co-production 

approach through a focus group and surveys with water managers, to improve both the decision-

relevance of Chapter 4 efforts and the fundamental understanding of critical energy and climate 

interactions for water management. The co-production process indicates that droughts and 

snowpack loss are the primary climate impacts of concern to WUS water managers for providing 

reliable water services. The findings show that energy connections are more prevalent than 

previously thought because water managers often implicitly consider energy as part of several 

water management decisions, including those related to financial planning, reservoir operations, 

and drought operations. There are several tradeoffs that managers consider when weighing 

decisions, such as water supply, power generation, cost, and water quality. Energy and carbon 

intensity are among the metrics they use to evaluate these tradeoffs. 

Together, this dissertation research demonstrates the value and necessity of considering 

interdependencies of the electricity system with the transportation and water systems under the 

stressors of climate change. While some of the planning challenges and climate impacts are 

specific to the institutions, sectors, and geography of California and the WUS, many are 

generalizable to other regions that face challenges with stressed water and energy resources, 

increasing transportation electrification efforts, and decarbonization goals. 

2. Areas of future research 

Co-production for decision-relevant electricity and water planning 

The insights gained from an initial co-production effort in Chapter 5 highlighted how 

critical continued stakeholder interaction will be to improve modeling efforts, like those in 

Chapter 4, and to ensure the overall development of actionable science. The focus group and 

surveys were just the starting point that already illuminated often hidden ways that energy factors 

into water sector decisions, and how that may evolve under climate change. Additional focus 

groups are planned with practitioners to fully understand how the “nexus” is viewed by different 

institutions and under different climate futures, what climate impacts and tradeoffs are important 

to resource managers, if and how energy is considered in water management decisions, and the 

type and form of climate information that is useful for such decisions. The outcomes of such 

work are essential to inform both improved modeling efforts and infrastructure planning in 

practice. Iterative feedback between stakeholders and scientists can help ensure that underlying 

cross-sectoral feedbacks are comprehensively considered in decisions and that they are 

adequately represented in related decision-support tools for the development of climate-resilient 

systems.    
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The stakeholder discussions from Chapter 5 also pointed to several specific modeling 

areas that would be useful for climate adaptation decision-making at the energy-water nexus. The 

directions for this future research are summarized below. 

Extreme events and uncertainties  

The dissertation analyses focused on changes to climate conditions at the mean, but water 

managers in Chapter 5 expressed that extreme events like droughts were a far greater concern. 

Future research will evaluate the effect of extended droughts on water and energy system 

operations and planning in the WEAP and SWITCH models. Another important area relates to 

uncertainties within and across climate models and emissions scenarios, as well as within 

sectoral management models. Such uncertainties are further propagated and potentially increased 

when coupling models across sectors. Therefore, an improved characterization of the sources, 

magnitudes, and reinforcing or offsetting nature of uncertainties across the analysis chain is 

needed to inform decision-making. Part of this effort includes additional analysis of the 

sensitivity of WEAP and SWITCH results to Reference/Baseline scenario assumptions, 

including population growth rates, crop coefficients and cropped area, generation technology 

cost and operating assumptions, and carbon emission policies.  

Water adaptation and grid scenarios  

Chapter 3 highlights that water sector adaptation strategies in the event of climate 

change-related scarcity have varying energy use or savings implications that may have 

compounding or offsetting effects on the grid. Therefore, future scenarios with the coupled 

WEAP and SWITCH models from Chapter 4 may also test the grid buildout in the WECC under 

several water sector adaptation strategies, including changing reservoir operations, which 

emerged as top water manager priority from the focus group discussion, and water conservation, 

which Chapter 2 and 3 highlighted for energy saving co-benefits. Additional adaptation 

strategies to test in WEAP include groundwater recharge, water recycling for potable reuse, and 

desalination. Ultimately, future work is planned to include an additional Baseline scenario 

without climate change or decarbonization policies to systematically decompose the effects of 

(1) climate policies, (2) direct impacts of climate warming on electricity use and supply via water 

interactions, and (3) the electricity impacts of water sector adaptation strategies. 

Changing role of hydropower  

Evaluating the potentially changing role of hydropower in a decarbonizing grid is an 

important area of future research. Decarbonization efforts relying on intermittent wind and solar 

resources have created a growing need for long-duration energy storage technologies. 

Hydropower generators may be repurposed to fill some of these long-duration storage gaps, or 

could be used more exclusively for short-term load-following operations, as discussed in Chapter 

5. Future SWITCH analyses may evaluate the tradeoffs and benefits of different modes of 

operation for hydropower compared to alternative long- and short-duration energy storage. 

3. Recommendations 

While several areas for future study remain, this dissertation supports concrete 

recommendations for policy-makers and researchers on considering and modeling climate 

change mitigation and adaptation with cross-sectoral dynamics to comprehensively plan a more 

climate-resilient electricity system. 

3.1 Policy recommendations 
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Transportation electrification and EV charge management in support of renewable integration 

Transportation electrification alongside decarbonization is a key strategy to lower 

economy-wide GHG emissions. However, it is important that the added electricity demand from 

vehicle charging does not exacerbate grid operations. In terms of hourly grid impacts, annual 

total system cost savings, and renewable curtailment reductions, smart charging EVs at 

residential locations provide the greatest benefit, are relatively cost-effective, and can be 

implemented with current technology. However, overnight time-of-use (TOU) rates can achieve 

a large share of smart charging cost savings as well, have demonstrated efficacy among current 

adopters, and may have fewer customer acceptance barriers. Grid planners should consider a 

policy adjusting residential TOU off-peak periods to include some daytime hours and to establish 

daytime commercial TOU rates to capture a greater share of renewable energy. Overall a hybrid 

smart and TOU charge management approach can maximize the grid benefits, while avoiding 

costs, capacity investments, and stress on the grid from unmanaged charging behavior.  

Reducing water, energy, and GHG emissions associated with water end-uses 

Urban water efficiency, for both indoor and outdoor uses of water and within the water 

distribution system, can save energy and avoid the associated GHG emissions for water 

extraction and generation, conveyance, treatment, and distribution. Indoor efficiency can further 

reduce end-use energy requirements and GHG emissions by avoiding, for example, water 

heating, as well as wastewater collection and treatment. Prior studies have shown there is 

significant urban conservation and efficiency potential in California and that water-efficiency 

programs during the most recent drought saved as much energy as, and were cost-competitive 

with, the state’s electric investor-owned utility efficiency programs during the same period. 

Coordinating water and efficiency programs, including sharing program funding for incentives 

and administration, between water and energy suppliers can help both sectors meet water and 

energy goals and make these programs more cost-effective.  

Within the water management cycle, natural gas water heaters are the single largest 

emitters of GHGs. Electric heat pump water heaters are up to five times more thermally efficient 

than natural gas heaters and can also provide significant GHG savings as the electricity system is 

decarbonized. However, the initial cost of electric heat pump water heaters is typically higher 

than natural gas heaters. Together with water efficiency programs that lower hot water usage, 

customer incentives that reduce the upfront cost of electric water heaters can help lower the 

energy and GHG emissions from residential and non-residential water use. 

In the agricultural sector, more efficient groundwater pumps and variable frequency 

drives can provide energy, cost, and GHG reductions, and rebates can lower the upfront cost of 

these upgrades. Through demand-response programs offered by electric utilities, farmers can 

also be compensated for operating their groundwater pumps to coincide with the timing of lower 

electricity prices and renewable electricity generation on the grid, and variable frequency drives 

can further be automated to adjust to grid needs. This can help integrate renewable electricity and 

lower overall GHG emissions from electricity generation.  

Formalize coordination between water and energy regulatory agencies about forecasted energy 

demand changes 

If water system energy demands grow as projected in California and elsewhere in the 

WUS, electricity and natural gas systems will need to incorporate changes in their infrastructure 
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planning to ensure that energy supply will reliably meet energy demand. Formal regulatory 

proceedings and reporting between water suppliers, state water agencies, electric and natural gas 

utilities, state energy regulators, and planning agencies can help facilitate coordinated cross-

sectoral planning. For example, currently there is no explicit reporting of expected changes in 

water-related energy demand in California’s energy demand forecast. As a result, it is unclear if 

the energy use growth anticipated based on water supplier projections has been factored into 

electricity and natural gas planning and procurement decisions. Improvements in coordination 

between agencies should lead to better integrated energy and water planning, reduced costs to 

consumers, and faster decarbonization of the water system.  

3.2 Research recommendations 

Include climate change data and scenarios in electricity planning models  

Most electricity capacity expansion models used to help grid planners determine the 

least-cost portfolio of generation and transmission investments do not include climate change or 

cross-sectoral interactions. However, by omitting these considerations in modeling, the future 

grid capacity may not be sufficient, optimally located, or cost-effective to cope with climate 

impacts and resulting water-related changes in energy supply and demand. In 2020, this already 

occurred in the WUS and California, where rolling blackouts were caused when temperatures 

across the region peaked and there was not enough capacity or available imports to meet 

demand. Grid regulators are warning of similar shortfalls in 2021 with the WUS-wide drought 

shrinking hydropower generation and heat waves increasing air-conditioning use. 

Instead of reacting to record-breaking weather forecasts with expensive and inefficient 

backstop approaches in the short-term, grid planners and modelers should proactively include 

climate change scenarios related to growing electricity use for air-conditioning, changes in 

hydropower, and increases in water-related electricity demand into long-term grid expansion 

models. These scenarios are critical to include alongside other analyses that affect future supply 

and demand, such as different levels of electrification of transportation and buildings. An 

ensemble of climate scenarios should be used with detailed modeling of individual hydropower 

generators and regional dependencies, to understand how climate impacts in one area and sector 

could further compound issues in another. Such modeling is an important complement to other 

electricity system planning efforts for climate adaptation that have largely focused on physical 

infrastructure hardening and vulnerabilities (such as from wildfire, sea level rise, and heat), but 

less so on equally important changes to the generation portfolio and the magnitude and shape of 

electricity demand.  

Continued stakeholder interaction to support modeling efforts 

 Many energy-water nexus studies have highlighted the benefits of closer coordination, 

but it remains rare for energy or water managers to explicitly incorporate such cross-sectoral 

considerations in decision-making. This may be in part because of differences in institutional 

mandates or constraints, or because the researchers have not engaged directly with decision-

makers to understand their management context. Participatory methods between scientists and 

stakeholders, such as through co-production or other forms of engagement, will be increasingly 

important to overcome this gap between theory and practice. Such interactions can help modelers 

understand specific decisions faced by stakeholders, key concerns and constraints, informal or 

unspoken institutional knowledge, and what truly is important in particular decision contexts. 

Deliberate collaboration between scientists and decision-makers to design, understand, and 
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communicate actionable research will be crucial for planning climate-resilient electricity systems 

that also account for cross-sectoral interactions.  

  



 131 

References 
[1] Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. 

Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, and S. 

MacCracken, P.R. Mastrandrea, and L.L. White, “Climate Change 2014: Impacts, 

Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of 

Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change,” IPCC, 2014. [Online]. Available: 

https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-PartA_FINAL.pdf 

[2] G. C. Gallopín, “Linkages between vulnerability, resilience, and adaptive capacity,” Glob. 

Environ. Change, vol. 16, no. 3, pp. 293–303, Aug. 2006, doi: 

10.1016/j.gloenvcha.2006.02.004. 

[3] IPCC 2014, “Climate Change 2014: Mitigation of Climate Change. Contribution of Working 

Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change,” IPCC, 2014. [Online]. Available: 

https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf 

[4] Burkett, V.R., A.G. Suarez, M. Bindi, C. Conde, R. Mukerji, M.J. Prather, A.L. St. Clair, and 

G.W. Yohe, “Point of departure. In: Climate Change 2014: Impacts, Adaptation, and 

Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC, 

2014. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-

Chap1_FINAL.pdf 

[5] W. Neil Adger, N. W. Arnell, and E. L. Tompkins, “Successful adaptation to climate change 

across scales,” Glob. Environ. Change, vol. 15, no. 2, pp. 77–86, Jul. 2005, doi: 

10.1016/j.gloenvcha.2004.12.005. 

[6] B. Smit and J. Wandel, “Adaptation, adaptive capacity and vulnerability,” Glob. Environ. 

Change, vol. 16, no. 3, pp. 282–292, Aug. 2006, doi: 10.1016/j.gloenvcha.2006.03.008. 

[7] L. Bedsworth, Dan Cayan, Guido Franco, Leah Fisher, and Sonya Ziaja, “Statewide 

Summary Report. California’s Fourth Climate Change Assessment,” California 

Governor’s Office of Planning and Research, Scripps Institution of Oceanography, 

California Energy Commission, California Public Utilities Commission, SUM-CCCA4-

2018-013, 2018. [Online]. Available: https://www.energy.ca.gov/sites/default/files/2019-

11/Statewide_Reports-SUM-CCCA4-2018-013_Statewide_Summary_Report_ADA.pdf 

[8] G. Franco and A. H. Sanstad, “Climate change and electricity demand in California,” Clim. 

Change, vol. 87, no. 1, pp. 139–151, Mar. 2008, doi: 10.1007/s10584-007-9364-y. 

[9] C. Folke, “Resilience: The emergence of a perspective for social–ecological systems 

analyses,” Glob. Environ. Change, vol. 16, no. 3, pp. 253–267, Aug. 2006, doi: 

10.1016/j.gloenvcha.2006.04.002. 

[10] C. Kennedy and J. Corfee-Morlot, “Past performance and future needs for low carbon 

climate resilient infrastructure– An investment perspective,” Energy Policy, vol. 59, pp. 

773–783, Aug. 2013, doi: 10.1016/j.enpol.2013.04.031. 

[11] S. Tyler and M. Moench, “A framework for urban climate resilience,” Clim. Dev., vol. 4, 

no. 4, pp. 311–326, Oct. 2012, doi: 10.1080/17565529.2012.745389. 

[12] T. Giordano, “Adaptive planning for climate resilient long-lived infrastructures,” Util. 

Policy, vol. 23, pp. 80–89, Dec. 2012, doi: 10.1016/j.jup.2012.07.001. 

[13] S. Hallegatte, “Strategies to adapt to an uncertain climate change,” Glob. Environ. 

Change, vol. 19, no. 2, pp. 240–247, May 2009, doi: 10.1016/j.gloenvcha.2008.12.003. 



 132 

[14] R. Leichenko, “Climate change and urban resilience,” Curr. Opin. Environ. Sustain., vol. 

3, no. 3, pp. 164–168, May 2011, doi: 10.1016/j.cosust.2010.12.014. 

[15] “ASCE’s 2021 American Infrastructure Report Card | GPA: C-,” ASCE’s 2021 

Infrastructure Report Card |, Jan. 11, 2017. https://infrastructurereportcard.org/ (accessed 

Jul. 25, 2021). 

[16] R. Warren, “The role of interactions in a world implementing adaptation and mitigation 

solutions to climate change,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol. 369, no. 

1934, pp. 217–241, Jan. 2011, doi: 10.1098/rsta.2010.0271. 

[17] V. Huber et al., “Climate impact research: beyond patchwork,” Earth Syst. Dyn., vol. 5, 

no. 2, pp. 399–408, Nov. 2014, doi: https://doi.org/10.5194/esd-5-399-2014. 

[18] D. D. White, J. L. Jones, R. Maciejewski, R. Aggarwal, and G. Mascaro, “Stakeholder 

Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus 

Governance,” Sustainability, vol. 9, no. 12, Art. no. 12, Dec. 2017, doi: 

10.3390/su9122204. 

[19] A. Bhaduri, C. Ringler, I. Dombrowski, R. Mohtar, and W. Scheumann, “Sustainability in 

the water–energy–food nexus,” Water Int., vol. 40, no. 5–6, pp. 723–732, Sep. 2015, doi: 

10.1080/02508060.2015.1096110. 

[20] C. Howarth and I. Monasterolo, “Understanding barriers to decision making in the UK 

energy-food-water nexus: The added value of interdisciplinary approaches,” Environ. Sci. 

Policy, vol. 61, pp. 53–60, Jul. 2016, doi: 10.1016/j.envsci.2016.03.014. 

[21] L. Clarke et al., “Impacts, Risks, and Adaptation in the United States: Fourth National 

Climate Assessment, Volume II: Chapter 17 Sector Interactions, Multiple Stressors, and 

Complex Systems,” U.S. Global Change Research Program, 2018. Accessed: Jun. 26, 

2020. [Online]. Available: https://nca2018.globalchange.gov/chapter/17/ 

[22] P. A. Harrison, R. W. Dunford, I. P. Holman, and M. D. A. Rounsevell, “Climate change 

impact modelling needs to include cross-sectoral interactions,” Nat. Clim. Change, vol. 6, 

no. 9, pp. 885–890, Sep. 2016, doi: 10.1038/nclimate3039. 

[23] J. Barnett and S. O’Neill, “Maladaptation,” Glob. Environ. Change, vol. 20, no. 2, pp. 

211–213, May 2010, doi: 10.1016/j.gloenvcha.2009.11.004. 

[24] F. Piontek et al., “Multisectoral climate impact hotspots in a warming world,” Proc. Natl. 

Acad. Sci., vol. 111, no. 9, pp. 3233–3238, Mar. 2014, doi: 10.1073/pnas.1222471110. 

[25] M. T. Craig et al., “A review of the potential impacts of climate change on bulk power 

system planning and operations in the United States,” Renew. Sustain. Energy Rev., vol. 

98, pp. 255–267, Dec. 2018, doi: 10.1016/j.rser.2018.09.022. 

[26] A. K. Gerlak, J. Weston, B. McMahan, R. L. Murray, and M. Mills-Novoa, “Climate risk 

management and the electricity sector,” Clim. Risk Manag., vol. 19, pp. 12–22, Jan. 2018, 

doi: 10.1016/j.crm.2017.12.003. 

[27] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for twenty-first 

century energy challenges,” Renew. Sustain. Energy Rev., vol. 33, pp. 74–86, May 2014, 

doi: 10.1016/j.rser.2014.02.003. 

[28] E. Vine, “Adaptation of California’s electricity sector to climate change,” Clim. Change, 

vol. 111, no. 1, pp. 75–99, Mar. 2012, doi: 10.1007/s10584-011-0242-2. 

[29] L. Sommer, “Climate Change Lesson From California’s Blackouts: Prepare For 

Extremes,” NPR.org, Aug. 19, 2020. Accessed: Sep. 26, 2020. [Online]. Available: 

https://www.npr.org/2020/08/19/903910770/climate-change-lesson-from-californias-

blackouts-prepare-for-extremes 



 133 

[30] J. Diaz and S. Neuman, “Texas Power Outages: Winter Storm Shocks Texas, Northern 

Mexico : Live Updates: Winter Storms 2021 : NPR.” Accessed: Jul. 03, 2021. [Online]. 

Available: https://www.npr.org/2021/02/16/968230163/millions-without-power-in-texas-

northern-mexico-as-blackouts-and-bitter-cold-con 

[31] N. K. Geranios, “Rolling blackouts hit Pacific Northwest as cities swelter in record-

breaking heat wave,” Los Angeles Times, Jun. 29, 2021. Accessed: Jul. 03, 2021. [Online]. 

Available: https://www.latimes.com/world-nation/story/2021-06-29/rolling-blackouts-us-

northwest-heat-wave 

[32] B. F. Hobbs, “Optimization methods for electric utility resource planning,” Eur. J. Oper. 

Res., vol. 83, no. 1, pp. 1–20, May 1995, doi: 10.1016/0377-2217(94)00190-N. 

[33] E. National Academies of Sciences, Enhancing the Resilience of the Nation’s Electricity 

System. 2017. doi: 10.17226/24836. 

[34] L. Molyneaux, L. Wagner, C. Froome, and J. Foster, “Resilience and electricity systems: 

A comparative analysis,” Energy Policy, vol. 47, pp. 188–201, Aug. 2012, doi: 

10.1016/j.enpol.2012.04.057. 

[35] J. Christian-Smith, M. C. Levy, and P. H. Gleick, “Maladaptation to drought: a case report 

from California, USA,” Sustain. Sci., vol. 10, no. 3, pp. 491–501, Jul. 2015, doi: 

10.1007/s11625-014-0269-1. 

[36] J. H. Williams et al., “The Technology Path to Deep Greenhouse Gas Emissions Cuts by 

2050: The Pivotal Role of Electricity,” Science, vol. 335, no. 6064, pp. 53–59, Jan. 2012, 

doi: 10.1126/science.1208365. 

[37] H. Hoff, “Understanding the Nexus. Background Paper for the Bonn2011 Conference: The 

Water, Energy and Food Security Nexus,” Stockholm Environment Institute, Stockholm, 

2011. [Online]. Available: https://mediamanager.sei.org/documents/Publications/SEI-

Paper-Hoff-UnderstandingTheNexus-2011.pdf 

[38] T. R. Albrecht, A. Crootof, and C. A. Scott, “The Water-Energy-Food Nexus: A 

systematic review of methods for nexus assessment,” Environ. Res. Lett., vol. 13, no. 4, p. 

043002, 2018, doi: 10.1088/1748-9326/aaa9c6. 

[39] D. Cash, W. Clark, F. Alcock, N. M. Dickson, N. Eckley, and J. Jäger, “Salience, 

Credibility, Legitimacy and Boundaries: Linking Research, Assessment and Decision 

Making,” 2003, doi: 10.2139/ssrn.372280. 

[40] C. P. Weaver, R. J. Lempert, C. Brown, J. A. Hall, D. Revell, and D. Sarewitz, “Improving 

the contribution of climate model information to decision making: the value and demands 

of robust decision frameworks,” Wiley Interdiscip. Rev. Clim. Change, vol. 4, no. 1, pp. 

39–60, Jan. 2013, doi: 10.1002/wcc.202. 

[41] A. Voinov and F. Bousquet, “Modelling with stakeholders,” Environ. Model. Softw., vol. 

25, no. 11, pp. 1268–1281, Nov. 2010, doi: 10.1016/j.envsoft.2010.03.007. 

[42] A. G. Bhave, D. Conway, S. Dessai, and D. A. Stainforth, “Water Resource Planning 

Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in 

Karnataka, India,” Water Resour. Res., vol. 54, no. 2, pp. 708–728, 2018, doi: 

10.1002/2017WR020970. 

[43] D. B. Richardson, “Electric vehicles and the electric grid: A review of modeling 

approaches, Impacts, and renewable energy integration,” Renew. Sustain. Energy Rev., 

vol. 19, pp. 247–254, Mar. 2013, doi: 10.1016/j.rser.2012.11.042. 



 134 

[44] H. Lund and W. Kempton, “Integration of renewable energy into the transport and 

electricity sectors through V2G,” Energy Policy, vol. 36, no. 9, pp. 3578–3587, Sep. 2008, 

doi: 10.1016/j.enpol.2008.06.007. 

[45] California Independent System Operator, “California Vehicle-Grid Integration (VGI) 

Roadmap: Enabling vehicle-based grid services,” California Independent System 

Operator, Feb. 2014. [Online]. Available: https://www.caiso.com/Documents/Vehicle-

GridIntegrationRoadmap.pdf 

[46] C. Sheppard, R. Waraich, A. Campbell, A. Gopal, and A. Pozdnukov, “Modeling plug-in 

electric vehicle charging demand with BEAM, the framework for behavior energy 

autonomy mobility,” Lawrence Berkeley National Laboratory, LBNL-2001018, May 

2017. [Online]. Available: https://eta.lbl.gov/publications/modeling-plug-electric-vehicle 

[47] M. Wolinetz, J. Axsen, J. Peters, and C. Crawford, “Simulating the value of electric-

vehicle–grid integration using a behaviourally realistic model,” Nat. Energy, vol. 3, no. 2, 

pp. 132–139, Feb. 2018, doi: 10.1038/s41560-017-0077-9. 

[48] D. Dallinger and M. Wietschel, “Grid integration of intermittent renewable energy sources 

using price-responsive plug-in electric vehicles,” Renew. Sustain. Energy Rev., vol. 16, no. 

5, pp. 3370–3382, Jun. 2012, doi: 10.1016/j.rser.2012.02.019. 

[49] B. K. Sovacool, L. Noel, J. Axsen, and W. Kempton, “The neglected social dimensions to 

a vehicle-to-grid (V2G) transition: a critical and systematic review,” Environ. Res. Lett., 

vol. 13, no. 1, p. 013001, 2018, doi: 10.1088/1748-9326/aa9c6d. 

[50] Y. Xu, S. Çolak, E. C. Kara, S. J. Moura, and M. C. González, “Planning for electric 

vehicle needs by coupling charging profiles with urban mobility,” Nat. Energy, p. 1, Apr. 

2018, doi: 10.1038/s41560-018-0136-x. 

[51] A. Foley, B. Tyther, P. Calnan, and B. Ó Gallachóir, “Impacts of Electric Vehicle 

charging under electricity market operations,” Appl. Energy, vol. 101, pp. 93–102, Jan. 

2013, doi: 10.1016/j.apenergy.2012.06.052. 

[52] T. P. Lyon, M. Michelin, A. Jongejan, and T. Leahy, “Is ‘smart charging’ policy for 

electric vehicles worthwhile?,” Energy Policy, vol. 41, no. Supplement C, pp. 259–268, 

Feb. 2012, doi: 10.1016/j.enpol.2011.10.045. 

[53] A. Weis, P. Jaramillo, and J. Michalek, “Estimating the potential of controlled plug-in 

hybrid electric vehicle charging to reduce operational and capacity expansion costs for 

electric power systems with high wind penetration,” Appl. Energy, vol. 115, pp. 190–204, 

Feb. 2014, doi: 10.1016/j.apenergy.2013.10.017. 

[54] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Generation, Operation, and 

Control, 3rd edition. Hoboken, New Jersey: Wiley-Interscience, 2013. 

[55] G. Klein, M. Krebs, V. Hall, T. O’Brien, and B. B. Blevins, “California’s Water – Energy 

Relationship,” California Energy Commission, CEC-700-2005-011-SF, Nov. 2005. 

[Online]. Available: http://large.stanford.edu/courses/2012/ph240/spearrin1/docs/CEC-

700-2005-011-SF.PDF 

[56] H. Cooley, “Urban and Agricultural Water Use in California, 1960-2015,” Pacific 

Institute, Jun. 2020. [Online]. Available: https://pacinst.org/wp-

content/uploads/2020/06/PI_Water_Use_Trends_June_2020.pdf 

[57] R. G. Luthy, J. M. Wolfand, and J. L. Bradshaw, “Urban Water Revolution: Sustainable 

Water Futures for California Cities,” J. Environ. Eng., vol. 146, no. 7, p. 04020065, Jul. 

2020, doi: 10.1061/(ASCE)EE.1943-7870.0001715. 



 135 

[58] J. Stokes-Draut, M. Taptich, O. Kavvada, and A. Horvath, “Evaluating the electricity 

intensity of evolving water supply mixes: the case of California’s water network,” 

Environ. Res. Lett., vol. 12, no. 11, p. 114005, Oct. 2017, doi: 10.1088/1748-9326/aa8c86. 

[59] T. Moran, J. Choy, and C. Sanchez, “The Hidden Costs of Groundwater Overdraft,” Water 

in the West | Stanford Woods Institute for the Environment, 2014. 

http://waterinthewest.stanford.edu/groundwater/ (accessed Feb. 07, 2021). 

[60] J. Anderson et al., “Progress on incorporating climate change into management of 

California’s water resources,” Clim. Change, vol. 87, no. 1, pp. 91–108, Mar. 2008, doi: 

10.1007/s10584-007-9353-1. 

[61] V. C. Tidwell, B. Moreland, and K. Zemlick, “Geographic Footprint of Electricity Use for 

Water Services in the Western U.S.,” Environ. Sci. Technol., vol. 48, no. 15, pp. 8897–

8904, Aug. 2014, doi: 10.1021/es5016845. 

[62] E. Porse et al., “Energy use for urban water management by utilities and households in 

Los Angeles,” Environ. Res. Commun., vol. 2, no. 1, p. 015003, Jan. 2020, doi: 

10.1088/2515-7620/ab5e20. 

[63] A. Zohrabian and K. T. Sanders, “The Energy Trade-Offs of Transitioning to a Locally 

Sourced Water Supply Portfolio in the City of Los Angeles,” Energies, vol. 13, no. 21, 

Art. no. 21, Jan. 2020, doi: 10.3390/en13215589. 

[64] GEI Consultants/Navigant Consulting, “Embedded Energy in Water Studies Study 1: 

Statewide and Regional Water-Energy Relationship,” Prepared for California Public 

Utilities Commission, Aug. 2010. [Online]. Available: ftp://ftp.cpuc.ca.gov/gopher-

data/energy%20efficiency/Water%20Studies%201/Study%201%20-%20FINAL.pdf 

[65] GEI Consultants/Navigant Consulting and GEI Consultants/Navigant Consulting, 

“Embedded Energy in Water Studies Study 2: Water Agency and Function Component 

Study and Embedded Energy-Water Load Profiles,” Prepared for California Public 

Utilities Commission, Aug. 2010. [Online]. Available: ftp://ftp.cpuc.ca.gov/gopher-

data/energy%20efficiency/Water%20Studies%202/Study%202%20-%20FINAL.pdf 

[66] P. D’Odorico et al., “The Global Food-Energy-Water Nexus,” Rev. Geophys., vol. 56, no. 

3, pp. 456–531, 2018, doi: 10.1029/2017RG000591. 

[67] P. Rao, R. Kostecki, L. Dale, and A. Gadgil, “Technology and Engineering of the Water-

Energy Nexus,” Annu. Rev. Environ. Resour., vol. 42, no. 1, pp. 407–437, Oct. 2017, doi: 

10.1146/annurev-environ-102016-060959. 

[68] A. Endo, I. Tsurita, K. Burnett, and P. M. Orencio, “A review of the current state of 

research on the water, energy, and food nexus,” J. Hydrol. Reg. Stud., vol. 11, pp. 20–30, 

Jun. 2017, doi: 10.1016/j.ejrh.2015.11.010. 

[69] G. Flato et al., “2013: Evaluation of Climate Models. Climate Change 2013: The Physical 

Science Basis,” Intergovernmental Panel on Climate Change, Cambridge, United 

Kingdom and New York, NY, USA, 2013. Accessed: May 06, 2019. [Online]. Available: 

https://www.ipcc.ch/report/ar5/wg1/evaluation-of-climate-models/ 

[70] N. W. Arnell, “Climate change and global water resources,” Glob. Environ. Change, vol. 

9, pp. S31–S49, Oct. 1999, doi: 10.1016/S0959-3780(99)00017-5. 

[71] U.S. Department of Energy Office of Energy Policy and Systems Analysis, “The Water-

Energy Nexus: Challenges and Opportunities,” U.S. Department of Energy, Jun. 2014. 

[Online]. Available: https://www.energy.gov/downloads/water-energy-nexus-challenges-

and-opportunities 



 136 

[72] R. Schaeffer et al., “Energy sector vulnerability to climate change: A review,” Energy, 

vol. 38, no. 1, pp. 1–12, Feb. 2012, doi: 10.1016/j.energy.2011.11.056. 

[73] Q. Liu, J. Morales, M. Correa, A. Schwartz, and J. Lin, “Connecting the Dots between 

Water, Energy, Food, and Ecosystems Issues for Integrated Water Management in a 

Changing Climate,” Climate Change Program, California Department of Water Resources, 

Feb. 2017. [Online]. Available: https://cawaterlibrary.net/wp-

content/uploads/2017/10/QLf2017FinalWhitePaper_jta_edits_fk_format_2.pdf 

[74] A. K. Plappally and J. H. Lienhard V, “Energy requirements for water production, 

treatment, end use, reclamation, and disposal,” Renew. Sustain. Energy Rev., vol. 16, no. 

7, pp. 4818–4848, Sep. 2012, doi: 10.1016/j.rser.2012.05.022. 

[75] B. Tarroja, A. AghaKouchak, R. Sobhani, D. Feldman, S. Jiang, and S. Samuelsen, 

“Evaluating options for Balancing the Water-Electricity Nexus in California: Part 1 – 

Securing Water Availability,” Sci. Total Environ., vol. 497–498, pp. 697–710, Nov. 2014, 

doi: 10.1016/j.scitotenv.2014.06.060. 

[76] B. Tarroja, A. AghaKouchak, R. Sobhani, D. Feldman, S. Jiang, and S. Samuelsen, 

“Evaluating options for balancing the water–electricity nexus in California: Part 2—

Greenhouse gas and renewable energy utilization impacts,” Sci. Total Environ., vol. 497–

498, pp. 711–724, Nov. 2014, doi: 10.1016/j.scitotenv.2014.06.071. 

[77] A. M. Hamiche, A. B. Stambouli, and S. Flazi, “A review of the water-energy nexus,” 

Renew. Sustain. Energy Rev., vol. 65, pp. 319–331, Nov. 2016, doi: 

10.1016/j.rser.2016.07.020. 

[78] E. Hardin et al., “California drought increases CO2 footprint of energy,” Sustain. Cities 

Soc., vol. 28, pp. 450–452, Jan. 2017, doi: 10.1016/j.scs.2016.09.004. 

[79] T. K. Mideksa and S. Kallbekken, “The impact of climate change on the electricity 

market: A review,” Energy Policy, vol. 38, no. 7, pp. 3579–3585, Jul. 2010, doi: 

10.1016/j.enpol.2010.02.035. 

[80] S. Vicuna and J. A. Dracup, “The evolution of climate change impact studies on 

hydrology and water resources in California,” Clim. Change, vol. 82, no. 3–4, pp. 327–

350, Jun. 2007, doi: 10.1007/s10584-006-9207-2. 

[81] X. Wang et al., “Adaptation to climate change impacts on water demand,” Mitig. Adapt. 

Strateg. Glob. Change, vol. 21, no. 1, pp. 81–99, Jan. 2016, doi: 10.1007/s11027-014-

9571-6. 

[82] J. Schewe et al., “Multimodel assessment of water scarcity under climate change,” Proc. 

Natl. Acad. Sci., vol. 111, no. 9, pp. 3245–3250, Mar. 2014, doi: 

10.1073/pnas.1222460110. 

[83] Y. Qin et al., “Agricultural risks from changing snowmelt,” Nat. Clim. Change, vol. 10, 

no. 5, Art. no. 5, May 2020, doi: 10.1038/s41558-020-0746-8. 

[84] D. Wichelns, “The water-energy-food nexus: Is the increasing attention warranted, from 

either a research or policy perspective?,” Environ. Sci. Policy, vol. 69, pp. 113–123, Mar. 

2017, doi: 10.1016/j.envsci.2016.12.018. 

[85] G. Rasul and B. Sharma, “The nexus approach to water–energy–food security: an option 

for adaptation to climate change,” Clim. Policy, vol. 16, no. 6, pp. 682–702, Aug. 2016, 

doi: 10.1080/14693062.2015.1029865. 

[86] K. M. Ernst and B. L. Preston, “Adaptation opportunities and constraints in coupled 

systems: Evidence from the U.S. energy-water nexus,” Environ. Sci. Policy, vol. 70, pp. 

38–45, Apr. 2017, doi: 10.1016/j.envsci.2017.01.001. 



 137 

[87] M. D. Bartos and M. V. Chester, “Impacts of climate change on electric power supply in 

the Western United States,” Nat. Clim. Change, vol. 5, no. 8, pp. 748–752, Aug. 2015, 

doi: 10.1038/nclimate2648. 

[88] M. Wei et al., “Building a Healthier and More Robust Future: 2050 Low-Carbon Energy 

Scenarios for California.,” California Energy Commission, CEC-500-2019-033., 2017. 

[Online]. Available: https://www.energy.ca.gov/2019publications/CEC-500-2019-

033/CEC-500-2019-033.pdf 

[89] L. Gacitua et al., “A comprehensive review on expansion planning: Models and tools for 

energy policy analysis,” Renew. Sustain. Energy Rev., vol. 98, pp. 346–360, Dec. 2018, 

doi: 10.1016/j.rser.2018.08.043. 

[90] V. C. Tidwell, M. Bailey, K. M. Zemlick, and B. D. Moreland, “Water supply as a 

constraint on transmission expansion planning in the Western interconnection,” Environ. 

Res. Lett., vol. 11, no. 12, p. 124001, Nov. 2016, doi: 10.1088/1748-9326/11/12/124001. 

[91] D. Yates, J. Meldrum, and K. Averyt, “The influence of future electricity mix alternatives 

on southwestern US water resources,” Environ. Res. Lett., vol. 8, no. 4, p. 045005, 2013, 

doi: 10.1088/1748-9326/8/4/045005. 

[92] D. Yates et al., “A water resources model to explore the implications of energy 

alternatives in the southwestern US,” Environ. Res. Lett., vol. 8, no. 4, p. 045004, 2013, 

doi: 10.1088/1748-9326/8/4/045004. 

[93] California Natural Resources Agency, “Safeguarding California Plan: 2018 Update 

California’s Climate Adaptation Strategy,” California Natural Resources Agency, Jan. 

2018. [Online]. Available: 

http://resources.ca.gov/docs/climate/safeguarding/update2018/safeguarding-california-

plan-2018-update.pdf 

[94] J. Liu et al., “Challenges in operationalizing the water–energy–food nexus,” Hydrol. Sci. 

J., vol. 62, no. 11, pp. 1714–1720, Aug. 2017, doi: 10.1080/02626667.2017.1353695. 

[95] M. C. Lemos, C. J. Kirchhoff, and V. Ramprasad, “Narrowing the climate information 

usability gap,” Nat. Clim. Change, vol. 2, no. 11, pp. 789–794, Nov. 2012, doi: 

10.1038/nclimate1614. 

[96] N. Mimura et al., “Adaptation planning and implementation. Climate Change 2014: 

Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects,” 2014. 

[Online]. Available: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-

Chap15_FINAL.pdf 

[97] D. W. Cash, J. C. Borck, and A. G. Patt, “Countering the Loading-Dock Approach to 

Linking Science and Decision Making: Comparative Analysis of El Niño/Southern 

Oscillation (ENSO) Forecasting Systems,” Sci. Technol. Hum. Values, vol. 31, no. 4, pp. 

465–494, Jul. 2006, doi: 10.1177/0162243906287547. 

[98] A. Dewulf, N. Klenk, C. Wyborn, and M. C. Lemos, “Usable environmental knowledge 

from the perspective of decision-making: the logics of consequentiality, appropriateness, 

and meaningfulness,” Curr. Opin. Environ. Sustain., vol. 42, pp. 1–6, Feb. 2020, doi: 

10.1016/j.cosust.2019.10.003. 

[99] International Energy Agency, “Global EV Outlook 2018: Towards cross-modal 

electrification,” International Energy Agency, 2018. [Online]. Available: 

https://webstore.iea.org/download/direct/1045?filename=global_ev_outlook_2018.pdf 

[100] M. Kintner-Meyer, K. Schneider, and R. Pratt, “Impacts Assessment of Plug-in Hybrid 

Vehicles on Electric Vehicles and Regional U.S. Power Grids, Part 1: Technical 



 138 

Analysis,” Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Nov. 

2007. [Online]. Available: https://www.ferc.gov/about/com-mem/5-24-07-technical-analy-

wellinghoff.pdf 

[101] J. Dumortier et al., “Effects of providing total cost of ownership information on 

consumers’ intent to purchase a hybrid or plug-in electric vehicle,” Transp. Res. Part 

Policy Pract., vol. 72, pp. 71–86, Feb. 2015, doi: 10.1016/j.tra.2014.12.005. 

[102] S. Ramachandran and U. Stimming, “Well to wheel analysis of low carbon alternatives for 

road traffic,” Energy Environ. Sci., vol. 8, no. 11, pp. 3313–3324, Oct. 2015, doi: 

10.1039/C5EE01512J. 

[103] M. Muratori, “Impact of uncoordinated plug-in electric vehicle charging on residential 

power demand,” Nat. Energy, vol. 3, no. 3, pp. 193–201, Mar. 2018, doi: 10.1038/s41560-

017-0074-z. 

[104] J. H. Nelson and L. M. Wisland, “Achieving 50 Percent Renewable Electricity in 

California: The Role of Non-Fossil Flexibility in a Cleaner Electricity Grid,” Union of 

Concerned Scientists, Aug. 2015. [Online]. Available: 

www.ucsusa.org/California50RPSanalysis. 

[105] California Independent System Operator, “CAISO Fast Facts: What the duck curve tells us 

about managing a green grid,” California Independent System Operator, 2016. [Online]. 

Available: 

https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf 

[106] L. Bird, J. Cochran, and X. Wang, “Wind and Solar Energy Curtailment: Experience and 

Practices in the United States,” National Renewable Energy Laboratory, NREL/TP-6A20-

60983, Mar. 2014. [Online]. Available: http://www.nrel.gov/docs/fy14osti/60983.pdf 

[107] “Advanced Technology Vehicle Sales Dashboard,” Alliance of Automobile 

Manufacturers. https://autoalliance.org/energy-environment/advanced-technology-

vehicle-sales-dashboard/ (accessed May 09, 2018). 

[108] Edmund G. Brown Jr., Governor of the State of California, Executive Order B-16-2012. 

2012. Accessed: Sep. 23, 2016. [Online]. Available: 

https://www.ca.gov/archive/gov39/2012/03/23/news17472/index.html 

[109] “Governor Brown Takes Action to Increase Zero-Emission Vehicles, Fund New Climate 

Investments – Governor Edmund G. Brown Jr.,” Office of the Governor, Edmund G. 

Brown, Jr. https://www.ca.gov/archive/gov39/2018/01/26/governor-brown-takes-action-

to-increase-zero-emission-vehicles-fund-new-climate-investments/index.html (accessed 

May 09, 2018). 

[110] E. F. Merchant, “California Regulators Approve Landmark Utility EV-Charging 

Proposals,” Greentech Media, May 31, 2018. Accessed: Jun. 06, 2018. [Online]. 

Available: https://www.greentechmedia.com/articles/read/california-cpuc-approves-

landmark-ev-charging-proposals 

[111] “Volkswagen California ZEV Investment Plan: Cycle 1 - Electrify America,” 

Volkswagen, Group of America, Mar. 2017. [Online]. Available: https://elam-cms-

assets.s3.amazonaws.com/inline-

files/California%20ZEV%20Investment%20Plan%20Cycle%201.pdf 

[112] A. C. Mulkern, “California Utility Wants to Install Huge Number of Electric Car 

Chargers,” Scientific American, Aug. 26, 2016. Accessed: Apr. 20, 2017. [Online]. 

Available: https://www.scientificamerican.com/article/california-utility-wants-to-install-

huge-number-of-electric-car-chargers/ 



 139 

[113] B. Vlasic and N. E. Boudette, “G.M. and Ford Lay Out Plans to Expand Electric Models,” 

The New York Times, Oct. 02, 2017. Accessed: Oct. 06, 2017. [Online]. Available: 

https://www.nytimes.com/2017/10/02/business/general-motors-electric-cars.html 

[114] “Luxury carmakers unveil electric plans,” BBC News, Sep. 07, 2017. Accessed: Oct. 06, 

2017. [Online]. Available: http://www.bbc.com/news/business-41179332 

[115] “EV Showroom | GoElectricDrive - Accelerate the Good, Powered by EDTA,” Go 

Electric Drive. https://www.goelectricdrive.org/you-buy/ev-showroom (accessed May 07, 

2018). 

[116] “CVRP Rebate Statistics,” Clean Vehicle Rebate Project, 2016. 

https://cleanvehiclerebate.org/eng/rebate-statistics 

[117] “Zero Emission Vehicle (ZEV) Program,” California Air Resources Board. 

https://arb.ca.gov/msprog/zevprog/zevprog.htm (accessed Dec. 04, 2017). 

[118] “Carpool Stickers | California Air Resources Board,” Carpool Stickers. 

https://ww2.arb.ca.gov/carpool-stickers (accessed Dec. 21, 2018). 

[119] K. D. León, SB-350 Clean Energy and Pollution Reduction Act of 2015, vol. Chapter 547, 

Statutes of 2015. 2015. 

[120] K. De León, SB-100 California Renewables Portfolio Standard Program: emissions of 

greenhouse gases. 2018. 

[121] “Load Research Report Compliance Filing of San Diego Gas & Electric Company (U 902-

M), Southern California Edison Company (U 338 - E), and Pacific Gas and Electric 

Company (U 39E) Pursuant to Ordering Paragraph 2 of D.16-06-011,” California Public 

Utilities Commission, Dec. 2017. [Online]. Available: 

http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=6442455828 

[122] S. Kaluza, D. Almeida, and P. Mullen, “BMW i ChargeForward: PG&E’s Electric Vehicle 

Smart Charging Pilot,” BMW Group and PG&E, 2017. [Online]. Available: 

http://www.pgecurrents.com/wp-content/uploads/2017/06/PGE-BMW-iChargeForward-

Final-Report.pdf 

[123] W. Kempton and J. Tomić, “Vehicle-to-grid power implementation: From stabilizing the 

grid to supporting large-scale renewable energy,” J. Power Sources, vol. 144, no. 1, pp. 

280–294, Jun. 2005, doi: 10.1016/j.jpowsour.2004.12.022. 

[124] S. B. Peterson, J. F. Whitacre, and J. Apt, “The economics of using plug-in hybrid electric 

vehicle battery packs for grid storage,” J. Power Sources, vol. 195, no. 8, pp. 2377–2384, 

Apr. 2010, doi: 10.1016/j.jpowsour.2009.09.070. 

[125] P. Alstone et al., “Final Report on Phase 2 Results, 2025 California Demand Response 

Potential Study: Charting California’s Demand Response Future,” Lawrence Berkeley 

National Laboratory, Energy and Environmental Economics, and Nexant, Mar. 2017. 

[Online]. Available: 

http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=6442452698 

[126] “California Energy Commission Tracking Progress: Renewable Energy,” California 

Energy Commission, Dec. 2017. [Online]. Available: https://www.energy.ca.gov/data-

reports/tracking-progress/renewable-energy 

[127] J. Kiviluoma and P. Meibom, “Methodology for modelling plug-in electric vehicles in the 

power system and cost estimates for a system with either smart or dumb electric vehicles,” 

Energy, vol. 36, no. 3, pp. 1758–1767, Mar. 2011, doi: 10.1016/j.energy.2010.12.053. 



 140 

[128] A. Foley, B. Tyther, P. Calnan, and B. Ó Gallachóir, “Impacts of Electric Vehicle 

charging under electricity market operations,” Appl. Energy, vol. 101, pp. 93–102, Jan. 

2013, doi: 10.1016/j.apenergy.2012.06.052. 

[129] P. Calnan, J. P. Deane, and B. P. Ó Gallachóir, “Modelling the impact of EVs on 

electricity generation, costs and CO2 emissions: Assessing the impact of different 

charging regimes and future generation profiles for Ireland in 2025,” Energy Policy, vol. 

61, pp. 230–237, Oct. 2013, doi: 10.1016/j.enpol.2013.05.065. 

[130] D. Madzharov, E. Delarue, and W. D’haeseleer, “Integrating electric vehicles as flexible 

load in unit commitment modeling,” Energy, vol. 65, pp. 285–294, Feb. 2014, doi: 

10.1016/j.energy.2013.12.009. 

[131] R. Loisel, G. Pasaoglu, and C. Thiel, “Large-scale deployment of electric vehicles in 

Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts,” Energy 

Policy, vol. 65, pp. 432–443, Feb. 2014, doi: 10.1016/j.enpol.2013.10.029. 

[132] J. Coignard, S. Saxena, J. Greenblatt, and D. Wang, “Clean vehicles as an enabler for a 

clean electricity grid,” Environ. Res. Lett., vol. 13, no. 5, p. 054031, 2018, doi: 

10.1088/1748-9326/aabe97. 

[133] S. Babrowski, H. Heinrichs, P. Jochem, and W. Fichtner, “Load shift potential of electric 

vehicles in Europe,” J. Power Sources, vol. 255, no. Supplement C, pp. 283–293, Jun. 

2014, doi: 10.1016/j.jpowsour.2014.01.019. 

[134] D. Dallinger, S. Gerda, and M. Wietschel, “Integration of intermittent renewable power 

supply using grid-connected vehicles – A 2030 case study for California and Germany,” 

Appl. Energy, vol. 104, pp. 666–682, Apr. 2013, doi: 10.1016/j.apenergy.2012.10.065. 

[135] K. E. Forrest, B. Tarroja, L. Zhang, B. Shaffer, and S. Samuelsen, “Charging a renewable 

future: The impact of electric vehicle charging intelligence on energy storage requirements 

to meet renewable portfolio standards,” J. Power Sources, vol. 336, pp. 63–74, Dec. 2016, 

doi: 10.1016/j.jpowsour.2016.10.048. 

[136] P. Eser, N. Chokani, and R. S. Abhari, “Impacts of battery electric vehicles on renewable 

integration within the 2030 European power system,” Int. J. Energy Res., vol. 42, no. 13, 

pp. 4142–4156, Oct. 2018, doi: 10.1002/er.4161. 

[137] “BEAM - the Modeling Framework for Behavior, Energy, Autonomy, and Mobility,” 

BEAM - the Modeling Framework for Behavior, Energy, Autonomy, and Mobility. 

http://beam.lbl.gov/ (accessed Apr. 21, 2017). 

[138] N. Daina, A. Sivakumar, and J. W. Polak, “Modelling electric vehicles use: a survey on 

the methods,” Renew. Sustain. Energy Rev., vol. 68, pp. 447–460, Feb. 2017, doi: 

10.1016/j.rser.2016.10.005. 

[139] “Energy Market Modelling,” Energy Exemplar. https://energyexemplar.com/ (accessed 

Apr. 13, 2017). 

[140] A. Gopal, Maggie Witt, Nikit Abhyankar, Colin Sheppard, and Andrew Harris, “Battery 

electric vehicles can reduce greenhouse gas emissions and make renewable energy cheaper 

in India,” Lawrence Berkeley National Laboratory, LBNL-184562, Jun. 2015. 

[141] L. Wagner and L. Reedman, “Modeling the deployment of plug-in hybrid and electric 

vehicles and their effects on the Australian National Electricity Market,” in 2010 IEEE 

Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply, 

Sep. 2010, pp. 165–170. doi: 10.1109/CITRES.2010.5619871. 



 141 

[142] “Scenario Evaluation, Regionalization & Analysis (SERA) | Open Energy Information.” 

http://en.openei.org/wiki/Scenario_Evaluation,_Regionalization_%26_Analysis_(SERA) 

(accessed Jun. 13, 2017). 

[143] “FuelEconomy.gov, the official U.S. government source for fuel economy information.,” 

U.S. Department of Energy, Aug. 2016. https://www.fueleconomy.gov/ 

[144] M. T. Commission and I. Parsons Brinckerhoff, Travel Model Development: Calibration 

and Validation. 2012. [Online]. Available: 

http://mtcgis.mtc.ca.gov/foswiki/pub/Main/Documents/2012_05_18_RELEASE_DRAFT

_Calibration_and_Validation.pdf 

[145] A. Horni, K. Nagel, and K. W. Axhausen, The Multi-Agent Transport Simulation. London: 

Ubiquity Press, 2016. [Online]. Available: http://www.matsim.org/the-book 

[146] “Daily Miles Traveled | Vital Signs,” Vital Signs: Metropolitan Transportation 

Commission. http://www.vitalsigns.mtc.ca.gov/daily-miles-traveled (accessed Nov. 09, 

2017). 

[147] Inrix Research, “2017 Global Traffic Scorecard,” Inrix Research, Feb. 2018. [Online]. 

Available: http://inrix.com/press-releases/scorecard-2017/ 

[148] “Charging Plug-In Electric Vehicles at Home,” Alternative Fuels Data Center. 

https://afdc.energy.gov/fuels/electricity_charging_home.html (accessed Dec. 21, 2018). 

[149] “Electric Vehicle Charging Station Locations,” Alternative Fuels Data Center, U.S. 

Department of Energy. https://www.afdc.energy.gov/fuels/electricity_locations.html 

(accessed Oct. 11, 2017). 

[150] “California’s Advanced Clean Cars Midterm Review: Appendix E: Zero Emission Vehicle 

Complementary Policies in California and Section 177 ZEV States,” California Air 

Resources Board, Jan. 2017. [Online]. Available: 

https://ww3.arb.ca.gov/msprog/acc/mtr/appendix_e.pdf 

[151] Barney Carlson, Idaho National Laboratory, “Electric Vehicle Mile Traveled (eVMT): 

On-road Results and Analysis,” presented at the 2015 DOE Vehicle Technologies 

Program Annual Merit Review, Jun. 09, 2015. [Online]. Available: 

https://energy.gov/sites/prod/files/2015/07/f24/vss171_carlson_2015_p.pdf 

[152] Xpress Solver | FICO®. FICO. Accessed: Dec. 14, 2018. [Online]. Available: 

https://www.fico.com/en/products/fico-xpress-solver 

[153] S. Liu, “Phase I.A. Direct Testimony of Dr. Shucheng Liu on Behalf of the California 

Independent System Operator Corporation R.13-12-010.” Before the Public Utilities 

Commission of the State of California, Aug. 13, 2014. [Online]. Available: 

https://www.caiso.com/Documents/Aug13_2014_InitialTestimony_ShuchengLiu_Phase1

A_LTPP_R13-12-010.pdf 

[154] S. Liu, “A Bulk Energy Storage Resource Case Study updated from 40% to 50% RPS: 

2015-2016 Transmission Planning Process.” California Independent System Operator, 

2016. [Online]. Available: 

http://www.caiso.com/Documents/BulkEnergyStorageResource-2015-

2016SpecialStudyUpdatedfrom40to50Percent.pdf 

[155] “2015-2016 ISO Transmission Plan,” California Independent System Operator, Mar. 2016. 

[Online]. Available: http://www.caiso.com/Documents/Board-Approved2015-

2016TransmissionPlan.pdf 

[156] M. Picker, California Public Utilities Commission Rulemaking 13-12-010: Assigned 

Commissioner’s Ruling Adopting Assumptions and Scenarios for Use in the California 



 142 

Independent System Operator’s 2016-17 Transmission Planning Process and Future 

Commission Proceedings. 2016. 

[157] J. Eichman, P. Denholm, J. Jorgenson, and Udi Helman (Helman Analytics), “Operational 

Benefits of Meeting California’s Energy Storage Targets,” National Renewable Energy 

Laboratory, NREL/TP-5400-65061, Dec. 2015. 

[158] J. Jorgenson, P. Denholm, and M. Mehos, “Estimating the Value of Utility Scale Solar 

Technologies in California Under a 40% Renewable Portfolio Standard,” National 

Renewable Energy Laboratory, NREL/TP-6A20-61685, May 2014. [Online]. Available: 

http://www.nrel.gov/docs/fy14osti/61685.pdf 

[159] A. Abrams et al., “Energy Storage Cost-effectiveness Methodology and Preliminary 

Results,” DNV KEMA Energy & Sustainability for the California Energy Commission, 

Jun. 2013. 

[160] “California Energy Demand 2015-2025 Final Forecast - LSE and Balancing Authority 

Forecasts,” California Energy Commission. 

https://www.energyarchive.ca.gov/2014_energypolicy/documents/demand_forecast_cmf/

LSE_and_BA/ (accessed Nov. 11, 2017). 

[161] C. Kavalec et al., “California Energy Demand 2014–2024 Final Forecast, Volume 1: 

Statewide Electricity Demand, End‐User Natural Gas Demand, and Energy Efficiency,” 

California Energy Commission, Electricity Supply Analysis Division, CEC‐200‐2013‐

004‐V1‐CMF, Jan. 2014. [Online]. Available: 

http://www.energy.ca.gov/2013publications/CEC-200-2013-004/CEC-200-2013-004-V1-

CMF.pdf 

[162] “California Energy Demand 2015-2025 Final Forecast - Mid-Case Final Baseline Demand 

Forecast Forms.” 

https://www.energyarchive.ca.gov/2014_energypolicy/documents/demand_forecast_cmf/

Mid_Case/ (accessed Apr. 01, 2019). 

[163] “RPS Calculator Home Page,” California Public Utilities Commission. 

http://www.cpuc.ca.gov/RPS_Calculator/ (accessed Aug. 01, 2017). 

[164] R. Golden and B. Paulos, “Curtailment of Renewable Energy in California and Beyond,” 

Electr. J., vol. 28, no. 6, pp. 36–50, Jul. 2015, doi: 10.1016/j.tej.2015.06.008. 

[165] California Public Utilities Commission Rulemaking 12-03-014: Decision Authorizing 

Long-term Procurement for Local Capacity Requirements. 2013. 

[166] I. Penn and S. Masunaga, “PG&E to close Diablo Canyon, California’s last nuclear power 

plant,” Los Angeles Times, Jun. 21, 2016. Accessed: Apr. 14, 2017. [Online]. Available: 

http://www.latimes.com/business/la-fi-diablo-canyon-nuclear-20160621-snap-story.html 

[167] California Public Utilities Commission Rulemaking 10-12-007: Order Instituting 

Rulemaking Pursuant to Assembly Bill 2514 to Consider the Adoption of Procurement 

Targets for Viable and Cost-Effective Energy Storage Systems: Decision Adopting Energy 

Storage Procurement Framework and Design Program. 2013. 

[168] “Integration of Renewable Resources: Technical Appendices for California ISO 

Renewable Integration Studies, Version 1,” California Independent System Operator, Oct. 

2010. 

[169] G. Brinkman, J. Jorgenson, A. Ehlen, and J. H. Caldwell, “Low Carbon Grid Study: 

Analysis of a 50% Emission Reduction in California,” National Renewable Energy 

Laboratory and Center for Energy Efficiency and Renewable Technologies, NREL/TP-

6A20-64884, Jan. 2016. 



 143 

[170] “California Transportation Electrification Assessment: Phase 2: Grid Impacts,” Prepared 

by ICF International and E3, Oct. 2014. [Online]. Available: 

https://drive.google.com/file/d/0B6luZ_sq22LbMkQxZjN3QTNJdUk/view 

[171] J. P. Deane, G. Drayton, and B. P. Ó Gallachóir, “The impact of sub-hourly modelling in 

power systems with significant levels of renewable generation,” Appl. Energy, vol. 113, 

pp. 152–158, Jan. 2014, doi: 10.1016/j.apenergy.2013.07.027. 

[172] C. Kavalec, N. Fugate, C. Garcia, and A. Gautam, “California Energy Demand 2016-2026, 

Revised Electricity Forecast, Volume 1: Statewide Electricity Demand and Energy 

Efficiency,” California Energy Commission, CEC-200-2016-001-V1, Jan. 2016. 

[173] A. Bahreinian et al., “Staff Draft Report, Transportation Energy Demand Forecast, 2016-

2026,” California Energy Commission, CEC-200-2015-008-SD, Feb. 2016. [Online]. 

Available: https://efiling.energy.ca.gov/GetDocument.aspx?tn=210539 

[174] Z. Xu, W. Su, Z. Hu, Y. Song, and H. Zhang, “A Hierarchical Framework for Coordinated 

Charging of Plug-In Electric Vehicles in China,” IEEE Trans. Smart Grid, vol. 7, no. 1, 

pp. 428–438, Jan. 2016, doi: 10.1109/TSG.2014.2387436. 

[175] “Electric Vehicle (EV) rate plans: Making sense of the rates,” Pacific Gas & Electric. 

https://www.pge.com/en_US/residential/rate-plans/rate-plan-options/electric-vehicle-base-

plan/electric-vehicle-base-plan.page (accessed Apr. 16, 2017). 

[176] “EV Rates,” San Diego Gas & Electric. https://www.sdge.com/clean-energy/ev-rates 

(accessed Oct. 06, 2017). 

[177] “Electric Vehicle Rates,” Southern California Edison. 

https://www.sce.com/wps/portal/home/residential/electric-cars/residential-rates (accessed 

Oct. 06, 2017). 

[178] J. Cook, C. Churchwell, and S. George, “Final Evaluation for San Diego Gas & Electric’s 

Plug-in Electric Vehicle TOU Pricing and Technology Study,” Submitted by Nexant, Inc. 

to San Diego Gas & Electric, Feb. 2014. [Online]. Available: 

https://www.sdge.com/sites/default/files/SDGE%20EV%20%20Pricing%20%26%20Tech

%20Study.pdf 

[179] “Top 10 DMV Facts,” California Department of Motor Vehicles Statistics. 

https://www.dmv.ca.gov/portal/wcm/connect/fafd3447-8e14-4ff6-bb98-

e85f3aa9a207/ca_dmv_stats.pdf?MOD=AJPERES&CVID= 

[180] E. Niesten and F. Alkemade, “How is value created and captured in smart grids? A review 

of the literature and an analysis of pilot projects,” Renew. Sustain. Energy Rev., vol. 53, 

pp. 629–638, Jan. 2016, doi: 10.1016/j.rser.2015.08.069. 

[181] R. Golden and B. Paulos, “Curtailment of Renewable Energy in California and Beyond,” 

Electr. J., vol. 28, no. 6, pp. 36–50, Jul. 2015, doi: 10.1016/j.tej.2015.06.008. 

[182] Jaquelin Cochran, National Renewable Energy Laboratory et al., “Flexibility in 21st 

Century Power Systems,” 21st Century Power Partnership, NREL/TP-6A20-61721, May 

2014. [Online]. Available: https://www.nrel.gov/docs/fy14osti/61721.pdf 

[183] F. Kley, C. Lerch, and D. Dallinger, “New business models for electric cars—A holistic 

approach,” Energy Policy, vol. 39, no. 6, pp. 3392–3403, Jun. 2011, doi: 

10.1016/j.enpol.2011.03.036. 

[184] C. Will and A. Schuller, “Understanding user acceptance factors of electric vehicle smart 

charging,” Transp. Res. Part C Emerg. Technol., vol. 71, pp. 198–214, Oct. 2016, doi: 

10.1016/j.trc.2016.07.006. 



 144 

[185] J. Bailey and J. Axsen, “Anticipating PEV buyers’ acceptance of utility controlled 

charging,” Transp. Res. Part Policy Pract., vol. 82, pp. 29–46, Dec. 2015, doi: 

10.1016/j.tra.2015.09.004. 

[186] J. Axsen, B. Langman, and S. Goldberg, “Confusion of innovations: Mainstream 

consumer perceptions and misperceptions of electric-drive vehicles and charging 

programs in Canada,” Energy Res. Soc. Sci., vol. 27, pp. 163–173, May 2017, doi: 

10.1016/j.erss.2017.03.008. 

[187] F. Schmalfuß et al., “User responses to a smart charging system in Germany: Battery 

electric vehicle driver motivation, attitudes and acceptance,” Energy Res. Soc. Sci., vol. 9, 

pp. 60–71, Sep. 2015, doi: 10.1016/j.erss.2015.08.019. 

[188] E. Dütschke and A.-G. Paetz, “Dynamic electricity pricing—Which programs do 

consumers prefer?,” Energy Policy, vol. 59, pp. 226–234, Aug. 2013, doi: 

10.1016/j.enpol.2013.03.025. 

[189] California Public Utilities Commission, Decision 17-08-030 Adopting Revenue Allocation 

and Rate Design for San Diego Gas & Electric Company: Application of San Diego Gas 

& Electric Company (U902E) for Authority to Update Marginal Costs, Cost Allocation 

and Electric Rate Design (Application 15-04-012). 2017. [Online]. Available: 

http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M194/K599/194599448.PDF 

[190] H. C. Curtius, K. Künzel, and M. Loock, “Generic customer segments and business 

models for smart grids,” Markt, vol. 51, no. 2, pp. 63–74, Aug. 2012, doi: 

10.1007/s12642-012-0076-0. 

[191] J. Axsen and K. S. Kurani, “Connecting plug-in vehicles with green electricity through 

consumer demand,” Environ. Res. Lett., vol. 8, no. 1, p. 014045, 2013, doi: 10.1088/1748-

9326/8/1/014045. 

[192] P. H. Gleick, “Impacts of California’s Five-Year (2012-2016) Drought on Hydroelectricity 

Generation,” Pacific Institute, Apr. 2017. [Online]. Available: https://pacinst.org/wp-

content/uploads/2018/07/pi_impacts_of_california_s_five-year__2012-

2016_drought_on_hydroelectricity_generation.pdf 

[193] “Producing and Consuming Power,” California Department of Water Resources. 

http://water.ca.gov/What-We-Do/Power (accessed Feb. 14, 2021). 

[194] K. De Leon and N. Skinner, SB-100 California Renewables Portfolio Standard Program: 

emissions of greenhouse gases. 2017. 

[195] J. Gerdes, “California Moves to Tackle Another Big Emissions Source: Fossil Fuel Use in 

Buildings,” Greentech Media, Feb. 04, 2020. Accessed: Feb. 15, 2021. [Online]. 

Available: https://www.greentechmedia.com/articles/read/california-moves-to-tackle-

another-big-emissions-source-fossil-fuel-use-in-buildings 

[196] H. Cooley, M. Heberger, L. Allen, and R. Wilkinson, “The Water-Energy Simulator 

(WESim): User Manual,” WateReuse Foundation, Pacific Institute, UC Santa Barbara for 

California Energy Commission, 2012. [Online]. Available: https://pacinst.org/wp-

content/uploads/2013/02/user_manual3.pdf 

[197] S. Diringer, A. Thebo, H. Cooley, M. Shimabuku, R. Wilkinson, and M. Bradford, 

“Moving Toward a Multi-Benefit Approach for Water Management,” Pacific Institute and 

Bren School of Environmental Science and Management, University of California, Santa 

Barbara, Apr. 2019. [Online]. Available: https://pacinst.org/wp-

content/uploads/2019/04/moving-toward-multi-benefit-approach.pdf 



 145 

[198] Geosyntec Consultants et al., “Los Angeles Stormwater Capture Master Plan,” Los 

Angeles Department of Water and Power, Aug. 2015. [Online]. Available: 

https://www.ladwp.com/cs/idcplg?IdcService=GET_FILE&dDocName=OPLADWPCCB

421767&RevisionSelectionMethod=LatestReleased 

[199] C. Burt, D. Howes, and G. Wilson, “California Agricultural Water Electrical Energy 

Requirements,” Prepared by Irrigation Training and Research Center for the California 

Energy Commission, ITRC Report No. R 03-006, Dec. 2003. [Online]. Available: 

https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?referer=https://www.google.com/

&httpsredir=1&article=1056&context=bae_fac 

[200] “2018 Irrigation and Water Management Survey.” 

https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Farm_and_Ra

nch_Irrigation_Survey/index.php (accessed May 03, 2021). 

[201] K. T. Sanders and M. E. Webber, “Evaluating the energy consumed for water use in the 

United States,” Environ. Res. Lett., vol. 7, no. 3, p. 034034, Sep. 2012, doi: 10.1088/1748-

9326/7/3/034034. 

[202] EPRI, “Water & Sustainability (Volume 4): U.S. Electricity Consumption for Water 

Supply & Treatment - The Next Half Century,” 1006787, 2002. [Online]. Available: 

https://www.circleofblue.org/wp-content/uploads/2010/08/EPRI-Volume-4.pdf 

[203] C. McDonald et al., “Water/Energy Cost-Effectiveness Analysis,” Prepared for California 

Public Utilities Commission, Navigant Reference No.: 169145, Oct. 2014. [Online]. 

Available: https://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=5360 

[204] P. H. Gleick et al., “Waste Not, Want Not: The Potential for Urban Water Conservation in 

California,” Pacific Institute, Nov. 2003. Accessed: Dec. 03, 2019. [Online]. Available: 

https://pacinst.org/wp-content/uploads/2003/11/waste_not_want_not_full_report.pdf 

[205] KEMA, Inc., “2009 California Residential Appliance Saturation Study Volume 2,” 

California Energy Commission, CEC‐ 200‐2010‐004, 2010. [Online]. Available: 

http://web.archive.org/web/20190602112012/https://www.energy.ca.gov/2010publications

/CEC-200-2010-004/CEC-200-2010-004-V2.PDF 

[206] William B. DeOreo, Peter Mayer, Benedykt Dziegielewski, and Jack Kiefer, “Residential 

End Uses of Water, Version 2,” Water Research Foundation, PDF Report #4309b, 2016. 

[207] H. Cooley and R. Wilkinson, “Implications of Future Water Supply Sources on Energy 

Demands,” WateReuse Foundation, Pacific Institute, UC Santa Barbara for California 

Energy Commission, 2012. [Online]. Available: https://pacinst.org/wp-

content/uploads/2012/07/report19.pdf 

[208] Environmental Protection Agency and CDM Smith, “2017 Potable Reuse Compendium,” 

Environmental Protection Agency, 2017. [Online]. Available: 

https://www.epa.gov/sites/production/files/2018-

01/documents/potablereusecompendium_3.pdf 

[209] State Water Resources Control Board Regulations Related to Recycled Water. 2018. 

[Online]. Available: 

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook

/RWregulations_20181001.pdf 

[210] “California Water Plan Update 2013, Volume 3 - Resource Management Strategies,” 

California Department of Water Resources. [Online]. Available: https://water.ca.gov/-

/media/DWR-Website/Web-Pages/Programs/California-Water-Plan/Water-Plan-

Updates/Files/Update-2013/Water-Plan-Update-2013-Volume-3.pdf 



 146 

[211] B. Tarroja, A. AghaKouchak, R. Sobhani, D. Feldman, S. Jiang, and S. Samuelsen, 

“Evaluating options for balancing the water–electricity nexus in California: Part 2—

Greenhouse gas and renewable energy utilization impacts,” Sci. Total Environ., vol. 497–

498, pp. 711–724, Nov. 2014, doi: 10.1016/j.scitotenv.2014.06.071. 

[212] “Residential Energy Consumption Survey (RECS) Table HC1.1 Fuels used and end uses 

in U.S. homes by housing unit type, 2015,” Energy Information Administration (EIA). 

https://www.eia.gov/consumption/residential/data/2015/hc/php/hc8.8.php (accessed Apr. 

25, 2021). 

[213] “WeCalc: Your Home Water-Energy-Climate Calculator,” WeCalc: Your Home Water-

Energy-Climate Calculator. http://www.wecalc.org/ (accessed Apr. 27, 2021). 

[214] Itron, Inc., “California Commercial End-Use Survey (CEUS),” California Energy 

Commission, CEC-400-2006-005, Mar. 2006. Accessed: Mar. 30, 2016. [Online]. 

Available: 

http://web.archive.org/web/20190112033409/https://www.energy.ca.gov/2006publications

/CEC-400-2006-005/CEC-400-2006-005.PDF 

[215] “Statewide Irrigation Systems Methods Surveys.” http://water.ca.gov/Programs/Water-

Use-And-Efficiency/Land-And-Water-Use/Statewide-Irrigation-Systems-Methods-

Surveys (accessed May 13, 2019). 

[216] “Agricultural Land & Water Use Estimates.” http://water.ca.gov/Programs/Water-Use-

And-Efficiency/Land-And-Water-Use/Agricultural-Land-And-Water-Use-Estimates 

(accessed May 13, 2019). 

[217] California Air Resources Board, “California Greenhouse Gas Inventory for 2000-2018 — 

by Sector and Activity,” California Air Resources Board, Oct. 2020. [Online]. Available: 

https://ww3.arb.ca.gov/cc/inventory/data/tables/ghg_inventory_sector_sum_2000-18.pdf 

[218] California Energy Commission, California Public Utilities Commission, California Air 

Resources Board, “Draft 2021 SB 100 Joint Agency Report,” Dec. 2020. [Online]. 

Available: 

https://efiling.energy.ca.gov/GetDocument.aspx?tn=235848&DocumentContentId=68803 

[219] “Carbon Dioxide Emissions Coefficients,” U.S. Energy Information Administration (EIA). 

https://www.eia.gov/environment/emissions/co2_vol_mass.php (accessed Jan. 28, 2021). 

[220] “WUEdata - Water Use Efficiency Data,” California Department of Water Resources, 

WUEdata - Public Portal. https://wuedata.water.ca.gov/ (accessed Jan. 28, 2021). 

[221] “California Urban Water Use Map,” Pacific Institute. https://pacinst.org/gpcd/map/ 

(accessed Apr. 29, 2021). 

[222] “Water Portfolios,” California Department of Water Resources Water Portfolios. 

http://water.ca.gov/Programs/California-Water-Plan/Water-Portfolios (accessed May 13, 

2019). 

[223] S. Abraham, S. Diringer, and H. Cooley, “An Assessment of Urban Water Demand 

Forecasts in California,” Pacific Institute, Aug. 2020. [Online]. Available: 

https://pacinst.org/wp-content/uploads/2020/08/Pacific-Institute-Assessment-Urban-

Water-Demand-Forecasts-in-CA-Aug-2020.pdf 

[224] W. B. DeOreo, “Analysis of Water Use in New Single Family Homes,” Salt Lake City 

Corporation and US EPA, Jan. 2011. [Online]. Available: 

https://energy.mo.gov/sites/energy/files/3-deoreo-%282011%29-analysis-of-water-use-in-

new-single-family-homes.pdf 



 147 

[225] M. Rayej, S. Kibrya, P. Shipman, and M. Correa, “Future Scenarios of Water Supply and 

Demand in Central Valley, California through 2100: Impacts of Climate Change and 

Urban Growth,” California Department of Water Resources, Jun. 2019. 

[226] “WEAP Future Scenarios,” Tableau Software. 

https://public.tableau.com/views/WEAP_Scenarios/DemandSupplyMultiClimate?%3Aem

bed=y&%3AshowVizHome=no&%3Adisplay_count=y&%3Adisplay_static_image=y&%

3AbootstrapWhenNotified=true&%3Alanguage=en&:embed=y&:showVizHome=n&:apiI

D=host0#navType=0&navSrc=Parse (accessed Jan. 28, 2021). 

[227] E. Lynn, A. Schwarz, J. Anderson, and M. Correa, “Perspectives and Guidance for 

Climate Change Analysis,” California Department of Water Resources, Climate Change 

Technical Advisory Group, Aug. 2015. [Online]. Available: https://water.ca.gov/-

/media/DWR-Website/Web-Pages/Programs/All-Programs/Climate-Change-

Program/Climate-Program-Activities/Files/Reports/Perspectives-Guidance-Climate-

Change-Analysis.pdf 

[228] “Volumetric Annual Reporting: Recycled Water Policy | California State Water Resources 

Control Board.” 

https://www.waterboards.ca.gov/water_issues/programs/water_recycling_policy/volumetri

c_annual_reporting.html (accessed Mar. 04, 2021). 

[229] “Regulating Direct Potable Reuse in California | California State Water Resources Control 

Board.” 

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/direct_potable_reus

e.html (accessed Mar. 01, 2021). 

[230] A. Zohrabian, S. L. Plata, D. M. Kim, A. E. Childress, and K. T. Sanders, “Leveraging the 

water-energy nexus to derive benefits for the electric grid through demand-side 

management in the water supply and wastewater sectors,” WIREs Water, vol. 8, no. 3, p. 

e1510, 2021, doi: https://doi.org/10.1002/wat2.1510. 

[231] M. Selmon, A. Schwartz, and P. Coombe, “Climate Change Action Plan, Phase 3: Climate 

Change Vulnerability Assessment,” California Department of Water Resources, Feb. 

2019. [Online]. Available: https://water.ca.gov/-/media/DWR-Website/Web-

Pages/Programs/All-Programs/Climate-Change-Program/Climate-Action-Plan/Files/CAP-

III-Vulnerability-

Assessment.pdf?la=en&hash=7DF13A5B51C4B4FA808166C596F7EAE67ED58AC5 

[232] P. Gleick, H. Cooley, K. Poole, and E. Osann, “Issue Brief: The Untapped Potential of 

California’s Water Supply: Efficiency, Reuse, and Stormwater,” Pacific Institute and 

Natural Resources Defense Council, Issue Brief IB:14-05-C, Jun. 2014. [Online]. 

Available: https://pacinst.org/wp-content/uploads/2014/06/ca-water-capstone-1.pdf 

[233] E. Lede, R. Meleady, and C. R. Seger, “Optimizing the influence of social norms 

interventions: Applying social identity insights to motivate residential water 

conservation,” J. Environ. Psychol., vol. 62, pp. 105–114, Apr. 2019, doi: 

10.1016/j.jenvp.2019.02.011. 

[234] E. S. Spang, A. J. Holguin, and F. J. Loge, “The estimated impact of California’s urban 

water conservation mandate on electricity consumption and greenhouse gas emissions,” 

Environ. Res. Lett., vol. 13, no. 1, p. 014016, Jan. 2018, doi: 10.1088/1748-9326/aa9b89. 

[235] “Product Finder — ENERGY STAR Certified Water Heaters.” 

https://www.energystar.gov/productfinder/product/certified-water-

heaters/results?page_number=0 (accessed Mar. 01, 2021). 



 148 

[236] I. Ivanova, “Cities are banning natural gas in new homes, citing climate change,” CBS 

News, Dec. 06, 2019. Accessed: Mar. 07, 2021. [Online]. Available: 

https://www.cbsnews.com/news/cities-are-banning-natural-gas-in-new-homes-because-of-

climate-change/ 

[237] A. C. Mulkern, “California Is Closing the Door to Gas in New Homes,” Scientific 

American, Jan. 04, 2021. https://www.scientificamerican.com/article/california-is-closing-

the-door-to-gas-in-new-homes/ (accessed Mar. 07, 2021). 

[238] “Get Big Rebates For Small Agricultural Pumps | PG&E.” 

https://www.pge.com/en/mybusiness/save/smbblog/article/get_big_rebates_for_small_agri

cultural_pumps.page?WT.mc_id=SMBNewsletter_ag_email_20160407_phase_link-

small-pump&redirect=yes (accessed Mar. 01, 2021). 

[239] A. Aghajanzadeh, M. Sohn, and M. Berger, “Water-Energy Considerations in California’s 

Agricultural Sector and Opportunities to Provide Flexibility to California’s Grid,” Jun. 

2019, Accessed: Jun. 25, 2019. [Online]. Available: 

https://escholarship.org/uc/item/2qx647xg 

[240] “California Climate Investments | California Air Resources Board.” 

https://ww2.arb.ca.gov/our-work/programs/california-climate-investments (accessed Mar. 

01, 2021). 

[241] J. Cart, “Bonds on the ballot: Will billions of dollars help California cope with climate 

change?,” CalMatters, Jan. 22, 2020. https://calmatters.org/environment/2020/01/bonds-

on-the-ballot-will-billions-of-dollars-help-california-cope-with-climate-change/ (accessed 

Mar. 07, 2021). 

[242] C. E. Commission, “Integrated Energy Policy Report - IEPR,” California Energy 

Commission, current-date. https://www.energy.ca.gov/data-reports/reports/integrated-

energy-policy-report (accessed Mar. 01, 2021). 

[243] F. Kesicki and M. Walton, “Water Energy Nexus: Excerpt from the World Energy 

Outlook 2016,” International Energy Agency, 2016. [Online]. Available: 

https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlook2016E

xcerptWaterEnergyNexus.pdf 

[244] M. R. Allen et al., “Global warming of 1.5°C: An IPCC Special Report on the impacts of 

global warming of 1.5°C above pre-industrial levels and related global greenhouse gas 

emission pathways, in the context of strengthening the global response to the threat of 

climate change, sustainable development, and efforts to eradicate poverty, Summary for 

Policymakers,” World Meteorological Organization, Geneva, Switzerland, 2018. [Online]. 

Available: 

https://www.ipcc.ch/site/assets/uploads/2018/10/SR15_SPM_version_stand_alone_LR.pdf 

[245] J. W. Forrester, “System dynamics, systems thinking, and soft OR,” Syst. Dyn. Rev. Wiley, 

vol. 10, no. 2/3, pp. 245–256, Summer/Fall  ///Summer/Fall1994 1994, doi: 

10.1002/sdr.4260100211. 

[246] California Department of Water Resources, “State Water Project,” California Department 

of Water Resources State Water Project. http://water.ca.gov/Programs/State-Water-Project 

(accessed Jun. 29, 2020). 

[247] K. Hayhoe et al., “Emissions pathways, climate change, and impacts on California,” Proc. 

Natl. Acad. Sci., vol. 101, no. 34, pp. 12422–12427, Aug. 2004, doi: 

10.1073/pnas.0404500101. 



 149 

[248] E. Lynn, “California Climate Science and Data for Water Resources Management,” 

California Department of Water Resources, Jun. 2015. [Online]. Available: 

https://cawaterlibrary.net/wp-

content/uploads/2017/06/CA_Climate_Science_and_Data_Final_Release_June_2015.pdf 

[249] D. P. Loucks and E. van Beek, “Water Resources Planning and Management: An 

Overview,” in Water Resource Systems Planning and Management: An Introduction to 

Methods, Models, and Applications, D. P. Loucks and E. van Beek, Eds. Cham: Springer 

International Publishing, 2017, pp. 1–49. doi: 10.1007/978-3-319-44234-1_1. 

[250] S. Hagemann et al., “Climate change impact on available water resources obtained using 

multiple global climate and hydrology models,” Earth Syst. Dyn., vol. 4, no. 1, pp. 129–

144, May 2013, doi: https://doi.org/10.5194/esd-4-129-2013. 

[251] P. C. D. Milly, K. A. Dunne, and A. V. Vecchia, “Global pattern of trends in streamflow 

and water availability in a changing climate,” Nature, vol. 438, no. 7066, Art. no. 7066, 

Nov. 2005, doi: 10.1038/nature04312. 

[252] I. Haddeland et al., “Global water resources affected by human interventions and climate 

change,” Proc. Natl. Acad. Sci., vol. 111, no. 9, pp. 3251–3256, Mar. 2014, doi: 

10.1073/pnas.1222475110. 

[253] M. Huss et al., “Toward mountains without permanent snow and ice,” Earths Future, vol. 

5, no. 5, pp. 418–435, 2017, doi: 10.1002/2016EF000514. 

[254] I. T. Stewart, “Changes in snowpack and snowmelt runoff for key mountain regions,” 

Hydrol. Process., vol. 23, no. 1, pp. 78–94, 2009, doi: 10.1002/hyp.7128. 

[255] J. I. López-Moreno et al., “Different sensitivities of snowpacks to warming in 

Mediterranean climate mountain areas,” Environ. Res. Lett., vol. 12, no. 7, p. 074006, Jun. 

2017, doi: 10.1088/1748-9326/aa70cb. 

[256] M. Beniston, “Climatic Change in Mountain Regions: A Review of Possible Impacts,” 

Clim. Change, vol. 59, no. 1, pp. 5–31, Jul. 2003, doi: 10.1023/A:1024458411589. 

[257] J. S. Mankin, D. Viviroli, D. Singh, A. Y. Hoekstra, and N. S. Diffenbaugh, “The potential 

for snow to supply human water demand in the present and future,” Environ. Res. Lett., 

vol. 10, no. 11, p. 114016, Nov. 2015, doi: 10.1088/1748-9326/10/11/114016. 

[258] J. Sillmann, V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, “Climate extremes 

indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections,” J. 

Geophys. Res. Atmospheres, vol. 118, no. 6, pp. 2473–2493, 2013, doi: 

10.1002/jgrd.50188. 

[259] J. Sheffield and E. F. Wood, “Projected changes in drought occurrence under future global 

warming from multi-model, multi-scenario, IPCC AR4 simulations,” Clim. Dyn., vol. 31, 

no. 1, pp. 79–105, Jul. 2008, doi: 10.1007/s00382-007-0340-z. 

[260] S. K. Tanaka et al., “Climate Warming and Water Management Adaptation for 

California,” Clim. Change, vol. 76, no. 3–4, pp. 361–387, Jun. 2006, doi: 10.1007/s10584-

006-9079-5. 

[261] M. C. Mateus and D. Tullos, “Reliability, Sensitivity, and Vulnerability of Reservoir 

Operations under Climate Change,” J. Water Resour. Plan. Manag., vol. 143, no. 4, p. 

04016085, Apr. 2017, doi: 10.1061/(ASCE)WR.1943-5452.0000742. 

[262] B. A. Joyce, V. K. Mehta, D. R. Purkey, L. L. Dale, and M. Hanemann, “Modifying 

agricultural water management to adapt to climate change in California’s central valley,” 

Clim. Change, vol. 109, no. 1, pp. 299–316, Dec. 2011, doi: 10.1007/s10584-011-0335-y. 



 150 

[263] B. A. Joyce, V. K. Mehta, D. R. Purkey, L. L. Dale, and M. Hanemann, “Climate Change 

Impacts on Water Supply and Agricultural Water Management in California’s Western 

San Joaquin Valley, and Potential Adaptation Strategies,” CEC-500-2009-051-F, Mar. 

2009. [Online]. Available: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.444.673&rep=rep1&type=pdf 

[264] Y. Wada et al., “Multimodel projections and uncertainties of irrigation water demand 

under climate change,” Geophys. Res. Lett., pp. 4626–4632, Jul. 2015, doi: 

https://doi.org/10.1002/grl.50686. 

[265] G. G. Katul, R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange, “Evapotranspiration: A 

process driving mass transport and energy exchange in the soil-plant-atmosphere-climate 

system,” Rev. Geophys., vol. 50, no. 3, 2012, doi: 10.1029/2011RG000366. 

[266] R. A. Betts et al., “Projected increase in continental runoff due to plant responses to 

increasing carbon dioxide,” Nature, vol. 448, no. 7157, Art. no. 7157, Aug. 2007, doi: 

10.1038/nature06045. 

[267] P. C. D. Milly and K. A. Dunne, “Potential evapotranspiration and continental drying,” 

Nat. Clim. Change, vol. 6, no. 10, Art. no. 10, Oct. 2016, doi: 10.1038/nclimate3046. 

[268] S. P. Long, E. A. Ainsworth, A. Rogers, and D. R. Ort, “Rising atmospheric carbon 

dioxide: plants FACE the future,” Annu. Rev. Plant Biol., vol. 55, pp. 591–628, 2004, doi: 

10.1146/annurev.arplant.55.031903.141610. 

[269] M. Panteli and P. Mancarella, “Influence of extreme weather and climate change on the 

resilience of power systems: Impacts and possible mitigation strategies,” Electr. Power 

Syst. Res., vol. 127, pp. 259–270, Oct. 2015, doi: 10.1016/j.epsr.2015.06.012. 

[270] D. M. Ward, “The effect of weather on grid systems and the reliability of electricity 

supply,” Clim. Change, vol. 121, no. 1, pp. 103–113, Nov. 2013, doi: 10.1007/s10584-

013-0916-z. 

[271] J. A. Sathaye et al., “Estimating impacts of warming temperatures on California’s 

electricity system,” Glob. Environ. Change, vol. 23, no. 2, pp. 499–511, Apr. 2013, doi: 

10.1016/j.gloenvcha.2012.12.005. 

[272] D. C. Steinberg et al., “Decomposing supply-side and demand-side impacts of climate 

change on the US electricity system through 2050,” Clim. Change, vol. 158, no. 2, pp. 

125–139, Jan. 2020, doi: 10.1007/s10584-019-02506-6. 

[273] X. Ke, D. Wu, J. Rice, M. Kintner-Meyer, and N. Lu, “Quantifying impacts of heat waves 

on power grid operation,” Appl. Energy, vol. 183, pp. 504–512, Dec. 2016, doi: 

10.1016/j.apenergy.2016.08.188. 

[274] E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module 

electrical performance: A review of efficiency/power correlations,” Sol. Energy, vol. 83, 

no. 5, pp. 614–624, May 2009, doi: 10.1016/j.solener.2008.10.008. 

[275] M. Auffhammer, “Climate Adaptive Response Estimation: Short and Long Run Impacts of 

Climate Change on Residential Electricity and Natural Gas Consumption Using Big 

Data,” California Energy Commission, 2018. [Online]. Available: 

https://www.energy.ca.gov/sites/default/files/2019-11/Energy_CCCA4-EXT-2018-

005_ADA.pdf 

[276] L. W. Davis and P. J. Gertler, “Contribution of air conditioning adoption to future energy 

use under global warming,” Proc. Natl. Acad. Sci., vol. 112, no. 19, pp. 5962–5967, May 

2015, doi: 10.1073/pnas.1423558112. 



 151 

[277] P. Dowling, “The impact of climate change on the European energy system,” Energy 

Policy, vol. 60, pp. 406–417, Sep. 2013, doi: 10.1016/j.enpol.2013.05.093. 

[278] G. S. Eskeland and T. K. Mideksa, “Electricity demand in a changing climate,” Mitig. 

Adapt. Strateg. Glob. Change, vol. 15, no. 8, pp. 877–897, Dec. 2010, doi: 

10.1007/s11027-010-9246-x. 

[279] M. Auffhammer, P. Baylis, and C. H. Hausman, “Climate change is projected to have 

severe impacts on the frequency and intensity of peak electricity demand across the United 

States,” Proc. Natl. Acad. Sci., vol. 114, no. 8, pp. 1886–1891, Feb. 2017, doi: 

10.1073/pnas.1613193114. 

[280] B. J. van Ruijven, E. De Cian, and I. Sue Wing, “Amplification of future energy demand 

growth due to climate change,” Nat. Commun., vol. 10, Jun. 2019, doi: 10.1038/s41467-

019-10399-3. 

[281] S. W. D. Turner, M. Hejazi, S. H. Kim, L. Clarke, and J. Edmonds, “Climate impacts on 

hydropower and consequences for global electricity supply investment needs,” Energy, 

vol. 141, pp. 2081–2090, Dec. 2017, doi: 10.1016/j.energy.2017.11.089. 

[282] M. T. H. van Vliet, D. Wiberg, S. Leduc, and K. Riahi, “Power-generation system 

vulnerability and adaptation to changes in climate and water resources,” Nat. Clim. 

Change, vol. 6, no. 4, pp. 375–380, Apr. 2016, doi: 10.1038/nclimate2903. 

[283] K. Madani and J. R. Lund, “Estimated impacts of climate warming on California’s high-

elevation hydropower,” Clim. Change, vol. 102, no. 3–4, pp. 521–538, Oct. 2010, doi: 

10.1007/s10584-009-9750-8. 

[284] K. Madani, M. Guegan, and C. B. Uvo, “Climate change impacts on high-elevation 

hydroelectricity in California,” J. Hydrol., vol. 510, pp. 153–163, Mar. 2014, doi: 

10.1016/j.jhydrol.2013.12.001. 

[285] S. Vicuña, J. A. Dracup, and L. Dale, “Climate change impacts on two high-elevation 

hydropower systems in California,” Clim. Change, vol. 109, no. 1, pp. 151–169, Dec. 

2011, doi: 10.1007/s10584-011-0301-8. 

[286] M. T. H. van Vliet, S. Vögele, and D. Rübbelke, “Water constraints on European power 

supply under climate change: impacts on electricity prices,” Environ. Res. Lett., vol. 8, no. 

3, p. 035010, 2013, doi: 10.1088/1748-9326/8/3/035010. 

[287] M. T. H. van Vliet, J. R. Yearsley, F. Ludwig, S. Vögele, D. P. Lettenmaier, and P. Kabat, 

“Vulnerability of US and European electricity supply to climate change,” Nat. Clim. 

Change, vol. 2, no. 9, p. 676, Sep. 2012, doi: 10.1038/nclimate1546. 

[288] A. Miara, J. E. Macknick, C. J. Vörösmarty, V. C. Tidwell, R. Newmark, and B. Fekete, 

“Climate and water resource change impacts and adaptation potential for US power 

supply,” Nat. Clim. Change, vol. 7, no. 11, p. 793, Nov. 2017, doi: 10.1038/nclimate3417. 

[289] J. Macknick, S. Sattler, K. Averyt, S. Clemmer, and J. Rogers, “The water implications of 

generating electricity: water use across the United States based on different electricity 

pathways through 2050,” Environ. Res. Lett., vol. 7, no. 4, p. 045803, Dec. 2012, doi: 

10.1088/1748-9326/7/4/045803. 

[290] H. Cooley, R. Phurisamban, and P. Gleick, “The cost of alternative urban water supply 

and efficiency options in California,” Environ. Res. Commun., vol. 1, no. 4, p. 042001, 

May 2019, doi: 10.1088/2515-7620/ab22ca. 

[291] C. E. Scruggs and B. M. Thomson, “Opportunities and Challenges for Direct Potable 

Water Reuse in Arid Inland Communities,” J. Water Resour. Plan. Manag., vol. 143, no. 

10, p. 04017064, Oct. 2017, doi: 10.1061/(ASCE)WR.1943-5452.0000822. 



 152 

[292] P. H. Gleick, “Water management: Soft water paths,” Nature, vol. 418, no. 6896, Art. no. 

6896, Jul. 2002, doi: 10.1038/418373a. 

[293] S. B. Grant et al., “Taking the ‘Waste’ Out of ‘Wastewater’ for Human Water Security 

and Ecosystem Sustainability,” Science, vol. 337, no. 6095, pp. 681–686, Aug. 2012, doi: 

10.1126/science.1216852. 

[294] J. Mitchell et al., “No-tillage and high-residue practices reduce soil water evaporation,” 

Calif. Agric., vol. 66, no. 2, pp. 55–61, Apr. 2012. 

[295] J. Jägermeyr, D. Gerten, S. Schaphoff, J. Heinke, W. Lucht, and J. Rockström, “Integrated 

crop water management might sustainably halve the global food gap,” Environ. Res. Lett., 

vol. 11, no. 2, p. 025002, Feb. 2016, doi: 10.1088/1748-9326/11/2/025002. 

[296] J. Jägermeyr, D. Gerten, J. Heinke, S. Schaphoff, M. Kummu, and W. Lucht, “Water 

savings potentials of irrigation systems: global simulation of processes and linkages,” 

Hydrol. Earth Syst. Sci., vol. 19, no. 7, pp. 3073–3091, Jul. 2015, doi: 

https://doi.org/10.5194/hess-19-3073-2015. 

[297] F. A. Ward and M. Pulido-Velazquez, “Water conservation in irrigation can increase water 

use,” Proc. Natl. Acad. Sci., vol. 105, no. 47, pp. 18215–18220, Nov. 2008, doi: 

10.1073/pnas.0805554105. 

[298] K. F. Davis, A. Seveso, M. C. Rulli, and P. D’Odorico, “Water Savings of Crop 

Redistribution in the United States,” Water, vol. 9, no. 2, p. 83, Feb. 2017, doi: 

10.3390/w9020083. 

[299] K. F. Davis, M. C. Rulli, A. Seveso, and P. D’Odorico, “Increased food production and 

reduced water use through optimized crop distribution,” Nat. Geosci., vol. 10, no. 12, p. 

919, Dec. 2017, doi: 10.1038/s41561-017-0004-5. 

[300] V. K. Mehta, V. R. Haden, B. A. Joyce, D. R. Purkey, and L. E. Jackson, “Irrigation 

demand and supply, given projections of climate and land-use change, in Yolo County, 

California,” Agric. Water Manag., vol. 117, pp. 70–82, Jan. 2013, doi: 

10.1016/j.agwat.2012.10.021. 

[301] J. G. Hering, T. D. Waite, R. G. Luthy, J. E. Drewes, and D. L. Sedlak, “A Changing 

Framework for Urban Water Systems,” Environ. Sci. Technol., vol. 47, no. 19, pp. 10721–

10726, Oct. 2013, doi: 10.1021/es4007096. 

[302] B. R. Scanlon, R. C. Reedy, C. C. Faunt, D. Pool, and K. Uhlman, “Enhancing drought 

resilience with conjunctive use and managed aquifer recharge in California and Arizona,” 

Environ. Res. Lett., vol. 11, no. 3, p. 035013, Mar. 2016, doi: 10.1088/1748-

9326/11/3/035013. 

[303] M. A. Eltawil, Z. Zhengming, and L. Yuan, “A review of renewable energy technologies 

integrated with desalination systems,” Renew. Sustain. Energy Rev., vol. 13, no. 9, pp. 

2245–2262, Dec. 2009, doi: 10.1016/j.rser.2009.06.011. 

[304] A. Mileva, J. Johnston, J. H. Nelson, and D. M. Kammen, “Power system balancing for 

deep decarbonization of the electricity sector,” Appl. Energy, vol. 162, pp. 1001–1009, 

Jan. 2016, doi: 10.1016/j.apenergy.2015.10.180. 

[305] M. Fürsch, S. Hagspiel, C. Jägemann, S. Nagl, D. Lindenberger, and E. Tröster, “The role 

of grid extensions in a cost-efficient transformation of the European electricity system 

until 2050,” Appl. Energy, vol. 104, pp. 642–652, Apr. 2013, doi: 

10.1016/j.apenergy.2012.11.050. 



 153 

[306] S. Clemmer, J. Rogers, S. Sattler, J. Macknick, and T. Mai, “Modeling low-carbon US 

electricity futures to explore impacts on national and regional water use,” Environ. Res. 

Lett., vol. 8, no. 1, p. 015004, Jan. 2013, doi: 10.1088/1748-9326/8/1/015004. 

[307] R. R. Hernandez et al., “Techno–ecological synergies of solar energy for global 

sustainability,” Nat. Sustain., vol. 2, no. 7, Art. no. 7, Jul. 2019, doi: 10.1038/s41893-019-

0309-z. 

[308] S. Agrawal and A. Jain, “Sustainable deployment of solar irrigation pumps: Key 

determinants and strategies,” WIREs Energy Environ., vol. 8, no. 2, p. e325, 2019, doi: 

10.1002/wene.325. 

[309] T. Shah, A. Rajan, G. P. Rai, S. Verma, and N. Durga, “Solar pumps and South Asia’s 

energy-groundwater nexus: exploring implications and reimagining its future,” Environ. 

Res. Lett., vol. 13, no. 11, p. 115003, Nov. 2018, doi: 10.1088/1748-9326/aae53f. 

[310] C. J. Vörösmarty, P. Green, J. Salisbury, and R. B. Lammers, “Global Water Resources: 

Vulnerability from Climate Change and Population Growth,” Science, vol. 289, no. 5477, 

pp. 284–288, Jul. 2000, doi: 10.1126/science.289.5477.284. 

[311] M. Rayej, R. Juricich, D. Groves, and D. Yates, “Scenarios of Future California Water 

Demand through 2050: Growth and Climate Change,” World Environ. Water Resour. 

Congr. 2011, pp. 4423–4432, doi: 10.1061/41173(414)460. 

[312] “SGMA Groundwater Management.” http://water.ca.gov/Programs/Groundwater-

Management/SGMA-Groundwater-Management (accessed Feb. 11, 2020). 

[313] “EIA Electricity data browser - Plants for multiple sectors, California, multiple fuel 

types,” EIA Electricity Data Browser, Water Data. 

https://www.eia.gov/beta/electricity/data/browser/#/topic/1?agg=2,0,1&fuel=vtvv&pt=&p

m=&sec=vvo&geo=000000000004&wd=&ws=&wsn=&wt=&freq=A&datecode=2018&t

ab=water-

intensity&start=200101&end=201710&ctype=linechart&ltype=pin&maptype=0&rse=0&

pin= (accessed Jul. 01, 2020). 

[314] A. Mahone et al., “Deep Decarbonization in a High Renewables Future: Updated Results 

from the California PATHWAYS Model,” California Energy Commission, CEC-500-

2018-012, Jun. 2018. [Online]. Available: https://www.ethree.com/wp-

content/uploads/2018/06/Deep_Decarbonization_in_a_High_Renewables_Future_CEC-

500-2018-012-1.pdf 

[315] “California Energy Commission database on Electricity Consumption by Entity.” 

http://www.ecdms.energy.ca.gov/elecbyutil.aspx (accessed Dec. 01, 2019). 

[316] “U.S. Energy Information Administration (EIA) - Open Data,” EIA Open Data. 

https://www.eia.gov/opendata/qb.php?category=902935 (accessed Dec. 01, 2019). 

[317] A. Siddiqi and S. Fletcher, “Energy Intensity of Water End-Uses,” Curr. Sustain. Energy 

Rep., vol. 2, no. 1, pp. 25–31, Mar. 2015, doi: 10.1007/s40518-014-0024-3. 

[318] J. Herman, M. Fefer, M. Dogan, M. Jenkins, J. Medellín-Azuara, and J. Lund, “Advancing 

Hydro-Economic Optimization to Identify Vulnerabilities and Adaptation Opportunities in 

California’s Water System,” California Natural Resources Agency, CCCA4-CNRA-2018–

016, 2018. [Online]. Available: https://www.energy.ca.gov/sites/default/files/2019-

12/Water_CCCA4-CNRA-2018-016_ada.pdf 

[319] T. Zhu, M. W. Jenkins, and J. R. Lund, “Estimated Impacts of Climate Warming on 

California Water Availability Under Twelve Future Climate Scenarios,” JAWRA J. Am. 



 154 

Water Resour. Assoc., vol. 41, no. 5, pp. 1027–1038, 2005, doi: 10.1111/j.1752-

1688.2005.tb03783.x. 

[320] S. Vicuna, E. P. Maurer, B. Joyce, J. A. Dracup, and D. Purkey, “The Sensitivity of 

California Water Resources to Climate Change Scenarios1,” JAWRA J. Am. Water Resour. 

Assoc., vol. 43, no. 2, pp. 482–498, Apr. 2007, doi: 10.1111/j.1752-1688.2007.00038.x. 

[321] J. W. Hopmans and E. P. Maurer, “Impact of Climate Change on Irrigation Water 

Availability, Crop Water Requirements and Soil Salinity in the SJV, CA,” Univ. Calif. 

Water Resour. Cent., Jun. 2008, Accessed: Nov. 14, 2018. [Online]. Available: 

https://escholarship.org/uc/item/0g21p5hs 

[322] D. R. Purkey et al., “Robust analysis of future climate change impacts on water for 

agriculture and other sectors: a case study in the Sacramento Valley,” Clim. Change, vol. 

87, no. 1, pp. 109–122, Mar. 2008, doi: 10.1007/s10584-007-9375-8. 

[323] N. L. Miller, K. Hayhoe, J. Jin, and M. Auffhammer, “Climate, Extreme Heat, and 

Electricity Demand in California,” J. Appl. Meteorol. Climatol., vol. 47, no. 6, pp. 1834–

1844, Jun. 2008, doi: 10.1175/2007JAMC1480.1. 

[324] V. K. Mehta et al., “Potential impacts on hydrology and hydropower production under 

climate warming of the Sierra Nevada,” J. Water Clim. Change Lond., vol. 2, no. 1, pp. 

29–43, Mar. 2011, doi: http://dx.doi.org/10.2166/wcc.2011.054. 

[325] S. Vicuna, R. Leonardson, M. W. Hanemann, L. L. Dale, and J. A. Dracup, “Climate 

change impacts on high elevation hydropower generation in California’s Sierra Nevada: a 

case study in the Upper American River,” Clim. Change, vol. 87, no. 1, pp. 123–137, Mar. 

2008, doi: 10.1007/s10584-007-9365-x. 

[326] J. Medellín-Azuara et al., “Adaptability and adaptations of California’s water supply 

system to dry climate warming,” Clim. Change, vol. 87, no. S1, pp. 75–90, Mar. 2008, 

doi: 10.1007/s10584-007-9355-z. 

[327] N. S. Diffenbaugh, D. Swain, and D. Touma, “Anthropogenic warming has increased 

drought risk in California,” Proc. Natl. Acad. Sci., vol. vo. 112, no. No. 13, Mar. 2015, 

[Online]. Available: http://www.pnas.org/content/112/13/3931.full.pdf?with-ds=yes 

[328] J. Sathaye et al., “Estimating Risk to California Energy Infrastructure from Projected 

Climate Change,” California Energy Commission, CEC‐500‐ 2012‐057, Jul. 2012. 

[Online]. Available: https://www.energy.ca.gov/2012publications/CEC-500-2012-

057/CEC-500-2012-057.pdf 

[329] California Energy Commission (CEC), “2005 Integrated Energy Policy Report.,” 

California Energy Commission, Sacramento, California, 2005. [Online]. Available: 

https://ww2.energy.ca.gov/2005publications/CEC-100-2005-007/CEC-100-2005-007-

CMF.PDF 

[330] M. D. Bartos and M. V. Chester, “The Conservation Nexus: Valuing Interdependent Water 

and Energy Savings in Arizona,” Environ. Sci. Technol., vol. 48, no. 4, pp. 2139–2149, 

Feb. 2014, doi: 10.1021/es4033343. 

[331] E. Porse et al., “Energy use for urban water management by utilities and households in 

Los Angeles,” Environ. Res. Commun., vol. 2, no. 1, p. 015003, Jan. 2020, doi: 

10.1088/2515-7620/ab5e20. 

[332] A. T. D. Perera, V. M. Nik, D. Chen, J.-L. Scartezzini, and T. Hong, “Quantifying the 

impacts of climate change and extreme climate events on energy systems,” Nat. Energy, 

vol. 5, no. 2, Art. no. 2, Feb. 2020, doi: 10.1038/s41560-020-0558-0. 



 155 

[333] “Net Generation by State by Type of Producer by Energy Source (EIA-906, EIA-920, and 

EIA-923),” EIA Detailed State Data. https://www.eia.gov/electricity/data/state/ (accessed 

Jun. 23, 2021). 

[334] T. P. Barnett et al., “Human-Induced Changes in the Hydrology of the Western United 

States,” Science, vol. 319, no. 5866, pp. 1080–1083, Feb. 2008, doi: 

10.1126/science.1152538. 

[335] M. Dettinger, B. Udall, and A. Georgakakos, “Western water and climate change,” Ecol. 

Appl., vol. 25, no. 8, pp. 2069–2093, 2015, doi: 10.1890/15-0938.1. 

[336] A. M. Rhoades, A. D. Jones, and P. A. Ullrich, “The Changing Character of the California 

Sierra Nevada as a Natural Reservoir,” Geophys. Res. Lett., vol. 45, no. 23, p. 13,008-

13,019, 2018, doi: 10.1029/2018GL080308. 

[337] J. K. Szinai, R. Deshmukh, D. M. Kammen, and A. D. Jones, “Evaluating cross-sectoral 

impacts of climate change and adaptations on the energy-water nexus: A framework and 

California case study,” Environ. Res. Lett., 2020, doi: 10.1088/1748-9326/abc378. 

[338] S. W. D. Turner, N. Voisin, J. Fazio, D. Hua, and M. Jourabchi, “Compound climate 

events transform electrical power shortfall risk in the Pacific Northwest,” Nat. Commun., 

vol. 10, no. 1, pp. 1–8, Jan. 2019, doi: 10.1038/s41467-018-07894-4. 

[339] North America Electric Reliability Corporation, “2021 Summer Reliability Assessment,” 

May 2021. [Online]. Available: 

https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/NERC%20SRA%

202021.pdf 

[340] E. Holbrook, “Oregon May Become 8th US State to Go 100% Clean Energy,” 

Environment + Energy Leader, Jun. 29, 2021. 

https://www.environmentalleader.com/2021/06/oregon-poised-to-become-8th-us-state-to-

go-100-clean-energy/ (accessed Jul. 09, 2021). 

[341] S. Waldman, “Biden’s Infrastructure Plan Would Make Electricity Carbon-Free by 2035,” 

Scientific American, Apr. 01, 2021. Accessed: Jun. 19, 2021. [Online]. Available: 

https://www.scientificamerican.com/article/bidens-infrastructure-plan-would-make-

electricity-carbon-free-by-2035/ 

[342] B. Tarroja, A. AghaKouchak, and S. Samuelsen, “Quantifying climate change impacts on 

hydropower generation and implications on electric grid greenhouse gas emissions and 

operation,” Energy, vol. 111, pp. 295–305, Sep. 2016, doi: 10.1016/j.energy.2016.05.131. 

[343] “California drought cuts hydropower, boosts natgas prices,” Reuters, May 21, 2021. 

https://www.reuters.com/business/energy/california-drought-cuts-hydropower-boosts-

natgas-prices-2021-05-21/ (accessed May 24, 2021). 

[344] N. Voisin et al., “Impact of climate change on water availability and its propagation 

through the Western U.S. power grid,” Appl. Energy, vol. 276, p. 115467, Oct. 2020, doi: 

10.1016/j.apenergy.2020.115467. 

[345] Z. Khan et al., “Impacts of long-term temperature change and variability on electricity 

investments,” Nat. Commun., vol. 12, no. 1, p. 1643, Mar. 2021, doi: 10.1038/s41467-021-

21785-1. 

[346] A. J. Conejo, L. B. Morales, K. Jalal, and A. S. Siddiqui, Investment in Electricity 

Generation and Transmission: Decision Making under Uncertainty. Springer International 

Publishing, 2016. Accessed: Jul. 10, 2019. [Online]. Available: 

https://www.springer.com/gp/book/9783319294995 



 156 

[347] S. C. Parkinson and N. Djilali, “Robust response to hydro-climatic change in electricity 

generation planning,” Clim. Change, vol. 130, no. 4, pp. 475–489, Jun. 2015, doi: 

10.1007/s10584-015-1359-5. 

[348] A. K. Gerlak, J. Weston, B. McMahan, R. L. Murray, and M. Mills-Novoa, “Climate risk 

management and the electricity sector,” Clim. Risk Manag., vol. 19, pp. 12–22, Jan. 2018, 

doi: 10.1016/j.crm.2017.12.003. 

[349] S. Sattler, J. Macknick, D. Yates, F. Flores-Lopez, A. Lopez, and J. Rogers, “Linking 

electricity and water models to assess electricity choices at water-relevant scales,” 

Environ. Res. Lett., vol. 7, no. 4, p. 045804, 2012, doi: 10.1088/1748-9326/7/4/045804. 

[350] E. Hawkins and R. Sutton, “The Potential to Narrow Uncertainty in Regional Climate 

Predictions,” Bull. Am. Meteorol. Soc., vol. 90, no. 8, pp. 1095–1108, Aug. 2009, doi: 

10.1175/2009BAMS2607.1. 

[351] W. S. Parker, “Predicting weather and climate: Uncertainty, ensembles and probability,” 

Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys., vol. 41, no. 3, pp. 263–272, 

Sep. 2010, doi: 10.1016/j.shpsb.2010.07.006. 

[352] G. Flato et al., “2013: Evaluation of Climate Models. Climate Change 2013: The Physical 

Science Basis,” Intergovernmental Panel on Climate Change, Cambridge, United 

Kingdom and New York, NY, USA, 2013. Accessed: May 06, 2019. [Online]. Available: 

https://www.ipcc.ch/report/ar5/wg1/evaluation-of-climate-models/ 

[353] D. E. Rupp, J. T. Abatzoglou, K. C. Hegewisch, and P. W. Mote, “Evaluation of CMIP5 

20th century climate simulations for the Pacific Northwest USA,” J. Geophys. Res. 

Atmospheres, vol. 118, no. 19, p. 10,884-10,906, 2013, doi: 

https://doi.org/10.1002/jgrd.50843. 

[354] B. Livneh et al., “A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and 

States for the Conterminous United States: Update and Extensions,” J. Clim., vol. 26, no. 

23, pp. 9384–9392, Dec. 2013, doi: 10.1175/JCLI-D-12-00508.1. 

[355] D. Yates, J. Sieber, D. Purkey, and A. Huber-Lee, “WEAP21—A Demand-, Priority-, and 

Preference-Driven Water Planning Model,” Water Int., vol. 30, no. 4, pp. 487–500, Dec. 

2005, doi: 10.1080/02508060508691893. 

[356] M. Howells et al., “Integrated analysis of climate change, land-use, energy and water 

strategies,” Nat. Clim. Change, vol. 3, no. 7, pp. 621–626, Jul. 2013, doi: 

10.1038/nclimate1789. 

[357] “HydroSHEDS.” https://www.hydrosheds.org/ (accessed Jul. 08, 2021). 

[358] “USGS Water Data for the Nation,” USGS National Water Information System Web 

Interface. https://waterdata.usgs.gov/nwis (accessed Jun. 30, 2021). 

[359] M. S. Pervez and J. F. Brown, “Mapping Irrigated Lands at 250-m Scale by Merging 

MODIS Data and National Agricultural Statistics,” Remote Sens., vol. 2, no. 10, pp. 2388–

2412, Oct. 2010, doi: 10.3390/rs2102388. 

[360] C. Homer, “Remote Sensing Shrub/Grass National Land Cover Database (NLCD) Back-

in-Time (BIT) Products for the Western U.S., 1985 - 2018.” U.S. Geological Survey, 

2020. doi: 10.5066/P9C9O66W. 

[361] “National Inventory of Dams (NID) - Home,” US Army Corps of Engineers. 

https://nid.sec.usace.army.mil/ords/f?p=105:1:::::: (accessed Jul. 08, 2021). 

[362] “Carlsbad Desal Plant,” Carlsbad Desal Plant. https://www.carlsbaddesal.com/ (accessed 

Jul. 11, 2021). 



 157 

[363] “Form EIA-860 detailed data with previous form data (EIA-860A/860B).” 

https://www.eia.gov/electricity/data/eia860/ (accessed May 28, 2021). 

[364] “Form EIA-923 detailed data with previous form data (EIA-906/920).” 

https://www.eia.gov/electricity/data/eia923/ (accessed May 28, 2021). 

[365] “Bureau of Reclamation.” https://www.usbr.gov/projects/ (accessed Jul. 08, 2021). 

[366] W. Green and G. Allen, “Irrigation pump efficiency – the evolving essentials.” n, Center 

for Irrigation Technology, California State University, Fresno; REDtrac, LLC, 

Bakersfield, California. [Online]. Available: https://ucanr.edu/sites/calasa/files/287377.pdf 

[367] “Residential Energy Consumption Survey (RECS) Table HC8.8 Water heating in homes 

in the South and West regions, 2015,” Energy Information Administration. 

https://www.eia.gov/consumption/residential/data/2015/hc/php/hc8.8.php (accessed Jul. 

09, 2021). 

[368] “California DWR Workbook: Water_Balance,” CA DWR California Water Plan. 

https://tableau.cnra.ca.gov/t/DWR_Planning/views/Water_Balance/HRButterflyChart?ifra

meSizedToWindow=true&%3Aembed=y&%3AshowAppBanner=false&%3Adisplay_cou

nt=no&%3AshowVizHome=no (accessed Jul. 10, 2021). 

[369] Arizona Department of Water Resources, “Arizona Water Atlas: Volume 1, Executive 

Summary,” Arizona Department of Water Resources, 2010. [Online]. Available: 

https://infoshare.azwater.gov/docushare/dsweb/Get/Document-

10426/Atlas_Volume_1_web.pdf 

[370] “Water Use and Conservation - NM Office of the State Engineer.” 

https://www.ose.state.nm.us/WUC/wuc_waterUseData.php (accessed Jul. 10, 2021). 

[371] J. King, “STATEWIDE GROUNDWATER PUMPAGE INVENTORY, CALENDAR 

YEAR 2015,” Nevada Department of Conservation and Natural Resources, Nov. 2017. 

[Online]. Available: 

http://water.nv.gov/documents/Nevada_Groundwater_Pumpage_2015.pdf 

[372] “Water Uses | Colorado Water Knowledge | Colorado State University.” 

https://waterknowledge.colostate.edu/water-management-administration/water-uses/ 

(accessed Jul. 10, 2021). 

[373] Oregon Water Resources Department, “2015 Statewide Long-Term Water Demand 

Forecast: Oregon’s Integrated Water Resources Strategy,” Dec. 2015. [Online]. Available: 

https://www.oregon.gov/owrd/wrdpublications1/OWRD_2015_Statewide_LongTerm_Wa

ter_Demand_Forecast.pdf 

[374] Idaho Water Resource Board, “State of Idaho Water Resource Inventory 2010,” Idaho 

Water Resource Board, 2010. [Online]. Available: 

https://idwr.idaho.gov/files/iwrb/2010/2010-Water-Resource-Inventory.pdf 

[375] Montana Department of Natural Resources and Conservation, “Montana State Water Plan: 

A Watershed Approach to the 2015 Montana State Water Plan,” Dec. 2014. [Online]. 

Available: http://dnrc.mt.gov/divisions/water/management/docs/state-water-

plan/2015_mt_water_plan.pdf 

[376] “Wyoming State Water Plan Framework Plan Data Tables,” Wyoming Water Development 

Office. https://waterplan.state.wy.us/plan/statewide/tables/tables.html (accessed Jul. 10, 

2021). 

[377] J. Johnston, R. Henriquez-Auba, B. Maluenda, and M. Fripp, “Switch 2.0: A modern 

platform for planning high-renewable power systems,” SoftwareX, vol. 10, p. 100251, Jul. 

2019, doi: 10.1016/j.softx.2019.100251. 



 158 

[378] J. Nelson et al., “High-resolution modeling of the western North American power system 

demonstrates low-cost and low-carbon futures,” Energy Policy, vol. 43, pp. 436–447, Apr. 

2012, doi: 10.1016/j.enpol.2012.01.031. 

[379] “Gurobi - The fastest solver,” Gurobi. https://www.gurobi.com/ (accessed May 28, 2021). 

[380] National Renewable Energy Laboratory (NREL), “Data | Electricity | 2020 Annual 

Technology Baseline | NREL,” Annual Technology Baseline. 

https://atb.nrel.gov/electricity/2020/data.php (accessed Jun. 13, 2021). 

[381] Black & Veatch, “Cost and Performance Data for Power Generation Technologies, 

Prepared for the National Renewable Energy Laboratory,” Feb. 2012. [Online]. Available: 

https://refman.energytransitionmodel.com/publications/1921 

[382] “WINDExchange: Production Tax Credit and Investment Tax Credit for Wind,” DOE 

Office of Energy Efficiency and Renewable Energy. 

https://windexchange.energy.gov/projects/tax-credits (accessed Jun. 14, 2021). 

[383] “Residential and Commercial ITC Factsheets,” Energy.gov. 

https://www.energy.gov/eere/solar/articles/residential-and-commercial-itc-factsheets 

(accessed Jun. 14, 2021). 

[384] W. Cole et al., “Regional Energy Deployment System (ReEDS) Model Documentation: 

Version 2019,” National Renewable Energy Lab. (NREL), Golden, CO (United States), 

NREL/TP-6A20-74111, Mar. 2020. doi: 10.2172/1606151. 

[385] “Form No. 714 - Annual Electric Balancing Authority Area and Planning Area Report | 

Federal Energy Regulatory Commission.” https://www.ferc.gov/industries-

data/electric/general-information/electric-industry-forms/form-no-714-annual-electric/data 

(accessed Jun. 14, 2021). 

[386] J. K. Szinai, C. J. R. Sheppard, N. Abhyankar, and A. R. Gopal, “Reduced grid operating 

costs and renewable energy curtailment with electric vehicle charge management,” Energy 

Policy, vol. 136, p. 111051, Jan. 2020, doi: 10.1016/j.enpol.2019.111051. 

[387] Andrew Funk and William B. DeOreo, “Embedded Energy in Water Studies Study 3: End-

use Water Demand Profiles,” Prepared for the California Public Utilities Commission, 

Apr. 2011. 

[388] “Western Electricity Coordinating Council: Demand,” Western Electricity Coordinating 

Council. https://www.wecc.org/epubs/StateOfTheInterconnection/Pages/Demand.aspx 

(accessed Jul. 29, 2021). 

[389] H. Hoff, “Understanding the Nexus. Background Paper for the Bonn2011 Conference: The 

Water, Energy and Food Security Nexus,” Stockholm Environment Institute, Stockholm, 

2011. [Online]. Available: https://mediamanager.sei.org/documents/Publications/SEI-

Paper-Hoff-UnderstandingTheNexus-2011.pdf 

[390] “California was the largest net electricity importer of any state in 2019 - Today in 

Energy.” https://www.eia.gov/todayinenergy/detail.php?id=46156 (accessed Jul. 13, 

2021). 

[391] A. M. Meadow, D. B. Ferguson, Z. Guido, A. Horangic, G. Owen, and T. Wall, “Moving 

toward the Deliberate Coproduction of Climate Science Knowledge,” Weather Clim. Soc., 

vol. 7, no. 2, pp. 179–191, Apr. 2015, doi: 10.1175/WCAS-D-14-00050.1. 

[392] D. W. Cash, J. C. Borck, and A. G. Patt, “Countering the Loading-Dock Approach to 

Linking Science and Decision Making: Comparative Analysis of El Niño/Southern 

Oscillation (ENSO) Forecasting Systems,” Sci. Technol. Hum. Values, vol. 31, no. 4, pp. 

465–494, Jul. 2006, doi: 10.1177/0162243906287547. 



 159 

[393] K. A. Goodrich, K. D. Sjostrom, C. Vaughan, L. Nichols, A. Bednarek, and M. C. Lemos, 

“Who are boundary spanners and how can we support them in making knowledge more 

actionable in sustainability fields?,” Curr. Opin. Environ. Sustain., vol. 42, pp. 45–51, 

Feb. 2020, doi: 10.1016/j.cosust.2020.01.001. 

[394] “Project HyperFACETS.” https://climate.ucdavis.edu/hyperfacets/index.php (accessed Jul. 

16, 2021). 

[395] K. Jagannathan, A. D. Jones, and I. Ray, “The making of a metric: Co-producing decision-

relevant climate science,” Bull. Am. Meteorol. Soc., vol. 1, no. aop, pp. 1–33, Feb. 2020, 

doi: 10.1175/BAMS-D-19-0296.1. 

[396] E. C. Evarts, “EVgo launches first public 350-kw fast charger,” Green Car Reports. 

https://www.greencarreports.com/news/1120518_evgo-launches-first-public-350-kw-fast-

charger (accessed Apr. 16, 2019). 

[397] K. Fehrenbacher, “California’s great electric vehicle charging build-out,” GreenBiz, Oct. 

03, 2018. https://www.greenbiz.com/article/californias-great-electric-vehicle-charging-

build-out (accessed Apr. 16, 2019). 

[398] “PLEXOS Wiki - Concise Modelling Guide.” 

https://wiki.energyexemplar.com/index.php?n=Article.ConciseModellingGuide (accessed 

Apr. 09, 2019). 

[399] P. Sullivan, J. Colman, and E. Kalendra, “Predicting the Response of Electricity Load to 

Climate Change,” National Renewable Energy Laboratory, NREL/TP-6A20-64297, Jul. 

2015. [Online]. Available: https://www.nrel.gov/docs/fy15osti/64297.pdf 

[400] B. Boehlert et al., “Climate change impacts and greenhouse gas mitigation effects on U.S. 

hydropower generation,” Appl. Energy, vol. 183, pp. 1511–1519, Dec. 2016, doi: 

10.1016/j.apenergy.2016.09.054. 

[401] “Western Wind Data Set,” National Renewable Energy Laboratory. 

https://www.nrel.gov/grid/western-wind-data.html (accessed Jun. 11, 2021). 

[402] G. C. Wu, M. S. Torn, and J. H. Williams, “Incorporating Land-Use Requirements and 

Environmental Constraints in Low-Carbon Electricity Planning for California,” Environ. 

Sci. Technol., vol. 49, no. 4, pp. 2013–2021, Feb. 2015, doi: 10.1021/es502979v. 

[403] “System Advisor Model (SAM),” National Renewable Energy Laboratory. 

https://sam.nrel.gov/ (accessed Jun. 11, 2021). 

[404] A. Milbrandt, “A Geographic Perspective on the Current Biomass Resource Availability in 

the United States,” National Renewable Energy Laboratory, NREL/TP-560-39181, 2005. 

[Online]. Available: https://www.nrel.gov/docs/fy06osti/39181.pdf 

[405] “Assumptions to the Annual Energy Outlook 2017,” U.S. Energy Information 

Administration, Jul. 2017. [Online]. Available: 

https://www.eia.gov/outlooks/aeo/assumptions/pdf/0554(2017).pdf 

[406] “State Renewable Portfolio Standards and Goals,” National Conference of State 

Legislatures. https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx 

(accessed Jun. 15, 2021). 

[407] “Are you efficient with your indoor water use?,” Residential | Denver Water. 

https://www.denverwater.org/residential/efficiency-tip/are-you-efficient-your-indoor-

water-use (accessed Oct. 15, 2020). 

[408] Candice Hasenyager, Eric Klotz, and Todd Adams, “2009 Residential Water Use: Survey 

Results and Analysis of Residential Water Use for Seventeen Communities in Utah,” Utah 



 160 

Department of Natural Resources, 2010. [Online]. Available: https://water.utah.gov/wp-

content/uploads/2019/08/2009-Residential-Water-Use.pdf 

[409] William B. DeOreo et al., “California Single Family Water Use Efficiency Study,” 

Sponsored by California Department of Water Resources, 2011. [Online]. Available: 

http://water.cityofdavis.org/Media/PublicWorks/Documents/PDF/PW/Water/Documents/

California-Single-Family-Home-Water-Use-Efficiency-Study-20110420.pdf 

[410] C. Mini, T. S. Hogue, and S. Pincetl, “Estimation of residential outdoor water use in Los 

Angeles, California,” Landsc. Urban Plan., vol. 127, pp. 124–135, Jul. 2014, doi: 

10.1016/j.landurbplan.2014.04.007. 

[411] San Francisco Public Utilities Commission, “Water Resources Division Annual Report, 

Fiscal Year 2016 - 2017,” San Francisco Public Utilities Commission, Nov. 2017. 

[Online]. Available: https://sfwater.org/modules/showdocument.aspx?documentid=11472 

[412] Brenda Estrada and Charles Duncan, “City of Sacramento 2015 Urban Water Management 

Plan,” Jun. 2016. [Online]. Available: 

https://www.cityofsacramento.org/~/media/Corporate/Files/DOU/Reports/City%20of%20

Sacramento%20Final%202015%20UWMP%20June%202016.pdf 

[413] Prepared by Aquacraft, Inc., Water Engineering and Management, “Seattle Public Utilities 

Study of Market Penetration of Water Efficient Fixtures,” Seattle Public Utilities, 2004. 

[Online]. Available: https://aquacraft.com/wp-content/uploads/2015/10/Conservation-

Potential-Water-Use-Assessment.pdf 

[414] “How Does Your Water Use Stack Up?,” Arizona Municipal Water Users Association. 

http://www.amwua.org/blog/how-does-your-water-use-stack-up (accessed Oct. 15, 2020). 

[415] “Indoor Water Efficiency | The City of Portland, Oregon,” Portland Water Bureau. 

https://www.portlandoregon.gov/water/51031 (accessed Oct. 15, 2020). 

[416] P. W. Mayer, “Water Research Foundation Study Documents Water Conservation 

Potential and More Efficiency in Households,” J. AWWA, vol. 108, no. 10, pp. 31–40, 

2016, doi: 10.5942/jawwa.2016.108.0160. 

 

  



 161 

Appendices 
 

Chapter 1 Appendix 

A. Sensitivity analysis of added workplace charging infrastructure 

 We assess the opportunity for expanding workplace chargers to increase the supply of 

load shifting flexibility of PEV charging. We do this by simulating BEAM in the San Francisco 

Bay Area with two workplace charger sensitivities on our base scenario of charging 

infrastructure (Table 1). The first sensitivity introduces 14,700 additional Level 2 chargers, sited 

at drivers’ workplace locations in the San Francisco Bay Area model. The chargers are sited in 

proportion to the spatial density of these existing workplace locations. This 4X sensitivity results 

in four times more Level 2 workplace chargers than in the base scenario. An additional 8X 

sensitivity is created using the same technique but with 34,300 new chargers, resulting in eight 

times more Level 2 workplace chargers than in the base scenario.  

We then process the charging sessions and analyze the change in charging flexibility 

from the base scenario (Figure A.1). As in Figure 6 of the main text, these charging sessions 

represent a typical weekday in the San Francisco Bay Area and are not shown scaled to 

California 2025 levels. We find that dramatic increases in workplace charging infrastructure 

increases the charging load in the workplace sector, but not proportionally with the number of 

added chargers. The morning peak workplace charging load only increases by 63% and by 99% 

for the 4X and 8X sensitivities, respectively. For short duration flexibility (0-2 hours), the peak 

morning workplace load increases by 57% from the base to the 8X sensitivity. For longer period 

flexibility, the peak morning load only increases by 123% with the 8X sensitivity. 

With both workplace charging sensitivities, overall, residential charging still dominates 

the load profile and the opportunity for charging flexibility. Even in the 8X sensitivity, there is 

still eight times more energy demanded at home than at the workplace, and a much higher 

fraction of this load is of long-duration flexibility. These sensitivities support a focus on 

residential smart charging, because of the relatively small marginal increase in daytime load and 

flexibility from added workplace chargers.  
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Figure A.1: Weekday charging session flexibility duration and energy demanded by location and hour for three workplace 

infrastructure scenarios. 

The panels show for a typical weekday in the San Francisco Bay Area BEAM simulation (before scaling to California 2025 

levels), the energy demanded by location and the hours of flexibility to shift load within charging sessions (based on the time 

between active charging and unplugging). Each row of panels represents a different workplace charging infrastructure 

scenario where progressively more workplace chargers are sited. A. Base case with original number of chargers assumed in 

the analysis. B. 4X sensitivity with four times number of workplace chargers as base case. C. 8X sensitivity with eight times 

the number of workplace chargers as base case. 
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B. Sensitivity analyses of vehicle range and fast charging infrastructure 

 The PEV market is quickly evolving and battery capacities in new vehicle models are 

already much larger than the 2016 fleet [116]. While we assume in our baseline analysis that by 

our 2025 study year every vehicle will have 1.5X larger battery capacity than a 2016 vehicle, 

even this assumption may be an underestimate. In addition to battery capacity, DC Fast charger 

technology is also advancing, with chargers rated as high as 350kW entering the market [396]. 

Furthermore, with increased availability of DC Fast chargers in general [397], PEV driver 

behavior in the future may differ from our assumed behavioral patterns which were based on 

2016 utilization of DC Fast chargers in the San Francisco Bay Area. In these sensitivity analyses, 

we deduce how our flexibility results may potentially change by post-processing the charging 

sessions from our BEAM baseline scenario (Table 1, Figure 6) to mimic higher range and faster 

charging futures. 

 In Figure B.1 we disaggregate the flexibility result in the baseline BEAM scenario for the 

San Francisco Bay Area by low- and high-range vehicles using the medians of 126 miles for 

BEVs and 31 miles for PHEVs, respectively, as the dividing points. We observe subtle 

differences between low- and high-range vehicles in the time of day and the relative duration of 

load shift capacity. With BEVs, the low-range vehicles have slightly more of the longest duration 

flexibility (12+ hours), while the high-range vehicles have more 8 to 10-hour duration flexibility. 

For PHEVs, the low-range vehicles provide more flexibility during the morning hours compared 

to the high-range PHEVs. Consequently, we deduce that increased numbers of high-range PEVs 

may result in marginally lower cost savings and curtailment reductions, but not a significant 

overall change from our baseline results. 

 In Figure B.2 we present the same flexibility analysis for the San Francisco Bay Area but 

for several scenarios that vary the amount and rate of DC Fast charging that occurs in the 

simulation. We replace a share of slow charging (Level 2) sessions in the baseline scenario 

BEAM output with a representative DC Fast charging session that occurs at approximately the 

same time and delivers approximately the same amount of energy, but at a higher rate. In these 

sensitivities, we increase the number of fast charging sessions by a factor of 20, to 6% of all 

sessions from 0.3% of all sessions originally in the baseline scenario. We also increase the rate of 

DC Fast charging across the scenarios from 50 kW to 350 kW. We find that including more 

public DC Fast chargers moves some charging away from home and to the morning (between 

6am to 12pm). The added DC Fast chargers also decrease the flexibility in those hours; the 

overall amount of temporal flexibility (the number of hours into which load can be shifted) 

decreases by 3% between the baseline and the DC Fast sensitivities. This implies that if DC Fast 

chargers comprised a greater share of infrastructure, there may be slightly lower curtailment 

reductions (and cost savings) that could be achieved by smart charging in the morning hours than 

indicated by our baseline results. However, even with a 20-fold increase in DC Fast chargers, we 

expect this decrease to be relatively small and overall the bulk of load flexibility to still occur at 

home with slow chargers in the evening. Our sensitivities also show no difference in flexibility 

between the three fast charger rates, because in all cases we have assumed that PEVs unplug 

immediately at the end of active charging during fast charging sessions. Overall, we expect that 

across increasing rates of DC Fast chargers the shape of the charging load would be different, 

and a greater installation of faster chargers might allow for more utilization over slow charging, 

but that the impact of charging rate on total load flexibility (and therefore costs and curtailment) 

would be marginal.  
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A 

B 

Figure B.1: Weekday charging session flexibility duration and energy demanded by BEV and PHEV, by high- range and low-

range battery sizes. 

The panels show for a typical weekday in the San Francisco Bay Area BEAM simulation (before scaling to California 2025 

levels), the percent of maximum energy demanded and the hours of flexibility to shift load within charging sessions (based on 

the time between active charging and unplugging) by high- and low-range battery sizes. Each row of panels represents a vehicle 

type, either BEV or PHEV. A. High- and Low-Range PHEVs, split by the median 31-mile PHEV range in the baseline analysis. 

B. High- and Low-Range BEVs, split by the median 126-mile BEV range in the baseline analysis. 
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Figure B.2: Weekday charging session flexibility duration and energy demanded in Base case (0.3% DC Fast charging sessions) 

and sensitivities (6% DC Fast charging sessions) with 50 kW to 350 kW DC Fast chargers. 

The panels show for a typical weekday in the San Francisco Bay Area BEAM simulation (before scaling to California 2025 

levels), the energy demanded (MWh) and the hours of flexibility to shift load within charging sessions (based on the time 

between active charging and unplugging) by high- and low-range battery sizes. Each plot represents a different percent of 

charging sessions by DC Fast chargers, and a particular rate of DC Fast chargers. A. Base case with 0.3% of charging sessions 

at DC Fast chargers, at 50 kW. B. Sensitivity with 6% of charging sessions at DC Fast chargers, at 50 kW. C. Sensitivity with 

6% of charging sessions at DC Fast chargers, at 100 kW. D. Sensitivity with 6% of charging sessions at DC Fast chargers, at 

350 kW. 
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C. PLEXOS Unit Commitment and Economic Dispatch Optimization 

 In this analysis we use the unit commitment and economic dispatch model PLEXOS, a 

commercial optimization software created by Energy Exemplar. This Appendix presents the 

main characteristics and high-level model outline of the optimization used in this analysis, and 

not a comprehensive mathematical model. More detail on the mathematical model is available in 

PLEXOS documentation from Energy Exemplar [398]. Additionally, [128], [129], [140], [141] 

provide examples of other studies which have used PLEXOS for similar types of analyses. 

PLEXOS constructs the objective function and constraints based on parameters provided 

in the input database. The specific PLEXOS database we use in this analysis for the WECC 

region (containing generator, load, network data, and constraints) was obtained from and 

originally created by the California Independent System Operator (CAISO) for state grid 

planning processes, and more information on the database is described in regulatory documents 

[153]–[156] and prior studies using variants of the same database [104], [157]–[159].  

The objective function for each day of the optimization in our WECC-wide analysis can broadly 

be simplified to: 

Eq.(C.1): 

𝑚𝑖𝑛 ∑ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑖,𝑡

𝑖,𝑡

+ ∑ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑡

𝑡

+ ∑ 𝑉𝑜𝐿𝐿𝑗

𝑗,𝑡

∗ 𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡

− ∑ 𝑃𝑟𝑖𝑐𝑒𝑜𝑓𝐷𝑢𝑚𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝑗

𝑗,𝑡

∗ 𝐷𝑢𝑚𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡 

subject to several types of operational constraints, which are described further below. 

The objective function has several main components defined as follows: 

𝑖 indexes each of the generators, which are in specific utility zones (𝑗) within the WECC region 

and could be thermal (natural gas, coal, nuclear, other) or renewable. There are several thousand 

generators included in WECC. 

𝑡 indexes each hour in the optimization. The optimization is conducted for hourly intervals, at 

daily timesteps, one month at a time for a complete year. 

𝑗 indexes each utility zone in the optimization. This analysis has 25 total zones in WECC, 

including eight in California. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑖,𝑡 is the operating cost of generator 𝑖 at hour 𝑡, including the fuel costs (𝐹𝐶𝑖,𝑡), 

operations and maintenance costs (𝑂&𝑀𝑖,𝑡), start/shutdown costs of thermal units (𝑆𝐶𝑖,𝑡) and the 

emissions costs of fossil units (𝐸𝐶𝑖,𝑡).  

Eq.(C.2): 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑖,𝑡  = 𝐹𝐶𝑖,𝑡 + 𝑂&𝑀𝑖,𝑡 + 𝑆𝐶𝑖,𝑡 + 𝐸𝐶𝑖,𝑡 

Each component of 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡𝑖,𝑡 is defined as follows: 

Eq.(C.3): 𝐹𝐶𝑖,𝑡 = 𝐹𝑢𝑒𝑙𝑃𝑟𝑖𝑐𝑒𝑖  × 𝐻𝑒𝑎𝑡𝑉𝑎𝑙𝑢𝑒𝑖   × 𝐻𝑒𝑎𝑡𝑅𝑎𝑡𝑒𝑖  ×   𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 

𝐹𝐶𝑖,𝑡 is the fuel cost (applicable only for natural gas, coal, nuclear, and biomass generators). 

𝐹𝑢𝑒𝑙𝑃𝑟𝑖𝑐𝑒𝑖 and 𝐻𝑒𝑎𝑡𝑉𝑎𝑙𝑢𝑒𝑖 are the price and heating value of the fuel used by generator 𝑖. 
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𝐻𝑒𝑎𝑡𝑅𝑎𝑡𝑒𝑖 is the rate of electricity output given a unit of fuel input, and could be modeled as a 

function (linear or non-linear) depending on the generation level. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 is the instantaneous electricity production from generator 𝑖 in hour t. It is one of 

the main decision variables of the optimization. 

Eq.(C.4): 𝑂&𝑀𝑖,𝑡 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 ∗ 𝑉𝑂&𝑀𝑖 

𝑂&𝑀𝑖,𝑡 is the cost for operations and maintenance for each generator, based on its variable 

𝑉𝑂&𝑀𝑖 cost per unit of 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡. 

Eq.(C.5):  𝑆𝐶𝑖,𝑡 = 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑠𝑡𝑖  ×  𝑈𝑛𝑖𝑡𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑𝑖,𝑡 +  𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝐶𝑜𝑠𝑡𝑖  ×
 𝑈𝑛𝑖𝑡𝑠𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑖,𝑡 

𝑆𝐶𝑖,𝑡 is the cost to start and shutdown a generator and is typically applicable only for thermal 

generators depending on the number of 𝑈𝑛𝑖𝑡𝑠𝑆𝑡𝑎𝑟𝑡𝑒𝑑𝑖,𝑡 or 𝑈𝑛𝑖𝑡𝑠𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑖,𝑡 during the 

period, which are integer decision values that are part of the unit commitment decision. 

Eq.(C.6):  𝐸𝐶𝑖,𝑡 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑃𝑟𝑖𝑐𝑒 × 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑅𝑎𝑡𝑒𝑖  ×   𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 

𝐸𝐶𝑖,𝑡 is the emissions cost for CO2 emissions based on each fossil plant’s 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑅𝑎𝑡𝑒𝑖 per 

MWh times its 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 and the exogenously set 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑃𝑟𝑖𝑐𝑒 per unit of CO2. The 

emissions cost is applied in this way directly to fossil generators within California, and added to 

the transmission 𝑊ℎ𝑒𝑒𝑙𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑔𝑒𝑗𝑘 with an assumed 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑅𝑎𝑡𝑒 to out-of-state 

generators which produce “unspecified” imports (not dedicated fossil or RE imports from a 

known origin). 

Eq.(C.7):  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑡 = ∑ 𝑊ℎ𝑒𝑒𝑙𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑔𝑒𝑗𝑘𝑗,𝑘  × 𝐿𝑖𝑛𝑒𝐹𝑙𝑜𝑤𝑗𝑘,𝑡 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑡 reflects a Transmission Access Charge [153] for net hourly flow on the 

transmission paths between each zone 𝑗 and all the connected utility zones 𝑘, based on the 

𝑊ℎ𝑒𝑒𝑙𝑖𝑛𝑔𝐶ℎ𝑎𝑟𝑔𝑒𝑗𝑘 per MWh for each set of connected zones 𝑗 and 𝑘 and the hourly 

𝐿𝑖𝑛𝑒𝐹𝑙𝑜𝑤𝑗𝑘,𝑡 decision variables in the reference flow direction.  

𝑉𝑜𝐿𝐿𝑗 ∗ 𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡 is the cost of load shedding. The 𝑉𝑜𝐿𝐿𝑗 sets a maximum price in 

each zone above which there is 𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡. If there is not enough generation to meet 

load, the electricity market price will reach the 𝑉𝑜𝐿𝐿. 𝑃𝑟𝑖𝑐𝑒𝑜𝑓𝐷𝑢𝑚𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝑗 is a price below 

which generators shutoff rather than 𝐷𝑢𝑚𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡 or over-generate. If generation exceeds 

load, the electricity market price reaches the 𝑃𝑟𝑖𝑐𝑒𝑜𝑓𝐷𝑢𝑚𝑝𝐸𝑛𝑒𝑟𝑔𝑦, which is typically negative. 

Generator unit commitment and dispatch is subject to the following selected constraints: 

For each utility zone 𝑗 there is an energy balance constraint such that total generation of all 

generators within the zone 𝑗 (minus any over-generation 𝐷𝑢𝑚𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡) plus total power 

𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑗,𝑡 from connected zones minus total power 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑗,𝑡 to connected zones must match 

the 𝐿𝑜𝑎𝑑𝑡 in zone 𝑗, which is the total electricity demanded in hour 𝑡 (minus any under-

generation 𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡): 

Eq.(C.8):  ∑  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 − 𝐷𝑢𝑚𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡𝑖 +  𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑗,𝑡 −  𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑗,𝑡 =  𝐿𝑜𝑎𝑑𝑡 −

𝑈𝑛𝑠𝑒𝑟𝑣𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑗,𝑡  

Where: 
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Eq.(C.9):   𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑗,𝑡 =  ∑ 𝐿𝑖𝑛𝑒𝐹𝑙𝑜𝑤𝑘 𝑗𝑘,𝑡
 

Eq.(C.10):    𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑗,𝑡 =  ∑ 𝐿𝑖𝑛𝑒𝐹𝑙𝑜𝑤𝑘 𝑘𝑗,𝑡
  

𝑗𝑘 indicates power flow from zone 𝑗 to zone 𝑘, and 𝑘𝑗 indicates power flowing from zone 𝑘 to 

zone 𝑗. 

Selected generator constraints: 

Instantaneous energy from any generator must be less than or equal to its max capacity: 

Eq.(C.11): 𝑀𝑎𝑥𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖  ≥ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 

All thermal generators must abide by their ramping constraints: 

Eq.(C.12): |𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 −  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡−1|  ≤  𝑅𝑎𝑚𝑝𝑅𝑎𝑡𝑒𝑖 

Hydropower generators have monthly energy budgets (based on the amount of water they can 

allocate that month) as well as minimum and maximum flows. PLEXOS first optimizes for the 

monthly budget through a monthly scheduling process. There are also particular constraints for 

other generator types or demand-side resources that are not described here, such as pumped 

storage, battery storage, and demand response. RE generation is included as a “fixed dispatch” 

with a 𝑉𝑂&𝑀𝑖 set to -$150/MWh such that generation is curtailed when the market price reaches 

that level. The method for modeling PEVs and their constraints are described in Section 2.3.2. 

Overall, the optimization is a mixed integer program including a unit commitment decision (1 or 

0 whether a generator is on or off) and an economic dispatch decision (how much a generator 

generates). The following are the main unit commitment related constraints: 

Eq.(C.13):  𝑈𝑛𝑖𝑡𝑂𝑛𝑖,𝑡 = 𝑈𝑛𝑖𝑡𝑂𝑛𝑖,𝑡−1 + 𝑈𝑛𝑖𝑡𝑆𝑡𝑎𝑟𝑡𝑒𝑑𝑖,𝑡 − 𝑈𝑛𝑖𝑡𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑖,𝑡 

There are also constraints specific to the unit commitment problem for minimum stable levels, 

minimum up time, and minimum down time: 

Eq.(C.14): 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 ≥ 𝑈𝑛𝑖𝑡𝑂𝑛𝑖,𝑡 ∗ 𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖 

When a generator is committed (𝑈𝑛𝑖𝑡𝑂𝑛𝑖,𝑡 = 1), it must operate at or above its 

𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝐿𝑒𝑣𝑒𝑙𝑖. 

𝑀𝑖𝑛𝑈𝑝𝑇𝑖𝑚𝑒𝑖 is the minimum number of hours a generator unit must be on if committed 

(primarily applies to thermal generators).  

𝑀𝑖𝑛𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒𝑖 is the minimum number of hours a generator unit must be off if shut down 

(primarily applies to thermal generators). 

Selected transmission and reserves constraints: 

The optimization solves a linearized DC power flow which follows Kirchhoff’s Laws, and flows 

between utility zones  𝑗 and 𝑘 must not exceed 𝐿𝑖𝑛𝑒𝐿𝑖𝑚𝑖𝑡𝑠𝑗𝑘 and 𝐿𝑖𝑛𝑒𝐿𝑖𝑚𝑖𝑡𝑠𝑘𝑗.  

For California there are some additional import and export constraints that are included in this 

analysis, per CAISO’s assumptions [156], [153]. For example, for the set of utility zones 𝑗 which 

are part of the CAISO region (PG&E Valley, PG&E Bay, SCE, SDG&E), there is a 2000 MW 

limit on its total hourly total net exports: 
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Eq.(C.15): ∑ 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑗,𝑡𝑗 − ∑ 𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑗,𝑡𝑗 ≤ 2000 ∀ 𝑗 ∈

{𝑃𝐺&𝐸 𝑉𝑎𝑙𝑙𝑒𝑦, 𝑃𝐺&𝐸 𝐵𝑎𝑦, 𝑆𝐶𝐸, 𝑆𝐷𝐺&𝐸} 

There are also hourly reserve requirements (load-following, regulation, spinning, and non-

spinning) as estimated by CAISO that must be met for utility zones throughout the WECC. 

Constraints specify that certain generator types can provision different types of reserves, and the 

provision of reserves is determined as part of a co-optimization with the unit commitment and 

dispatch of generators to provide energy.  

Solution algorithm: 

We set the Mixed Integer Program (MIP) gap, the percentage difference between the best integer 

solution and the best bound (through the Branch and Bound algorithm) to be 0.01%, and set the 

optimization to stop solving for each day’s optimum when it reaches this MIP gap or a time limit 

of 4000 seconds.  
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D. Supplementary Tables 

Table D.1: Charging sessions by location included in ChargePoint calibration data. 

Charging Session Location Number of Charging Sessions 

Education 17,824 

Fleet 10,165 

Government 4,239 

Healthcare 10,295 

Hospitality 6,340 

Multifamily Commercial 12,579 

Multifamily Home Service 1,256 

Municipal 84,517 

Parking 17,920 

Parks and Rec 3,729 

Retail 34,093 

Single family residential 40,901 

Workplace 607,239 

To calibrate the charging profiles from BEAM, we used data obtained from ChargePoint, the largest charging provider in the 

U.S. The number of charging sessions by location type is described in the table. The data covered charging sessions from the last 

2 months of 2016 and included 961 residential charging locations in addition to commercial charging locations. 

Table D.2: Annual California generation by fuel source (GWh). 

Fuel Category Scenario Unmanaged Smart G TOU 

Biomass/Biogas Low 5,285 5,285 5,285 

Geothermal Low 15,381 15,381 15,381 

Hydro Low 37,166 37,166 37,166 

Natural Gas A Low 96,363 96,372 96,520 

Net Imports B Low 48,526 48,384 48,412 

Demand Response C Low 22 15 16 

Distributed Generation-Behind the Meter Low 9,156 9,156 9,156 

Other D Low 1,586 1,586 1,586 

Hydro Pumped Storage Low 4,617 4,583 4,613 

Battery Storage Low 1,402 1,303 1,370 

Uncurtailed Large PV E Low 51,073 51,073 51,073 

Uncurtailed Small PV E Low 4,972 4,972 4,972 

Uncurtailed Solar Thermal E Low 2,286 2,286 2,286 

Uncurtailed Wind E Low 33,519 33,519 33,519 

Solar and Wind Capacity Curtailed E Low -1,274 -1,155 -1,324 

Pump Load/Storage Charging Load F Low -6,617 -6,448 -6,570 

Biomass/Biogas Mid 5,285 5,285 5,285 

Geothermal Mid 15,381 15,381 15,381 

Hydro Mid 37,166 37,166 37,166 

Natural Gas A Mid 99,003 98,876 99,467 

Net Imports B Mid 49,097 48,979 48,765 

Demand Response C Mid 33 15 16 

Distributed Generation-Behind the Meter Mid 9,156 9,156 9,156 

Other D Mid 1,588 1,586 1,586 

Hydro Pumped Storage Mid 4,628 4,591 4,713 

Battery Storage Mid 1,413 1,231 1,341 

Uncurtailed Large PV E Mid 51,073 51,073 51,073 

Uncurtailed Small PV E Mid 4,972 4,972 4,972 

Uncurtailed Solar Thermal E Mid 2,286 2,286 2,286 

Uncurtailed Wind E Mid 33,519 33,519 33,519 

Solar and Wind Capacity Curtailed E Mid -1,191 -953 -1,294 

Pump Load/Storage Charging Load F Mid -6,643 -6,368 -6,669 

Biomass/Biogas High 5,285 5,285 5,285 

Geothermal High 15,381 15,381 15,381 

Hydro High 37,166 37,166 37,166 

Natural Gas A High 99,957 99,722 100,495 
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Net Imports B High 49,257 49,249 48,877 

Demand Response C High 38 15 18 

Distributed Generation-Behind the Meter High 9,156 9,156 9,156 

Other D High 1,588 1,586 1,586 

Hydro Pumped Storage High 4,625 4,636 4,716 

Battery Storage High 1,414 1,213 1,336 

Uncurtailed Large PV E High 51,073 51,073 51,073 

Uncurtailed Small PV E High 4,972 4,972 4,972 

Uncurtailed Solar Thermal E High 2,286 2,286 2,286 

Uncurtailed Wind E High 33,519 33,519 33,519 

Solar and Wind Capacity Curtailed E High -1,164 -902 -1,287 

Pump Load/Storage Charging Load F High -6,641 -6,409 -6,666 

Biomass/Biogas Reach 5,285 5,285 5,285 

Geothermal Reach 15,381 15,381 15,381 

Hydro Reach 37,166 37,166 37,166 

Natural Gas A Reach 105,754 105,195 107,392 

Net Imports B Reach 50,426 50,719 49,254 

Demand Response C Reach 105 16 24 

Distributed Generation-Behind the Meter Reach 9,156 9,156 9,156 

Other D Reach 1,595 1,587 1,586 

Hydro Pumped Storage Reach 4,643 4,762 5,089 

Battery Storage Reach 1,443 1,146 1,387 

Uncurtailed Large PV E Reach 51,073 51,073 51,073 

Uncurtailed Small PV E Reach 4,972 4,972 4,972 

Uncurtailed Solar Thermal E Reach 2,286 2,286 2,286 

Uncurtailed Wind E Reach 33,519 33,519 33,519 

Solar and Wind Capacity Curtailed E Reach -1,013 -608 -1,230 

Pump Load/Storage Charging Load F Reach -6,703 -6,503 -7,248 

A. Natural Gas generation includes energy from both combined-cycle generators as well as combustion turbine (peaking) 

generators. B. Net Imports represent imports into California minus exports out of California. It is the sum of unspecified net 

imports and dedicated imports (including out-of-state renewable energy, and energy from other contracted resources). C. Demand 

response (DR) in this table only refers to traditional peak shedding DR, and does not include the smart charging PEV DR. The 

marginal cost of this DR can cost up to $1000/MWh. D. The Other category includes generation from fuel cells, oil, coal, 

petroleum coke, and waste heat. E. Generation from Large PV, Small PV, Solar Thermal, and Wind plants is listed in the table 

before curtailment (gross available energy), and their aggregated curtailment is listed separately. We report curtailment across 

these sources in aggregate because, absent any transmission constraint, if generators from more than one of these sources are 

generating at the same time, the model randomly chooses which one to curtail. F. Pump Load is the sum of the pumping load 

from pumped storage hydropower generators and the charging load of battery storage. We do not include PEV smart charging 

load shifting. G. The Smart column does not list the "charging" load or the "discharging" generation from the PLEXOS dispatch 

of the storage generator that represents PEV load shifting, and which together accounts for the differences in the total generation 

and charging load between Smart and the other charging cases. 

Table D.3: California annual solar PV, solar thermal, and wind generation and curtailment. 

 Generation, Net of 

Curtailment (GWh) A 

Curtailment (GWh) B % Curtailed of Available 

Energy C 

Curtailment 

Reduction from 

Smart % of PEV 

load D 

PEV 

Scenario 

Unman

. 

Smart TOU Unman. Smart TOU Unman. Smart TOU PEV 

Load 

(GWh) 

% 

Low 90,576 90,695 90,526 1,274 1,155 1,324 1.4% 1.3% 1.4% 2,744 4% 

Mid 90,660 90,897 90,557 1,191 953 1,294 1.3% 1.0% 1.4% 6,062 4% 

High 90,687 90,948 90,564 1,164 902 1,287 1.3% 1.0% 1.4% 7,215 4% 

Reach 90,837 91,242 90,621 1,013 608 1,230 1.1% 0.7% 1.3% 14,417 3% 

A. Generation, Net of Curtailment includes the generation of solar PV, solar thermal and wind plants located within California 

after accounting for curtailed energy. B. Curtailment is only of in-state California solar PV, solar thermal, and wind plants. C. % 

of Curtailed Available Energy is the curtailment divided by the available energy from in-state solar PV, solar thermal and wind 

(before curtailment). D. Curtailment Reduction from Smart % of PEV load is the avoided curtailment by smart charging relative 

to unmanaged charging in GWh, as a share of the smart PEV load in GWh for each PEV adoption level. This represents the 

percent of PEV load that is met by renewable energy that would have otherwise been curtailed without smart charging. 
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Chapter 2 Appendix 

A. Data for calculation of end-use energy intensities 

These tables provide more detailed data and assumptions for calculation of urban and 

agricultural end-use energy intensities, as described in Chapter 2 Sections 2.1.2.1 and 2.1.2.2. 

Table 35. Hot Water Shares and Temperatures of Residential Indoor Water End-Uses. 

Water End-Use 

Avg. 

Daily 

Hot 

Water 

Use 

(gphd) 

Avg. 

Daily 

Cold 

Water 

Use 

(gphd) 

Indoor 

Total 

(gphd) 

Share of 

residential 

indoor 

water use 

(%) 

Hot 

water 

share 

of 

end-

use 

(%) 

Hot water 

share of 

total 

residential 

indoor use 

(%) 

Outlet 

temperature 

ºF 

Outlet 

temperature 

ºC 

 

[B] [C] 

[D] = 

[B] + 

[C] 

[A] 

[E] = 

[B] / 

[D] 

[F] = [A] * 

[E] 
  

Faucets 15 12 27 20% 57% 11% 80 27 

Toilets 

0 33 33 25% 0% 0% 

58 (same as CA 

average inlet 

temperature) 

15 (same as 

CA average 

inlet 

temperature) 

Showers + Bath 20 11 31 24% 65% 14% 103 40 

Dishwashers 2 0 2 2% 100% 1% 139 59 

Clothes washers 4 18 22 17% 20% 3% 78 26 

Leaks 

2 16 18 13% 12% 1% 

91.4 (average 

of all other 

temperatures) 

33 (average of 

all other 

temperatures) 

Total  44.5 88.4 132.9 100%     

Table 36. Estimated Average CII Water End-Uses for each Process from Gleick et al., 2003. 

End-Use Category in CII 

Process 

Total 

Share of 

End-Use 

Categor

y in CII 

Water 

End-uses within 

Category 

Share of 

End-Use 

Categor

y (%) 

Estimated Outlet temperature 

ºC 

Restroom 16% Showers 7% 41 

Faucets 4% 27 

Urinals 17% 15 (same as CA average inlet 

temperature) 

Toilets 72% 15 (same as CA average inlet 

temperature) 

Cooling 15% Cooling 100% 15 (same as CA average inlet 

temperature) 

Kitchen 6% Pre-Rinsing 14% 49 

Pot Cleaning 17% 41 

Dishwashing 24% 82 

Ice Making 19% 15 (same as CA average inlet 

temperature) 

Food Preparation 9% 27 

Other 17% 27 

Process 17% Hospitals 2% 27 

High-Tech 13% 49 

Dairy 1% 49 

Meat Processing 2% 49 

Fruits and Vegetables 12% 49 
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Beverages 6% 49 

Laundries 0% 26 

Refining 8% 49 

Paper 5% 49 

Textiles 6% 27 

Metals 3% 49 

Unexplained 42% 27 (assumed same as faucet flow) 

Laundry 2% Laundry 100% 26 

Other 9% Other 100% 27 (assumed same as faucet flow) 

Landscaping 35% Turf 70% 15 (same as CA average inlet 

temperature) 

Other Vegetation 30% 15 (same as CA average inlet 

temperature) 

 

Table 37. Energy Intensity and Acreage Share of Irrigation Technologies, by Crop Type. 

Energy Intensities by Irrigation Technology (kWh/AF) 

 Flood/Gravitya Standard sprinklers Drip/micro irrigation 

(low volume) 

Otherb  

Energy intensity 15 284 206 168  

Acreage Share by Irrigation Technology, by Crop Type (%) 

Crop Type Flood/Gravity (% 

acres) 

Standard sprinkler (% 

acres) 

Drip/micro irrigation 

(low volume) (% 

acres) 

Other (% 

acres) 

Weighte

d 

Average 

Energy 

Intensity 

of 

Irrigatio

n by 

Crop 

(kWh/A

F) 

Almonds & 

Pistachios 

13% 14% 71% 1% 190.8 

Vineyards 20% 2% 75% 2% 168.3 

Alfalfa 77% 18% 3% 3% 71.6 

Grains 79% 13% 3% 5% 63.8 

Other Deciduous 31% 27% 40% 1% 166.7 

Corn 78% 1% 7% 14% 52.0 

Other Vegetables 24% 41% 35% 0% 191.3 

Subtropical Trees 6% 15% 76% 4% 205.3 

Pasture 69% 26% 0% 6% 92.9 

Other Field Crops 69% 15% 14% 2% 84.5 

Cotton 73% 7% 15% 4% 70.6 

Beans (dry) 67% 21% 12% 0% 95.6 

Safflower 54% 44% 0% 1% 136.3 

Sugar beets 86% 3% 12% 0% 45.0 

Cucurbit 51% 11% 39% 0% 117.7 

Onions & Garlic 19% 39% 42% 0% 200.1 

Potatoes 2% 81% 17% 0% 265.4 

Tomatoes (fresh) 44% 11% 45% 0% 131.3 

Tomatoes (process) 33% 4% 63% 0% 145.6 

Rice3 100% 0% 0% 0% 15.0 
a "Flood" energy intensity averaged across energy intensity values for irrigation 'with 10ft lift' and 'without on-farm lift' from Burt 

et al. 2003. b "Other" averaged from flood, sprinklers, and micro irrigation. 3 Rice was assumed to be grown with flood irrigation. 

B. Additional results 
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Table 38. Annual urban water demand by sector (AF) – Water Supplier Projections Scenario (High-case). 

Demand Sector  2015 2020 2025 2030 2035 

% Change 

2015 

- 2035 

Change      

2015 - 

2035 

Residential- Indoor 1,842,682  2,346,592  2,486,350  2,608,215  2,723,160  48% 880,479 

Residential- Outdoor 1,448,045  1,890,643  2,015,650  2,127,849  2,237,118  54% 789,073 

Commercial 682,261  843,602  883,116  914,963  948,601  39% 266,340 

Industrial 216,065  262,013  268,868  271,775  284,293  32% 68,228 

Institutional/ 

Governmental 
162,886  160,091  170,735  180,749  183,696  13% 20,810 

Landscape 315,900  345,831  357,317  371,382  388,154  23% 72,253 

Losses 342,822  386,752  409,464  426,604  445,402  30% 102,580 

Other 421,546  543,337  567,108  584,157  604,959  44% 183,413 

Total 5,432,207  6,778,861  7,158,608  7,485,695  7,815,382  44% 2,383,175 

Table 39. Annual urban water demand by sector (AF) – Declining Per-Capita Demand Scenario (Low-case). 

Demand Sector  2015 2020 2025 2030 2035 

% Change 

2015 

- 2035 

Change 2015 

- 2035 

Residential- Indoor 259,046 244,166 238,641 229,233 217,352 -16% (41,695) 

Residential- Outdoor 871,975 738,400 693,517 648,263 605,025 -31% (266,950) 

Commercial 205 3,159 5,887 8,021 9,744 4649% 9,539 

Industrial 27,888 27,011 26,417 24,213 22,190 -20% (5,698) 

Institutional/ 

Governmental 
2,216 3,487 950 800 780 -65% (1,436) 

Landscape 2,063,977 1,813,410 1,695,524 1,606,838 1,529,814 -26% (534,162) 

Losses 365,972 316,784 300,253 283,314 267,376 -27% (98,595) 

Other 98,094 177,203 163,586 156,619 146,850 50% 48,756 

Total 28,565 24,038 23,783 23,001 21,649 -24% (6,916) 

Table 40. Annual urban water supply by source (AF) – Water Supplier Projections Scenario (High-case). 

Supply Source 2015 2020 2025 2030 2035 
% Change 

2015 - 2035 

Change 2015 

- 2035 

Central Valley 

Project Deliveries 
259,046  350,136  375,196  394,433  410,515  58% 151,469  

Colorado River 

Deliveries  
871,975  897,972  939,342  968,188  992,388  14% 120,413  

Desalinated 

Water (Brackish) 
205  4,952  8,981  12,829  16,653  8016% 16,447  

Desalinated 

Water (Seawater) 
27,888  33,442  36,344  36,707  36,957  33% 9,069  

Exchanges 2,216  4,642  1,391  1,277  1,359  -39% -857 

Groundwater 2,063,977  2,329,289  2,413,785  2,518,323  2,635,035  28% 571,058  

Local Imports 365,972  435,704  452,953  466,949  483,001  32% 117,029  

Other 98,094  229,528  236,425  248,140  255,471  160% 157,376  

Other Federal 

Deliveries  
28,565  34,123  37,124  39,364  40,801  43% 12,235  

Recycled 

Water- Non Potable 
287,519  398,667  465,113  520,297  563,031  96% 275,512  

Recycled Water- 

Potable 
17,010  33,454  69,555  72,039  77,177  354% 60,168  

State Water 

Project Deliveries  
716,384  778,044  824,510  857,330  887,842  24% 171,458  

Stormwater Use 72  2,466  5,713  9,406  15,163  20946% 15,091  

Supply from Storage 14,329  30,372  30,701  31,022  31,464  120% 17,135  

Surface water 648,056  1,198,034  1,242,554  1,286,390  1,344,440  107% 696,384  

Transfers 30,898  18,037  18,921  22,999  24,086  -22% -6,812 

Total 5,432,207  6,778,861  7,158,608  7,485,695  7,815,382  +44% 2,383,175 
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Table 41. Annual urban water supply by source (AF) – Declining Per-Capita Demand Scenario (Low-case). 

Supply Source 2015 2020 2025 2030 2035 
% Change 

2015 - 2035 

Change 2015 

- 2035 

Central Valley 

Project Deliveries 
259,046 244,166 238,641 229,233 217,352 -16% -41,695 

Colorado River 

Deliveries  
871,975 738,400 693,517 648,263 605,025 -31% -266,950 

Desalinated 

Water (Brackish) 
205 3,159 5,887 8,021 9,744 4649% 9,539 

Desalinated 

Water (Seawater) 
27,888 27,011 26,417 24,213 22,190 -20% -5,698 

Exchanges 2,216 3,487 950 800 780 -65% -1,436 

Groundwater 2,063,977 1,813,410 1,695,524 1,606,838 1,529,814 -26% -534,162 

Local Imports 365,972 316,784 300,253 283,314 267,376 -27% -98,595 

Other 98,094 177,203 163,586 156,619 146,850 50% 48,756 
Other Federal 

Deliveries  
28,565 24,038 23,783 23,001 21,649 -24% -6,916 

Recycled 

Water- Non Potable 
287,519 312,988 329,668 335,391 330,625 15% 43,106 

Recycled Water- 

Potable 
17,010 26,715 50,090 46,972 45,833 169% 28,824 

State Water 

Project Deliveries  
716,384 621,357 591,260 556,892 524,000 -27% -192,384 

Stormwater Use 72 2,026 4,088 6,170 9,107 12541% 9,035 

Supply from Storage 14,329 21,934 20,265 18,801 17,462 22% 3,133 

Surface water 648,056 853,082 807,892 765,651 730,664 13% 82,609 

Transfers 30,898 13,182 12,528 13,811 13,184 -57% -17,714 

Total 5,432,207 5,198,943 4,964,351 4,723,990 4,491,656 -17% -940,550 

Table 42. State annual electricity use related to urban water, by water cycle category (GWh) – Water Supplier Projections 

Scenario (High-case). 

Water Cycle 

Category 
2015 2020 2025 2030 2035 

2015 - 2035 

% Change 
2015 - 2035 

Change 

Supply 

Extraction or 

Generation 
1,277 1,501 1,628 1,711 1,801 41% 524 

Supply 

Conveyance 4,321 4,674 4,927 5,103 5,259 22% 938 

Supply 

Treatment 
977 1,253 1,330 1,383 1,437 47% 460 

Demand 

Distribution 2,483 3,059 3,194 3,299 3,409 37% 927 

Demand End-

Use 12,614 15,812 16,699 17,459 18,196 44% 5,582 

Demand 

Wastewater 

Collection 
323 406 428 446 465 44% 141 

Demand 

Wastewater 

Treatment 
2,053 2,584 2,723 2,840 2,957 44% 904 

Table 43. State annual electricity use related to urban water, by water cycle category (GWh) – Declining Per-Capita Demand 

Scenario (Low-case). 

Water Cycle 

Category 

2015 2020 2025 2030 2035 2015 - 2035 

% Change 
2015 - 2035 

Change 

Supply 

Extraction or 

Generation 

1,277 1,183 1,157 1,104 1,058 -17% -219 

Supply 

Conveyance 
4,321 3,756 3,556 3,337 3,127 -28% -1,194 
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Supply 

Treatment 
977 959 921 872 825 -16% -151 

Demand 

Distribution 
2,483 2,346 2,217 2,087 1,964 -21% -518 

Demand End-

Use 
12,614 12,183 11,631 11,067 10,504 -17% -2,109 

Demand 

Wastewater 

Collection 

323 312 297 282 267 -17% -56 

Demand 

Wastewater 

Treatment 

2,053 1,979 1,886 1,791 1,698 -17% -355 
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Chapter 3 Appendix 

A. California literature on climate change impacts on water and energy used in case study 

Table 44 summarizes the key aspects of each study reviewed for framework linkages in 

California, including geographic coverage, climate assumptions (GCM and emissions scenarios 

used), time horizon for study, and the annual percentage change result. The maximum and 

minimum annual percent changes across all the studies for each linkage are presented in the table 

by mid-century and end-century time horizons. 

Table 44: Summary of literature reviewed on climate change impacts on California energy and water systems. 

Framework 

Linkage 

Paper Geographic 

coverage 

Climate data  

(GCM, emissions 

scenario) 

Time Horizon Annual % ∆ 

𝐿1, Raw water 

availability 

1. Herman et al., 

2018. [318] 

Major water 

supply storage and 

conveyance 

facilities in CA, 

1. RCP 4.5 

2. RCP 8.5;  

 

10 GCMs and 

additional sensitivities 

2070-2100 1. -6% to +35% 

2. -7% to +46% 

2. Tanaka et al., 

2006. [260] 

Major water 

supply storage and 

conveyance 

facilities in CA 

1. PCM B06.06, dry 

warming 

2. HCM2 run 1, wet 

warming 

A. 2050-2079 

B. 2080-2099 

A. 1-2. -13% to 

+7% 

B. 1-2. -25% to 

+12% 

3. Zhu, T., Jenkins, 

M.W., Lund, J.R., 

2005. [319] 

Inflows to CA's 

entire water 

system 

1. HadCM, wet 

warming 

2. PCM, dry warming 

 

Additional sensitivities 

of temperature and 

precipitation changes 

A. 2025  

B. 2065 

C. 2090 

A. 1-2. -6% to 

+11% 

B. 1-2. -13% to 

+7% 

C. 1-2. -25% to 

+12% 

Max and min of all 

papers 

Across all CA Across all GCMs and 

emissions scenarios 

Mid-century -13% to +7% 

Max and min of all 

papers 

Across all CA Across all GCMs and 

emissions scenarios 

End-century -25% to +46% 

𝐿2, Irrigation 

water demand 

1. Mehta, V. et. al, 

2013. [300] 

Yolo County, 

Sacramento 

Valley, CA 

 

1. B1 

2. A2 

with GFDL (warm-

dry) 

A. Mid-

century 

B. until 2099 

A. 1-2. +21% to 

+24% 

B. 1-2. +27% to 

+31% 

2. Joyce et al, 

2011. [262] 

Sacramento 

Valley, CA  

San Joaquin 

Valley, CA  

Tulare Lake, CA 

1. B1 

2. A2 

with 6 GCMs (CM3, 

CM2.1, MIROC 3.2, 

ECHAM5, CCSM3.0, 

PCM1) 

A. Mid-

century 

B. End-

century 

Sacramento 

Valley:  

A. 1-2. +6% to 

+6% 

B. 1-2. +6% to 

+9% 

 

San Joaquin 

Valley: 

A. 1-2. +3% to 

+3% 

B. 1-2. +4% to 

+6% 

 

Tulare Lake:  

A. 1-2. +3% to 

+3% 

B. 1-2. +4% to 

+6% 

3. Joyce, et al, 

2009. [263] 

Sacramento 

Valley, CA 

1. B1 

2. A2 

with 6 GCMs (CM3, 

A. 2035-2064 

B. 2065-2099 

Sacramento 

Valley: 
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San Joaquin 

Valley, CA 

Tulare Lake, CA 

CM2.1, MIROC 3.2, 

ECHAM5, CCSM3.0, 

PCM1) 

A 1-2. +1% to 

+6% 

B 1-2. +3% to 

+12% 

 

San Joaquin 

Valley: 

A 1-2. +1% to 

+5% 

B 1-2. +3% to 

+7% 

 

Tulare Lake: 

A 1-2. +1% to 

+5% 

B 1-2. +3% to 

+7% 

4. Hopmans and 

Maurer, 2008. 

[321] 

San Joaquin 

Valley, CA 

1. B1 

2. A2 

3. A1fi  

with 2 GCMs 

(HadCM3 and PCM) 

2100 ~0% 

5. Purkey et al., 

2008. [322]  

Sacramento 

Valley, CA 

1. B1 

2. A2 

with 2 GCMs (GFDL 

and PCM) 

2070-2099 1-2 -2% to +9% 

Max and min of all 

papers 

Across all studies 

 

Sac. Valley 

 

SJ Valley 

 

Tulare Lake 

Across all GCMs and 

emissions scenarios 

Mid-century 0% to +24% 

 

+1% to +24% 

 

0% to +5% 

 

+1% to +5% 

Max and min of all 

papers 

Across all studies 

 

Sac. Valley 

 

SJ Valley 

 

Tulare Lake 

Across all GCMs and 

emissions scenarios 

End-century -2% to +31% 

 

-2% to +31% 

 

0% to +7% 

 

+3% to +7% 

𝐿3, 

Transmission 

losses 

1. Sathaye et al., 

2013. [271] 

All California, 

using illustrative 

typical 230 kV 

transmission line 

1. B1 

2. A2 

with 3 GCMs (GFDL, 

PCM1, CNRM) 

2070-2099 0.14% change 

during summer  

2. Sathaye et al., 

2012. [328] 

All California, 

using illustrative 

typical 230 kV 

transmission line 

1. B1 

2. A2 

with 3 GCMs (GFDL, 

PCM1, CNRM) 

2070-2099 0.14% change 

during summer  

Max and min of all 

papers 

Across all CA Across all GCMs and 

emissions scenarios 

End-century 0% to +0.14% 

𝐿4, Air-

conditioning 

demand (annual) 

1. Auffhammer, 

M., 2018. [275] 

80% of CA 

population 

1. RCP 4.5 

2. RCP 8.5 

A. 2020-2039 

B. 2040-2059 

C. 2060-2079  

D. 2080-2099 

A. 1-2. +1% to 

+1% 

B.1-2. +3% to 

+4% 

C.1-2. +4% to 

+9% 

D.1-2. +5% to 

+15% 

2. Sullivan, P. et 

al., 2015. [399] 

All CA (and rest 

of US) 

RCP 4.5 2050 +0.5% to +2% 
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3. Franco, G., & 

Sanstad, A. H., 

2008. [8] 

CAISO (most of 

CA) 

1. B1  

2. A2 

3. A1Fi 

A. 2005-2034 

B. 2035-2064 

C. 2070-2099 

A.1-3. +1% to 

+3% 

B.1-3. +2% to 

+8% 

C.1-3. +3% to 

+18% 

Max and min of all 

papers 

Across all CA Across all GCMs and 

emissions scenarios 

Mid-century +1% to +9% 

Max and min of all 

papers 

Across all CA Across all GCMs and 

emissions scenarios 

End- century +3% to +18% 

𝐿4, Air-

conditioning 

demand 

(summer peak) 

1. Sathaye et al., 

2013. [271]  

All California 1. B1 

2. A2 

with 3 GCMs (GFDL, 

PCM1, CNRM) 

2070-2099  August peak 

loads: 

1-2. +10% to 

+20%  

2. Franco, G., & 

Sanstad, A. H., 

2008. [8] 

CAISO (most of 

CA) 

1. B1 

2. A2 

3. A1Fi 

A. 2005-2034 

B. 2035-2064 

C. 2070-2099 

Peak load: 

A. 1-3 +1% to 

+5% 

B. 1-3. +2% to 

+11% 

C.1-3. +4% to 

+20% 

3. Miller et al., 

2008. [323] 

All CA, and 

specific values for 

major urban areas 

1. B1 

2. A2 

3. A1Fi  

with 3 GCMs (PCM, 

GFDL, HadCM3) 

A. 2035-2064 

B. 2070-2099 

Residential peak 

load: 

A. 1-3. +3% to 

+10%  

B. 1-3. +4% to 

19% 

Max and min of all 

papers 

Across all CA Across all GCMs and 

emissions scenarios 

Mid-century Peak demand 

change: 

+2% to +11% 

Max and min of all 

papers 

Across all CA Across all GCMs and 

emissions scenarios 

End-century Peak demand 

change: 

+4% to +20% 

𝐿5, Hydropower 

generation 

1. Tarroja et al., 

2016. [342] 

All CA (13 

representative 

reservoirs) 

1. RCP 4.5  

2. RCP 8.5 

2050 1. -3% 

2. +1% 

2. Boehlert et al., 

2016. [400] 

All CA (part of 

500 largest 

facilities across all 

US) 

1. 3.7 W/m2 by 2100 

2. 4.5 W/m2 by 2100 

3. BAU, similar to 

RCP 8.5 

A. 2025 

B. 2050 

A.1-3. 0% to 

+3% 

B.1-3. 0% to 

+3% 

3. Madani et al., 

2014. [284] 

137 High-

elevation plants in 

CA Sierra Nevada 

1. Dry Warming - 

GFDL-A2 

2. Wet Warming - 

PCM-A2 

2070-2099 1-2. -20% to 

+6% 

4. Vicuña et al., 

2011. [285] 

2 High-elevation 

systems: Upper 

American River 

system and Big 

Creek System  

1. B1 

2. A2 

with 6 GCMs 

(CNRMCM3, GFDL 

CM21, NCAR PCM1, 

MIROC32MED, 

MPIECHAM5, 

NCARCCSM2) 

A. 2011 – 

2040 

B. 2041 - 

2070  

C. 2071 - 

2011 

A. -2% to -1%  

B. -8% to -8% 

C. -12%. to -10% 

5. Mehta et al. 

2011. [324] 

36 hydropower 

plants in 

Cosumnes, 

American, Bear 

and Yuba 

watersheds (high-

elevation) 

1. 2ºC increase  

2. 4ºC increase  

3. 6ºC increase  

2100 1. -5% 

2. -15% 

3. -20% 
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6. Madani and 

Lund, 2010. [283] 

137 High-

elevation plants in 

CA Sierra Nevada 

1. Dry-warm - GFDL-

A2 

2. Wet - PCM-A2  

3. Warming only - A2 

(same annual runoff 

but different seasonal 

timing of flows at each 

elevation) 

2070-2099 1. -20% 

2. +6% 

3. -1% 

7. Vicuña et al., 

2008. [325] 

11 reservoirs in 

Sacramento 

Municipal Utilty 

District (Upper 

American River 

Basin) 

1. B1 

2. A2 

with 2 GCMs (PCM, 

GFDL) 

2070-2099 1. -10% to +10% 

2. -12% to +14% 

8. Medellín-Azuara 

et al., 2008. [326] 

Hydropower at 

major reservoirs 

in CA 

Dry-warm - GFDL-A2 2085 -27% 

Max and min of all 

papers 

Across all 

hydropower 

 

Low elev. (< 300 

m), large rim 

reservoirs  

 

High elev. (> 300 

m), small 

reservoirs  

Across all GCMs and 

emissions scenarios 

Mid-century -8% to +3% 

 

 

 

-3% to +3% 

 

 

 

-8% 

Max and min of all 

papers 

Across all 

hydropower 

 

Low elev. (< 300 

m), large rim 

reservoirs  

 

High elev. (> 300 

m), small 

reservoirs 

Across all GCMs and 

emissions scenarios 

End-century -27% to +14% 

 

 

 

-27% 

 

 

 

-20% to +14% 

B. Details on California case study methodology 

This Appendix section provides more detail on the case study data sources and calculations of 

absolute water and energy impacts and energy intensities of water climate adaptations. 

a. Climate impacts on water and electricity balances 

To compare supply and demand changes in common units, for each linkage, we apply the 

climate perturbation percent changes to corresponding historical electricity and water stocks and 

approximate the range of possible absolute changes. 

Table 29 summarizes the calculations to estimate the range of California’s climate-driven 

changes in supply, demand, and system balance for water and electricity, respectively. 

Percentage changes from our review for change in raw water availability (𝑳1) were applied to the 

historical average total applied water for the urban and agricultural irrigation users (53 Billion 

m3) from the California Department of Water Resource (DWR) 2002 – 2015 state total water 

balance data. [222] For irrigation water demand (𝑳2), in our review we primarily find percentage 

changes for the three major agricultural sub-regions of California (Sacramento Valley, San 

Joaquin Valley, Tulare Lake) and apply these to the 2002 – 2015 average applied agricultural 

water by region (10 Billion m3, 9 Billion m3, 14 Billion m3 respectively) [222]. For the 

remaining agricultural water in California we apply the overall minimum and maximum 



 181 

percentage changes across all the regional estimates. We only estimate changes in agricultural 

irrigation water (80% of total water demand) rather than in urban irrigation water. Finally, we 

aggregate climate-driven changes in supply (𝑳1) and in demand (𝑳2) to calculate the overall 

bounding “worst-case” and “best-case” range of climate impacts on annual state water balances. 

The maximum demand changes (𝑳2) are subtracted from the minimum supply changes (𝑳1), and 

the minimum demand changes (𝑳2) are subtracted from the maximum supply changes (𝑳1); a 

positive resulting balance change indicates surplus, and a negative balance change indicates 

shortage.   

To estimate the added electricity supply needed to make up for transmission line resistive losses 

(𝑳3), we apply the same loss rate year-round to the total annual average 2001-2018 California 

electricity consumption level (278 TWh) [315]. To calculate changes in air-conditioning 

electricity demand (𝑳4), we apply the percent changes of electricity demand growth to the sum of 

California residential and commercial building electricity consumption (190 TWh) averaged 

across 2001-2018 [315]. The range of percentage changes include estimates for both intensive 

and extensive changes in air conditioning use. The hydropower studies we reviewed for 

California largely focused on either high or low elevation hydropower, thus we first categorize 

all the hydropower generators in California as high elevation if situated at 300m or above, and 

low elevation if below 300m (the threshold used by Madani et al [284]). We then apply 

percentage changes to 2002-2018 average total high (20 TWh total) and low elevation (11 TWh 

total) hydropower generation [316] separately (𝑳5). We aggregate the maximum and minimum 

climate-driven changes in supply (𝑳3 and 𝑳5) and demand (𝑳4) impacts for the electricity system 

to calculate the aggregate worst-case and best-case statewide imbalances. The maximum demand 

changes (𝑳4) are subtracted from the minimum supply changes (𝑳3 + 𝑳5), and the minimum 

demand changes (𝑳4) are subtracted from the maximum supply changes (𝑳3 + 𝑳5); a positive 

resulting balance change indicates surplus, and a negative balance change indicates shortage.   

b. Climate adaptations for water shortages and their energy tradeoffs 

In the final step, we estimate the energy balance impact (𝐸𝐵𝑠,𝑗) related to water sector 

adaptations (𝑳7 and 𝑳9) based on a review of energy intensities for different adaptation strategies 

and the maximum worst-case water shortage volume calculated from Section 3.1. The energy 

intensities 𝐸𝐼𝑖 of the adaptation measures are calculated by summing the statewide average 

energy intensities of all the relevant water cycle processes (Table 45) required to implement the 

measures, which are described below.   

The energy intensities 𝐸𝐼𝑖 of both demand-side conservation adaptations (from residential and 

agricultural sectors) are negative because of avoided energy across the entire water supply chain. 

We calculate the energy intensity of residential water conservation by summing statewide 

average energy intensities of conventional water treatment (0.17 kWh/m3), urban distribution 

(0.27 kWh/m3) and wastewater treatment (0.69 kWh/m3) processes [55], [61], [65], [73], [76], 

[207] plus avoided hot water end-uses (3.17 kWh/m3). We calculate the 3.16 kWh/m3 energy 

intensity of water heating assuming: 50% indoor water use out of total residential water [222], 

25%57 electric share of water heaters [205], an average electric water heater efficiency [74] of 55 

kWh/m3, and a weighted average hot water share of 47% across residential indoor water uses 

(estimating that hot water comprises 50% of faucet and 100% of clothes washer, dishwasher, and 

 
57 Because of uncertainties in how much decarbonization policies may shift water heating from gas to electric in California, we 

use the current 25% share. 
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shower water, which make up 19%, 14%, 1%, and 22% of indoor water use respectively).[204] 

For the energy intensity of agricultural water conservation, we sum the avoided energy from 

irrigation (0.09 kWh/m3) and agricultural water distribution (0.21 kWh/m3) [65, p. 2]. Consistent 

with literature [76], we assume agricultural water foregoes drinking water and wastewater 

treatment. We estimate the weighted average energy for irrigation based on surveys that indicate 

typical irrigation technology by crop (43% of acres with gravity/flood, 15% with standard 

sprinklers, 38% with drip/micro-irrigation, and 3% with other),[215] the average share of 

irrigation water for each crop across California [216], and the average energy intensity for each 

irrigation technology (0 kWh/m3 for gravity/flood, 0.23 kWh/m3 for standard sprinklers, 0.17 

kWh/m3 for drip/micro-irrigation) [199].  

Supply-side strategies have positive 𝐸𝐼𝑖 energy intensity values from treatment and/or 

conveyance required. For groundwater recharge, we average the energy intensity of groundwater 

pumping statewide to estimate the energy for extraction from aquifer storage (0.38 kWh/m3) 

[55], [58], [64], [65], [73], [74], [199], [210], [302]. For water recycling, we average the energy 

for incremental treatment beyond tertiary wastewater treatment for potable quality across plant 

size and technology (0.95 kWh/m3) [58], [64], [65], [207]. Because we assume indirect potable 

reuse (based on current state regulations) [207], we add energy for distributing the recycled 

water from the wastewater treatment plant to surface or groundwater temporary storage (0.27 

kWh/m3) [55], [61], [73], [207]. For desalination, we assume reverse osmosis technology, and 

estimate an average energy intensity (2.55 kWh/m3) across plant size, salinity of feedstock 

(seawater and brackish water), and flow rates to capture the range of facilities [55], [58], [64], 

[65], [67], [73], [76], [199], [207]. We add the energy to pump the desalinated water back to the 

water distribution system (0.29 kWh/m3) [73], [207]. 

Table 45: California Water Cycle Average Energy Intensities. Energy intensities are averaged across all the hydrologic regions in 

California from these sources: [55], [58], [61], [64], [65], [73], [74], [76], [199], [207], [210], [215], [317]. 

Water Cycle Process Average Energy 

Intensity [kWh/m3] 

2002 – 2015 Average Share of 

CA Supply 

Water Supply and Conveyance   

Local Water   

Local Surface Water Deliveries 0.09 40% 

Groundwater Pumping 0.38 22% 

Recycled Water (treatment + deliveries) 1.22 0.3% 

Desalination (treatment + deliveries) 2.84 0.0% 

Reuse 0.09 18% 

Imported Water   

Local Imported Deliveries 0.37 2% 

Colorado River Deliveries 1.63 6% 

Central Valley Project Deliveries 0.31 8% 

State Water Project Deliveries 1.55 3% 

Volume-Weighted Average EI of Supply/Conveyance 0.32 100% 

Drinking Water Treatment   

Urban Water Treatment 0.17  

Water Distribution   

Urban Water Distribution 0.27  

Agriculture Water Distribution 0.21  

Water End-Use   

Urban Residential Water Heating 3.16  

Agriculture Irrigation 0.09  

Wastewater Treatment   

Urban Wastewater Treatment 0.69  
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The total net energy impact of a water adaptation 𝑖 is contingent on its 𝐸𝐼𝑖  energy intensity (as 

calculated above) minus the energy intensity of the water source 𝑗 replaced in the system 𝐸𝐼𝑗. 

The literature we review here is too course to indicate where and how much of each water source 

may be substituted because of climate change, nor precisely where adaptation strategies should 

be implemented. Thus, for each adaptation measure 𝑖 we test three sensitivities of 𝐸𝐼𝑗 that each 

assume all substituted water 𝑗 comes from the same source—local surface water with an energy 

intensity of 0.09 kWh/m3, California supply-weighted average energy intensity of 0.32 kWh/m3, 

and the average energy intensity across delivery points of the State Water Project conveyance 

system of 1.55 kWh/m3. These energy intensities 𝐸𝐼𝑗  are subtracted from the energy intensity of 

the adaptation measure 𝐸𝐼𝑖 to calculate a net energy intensity 𝑁𝐸𝐼𝑖,𝑗 . 

We assess both corner case scenarios and more realistic adaptation portfolio scenarios that 

combine multiple demand-side and supply-side measures. In the five corner cases we assume 

than an individual adaptation measure addresses 100% of the worst-case annual water shortage 

volume 𝑊𝑆𝑉𝑖, whereas in the more realistic cases we evaluate four portfolios that fully address 

the maximum 𝑊𝑆𝑉𝑖  with different combinations of individual strategies. In Portfolio 1 we cap 

the strategies at their maximum potential limits (urban indoor plus outdoor water conservation at 

1.8 Bm3/year [204] and water recycling at 6.7 Bm3/year [75], [76]) and assume the remainder of 

the water imbalance to be equally satisfied by groundwater recharge, agricultural conservation, 

and desalination. For Portfolios 2 – 4 we also cap conservation and recycling at their limits and 

assume desalination to fill the remainder. For each combination of adaptation scenario 𝑠 and 

substituted water source 𝑗, we calculate the overall energy balance impact, 𝐸𝐵𝑠,𝑗, as the sum-

product of the 𝑁𝐸𝐼𝑖,𝑗  of included adaptation measures and associated water volumes 𝑊𝑆𝑉𝑖 from 

Table 31. 
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Chapter 4 Appendix 

A. SWITCH Model, Data, and Assumptions 

To optimize long-term energy system buildout under climate scenarios and given water 

sector adaptations, we use the capacity expansion model SWITCH. SWITCH is an open-source 

model with high spatial and temporal resolution designed to plan a system with high levels of 

renewable resources [377], and has been used to evaluate system expansion in several case 

studies of the Western U.S. [88], [304], [378]. We build on the SWITCH 2.0 (Python) version 

from a recent study [377], and use an academic license of the Gurobi solver [379], to evaluate 

the optimal generation and transmission capacity expansion decisions for the Western 

Interconnect or Western Electricity Coordinating Council (WECC) region out to 2050. SWITCH 

makes investment and operations decisions for four time periods and a sample of hours per 

period between 2020 and 2050. The objective function minimizes the expected value of the total 

net present value of generation and transmission operations and investment. We describe the 

objective function and main constraints of the optimization model [377], as well as the input data 

and assumptions used for the analysis below. A detailed description and full mathematical 

formulation of the SWITCH model is described in a prior paper and accompanying 

Supplemental Materials [377]. 

a. Objective function 

In this analysis we use a deterministic linear formulation of SWITCH to optimize the 

investment and operations of generation and transmission capacity. The objective function is the 

total net present value (NPV) cost of the power system (investment and operations). The key 

decision variables include investment in generation and transmission capacity (BuildGen and 

Build Tx, in MW of capacity built of each generator and transmission line, respectively for each 

investment period among the set of available candidate generators and transmission lines), and 

dispatch (DispatchGen and DispatchTx, hourly generation and transmission line flows for each 

generator and transmission line online in that period). In addition, the model decides the energy 

capacity for building battery storage (BuildStorageEnergy in MWh), and when and how much 

batteries charge and discharge (ChargeStorage). Transmission flows between load zones are 

represented as a simple “transport” model, where flows (a decision variable) between zones are 

constrained by line limits which are an aggregation of the limits of individual lines between 

regions. This simplification maintains a linear model, rather than including a representation of 

non-linear and computationally expensive AC power-flow. 

min ∑ dp { ∑ cp
f

cf∈Cfixed

+ ∑ wt
year

∑ ct
v

cv∈Cvart∈Tp

}

p∈P

 

Where: 

𝑑𝑝 = discounting factor, which first converts annual payments into a lump sum equivalent at the 

beginning of an investment period, and then converts all costs into net present value (NPV) 

terms. In this analysis we use an interest rate r of 5%, reflecting the general decrease in US 

interest rates in recent years, and all costs have a baseyear of 2018. The formula for the factor is 

below, where  is the number of years in each period (10 years in this analysis), and 𝑠𝑡𝑝 is the 

start year of each period. 
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dp =
1 − (1 + r)−yp

r
∗ (1 + r)−(stp−baseyear) 

𝐶𝑓𝑖𝑥𝑒𝑑 = is the set of fixed costs components indexed for each period 𝑐𝑝
𝑓
, which include capital 

costs (overnight cost to construct generation, transmission, and storage capacity) and fixed 

operations and maintenance (O&M) for online generators. These costs are in $/MW-year. 

𝑤𝑡
𝑦𝑒𝑎𝑟

 is the weight in the period of each sampled time point t. 

𝐶𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 is the set of variable costs indexed for each time point 𝑐𝑡
𝑣, including fuel costs for 

generators and variable O&M costs, in $/MWh (non-discounted real dollars). 

The optimization is subject to a number of constraints, including the main ones listed below.  

b. Investment-related constraints 

Capacity investments in generation, for each generator and period 𝐾𝑔,𝑝
𝐺 , cannot exceed 

cumulative limits on available capacity 𝑘�̅�
𝐺 dfor that particular generator: 

𝐾𝑔,𝑝
𝐺 ≤ 𝑘�̅�

𝐺 

Additional constraints track the level of existing capacity, cumulative installed capacity over 

subsequent periods, and retired capacity. Fixed costs for generator capacity (overnight, 

connection, and fixed O&M costs) are calculated based on 𝐾𝑔,𝑝
𝐺 . 

Costs for transmission capacity built are calculated based on the 𝐾𝑙,𝑝
𝐿 , the cumulative transfer 

capacity of each line, capital costs per MW per km, length of each line, and cost multipliers that 

account for varying terrain and economic costs along each transmission corridor. 

c. Operations-related constraints 

In each load zone, power withdrawals 𝑝𝑧,𝑡
𝑤  (from electricity demand, charging storage, and 

exports to other load zones) must equal power injections 𝑝𝑧,𝑡
𝑖  (from generation, discharging 

storage, and imports from other zones) for each time point: 

min ∑ pz,t
i

p∈Pinject

= ∑ pz,t
w

p∈Pwithdraw

 

At each time point, the dispatch of generation 𝑃𝑔,𝑡 cannot exceed available capacity 𝐾𝑔,𝑡,𝑝 given 

forced outage rates η𝑔, and transmission flows 𝐹𝑙,𝑡 cannot exceed available line limits given 

available transmission capacity in that period and transmission efficiency derating factors (η𝑙 ∗
𝐾𝑙,𝑝): 

0 ≤ Pg,t ≤ ηgK𝑔,𝑡𝑝 

0 ≤ Fl,t ≤ ηlKl,p 

There are special dispatch constraints specific to different generator types: 

1) Solar PV and Wind: hourly generation cannot exceed the exogenously determined hourly 

capacity factor  

0 ≤ Pg,t ≤ ηg,tηgKg,t,p 

https://www.codecogs.com/eqnedit.php?latex=c_t%5Ev#0
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 2) Hydropower: average generation across all the time points of a day must match historical 

average generation 𝑝𝑔,𝑠
ℎ,𝑎𝑣𝑔

of that month, and exceed the minimum generation 𝑝𝑔,𝑠
ℎ,𝑚𝑖𝑛

 of that 

month (in our analysis we sample 4 timepoints for each day-long timeseries): 

Pg,t ≥ pg,s
h,min

 

1

nums
∗ ∑ Pg,t

t∈Ts

= pg,s
h,avg

 

3) Battery storage: charging 𝐶𝑔,𝑡 and the state of charge 𝑍𝑔,𝑡 are limited by installed capacity (in 

MW as with other generators and in MWh, 𝐾𝑔,𝑝
𝑆  and charging rates relative to maximum power 

output rate  𝑟𝑔
𝑚𝑎𝑥, and batteries must balance charging and discharging over a given time period, 

subject to round-trip charging efficiency η𝑔. In this analysis we assume the battery must be 

balanced over the course of a day, the round-trip efficiency is 75%, and the charging rate is equal 

to the maximum power output (𝑟𝑔
𝑚𝑎𝑥  =  1).  

0 ≤ Cg,t ≤ rg
max ∗ Pg,t 

0 ≤ Zg,t ≤ Kg,p
S  

0 ≤ Zg,t = Zg,t−1 + (ηgCg,t − Pg,t)δt
T 

To maintain grid reliability, SWITCH includes a planning reserve requirement. During the peak 

load hour of the year, the total available capacity must meet or exceed a percentage 𝑘π (defaults 

to 15%) above peak load lz,t in a given “reserves zone.” To contribute towards this reserve 

requirement 𝑟π,𝑡
𝑟 , capacity 𝑟π,𝑡

𝑐  is credited to generators based on their installed capacity, and to 

battery storage based on the expected discharging output available at the peak hour in the 

reserves zone. Imports across transmission lines into the reserves zone are credited similarly to 

storage, based on the expected flows during the peak hour. We define reserves zones as the set of 

load zones for the same utility (i.e. all the load zones comprising the SCE service territory).  

rπ,t
r = (1 + kπ) ∗ lz,t 

 ∑ rπ,t
c

rc∈Rcap

≥ ∑ rπ,t
r

rr∈Rreq

 

d. Policy-related constraints 

SWITCH includes constraints to represent state Renewable Portfolio Standard (RPS) 

requirements for each period, whereby a mandated percentage (𝑟𝑝𝑠𝑝) of annual load must be met 

with generation from renewable sources over the year 𝑃𝑔,𝑡𝑤𝑡
𝑝𝑒𝑟𝑖𝑜𝑑

(from non-fuel sources and 

renewable fuels). All generation from renewable sources is summed and must equal or equal or 

exceed the RPS requirement times the annual load for each zone: 

∑ ∑ Pg,twt
period

t∈Tg,pg∈Gr

≥ ∑ ∑ lz,t

z∈Zt∈Tp

wt
period

 

Annual carbon emissions (𝐴𝑛𝑛𝑢𝑎𝑙𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝) calculated based on the dispatch, fuel use rate in 

MMBtu/h and emissions intensity of fuel in tCO2/MMBtu ξ𝑓, must not exceed the specified 
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carbon cap in tons of CO2/year for that investment period (𝑐𝑎𝑝𝑝). A carbon cap is specified for 

California and for all the WECC region.: 

AnnualEmissionsp = ∑ ∑ ∑ δtRg,t,f

t∈Tg∩Tp

x

f∈εg
F

(ξf)

g∈GF

 

e. Geographic and temporal resolution 

The WECC study area of this analysis is divided up into 50 “load zone” regions (Figure 

31), covering all of parts of Washington, Oregon, California, Arizona, Nevada, New Mexico, 

Utah, Idaho, Montana, Wyoming, Colorado, and Texas in the US; British Columbia and Alberta 

in Canada; and the northern portion of Baja California in Mexico. Load zone boundaries were 

used from prior SWITCH-WECC analyses [304], [378], which constructed the regions based on 

state lines, North American Electric Reliability Corporation (NERC) control areas, utility service 

territory boundaries, and high-population metropolitan areas. Some utility service territories were 

divided into multiple zones if there was a large amount of high-voltage transmission connectivity 

existing within the same service territory (i.e. CA PGE BAY, CA PGE CEN, CA PGE S, CA 

PGE N for PG&E). The boundaries were also constructed to represent zones that are unlikely to 

have transmission congestion within the zone (since only transmission between zones is 

included), and between which there has historically been transmission congestion (reflecting 

pathways where additional transmission may be needed). 

The temporal resolution of the analysis includes four investment periods, each of a 

decadal duration: 2020 (covering 2016 – 2025), 2030 (covering 2026 - 2035), 2040 (covering 

2036 – 2045), and 2050 (covering 2046 – 2055). The duration of these investment periods reflect 

the typical planning horizon of a utility, and the length of time often needed to plan and build 

generation and transmission infrastructure. Because of computation limitations on simulating 

both investment and detailed hourly operations, a sample of 72 hours is selected to represent the 

typical grid dispatch for each investment period. For one year per period, for 2 days of each of 12 

months, a 4-hour duration time slice is sampled every four hours (6 times per day). The hours are 

sampled from the peak and median load day of each month. In total, 576 hours are simulated (4 

periods x 1 year/period x 12 months/year x 2 days/month x 6 hours/day = 576 hours). The 

SWITCH dispatch results (i.e. costs, generation, transmission flows, emissions, etc.) related to 

each of these sampled hours is multiplied with an hourly weight, the share of all hours in the year 

that is represented by that hour, to calculate the typical annual value (i.e. annual operating cost, 

generation, transmission flow, emissions, etc.). The hours sampled from the peak day of each 

month have a “day” weight of 1, while the hours sampled from the median day have a “day” 

weight of the number of days of the month minus 1. This sampling strategy is adopted from prior 

SWITCH WECC studies which conducted a “dispatch verification” analysis that tested the 

sensitivity of results compared to hourly simulations (where 8760 hours per year were 

simulated), finding that the buildout of the grid was still robust and did not violate constraints on 

peak and average days [378]. 

f. Generators 

i. Existing generators 

As inputs into SWITCH, we include the list of individual generators that are existing 

and/or are planned for the WECC region. For the US portion of WECC, we extract the list of 

generators and their characteristics (such as location, fuel source, generating technology, online 
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year, and retirement year if any) from the Energy Information Administration (EIA) Form 860 

[363]. At the time of the data collection (in late 2019/early 2020), the latest complete year of data 

was the 2018 EIA Form 860. We include generators from this form that are flagged with any of 

these statuses: operating, standby/backup, new unit under construction, cold standby, out of 

service but will be returned to service, construction complete but not yet in commercial 

operation, not under construction but site prep underway, and under construction. Generators are 

assigned to load zones based on their latitude and longitude.  

The EIA Form 860 also includes planned retirement years for generators, if known. 

Generators are not allowed to operate beyond their expected lifetime, and therefore planned 

retirement years are used to calculate the lifetime of the plant to be included in the SWITCH 

runs. Monthly data was used from more recent Form 860 data to confirm that there were no 

additional planned retirements. For generators with no known retirement years, we assign a 

maximum lifetime based on the generating technology (Table 47).  

For thermal generators, we join the list of generators from Form 860 with the monthly 

generation and fuel use from the EIA Form 923, for the available years 2004 – 2018 [364]. We 

use the historical monthly generation and fuel use from Form 923 to calculate the second-best (or 

second-lowest) heat rate (MMBtu/MWh) for each generator, avoiding any outliers from the best 

heat rate. The heat rate is used in the SWITCH dispatch optimization to calculate the fuel use and 

associated variable cost and emissions from dispatching thermal generators. 

Hydropower generators are constrained to generate at their average historical monthly 

capacity factor [304]. We extract the monthly generation by generator from 2004 – 2018 (the 

most recent complete data at the time of the analysis) from the Form 923. For each generator, we 

calculate the average power for each month (monthly generation/hours in month) and estimate 

that the proxy for minimum flows for each generator is the power generated at half the average 

monthly level. For the SWITCH base case (without climate change), for each generator we 

calculate the average monthly power (and minimum flow power) over the years 2004 – 2018. 

These average values are repeated for all future investment periods of the SWITCH simulation 

(from 2020 – 2050). Monthly hydropower capacity factors by generator for the Canadian load 

zones (British Columbia and Alberta) are used from the prior SWITCH database, based on data 

from Statistics Canada Tables [304].  

The existing generator set for the Canadian and Mexican load zones are used from the 

data previously compiled for prior SWITCH-WECC analysis, originally from the WECC 

Transmission Expansion Planning Policy Committee database of generators, and were not 

updated for this study [88], [304]. 

ii. Candidate generators  

One of the key decision variables in SWITCH is the capacity investment of generation, 

out of a set of candidate generators with specific generating technologies and fuel sources, load 

zone locations, and other physical and financial generating characteristics. We use the dataset of 

candidate generators that was previously compiled in prior SWITCH-WECC analyses [88], 

[304], [378].  

Candidate onshore and offshore wind generators were derived based on wind power 

output from a gridded 3TIER Western Wind and Solar Integration Study dataset [401] and a 

gridded Canadian wind developer dataset, and a selection of prime sites based on criteria 
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including high wind energy density, and proximity to transmission [304]. A portion of candidate 

generators were screened out in California if they were in “Category 3, high environmental risk” 

locations, which include areas legally excluded for development, protected areas with ecological 

or social value, conservation regions, and prime agricultural land [402].  

Candidate solar generators include Residential PV (rooftop PV on homes), Commercial 

PV (rooftop PV on commercial buildings), Central PV (utility-scale), and Concentrating Solar 

Power with and without storage (solar thermal trough systems with or without thermal energy 

storage). Distributed Residential and Commercial PV candidate generation had been derived 

based on a gridded population density dataset, solar insolation data from NREL’s (now 

deprecated) Solar Prospector tool, and assumptions on rooftop area and solar cell characteristics 

[304]. Available land and capacity for Central PV and Concentrating Solar Power candidate 

generators were screened based on land exclusion criteria (including national parks, wildlife 

areas, and steep terrain), solar insolation from the System Advisor Model from the National 

Renewable Energy Laboratory [403], and assumptions on the solar technology characteristics 

[304].   

To simulate the dispatch of wind and solar generators, we use an exogenous dataset of 

hourly capacity factors by generator that had been constructed in prior SWITCH analyses [304], 

[378]. For wind generators, hourly capacity factors for the candidate generator set were 

calculated from the 3TIER Western Wind and Solar Integration Study wind speed dataset [401] 

using idealized turbine power curves. For solar generators, hourly capacity factors for the 

candidate generator set are calculated from the System Advisor, using data from 2006 (consistent 

with the base weather year underlying the load profiles) [403]. Central PV and onshore wind 

generators with capacity-weighted average capacity factors below the 75th percentile for their 

technology were screened out to only have the candidate set among a computationally tractable, 

and commercially viable, set of higher-quality resource sites [304]. For existing solar and wind 

generators, we average the hourly capacity factors for all solar and wind generators, respectively, 

in each load zone, and assign all the generators in that load zone the average capacity factor for 

the given technology.  

Biogas (from landfill, wastewater treatment plants, and manure) candidate generator 

availability is derived from an assessment of the technical resource/feed stock availability [404]. 

Bioliquid generators are allowed to be reinstalled in their current locations but no new bioliquid 

plants are assumed. No new biomass (bio solid) candidate generators are assumed, but 

cogeneration bio solid generation is allowed to be reinstalled at the end of its lifetime [304]. 

Candidate geothermal generators are based on the current locations and capacity of existing 

plants that may be reinstalled after retirement [304]. We assume there is no candidate 

hydropower generation.  

Natural gas combined cycle generators and combustion turbines do not have imposed 

maximum capacity limits. Coal generators are not allowed to be installed in California but are 

otherwise allowed to expand without capacity limits. Cogeneration plants (with gas combined 

cycle or combustion turbine plants) are given the option to be reinstalled at current locations 

after reaching their maximum age, at current capacity limits. We assume that there is no nuclear 

generation available for new, candidate generation.  



 190 

Battery storage is available for installation in all load zones and investment periods, 

without capacity limits. An AC-DC-AC storage efficiency of 75%, a lifetime of 10 years, and a 

variable O&M cost of 0 is assumed, consistent with prior SWITCH analyses [304]. 

Table 46 summarizes the maximum capacity available for the set of candidate generators, 

and the capacity installed for existing generators. 

Table 46. WECC total available capacity of existing and candidate generation. 

Existing or 

Candidate 

Generator 

Energy Source Generation Technology Capacity Limit 

(GW) 

Existing 

Generator 

 

Biogas Biogas 0.2 

Biogas Internal Combustion Engine 0.3 

Biogas Internal Combustion Engine Cogen 0.2 

Biogas Steam Turbine 0.1 

Bio Liquid Bio Liquid Steam Turbine Cogen 0.4 

Bio Solid Bio Solid Steam Turbine 0.6 

Bio Solid Steam Turbine Cogen 0.5 

Coal Coal Steam Turbine 42.2 

Coal Steam Turbine Cogen 0.3 

Distillate Fuel Oil Distillate Fuel Oil Combustion Turbine 0.4 

Distillate Fuel Oil Internal Combustion Engine 0.4 

Electricity Battery Storage 1.1 

Gas CCGT 54.8 

CCGT Cogen 7.7 

Gas Combustion Turbine 23.6 

Gas Combustion Turbine Cogen 4.3 

Gas Internal Combustion Engine 1.1 

Gas Internal Combustion Engine Cogen 0.4 

Gas Steam Turbine 16.0 

Gas Steam Turbine Cogen 0.3 

Other Turbine 0.0 

Geothermal Geothermal 4.5 

Residual Fuel Oil Gas Combustion Turbine 0.2 

Solar Central PV 22.0 

Concentrating Solar Power Trough, No Storage 0.4 

Steam Turbine 1.4 

Uranium Nuclear 7.7 

Waste Heat Other Turbine 0.0 

Steam Turbine 0.2 

Water Hydropower 63.3 

Pumped Storage 4.3 

Wind Onshore Wind 27.3 

Total  286.0 

Candidate 

Generators 

Biogas Biogas 0.0 

Biogas Internal Combustion Engine Cogen 0.1 

Bio Liquid Bio Liquid Steam Turbine Cogen 0.3 

Bio Solid Bio Solid Steam Turbine Cogen 0.4 

Coal Coal Integrated Gasification Combined Cycle (IGCC) Not limited, except 

not allowed in CA 

Coal Steam Turbine Not limited, except 

not allowed in CA 

Coal Steam Turbine Cogen 0.7 

Electricity Battery Storage Not limited 

Gas Combined Cycle Gas Turbine (CCGT) Not limited 

CCGT Cogen 6.9 

Gas Combustion Turbine Not limited 

Gas Combustion Turbine Cogen 4.6 
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Gas Internal Combustion Engine Cogen 0.1 

Gas Steam Turbine Cogen 0.3 

Geothermal Geothermal 11.1 

Solar Central PV 3,270.2 

Commercial PV 52.7 

Concentrating Solar Power Trough, 6 hours storage 3,695.3 

Concentrating Solar Power Trough, No Storage 5,362.5 

Residential PV 125.3 

Wind Offshore Wind 6.4 

Onshore Wind 521.4 

Total  13,058.2 

iii. Technology assumptions on lifetime, capacity factors, efficiencies 

For all existing generators and candidate generators, we assume the following default 

technology assumptions based on the generating technology and fuel source (Table 47), 

primarily based on the technology and cost assumptions from Black & Veatch [381] and a CEC 

Cost of Generation Report collected in the prior SWITCH analyses [88], [304] and converted to 

$2018, with some technology values (natural gas combined cycle, natural gas turbine, battery, 

wind, solar PV, solar CSP, and geothermal) updated based on NREL’s 2020 Annual Technology 

Baseline [380]. For existing generators with known planned retirement years, a specific lifetime 

is calculated. 

Table 47.Technology assumptions for existing and candidate generators. 

Fuel Source Generating Technology Lifetime 

(Years) 

Forced 

Outage Rate 

(%) 

Scheduled 

Outage Rate 

(%) 

Biogas Biogas 20 4% 6% 

Biogas Internal Combustion Engine 20 4% 6% 

Biogas Internal Combustion Engine Cogen 20 11% 4% 

Biogas Steam Turbine 20 13% 9% 

Bio Liquid Bio Liquid Steam Turbine Cogen 40 13% 9% 

Bio Solid Bio Solid Steam Turbine 20 4% 6% 

Bio Solid Steam Turbine Cogen 40 13% 9% 

Coal Coal IGCC 40 8% 12% 

Coal Steam Turbine 40 4% 6% 

Coal Steam Turbine Cogen 40 6% 10% 

Distillate Fuel Oil Distillate Fuel Oil Combustion Turbine 40 4% 6% 

Distillate Fuel Oil Internal Combustion Engine 20 4% 6% 

Electricity Battery Storage 10 2% 1% 

Gas CCGT 40 4% 6% 

CCGT Cogen 20 4% 6% 

Gas Combustion Turbine 40 4% 6% 

Gas Combustion Turbine Cogen 20 3% 5% 

Gas Internal Combustion Engine 20 4% 6% 

Gas Internal Combustion Engine Cogen 20 3% 5% 

Gas Steam Turbine 60 4% 6% 

Gas Steam Turbine Cogen 40 13% 9% 

Other Turbine 40 4% 6% 

Geothermal Geothermal 20 0% 0% 

Residual Fuel Oil Gas Combustion Turbine 40 4% 6% 

Solar Central PV 20 0% 0% 

Commercial PV 20 0% 0% 

Concentrating Solar Power Trough 6h Storage 20 6% 0% 

Concentrating Solar Power Trough No Storage 20 0% 0% 

Residential PV 20 0% 0% 

Steam Turbine 20 4% 6% 

Uranium Nuclear 80 4% 6% 
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Waste Heat Other Turbine 40 4% 6% 

Steam Turbine 40 4% 6% 

Water Hydropower 200 5% 5% 

Pumped Storage 200 5% 5% 

Wind Offshore Wind 20 5% 1% 

Onshore Wind 20 0% 0% 

g. Transmission 

The SWITCH optimization includes the construction of new transmission lines and the 

operations of existing and new transmission as decision variables. The model includes a set of 

105 existing aggregated transmission lines between load areas within the WECC, based on a 

prior SWITCH analyses that aggregated the thermal limits of individual high-voltage lines 

between load areas from a Ventyx purchased dataset and Federal Energy Regulatory 

Commission (FERC) data [304]. New transmission capacity may be added to existing 

transmission corridors or constructed between 21 adjacent load zone pairs where there is 

currently no transmission. The line length assumed is 1.3 times the straight-line distance between 

the largest substations in each load zone, based on a prior analysis that calculated this as the 

average ratio between line length and straight-line distance between transmission substations in 

WECC [304]. For every 100 miles of distance, a 1% efficiency loss is assumed, based on typical 

losses for high-voltage transmission [384]. For both existing and newly constructed transmission 

lines, the maximum power transfer on each line is the thermal limit multiplied by a derating 

factor. The derating factor is from a prior SWITCH analysis and is meant to capture the 

combined effect of stability concerns, loop flows, voltage concerns, power factors less than 

unity, and overloading of individual transmission lines within the bundle, that are difficult to 

model in detail in the linear model. The factors are 0.59 for alternating current (AC) lines, and 

0.91 for direct current (DC) lines, of which there are only two in our analysis [304]. 

h. Costs 

i. Overnight capital cost, variable O&M cost, fixed O&M cost 

The SWITCH optimization includes several types of costs in the decision to invest and/or 

operate in generation. Costs for candidate generators include overnight capital cost (applied to 

the built capacity), fixed O&M costs per MW-year of operations, and variable O&M costs per 

MWh of operation. Mature technologies (biogas, bioliquid, biosolid, coal, gas cogeneration, gas 

steam turbine) are assumed to have their real costs stay constant over time, whereas other 

technologies are assumed to decrease costs over time with technology improvements and 

economies of scale. Capital, fixed O&M, and variable O&M costs by generator technology type 

originate primarily from Black & Veatch estimates for the mature technologies [304], [381]. For 

technologies with changing costs over time (battery, solar PV, solar CSP, wind, geothermal, gas 

CCGT, gas CT), we compile cost data from NREL’s 2020 Annual Technology Baseline database 

using the “Moderate Scenario” which is based on the of median projections from the literature 

[380]. For wind and central solar PV, we also account for lower overnight costs in the first 

investment period from the Production Tax Credit and Investment Tax Credit, respectively [382], 

[383]. For battery storage, we separate out the capital costs into $/MW (balance of system 

battery cost) and $/MWh (battery pack cost which would be multiplied by the storage duration 

hours) costs [380]. The costs we use assume a four-hour duration battery. The average costs by 

decadal investment period, energy source, and technology are in Table 48. Capital costs for 

existing generators are considered sunk costs and we do not include them in the total system 
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costs; they do not affect future investment decisions. Variable O&M costs for existing generators 

are set to be the same as for candidate generators. 

Table 48. Average capital, fixed O&M, and variable O&M costs by investment period for candidate generation ($2018). 

Energy Source Generation Technology Investment 

Period 

Overnight 

capital cost 

($/MW) 

Fixed O&M cost 

($/MW-year) 

Variable O&M 

cost ($/MWh) 

Bio Gas Bio Gas 2020 2,118,354 64,380 9.20 

2030 2,118,354 64,380 9.20 

2040 2,118,354 64,380 9.20 

2050 2,118,354 64,380 9.20 

Bio Gas Internal Combustion 

Engine Cogen 

2020 1,588,766 48,285 16.00 

2030 1,588,766 48,285 16.00 

2040 1,588,766 48,285 16.00 

2050 1,588,766 48,285 16.00 

Bio Liquid Bio Liquid Steam Turbine 

Cogen 

2020 3,225,737 80,012 16.80 

2030 3,225,737 80,012 16.80 

2040 3,225,737 80,012 16.80 

2050 3,225,737 80,012 16.80 

Bio Solid Bio Solid Steam Turbine Cogen 2020 3,225,737 80,012 16.80 

2030 3,225,737 80,012 16.80 

2040 3,225,737 80,012 16.80 

2050 3,225,737 80,012 16.80 

Coal Coal Integrated Gasification 

Combined Cycle (IGCC) 

2020 4,503,135 34,924 7.34 

2030 4,503,135 34,924 7.34 

2040 4,503,135 34,924 7.34 

2050 4,503,135 34,924 7.34 

Coal Steam Turbine 2020 3,245,403 25,828 4.57 

2030 3,245,403 25,828 4.57 

2040 3,245,403 25,828 4.57 

2050 3,245,403 25,828 4.57 

Coal Steam Turbine Cogen 2020 2,434,058 19,371 4.20 

2030 2,434,058 19,371 4.20 

2040 2,434,058 19,371 4.20 

2050 2,434,058 19,371 4.20 

Electricity Battery Storage 2020 414,708 32,043 0.0 

2030 150,026 20,982 0.0 

2040 126,912 17,749 0.0 

2050 113,216 15,834 0.0 

Gas CCGT 2020 1,115,074 11,708 4.50 

2030 981,532 12,863 4.50 

2040 947,742 12,863 4.50 

2050 924,780 12,863 4.50 

CCGT Cogen 2020 1,035,945 5,314 4.12 

2030 1,035,945 5,314 4.12 

2040 1,035,945 5,314 4.12 

2050 1,035,945 5,314 4.12 

Gas Combustion Turbine 2020 914,407 10,297 2.16 

2030 896,544 11,395 2.16 

2040 864,990 11,395 2.16 

2050 844,878 11,395 2.16 

Gas Combustion Turbine Cogen 2020 548,292 4,430 33.58 

2030 548,292 4,430 33.58 

2040 548,292 4,430 33.58 

2050 548,292 4,430 33.58 

Gas Internal Combustion Engine 

Cogen 

2020 565,136 4,430 33.58 

2030 565,136 4,430 33.58 

2040 565,136 4,430 33.58 
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2050 565,136 4,430 33.58 

Gas Steam Turbine Cogen 2020 418,841 26,717 4.46 

2030 418,841 26,717 4.46 

2040 418,841 26,717 4.46 

2050 418,841 26,717 4.46 

Geothermal Geothermal 2020 7,753,680 143,173 0.0 

2030 7,658,660 173,766 0.0 

2040 7,237,757 173,105 0.0 

2050 6,970,164 173,105 0.0 

Solar Central PV 2020 1,088,245 22,665 0.0 

2030 876,956 10,270 0.0 

2040 758,373 8,882 0.0 

2050 702,651 8,229 0.0 

Commercial PV 2020 1,550,322 20,415 0.0 

2030 1,089,723 7,813 0.0 

2040 910,568 6,529 0.0 

2050 819,995 5,879 0.0 

CSP Trough 6h Storage 2020 6,845,931 63,634 3.59 

2030 4,915,309 54,132 3.59 

2040 4,205,950 52,447 3.59 

2050 4,023,815 52,447 3.59 

CSP Trough No Storage 2020 5,074,725 56,149 0.0 

2030 4,661,582 56,149 0.0 

2040 4,248,663 56,149 0.0 

2050 3,937,151 56,149 0.0 

Residential PV 2020 2,078,361 25,068 0.0 

2030 1,256,559 9,424 0.0 

2040 984,462 7,384 0.0 

2050 884,353 6,633 0.0 

Wind Offshore Wind 2020 3,959,165 112,298 0.0 

2030 2,744,489 112,298 0.0 

2040 2,401,870 112,298 0.0 

2050 2,226,776 112,298 0.0 

Onshore Wind 2020 1,393,460 47,047 0.0 

2030 1,247,480 38,867 0.0 

2040 1,120,978 35,883 0.0 

2050 1,042,433 33,692 0.0 

ii. Connection costs 

In addition to capital costs for the construction of a generator itself, for candidate 

generators we also add a connection cost to reflect the expense of connecting to the grid. This 

connection cost originally derived from EIA data and compiled in a prior SWITCH analysis 

[304] is either a “generic” cost if the generator is not located at a specific site (for gas, coal, 

biosolid, biogas, or battery storage), or is calculated for a specific site (for onshore wind, 

offshore wind, geothermal, central PV, and CSP with and without storage). The “generic” cost 

includes the cost of building a substation ($80,000/MW in $2018) and a small transmission line 

to the substation ($31,000 in $2018). Site specific connection costs include a transmission line 

cost of $1,200 per MW per km based on the distance from the site to the substation, and the cost 

of the substation. The cost for underwater cable for offshore wind is $6000 per MW per km. 

There is no connection cost applied for existing generation. 

iii. Fuel costs and Emissions 

Fuel costs are applied to non-renewable generators (natural gas, coal, fuel oil, uranium) 

and originate from the EIA’s Annual Energy Outlook (AEO) compiled from a prior WECC 

analysis [88]. Gas costs differ by load zone based differences in regional market prices and the 
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wellhead price [304]. Table 49 shows the average costs for each decadal investment period, 

across all the load zones, in $2018. The fuel costs for bio solid generators are based on supply 

curves derived based on estimates of the economically feasible volumes of biomass feedstock 

available by load zone and different fuel price tiers [304].  

Table 49. Average fuel costs across load zones, by investment period ($/MMBtu in $2018). 

Fuel Source 2020 2030 2040 2050 

Bio Liquid 0.01 0.01 0.01 0.01 

Coal 2.13 2.17 2.27 2.33 

Distillate Fuel Oil 18.55 22.89 25.34 27.64 

Gas 4.32 5.17 5.39 6.34 

Residual Fuel Oil 11.88 16.34 18.30 20.44 

Uranium 0.68 0.88 1.15 1.53 

iv. Transmission costs 

The cost of building new transmission lines is calculated as the product of a line length, a 

base $/MW/km cost, a terrain multiplier that reflects the topography differences that make a line 

more expensive to construct, and an economic multiplier that represents differences in labor, 

permitting, and other “soft” costs between WECC load zones.  

We assume a base $960/MW-km cost, which is the cost for constructing a 500 kV line in 

the WECC from the ReEDS capacity expansion model database ($1,347/MW-mile in $2010 

dollars, converted to $/MW-km and $2018 dollars) [384]. For the economic multiplier, for all 

lines within California we use a factor of 2.25, between California and other WECC load zones 

we use a factor of 1.125, and within other WECC load zones we use a factor of 1 (keeping the 

base cost as it is) from the the ReEDS documentation [384]. Steeper terrain and urban land area 

increase transmission construction costs. Terrain multipliers come from a prior SWITCH GIS 

analysis that overlaid the transmission line paths over a gridded dataset of terrain-dependent 

transmission costs, that had been derived from the slope and the land cover in the WECC region 

[304]. The multipliers range from 0.7 to 3.4. Transmission lines also have a fixed O&M cost 

applied to reflect upkeep costs for lines, which is assumed to be 3% of capital costs from the 

prior SWITCH analysis. 

i. Load 

The future load assumed in this analysis was developed in a prior study and represents a 

case of high energy efficiency and building electrification, as well as increased adoption of Zero 

Emissions Vehicles (ZEVs), primarily from electric vehicles [88]. The load forecast achieves a 

doubling of the rate of energy efficiency by 2030 in California, compliant with the state’s SB 

350 legislative targets, aggressive building electrification starting in 2020, growing industry 

electrification, and high levels of electric vehicle adoption. Hourly demand profiles from 2006 

(consistent with the weather-year used for calculating solar and wind capacity factors) from 

FERC Form 714 and a dataset procured from ITRON were used as a base from which demand 

projects (residential, commercial, industrial, transportation) were created and scaled by sector to 

meet states’ policy targets and reflect population growth [385]. Where detailed state/province-

level load forecasts with state efficiency, electrification, and population estimates were available 

(including California, Washington, Oregon, British Columbia, and Alberta) load zone forecasts 

were scaled to those projections; otherwise forecasts were scaled to the EIA’s Annual Energy 

Outlook projections in the prior SWITCH analysis [88], [405]. In the 2017 Annual Energy 

Outlook Electric projections used, population growth across the U.S. is on average 0.6% 
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annually, based on the U.S. Census Bureau’s mid-case projections at the time [405]. Electric 

vehicles are assumed to charge in an “unmanaged” way (without smart charging or time-of-use 

rates), based on charging profiles developed with an agent-based mobility model BEAM [46], 

[386]. 

j. Planning reserves 

We assume that the load zones in the WECC region must meet a planning reserve margin 

of 15%, that is, the model is required to build capacity to meet 115% of the peak load in each 

reserve area. The reserve requirement is applied by reserve area; utilities like Southern California 

Edison (SCE) and Pacific Gas & Electric (PG&E) that span multiple load zones have a combined 

reserve requirement across their total region. All generator technologies are assumed to be 

eligible to provide capacity towards meeting the planning reserve requirement. Thermal 

generators contribute their nameplate capacity, solar and wind generators contribute as much as 

their capacity factor during the peak hour, hydropower generators contribute as much as their 

monthly capacity factors for all hours of that month, battery storage contributes as much as it 

discharges during the peak hour, and net transmission imports contribute as much as the flows 

during the peak hour. the discharge capacity.  

k. Policies 

i. Renewable Portfolio Standards 

We include state Renewable Portfolio Standard (RPS) policies in SWITCH as a 

constraint requiring a fraction of electricity demand be generated by renewable generators. 

Qualifying RPS-eligible technologies include solar PV and CSP, wind, geothermal, biogas, bio 

solid, bio liquid, and hydropower. We include the annual schedule of RPS requirements by state 

[406]. Because of computational tractability, the RPS constraint is calculated as a WECC-wide 

load-weighted average requirement (total RPS-eligible generation annually must equal or exceed 

the sum-product of annual load for each load zone and the RPS percentage requirement for that 

load zone), rather than accounting for the stocks, flows, and transmission imports of renewable 

power from specific generators.  

ii. Carbon cap 

A constraint on carbon emissions from generators can be imposed in SWITCH by load 

zone and investment period. In this analysis, for the base case we assume a decline of carbon 

emissions to 0 by the 2050 investment period for all load zones in WECC, following the mandate 

already set in California by SB 100 legislation [120, p. 10], and Biden’s campaign and 

administration’s policy goals to reach carbon-neutral electricity generation by 2035 (Table 50) 

[341]. We separately track the carbon cap for California because of SB 100 legislation, and the 

2020 carbon cap accounts for the levels of observed emissions for electricity generation 2016 – 

2018 (the first three years of the 2020 investment period)[217]. To measure compliance with this 

constraint, SWITCH tracks the emissions from each generator and aggregates to the load zone, 

based on emissions intensity for each fuel source [219] (Table 51). 

Table 50. WECC-wide and California Carbon Cap Average by Investment Period. 

Investment Period WECC Carbon Cap (tCO2/year) CA Carbon Cap (tCO2/year) 

2020 222,591,762 57,699,000 

2030 149,423,303 36,292,500 

2040 76,328,672.3 11,400,000 

2050 0 0 
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Table 51. Emissions Intensity of Fuel-based Energy Sources (tons CO2/BTU). 

Fuel CO2 Intensity of Fuel 

Coal 0.09552 

Distillate Fuel Oil 0.07315 

Gas 0.05306 

Residual Fuel Oil 0.0788 

 

B. WEAP Model, Data, and Assumptions 

WEAP is a hybrid water resources management and watershed hydrology tool, built by 

the Stockholm Environmental Institute. WEAP can test different climate inputs, land uses, and 

demands and policies [355], and separately accounts for irrigated agriculture, urban indoor water 

use based on per-capita use and population, and urban outdoor use [92]. Numerous studies have 

used WEAP to assess climate impacts on water management, including on energy-water linkages 

[38], [356]. In each timestep WEAP solves a series of simultaneous equations for a mass-balance 

that partitions precipitation into snow or rain, and runoff or groundwater infiltration based on 

land cover, temperature, and soil moisture for each of the sub-catchments at various elevations, 

calculating the available supply and irrigation water demand [92], [355]. With a linear program, 

WEAP then allocates the calculated available supplies to demands, in order of user-specified 

priorities and supply preferences. With the rainfall-runoff hydrological modeling capabilities, 

embedded within a representation of the water system infrastructure and uses of the region, the 

WEAP model is ideally suited to evaluate climate sensitivity and water management responses 

under climate change. The mathematical formulations of the mass balance and other model 

components are documented in detail in a prior WEAP publication [355].  

a. Geographic and temporal resolution 

For this analysis we build a new WEAP model covering the same region as the WECC 

region of the electricity expansion model (Figure 27, Figure 31).58 The WEAP study area 

includes the watershed regions of the Columbia River, Snake River, Missouri River, Colorado 

River, Platte River, Salt River, Sacramento River, Feather River, and San Joaquin, among many 

others. In addition to including the major rivers of the region, the WEAP model also includes 

built infrastructure such as long-distance conveyance for inter-basin water transfers (including 

the State Water Project, Central Valley Project, Colorado River Aqueduct, and Central Arizona 

Project), and major reservoirs and hydropower generators.  

The model is run at a monthly time step, for the 2010 - 2060 time horizon, with the first 

and last 5 years of the simulation discarded to account for any artifacts or edge effects of model 

spin-up and end. The model has been calibrated for the historical period of 1980 – 2010 for key 

hydrologic metrics using observational US Geological Survey (USGS) gauge data for 

streamflows and/or reservoir outflows [91], [92], [349].  

b. Water supply: catchment delineation and groundwater objects 

We use WEAP’s built-in “Catchment Delineation” tool to delineate catchments and 

rivers and to calculate land area disaggregated by 1000-meter elevation bands and by land use-

land cover (LULC) categories (Agriculture, Forest, Grass and Shrub, Other, Urban, or Water) 

 
58 The Canadian and Mexican regions of WECC are only partially included because of limited data availability. 
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from digital elevation data [357]. Many of the catchments are delineated with major reservoirs as 

the outlet points of associated rivers, because a large focus of this analysis is on hydropower 

generation. The catchment delineation process results in 147 rivers and 311 catchments. Climate 

data is used for each combination of catchment and elevation band. These catchments 

characterize the hydrology of the land area to calculate runoff and agricultural irrigation demand, 

or characterize the urban outdoor irrigation demand. These catchments, along with associated 

groundwater aquifers, provide the water supply to meet water demands.  

c. Water use and water infrastructure 

i. Urban water demand 

For each of 50 load zones in SWITCH, we model an urban (non-agricultural) indoor and 

an urban outdoor water demand node in WEAP. For each urban indoor demand node, total water 

demand is modeled as the product of a water use rate per-capita by sector * regional population. 

We include water use by the Domestic and Commercial and Industrial (C&I) sectors in each 

urban indoor node, and use the historical (2005, 2010, and 2015) average annual water use per-

capita for all future simulation years.59 These per-capita rates are calculated based on historical 

USGS data by sector and county, divided by annual population by county [358]. Finally, these 

county level water use and population data are aggregated and assigned to the appropriate WEAP 

indoor urban demand nodes based on a spatial analysis that weights the data by the overlapping 

population density of each county with the area of each corresponding SWITCH zone. 

Because Domestic water data from USGS includes both indoor and outdoor water use, 

we parse out the indoor portion based on per-capita indoor water use data collected for specific 

cities in our study area (Table 52). For cities for which we cannot find per-capita indoor use, we 

assign the indoor per-capita value from the nearest city with data. Finally, we subtract this indoor 

per-capita value from the total USGS indoor + outdoor per-capita value to derive the Outdoor 

Share. The (1 - Outdoor Share) fraction is used to adjust the Urban land area for each catchment 

to only include the indoor portion for the demand nodes. For C&I water, we make a simplifying 

assumption that the demand is only for indoor use from the commercial, industrial, mining, 

livestock, aquaculture, and thermoelectric sectors as categorized by USGS [358]. We calculate a 

per-capita C&I water demand as the total water use from these sectors divided by population. In 

reality, these C&I water uses are likely to change by other rates, i.e. production, square footage, 

electricity use, but because we do not have such sectoral data, we make a simplifying assumption 

that it also changes along with population growth. This is an area for future research. 

 To capture the climate sensitivity of urban outdoor watering, for each urban indoor water 

demand object, there is also a separate outdoor urban water demand catchment object, that is the 

same Urban land area multiplied by Outdoor Share for each catchment. The land area of these 

outdoor urban catchment objects is the sum of the urban areas for all elevation bands of the main 

catchment object. 

Table 52. Residential indoor per capita water use for selected cities in study area. 

Location Residential indoor per capita water use per day (gpcd) Source 

Denver 50 [407] 

Utah average (Salt Lake City) 60 [408] 

CA average 54 [409] 

San Diego 51 (assuming average household size of 3) [410] 

 
59 Future research will simulate changes in per-capita water use rates as part of conservation programs.  
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Los Angeles 60 (assuming average household size of 2.8) [410] 

San Francisco 41 (Residential gpcd, assumed all indoor) [411] 

Sacramento 68 (average of single-family and multi-family gpcd) [412] 

Seattle 51.9 [413] 

Phoenix 55 [414] 

Portland 50 [415] 

US average 58.6 [416] 

 

ii. Agricultural demand 

Irrigation water demand is determined based on the irrigated land area, which is 

calculated for each catchment as the “Agriculture” land area multiplied by the fraction of 

agricultural area that is irrigated for each catchment area (IrrigFrac). IrrigFrac is calculated as the 

irrigated land area from the 2017 (MODIS) Irrigated Agriculture Datasets for the Conterminous 

United States [359], divided by the total agricultural area from the 2016 National Land Cover 

Database [360]. For the irrigated land area, the water use is calculated as part of the mass-

balance equation using a Penman-Monteith formulation of evapotranspiration (ET), an average 

representative crop coefficient, and soil moisture thresholds. The remaining non-irrigated 

Agriculture land area is added into the Grass and Shrub land use category: Agriculture[ha] * (1- 

IrrigFrac) because it is assumed that non-irrigated agricultural land has similar attributes to Grass 

and Shrub lands. 

d. Demand priorities and supply preferences 

Two user-defined priority systems are used to determine monthly allocations from 

supplies to demand sites, and for instream environmental flow requirements, reservoir storage, 

and hydropower generation [355]. Competing demand sites and flow requirements are allocated 

water according to their demand priorities. Sites can share the same priority. These are useful in 

representing water rights, and are also important during a water shortage, in which case higher 

priorities are satisfied as fully as possible before lower priorities are considered. If priorities are 

the same, shortages will be equally shared. Typically, highest priorities are for critical demands 

that must be satisfied during a shortfall, such as a municipal water supply. When demand sites 

are connected to more than one supply source, their supply preferences may also be ranked. 

These are attached to transmission links. Using the supply preferences and demand priorities, 

WEAP determines the allocation order to follow when allocating the water. The allocation order 

represents the actual calculation order used by WEAP for allocating water. 

In this analysis, with 1 being the highest priority, we have assigned demand priorities as 

follows: 1) environmental flows, 2) urban indoor, 3) urban outdoor, 3) agriculture, 4) reservoir 

storage, and 5) hydropower. We have assigned supply preferences as follows: 1) reuse (when 

available), 2) surface water, 3) groundwater.  

e. Reservoirs, Diversions, Desalination, and Reuse 

We include 132 major reservoirs in the WEAP model of the WUS, which together 

provide 260 Billion m3 of available storage capacity. Reservoir storage is divided into four 

zones, or pools. These include, from top to bottom, the flood-control zone, conservation zone, 

buffer zone and inactive zone [355]. The conservation and buffer pools, together, constitute the 

reservoir's active storage. WEAP will ensure that the flood-control zone is always kept vacant, 

i.e., the volume of water in the reservoir cannot exceed the top of the conservation pool. WEAP 

allows the reservoir to freely release water from the conservation pool to fully meet withdrawal 
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and other downstream requirements. Once the storage level drops into the buffer pool, the release 

will be restricted according to the buffer coefficient, to conserve the reservoir's dwindling 

supplies. Water in the inactive pool is not available for allocation, although under extreme 

conditions evaporation may draw the reservoir into the inactive pool. Parameters to characterize 

reservoir storage capacity and volume-area relationship are from National Inventory of Dams 

data [361]. We also account for evaporation from the surface of the reservoirs for each climate 

scenario, based on the temperature data of the catchment where the reservoir is located.  

Major conveyance projects or diversions are included in WEAP: the State Water Project 

(California Aqueduct and Coastal, East, and West Branches), Central Valley Project, Friant Kern 

Canal, Los Angeles Aqueduct,  Colorado River Aqueduct, Central Arizona Project, All 

American Canal, Central Utah Project, Roberts Tunnel, Moffat Tunnel, and Boustead Tunnel. 

For the State Water Project and Central Valley Project diversions, releases are constrained based 

on available volumes determined by a water year categorization, calculated based on a River 

index of the Pit and Feather Rivers’ streamflow. A monthly pattern of maximum releases is also 

imposed based on historical allocations.  

We include one desalination plant in Carlsbad, California [362] which provides water to 

San Diego, and also model non-potable reuse to the urban outdoor demand use up to 5% of 

return flows of urban indoor demand nodes in the drier Southwest states (California, Arizona, 

and Nevada).  

f. Hydropower generators 

We include 194 individual hydropower generators in the WEAP model, which together 

provide 48 GW of capacity. These are all the generators greater than 30 MW in the United States 

portion of the WECC region, the threshold used by California for its Renewable Portfolio 

standard to denote “large hydro.” Only one generator is included in Canada, because of limited 

data available for calibration.  

Hydropower generators are either included as run-of-river or as reservoir hydropower. Power is 

generated as the WEAP model releases water from the reservoir, or as water flows through the 

run-of-river turbines, based on the supply and demand priorities discussed above. The generators 

are characterized based on head, tailwater elevation, and max turbine flow. In order to match the 

SWITCH baseline hydropower generation as closely as possible, the WEAP hydropower is 

further calibrated to adjust generation to meet the historical average monthly pattern, the annual 

average generation levels, and the annual average capacity factors, per the equations and  

Table 53. Data is based on EIA net generation, NID dam data, and USBR dam and powerhouse 

data, and filled in as much as possible from other documentation from FERC filings, utility 

websites [361], [363]–[365]. 

The monthly generation is calculated based on the head and volumetric flow rates 

through the turbine. Because of limited publicly available Max Turbine Flow data, we derive it 

using other available data on the installed capacity (max capacity) and the head, based on the 

following equations. The Max Turbine Flow parameter is also adjusted for each month based on 

historical monthly and annual generation data to best match the SWITCH baseline data that uses 

the same historical monthly data from EIA. 

MonthlyGen = 1000[kg/m3] ∗ Head ∗ 9.806 ∗ VolumeThroughTurbinem 
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VolumeThroughTurbinem = Min(Releasem, MaxTurbineFlowm) 

𝑀𝑎𝑥𝑇𝑢𝑟𝑏𝑖𝑛𝑒𝐹𝑙𝑜𝑤𝑚

= 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦[𝑀𝑊] ∗ 106/(9.81 ∗ 1000 ∗ 𝐻𝑒𝑎𝑑)
∗ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐸𝑛𝑒𝑟𝑔𝑦𝐹𝑟𝑎𝑐 ∗ 12 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟
∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑟𝑎𝑐 

Table 53. Hydropower parameters and formulation for reservoir and run-of-river hydropower. 

WEAP Variable Reservoir based hydro Run-of-river hydro Sources 

Max turbine flow (Installed Capacity[MW] * 106) /(9.81 * 

1000 * Hydraulic Head[m] ) *  Monthly 

Energy Pattern  * 12 * Capacity Factor *  

(PrevTSValue(Storage Volume[Million 

m^3],1,12, Average)/Storage 

Capacity[Million m^3])  

(Installed Capacity[MW] * 106) /(9.81 * 

1000 * Fixed Head[m] ) * Monthly 

Energy Pattern * 12 * Capacity Factor 

 

Tailwater elevation 0 unless specified for certain reservoirs 

(Hoover, Glen Canyon, Grand Coulee, Big 

Creek 4, Mayfield, San Luis) 

NA  

Capacity Factor Historical capacity factor (averaged 2004 - 

2018) [%] 

Historical capacity factor (averaged 

2004 - 2018) * calibration factor (0.75) 

[%] 

 

Annual Energy Target Historical annual generation (averaged 

2004 - 2018) * calibration factor (1.33) 

[GWh] 

Historical annual generation (averaged 

2004 - 2018) [GWh] 

EIA 

form 

923 

Monthly Energy Pattern Monthly fraction of annual generation 

(averaged 2004 - 2018) [%] 

Monthly fraction of annual generation 

(averaged 2004 - 2018) [%] 

EIA 

form 

923 

Installed Capacity Nameplate capacity installed [MW] Nameplate capacity installed [MW] EIA 

form 

860 

Hydraulic Head Head aka Rated Head [m]  NA USBR, 

NID, 

other 

sources 

Fixed Head NA Head aka Rated Head [m]  USBR, 

NID, 

other 

sources 

 

g. Energy demand for water 

Electricity powers all stages of the managed water cycle, including groundwater 

pumping, long-distance conveyance, treatment, use, wastewater treatment, reuse, and 

desalination. In the WEAP model, we track this embedded energy by applying energy intensity 

values (energy use per unit of water, kWh/m3) associated with the water volumes calculated in 

WEAP throughout the stages of the managed water cycle (Figure 28). Energy intensity values 

are either derived from endogenous model data (i.e. groundwater pumping based on water 

depth), calculated from input data (distribution energy, water heating energy, agricultural 

energy), or based on averages from the literature (desalination, treatment, wastewater treatment, 

reuse) as described below and in Table 54. 

Groundwater pumping energy is calculated based on the lift, pump efficiency, and 

volumetric flow rate. For each groundwater object, the lift in meters is the aquifer water depth 

resulting from the WEAP model for each month. For all groundwater pumping, we assume an 
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average pump efficiency of 49% based on [199], [366]. 

 

Energy = Flow[m3] ∗ Lift[m] ∗ GroundwaterPumpEI[kWh/m3] 
 

Energy for water conveyance, typically for inter-basin water transfers, is calculated based 

on the lift, pump efficiency, and volumetric flow rate. For each conveyance object, the lift in 

meters is the height that water needs to be raised for the specific project (Table 54). We assume a 

pump efficiency of 57% (the highest pump efficiency in [199]). Gravity- fed conveyance 

projects, such as the Los Angeles Aqueduct, are assumed to consume no energy.  

 

Energy = Flow[m3] ∗ Lift[m] ∗ ConveyanceEI[kWh/m3] 
 

Water treatment energy, which we assume is with conventional drinking water treatment, 

is applied for all urban demands (domestic indoor and outdoor, and CII). We use an average 

value from the literature [55], [58], [61], [64, p. 1], [65, p. 2], [73], [76], [207]. Water 

distribution energy is the energy required to pump and distribute water from the treatment plant 

to the end-user, and is also applied for all urban demands. Distribution energy increases with 

steeper terrain, and we therefore calculate the average slope-length of each urban demand node 

area/SWITCH load zone in QGIS based on the topography overlaying the urban land areas 

[357], [360]. We rank and categorize the demand nodes based on their slope-length values with 

the top third assigned hilly, middle third assigned moderate, and bottom third assigned flat 

distribution energy intensity values (0.79, 0.41, 0.04 kWh/m3 respectively) [203]. 

Energy for agricultural water use includes the energy intensity for local surface water 

deliveries (averaged from [55], [58], [61], [64, p. 1], [65, p. 2], [73], [76], [207]) and for 

irrigation (pumping and pressurization). The energy intensity for irrigation is calculated as a 

weighted average based on California data for the historical average applied water by crop [216], 

typical irrigation technology currently installed by crop [215], and the energy intensity for each 

irrigation technology [199] (0.01 kWh/m3, 0.23 kWh/m3 for standard sprinklers, and 0.17  

kWh/m3 for micro/drip irrigation) . 

Energy for Domestic60 water heating is tracked and is calculated as the product of the 

average electric water heater saturation by state [367, p. 8], the average hot water share in typical 

residential homes (33.2%) [206], and the specific heat of water ( ) based on typical 

water heater characteristics (90% efficiency, about 44 degrees C of warming based on average 

10 C inlet and 54 C outlet temperatures).  

Energy for desalination is assumed to be from seawater, averaged from literature [55], 

[58], [61], [64, p. 1], [65, p. 2], [73], [76], [207]. Energy for wastewater treatment applied to 

return flows from all urban indoor water, is assumed to be for secondary treatment, and is 

averaged from literature [55], [58], [61], [64, p. 1], [65, p. 2], [73], [76], [207]. For water non-

potable reuse, we apply an energy intensity for incremental treatment above secondary 

wastewater treatment. 

Table 54. Energy Intensity values related to water. 

Energy use category Energy 

Intensity 

Units Notes 

Groundwater 0.0056  kwh/(meter lift * kwh/(meter lift * monthly volume) = g (9.8) * joule to watt hour 

 
60 We do not track energy use for commercial and industrial water heating because of lack of available data on hot water shares 

of such a diverse set of water end-uses. 
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Pumping monthly volume) conv (0.0002778) / average pump efficiency (0.49) 

Conveyance 0.0048  kwh/(meter lift * 

monthly volume) 

kwh/(meter lift * monthly volume) = g (9.8) * joule to watt hour 

conv (0.0002778) / max pump efficiency (0.57) 

 

Central Arizona Project: 720 m 

Central Utah Project: 30 m 

Colorado River Aqueduct: 400 m 

Central Valley Project: 50 m 

Otero Pump: 105 m 

Rio Chama: 30 m 

State Water Project (SWP): 100 m 

SWP Coastal Branch: 200 m 

SWP East Branch: 748 m 

SWP West Branch: 70 m 

Desalination 3.76 kWh/m3 for seawater desal 

Municipal Drinking 

Water Treatment 

0.25 kWh/m3 for conventional drinking water treatment 

Municipal water 

distribution 

  distribution energy values applied to urban demand nodes 

depending on higher slope-length values (hilly terrain has higher 

distribution energy requirements) 

Agricultural water use 0.17 kWh/m3 local surface water deliveries + average irrigation (pumping and 

pressurization) 

 

Water heating   for heating water from x to x C, assuming electric water heater 

saturation from EIA, and hot water share of indoor water use 

ElectricHeaterSaturation * hot water share * (4.2/3600 * 

monthly volume * 44 degrees C of heating/ water heater 

efficiency) 

Wastewater 

Treatment 

0.65 kWh/m3 for secondary wastewater treatment 

Non-Potable Reuse 

Treatment 

0.4 kWh/m3 for non potable reuse, marginal treatment above secondary 

wastewater treatment 

 

h. Calibration 

i. Streamflow 

The catchment parameters in WEAP are adjusted based on a calibration of modeled 

streamflows compared to observed gauge data for USGS gauging locations on rivers and 

diversions. Typically, managed flow is calibrated, including on the Columbia River below Grand 

Coulee Dam, Snake River below Hells Canyon Dam, Missouri River below Fort Peck Dam, 

inflows to Lake Powell, and Sacramento Delta outflow. Figure 29 in the main text of Chapter 4 

is a summary of goodness-of-fit statistics including correlation and bias across key hydrologic 

points that are simulated in the WEAP model across the WUS, while Figure 30 in Chapter 4 

shows the time series of observed compared to modeled streamflows and goodness-of-fit 

statistics for three important locations: Sacramento Delta outflow, inflows to Lake Powell, and 

Columbia River below Grand Coulee Dam. 

ii. Hydropower 

We match WEAP hydropower generation results from the Reference scenario (no climate 

change) as closely as possible to the SWITCH baseline scenario (no climate change) before 

applying the climate change factors when integrating the models. We manually calibrate the 

average monthly WEAP hydropower generation by generator to match the historical observed 

average generation from the EIA 2004 - 2018 [364], which is used for the SWITCH baseline 

scenario, based on the R2 values of each generator and the average generation-weighted R2 

across all generators. Initial WEAP results showed run-of-river generators under-generating 
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overall compared to the SWITCH baseline, and reservoir generators over-generating especially 

in spring months. Therefore in the calibration we apply a calibration factor of 1.33 to scale up the 

run-of-river generators, and a factor of 0.75 to scale down the reservoir generators. Figure 47 

shows the monthly average WEAP reference generation compared to the SWITCH monthly 

average generation based on historical EIA data. After this calibration, the final generation-

weighted R2 across all generators is 0.82. 

Figure 47. Monthly average hydropower generation in WEAP compared to SWITCH baseline scenario for calibration. 

iii. Statewide water use 

Given the large study area and resolution of the WEAP model, we compare water supply 

deliveries from the reference case to historical observed water use at the state level. We compare 

with 2 sources: USGS data [358] and data collected from individual state water resources 

websites [368]–[376], which were available for some but not all of the same years as the USGS 

data (Table 34). 

iv. Calibrated catchment parameters 

All the catchment objects hydrological parameters include crop coefficient (Kc), Soil 

Water Capacity (SWC), Runoff Resistance Factor (RRF), Root Zone Conductivity (RZC), 

Preferred Flow Direction (PFD), Deep Water Capacity (DeepCap), and Deep Conductivity 

(DeepCond). These are defined by the Land Use category of each catchment. Based on the 

calibration process described above, a set of these hydrological parameters (Table 55) are used 

for catchments classified as “Arid”, “Humid”, and “West.” Arid catchments include areas in the 

Southwest, Humid catchments include areas in the Pacific Northwest and Northern California, 

and West catchments include the Intermountain West region. 

Table 55. Calibrated hydrological parameters for catchment objects. 

Parameter Arid Humid West 

Deep Capacity (Effective water 

holding capacity of deep soil layer) 

501 2000 800 

Deep Conductivity (Conductivity rate 

[length/time] of deep soil layer) 

50 500 200 
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Crop coefficient (Kc) 1.05 1.05 1.05 

Kcint Monthly Values: 

Jan - April: 1 

May - June: 1.1 

Jul: 1.3 

Aug - Sep: 1.5 

Oct - Nov: 1.3 

Dec: 1 

 Monthly Values: 

Jan - April: 1 

May - June: 1.1 

Jul: 1.3 

Aug - Sep: 1.5 

Oct - Nov: 1.3 

Dec: 1 

Preferred flow direction (PFD) - Mild 0.6 0.2 0.4 

Preferred flow direction (PFD) - 

Steep 

0.9 0.6 0.75 

Runoff resistance factor (RRF) Agriculture: 5 

Forest: 5 

Grass and Shrub: 4 

Other (barren/rocks): 4 

Urban: 1 

Urban outdoor: 3 

Agriculture: 5 

Forest: 5 

Grass and Shrub: 4 

Other (barren/rocks): 3 

Urban: 2 

Urban outdoor: 4 

Agriculture: 6 

Forest: 5 

Grass and Shrub: 4 

Other (barren/rocks): 2 

Urban: 1 

Urban outdoor: 4  

Root zone conductivity (RZC) Agriculture: 100 * 0.45 

Forest: 125 * 0.45 

Grass and Shrub: 80 *  

0.45 

Other (barren/rocks): 50 

* 0.45 

Urban: 90 *  0.45 

Urban outdoor: 125 *  

0.45 

Agriculture: 350 * 0.75 

Forest: 500 * 0.75 

Grass and Shrub: 400 *  

0.75 

Other (barren/rocks): 

400 * 0.75 

Urban: 250 *  0.75 

Urban outdoor: 350 *  

0.75 

Agriculture: 300 * 0.66 

Forest: 450 * 0.66 

Grass and Shrub: 275 * 

0.66 

Other (barren/rocks): 200 * 

0.66 

Urban: 100 * 0.66 

Urban outdoor: 250 * 0.66 

Soil Water Capacity (SWC) Deep (Agriculture, 

Forest, Urban): 800 

Shallow (Grass and 

Shrub, Other): 550 

Deep (Agriculture, 

Forest, Urban): 1200 

Shallow (Grass and 

Shrub, Other): 800 

Deep (Agriculture, Forest, 

Urban): 1200 

Shallow (Grass and Shrub, 

Other): 800 

Freezing point temperature (Tf) -5 C -5 C -3 C 

Melting point temperature (Tl) 10 C 5 C 10 C 

Z2 (Initial value at start of simulation) 15 20 15 

 

i. Model Handshake 

Table 56 shows the mapping of the hourly weights used to convert monthly WEAP results on 

energy use related to water, by energy use category and associated WEAP object. 

Table 56. Matching of Hourly Weights with Energy Use Categories. 

Hour weighting category Sector Energy uses included Related WEAP object 

Domestic hour weight Domestic 

Municipal Treatment + 

Distribution Energy + 

Water Heating 

Demand Site Electricity Use 

Monthly 

Commercial Industrial hour weight 
Commercial and 

Industrial 

Municipal Treatment + 

Distribution Energy 

Demand Site Electricity Use 

Monthly 

Groundwater pump hour weight Urban Indoor Groundwater pumping 
Transmission Link Electricity Use 

Monthly 

Domestic hour weight Urban Indoor Desalination 
Transmission Link Electricity Use 

Monthly 

Urban outdoor hour weight 

 
Urban Outdoor 

Municipal Treatment + 

Distribution Energy 

Transmission Link Electricity Use 

Monthly 

Urban outdoor hour weight Urban Outdoor Desalination 
Transmission Link Electricity Use 

Monthly 

Urban outdoor hour weight Urban Outdoor 
Non-potable reuse + 

Distribution Energy 

Transmission Link Electricity Use 

Monthly 

Groundwater pump hour weight Urban Outdoor 

Groundwater pumping + 

Municipal Treatment + 

Distribution Energy 

Transmission Link Electricity Use 

Monthly 
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Agricultural Use hour weight Agricultural Agricultural Use 
Transmission Link Electricity Use 

Monthly 

Groundwater pump hour weight Agricultural 
Groundwater pumping + 

Agricultural Use 

Transmission Link Electricity Use 

Monthly 

Diversion hour weight Conveyance Conveyance pumping Diversion Electricity Use Monthly 

Wastewater treatment hour weight Urban Indoor Wastewater Treatment 
Electricity Use Return Flows 

Monthly 
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Chapter 5 Appendix 

Focus Group Interview Guide 

1. Introduction to the meeting 

2. Goals - 3 main ones:  

• Gather feedback on preliminary research results and identify a way forward  

• Hear from resource managers about any examples of significant energy water 

interactions in the region (or absence of them) and why they were important for 

planning 

• Hear from managers & scientists on what scientific information about these 

interactions (metrics, drivers) can potentially help inform the management context 

under future climates 

3. Presentation on context of the Water-Energy modeling effort  

4. Presentation about WEAP model of Western US (12 mins) 

5. Feedback/Discussion on WEAP preliminary results and steps forward (~ 30 mins) 

• Can this regional scale WEAP model be useful for you? If so, how, and which of 

these results stand out to you as useful for your management context? 

• In the context of climate change, what are the most critical conditions that concern 

you in your management context? (droughts, groundwater levels, floods, water 

demand, reservoir storage) 

• What other water management metrics would be useful to you from this region-scale 

model? 

• Future water supply deliveries by sector and by source? 

• Inter-basin water transfer deliveries? 

• Groundwater use? 

6. 2 minute stretch break if needed 

7. Managers share examples of energy-water interactions and their relevance (~5-7 mins) 

8. Presentation on motivation and framework, method of linking WEAP and SWITCH, and 

preliminary results (12 mins) 

9. Feedback/Discussion on SWITCH preliminary results and steps forward (~30 mins) 

• Which of these results on energy impacts stand out to you? 

o Are you more interested in annual, seasonal, decadal trends? 

o Specific regional trends? 

o Range of results across climate scenarios? 

• Does the energy intensity of the water system factor into your decisions (as cost, 

energy, or carbon implications)? 

• Are there ways you quantify or consider energy as a water provider that we have not 

included here? 

• [Poll about adaptation options] Which of these climate adaptation measures are you 

considering or would you consider (to augment future supplies or increase 

conservation)? [present menu of options] 

o Water conservation 

o Water recycling 

o Groundwater recharge 

o Changing reservoir operations 

o Desalination 
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o Import restrictions 

10. Managers share examples of energy-water interactions and their relevance (~5-7 mins) 

11. For Guided Discussion: 

• Can you remember any significant energy-water interactions from the past (or lack 

thereof) that were particularly impactful in your agency and/or region? When was 

this? What made these interactions significant? How did the interactions affect your 

operations or decisions?  

• How do you quantify energy use as a water provider, and have you considered energy 

as part of prior decisions? 

• Has the electricity generation portfolio factored into prior water management 

decisions by your agency? 

• What statistical properties or understanding of drivers should we focus on for our 

research so that it is most useful to the management context ? Please wherever 

possible refer back to prelim results and how they can be expanded or advanced in a 

useful manner? 

• Are there ways you quantify or consider energy as a water provider that we have not 

included here? 

• Has the electricity generation portfolio, cost, or carbon intensity factored into prior 

water management decisions by your agency? 

• Do any of these results change your mind about energy implications of water 

management decisions? 

Survey questions 

1. Can you summarize 3 (or more) key takeaways from the interactions you had with the 

scientists in the focus group discussions for the Multi-Sector Interactions working group, 

particularly as they relate to your regional decision context? 

2. What was most valuable about this process?  

3. Did you learn something new from the scientists that could directly inform your work? 

4. Can you briefly describe 2-3 important water-energy interactions that are/could be 

particularly impactful to your agency or region? (short descriptions would suffice) 

5. Does the energy intensity of the water system factor into your agency's decisions (as cost, 

energy, or carbon implications)? Why or why not? 

6. Can you identify 2-4 specific management decisions in your agency that could potentially 

change (or be improved) based on the research that is being conducted in this working 

group? 

7. What specific outputs or results would you like to see from this working group that could 

be of most use to your region or agency? 

8. What questions (related to this research working group) might remain unanswered?  

9. Do you have any other comments or suggestions on the engagement process for the 

working group discussions? 




